thp: madvise(MADV_HUGEPAGE)
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
1da177e4
LT
8#include <linux/gfp.h>
9#include <linux/list.h>
10#include <linux/mmzone.h>
11#include <linux/rbtree.h>
12#include <linux/prio_tree.h>
9a11b49a 13#include <linux/debug_locks.h>
5b99cd0e 14#include <linux/mm_types.h>
08677214 15#include <linux/range.h>
c6f6b596 16#include <linux/pfn.h>
e9da73d6 17#include <linux/bit_spinlock.h>
1da177e4
LT
18
19struct mempolicy;
20struct anon_vma;
4e950f6f 21struct file_ra_state;
e8edc6e0 22struct user_struct;
4e950f6f 23struct writeback_control;
1da177e4
LT
24
25#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
26extern unsigned long max_mapnr;
27#endif
28
29extern unsigned long num_physpages;
4481374c 30extern unsigned long totalram_pages;
1da177e4 31extern void * high_memory;
1da177e4
LT
32extern int page_cluster;
33
34#ifdef CONFIG_SYSCTL
35extern int sysctl_legacy_va_layout;
36#else
37#define sysctl_legacy_va_layout 0
38#endif
39
40#include <asm/page.h>
41#include <asm/pgtable.h>
42#include <asm/processor.h>
1da177e4 43
1da177e4
LT
44#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
45
27ac792c
AR
46/* to align the pointer to the (next) page boundary */
47#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
48
1da177e4
LT
49/*
50 * Linux kernel virtual memory manager primitives.
51 * The idea being to have a "virtual" mm in the same way
52 * we have a virtual fs - giving a cleaner interface to the
53 * mm details, and allowing different kinds of memory mappings
54 * (from shared memory to executable loading to arbitrary
55 * mmap() functions).
56 */
57
c43692e8
CL
58extern struct kmem_cache *vm_area_cachep;
59
1da177e4 60#ifndef CONFIG_MMU
8feae131
DH
61extern struct rb_root nommu_region_tree;
62extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
63
64extern unsigned int kobjsize(const void *objp);
65#endif
66
67/*
605d9288 68 * vm_flags in vm_area_struct, see mm_types.h.
1da177e4
LT
69 */
70#define VM_READ 0x00000001 /* currently active flags */
71#define VM_WRITE 0x00000002
72#define VM_EXEC 0x00000004
73#define VM_SHARED 0x00000008
74
7e2cff42 75/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
76#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
77#define VM_MAYWRITE 0x00000020
78#define VM_MAYEXEC 0x00000040
79#define VM_MAYSHARE 0x00000080
80
81#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
8ca3eb08 82#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1da177e4 83#define VM_GROWSUP 0x00000200
8ca3eb08
TL
84#else
85#define VM_GROWSUP 0x00000000
86#endif
6aab341e 87#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4
LT
88#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
89
90#define VM_EXECUTABLE 0x00001000
91#define VM_LOCKED 0x00002000
92#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
93
94 /* Used by sys_madvise() */
95#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
96#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
97
98#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
99#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
0b14c179 100#define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
1da177e4 101#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 102#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4
LT
103#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
104#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
105#define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
895791da 106#define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
e5b97dde 107#define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
d00806b1 108
d0217ac0 109#define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
b379d790 110#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
aba46c50 111#define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */
895791da 112#define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */
f8af4da3 113#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
71e3aac0
AA
114#if BITS_PER_LONG > 32
115#define VM_HUGEPAGE 0x100000000UL /* MADV_HUGEPAGE marked this vma */
116#endif
1da177e4 117
a8bef8ff
MG
118/* Bits set in the VMA until the stack is in its final location */
119#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
120
1da177e4
LT
121#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
122#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
123#endif
124
125#ifdef CONFIG_STACK_GROWSUP
126#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
127#else
128#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
129#endif
130
131#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
132#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
133#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
134#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
135#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
136
b291f000
NP
137/*
138 * special vmas that are non-mergable, non-mlock()able
139 */
140#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
141
1da177e4
LT
142/*
143 * mapping from the currently active vm_flags protection bits (the
144 * low four bits) to a page protection mask..
145 */
146extern pgprot_t protection_map[16];
147
d0217ac0
NP
148#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
149#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
c2ec175c 150#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
d065bd81 151#define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
d0217ac0 152
6bd9cd50 153/*
154 * This interface is used by x86 PAT code to identify a pfn mapping that is
155 * linear over entire vma. This is to optimize PAT code that deals with
156 * marking the physical region with a particular prot. This is not for generic
157 * mm use. Note also that this check will not work if the pfn mapping is
158 * linear for a vma starting at physical address 0. In which case PAT code
159 * falls back to slow path of reserving physical range page by page.
160 */
3c8bb73a 161static inline int is_linear_pfn_mapping(struct vm_area_struct *vma)
162{
895791da 163 return (vma->vm_flags & VM_PFN_AT_MMAP);
3c8bb73a 164}
165
166static inline int is_pfn_mapping(struct vm_area_struct *vma)
167{
168 return (vma->vm_flags & VM_PFNMAP);
169}
d0217ac0 170
54cb8821 171/*
d0217ac0 172 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
173 * ->fault function. The vma's ->fault is responsible for returning a bitmask
174 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 175 *
d0217ac0
NP
176 * pgoff should be used in favour of virtual_address, if possible. If pgoff
177 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
178 * mapping support.
54cb8821 179 */
d0217ac0
NP
180struct vm_fault {
181 unsigned int flags; /* FAULT_FLAG_xxx flags */
182 pgoff_t pgoff; /* Logical page offset based on vma */
183 void __user *virtual_address; /* Faulting virtual address */
184
185 struct page *page; /* ->fault handlers should return a
83c54070 186 * page here, unless VM_FAULT_NOPAGE
d0217ac0 187 * is set (which is also implied by
83c54070 188 * VM_FAULT_ERROR).
d0217ac0 189 */
54cb8821 190};
1da177e4
LT
191
192/*
193 * These are the virtual MM functions - opening of an area, closing and
194 * unmapping it (needed to keep files on disk up-to-date etc), pointer
195 * to the functions called when a no-page or a wp-page exception occurs.
196 */
197struct vm_operations_struct {
198 void (*open)(struct vm_area_struct * area);
199 void (*close)(struct vm_area_struct * area);
d0217ac0 200 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
201
202 /* notification that a previously read-only page is about to become
203 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 204 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20
RR
205
206 /* called by access_process_vm when get_user_pages() fails, typically
207 * for use by special VMAs that can switch between memory and hardware
208 */
209 int (*access)(struct vm_area_struct *vma, unsigned long addr,
210 void *buf, int len, int write);
1da177e4 211#ifdef CONFIG_NUMA
a6020ed7
LS
212 /*
213 * set_policy() op must add a reference to any non-NULL @new mempolicy
214 * to hold the policy upon return. Caller should pass NULL @new to
215 * remove a policy and fall back to surrounding context--i.e. do not
216 * install a MPOL_DEFAULT policy, nor the task or system default
217 * mempolicy.
218 */
1da177e4 219 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
220
221 /*
222 * get_policy() op must add reference [mpol_get()] to any policy at
223 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
224 * in mm/mempolicy.c will do this automatically.
225 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
226 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
227 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
228 * must return NULL--i.e., do not "fallback" to task or system default
229 * policy.
230 */
1da177e4
LT
231 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
232 unsigned long addr);
7b2259b3
CL
233 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
234 const nodemask_t *to, unsigned long flags);
1da177e4
LT
235#endif
236};
237
238struct mmu_gather;
239struct inode;
240
349aef0b
AM
241#define page_private(page) ((page)->private)
242#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 243
1da177e4
LT
244/*
245 * FIXME: take this include out, include page-flags.h in
246 * files which need it (119 of them)
247 */
248#include <linux/page-flags.h>
71e3aac0 249#include <linux/huge_mm.h>
1da177e4
LT
250
251/*
252 * Methods to modify the page usage count.
253 *
254 * What counts for a page usage:
255 * - cache mapping (page->mapping)
256 * - private data (page->private)
257 * - page mapped in a task's page tables, each mapping
258 * is counted separately
259 *
260 * Also, many kernel routines increase the page count before a critical
261 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
262 */
263
264/*
da6052f7 265 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 266 */
7c8ee9a8
NP
267static inline int put_page_testzero(struct page *page)
268{
725d704e 269 VM_BUG_ON(atomic_read(&page->_count) == 0);
8dc04efb 270 return atomic_dec_and_test(&page->_count);
7c8ee9a8 271}
1da177e4
LT
272
273/*
7c8ee9a8
NP
274 * Try to grab a ref unless the page has a refcount of zero, return false if
275 * that is the case.
1da177e4 276 */
7c8ee9a8
NP
277static inline int get_page_unless_zero(struct page *page)
278{
8dc04efb 279 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 280}
1da177e4 281
53df8fdc
WF
282extern int page_is_ram(unsigned long pfn);
283
48667e7a 284/* Support for virtually mapped pages */
b3bdda02
CL
285struct page *vmalloc_to_page(const void *addr);
286unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 287
0738c4bb
PM
288/*
289 * Determine if an address is within the vmalloc range
290 *
291 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
292 * is no special casing required.
293 */
9e2779fa
CL
294static inline int is_vmalloc_addr(const void *x)
295{
0738c4bb 296#ifdef CONFIG_MMU
9e2779fa
CL
297 unsigned long addr = (unsigned long)x;
298
299 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb
PM
300#else
301 return 0;
8ca3ed87 302#endif
0738c4bb 303}
81ac3ad9
KH
304#ifdef CONFIG_MMU
305extern int is_vmalloc_or_module_addr(const void *x);
306#else
934831d0 307static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
308{
309 return 0;
310}
311#endif
9e2779fa 312
e9da73d6
AA
313static inline void compound_lock(struct page *page)
314{
315#ifdef CONFIG_TRANSPARENT_HUGEPAGE
316 bit_spin_lock(PG_compound_lock, &page->flags);
317#endif
318}
319
320static inline void compound_unlock(struct page *page)
321{
322#ifdef CONFIG_TRANSPARENT_HUGEPAGE
323 bit_spin_unlock(PG_compound_lock, &page->flags);
324#endif
325}
326
327static inline unsigned long compound_lock_irqsave(struct page *page)
328{
329 unsigned long uninitialized_var(flags);
330#ifdef CONFIG_TRANSPARENT_HUGEPAGE
331 local_irq_save(flags);
332 compound_lock(page);
333#endif
334 return flags;
335}
336
337static inline void compound_unlock_irqrestore(struct page *page,
338 unsigned long flags)
339{
340#ifdef CONFIG_TRANSPARENT_HUGEPAGE
341 compound_unlock(page);
342 local_irq_restore(flags);
343#endif
344}
345
d85f3385
CL
346static inline struct page *compound_head(struct page *page)
347{
6d777953 348 if (unlikely(PageTail(page)))
d85f3385
CL
349 return page->first_page;
350 return page;
351}
352
4c21e2f2 353static inline int page_count(struct page *page)
1da177e4 354{
d85f3385 355 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
356}
357
358static inline void get_page(struct page *page)
359{
91807063
AA
360 /*
361 * Getting a normal page or the head of a compound page
362 * requires to already have an elevated page->_count. Only if
363 * we're getting a tail page, the elevated page->_count is
364 * required only in the head page, so for tail pages the
365 * bugcheck only verifies that the page->_count isn't
366 * negative.
367 */
368 VM_BUG_ON(atomic_read(&page->_count) < !PageTail(page));
1da177e4 369 atomic_inc(&page->_count);
91807063
AA
370 /*
371 * Getting a tail page will elevate both the head and tail
372 * page->_count(s).
373 */
374 if (unlikely(PageTail(page))) {
375 /*
376 * This is safe only because
377 * __split_huge_page_refcount can't run under
378 * get_page().
379 */
380 VM_BUG_ON(atomic_read(&page->first_page->_count) <= 0);
381 atomic_inc(&page->first_page->_count);
382 }
1da177e4
LT
383}
384
b49af68f
CL
385static inline struct page *virt_to_head_page(const void *x)
386{
387 struct page *page = virt_to_page(x);
388 return compound_head(page);
389}
390
7835e98b
NP
391/*
392 * Setup the page count before being freed into the page allocator for
393 * the first time (boot or memory hotplug)
394 */
395static inline void init_page_count(struct page *page)
396{
397 atomic_set(&page->_count, 1);
398}
399
1da177e4 400void put_page(struct page *page);
1d7ea732 401void put_pages_list(struct list_head *pages);
1da177e4 402
8dfcc9ba 403void split_page(struct page *page, unsigned int order);
748446bb 404int split_free_page(struct page *page);
8dfcc9ba 405
33f2ef89
AW
406/*
407 * Compound pages have a destructor function. Provide a
408 * prototype for that function and accessor functions.
409 * These are _only_ valid on the head of a PG_compound page.
410 */
411typedef void compound_page_dtor(struct page *);
412
413static inline void set_compound_page_dtor(struct page *page,
414 compound_page_dtor *dtor)
415{
416 page[1].lru.next = (void *)dtor;
417}
418
419static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
420{
421 return (compound_page_dtor *)page[1].lru.next;
422}
423
d85f3385
CL
424static inline int compound_order(struct page *page)
425{
6d777953 426 if (!PageHead(page))
d85f3385
CL
427 return 0;
428 return (unsigned long)page[1].lru.prev;
429}
430
431static inline void set_compound_order(struct page *page, unsigned long order)
432{
433 page[1].lru.prev = (void *)order;
434}
435
14fd403f
AA
436/*
437 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
438 * servicing faults for write access. In the normal case, do always want
439 * pte_mkwrite. But get_user_pages can cause write faults for mappings
440 * that do not have writing enabled, when used by access_process_vm.
441 */
442static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
443{
444 if (likely(vma->vm_flags & VM_WRITE))
445 pte = pte_mkwrite(pte);
446 return pte;
447}
448
1da177e4
LT
449/*
450 * Multiple processes may "see" the same page. E.g. for untouched
451 * mappings of /dev/null, all processes see the same page full of
452 * zeroes, and text pages of executables and shared libraries have
453 * only one copy in memory, at most, normally.
454 *
455 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
456 * page_count() == 0 means the page is free. page->lru is then used for
457 * freelist management in the buddy allocator.
da6052f7 458 * page_count() > 0 means the page has been allocated.
1da177e4 459 *
da6052f7
NP
460 * Pages are allocated by the slab allocator in order to provide memory
461 * to kmalloc and kmem_cache_alloc. In this case, the management of the
462 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
463 * unless a particular usage is carefully commented. (the responsibility of
464 * freeing the kmalloc memory is the caller's, of course).
1da177e4 465 *
da6052f7
NP
466 * A page may be used by anyone else who does a __get_free_page().
467 * In this case, page_count still tracks the references, and should only
468 * be used through the normal accessor functions. The top bits of page->flags
469 * and page->virtual store page management information, but all other fields
470 * are unused and could be used privately, carefully. The management of this
471 * page is the responsibility of the one who allocated it, and those who have
472 * subsequently been given references to it.
473 *
474 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
475 * managed by the Linux memory manager: I/O, buffers, swapping etc.
476 * The following discussion applies only to them.
477 *
da6052f7
NP
478 * A pagecache page contains an opaque `private' member, which belongs to the
479 * page's address_space. Usually, this is the address of a circular list of
480 * the page's disk buffers. PG_private must be set to tell the VM to call
481 * into the filesystem to release these pages.
1da177e4 482 *
da6052f7
NP
483 * A page may belong to an inode's memory mapping. In this case, page->mapping
484 * is the pointer to the inode, and page->index is the file offset of the page,
485 * in units of PAGE_CACHE_SIZE.
1da177e4 486 *
da6052f7
NP
487 * If pagecache pages are not associated with an inode, they are said to be
488 * anonymous pages. These may become associated with the swapcache, and in that
489 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 490 *
da6052f7
NP
491 * In either case (swapcache or inode backed), the pagecache itself holds one
492 * reference to the page. Setting PG_private should also increment the
493 * refcount. The each user mapping also has a reference to the page.
1da177e4 494 *
da6052f7
NP
495 * The pagecache pages are stored in a per-mapping radix tree, which is
496 * rooted at mapping->page_tree, and indexed by offset.
497 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
498 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 499 *
da6052f7 500 * All pagecache pages may be subject to I/O:
1da177e4
LT
501 * - inode pages may need to be read from disk,
502 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
503 * to be written back to the inode on disk,
504 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
505 * modified may need to be swapped out to swap space and (later) to be read
506 * back into memory.
1da177e4
LT
507 */
508
509/*
510 * The zone field is never updated after free_area_init_core()
511 * sets it, so none of the operations on it need to be atomic.
1da177e4 512 */
348f8b6c 513
d41dee36
AW
514
515/*
516 * page->flags layout:
517 *
518 * There are three possibilities for how page->flags get
519 * laid out. The first is for the normal case, without
520 * sparsemem. The second is for sparsemem when there is
521 * plenty of space for node and section. The last is when
522 * we have run out of space and have to fall back to an
523 * alternate (slower) way of determining the node.
524 *
308c05e3
CL
525 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
526 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
527 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
d41dee36 528 */
308c05e3 529#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
d41dee36
AW
530#define SECTIONS_WIDTH SECTIONS_SHIFT
531#else
532#define SECTIONS_WIDTH 0
533#endif
534
535#define ZONES_WIDTH ZONES_SHIFT
536
9223b419 537#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
d41dee36
AW
538#define NODES_WIDTH NODES_SHIFT
539#else
308c05e3
CL
540#ifdef CONFIG_SPARSEMEM_VMEMMAP
541#error "Vmemmap: No space for nodes field in page flags"
542#endif
d41dee36
AW
543#define NODES_WIDTH 0
544#endif
545
546/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
07808b74 547#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
548#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
549#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
550
551/*
552 * We are going to use the flags for the page to node mapping if its in
553 * there. This includes the case where there is no node, so it is implicit.
554 */
89689ae7
CL
555#if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
556#define NODE_NOT_IN_PAGE_FLAGS
557#endif
d41dee36
AW
558
559#ifndef PFN_SECTION_SHIFT
560#define PFN_SECTION_SHIFT 0
561#endif
348f8b6c
DH
562
563/*
564 * Define the bit shifts to access each section. For non-existant
565 * sections we define the shift as 0; that plus a 0 mask ensures
566 * the compiler will optimise away reference to them.
567 */
d41dee36
AW
568#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
569#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
570#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
348f8b6c 571
bce54bbf
WD
572/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
573#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 574#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
575#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
576 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 577#else
89689ae7 578#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
579#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
580 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
581#endif
582
bd8029b6 583#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 584
9223b419
CL
585#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
586#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
587#endif
588
d41dee36
AW
589#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
590#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
591#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
89689ae7 592#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 593
2f1b6248 594static inline enum zone_type page_zonenum(struct page *page)
1da177e4 595{
348f8b6c 596 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 597}
1da177e4 598
89689ae7
CL
599/*
600 * The identification function is only used by the buddy allocator for
601 * determining if two pages could be buddies. We are not really
602 * identifying a zone since we could be using a the section number
603 * id if we have not node id available in page flags.
604 * We guarantee only that it will return the same value for two
605 * combinable pages in a zone.
606 */
cb2b95e1
AW
607static inline int page_zone_id(struct page *page)
608{
89689ae7 609 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
610}
611
25ba77c1 612static inline int zone_to_nid(struct zone *zone)
89fa3024 613{
d5f541ed
CL
614#ifdef CONFIG_NUMA
615 return zone->node;
616#else
617 return 0;
618#endif
89fa3024
CL
619}
620
89689ae7 621#ifdef NODE_NOT_IN_PAGE_FLAGS
25ba77c1 622extern int page_to_nid(struct page *page);
89689ae7 623#else
25ba77c1 624static inline int page_to_nid(struct page *page)
d41dee36 625{
89689ae7 626 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 627}
89689ae7
CL
628#endif
629
630static inline struct zone *page_zone(struct page *page)
631{
632 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
633}
634
308c05e3 635#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
d41dee36
AW
636static inline unsigned long page_to_section(struct page *page)
637{
638 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
639}
308c05e3 640#endif
d41dee36 641
2f1b6248 642static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
643{
644 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
645 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
646}
2f1b6248 647
348f8b6c
DH
648static inline void set_page_node(struct page *page, unsigned long node)
649{
650 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
651 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 652}
89689ae7 653
d41dee36
AW
654static inline void set_page_section(struct page *page, unsigned long section)
655{
656 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
657 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
658}
1da177e4 659
2f1b6248 660static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 661 unsigned long node, unsigned long pfn)
1da177e4 662{
348f8b6c
DH
663 set_page_zone(page, zone);
664 set_page_node(page, node);
d41dee36 665 set_page_section(page, pfn_to_section_nr(pfn));
1da177e4
LT
666}
667
f6ac2354
CL
668/*
669 * Some inline functions in vmstat.h depend on page_zone()
670 */
671#include <linux/vmstat.h>
672
652050ae 673static __always_inline void *lowmem_page_address(struct page *page)
1da177e4 674{
c6f6b596 675 return __va(PFN_PHYS(page_to_pfn(page)));
1da177e4
LT
676}
677
678#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
679#define HASHED_PAGE_VIRTUAL
680#endif
681
682#if defined(WANT_PAGE_VIRTUAL)
683#define page_address(page) ((page)->virtual)
684#define set_page_address(page, address) \
685 do { \
686 (page)->virtual = (address); \
687 } while(0)
688#define page_address_init() do { } while(0)
689#endif
690
691#if defined(HASHED_PAGE_VIRTUAL)
692void *page_address(struct page *page);
693void set_page_address(struct page *page, void *virtual);
694void page_address_init(void);
695#endif
696
697#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
698#define page_address(page) lowmem_page_address(page)
699#define set_page_address(page, address) do { } while(0)
700#define page_address_init() do { } while(0)
701#endif
702
703/*
704 * On an anonymous page mapped into a user virtual memory area,
705 * page->mapping points to its anon_vma, not to a struct address_space;
3ca7b3c5
HD
706 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
707 *
708 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
709 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
710 * and then page->mapping points, not to an anon_vma, but to a private
711 * structure which KSM associates with that merged page. See ksm.h.
712 *
713 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
1da177e4
LT
714 *
715 * Please note that, confusingly, "page_mapping" refers to the inode
716 * address_space which maps the page from disk; whereas "page_mapped"
717 * refers to user virtual address space into which the page is mapped.
718 */
719#define PAGE_MAPPING_ANON 1
3ca7b3c5
HD
720#define PAGE_MAPPING_KSM 2
721#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
1da177e4
LT
722
723extern struct address_space swapper_space;
724static inline struct address_space *page_mapping(struct page *page)
725{
726 struct address_space *mapping = page->mapping;
727
b5fab14e 728 VM_BUG_ON(PageSlab(page));
1da177e4
LT
729 if (unlikely(PageSwapCache(page)))
730 mapping = &swapper_space;
e20e8779 731 else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
1da177e4
LT
732 mapping = NULL;
733 return mapping;
734}
735
3ca7b3c5
HD
736/* Neutral page->mapping pointer to address_space or anon_vma or other */
737static inline void *page_rmapping(struct page *page)
738{
739 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
740}
741
1da177e4
LT
742static inline int PageAnon(struct page *page)
743{
744 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
745}
746
747/*
748 * Return the pagecache index of the passed page. Regular pagecache pages
749 * use ->index whereas swapcache pages use ->private
750 */
751static inline pgoff_t page_index(struct page *page)
752{
753 if (unlikely(PageSwapCache(page)))
4c21e2f2 754 return page_private(page);
1da177e4
LT
755 return page->index;
756}
757
758/*
759 * The atomic page->_mapcount, like _count, starts from -1:
760 * so that transitions both from it and to it can be tracked,
761 * using atomic_inc_and_test and atomic_add_negative(-1).
762 */
763static inline void reset_page_mapcount(struct page *page)
764{
765 atomic_set(&(page)->_mapcount, -1);
766}
767
768static inline int page_mapcount(struct page *page)
769{
770 return atomic_read(&(page)->_mapcount) + 1;
771}
772
773/*
774 * Return true if this page is mapped into pagetables.
775 */
776static inline int page_mapped(struct page *page)
777{
778 return atomic_read(&(page)->_mapcount) >= 0;
779}
780
1da177e4
LT
781/*
782 * Different kinds of faults, as returned by handle_mm_fault().
783 * Used to decide whether a process gets delivered SIGBUS or
784 * just gets major/minor fault counters bumped up.
785 */
d0217ac0 786
83c54070 787#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
d0217ac0 788
83c54070
NP
789#define VM_FAULT_OOM 0x0001
790#define VM_FAULT_SIGBUS 0x0002
791#define VM_FAULT_MAJOR 0x0004
792#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
793#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
794#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
f33ea7f4 795
83c54070
NP
796#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
797#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 798#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1da177e4 799
aa50d3a7
AK
800#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
801
802#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
803 VM_FAULT_HWPOISON_LARGE)
804
805/* Encode hstate index for a hwpoisoned large page */
806#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
807#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 808
1c0fe6e3
NP
809/*
810 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
811 */
812extern void pagefault_out_of_memory(void);
813
1da177e4
LT
814#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
815
816extern void show_free_areas(void);
817
3f96b79a 818int shmem_lock(struct file *file, int lock, struct user_struct *user);
168f5ac6 819struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags);
1da177e4
LT
820int shmem_zero_setup(struct vm_area_struct *);
821
b0e15190
DH
822#ifndef CONFIG_MMU
823extern unsigned long shmem_get_unmapped_area(struct file *file,
824 unsigned long addr,
825 unsigned long len,
826 unsigned long pgoff,
827 unsigned long flags);
828#endif
829
e8edc6e0 830extern int can_do_mlock(void);
1da177e4
LT
831extern int user_shm_lock(size_t, struct user_struct *);
832extern void user_shm_unlock(size_t, struct user_struct *);
833
834/*
835 * Parameter block passed down to zap_pte_range in exceptional cases.
836 */
837struct zap_details {
838 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
839 struct address_space *check_mapping; /* Check page->mapping if set */
840 pgoff_t first_index; /* Lowest page->index to unmap */
841 pgoff_t last_index; /* Highest page->index to unmap */
842 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
1da177e4
LT
843 unsigned long truncate_count; /* Compare vm_truncate_count */
844};
845
7e675137
NP
846struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
847 pte_t pte);
848
c627f9cc
JS
849int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
850 unsigned long size);
ee39b37b 851unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 852 unsigned long size, struct zap_details *);
508034a3 853unsigned long unmap_vmas(struct mmu_gather **tlb,
1da177e4
LT
854 struct vm_area_struct *start_vma, unsigned long start_addr,
855 unsigned long end_addr, unsigned long *nr_accounted,
856 struct zap_details *);
e6473092
MM
857
858/**
859 * mm_walk - callbacks for walk_page_range
860 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
861 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
862 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
863 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
864 * @pte_hole: if set, called for each hole at all levels
5dc37642 865 * @hugetlb_entry: if set, called for each hugetlb entry
e6473092
MM
866 *
867 * (see walk_page_range for more details)
868 */
869struct mm_walk {
2165009b
DH
870 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
871 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
872 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
873 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
874 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
116354d1
NH
875 int (*hugetlb_entry)(pte_t *, unsigned long,
876 unsigned long, unsigned long, struct mm_walk *);
2165009b
DH
877 struct mm_struct *mm;
878 void *private;
e6473092
MM
879};
880
2165009b
DH
881int walk_page_range(unsigned long addr, unsigned long end,
882 struct mm_walk *walk);
42b77728 883void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 884 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
885int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
886 struct vm_area_struct *vma);
1da177e4
LT
887void unmap_mapping_range(struct address_space *mapping,
888 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
889int follow_pfn(struct vm_area_struct *vma, unsigned long address,
890 unsigned long *pfn);
d87fe660 891int follow_phys(struct vm_area_struct *vma, unsigned long address,
892 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
893int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
894 void *buf, int len, int write);
1da177e4
LT
895
896static inline void unmap_shared_mapping_range(struct address_space *mapping,
897 loff_t const holebegin, loff_t const holelen)
898{
899 unmap_mapping_range(mapping, holebegin, holelen, 0);
900}
901
25d9e2d1 902extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
2c27c65e 903extern void truncate_setsize(struct inode *inode, loff_t newsize);
25d9e2d1 904extern int vmtruncate(struct inode *inode, loff_t offset);
905extern int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end);
f33ea7f4 906
750b4987 907int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 908int generic_error_remove_page(struct address_space *mapping, struct page *page);
750b4987 909
83f78668
WF
910int invalidate_inode_page(struct page *page);
911
7ee1dd3f 912#ifdef CONFIG_MMU
83c54070 913extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 914 unsigned long address, unsigned int flags);
7ee1dd3f
DH
915#else
916static inline int handle_mm_fault(struct mm_struct *mm,
917 struct vm_area_struct *vma, unsigned long address,
d06063cc 918 unsigned int flags)
7ee1dd3f
DH
919{
920 /* should never happen if there's no MMU */
921 BUG();
922 return VM_FAULT_SIGBUS;
923}
924#endif
f33ea7f4 925
1da177e4
LT
926extern int make_pages_present(unsigned long addr, unsigned long end);
927extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1da177e4 928
d2bf6be8 929int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
9d73777e 930 unsigned long start, int nr_pages, int write, int force,
d2bf6be8
NP
931 struct page **pages, struct vm_area_struct **vmas);
932int get_user_pages_fast(unsigned long start, int nr_pages, int write,
933 struct page **pages);
f3e8fccd 934struct page *get_dump_page(unsigned long addr);
1da177e4 935
cf9a2ae8
DH
936extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
937extern void do_invalidatepage(struct page *page, unsigned long offset);
938
1da177e4 939int __set_page_dirty_nobuffers(struct page *page);
76719325 940int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
941int redirty_page_for_writepage(struct writeback_control *wbc,
942 struct page *page);
e3a7cca1 943void account_page_dirtied(struct page *page, struct address_space *mapping);
f629d1c9 944void account_page_writeback(struct page *page);
b3c97528 945int set_page_dirty(struct page *page);
1da177e4
LT
946int set_page_dirty_lock(struct page *page);
947int clear_page_dirty_for_io(struct page *page);
948
39aa3cb3
SB
949/* Is the vma a continuation of the stack vma above it? */
950static inline int vma_stack_continue(struct vm_area_struct *vma, unsigned long addr)
951{
952 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
953}
954
b6a2fea3
OW
955extern unsigned long move_page_tables(struct vm_area_struct *vma,
956 unsigned long old_addr, struct vm_area_struct *new_vma,
957 unsigned long new_addr, unsigned long len);
1da177e4
LT
958extern unsigned long do_mremap(unsigned long addr,
959 unsigned long old_len, unsigned long new_len,
960 unsigned long flags, unsigned long new_addr);
b6a2fea3
OW
961extern int mprotect_fixup(struct vm_area_struct *vma,
962 struct vm_area_struct **pprev, unsigned long start,
963 unsigned long end, unsigned long newflags);
1da177e4 964
465a454f
PZ
965/*
966 * doesn't attempt to fault and will return short.
967 */
968int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
969 struct page **pages);
d559db08
KH
970/*
971 * per-process(per-mm_struct) statistics.
972 */
34e55232 973#if defined(SPLIT_RSS_COUNTING)
d559db08
KH
974/*
975 * The mm counters are not protected by its page_table_lock,
976 * so must be incremented atomically.
977 */
978static inline void set_mm_counter(struct mm_struct *mm, int member, long value)
979{
980 atomic_long_set(&mm->rss_stat.count[member], value);
981}
982
34e55232 983unsigned long get_mm_counter(struct mm_struct *mm, int member);
d559db08
KH
984
985static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
986{
987 atomic_long_add(value, &mm->rss_stat.count[member]);
988}
989
990static inline void inc_mm_counter(struct mm_struct *mm, int member)
991{
992 atomic_long_inc(&mm->rss_stat.count[member]);
993}
994
995static inline void dec_mm_counter(struct mm_struct *mm, int member)
996{
997 atomic_long_dec(&mm->rss_stat.count[member]);
998}
999
1000#else /* !USE_SPLIT_PTLOCKS */
1001/*
1002 * The mm counters are protected by its page_table_lock,
1003 * so can be incremented directly.
1004 */
1005static inline void set_mm_counter(struct mm_struct *mm, int member, long value)
1006{
1007 mm->rss_stat.count[member] = value;
1008}
1009
1010static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1011{
1012 return mm->rss_stat.count[member];
1013}
1014
1015static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1016{
1017 mm->rss_stat.count[member] += value;
1018}
1019
1020static inline void inc_mm_counter(struct mm_struct *mm, int member)
1021{
1022 mm->rss_stat.count[member]++;
1023}
1024
1025static inline void dec_mm_counter(struct mm_struct *mm, int member)
1026{
1027 mm->rss_stat.count[member]--;
1028}
1029
1030#endif /* !USE_SPLIT_PTLOCKS */
1031
1032static inline unsigned long get_mm_rss(struct mm_struct *mm)
1033{
1034 return get_mm_counter(mm, MM_FILEPAGES) +
1035 get_mm_counter(mm, MM_ANONPAGES);
1036}
1037
1038static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1039{
1040 return max(mm->hiwater_rss, get_mm_rss(mm));
1041}
1042
1043static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1044{
1045 return max(mm->hiwater_vm, mm->total_vm);
1046}
1047
1048static inline void update_hiwater_rss(struct mm_struct *mm)
1049{
1050 unsigned long _rss = get_mm_rss(mm);
1051
1052 if ((mm)->hiwater_rss < _rss)
1053 (mm)->hiwater_rss = _rss;
1054}
1055
1056static inline void update_hiwater_vm(struct mm_struct *mm)
1057{
1058 if (mm->hiwater_vm < mm->total_vm)
1059 mm->hiwater_vm = mm->total_vm;
1060}
1061
1062static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1063 struct mm_struct *mm)
1064{
1065 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1066
1067 if (*maxrss < hiwater_rss)
1068 *maxrss = hiwater_rss;
1069}
1070
53bddb4e 1071#if defined(SPLIT_RSS_COUNTING)
34e55232 1072void sync_mm_rss(struct task_struct *task, struct mm_struct *mm);
53bddb4e
KH
1073#else
1074static inline void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
1075{
1076}
1077#endif
465a454f 1078
1da177e4 1079/*
8e1f936b 1080 * A callback you can register to apply pressure to ageable caches.
1da177e4 1081 *
8e1f936b
RR
1082 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should
1083 * look through the least-recently-used 'nr_to_scan' entries and
1084 * attempt to free them up. It should return the number of objects
1085 * which remain in the cache. If it returns -1, it means it cannot do
1086 * any scanning at this time (eg. there is a risk of deadlock).
1da177e4 1087 *
8e1f936b
RR
1088 * The 'gfpmask' refers to the allocation we are currently trying to
1089 * fulfil.
1090 *
1091 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
1092 * querying the cache size, so a fastpath for that case is appropriate.
1da177e4 1093 */
8e1f936b 1094struct shrinker {
7f8275d0 1095 int (*shrink)(struct shrinker *, int nr_to_scan, gfp_t gfp_mask);
8e1f936b 1096 int seeks; /* seeks to recreate an obj */
1da177e4 1097
8e1f936b
RR
1098 /* These are for internal use */
1099 struct list_head list;
1100 long nr; /* objs pending delete */
1101};
1102#define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
1103extern void register_shrinker(struct shrinker *);
1104extern void unregister_shrinker(struct shrinker *);
1da177e4 1105
4e950f6f 1106int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 1107
25ca1d6c
NK
1108extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1109 spinlock_t **ptl);
1110static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1111 spinlock_t **ptl)
1112{
1113 pte_t *ptep;
1114 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1115 return ptep;
1116}
c9cfcddf 1117
5f22df00
NP
1118#ifdef __PAGETABLE_PUD_FOLDED
1119static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1120 unsigned long address)
1121{
1122 return 0;
1123}
1124#else
1bb3630e 1125int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1126#endif
1127
1128#ifdef __PAGETABLE_PMD_FOLDED
1129static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1130 unsigned long address)
1131{
1132 return 0;
1133}
1134#else
1bb3630e 1135int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
5f22df00
NP
1136#endif
1137
8ac1f832
AA
1138int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1139 pmd_t *pmd, unsigned long address);
1bb3630e
HD
1140int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1141
1da177e4
LT
1142/*
1143 * The following ifdef needed to get the 4level-fixup.h header to work.
1144 * Remove it when 4level-fixup.h has been removed.
1145 */
1bb3630e 1146#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1147static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1148{
1bb3630e
HD
1149 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1150 NULL: pud_offset(pgd, address);
1da177e4
LT
1151}
1152
1153static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1154{
1bb3630e
HD
1155 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1156 NULL: pmd_offset(pud, address);
1da177e4 1157}
1bb3630e
HD
1158#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1159
f7d0b926 1160#if USE_SPLIT_PTLOCKS
4c21e2f2
HD
1161/*
1162 * We tuck a spinlock to guard each pagetable page into its struct page,
1163 * at page->private, with BUILD_BUG_ON to make sure that this will not
1164 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1165 * When freeing, reset page->mapping so free_pages_check won't complain.
1166 */
349aef0b 1167#define __pte_lockptr(page) &((page)->ptl)
4c21e2f2
HD
1168#define pte_lock_init(_page) do { \
1169 spin_lock_init(__pte_lockptr(_page)); \
1170} while (0)
1171#define pte_lock_deinit(page) ((page)->mapping = NULL)
1172#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
f7d0b926 1173#else /* !USE_SPLIT_PTLOCKS */
4c21e2f2
HD
1174/*
1175 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1176 */
1177#define pte_lock_init(page) do {} while (0)
1178#define pte_lock_deinit(page) do {} while (0)
1179#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
f7d0b926 1180#endif /* USE_SPLIT_PTLOCKS */
4c21e2f2 1181
2f569afd
MS
1182static inline void pgtable_page_ctor(struct page *page)
1183{
1184 pte_lock_init(page);
1185 inc_zone_page_state(page, NR_PAGETABLE);
1186}
1187
1188static inline void pgtable_page_dtor(struct page *page)
1189{
1190 pte_lock_deinit(page);
1191 dec_zone_page_state(page, NR_PAGETABLE);
1192}
1193
c74df32c
HD
1194#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1195({ \
4c21e2f2 1196 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1197 pte_t *__pte = pte_offset_map(pmd, address); \
1198 *(ptlp) = __ptl; \
1199 spin_lock(__ptl); \
1200 __pte; \
1201})
1202
1203#define pte_unmap_unlock(pte, ptl) do { \
1204 spin_unlock(ptl); \
1205 pte_unmap(pte); \
1206} while (0)
1207
8ac1f832
AA
1208#define pte_alloc_map(mm, vma, pmd, address) \
1209 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1210 pmd, address))? \
1211 NULL: pte_offset_map(pmd, address))
1bb3630e 1212
c74df32c 1213#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
8ac1f832
AA
1214 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1215 pmd, address))? \
c74df32c
HD
1216 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1217
1bb3630e 1218#define pte_alloc_kernel(pmd, address) \
8ac1f832 1219 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1220 NULL: pte_offset_kernel(pmd, address))
1da177e4
LT
1221
1222extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1223extern void free_area_init_node(int nid, unsigned long * zones_size,
1224 unsigned long zone_start_pfn, unsigned long *zholes_size);
c713216d
MG
1225#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
1226/*
1227 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
1228 * zones, allocate the backing mem_map and account for memory holes in a more
1229 * architecture independent manner. This is a substitute for creating the
1230 * zone_sizes[] and zholes_size[] arrays and passing them to
1231 * free_area_init_node()
1232 *
1233 * An architecture is expected to register range of page frames backed by
1234 * physical memory with add_active_range() before calling
1235 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1236 * usage, an architecture is expected to do something like
1237 *
1238 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1239 * max_highmem_pfn};
1240 * for_each_valid_physical_page_range()
1241 * add_active_range(node_id, start_pfn, end_pfn)
1242 * free_area_init_nodes(max_zone_pfns);
1243 *
1244 * If the architecture guarantees that there are no holes in the ranges
1245 * registered with add_active_range(), free_bootmem_active_regions()
1246 * will call free_bootmem_node() for each registered physical page range.
1247 * Similarly sparse_memory_present_with_active_regions() calls
1248 * memory_present() for each range when SPARSEMEM is enabled.
1249 *
1250 * See mm/page_alloc.c for more information on each function exposed by
1251 * CONFIG_ARCH_POPULATES_NODE_MAP
1252 */
1253extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1254extern void add_active_range(unsigned int nid, unsigned long start_pfn,
1255 unsigned long end_pfn);
cc1050ba
YL
1256extern void remove_active_range(unsigned int nid, unsigned long start_pfn,
1257 unsigned long end_pfn);
c713216d 1258extern void remove_all_active_ranges(void);
32996250
YL
1259void sort_node_map(void);
1260unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1261 unsigned long end_pfn);
c713216d
MG
1262extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1263 unsigned long end_pfn);
1264extern void get_pfn_range_for_nid(unsigned int nid,
1265 unsigned long *start_pfn, unsigned long *end_pfn);
1266extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1267extern void free_bootmem_with_active_regions(int nid,
1268 unsigned long max_low_pfn);
08677214
YL
1269int add_from_early_node_map(struct range *range, int az,
1270 int nr_range, int nid);
edbe7d23
YL
1271u64 __init find_memory_core_early(int nid, u64 size, u64 align,
1272 u64 goal, u64 limit);
08677214
YL
1273void *__alloc_memory_core_early(int nodeid, u64 size, u64 align,
1274 u64 goal, u64 limit);
d52d53b8 1275typedef int (*work_fn_t)(unsigned long, unsigned long, void *);
b5bc6c0e 1276extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data);
c713216d 1277extern void sparse_memory_present_with_active_regions(int nid);
c713216d 1278#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
f2dbcfa7
KH
1279
1280#if !defined(CONFIG_ARCH_POPULATES_NODE_MAP) && \
1281 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1282static inline int __early_pfn_to_nid(unsigned long pfn)
1283{
1284 return 0;
1285}
1286#else
1287/* please see mm/page_alloc.c */
1288extern int __meminit early_pfn_to_nid(unsigned long pfn);
1289#ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1290/* there is a per-arch backend function. */
1291extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1292#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1293#endif
1294
0e0b864e 1295extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1296extern void memmap_init_zone(unsigned long, int, unsigned long,
1297 unsigned long, enum memmap_context);
bc75d33f 1298extern void setup_per_zone_wmarks(void);
96cb4df5 1299extern void calculate_zone_inactive_ratio(struct zone *zone);
1da177e4 1300extern void mem_init(void);
8feae131 1301extern void __init mmap_init(void);
1da177e4
LT
1302extern void show_mem(void);
1303extern void si_meminfo(struct sysinfo * val);
1304extern void si_meminfo_node(struct sysinfo *val, int nid);
3461b0af 1305extern int after_bootmem;
1da177e4 1306
e7c8d5c9 1307extern void setup_per_cpu_pageset(void);
e7c8d5c9 1308
112067f0
SL
1309extern void zone_pcp_update(struct zone *zone);
1310
8feae131 1311/* nommu.c */
33e5d769 1312extern atomic_long_t mmap_pages_allocated;
7e660872 1313extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1314
1da177e4
LT
1315/* prio_tree.c */
1316void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
1317void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1318void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1319struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1320 struct prio_tree_iter *iter);
1321
1322#define vma_prio_tree_foreach(vma, iter, root, begin, end) \
1323 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
1324 (vma = vma_prio_tree_next(vma, iter)); )
1325
1326static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1327 struct list_head *list)
1328{
1329 vma->shared.vm_set.parent = NULL;
1330 list_add_tail(&vma->shared.vm_set.list, list);
1331}
1332
1333/* mmap.c */
34b4e4aa 1334extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
5beb4930 1335extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1336 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1337extern struct vm_area_struct *vma_merge(struct mm_struct *,
1338 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1339 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1340 struct mempolicy *);
1341extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1342extern int split_vma(struct mm_struct *,
1343 struct vm_area_struct *, unsigned long addr, int new_below);
1344extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1345extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1346 struct rb_node **, struct rb_node *);
a8fb5618 1347extern void unlink_file_vma(struct vm_area_struct *);
1da177e4
LT
1348extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1349 unsigned long addr, unsigned long len, pgoff_t pgoff);
1350extern void exit_mmap(struct mm_struct *);
925d1c40 1351
7906d00c
AA
1352extern int mm_take_all_locks(struct mm_struct *mm);
1353extern void mm_drop_all_locks(struct mm_struct *mm);
1354
925d1c40
MH
1355#ifdef CONFIG_PROC_FS
1356/* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */
1357extern void added_exe_file_vma(struct mm_struct *mm);
1358extern void removed_exe_file_vma(struct mm_struct *mm);
1359#else
1360static inline void added_exe_file_vma(struct mm_struct *mm)
1361{}
1362
1363static inline void removed_exe_file_vma(struct mm_struct *mm)
1364{}
1365#endif /* CONFIG_PROC_FS */
1366
119f657c 1367extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
fa5dc22f
RM
1368extern int install_special_mapping(struct mm_struct *mm,
1369 unsigned long addr, unsigned long len,
1370 unsigned long flags, struct page **pages);
1da177e4
LT
1371
1372extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1373
1374extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1375 unsigned long len, unsigned long prot,
1376 unsigned long flag, unsigned long pgoff);
0165ab44
MS
1377extern unsigned long mmap_region(struct file *file, unsigned long addr,
1378 unsigned long len, unsigned long flags,
5a6fe125 1379 unsigned int vm_flags, unsigned long pgoff);
1da177e4
LT
1380
1381static inline unsigned long do_mmap(struct file *file, unsigned long addr,
1382 unsigned long len, unsigned long prot,
1383 unsigned long flag, unsigned long offset)
1384{
1385 unsigned long ret = -EINVAL;
1386 if ((offset + PAGE_ALIGN(len)) < offset)
1387 goto out;
1388 if (!(offset & ~PAGE_MASK))
1389 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1390out:
1391 return ret;
1392}
1393
1394extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1395
1396extern unsigned long do_brk(unsigned long, unsigned long);
1397
1398/* filemap.c */
1399extern unsigned long page_unuse(struct page *);
1400extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
1401extern void truncate_inode_pages_range(struct address_space *,
1402 loff_t lstart, loff_t lend);
1da177e4
LT
1403
1404/* generic vm_area_ops exported for stackable file systems */
d0217ac0 1405extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1da177e4
LT
1406
1407/* mm/page-writeback.c */
1408int write_one_page(struct page *page, int wait);
1cf6e7d8 1409void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
1410
1411/* readahead.c */
1412#define VM_MAX_READAHEAD 128 /* kbytes */
1413#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 1414
1da177e4 1415int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 1416 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
1417
1418void page_cache_sync_readahead(struct address_space *mapping,
1419 struct file_ra_state *ra,
1420 struct file *filp,
1421 pgoff_t offset,
1422 unsigned long size);
1423
1424void page_cache_async_readahead(struct address_space *mapping,
1425 struct file_ra_state *ra,
1426 struct file *filp,
1427 struct page *pg,
1428 pgoff_t offset,
1429 unsigned long size);
1430
1da177e4 1431unsigned long max_sane_readahead(unsigned long nr);
d30a1100
WF
1432unsigned long ra_submit(struct file_ra_state *ra,
1433 struct address_space *mapping,
1434 struct file *filp);
1da177e4
LT
1435
1436/* Do stack extension */
46dea3d0 1437extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 1438#if VM_GROWSUP
46dea3d0 1439extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08
TL
1440#else
1441 #define expand_upwards(vma, address) do { } while (0)
9ab88515 1442#endif
b6a2fea3
OW
1443extern int expand_stack_downwards(struct vm_area_struct *vma,
1444 unsigned long address);
1da177e4
LT
1445
1446/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1447extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1448extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1449 struct vm_area_struct **pprev);
1450
1451/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1452 NULL if none. Assume start_addr < end_addr. */
1453static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1454{
1455 struct vm_area_struct * vma = find_vma(mm,start_addr);
1456
1457 if (vma && end_addr <= vma->vm_start)
1458 vma = NULL;
1459 return vma;
1460}
1461
1462static inline unsigned long vma_pages(struct vm_area_struct *vma)
1463{
1464 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1465}
1466
bad849b3 1467#ifdef CONFIG_MMU
804af2cf 1468pgprot_t vm_get_page_prot(unsigned long vm_flags);
bad849b3
DH
1469#else
1470static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1471{
1472 return __pgprot(0);
1473}
1474#endif
1475
deceb6cd 1476struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
1477int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1478 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 1479int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
1480int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1481 unsigned long pfn);
423bad60
NP
1482int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1483 unsigned long pfn);
deceb6cd 1484
6aab341e 1485struct page *follow_page(struct vm_area_struct *, unsigned long address,
deceb6cd
HD
1486 unsigned int foll_flags);
1487#define FOLL_WRITE 0x01 /* check pte is writable */
1488#define FOLL_TOUCH 0x02 /* mark page accessed */
1489#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 1490#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 1491#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
110d74a9 1492#define FOLL_MLOCK 0x40 /* mark page as mlocked */
1da177e4 1493
2f569afd 1494typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
1495 void *data);
1496extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1497 unsigned long size, pte_fn_t fn, void *data);
1498
1da177e4 1499#ifdef CONFIG_PROC_FS
ab50b8ed 1500void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1da177e4 1501#else
ab50b8ed 1502static inline void vm_stat_account(struct mm_struct *mm,
1da177e4
LT
1503 unsigned long flags, struct file *file, long pages)
1504{
1505}
1506#endif /* CONFIG_PROC_FS */
1507
12d6f21e
IM
1508#ifdef CONFIG_DEBUG_PAGEALLOC
1509extern int debug_pagealloc_enabled;
1510
1511extern void kernel_map_pages(struct page *page, int numpages, int enable);
1512
1513static inline void enable_debug_pagealloc(void)
1514{
1515 debug_pagealloc_enabled = 1;
1516}
8a235efa
RW
1517#ifdef CONFIG_HIBERNATION
1518extern bool kernel_page_present(struct page *page);
1519#endif /* CONFIG_HIBERNATION */
12d6f21e 1520#else
1da177e4 1521static inline void
9858db50 1522kernel_map_pages(struct page *page, int numpages, int enable) {}
12d6f21e
IM
1523static inline void enable_debug_pagealloc(void)
1524{
1525}
8a235efa
RW
1526#ifdef CONFIG_HIBERNATION
1527static inline bool kernel_page_present(struct page *page) { return true; }
1528#endif /* CONFIG_HIBERNATION */
1da177e4
LT
1529#endif
1530
1531extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
1532#ifdef __HAVE_ARCH_GATE_AREA
1533int in_gate_area_no_task(unsigned long addr);
1534int in_gate_area(struct task_struct *task, unsigned long addr);
1535#else
1536int in_gate_area_no_task(unsigned long addr);
1537#define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
1538#endif /* __HAVE_ARCH_GATE_AREA */
1539
8d65af78 1540int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 1541 void __user *, size_t *, loff_t *);
69e05944 1542unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
9d0243bc 1543 unsigned long lru_pages);
9d0243bc 1544
7a9166e3
LY
1545#ifndef CONFIG_MMU
1546#define randomize_va_space 0
1547#else
a62eaf15 1548extern int randomize_va_space;
7a9166e3 1549#endif
a62eaf15 1550
045e72ac 1551const char * arch_vma_name(struct vm_area_struct *vma);
03252919 1552void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 1553
9bdac914
YL
1554void sparse_mem_maps_populate_node(struct page **map_map,
1555 unsigned long pnum_begin,
1556 unsigned long pnum_end,
1557 unsigned long map_count,
1558 int nodeid);
1559
98f3cfc1 1560struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
1561pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1562pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1563pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1564pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 1565void *vmemmap_alloc_block(unsigned long size, int node);
9bdac914 1566void *vmemmap_alloc_block_buf(unsigned long size, int node);
8f6aac41 1567void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
29c71111
AW
1568int vmemmap_populate_basepages(struct page *start_page,
1569 unsigned long pages, int node);
1570int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
c2b91e2e 1571void vmemmap_populate_print_last(void);
8f6aac41 1572
6a46079c 1573
82ba011b
AK
1574enum mf_flags {
1575 MF_COUNT_INCREASED = 1 << 0,
1576};
6a46079c 1577extern void memory_failure(unsigned long pfn, int trapno);
82ba011b 1578extern int __memory_failure(unsigned long pfn, int trapno, int flags);
847ce401 1579extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
1580extern int sysctl_memory_failure_early_kill;
1581extern int sysctl_memory_failure_recovery;
facb6011 1582extern void shake_page(struct page *p, int access);
6a46079c 1583extern atomic_long_t mce_bad_pages;
facb6011 1584extern int soft_offline_page(struct page *page, int flags);
bf998156
HY
1585#ifdef CONFIG_MEMORY_FAILURE
1586int is_hwpoison_address(unsigned long addr);
1587#else
1588static inline int is_hwpoison_address(unsigned long addr)
1589{
1590 return 0;
1591}
1592#endif
6a46079c 1593
718a3821
WF
1594extern void dump_page(struct page *page);
1595
47ad8475
AA
1596#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1597extern void clear_huge_page(struct page *page,
1598 unsigned long addr,
1599 unsigned int pages_per_huge_page);
1600extern void copy_user_huge_page(struct page *dst, struct page *src,
1601 unsigned long addr, struct vm_area_struct *vma,
1602 unsigned int pages_per_huge_page);
1603#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1604
1da177e4
LT
1605#endif /* __KERNEL__ */
1606#endif /* _LINUX_MM_H */