sched: Make sure to not re-read variables after validation
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
1da177e4 75
96f951ed 76#include <asm/switch_to.h>
5517d86b 77#include <asm/tlb.h>
838225b4 78#include <asm/irq_regs.h>
db7e527d 79#include <asm/mutex.h>
e6e6685a
GC
80#ifdef CONFIG_PARAVIRT
81#include <asm/paravirt.h>
82#endif
1da177e4 83
029632fb 84#include "sched.h"
391e43da 85#include "../workqueue_sched.h"
29d5e047 86#include "../smpboot.h"
6e0534f2 87
a8d154b0 88#define CREATE_TRACE_POINTS
ad8d75ff 89#include <trace/events/sched.h>
a8d154b0 90
029632fb 91void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 92{
58088ad0
PT
93 unsigned long delta;
94 ktime_t soft, hard, now;
d0b27fa7 95
58088ad0
PT
96 for (;;) {
97 if (hrtimer_active(period_timer))
98 break;
99
100 now = hrtimer_cb_get_time(period_timer);
101 hrtimer_forward(period_timer, now, period);
d0b27fa7 102
58088ad0
PT
103 soft = hrtimer_get_softexpires(period_timer);
104 hard = hrtimer_get_expires(period_timer);
105 delta = ktime_to_ns(ktime_sub(hard, soft));
106 __hrtimer_start_range_ns(period_timer, soft, delta,
107 HRTIMER_MODE_ABS_PINNED, 0);
108 }
109}
110
029632fb
PZ
111DEFINE_MUTEX(sched_domains_mutex);
112DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 113
fe44d621 114static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 115
029632fb 116void update_rq_clock(struct rq *rq)
3e51f33f 117{
fe44d621 118 s64 delta;
305e6835 119
61eadef6 120 if (rq->skip_clock_update > 0)
f26f9aff 121 return;
aa483808 122
fe44d621
PZ
123 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
124 rq->clock += delta;
125 update_rq_clock_task(rq, delta);
3e51f33f
PZ
126}
127
bf5c91ba
IM
128/*
129 * Debugging: various feature bits
130 */
f00b45c1 131
f00b45c1
PZ
132#define SCHED_FEAT(name, enabled) \
133 (1UL << __SCHED_FEAT_##name) * enabled |
134
bf5c91ba 135const_debug unsigned int sysctl_sched_features =
391e43da 136#include "features.h"
f00b45c1
PZ
137 0;
138
139#undef SCHED_FEAT
140
141#ifdef CONFIG_SCHED_DEBUG
142#define SCHED_FEAT(name, enabled) \
143 #name ,
144
983ed7a6 145static __read_mostly char *sched_feat_names[] = {
391e43da 146#include "features.h"
f00b45c1
PZ
147 NULL
148};
149
150#undef SCHED_FEAT
151
34f3a814 152static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 153{
f00b45c1
PZ
154 int i;
155
f8b6d1cc 156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
157 if (!(sysctl_sched_features & (1UL << i)))
158 seq_puts(m, "NO_");
159 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 160 }
34f3a814 161 seq_puts(m, "\n");
f00b45c1 162
34f3a814 163 return 0;
f00b45c1
PZ
164}
165
f8b6d1cc
PZ
166#ifdef HAVE_JUMP_LABEL
167
c5905afb
IM
168#define jump_label_key__true STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
170
171#define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
173
c5905afb 174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
c5905afb
IM
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
184}
185
186static void sched_feat_enable(int i)
187{
c5905afb
IM
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
f00b45c1
PZ
196static ssize_t
197sched_feat_write(struct file *filp, const char __user *ubuf,
198 size_t cnt, loff_t *ppos)
199{
200 char buf[64];
7740191c 201 char *cmp;
f00b45c1
PZ
202 int neg = 0;
203 int i;
204
205 if (cnt > 63)
206 cnt = 63;
207
208 if (copy_from_user(&buf, ubuf, cnt))
209 return -EFAULT;
210
211 buf[cnt] = 0;
7740191c 212 cmp = strstrip(buf);
f00b45c1 213
524429c3 214 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
215 neg = 1;
216 cmp += 3;
217 }
218
f8b6d1cc 219 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 220 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 221 if (neg) {
f00b45c1 222 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
223 sched_feat_disable(i);
224 } else {
f00b45c1 225 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
226 sched_feat_enable(i);
227 }
f00b45c1
PZ
228 break;
229 }
230 }
231
f8b6d1cc 232 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
233 return -EINVAL;
234
42994724 235 *ppos += cnt;
f00b45c1
PZ
236
237 return cnt;
238}
239
34f3a814
LZ
240static int sched_feat_open(struct inode *inode, struct file *filp)
241{
242 return single_open(filp, sched_feat_show, NULL);
243}
244
828c0950 245static const struct file_operations sched_feat_fops = {
34f3a814
LZ
246 .open = sched_feat_open,
247 .write = sched_feat_write,
248 .read = seq_read,
249 .llseek = seq_lseek,
250 .release = single_release,
f00b45c1
PZ
251};
252
253static __init int sched_init_debug(void)
254{
f00b45c1
PZ
255 debugfs_create_file("sched_features", 0644, NULL, NULL,
256 &sched_feat_fops);
257
258 return 0;
259}
260late_initcall(sched_init_debug);
f8b6d1cc 261#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 262
b82d9fdd
PZ
263/*
264 * Number of tasks to iterate in a single balance run.
265 * Limited because this is done with IRQs disabled.
266 */
267const_debug unsigned int sysctl_sched_nr_migrate = 32;
268
e9e9250b
PZ
269/*
270 * period over which we average the RT time consumption, measured
271 * in ms.
272 *
273 * default: 1s
274 */
275const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
276
fa85ae24 277/*
9f0c1e56 278 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
279 * default: 1s
280 */
9f0c1e56 281unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 282
029632fb 283__read_mostly int scheduler_running;
6892b75e 284
9f0c1e56
PZ
285/*
286 * part of the period that we allow rt tasks to run in us.
287 * default: 0.95s
288 */
289int sysctl_sched_rt_runtime = 950000;
fa85ae24 290
fa85ae24 291
1da177e4 292
0970d299 293/*
0122ec5b 294 * __task_rq_lock - lock the rq @p resides on.
b29739f9 295 */
70b97a7f 296static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
297 __acquires(rq->lock)
298{
0970d299
PZ
299 struct rq *rq;
300
0122ec5b
PZ
301 lockdep_assert_held(&p->pi_lock);
302
3a5c359a 303 for (;;) {
0970d299 304 rq = task_rq(p);
05fa785c 305 raw_spin_lock(&rq->lock);
65cc8e48 306 if (likely(rq == task_rq(p)))
3a5c359a 307 return rq;
05fa785c 308 raw_spin_unlock(&rq->lock);
b29739f9 309 }
b29739f9
IM
310}
311
1da177e4 312/*
0122ec5b 313 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 314 */
70b97a7f 315static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 316 __acquires(p->pi_lock)
1da177e4
LT
317 __acquires(rq->lock)
318{
70b97a7f 319 struct rq *rq;
1da177e4 320
3a5c359a 321 for (;;) {
0122ec5b 322 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 323 rq = task_rq(p);
05fa785c 324 raw_spin_lock(&rq->lock);
65cc8e48 325 if (likely(rq == task_rq(p)))
3a5c359a 326 return rq;
0122ec5b
PZ
327 raw_spin_unlock(&rq->lock);
328 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 329 }
1da177e4
LT
330}
331
a9957449 332static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
333 __releases(rq->lock)
334{
05fa785c 335 raw_spin_unlock(&rq->lock);
b29739f9
IM
336}
337
0122ec5b
PZ
338static inline void
339task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 340 __releases(rq->lock)
0122ec5b 341 __releases(p->pi_lock)
1da177e4 342{
0122ec5b
PZ
343 raw_spin_unlock(&rq->lock);
344 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
345}
346
1da177e4 347/*
cc2a73b5 348 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 349 */
a9957449 350static struct rq *this_rq_lock(void)
1da177e4
LT
351 __acquires(rq->lock)
352{
70b97a7f 353 struct rq *rq;
1da177e4
LT
354
355 local_irq_disable();
356 rq = this_rq();
05fa785c 357 raw_spin_lock(&rq->lock);
1da177e4
LT
358
359 return rq;
360}
361
8f4d37ec
PZ
362#ifdef CONFIG_SCHED_HRTICK
363/*
364 * Use HR-timers to deliver accurate preemption points.
365 *
366 * Its all a bit involved since we cannot program an hrt while holding the
367 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
368 * reschedule event.
369 *
370 * When we get rescheduled we reprogram the hrtick_timer outside of the
371 * rq->lock.
372 */
8f4d37ec 373
8f4d37ec
PZ
374static void hrtick_clear(struct rq *rq)
375{
376 if (hrtimer_active(&rq->hrtick_timer))
377 hrtimer_cancel(&rq->hrtick_timer);
378}
379
8f4d37ec
PZ
380/*
381 * High-resolution timer tick.
382 * Runs from hardirq context with interrupts disabled.
383 */
384static enum hrtimer_restart hrtick(struct hrtimer *timer)
385{
386 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
387
388 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
389
05fa785c 390 raw_spin_lock(&rq->lock);
3e51f33f 391 update_rq_clock(rq);
8f4d37ec 392 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 393 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
394
395 return HRTIMER_NORESTART;
396}
397
95e904c7 398#ifdef CONFIG_SMP
31656519
PZ
399/*
400 * called from hardirq (IPI) context
401 */
402static void __hrtick_start(void *arg)
b328ca18 403{
31656519 404 struct rq *rq = arg;
b328ca18 405
05fa785c 406 raw_spin_lock(&rq->lock);
31656519
PZ
407 hrtimer_restart(&rq->hrtick_timer);
408 rq->hrtick_csd_pending = 0;
05fa785c 409 raw_spin_unlock(&rq->lock);
b328ca18
PZ
410}
411
31656519
PZ
412/*
413 * Called to set the hrtick timer state.
414 *
415 * called with rq->lock held and irqs disabled
416 */
029632fb 417void hrtick_start(struct rq *rq, u64 delay)
b328ca18 418{
31656519
PZ
419 struct hrtimer *timer = &rq->hrtick_timer;
420 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 421
cc584b21 422 hrtimer_set_expires(timer, time);
31656519
PZ
423
424 if (rq == this_rq()) {
425 hrtimer_restart(timer);
426 } else if (!rq->hrtick_csd_pending) {
6e275637 427 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
428 rq->hrtick_csd_pending = 1;
429 }
b328ca18
PZ
430}
431
432static int
433hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
434{
435 int cpu = (int)(long)hcpu;
436
437 switch (action) {
438 case CPU_UP_CANCELED:
439 case CPU_UP_CANCELED_FROZEN:
440 case CPU_DOWN_PREPARE:
441 case CPU_DOWN_PREPARE_FROZEN:
442 case CPU_DEAD:
443 case CPU_DEAD_FROZEN:
31656519 444 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
445 return NOTIFY_OK;
446 }
447
448 return NOTIFY_DONE;
449}
450
fa748203 451static __init void init_hrtick(void)
b328ca18
PZ
452{
453 hotcpu_notifier(hotplug_hrtick, 0);
454}
31656519
PZ
455#else
456/*
457 * Called to set the hrtick timer state.
458 *
459 * called with rq->lock held and irqs disabled
460 */
029632fb 461void hrtick_start(struct rq *rq, u64 delay)
31656519 462{
7f1e2ca9 463 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 464 HRTIMER_MODE_REL_PINNED, 0);
31656519 465}
b328ca18 466
006c75f1 467static inline void init_hrtick(void)
8f4d37ec 468{
8f4d37ec 469}
31656519 470#endif /* CONFIG_SMP */
8f4d37ec 471
31656519 472static void init_rq_hrtick(struct rq *rq)
8f4d37ec 473{
31656519
PZ
474#ifdef CONFIG_SMP
475 rq->hrtick_csd_pending = 0;
8f4d37ec 476
31656519
PZ
477 rq->hrtick_csd.flags = 0;
478 rq->hrtick_csd.func = __hrtick_start;
479 rq->hrtick_csd.info = rq;
480#endif
8f4d37ec 481
31656519
PZ
482 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
483 rq->hrtick_timer.function = hrtick;
8f4d37ec 484}
006c75f1 485#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
486static inline void hrtick_clear(struct rq *rq)
487{
488}
489
8f4d37ec
PZ
490static inline void init_rq_hrtick(struct rq *rq)
491{
492}
493
b328ca18
PZ
494static inline void init_hrtick(void)
495{
496}
006c75f1 497#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 498
c24d20db
IM
499/*
500 * resched_task - mark a task 'to be rescheduled now'.
501 *
502 * On UP this means the setting of the need_resched flag, on SMP it
503 * might also involve a cross-CPU call to trigger the scheduler on
504 * the target CPU.
505 */
506#ifdef CONFIG_SMP
507
508#ifndef tsk_is_polling
509#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
510#endif
511
029632fb 512void resched_task(struct task_struct *p)
c24d20db
IM
513{
514 int cpu;
515
05fa785c 516 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 517
5ed0cec0 518 if (test_tsk_need_resched(p))
c24d20db
IM
519 return;
520
5ed0cec0 521 set_tsk_need_resched(p);
c24d20db
IM
522
523 cpu = task_cpu(p);
524 if (cpu == smp_processor_id())
525 return;
526
527 /* NEED_RESCHED must be visible before we test polling */
528 smp_mb();
529 if (!tsk_is_polling(p))
530 smp_send_reschedule(cpu);
531}
532
029632fb 533void resched_cpu(int cpu)
c24d20db
IM
534{
535 struct rq *rq = cpu_rq(cpu);
536 unsigned long flags;
537
05fa785c 538 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
539 return;
540 resched_task(cpu_curr(cpu));
05fa785c 541 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 542}
06d8308c
TG
543
544#ifdef CONFIG_NO_HZ
83cd4fe2
VP
545/*
546 * In the semi idle case, use the nearest busy cpu for migrating timers
547 * from an idle cpu. This is good for power-savings.
548 *
549 * We don't do similar optimization for completely idle system, as
550 * selecting an idle cpu will add more delays to the timers than intended
551 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
552 */
553int get_nohz_timer_target(void)
554{
555 int cpu = smp_processor_id();
556 int i;
557 struct sched_domain *sd;
558
057f3fad 559 rcu_read_lock();
83cd4fe2 560 for_each_domain(cpu, sd) {
057f3fad
PZ
561 for_each_cpu(i, sched_domain_span(sd)) {
562 if (!idle_cpu(i)) {
563 cpu = i;
564 goto unlock;
565 }
566 }
83cd4fe2 567 }
057f3fad
PZ
568unlock:
569 rcu_read_unlock();
83cd4fe2
VP
570 return cpu;
571}
06d8308c
TG
572/*
573 * When add_timer_on() enqueues a timer into the timer wheel of an
574 * idle CPU then this timer might expire before the next timer event
575 * which is scheduled to wake up that CPU. In case of a completely
576 * idle system the next event might even be infinite time into the
577 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
578 * leaves the inner idle loop so the newly added timer is taken into
579 * account when the CPU goes back to idle and evaluates the timer
580 * wheel for the next timer event.
581 */
582void wake_up_idle_cpu(int cpu)
583{
584 struct rq *rq = cpu_rq(cpu);
585
586 if (cpu == smp_processor_id())
587 return;
588
589 /*
590 * This is safe, as this function is called with the timer
591 * wheel base lock of (cpu) held. When the CPU is on the way
592 * to idle and has not yet set rq->curr to idle then it will
593 * be serialized on the timer wheel base lock and take the new
594 * timer into account automatically.
595 */
596 if (rq->curr != rq->idle)
597 return;
45bf76df 598
45bf76df 599 /*
06d8308c
TG
600 * We can set TIF_RESCHED on the idle task of the other CPU
601 * lockless. The worst case is that the other CPU runs the
602 * idle task through an additional NOOP schedule()
45bf76df 603 */
5ed0cec0 604 set_tsk_need_resched(rq->idle);
45bf76df 605
06d8308c
TG
606 /* NEED_RESCHED must be visible before we test polling */
607 smp_mb();
608 if (!tsk_is_polling(rq->idle))
609 smp_send_reschedule(cpu);
45bf76df
IM
610}
611
ca38062e 612static inline bool got_nohz_idle_kick(void)
45bf76df 613{
1c792db7
SS
614 int cpu = smp_processor_id();
615 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
45bf76df
IM
616}
617
ca38062e 618#else /* CONFIG_NO_HZ */
45bf76df 619
ca38062e 620static inline bool got_nohz_idle_kick(void)
2069dd75 621{
ca38062e 622 return false;
2069dd75
PZ
623}
624
6d6bc0ad 625#endif /* CONFIG_NO_HZ */
d842de87 626
029632fb 627void sched_avg_update(struct rq *rq)
18d95a28 628{
e9e9250b
PZ
629 s64 period = sched_avg_period();
630
631 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
632 /*
633 * Inline assembly required to prevent the compiler
634 * optimising this loop into a divmod call.
635 * See __iter_div_u64_rem() for another example of this.
636 */
637 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
638 rq->age_stamp += period;
639 rq->rt_avg /= 2;
640 }
18d95a28
PZ
641}
642
6d6bc0ad 643#else /* !CONFIG_SMP */
029632fb 644void resched_task(struct task_struct *p)
18d95a28 645{
05fa785c 646 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 647 set_tsk_need_resched(p);
18d95a28 648}
6d6bc0ad 649#endif /* CONFIG_SMP */
18d95a28 650
a790de99
PT
651#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
652 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 653/*
8277434e
PT
654 * Iterate task_group tree rooted at *from, calling @down when first entering a
655 * node and @up when leaving it for the final time.
656 *
657 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 658 */
029632fb 659int walk_tg_tree_from(struct task_group *from,
8277434e 660 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
661{
662 struct task_group *parent, *child;
eb755805 663 int ret;
c09595f6 664
8277434e
PT
665 parent = from;
666
c09595f6 667down:
eb755805
PZ
668 ret = (*down)(parent, data);
669 if (ret)
8277434e 670 goto out;
c09595f6
PZ
671 list_for_each_entry_rcu(child, &parent->children, siblings) {
672 parent = child;
673 goto down;
674
675up:
676 continue;
677 }
eb755805 678 ret = (*up)(parent, data);
8277434e
PT
679 if (ret || parent == from)
680 goto out;
c09595f6
PZ
681
682 child = parent;
683 parent = parent->parent;
684 if (parent)
685 goto up;
8277434e 686out:
eb755805 687 return ret;
c09595f6
PZ
688}
689
029632fb 690int tg_nop(struct task_group *tg, void *data)
eb755805 691{
e2b245f8 692 return 0;
eb755805 693}
18d95a28
PZ
694#endif
695
45bf76df
IM
696static void set_load_weight(struct task_struct *p)
697{
f05998d4
NR
698 int prio = p->static_prio - MAX_RT_PRIO;
699 struct load_weight *load = &p->se.load;
700
dd41f596
IM
701 /*
702 * SCHED_IDLE tasks get minimal weight:
703 */
704 if (p->policy == SCHED_IDLE) {
c8b28116 705 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 706 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
707 return;
708 }
71f8bd46 709
c8b28116 710 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 711 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
712}
713
371fd7e7 714static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 715{
a64692a3 716 update_rq_clock(rq);
dd41f596 717 sched_info_queued(p);
371fd7e7 718 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
719}
720
371fd7e7 721static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 722{
a64692a3 723 update_rq_clock(rq);
46ac22ba 724 sched_info_dequeued(p);
371fd7e7 725 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
726}
727
029632fb 728void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
729{
730 if (task_contributes_to_load(p))
731 rq->nr_uninterruptible--;
732
371fd7e7 733 enqueue_task(rq, p, flags);
1e3c88bd
PZ
734}
735
029632fb 736void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
737{
738 if (task_contributes_to_load(p))
739 rq->nr_uninterruptible++;
740
371fd7e7 741 dequeue_task(rq, p, flags);
1e3c88bd
PZ
742}
743
b52bfee4
VP
744#ifdef CONFIG_IRQ_TIME_ACCOUNTING
745
305e6835
VP
746/*
747 * There are no locks covering percpu hardirq/softirq time.
748 * They are only modified in account_system_vtime, on corresponding CPU
749 * with interrupts disabled. So, writes are safe.
750 * They are read and saved off onto struct rq in update_rq_clock().
751 * This may result in other CPU reading this CPU's irq time and can
752 * race with irq/account_system_vtime on this CPU. We would either get old
8e92c201
PZ
753 * or new value with a side effect of accounting a slice of irq time to wrong
754 * task when irq is in progress while we read rq->clock. That is a worthy
755 * compromise in place of having locks on each irq in account_system_time.
305e6835 756 */
b52bfee4
VP
757static DEFINE_PER_CPU(u64, cpu_hardirq_time);
758static DEFINE_PER_CPU(u64, cpu_softirq_time);
759
760static DEFINE_PER_CPU(u64, irq_start_time);
761static int sched_clock_irqtime;
762
763void enable_sched_clock_irqtime(void)
764{
765 sched_clock_irqtime = 1;
766}
767
768void disable_sched_clock_irqtime(void)
769{
770 sched_clock_irqtime = 0;
771}
772
8e92c201
PZ
773#ifndef CONFIG_64BIT
774static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
775
776static inline void irq_time_write_begin(void)
777{
778 __this_cpu_inc(irq_time_seq.sequence);
779 smp_wmb();
780}
781
782static inline void irq_time_write_end(void)
783{
784 smp_wmb();
785 __this_cpu_inc(irq_time_seq.sequence);
786}
787
788static inline u64 irq_time_read(int cpu)
789{
790 u64 irq_time;
791 unsigned seq;
792
793 do {
794 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
795 irq_time = per_cpu(cpu_softirq_time, cpu) +
796 per_cpu(cpu_hardirq_time, cpu);
797 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
798
799 return irq_time;
800}
801#else /* CONFIG_64BIT */
802static inline void irq_time_write_begin(void)
803{
804}
805
806static inline void irq_time_write_end(void)
807{
808}
809
810static inline u64 irq_time_read(int cpu)
305e6835 811{
305e6835
VP
812 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
813}
8e92c201 814#endif /* CONFIG_64BIT */
305e6835 815
fe44d621
PZ
816/*
817 * Called before incrementing preempt_count on {soft,}irq_enter
818 * and before decrementing preempt_count on {soft,}irq_exit.
819 */
b52bfee4
VP
820void account_system_vtime(struct task_struct *curr)
821{
822 unsigned long flags;
fe44d621 823 s64 delta;
b52bfee4 824 int cpu;
b52bfee4
VP
825
826 if (!sched_clock_irqtime)
827 return;
828
829 local_irq_save(flags);
830
b52bfee4 831 cpu = smp_processor_id();
fe44d621
PZ
832 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
833 __this_cpu_add(irq_start_time, delta);
834
8e92c201 835 irq_time_write_begin();
b52bfee4
VP
836 /*
837 * We do not account for softirq time from ksoftirqd here.
838 * We want to continue accounting softirq time to ksoftirqd thread
839 * in that case, so as not to confuse scheduler with a special task
840 * that do not consume any time, but still wants to run.
841 */
842 if (hardirq_count())
fe44d621 843 __this_cpu_add(cpu_hardirq_time, delta);
4dd53d89 844 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
fe44d621 845 __this_cpu_add(cpu_softirq_time, delta);
b52bfee4 846
8e92c201 847 irq_time_write_end();
b52bfee4
VP
848 local_irq_restore(flags);
849}
b7dadc38 850EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 851
e6e6685a
GC
852#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
853
854#ifdef CONFIG_PARAVIRT
855static inline u64 steal_ticks(u64 steal)
aa483808 856{
e6e6685a
GC
857 if (unlikely(steal > NSEC_PER_SEC))
858 return div_u64(steal, TICK_NSEC);
fe44d621 859
e6e6685a
GC
860 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
861}
862#endif
863
fe44d621 864static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 865{
095c0aa8
GC
866/*
867 * In theory, the compile should just see 0 here, and optimize out the call
868 * to sched_rt_avg_update. But I don't trust it...
869 */
870#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
871 s64 steal = 0, irq_delta = 0;
872#endif
873#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 874 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
875
876 /*
877 * Since irq_time is only updated on {soft,}irq_exit, we might run into
878 * this case when a previous update_rq_clock() happened inside a
879 * {soft,}irq region.
880 *
881 * When this happens, we stop ->clock_task and only update the
882 * prev_irq_time stamp to account for the part that fit, so that a next
883 * update will consume the rest. This ensures ->clock_task is
884 * monotonic.
885 *
886 * It does however cause some slight miss-attribution of {soft,}irq
887 * time, a more accurate solution would be to update the irq_time using
888 * the current rq->clock timestamp, except that would require using
889 * atomic ops.
890 */
891 if (irq_delta > delta)
892 irq_delta = delta;
893
894 rq->prev_irq_time += irq_delta;
895 delta -= irq_delta;
095c0aa8
GC
896#endif
897#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 898 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
899 u64 st;
900
901 steal = paravirt_steal_clock(cpu_of(rq));
902 steal -= rq->prev_steal_time_rq;
903
904 if (unlikely(steal > delta))
905 steal = delta;
906
907 st = steal_ticks(steal);
908 steal = st * TICK_NSEC;
909
910 rq->prev_steal_time_rq += steal;
911
912 delta -= steal;
913 }
914#endif
915
fe44d621
PZ
916 rq->clock_task += delta;
917
095c0aa8
GC
918#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
919 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
920 sched_rt_avg_update(rq, irq_delta + steal);
921#endif
aa483808
VP
922}
923
095c0aa8 924#ifdef CONFIG_IRQ_TIME_ACCOUNTING
abb74cef
VP
925static int irqtime_account_hi_update(void)
926{
3292beb3 927 u64 *cpustat = kcpustat_this_cpu->cpustat;
abb74cef
VP
928 unsigned long flags;
929 u64 latest_ns;
930 int ret = 0;
931
932 local_irq_save(flags);
933 latest_ns = this_cpu_read(cpu_hardirq_time);
612ef28a 934 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
abb74cef
VP
935 ret = 1;
936 local_irq_restore(flags);
937 return ret;
938}
939
940static int irqtime_account_si_update(void)
941{
3292beb3 942 u64 *cpustat = kcpustat_this_cpu->cpustat;
abb74cef
VP
943 unsigned long flags;
944 u64 latest_ns;
945 int ret = 0;
946
947 local_irq_save(flags);
948 latest_ns = this_cpu_read(cpu_softirq_time);
612ef28a 949 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
abb74cef
VP
950 ret = 1;
951 local_irq_restore(flags);
952 return ret;
953}
954
fe44d621 955#else /* CONFIG_IRQ_TIME_ACCOUNTING */
305e6835 956
abb74cef
VP
957#define sched_clock_irqtime (0)
958
095c0aa8 959#endif
b52bfee4 960
34f971f6
PZ
961void sched_set_stop_task(int cpu, struct task_struct *stop)
962{
963 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
964 struct task_struct *old_stop = cpu_rq(cpu)->stop;
965
966 if (stop) {
967 /*
968 * Make it appear like a SCHED_FIFO task, its something
969 * userspace knows about and won't get confused about.
970 *
971 * Also, it will make PI more or less work without too
972 * much confusion -- but then, stop work should not
973 * rely on PI working anyway.
974 */
975 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
976
977 stop->sched_class = &stop_sched_class;
978 }
979
980 cpu_rq(cpu)->stop = stop;
981
982 if (old_stop) {
983 /*
984 * Reset it back to a normal scheduling class so that
985 * it can die in pieces.
986 */
987 old_stop->sched_class = &rt_sched_class;
988 }
989}
990
14531189 991/*
dd41f596 992 * __normal_prio - return the priority that is based on the static prio
14531189 993 */
14531189
IM
994static inline int __normal_prio(struct task_struct *p)
995{
dd41f596 996 return p->static_prio;
14531189
IM
997}
998
b29739f9
IM
999/*
1000 * Calculate the expected normal priority: i.e. priority
1001 * without taking RT-inheritance into account. Might be
1002 * boosted by interactivity modifiers. Changes upon fork,
1003 * setprio syscalls, and whenever the interactivity
1004 * estimator recalculates.
1005 */
36c8b586 1006static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1007{
1008 int prio;
1009
e05606d3 1010 if (task_has_rt_policy(p))
b29739f9
IM
1011 prio = MAX_RT_PRIO-1 - p->rt_priority;
1012 else
1013 prio = __normal_prio(p);
1014 return prio;
1015}
1016
1017/*
1018 * Calculate the current priority, i.e. the priority
1019 * taken into account by the scheduler. This value might
1020 * be boosted by RT tasks, or might be boosted by
1021 * interactivity modifiers. Will be RT if the task got
1022 * RT-boosted. If not then it returns p->normal_prio.
1023 */
36c8b586 1024static int effective_prio(struct task_struct *p)
b29739f9
IM
1025{
1026 p->normal_prio = normal_prio(p);
1027 /*
1028 * If we are RT tasks or we were boosted to RT priority,
1029 * keep the priority unchanged. Otherwise, update priority
1030 * to the normal priority:
1031 */
1032 if (!rt_prio(p->prio))
1033 return p->normal_prio;
1034 return p->prio;
1035}
1036
1da177e4
LT
1037/**
1038 * task_curr - is this task currently executing on a CPU?
1039 * @p: the task in question.
1040 */
36c8b586 1041inline int task_curr(const struct task_struct *p)
1da177e4
LT
1042{
1043 return cpu_curr(task_cpu(p)) == p;
1044}
1045
cb469845
SR
1046static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1047 const struct sched_class *prev_class,
da7a735e 1048 int oldprio)
cb469845
SR
1049{
1050 if (prev_class != p->sched_class) {
1051 if (prev_class->switched_from)
da7a735e
PZ
1052 prev_class->switched_from(rq, p);
1053 p->sched_class->switched_to(rq, p);
1054 } else if (oldprio != p->prio)
1055 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1056}
1057
029632fb 1058void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1059{
1060 const struct sched_class *class;
1061
1062 if (p->sched_class == rq->curr->sched_class) {
1063 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1064 } else {
1065 for_each_class(class) {
1066 if (class == rq->curr->sched_class)
1067 break;
1068 if (class == p->sched_class) {
1069 resched_task(rq->curr);
1070 break;
1071 }
1072 }
1073 }
1074
1075 /*
1076 * A queue event has occurred, and we're going to schedule. In
1077 * this case, we can save a useless back to back clock update.
1078 */
fd2f4419 1079 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
1080 rq->skip_clock_update = 1;
1081}
1082
1da177e4 1083#ifdef CONFIG_SMP
dd41f596 1084void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1085{
e2912009
PZ
1086#ifdef CONFIG_SCHED_DEBUG
1087 /*
1088 * We should never call set_task_cpu() on a blocked task,
1089 * ttwu() will sort out the placement.
1090 */
077614ee
PZ
1091 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1092 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
0122ec5b
PZ
1093
1094#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1095 /*
1096 * The caller should hold either p->pi_lock or rq->lock, when changing
1097 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1098 *
1099 * sched_move_task() holds both and thus holding either pins the cgroup,
1100 * see set_task_rq().
1101 *
1102 * Furthermore, all task_rq users should acquire both locks, see
1103 * task_rq_lock().
1104 */
0122ec5b
PZ
1105 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1106 lockdep_is_held(&task_rq(p)->lock)));
1107#endif
e2912009
PZ
1108#endif
1109
de1d7286 1110 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1111
0c69774e
PZ
1112 if (task_cpu(p) != new_cpu) {
1113 p->se.nr_migrations++;
a8b0ca17 1114 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1115 }
dd41f596
IM
1116
1117 __set_task_cpu(p, new_cpu);
c65cc870
IM
1118}
1119
969c7921 1120struct migration_arg {
36c8b586 1121 struct task_struct *task;
1da177e4 1122 int dest_cpu;
70b97a7f 1123};
1da177e4 1124
969c7921
TH
1125static int migration_cpu_stop(void *data);
1126
1da177e4
LT
1127/*
1128 * wait_task_inactive - wait for a thread to unschedule.
1129 *
85ba2d86
RM
1130 * If @match_state is nonzero, it's the @p->state value just checked and
1131 * not expected to change. If it changes, i.e. @p might have woken up,
1132 * then return zero. When we succeed in waiting for @p to be off its CPU,
1133 * we return a positive number (its total switch count). If a second call
1134 * a short while later returns the same number, the caller can be sure that
1135 * @p has remained unscheduled the whole time.
1136 *
1da177e4
LT
1137 * The caller must ensure that the task *will* unschedule sometime soon,
1138 * else this function might spin for a *long* time. This function can't
1139 * be called with interrupts off, or it may introduce deadlock with
1140 * smp_call_function() if an IPI is sent by the same process we are
1141 * waiting to become inactive.
1142 */
85ba2d86 1143unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1144{
1145 unsigned long flags;
dd41f596 1146 int running, on_rq;
85ba2d86 1147 unsigned long ncsw;
70b97a7f 1148 struct rq *rq;
1da177e4 1149
3a5c359a
AK
1150 for (;;) {
1151 /*
1152 * We do the initial early heuristics without holding
1153 * any task-queue locks at all. We'll only try to get
1154 * the runqueue lock when things look like they will
1155 * work out!
1156 */
1157 rq = task_rq(p);
fa490cfd 1158
3a5c359a
AK
1159 /*
1160 * If the task is actively running on another CPU
1161 * still, just relax and busy-wait without holding
1162 * any locks.
1163 *
1164 * NOTE! Since we don't hold any locks, it's not
1165 * even sure that "rq" stays as the right runqueue!
1166 * But we don't care, since "task_running()" will
1167 * return false if the runqueue has changed and p
1168 * is actually now running somewhere else!
1169 */
85ba2d86
RM
1170 while (task_running(rq, p)) {
1171 if (match_state && unlikely(p->state != match_state))
1172 return 0;
3a5c359a 1173 cpu_relax();
85ba2d86 1174 }
fa490cfd 1175
3a5c359a
AK
1176 /*
1177 * Ok, time to look more closely! We need the rq
1178 * lock now, to be *sure*. If we're wrong, we'll
1179 * just go back and repeat.
1180 */
1181 rq = task_rq_lock(p, &flags);
27a9da65 1182 trace_sched_wait_task(p);
3a5c359a 1183 running = task_running(rq, p);
fd2f4419 1184 on_rq = p->on_rq;
85ba2d86 1185 ncsw = 0;
f31e11d8 1186 if (!match_state || p->state == match_state)
93dcf55f 1187 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1188 task_rq_unlock(rq, p, &flags);
fa490cfd 1189
85ba2d86
RM
1190 /*
1191 * If it changed from the expected state, bail out now.
1192 */
1193 if (unlikely(!ncsw))
1194 break;
1195
3a5c359a
AK
1196 /*
1197 * Was it really running after all now that we
1198 * checked with the proper locks actually held?
1199 *
1200 * Oops. Go back and try again..
1201 */
1202 if (unlikely(running)) {
1203 cpu_relax();
1204 continue;
1205 }
fa490cfd 1206
3a5c359a
AK
1207 /*
1208 * It's not enough that it's not actively running,
1209 * it must be off the runqueue _entirely_, and not
1210 * preempted!
1211 *
80dd99b3 1212 * So if it was still runnable (but just not actively
3a5c359a
AK
1213 * running right now), it's preempted, and we should
1214 * yield - it could be a while.
1215 */
1216 if (unlikely(on_rq)) {
8eb90c30
TG
1217 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1218
1219 set_current_state(TASK_UNINTERRUPTIBLE);
1220 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1221 continue;
1222 }
fa490cfd 1223
3a5c359a
AK
1224 /*
1225 * Ahh, all good. It wasn't running, and it wasn't
1226 * runnable, which means that it will never become
1227 * running in the future either. We're all done!
1228 */
1229 break;
1230 }
85ba2d86
RM
1231
1232 return ncsw;
1da177e4
LT
1233}
1234
1235/***
1236 * kick_process - kick a running thread to enter/exit the kernel
1237 * @p: the to-be-kicked thread
1238 *
1239 * Cause a process which is running on another CPU to enter
1240 * kernel-mode, without any delay. (to get signals handled.)
1241 *
25985edc 1242 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1243 * because all it wants to ensure is that the remote task enters
1244 * the kernel. If the IPI races and the task has been migrated
1245 * to another CPU then no harm is done and the purpose has been
1246 * achieved as well.
1247 */
36c8b586 1248void kick_process(struct task_struct *p)
1da177e4
LT
1249{
1250 int cpu;
1251
1252 preempt_disable();
1253 cpu = task_cpu(p);
1254 if ((cpu != smp_processor_id()) && task_curr(p))
1255 smp_send_reschedule(cpu);
1256 preempt_enable();
1257}
b43e3521 1258EXPORT_SYMBOL_GPL(kick_process);
476d139c 1259#endif /* CONFIG_SMP */
1da177e4 1260
970b13ba 1261#ifdef CONFIG_SMP
30da688e 1262/*
013fdb80 1263 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1264 */
5da9a0fb
PZ
1265static int select_fallback_rq(int cpu, struct task_struct *p)
1266{
5da9a0fb 1267 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2baab4e9
PZ
1268 enum { cpuset, possible, fail } state = cpuset;
1269 int dest_cpu;
5da9a0fb
PZ
1270
1271 /* Look for allowed, online CPU in same node. */
e3831edd 1272 for_each_cpu(dest_cpu, nodemask) {
2baab4e9
PZ
1273 if (!cpu_online(dest_cpu))
1274 continue;
1275 if (!cpu_active(dest_cpu))
1276 continue;
fa17b507 1277 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5da9a0fb 1278 return dest_cpu;
2baab4e9 1279 }
5da9a0fb 1280
2baab4e9
PZ
1281 for (;;) {
1282 /* Any allowed, online CPU? */
e3831edd 1283 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1284 if (!cpu_online(dest_cpu))
1285 continue;
1286 if (!cpu_active(dest_cpu))
1287 continue;
1288 goto out;
1289 }
5da9a0fb 1290
2baab4e9
PZ
1291 switch (state) {
1292 case cpuset:
1293 /* No more Mr. Nice Guy. */
1294 cpuset_cpus_allowed_fallback(p);
1295 state = possible;
1296 break;
1297
1298 case possible:
1299 do_set_cpus_allowed(p, cpu_possible_mask);
1300 state = fail;
1301 break;
1302
1303 case fail:
1304 BUG();
1305 break;
1306 }
1307 }
1308
1309out:
1310 if (state != cpuset) {
1311 /*
1312 * Don't tell them about moving exiting tasks or
1313 * kernel threads (both mm NULL), since they never
1314 * leave kernel.
1315 */
1316 if (p->mm && printk_ratelimit()) {
1317 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1318 task_pid_nr(p), p->comm, cpu);
1319 }
5da9a0fb
PZ
1320 }
1321
1322 return dest_cpu;
1323}
1324
e2912009 1325/*
013fdb80 1326 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1327 */
970b13ba 1328static inline
7608dec2 1329int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 1330{
7608dec2 1331 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
1332
1333 /*
1334 * In order not to call set_task_cpu() on a blocking task we need
1335 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1336 * cpu.
1337 *
1338 * Since this is common to all placement strategies, this lives here.
1339 *
1340 * [ this allows ->select_task() to simply return task_cpu(p) and
1341 * not worry about this generic constraint ]
1342 */
fa17b507 1343 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1344 !cpu_online(cpu)))
5da9a0fb 1345 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1346
1347 return cpu;
970b13ba 1348}
09a40af5
MG
1349
1350static void update_avg(u64 *avg, u64 sample)
1351{
1352 s64 diff = sample - *avg;
1353 *avg += diff >> 3;
1354}
970b13ba
PZ
1355#endif
1356
d7c01d27 1357static void
b84cb5df 1358ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1359{
d7c01d27 1360#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1361 struct rq *rq = this_rq();
1362
d7c01d27
PZ
1363#ifdef CONFIG_SMP
1364 int this_cpu = smp_processor_id();
1365
1366 if (cpu == this_cpu) {
1367 schedstat_inc(rq, ttwu_local);
1368 schedstat_inc(p, se.statistics.nr_wakeups_local);
1369 } else {
1370 struct sched_domain *sd;
1371
1372 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1373 rcu_read_lock();
d7c01d27
PZ
1374 for_each_domain(this_cpu, sd) {
1375 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1376 schedstat_inc(sd, ttwu_wake_remote);
1377 break;
1378 }
1379 }
057f3fad 1380 rcu_read_unlock();
d7c01d27 1381 }
f339b9dc
PZ
1382
1383 if (wake_flags & WF_MIGRATED)
1384 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1385
d7c01d27
PZ
1386#endif /* CONFIG_SMP */
1387
1388 schedstat_inc(rq, ttwu_count);
9ed3811a 1389 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1390
1391 if (wake_flags & WF_SYNC)
9ed3811a 1392 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1393
d7c01d27
PZ
1394#endif /* CONFIG_SCHEDSTATS */
1395}
1396
1397static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1398{
9ed3811a 1399 activate_task(rq, p, en_flags);
fd2f4419 1400 p->on_rq = 1;
c2f7115e
PZ
1401
1402 /* if a worker is waking up, notify workqueue */
1403 if (p->flags & PF_WQ_WORKER)
1404 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1405}
1406
23f41eeb
PZ
1407/*
1408 * Mark the task runnable and perform wakeup-preemption.
1409 */
89363381 1410static void
23f41eeb 1411ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1412{
89363381 1413 trace_sched_wakeup(p, true);
9ed3811a
TH
1414 check_preempt_curr(rq, p, wake_flags);
1415
1416 p->state = TASK_RUNNING;
1417#ifdef CONFIG_SMP
1418 if (p->sched_class->task_woken)
1419 p->sched_class->task_woken(rq, p);
1420
e69c6341 1421 if (rq->idle_stamp) {
9ed3811a
TH
1422 u64 delta = rq->clock - rq->idle_stamp;
1423 u64 max = 2*sysctl_sched_migration_cost;
1424
1425 if (delta > max)
1426 rq->avg_idle = max;
1427 else
1428 update_avg(&rq->avg_idle, delta);
1429 rq->idle_stamp = 0;
1430 }
1431#endif
1432}
1433
c05fbafb
PZ
1434static void
1435ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1436{
1437#ifdef CONFIG_SMP
1438 if (p->sched_contributes_to_load)
1439 rq->nr_uninterruptible--;
1440#endif
1441
1442 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1443 ttwu_do_wakeup(rq, p, wake_flags);
1444}
1445
1446/*
1447 * Called in case the task @p isn't fully descheduled from its runqueue,
1448 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1449 * since all we need to do is flip p->state to TASK_RUNNING, since
1450 * the task is still ->on_rq.
1451 */
1452static int ttwu_remote(struct task_struct *p, int wake_flags)
1453{
1454 struct rq *rq;
1455 int ret = 0;
1456
1457 rq = __task_rq_lock(p);
1458 if (p->on_rq) {
1459 ttwu_do_wakeup(rq, p, wake_flags);
1460 ret = 1;
1461 }
1462 __task_rq_unlock(rq);
1463
1464 return ret;
1465}
1466
317f3941 1467#ifdef CONFIG_SMP
fa14ff4a 1468static void sched_ttwu_pending(void)
317f3941
PZ
1469{
1470 struct rq *rq = this_rq();
fa14ff4a
PZ
1471 struct llist_node *llist = llist_del_all(&rq->wake_list);
1472 struct task_struct *p;
317f3941
PZ
1473
1474 raw_spin_lock(&rq->lock);
1475
fa14ff4a
PZ
1476 while (llist) {
1477 p = llist_entry(llist, struct task_struct, wake_entry);
1478 llist = llist_next(llist);
317f3941
PZ
1479 ttwu_do_activate(rq, p, 0);
1480 }
1481
1482 raw_spin_unlock(&rq->lock);
1483}
1484
1485void scheduler_ipi(void)
1486{
ca38062e 1487 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1488 return;
1489
1490 /*
1491 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1492 * traditionally all their work was done from the interrupt return
1493 * path. Now that we actually do some work, we need to make sure
1494 * we do call them.
1495 *
1496 * Some archs already do call them, luckily irq_enter/exit nest
1497 * properly.
1498 *
1499 * Arguably we should visit all archs and update all handlers,
1500 * however a fair share of IPIs are still resched only so this would
1501 * somewhat pessimize the simple resched case.
1502 */
1503 irq_enter();
fa14ff4a 1504 sched_ttwu_pending();
ca38062e
SS
1505
1506 /*
1507 * Check if someone kicked us for doing the nohz idle load balance.
1508 */
6eb57e0d
SS
1509 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1510 this_rq()->idle_balance = 1;
ca38062e 1511 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1512 }
c5d753a5 1513 irq_exit();
317f3941
PZ
1514}
1515
1516static void ttwu_queue_remote(struct task_struct *p, int cpu)
1517{
fa14ff4a 1518 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1519 smp_send_reschedule(cpu);
1520}
d6aa8f85
PZ
1521
1522#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1523static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
1524{
1525 struct rq *rq;
1526 int ret = 0;
1527
1528 rq = __task_rq_lock(p);
1529 if (p->on_cpu) {
1530 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1531 ttwu_do_wakeup(rq, p, wake_flags);
1532 ret = 1;
1533 }
1534 __task_rq_unlock(rq);
1535
1536 return ret;
1537
1538}
1539#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
518cd623 1540
39be3501 1541bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1542{
1543 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1544}
d6aa8f85 1545#endif /* CONFIG_SMP */
317f3941 1546
c05fbafb
PZ
1547static void ttwu_queue(struct task_struct *p, int cpu)
1548{
1549 struct rq *rq = cpu_rq(cpu);
1550
17d9f311 1551#if defined(CONFIG_SMP)
39be3501 1552 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1553 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1554 ttwu_queue_remote(p, cpu);
1555 return;
1556 }
1557#endif
1558
c05fbafb
PZ
1559 raw_spin_lock(&rq->lock);
1560 ttwu_do_activate(rq, p, 0);
1561 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1562}
1563
1564/**
1da177e4 1565 * try_to_wake_up - wake up a thread
9ed3811a 1566 * @p: the thread to be awakened
1da177e4 1567 * @state: the mask of task states that can be woken
9ed3811a 1568 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1569 *
1570 * Put it on the run-queue if it's not already there. The "current"
1571 * thread is always on the run-queue (except when the actual
1572 * re-schedule is in progress), and as such you're allowed to do
1573 * the simpler "current->state = TASK_RUNNING" to mark yourself
1574 * runnable without the overhead of this.
1575 *
9ed3811a
TH
1576 * Returns %true if @p was woken up, %false if it was already running
1577 * or @state didn't match @p's state.
1da177e4 1578 */
e4a52bcb
PZ
1579static int
1580try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1581{
1da177e4 1582 unsigned long flags;
c05fbafb 1583 int cpu, success = 0;
2398f2c6 1584
04e2f174 1585 smp_wmb();
013fdb80 1586 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1587 if (!(p->state & state))
1da177e4
LT
1588 goto out;
1589
c05fbafb 1590 success = 1; /* we're going to change ->state */
1da177e4 1591 cpu = task_cpu(p);
1da177e4 1592
c05fbafb
PZ
1593 if (p->on_rq && ttwu_remote(p, wake_flags))
1594 goto stat;
1da177e4 1595
1da177e4 1596#ifdef CONFIG_SMP
e9c84311 1597 /*
c05fbafb
PZ
1598 * If the owning (remote) cpu is still in the middle of schedule() with
1599 * this task as prev, wait until its done referencing the task.
e9c84311 1600 */
e4a52bcb
PZ
1601 while (p->on_cpu) {
1602#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1603 /*
d6aa8f85
PZ
1604 * In case the architecture enables interrupts in
1605 * context_switch(), we cannot busy wait, since that
1606 * would lead to deadlocks when an interrupt hits and
1607 * tries to wake up @prev. So bail and do a complete
1608 * remote wakeup.
e4a52bcb 1609 */
d6aa8f85 1610 if (ttwu_activate_remote(p, wake_flags))
c05fbafb 1611 goto stat;
d6aa8f85 1612#else
e4a52bcb 1613 cpu_relax();
d6aa8f85 1614#endif
371fd7e7 1615 }
0970d299 1616 /*
e4a52bcb 1617 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1618 */
e4a52bcb 1619 smp_rmb();
1da177e4 1620
a8e4f2ea 1621 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1622 p->state = TASK_WAKING;
e7693a36 1623
e4a52bcb 1624 if (p->sched_class->task_waking)
74f8e4b2 1625 p->sched_class->task_waking(p);
efbbd05a 1626
7608dec2 1627 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1628 if (task_cpu(p) != cpu) {
1629 wake_flags |= WF_MIGRATED;
e4a52bcb 1630 set_task_cpu(p, cpu);
f339b9dc 1631 }
1da177e4 1632#endif /* CONFIG_SMP */
1da177e4 1633
c05fbafb
PZ
1634 ttwu_queue(p, cpu);
1635stat:
b84cb5df 1636 ttwu_stat(p, cpu, wake_flags);
1da177e4 1637out:
013fdb80 1638 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1639
1640 return success;
1641}
1642
21aa9af0
TH
1643/**
1644 * try_to_wake_up_local - try to wake up a local task with rq lock held
1645 * @p: the thread to be awakened
1646 *
2acca55e 1647 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1648 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1649 * the current task.
21aa9af0
TH
1650 */
1651static void try_to_wake_up_local(struct task_struct *p)
1652{
1653 struct rq *rq = task_rq(p);
21aa9af0
TH
1654
1655 BUG_ON(rq != this_rq());
1656 BUG_ON(p == current);
1657 lockdep_assert_held(&rq->lock);
1658
2acca55e
PZ
1659 if (!raw_spin_trylock(&p->pi_lock)) {
1660 raw_spin_unlock(&rq->lock);
1661 raw_spin_lock(&p->pi_lock);
1662 raw_spin_lock(&rq->lock);
1663 }
1664
21aa9af0 1665 if (!(p->state & TASK_NORMAL))
2acca55e 1666 goto out;
21aa9af0 1667
fd2f4419 1668 if (!p->on_rq)
d7c01d27
PZ
1669 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1670
23f41eeb 1671 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1672 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1673out:
1674 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1675}
1676
50fa610a
DH
1677/**
1678 * wake_up_process - Wake up a specific process
1679 * @p: The process to be woken up.
1680 *
1681 * Attempt to wake up the nominated process and move it to the set of runnable
1682 * processes. Returns 1 if the process was woken up, 0 if it was already
1683 * running.
1684 *
1685 * It may be assumed that this function implies a write memory barrier before
1686 * changing the task state if and only if any tasks are woken up.
1687 */
7ad5b3a5 1688int wake_up_process(struct task_struct *p)
1da177e4 1689{
d9514f6c 1690 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 1691}
1da177e4
LT
1692EXPORT_SYMBOL(wake_up_process);
1693
7ad5b3a5 1694int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1695{
1696 return try_to_wake_up(p, state, 0);
1697}
1698
1da177e4
LT
1699/*
1700 * Perform scheduler related setup for a newly forked process p.
1701 * p is forked by current.
dd41f596
IM
1702 *
1703 * __sched_fork() is basic setup used by init_idle() too:
1704 */
1705static void __sched_fork(struct task_struct *p)
1706{
fd2f4419
PZ
1707 p->on_rq = 0;
1708
1709 p->se.on_rq = 0;
dd41f596
IM
1710 p->se.exec_start = 0;
1711 p->se.sum_exec_runtime = 0;
f6cf891c 1712 p->se.prev_sum_exec_runtime = 0;
6c594c21 1713 p->se.nr_migrations = 0;
da7a735e 1714 p->se.vruntime = 0;
fd2f4419 1715 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1716
1717#ifdef CONFIG_SCHEDSTATS
41acab88 1718 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1719#endif
476d139c 1720
fa717060 1721 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1722
e107be36
AK
1723#ifdef CONFIG_PREEMPT_NOTIFIERS
1724 INIT_HLIST_HEAD(&p->preempt_notifiers);
1725#endif
dd41f596
IM
1726}
1727
1728/*
1729 * fork()/clone()-time setup:
1730 */
3e51e3ed 1731void sched_fork(struct task_struct *p)
dd41f596 1732{
0122ec5b 1733 unsigned long flags;
dd41f596
IM
1734 int cpu = get_cpu();
1735
1736 __sched_fork(p);
06b83b5f 1737 /*
0017d735 1738 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1739 * nobody will actually run it, and a signal or other external
1740 * event cannot wake it up and insert it on the runqueue either.
1741 */
0017d735 1742 p->state = TASK_RUNNING;
dd41f596 1743
c350a04e
MG
1744 /*
1745 * Make sure we do not leak PI boosting priority to the child.
1746 */
1747 p->prio = current->normal_prio;
1748
b9dc29e7
MG
1749 /*
1750 * Revert to default priority/policy on fork if requested.
1751 */
1752 if (unlikely(p->sched_reset_on_fork)) {
c350a04e 1753 if (task_has_rt_policy(p)) {
b9dc29e7 1754 p->policy = SCHED_NORMAL;
6c697bdf 1755 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1756 p->rt_priority = 0;
1757 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1758 p->static_prio = NICE_TO_PRIO(0);
1759
1760 p->prio = p->normal_prio = __normal_prio(p);
1761 set_load_weight(p);
6c697bdf 1762
b9dc29e7
MG
1763 /*
1764 * We don't need the reset flag anymore after the fork. It has
1765 * fulfilled its duty:
1766 */
1767 p->sched_reset_on_fork = 0;
1768 }
ca94c442 1769
2ddbf952
HS
1770 if (!rt_prio(p->prio))
1771 p->sched_class = &fair_sched_class;
b29739f9 1772
cd29fe6f
PZ
1773 if (p->sched_class->task_fork)
1774 p->sched_class->task_fork(p);
1775
86951599
PZ
1776 /*
1777 * The child is not yet in the pid-hash so no cgroup attach races,
1778 * and the cgroup is pinned to this child due to cgroup_fork()
1779 * is ran before sched_fork().
1780 *
1781 * Silence PROVE_RCU.
1782 */
0122ec5b 1783 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1784 set_task_cpu(p, cpu);
0122ec5b 1785 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1786
52f17b6c 1787#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1788 if (likely(sched_info_on()))
52f17b6c 1789 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1790#endif
3ca7a440
PZ
1791#if defined(CONFIG_SMP)
1792 p->on_cpu = 0;
4866cde0 1793#endif
bdd4e85d 1794#ifdef CONFIG_PREEMPT_COUNT
4866cde0 1795 /* Want to start with kernel preemption disabled. */
a1261f54 1796 task_thread_info(p)->preempt_count = 1;
1da177e4 1797#endif
806c09a7 1798#ifdef CONFIG_SMP
917b627d 1799 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 1800#endif
917b627d 1801
476d139c 1802 put_cpu();
1da177e4
LT
1803}
1804
1805/*
1806 * wake_up_new_task - wake up a newly created task for the first time.
1807 *
1808 * This function will do some initial scheduler statistics housekeeping
1809 * that must be done for every newly created context, then puts the task
1810 * on the runqueue and wakes it.
1811 */
3e51e3ed 1812void wake_up_new_task(struct task_struct *p)
1da177e4
LT
1813{
1814 unsigned long flags;
dd41f596 1815 struct rq *rq;
fabf318e 1816
ab2515c4 1817 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
1818#ifdef CONFIG_SMP
1819 /*
1820 * Fork balancing, do it here and not earlier because:
1821 * - cpus_allowed can change in the fork path
1822 * - any previously selected cpu might disappear through hotplug
fabf318e 1823 */
ab2515c4 1824 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
0017d735
PZ
1825#endif
1826
ab2515c4 1827 rq = __task_rq_lock(p);
cd29fe6f 1828 activate_task(rq, p, 0);
fd2f4419 1829 p->on_rq = 1;
89363381 1830 trace_sched_wakeup_new(p, true);
a7558e01 1831 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 1832#ifdef CONFIG_SMP
efbbd05a
PZ
1833 if (p->sched_class->task_woken)
1834 p->sched_class->task_woken(rq, p);
9a897c5a 1835#endif
0122ec5b 1836 task_rq_unlock(rq, p, &flags);
1da177e4
LT
1837}
1838
e107be36
AK
1839#ifdef CONFIG_PREEMPT_NOTIFIERS
1840
1841/**
80dd99b3 1842 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 1843 * @notifier: notifier struct to register
e107be36
AK
1844 */
1845void preempt_notifier_register(struct preempt_notifier *notifier)
1846{
1847 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1848}
1849EXPORT_SYMBOL_GPL(preempt_notifier_register);
1850
1851/**
1852 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1853 * @notifier: notifier struct to unregister
e107be36
AK
1854 *
1855 * This is safe to call from within a preemption notifier.
1856 */
1857void preempt_notifier_unregister(struct preempt_notifier *notifier)
1858{
1859 hlist_del(&notifier->link);
1860}
1861EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1862
1863static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1864{
1865 struct preempt_notifier *notifier;
1866 struct hlist_node *node;
1867
1868 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1869 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1870}
1871
1872static void
1873fire_sched_out_preempt_notifiers(struct task_struct *curr,
1874 struct task_struct *next)
1875{
1876 struct preempt_notifier *notifier;
1877 struct hlist_node *node;
1878
1879 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1880 notifier->ops->sched_out(notifier, next);
1881}
1882
6d6bc0ad 1883#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
1884
1885static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1886{
1887}
1888
1889static void
1890fire_sched_out_preempt_notifiers(struct task_struct *curr,
1891 struct task_struct *next)
1892{
1893}
1894
6d6bc0ad 1895#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 1896
4866cde0
NP
1897/**
1898 * prepare_task_switch - prepare to switch tasks
1899 * @rq: the runqueue preparing to switch
421cee29 1900 * @prev: the current task that is being switched out
4866cde0
NP
1901 * @next: the task we are going to switch to.
1902 *
1903 * This is called with the rq lock held and interrupts off. It must
1904 * be paired with a subsequent finish_task_switch after the context
1905 * switch.
1906 *
1907 * prepare_task_switch sets up locking and calls architecture specific
1908 * hooks.
1909 */
e107be36
AK
1910static inline void
1911prepare_task_switch(struct rq *rq, struct task_struct *prev,
1912 struct task_struct *next)
4866cde0 1913{
fe4b04fa
PZ
1914 sched_info_switch(prev, next);
1915 perf_event_task_sched_out(prev, next);
e107be36 1916 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1917 prepare_lock_switch(rq, next);
1918 prepare_arch_switch(next);
fe4b04fa 1919 trace_sched_switch(prev, next);
4866cde0
NP
1920}
1921
1da177e4
LT
1922/**
1923 * finish_task_switch - clean up after a task-switch
344babaa 1924 * @rq: runqueue associated with task-switch
1da177e4
LT
1925 * @prev: the thread we just switched away from.
1926 *
4866cde0
NP
1927 * finish_task_switch must be called after the context switch, paired
1928 * with a prepare_task_switch call before the context switch.
1929 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1930 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1931 *
1932 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 1933 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
1934 * with the lock held can cause deadlocks; see schedule() for
1935 * details.)
1936 */
a9957449 1937static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1938 __releases(rq->lock)
1939{
1da177e4 1940 struct mm_struct *mm = rq->prev_mm;
55a101f8 1941 long prev_state;
1da177e4
LT
1942
1943 rq->prev_mm = NULL;
1944
1945 /*
1946 * A task struct has one reference for the use as "current".
c394cc9f 1947 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1948 * schedule one last time. The schedule call will never return, and
1949 * the scheduled task must drop that reference.
c394cc9f 1950 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1951 * still held, otherwise prev could be scheduled on another cpu, die
1952 * there before we look at prev->state, and then the reference would
1953 * be dropped twice.
1954 * Manfred Spraul <manfred@colorfullife.com>
1955 */
55a101f8 1956 prev_state = prev->state;
4866cde0 1957 finish_arch_switch(prev);
8381f65d
JI
1958#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1959 local_irq_disable();
1960#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
a8d757ef 1961 perf_event_task_sched_in(prev, current);
8381f65d
JI
1962#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1963 local_irq_enable();
1964#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 1965 finish_lock_switch(rq, prev);
01f23e16 1966 finish_arch_post_lock_switch();
e8fa1362 1967
e107be36 1968 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1969 if (mm)
1970 mmdrop(mm);
c394cc9f 1971 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1972 /*
1973 * Remove function-return probe instances associated with this
1974 * task and put them back on the free list.
9761eea8 1975 */
c6fd91f0 1976 kprobe_flush_task(prev);
1da177e4 1977 put_task_struct(prev);
c6fd91f0 1978 }
1da177e4
LT
1979}
1980
3f029d3c
GH
1981#ifdef CONFIG_SMP
1982
1983/* assumes rq->lock is held */
1984static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1985{
1986 if (prev->sched_class->pre_schedule)
1987 prev->sched_class->pre_schedule(rq, prev);
1988}
1989
1990/* rq->lock is NOT held, but preemption is disabled */
1991static inline void post_schedule(struct rq *rq)
1992{
1993 if (rq->post_schedule) {
1994 unsigned long flags;
1995
05fa785c 1996 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
1997 if (rq->curr->sched_class->post_schedule)
1998 rq->curr->sched_class->post_schedule(rq);
05fa785c 1999 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2000
2001 rq->post_schedule = 0;
2002 }
2003}
2004
2005#else
da19ab51 2006
3f029d3c
GH
2007static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2008{
2009}
2010
2011static inline void post_schedule(struct rq *rq)
2012{
1da177e4
LT
2013}
2014
3f029d3c
GH
2015#endif
2016
1da177e4
LT
2017/**
2018 * schedule_tail - first thing a freshly forked thread must call.
2019 * @prev: the thread we just switched away from.
2020 */
36c8b586 2021asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2022 __releases(rq->lock)
2023{
70b97a7f
IM
2024 struct rq *rq = this_rq();
2025
4866cde0 2026 finish_task_switch(rq, prev);
da19ab51 2027
3f029d3c
GH
2028 /*
2029 * FIXME: do we need to worry about rq being invalidated by the
2030 * task_switch?
2031 */
2032 post_schedule(rq);
70b97a7f 2033
4866cde0
NP
2034#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2035 /* In this case, finish_task_switch does not reenable preemption */
2036 preempt_enable();
2037#endif
1da177e4 2038 if (current->set_child_tid)
b488893a 2039 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2040}
2041
2042/*
2043 * context_switch - switch to the new MM and the new
2044 * thread's register state.
2045 */
dd41f596 2046static inline void
70b97a7f 2047context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2048 struct task_struct *next)
1da177e4 2049{
dd41f596 2050 struct mm_struct *mm, *oldmm;
1da177e4 2051
e107be36 2052 prepare_task_switch(rq, prev, next);
fe4b04fa 2053
dd41f596
IM
2054 mm = next->mm;
2055 oldmm = prev->active_mm;
9226d125
ZA
2056 /*
2057 * For paravirt, this is coupled with an exit in switch_to to
2058 * combine the page table reload and the switch backend into
2059 * one hypercall.
2060 */
224101ed 2061 arch_start_context_switch(prev);
9226d125 2062
31915ab4 2063 if (!mm) {
1da177e4
LT
2064 next->active_mm = oldmm;
2065 atomic_inc(&oldmm->mm_count);
2066 enter_lazy_tlb(oldmm, next);
2067 } else
2068 switch_mm(oldmm, mm, next);
2069
31915ab4 2070 if (!prev->mm) {
1da177e4 2071 prev->active_mm = NULL;
1da177e4
LT
2072 rq->prev_mm = oldmm;
2073 }
3a5f5e48
IM
2074 /*
2075 * Since the runqueue lock will be released by the next
2076 * task (which is an invalid locking op but in the case
2077 * of the scheduler it's an obvious special-case), so we
2078 * do an early lockdep release here:
2079 */
2080#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2081 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2082#endif
1da177e4
LT
2083
2084 /* Here we just switch the register state and the stack. */
616c310e 2085 rcu_switch_from(prev);
1da177e4
LT
2086 switch_to(prev, next, prev);
2087
dd41f596
IM
2088 barrier();
2089 /*
2090 * this_rq must be evaluated again because prev may have moved
2091 * CPUs since it called schedule(), thus the 'rq' on its stack
2092 * frame will be invalid.
2093 */
2094 finish_task_switch(this_rq(), prev);
1da177e4
LT
2095}
2096
2097/*
2098 * nr_running, nr_uninterruptible and nr_context_switches:
2099 *
2100 * externally visible scheduler statistics: current number of runnable
2101 * threads, current number of uninterruptible-sleeping threads, total
2102 * number of context switches performed since bootup.
2103 */
2104unsigned long nr_running(void)
2105{
2106 unsigned long i, sum = 0;
2107
2108 for_each_online_cpu(i)
2109 sum += cpu_rq(i)->nr_running;
2110
2111 return sum;
f711f609 2112}
1da177e4
LT
2113
2114unsigned long nr_uninterruptible(void)
f711f609 2115{
1da177e4 2116 unsigned long i, sum = 0;
f711f609 2117
0a945022 2118 for_each_possible_cpu(i)
1da177e4 2119 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
2120
2121 /*
1da177e4
LT
2122 * Since we read the counters lockless, it might be slightly
2123 * inaccurate. Do not allow it to go below zero though:
f711f609 2124 */
1da177e4
LT
2125 if (unlikely((long)sum < 0))
2126 sum = 0;
f711f609 2127
1da177e4 2128 return sum;
f711f609 2129}
f711f609 2130
1da177e4 2131unsigned long long nr_context_switches(void)
46cb4b7c 2132{
cc94abfc
SR
2133 int i;
2134 unsigned long long sum = 0;
46cb4b7c 2135
0a945022 2136 for_each_possible_cpu(i)
1da177e4 2137 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2138
1da177e4
LT
2139 return sum;
2140}
483b4ee6 2141
1da177e4
LT
2142unsigned long nr_iowait(void)
2143{
2144 unsigned long i, sum = 0;
483b4ee6 2145
0a945022 2146 for_each_possible_cpu(i)
1da177e4 2147 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2148
1da177e4
LT
2149 return sum;
2150}
483b4ee6 2151
8c215bd3 2152unsigned long nr_iowait_cpu(int cpu)
69d25870 2153{
8c215bd3 2154 struct rq *this = cpu_rq(cpu);
69d25870
AV
2155 return atomic_read(&this->nr_iowait);
2156}
46cb4b7c 2157
69d25870
AV
2158unsigned long this_cpu_load(void)
2159{
2160 struct rq *this = this_rq();
2161 return this->cpu_load[0];
2162}
e790fb0b 2163
46cb4b7c 2164
dce48a84
TG
2165/* Variables and functions for calc_load */
2166static atomic_long_t calc_load_tasks;
2167static unsigned long calc_load_update;
2168unsigned long avenrun[3];
2169EXPORT_SYMBOL(avenrun);
46cb4b7c 2170
74f5187a
PZ
2171static long calc_load_fold_active(struct rq *this_rq)
2172{
2173 long nr_active, delta = 0;
2174
2175 nr_active = this_rq->nr_running;
2176 nr_active += (long) this_rq->nr_uninterruptible;
2177
2178 if (nr_active != this_rq->calc_load_active) {
2179 delta = nr_active - this_rq->calc_load_active;
2180 this_rq->calc_load_active = nr_active;
2181 }
2182
2183 return delta;
2184}
2185
0f004f5a
PZ
2186static unsigned long
2187calc_load(unsigned long load, unsigned long exp, unsigned long active)
2188{
2189 load *= exp;
2190 load += active * (FIXED_1 - exp);
2191 load += 1UL << (FSHIFT - 1);
2192 return load >> FSHIFT;
2193}
2194
74f5187a
PZ
2195#ifdef CONFIG_NO_HZ
2196/*
2197 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2198 *
2199 * When making the ILB scale, we should try to pull this in as well.
2200 */
2201static atomic_long_t calc_load_tasks_idle;
2202
029632fb 2203void calc_load_account_idle(struct rq *this_rq)
74f5187a
PZ
2204{
2205 long delta;
2206
2207 delta = calc_load_fold_active(this_rq);
2208 if (delta)
2209 atomic_long_add(delta, &calc_load_tasks_idle);
2210}
2211
2212static long calc_load_fold_idle(void)
2213{
2214 long delta = 0;
2215
2216 /*
2217 * Its got a race, we don't care...
2218 */
2219 if (atomic_long_read(&calc_load_tasks_idle))
2220 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2221
2222 return delta;
2223}
0f004f5a
PZ
2224
2225/**
2226 * fixed_power_int - compute: x^n, in O(log n) time
2227 *
2228 * @x: base of the power
2229 * @frac_bits: fractional bits of @x
2230 * @n: power to raise @x to.
2231 *
2232 * By exploiting the relation between the definition of the natural power
2233 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2234 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2235 * (where: n_i \elem {0, 1}, the binary vector representing n),
2236 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2237 * of course trivially computable in O(log_2 n), the length of our binary
2238 * vector.
2239 */
2240static unsigned long
2241fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2242{
2243 unsigned long result = 1UL << frac_bits;
2244
2245 if (n) for (;;) {
2246 if (n & 1) {
2247 result *= x;
2248 result += 1UL << (frac_bits - 1);
2249 result >>= frac_bits;
2250 }
2251 n >>= 1;
2252 if (!n)
2253 break;
2254 x *= x;
2255 x += 1UL << (frac_bits - 1);
2256 x >>= frac_bits;
2257 }
2258
2259 return result;
2260}
2261
2262/*
2263 * a1 = a0 * e + a * (1 - e)
2264 *
2265 * a2 = a1 * e + a * (1 - e)
2266 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2267 * = a0 * e^2 + a * (1 - e) * (1 + e)
2268 *
2269 * a3 = a2 * e + a * (1 - e)
2270 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2271 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2272 *
2273 * ...
2274 *
2275 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2276 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2277 * = a0 * e^n + a * (1 - e^n)
2278 *
2279 * [1] application of the geometric series:
2280 *
2281 * n 1 - x^(n+1)
2282 * S_n := \Sum x^i = -------------
2283 * i=0 1 - x
2284 */
2285static unsigned long
2286calc_load_n(unsigned long load, unsigned long exp,
2287 unsigned long active, unsigned int n)
2288{
2289
2290 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2291}
2292
2293/*
2294 * NO_HZ can leave us missing all per-cpu ticks calling
2295 * calc_load_account_active(), but since an idle CPU folds its delta into
2296 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2297 * in the pending idle delta if our idle period crossed a load cycle boundary.
2298 *
2299 * Once we've updated the global active value, we need to apply the exponential
2300 * weights adjusted to the number of cycles missed.
2301 */
c308b56b 2302static void calc_global_nohz(void)
0f004f5a
PZ
2303{
2304 long delta, active, n;
2305
0f004f5a
PZ
2306 /*
2307 * If we crossed a calc_load_update boundary, make sure to fold
2308 * any pending idle changes, the respective CPUs might have
2309 * missed the tick driven calc_load_account_active() update
2310 * due to NO_HZ.
2311 */
2312 delta = calc_load_fold_idle();
2313 if (delta)
2314 atomic_long_add(delta, &calc_load_tasks);
2315
2316 /*
c308b56b 2317 * It could be the one fold was all it took, we done!
0f004f5a 2318 */
c308b56b
PZ
2319 if (time_before(jiffies, calc_load_update + 10))
2320 return;
0f004f5a 2321
c308b56b
PZ
2322 /*
2323 * Catch-up, fold however many we are behind still
2324 */
2325 delta = jiffies - calc_load_update - 10;
2326 n = 1 + (delta / LOAD_FREQ);
0f004f5a 2327
c308b56b
PZ
2328 active = atomic_long_read(&calc_load_tasks);
2329 active = active > 0 ? active * FIXED_1 : 0;
0f004f5a 2330
c308b56b
PZ
2331 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2332 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2333 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
0f004f5a 2334
c308b56b 2335 calc_load_update += n * LOAD_FREQ;
0f004f5a 2336}
74f5187a 2337#else
029632fb 2338void calc_load_account_idle(struct rq *this_rq)
74f5187a
PZ
2339{
2340}
2341
2342static inline long calc_load_fold_idle(void)
2343{
2344 return 0;
2345}
0f004f5a 2346
c308b56b 2347static void calc_global_nohz(void)
0f004f5a
PZ
2348{
2349}
74f5187a
PZ
2350#endif
2351
2d02494f
TG
2352/**
2353 * get_avenrun - get the load average array
2354 * @loads: pointer to dest load array
2355 * @offset: offset to add
2356 * @shift: shift count to shift the result left
2357 *
2358 * These values are estimates at best, so no need for locking.
2359 */
2360void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2361{
2362 loads[0] = (avenrun[0] + offset) << shift;
2363 loads[1] = (avenrun[1] + offset) << shift;
2364 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 2365}
46cb4b7c 2366
46cb4b7c 2367/*
dce48a84
TG
2368 * calc_load - update the avenrun load estimates 10 ticks after the
2369 * CPUs have updated calc_load_tasks.
7835b98b 2370 */
0f004f5a 2371void calc_global_load(unsigned long ticks)
7835b98b 2372{
dce48a84 2373 long active;
1da177e4 2374
0f004f5a 2375 if (time_before(jiffies, calc_load_update + 10))
dce48a84 2376 return;
1da177e4 2377
dce48a84
TG
2378 active = atomic_long_read(&calc_load_tasks);
2379 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 2380
dce48a84
TG
2381 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2382 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2383 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 2384
dce48a84 2385 calc_load_update += LOAD_FREQ;
c308b56b
PZ
2386
2387 /*
2388 * Account one period with whatever state we found before
2389 * folding in the nohz state and ageing the entire idle period.
2390 *
2391 * This avoids loosing a sample when we go idle between
2392 * calc_load_account_active() (10 ticks ago) and now and thus
2393 * under-accounting.
2394 */
2395 calc_global_nohz();
dce48a84 2396}
1da177e4 2397
dce48a84 2398/*
74f5187a
PZ
2399 * Called from update_cpu_load() to periodically update this CPU's
2400 * active count.
dce48a84
TG
2401 */
2402static void calc_load_account_active(struct rq *this_rq)
2403{
74f5187a 2404 long delta;
08c183f3 2405
74f5187a
PZ
2406 if (time_before(jiffies, this_rq->calc_load_update))
2407 return;
783609c6 2408
74f5187a
PZ
2409 delta = calc_load_fold_active(this_rq);
2410 delta += calc_load_fold_idle();
2411 if (delta)
dce48a84 2412 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
2413
2414 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
2415}
2416
fdf3e95d
VP
2417/*
2418 * The exact cpuload at various idx values, calculated at every tick would be
2419 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2420 *
2421 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2422 * on nth tick when cpu may be busy, then we have:
2423 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2424 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2425 *
2426 * decay_load_missed() below does efficient calculation of
2427 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2428 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2429 *
2430 * The calculation is approximated on a 128 point scale.
2431 * degrade_zero_ticks is the number of ticks after which load at any
2432 * particular idx is approximated to be zero.
2433 * degrade_factor is a precomputed table, a row for each load idx.
2434 * Each column corresponds to degradation factor for a power of two ticks,
2435 * based on 128 point scale.
2436 * Example:
2437 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2438 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2439 *
2440 * With this power of 2 load factors, we can degrade the load n times
2441 * by looking at 1 bits in n and doing as many mult/shift instead of
2442 * n mult/shifts needed by the exact degradation.
2443 */
2444#define DEGRADE_SHIFT 7
2445static const unsigned char
2446 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2447static const unsigned char
2448 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2449 {0, 0, 0, 0, 0, 0, 0, 0},
2450 {64, 32, 8, 0, 0, 0, 0, 0},
2451 {96, 72, 40, 12, 1, 0, 0},
2452 {112, 98, 75, 43, 15, 1, 0},
2453 {120, 112, 98, 76, 45, 16, 2} };
2454
2455/*
2456 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2457 * would be when CPU is idle and so we just decay the old load without
2458 * adding any new load.
2459 */
2460static unsigned long
2461decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2462{
2463 int j = 0;
2464
2465 if (!missed_updates)
2466 return load;
2467
2468 if (missed_updates >= degrade_zero_ticks[idx])
2469 return 0;
2470
2471 if (idx == 1)
2472 return load >> missed_updates;
2473
2474 while (missed_updates) {
2475 if (missed_updates % 2)
2476 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2477
2478 missed_updates >>= 1;
2479 j++;
2480 }
2481 return load;
2482}
2483
46cb4b7c 2484/*
dd41f596 2485 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
2486 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2487 * every tick. We fix it up based on jiffies.
46cb4b7c 2488 */
556061b0
PZ
2489static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2490 unsigned long pending_updates)
46cb4b7c 2491{
dd41f596 2492 int i, scale;
46cb4b7c 2493
dd41f596 2494 this_rq->nr_load_updates++;
46cb4b7c 2495
dd41f596 2496 /* Update our load: */
fdf3e95d
VP
2497 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2498 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 2499 unsigned long old_load, new_load;
7d1e6a9b 2500
dd41f596 2501 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 2502
dd41f596 2503 old_load = this_rq->cpu_load[i];
fdf3e95d 2504 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 2505 new_load = this_load;
a25707f3
IM
2506 /*
2507 * Round up the averaging division if load is increasing. This
2508 * prevents us from getting stuck on 9 if the load is 10, for
2509 * example.
2510 */
2511 if (new_load > old_load)
fdf3e95d
VP
2512 new_load += scale - 1;
2513
2514 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 2515 }
da2b71ed
SS
2516
2517 sched_avg_update(this_rq);
fdf3e95d
VP
2518}
2519
5aaa0b7a
PZ
2520#ifdef CONFIG_NO_HZ
2521/*
2522 * There is no sane way to deal with nohz on smp when using jiffies because the
2523 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2524 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2525 *
2526 * Therefore we cannot use the delta approach from the regular tick since that
2527 * would seriously skew the load calculation. However we'll make do for those
2528 * updates happening while idle (nohz_idle_balance) or coming out of idle
2529 * (tick_nohz_idle_exit).
2530 *
2531 * This means we might still be one tick off for nohz periods.
2532 */
2533
556061b0
PZ
2534/*
2535 * Called from nohz_idle_balance() to update the load ratings before doing the
2536 * idle balance.
2537 */
2538void update_idle_cpu_load(struct rq *this_rq)
2539{
5aaa0b7a 2540 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
556061b0
PZ
2541 unsigned long load = this_rq->load.weight;
2542 unsigned long pending_updates;
2543
2544 /*
5aaa0b7a 2545 * bail if there's load or we're actually up-to-date.
556061b0
PZ
2546 */
2547 if (load || curr_jiffies == this_rq->last_load_update_tick)
2548 return;
2549
2550 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2551 this_rq->last_load_update_tick = curr_jiffies;
2552
2553 __update_cpu_load(this_rq, load, pending_updates);
2554}
2555
5aaa0b7a
PZ
2556/*
2557 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2558 */
2559void update_cpu_load_nohz(void)
2560{
2561 struct rq *this_rq = this_rq();
2562 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2563 unsigned long pending_updates;
2564
2565 if (curr_jiffies == this_rq->last_load_update_tick)
2566 return;
2567
2568 raw_spin_lock(&this_rq->lock);
2569 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2570 if (pending_updates) {
2571 this_rq->last_load_update_tick = curr_jiffies;
2572 /*
2573 * We were idle, this means load 0, the current load might be
2574 * !0 due to remote wakeups and the sort.
2575 */
2576 __update_cpu_load(this_rq, 0, pending_updates);
2577 }
2578 raw_spin_unlock(&this_rq->lock);
2579}
2580#endif /* CONFIG_NO_HZ */
2581
556061b0
PZ
2582/*
2583 * Called from scheduler_tick()
2584 */
fdf3e95d
VP
2585static void update_cpu_load_active(struct rq *this_rq)
2586{
556061b0 2587 /*
5aaa0b7a 2588 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
556061b0
PZ
2589 */
2590 this_rq->last_load_update_tick = jiffies;
2591 __update_cpu_load(this_rq, this_rq->load.weight, 1);
46cb4b7c 2592
74f5187a 2593 calc_load_account_active(this_rq);
46cb4b7c
SS
2594}
2595
dd41f596 2596#ifdef CONFIG_SMP
8a0be9ef 2597
46cb4b7c 2598/*
38022906
PZ
2599 * sched_exec - execve() is a valuable balancing opportunity, because at
2600 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2601 */
38022906 2602void sched_exec(void)
46cb4b7c 2603{
38022906 2604 struct task_struct *p = current;
1da177e4 2605 unsigned long flags;
0017d735 2606 int dest_cpu;
46cb4b7c 2607
8f42ced9 2608 raw_spin_lock_irqsave(&p->pi_lock, flags);
7608dec2 2609 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
2610 if (dest_cpu == smp_processor_id())
2611 goto unlock;
38022906 2612
8f42ced9 2613 if (likely(cpu_active(dest_cpu))) {
969c7921 2614 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2615
8f42ced9
PZ
2616 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2617 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2618 return;
2619 }
0017d735 2620unlock:
8f42ced9 2621 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2622}
dd41f596 2623
1da177e4
LT
2624#endif
2625
1da177e4 2626DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2627DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2628
2629EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2630EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2631
2632/*
c5f8d995 2633 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2634 * @p in case that task is currently running.
c5f8d995
HS
2635 *
2636 * Called with task_rq_lock() held on @rq.
1da177e4 2637 */
c5f8d995
HS
2638static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2639{
2640 u64 ns = 0;
2641
2642 if (task_current(rq, p)) {
2643 update_rq_clock(rq);
305e6835 2644 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
2645 if ((s64)ns < 0)
2646 ns = 0;
2647 }
2648
2649 return ns;
2650}
2651
bb34d92f 2652unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2653{
1da177e4 2654 unsigned long flags;
41b86e9c 2655 struct rq *rq;
bb34d92f 2656 u64 ns = 0;
48f24c4d 2657
41b86e9c 2658 rq = task_rq_lock(p, &flags);
c5f8d995 2659 ns = do_task_delta_exec(p, rq);
0122ec5b 2660 task_rq_unlock(rq, p, &flags);
1508487e 2661
c5f8d995
HS
2662 return ns;
2663}
f06febc9 2664
c5f8d995
HS
2665/*
2666 * Return accounted runtime for the task.
2667 * In case the task is currently running, return the runtime plus current's
2668 * pending runtime that have not been accounted yet.
2669 */
2670unsigned long long task_sched_runtime(struct task_struct *p)
2671{
2672 unsigned long flags;
2673 struct rq *rq;
2674 u64 ns = 0;
2675
2676 rq = task_rq_lock(p, &flags);
2677 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2678 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2679
2680 return ns;
2681}
48f24c4d 2682
54c707e9
GC
2683#ifdef CONFIG_CGROUP_CPUACCT
2684struct cgroup_subsys cpuacct_subsys;
2685struct cpuacct root_cpuacct;
2686#endif
2687
be726ffd
GC
2688static inline void task_group_account_field(struct task_struct *p, int index,
2689 u64 tmp)
54c707e9
GC
2690{
2691#ifdef CONFIG_CGROUP_CPUACCT
2692 struct kernel_cpustat *kcpustat;
2693 struct cpuacct *ca;
2694#endif
2695 /*
2696 * Since all updates are sure to touch the root cgroup, we
2697 * get ourselves ahead and touch it first. If the root cgroup
2698 * is the only cgroup, then nothing else should be necessary.
2699 *
2700 */
2701 __get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
2702
2703#ifdef CONFIG_CGROUP_CPUACCT
2704 if (unlikely(!cpuacct_subsys.active))
2705 return;
2706
2707 rcu_read_lock();
2708 ca = task_ca(p);
2709 while (ca && (ca != &root_cpuacct)) {
2710 kcpustat = this_cpu_ptr(ca->cpustat);
2711 kcpustat->cpustat[index] += tmp;
2712 ca = parent_ca(ca);
2713 }
2714 rcu_read_unlock();
2715#endif
2716}
2717
2718
1da177e4
LT
2719/*
2720 * Account user cpu time to a process.
2721 * @p: the process that the cpu time gets accounted to
1da177e4 2722 * @cputime: the cpu time spent in user space since the last update
457533a7 2723 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 2724 */
457533a7
MS
2725void account_user_time(struct task_struct *p, cputime_t cputime,
2726 cputime_t cputime_scaled)
1da177e4 2727{
3292beb3 2728 int index;
1da177e4 2729
457533a7 2730 /* Add user time to process. */
64861634
MS
2731 p->utime += cputime;
2732 p->utimescaled += cputime_scaled;
f06febc9 2733 account_group_user_time(p, cputime);
1da177e4 2734
3292beb3 2735 index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
ef12fefa 2736
1da177e4 2737 /* Add user time to cpustat. */
612ef28a 2738 task_group_account_field(p, index, (__force u64) cputime);
ef12fefa 2739
49b5cf34
JL
2740 /* Account for user time used */
2741 acct_update_integrals(p);
1da177e4
LT
2742}
2743
94886b84
LV
2744/*
2745 * Account guest cpu time to a process.
2746 * @p: the process that the cpu time gets accounted to
2747 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 2748 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 2749 */
457533a7
MS
2750static void account_guest_time(struct task_struct *p, cputime_t cputime,
2751 cputime_t cputime_scaled)
94886b84 2752{
3292beb3 2753 u64 *cpustat = kcpustat_this_cpu->cpustat;
94886b84 2754
457533a7 2755 /* Add guest time to process. */
64861634
MS
2756 p->utime += cputime;
2757 p->utimescaled += cputime_scaled;
f06febc9 2758 account_group_user_time(p, cputime);
64861634 2759 p->gtime += cputime;
94886b84 2760
457533a7 2761 /* Add guest time to cpustat. */
ce0e7b28 2762 if (TASK_NICE(p) > 0) {
612ef28a
MS
2763 cpustat[CPUTIME_NICE] += (__force u64) cputime;
2764 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
ce0e7b28 2765 } else {
612ef28a
MS
2766 cpustat[CPUTIME_USER] += (__force u64) cputime;
2767 cpustat[CPUTIME_GUEST] += (__force u64) cputime;
ce0e7b28 2768 }
94886b84
LV
2769}
2770
70a89a66
VP
2771/*
2772 * Account system cpu time to a process and desired cpustat field
2773 * @p: the process that the cpu time gets accounted to
2774 * @cputime: the cpu time spent in kernel space since the last update
2775 * @cputime_scaled: cputime scaled by cpu frequency
2776 * @target_cputime64: pointer to cpustat field that has to be updated
2777 */
2778static inline
2779void __account_system_time(struct task_struct *p, cputime_t cputime,
3292beb3 2780 cputime_t cputime_scaled, int index)
70a89a66 2781{
70a89a66 2782 /* Add system time to process. */
64861634
MS
2783 p->stime += cputime;
2784 p->stimescaled += cputime_scaled;
70a89a66
VP
2785 account_group_system_time(p, cputime);
2786
2787 /* Add system time to cpustat. */
612ef28a 2788 task_group_account_field(p, index, (__force u64) cputime);
70a89a66
VP
2789
2790 /* Account for system time used */
2791 acct_update_integrals(p);
2792}
2793
1da177e4
LT
2794/*
2795 * Account system cpu time to a process.
2796 * @p: the process that the cpu time gets accounted to
2797 * @hardirq_offset: the offset to subtract from hardirq_count()
2798 * @cputime: the cpu time spent in kernel space since the last update
457533a7 2799 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
2800 */
2801void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 2802 cputime_t cputime, cputime_t cputime_scaled)
1da177e4 2803{
3292beb3 2804 int index;
1da177e4 2805
983ed7a6 2806 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 2807 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
2808 return;
2809 }
94886b84 2810
1da177e4 2811 if (hardirq_count() - hardirq_offset)
3292beb3 2812 index = CPUTIME_IRQ;
75e1056f 2813 else if (in_serving_softirq())
3292beb3 2814 index = CPUTIME_SOFTIRQ;
1da177e4 2815 else
3292beb3 2816 index = CPUTIME_SYSTEM;
ef12fefa 2817
3292beb3 2818 __account_system_time(p, cputime, cputime_scaled, index);
1da177e4
LT
2819}
2820
c66f08be 2821/*
1da177e4 2822 * Account for involuntary wait time.
544b4a1f 2823 * @cputime: the cpu time spent in involuntary wait
c66f08be 2824 */
79741dd3 2825void account_steal_time(cputime_t cputime)
c66f08be 2826{
3292beb3 2827 u64 *cpustat = kcpustat_this_cpu->cpustat;
79741dd3 2828
612ef28a 2829 cpustat[CPUTIME_STEAL] += (__force u64) cputime;
c66f08be
MN
2830}
2831
1da177e4 2832/*
79741dd3
MS
2833 * Account for idle time.
2834 * @cputime: the cpu time spent in idle wait
1da177e4 2835 */
79741dd3 2836void account_idle_time(cputime_t cputime)
1da177e4 2837{
3292beb3 2838 u64 *cpustat = kcpustat_this_cpu->cpustat;
70b97a7f 2839 struct rq *rq = this_rq();
1da177e4 2840
79741dd3 2841 if (atomic_read(&rq->nr_iowait) > 0)
612ef28a 2842 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
79741dd3 2843 else
612ef28a 2844 cpustat[CPUTIME_IDLE] += (__force u64) cputime;
1da177e4
LT
2845}
2846
e6e6685a
GC
2847static __always_inline bool steal_account_process_tick(void)
2848{
2849#ifdef CONFIG_PARAVIRT
c5905afb 2850 if (static_key_false(&paravirt_steal_enabled)) {
e6e6685a
GC
2851 u64 steal, st = 0;
2852
2853 steal = paravirt_steal_clock(smp_processor_id());
2854 steal -= this_rq()->prev_steal_time;
2855
2856 st = steal_ticks(steal);
2857 this_rq()->prev_steal_time += st * TICK_NSEC;
2858
2859 account_steal_time(st);
2860 return st;
2861 }
2862#endif
2863 return false;
2864}
2865
79741dd3
MS
2866#ifndef CONFIG_VIRT_CPU_ACCOUNTING
2867
abb74cef
VP
2868#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2869/*
2870 * Account a tick to a process and cpustat
2871 * @p: the process that the cpu time gets accounted to
2872 * @user_tick: is the tick from userspace
2873 * @rq: the pointer to rq
2874 *
2875 * Tick demultiplexing follows the order
2876 * - pending hardirq update
2877 * - pending softirq update
2878 * - user_time
2879 * - idle_time
2880 * - system time
2881 * - check for guest_time
2882 * - else account as system_time
2883 *
2884 * Check for hardirq is done both for system and user time as there is
2885 * no timer going off while we are on hardirq and hence we may never get an
2886 * opportunity to update it solely in system time.
2887 * p->stime and friends are only updated on system time and not on irq
2888 * softirq as those do not count in task exec_runtime any more.
2889 */
2890static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2891 struct rq *rq)
2892{
2893 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3292beb3 2894 u64 *cpustat = kcpustat_this_cpu->cpustat;
abb74cef 2895
e6e6685a
GC
2896 if (steal_account_process_tick())
2897 return;
2898
abb74cef 2899 if (irqtime_account_hi_update()) {
612ef28a 2900 cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
abb74cef 2901 } else if (irqtime_account_si_update()) {
612ef28a 2902 cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
414bee9b
VP
2903 } else if (this_cpu_ksoftirqd() == p) {
2904 /*
2905 * ksoftirqd time do not get accounted in cpu_softirq_time.
2906 * So, we have to handle it separately here.
2907 * Also, p->stime needs to be updated for ksoftirqd.
2908 */
2909 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3292beb3 2910 CPUTIME_SOFTIRQ);
abb74cef
VP
2911 } else if (user_tick) {
2912 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2913 } else if (p == rq->idle) {
2914 account_idle_time(cputime_one_jiffy);
2915 } else if (p->flags & PF_VCPU) { /* System time or guest time */
2916 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
2917 } else {
2918 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3292beb3 2919 CPUTIME_SYSTEM);
abb74cef
VP
2920 }
2921}
2922
2923static void irqtime_account_idle_ticks(int ticks)
2924{
2925 int i;
2926 struct rq *rq = this_rq();
2927
2928 for (i = 0; i < ticks; i++)
2929 irqtime_account_process_tick(current, 0, rq);
2930}
544b4a1f 2931#else /* CONFIG_IRQ_TIME_ACCOUNTING */
abb74cef
VP
2932static void irqtime_account_idle_ticks(int ticks) {}
2933static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2934 struct rq *rq) {}
544b4a1f 2935#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
79741dd3
MS
2936
2937/*
2938 * Account a single tick of cpu time.
2939 * @p: the process that the cpu time gets accounted to
2940 * @user_tick: indicates if the tick is a user or a system tick
2941 */
2942void account_process_tick(struct task_struct *p, int user_tick)
2943{
a42548a1 2944 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
2945 struct rq *rq = this_rq();
2946
abb74cef
VP
2947 if (sched_clock_irqtime) {
2948 irqtime_account_process_tick(p, user_tick, rq);
2949 return;
2950 }
2951
e6e6685a
GC
2952 if (steal_account_process_tick())
2953 return;
2954
79741dd3 2955 if (user_tick)
a42548a1 2956 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 2957 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 2958 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
2959 one_jiffy_scaled);
2960 else
a42548a1 2961 account_idle_time(cputime_one_jiffy);
79741dd3
MS
2962}
2963
2964/*
2965 * Account multiple ticks of steal time.
2966 * @p: the process from which the cpu time has been stolen
2967 * @ticks: number of stolen ticks
2968 */
2969void account_steal_ticks(unsigned long ticks)
2970{
2971 account_steal_time(jiffies_to_cputime(ticks));
2972}
2973
2974/*
2975 * Account multiple ticks of idle time.
2976 * @ticks: number of stolen ticks
2977 */
2978void account_idle_ticks(unsigned long ticks)
2979{
abb74cef
VP
2980
2981 if (sched_clock_irqtime) {
2982 irqtime_account_idle_ticks(ticks);
2983 return;
2984 }
2985
79741dd3 2986 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
2987}
2988
79741dd3
MS
2989#endif
2990
49048622
BS
2991/*
2992 * Use precise platform statistics if available:
2993 */
2994#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 2995void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 2996{
d99ca3b9
HS
2997 *ut = p->utime;
2998 *st = p->stime;
49048622
BS
2999}
3000
0cf55e1e 3001void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3002{
0cf55e1e
HS
3003 struct task_cputime cputime;
3004
3005 thread_group_cputime(p, &cputime);
3006
3007 *ut = cputime.utime;
3008 *st = cputime.stime;
49048622
BS
3009}
3010#else
761b1d26
HS
3011
3012#ifndef nsecs_to_cputime
b7b20df9 3013# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3014#endif
3015
d180c5bc 3016void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3017{
64861634 3018 cputime_t rtime, utime = p->utime, total = utime + p->stime;
49048622
BS
3019
3020 /*
3021 * Use CFS's precise accounting:
3022 */
d180c5bc 3023 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3024
3025 if (total) {
64861634 3026 u64 temp = (__force u64) rtime;
d180c5bc 3027
64861634
MS
3028 temp *= (__force u64) utime;
3029 do_div(temp, (__force u32) total);
3030 utime = (__force cputime_t) temp;
d180c5bc
HS
3031 } else
3032 utime = rtime;
49048622 3033
d180c5bc
HS
3034 /*
3035 * Compare with previous values, to keep monotonicity:
3036 */
761b1d26 3037 p->prev_utime = max(p->prev_utime, utime);
64861634 3038 p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
49048622 3039
d99ca3b9
HS
3040 *ut = p->prev_utime;
3041 *st = p->prev_stime;
49048622
BS
3042}
3043
0cf55e1e
HS
3044/*
3045 * Must be called with siglock held.
3046 */
3047void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3048{
0cf55e1e
HS
3049 struct signal_struct *sig = p->signal;
3050 struct task_cputime cputime;
3051 cputime_t rtime, utime, total;
49048622 3052
0cf55e1e 3053 thread_group_cputime(p, &cputime);
49048622 3054
64861634 3055 total = cputime.utime + cputime.stime;
0cf55e1e 3056 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3057
0cf55e1e 3058 if (total) {
64861634 3059 u64 temp = (__force u64) rtime;
49048622 3060
64861634
MS
3061 temp *= (__force u64) cputime.utime;
3062 do_div(temp, (__force u32) total);
3063 utime = (__force cputime_t) temp;
0cf55e1e
HS
3064 } else
3065 utime = rtime;
3066
3067 sig->prev_utime = max(sig->prev_utime, utime);
64861634 3068 sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
0cf55e1e
HS
3069
3070 *ut = sig->prev_utime;
3071 *st = sig->prev_stime;
49048622 3072}
49048622 3073#endif
49048622 3074
7835b98b
CL
3075/*
3076 * This function gets called by the timer code, with HZ frequency.
3077 * We call it with interrupts disabled.
7835b98b
CL
3078 */
3079void scheduler_tick(void)
3080{
7835b98b
CL
3081 int cpu = smp_processor_id();
3082 struct rq *rq = cpu_rq(cpu);
dd41f596 3083 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3084
3085 sched_clock_tick();
dd41f596 3086
05fa785c 3087 raw_spin_lock(&rq->lock);
3e51f33f 3088 update_rq_clock(rq);
fdf3e95d 3089 update_cpu_load_active(rq);
fa85ae24 3090 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3091 raw_spin_unlock(&rq->lock);
7835b98b 3092
e9d2b064 3093 perf_event_task_tick();
e220d2dc 3094
e418e1c2 3095#ifdef CONFIG_SMP
6eb57e0d 3096 rq->idle_balance = idle_cpu(cpu);
dd41f596 3097 trigger_load_balance(rq, cpu);
e418e1c2 3098#endif
1da177e4
LT
3099}
3100
132380a0 3101notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3102{
3103 if (in_lock_functions(addr)) {
3104 addr = CALLER_ADDR2;
3105 if (in_lock_functions(addr))
3106 addr = CALLER_ADDR3;
3107 }
3108 return addr;
3109}
1da177e4 3110
7e49fcce
SR
3111#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3112 defined(CONFIG_PREEMPT_TRACER))
3113
43627582 3114void __kprobes add_preempt_count(int val)
1da177e4 3115{
6cd8a4bb 3116#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3117 /*
3118 * Underflow?
3119 */
9a11b49a
IM
3120 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3121 return;
6cd8a4bb 3122#endif
1da177e4 3123 preempt_count() += val;
6cd8a4bb 3124#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3125 /*
3126 * Spinlock count overflowing soon?
3127 */
33859f7f
MOS
3128 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3129 PREEMPT_MASK - 10);
6cd8a4bb
SR
3130#endif
3131 if (preempt_count() == val)
3132 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3133}
3134EXPORT_SYMBOL(add_preempt_count);
3135
43627582 3136void __kprobes sub_preempt_count(int val)
1da177e4 3137{
6cd8a4bb 3138#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3139 /*
3140 * Underflow?
3141 */
01e3eb82 3142 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3143 return;
1da177e4
LT
3144 /*
3145 * Is the spinlock portion underflowing?
3146 */
9a11b49a
IM
3147 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3148 !(preempt_count() & PREEMPT_MASK)))
3149 return;
6cd8a4bb 3150#endif
9a11b49a 3151
6cd8a4bb
SR
3152 if (preempt_count() == val)
3153 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3154 preempt_count() -= val;
3155}
3156EXPORT_SYMBOL(sub_preempt_count);
3157
3158#endif
3159
3160/*
dd41f596 3161 * Print scheduling while atomic bug:
1da177e4 3162 */
dd41f596 3163static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3164{
664dfa65
DJ
3165 if (oops_in_progress)
3166 return;
3167
3df0fc5b
PZ
3168 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3169 prev->comm, prev->pid, preempt_count());
838225b4 3170
dd41f596 3171 debug_show_held_locks(prev);
e21f5b15 3172 print_modules();
dd41f596
IM
3173 if (irqs_disabled())
3174 print_irqtrace_events(prev);
6135fc1e 3175 dump_stack();
1c2927f1 3176 add_taint(TAINT_WARN);
dd41f596 3177}
1da177e4 3178
dd41f596
IM
3179/*
3180 * Various schedule()-time debugging checks and statistics:
3181 */
3182static inline void schedule_debug(struct task_struct *prev)
3183{
1da177e4 3184 /*
41a2d6cf 3185 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3186 * schedule() atomically, we ignore that path for now.
3187 * Otherwise, whine if we are scheduling when we should not be.
3188 */
3f33a7ce 3189 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596 3190 __schedule_bug(prev);
b3fbab05 3191 rcu_sleep_check();
dd41f596 3192
1da177e4
LT
3193 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3194
2d72376b 3195 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
3196}
3197
6cecd084 3198static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 3199{
61eadef6 3200 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 3201 update_rq_clock(rq);
6cecd084 3202 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
3203}
3204
dd41f596
IM
3205/*
3206 * Pick up the highest-prio task:
3207 */
3208static inline struct task_struct *
b67802ea 3209pick_next_task(struct rq *rq)
dd41f596 3210{
5522d5d5 3211 const struct sched_class *class;
dd41f596 3212 struct task_struct *p;
1da177e4
LT
3213
3214 /*
dd41f596
IM
3215 * Optimization: we know that if all tasks are in
3216 * the fair class we can call that function directly:
1da177e4 3217 */
953bfcd1 3218 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 3219 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3220 if (likely(p))
3221 return p;
1da177e4
LT
3222 }
3223
34f971f6 3224 for_each_class(class) {
fb8d4724 3225 p = class->pick_next_task(rq);
dd41f596
IM
3226 if (p)
3227 return p;
dd41f596 3228 }
34f971f6
PZ
3229
3230 BUG(); /* the idle class will always have a runnable task */
dd41f596 3231}
1da177e4 3232
dd41f596 3233/*
c259e01a 3234 * __schedule() is the main scheduler function.
dd41f596 3235 */
c259e01a 3236static void __sched __schedule(void)
dd41f596
IM
3237{
3238 struct task_struct *prev, *next;
67ca7bde 3239 unsigned long *switch_count;
dd41f596 3240 struct rq *rq;
31656519 3241 int cpu;
dd41f596 3242
ff743345
PZ
3243need_resched:
3244 preempt_disable();
dd41f596
IM
3245 cpu = smp_processor_id();
3246 rq = cpu_rq(cpu);
25502a6c 3247 rcu_note_context_switch(cpu);
dd41f596 3248 prev = rq->curr;
dd41f596 3249
dd41f596 3250 schedule_debug(prev);
1da177e4 3251
31656519 3252 if (sched_feat(HRTICK))
f333fdc9 3253 hrtick_clear(rq);
8f4d37ec 3254
05fa785c 3255 raw_spin_lock_irq(&rq->lock);
1da177e4 3256
246d86b5 3257 switch_count = &prev->nivcsw;
1da177e4 3258 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 3259 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3260 prev->state = TASK_RUNNING;
21aa9af0 3261 } else {
2acca55e
PZ
3262 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3263 prev->on_rq = 0;
3264
21aa9af0 3265 /*
2acca55e
PZ
3266 * If a worker went to sleep, notify and ask workqueue
3267 * whether it wants to wake up a task to maintain
3268 * concurrency.
21aa9af0
TH
3269 */
3270 if (prev->flags & PF_WQ_WORKER) {
3271 struct task_struct *to_wakeup;
3272
3273 to_wakeup = wq_worker_sleeping(prev, cpu);
3274 if (to_wakeup)
3275 try_to_wake_up_local(to_wakeup);
3276 }
21aa9af0 3277 }
dd41f596 3278 switch_count = &prev->nvcsw;
1da177e4
LT
3279 }
3280
3f029d3c 3281 pre_schedule(rq, prev);
f65eda4f 3282
dd41f596 3283 if (unlikely(!rq->nr_running))
1da177e4 3284 idle_balance(cpu, rq);
1da177e4 3285
df1c99d4 3286 put_prev_task(rq, prev);
b67802ea 3287 next = pick_next_task(rq);
f26f9aff
MG
3288 clear_tsk_need_resched(prev);
3289 rq->skip_clock_update = 0;
1da177e4 3290
1da177e4 3291 if (likely(prev != next)) {
1da177e4
LT
3292 rq->nr_switches++;
3293 rq->curr = next;
3294 ++*switch_count;
3295
dd41f596 3296 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 3297 /*
246d86b5
ON
3298 * The context switch have flipped the stack from under us
3299 * and restored the local variables which were saved when
3300 * this task called schedule() in the past. prev == current
3301 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
3302 */
3303 cpu = smp_processor_id();
3304 rq = cpu_rq(cpu);
1da177e4 3305 } else
05fa785c 3306 raw_spin_unlock_irq(&rq->lock);
1da177e4 3307
3f029d3c 3308 post_schedule(rq);
1da177e4 3309
ba74c144 3310 sched_preempt_enable_no_resched();
ff743345 3311 if (need_resched())
1da177e4
LT
3312 goto need_resched;
3313}
c259e01a 3314
9c40cef2
TG
3315static inline void sched_submit_work(struct task_struct *tsk)
3316{
3c7d5184 3317 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3318 return;
3319 /*
3320 * If we are going to sleep and we have plugged IO queued,
3321 * make sure to submit it to avoid deadlocks.
3322 */
3323 if (blk_needs_flush_plug(tsk))
3324 blk_schedule_flush_plug(tsk);
3325}
3326
6ebbe7a0 3327asmlinkage void __sched schedule(void)
c259e01a 3328{
9c40cef2
TG
3329 struct task_struct *tsk = current;
3330
3331 sched_submit_work(tsk);
c259e01a
TG
3332 __schedule();
3333}
1da177e4
LT
3334EXPORT_SYMBOL(schedule);
3335
c5491ea7
TG
3336/**
3337 * schedule_preempt_disabled - called with preemption disabled
3338 *
3339 * Returns with preemption disabled. Note: preempt_count must be 1
3340 */
3341void __sched schedule_preempt_disabled(void)
3342{
ba74c144 3343 sched_preempt_enable_no_resched();
c5491ea7
TG
3344 schedule();
3345 preempt_disable();
3346}
3347
c08f7829 3348#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d 3349
c6eb3dda
PZ
3350static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3351{
c6eb3dda 3352 if (lock->owner != owner)
307bf980 3353 return false;
0d66bf6d
PZ
3354
3355 /*
c6eb3dda
PZ
3356 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3357 * lock->owner still matches owner, if that fails, owner might
3358 * point to free()d memory, if it still matches, the rcu_read_lock()
3359 * ensures the memory stays valid.
0d66bf6d 3360 */
c6eb3dda 3361 barrier();
0d66bf6d 3362
307bf980 3363 return owner->on_cpu;
c6eb3dda 3364}
0d66bf6d 3365
c6eb3dda
PZ
3366/*
3367 * Look out! "owner" is an entirely speculative pointer
3368 * access and not reliable.
3369 */
3370int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3371{
3372 if (!sched_feat(OWNER_SPIN))
3373 return 0;
0d66bf6d 3374
307bf980 3375 rcu_read_lock();
c6eb3dda
PZ
3376 while (owner_running(lock, owner)) {
3377 if (need_resched())
307bf980 3378 break;
0d66bf6d 3379
335d7afb 3380 arch_mutex_cpu_relax();
0d66bf6d 3381 }
307bf980 3382 rcu_read_unlock();
4b402210 3383
c6eb3dda 3384 /*
307bf980
TG
3385 * We break out the loop above on need_resched() and when the
3386 * owner changed, which is a sign for heavy contention. Return
3387 * success only when lock->owner is NULL.
c6eb3dda 3388 */
307bf980 3389 return lock->owner == NULL;
0d66bf6d
PZ
3390}
3391#endif
3392
1da177e4
LT
3393#ifdef CONFIG_PREEMPT
3394/*
2ed6e34f 3395 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3396 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3397 * occur there and call schedule directly.
3398 */
d1f74e20 3399asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
3400{
3401 struct thread_info *ti = current_thread_info();
6478d880 3402
1da177e4
LT
3403 /*
3404 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3405 * we do not want to preempt the current task. Just return..
1da177e4 3406 */
beed33a8 3407 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3408 return;
3409
3a5c359a 3410 do {
d1f74e20 3411 add_preempt_count_notrace(PREEMPT_ACTIVE);
c259e01a 3412 __schedule();
d1f74e20 3413 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 3414
3a5c359a
AK
3415 /*
3416 * Check again in case we missed a preemption opportunity
3417 * between schedule and now.
3418 */
3419 barrier();
5ed0cec0 3420 } while (need_resched());
1da177e4 3421}
1da177e4
LT
3422EXPORT_SYMBOL(preempt_schedule);
3423
3424/*
2ed6e34f 3425 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3426 * off of irq context.
3427 * Note, that this is called and return with irqs disabled. This will
3428 * protect us against recursive calling from irq.
3429 */
3430asmlinkage void __sched preempt_schedule_irq(void)
3431{
3432 struct thread_info *ti = current_thread_info();
6478d880 3433
2ed6e34f 3434 /* Catch callers which need to be fixed */
1da177e4
LT
3435 BUG_ON(ti->preempt_count || !irqs_disabled());
3436
3a5c359a
AK
3437 do {
3438 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 3439 local_irq_enable();
c259e01a 3440 __schedule();
3a5c359a 3441 local_irq_disable();
3a5c359a 3442 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3443
3a5c359a
AK
3444 /*
3445 * Check again in case we missed a preemption opportunity
3446 * between schedule and now.
3447 */
3448 barrier();
5ed0cec0 3449 } while (need_resched());
1da177e4
LT
3450}
3451
3452#endif /* CONFIG_PREEMPT */
3453
63859d4f 3454int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3455 void *key)
1da177e4 3456{
63859d4f 3457 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3458}
1da177e4
LT
3459EXPORT_SYMBOL(default_wake_function);
3460
3461/*
41a2d6cf
IM
3462 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3463 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3464 * number) then we wake all the non-exclusive tasks and one exclusive task.
3465 *
3466 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3467 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3468 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3469 */
78ddb08f 3470static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 3471 int nr_exclusive, int wake_flags, void *key)
1da177e4 3472{
2e45874c 3473 wait_queue_t *curr, *next;
1da177e4 3474
2e45874c 3475 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3476 unsigned flags = curr->flags;
3477
63859d4f 3478 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 3479 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3480 break;
3481 }
3482}
3483
3484/**
3485 * __wake_up - wake up threads blocked on a waitqueue.
3486 * @q: the waitqueue
3487 * @mode: which threads
3488 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3489 * @key: is directly passed to the wakeup function
50fa610a
DH
3490 *
3491 * It may be assumed that this function implies a write memory barrier before
3492 * changing the task state if and only if any tasks are woken up.
1da177e4 3493 */
7ad5b3a5 3494void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3495 int nr_exclusive, void *key)
1da177e4
LT
3496{
3497 unsigned long flags;
3498
3499 spin_lock_irqsave(&q->lock, flags);
3500 __wake_up_common(q, mode, nr_exclusive, 0, key);
3501 spin_unlock_irqrestore(&q->lock, flags);
3502}
1da177e4
LT
3503EXPORT_SYMBOL(__wake_up);
3504
3505/*
3506 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3507 */
63b20011 3508void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
1da177e4 3509{
63b20011 3510 __wake_up_common(q, mode, nr, 0, NULL);
1da177e4 3511}
22c43c81 3512EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 3513
4ede816a
DL
3514void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3515{
3516 __wake_up_common(q, mode, 1, 0, key);
3517}
bf294b41 3518EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 3519
1da177e4 3520/**
4ede816a 3521 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
3522 * @q: the waitqueue
3523 * @mode: which threads
3524 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 3525 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
3526 *
3527 * The sync wakeup differs that the waker knows that it will schedule
3528 * away soon, so while the target thread will be woken up, it will not
3529 * be migrated to another CPU - ie. the two threads are 'synchronized'
3530 * with each other. This can prevent needless bouncing between CPUs.
3531 *
3532 * On UP it can prevent extra preemption.
50fa610a
DH
3533 *
3534 * It may be assumed that this function implies a write memory barrier before
3535 * changing the task state if and only if any tasks are woken up.
1da177e4 3536 */
4ede816a
DL
3537void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3538 int nr_exclusive, void *key)
1da177e4
LT
3539{
3540 unsigned long flags;
7d478721 3541 int wake_flags = WF_SYNC;
1da177e4
LT
3542
3543 if (unlikely(!q))
3544 return;
3545
3546 if (unlikely(!nr_exclusive))
7d478721 3547 wake_flags = 0;
1da177e4
LT
3548
3549 spin_lock_irqsave(&q->lock, flags);
7d478721 3550 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
3551 spin_unlock_irqrestore(&q->lock, flags);
3552}
4ede816a
DL
3553EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3554
3555/*
3556 * __wake_up_sync - see __wake_up_sync_key()
3557 */
3558void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3559{
3560 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3561}
1da177e4
LT
3562EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3563
65eb3dc6
KD
3564/**
3565 * complete: - signals a single thread waiting on this completion
3566 * @x: holds the state of this particular completion
3567 *
3568 * This will wake up a single thread waiting on this completion. Threads will be
3569 * awakened in the same order in which they were queued.
3570 *
3571 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
3572 *
3573 * It may be assumed that this function implies a write memory barrier before
3574 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3575 */
b15136e9 3576void complete(struct completion *x)
1da177e4
LT
3577{
3578 unsigned long flags;
3579
3580 spin_lock_irqsave(&x->wait.lock, flags);
3581 x->done++;
d9514f6c 3582 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
3583 spin_unlock_irqrestore(&x->wait.lock, flags);
3584}
3585EXPORT_SYMBOL(complete);
3586
65eb3dc6
KD
3587/**
3588 * complete_all: - signals all threads waiting on this completion
3589 * @x: holds the state of this particular completion
3590 *
3591 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
3592 *
3593 * It may be assumed that this function implies a write memory barrier before
3594 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3595 */
b15136e9 3596void complete_all(struct completion *x)
1da177e4
LT
3597{
3598 unsigned long flags;
3599
3600 spin_lock_irqsave(&x->wait.lock, flags);
3601 x->done += UINT_MAX/2;
d9514f6c 3602 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
3603 spin_unlock_irqrestore(&x->wait.lock, flags);
3604}
3605EXPORT_SYMBOL(complete_all);
3606
8cbbe86d
AK
3607static inline long __sched
3608do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3609{
1da177e4
LT
3610 if (!x->done) {
3611 DECLARE_WAITQUEUE(wait, current);
3612
a93d2f17 3613 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 3614 do {
94d3d824 3615 if (signal_pending_state(state, current)) {
ea71a546
ON
3616 timeout = -ERESTARTSYS;
3617 break;
8cbbe86d
AK
3618 }
3619 __set_current_state(state);
1da177e4
LT
3620 spin_unlock_irq(&x->wait.lock);
3621 timeout = schedule_timeout(timeout);
3622 spin_lock_irq(&x->wait.lock);
ea71a546 3623 } while (!x->done && timeout);
1da177e4 3624 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
3625 if (!x->done)
3626 return timeout;
1da177e4
LT
3627 }
3628 x->done--;
ea71a546 3629 return timeout ?: 1;
1da177e4 3630}
1da177e4 3631
8cbbe86d
AK
3632static long __sched
3633wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3634{
1da177e4
LT
3635 might_sleep();
3636
3637 spin_lock_irq(&x->wait.lock);
8cbbe86d 3638 timeout = do_wait_for_common(x, timeout, state);
1da177e4 3639 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3640 return timeout;
3641}
1da177e4 3642
65eb3dc6
KD
3643/**
3644 * wait_for_completion: - waits for completion of a task
3645 * @x: holds the state of this particular completion
3646 *
3647 * This waits to be signaled for completion of a specific task. It is NOT
3648 * interruptible and there is no timeout.
3649 *
3650 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3651 * and interrupt capability. Also see complete().
3652 */
b15136e9 3653void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
3654{
3655 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 3656}
8cbbe86d 3657EXPORT_SYMBOL(wait_for_completion);
1da177e4 3658
65eb3dc6
KD
3659/**
3660 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3661 * @x: holds the state of this particular completion
3662 * @timeout: timeout value in jiffies
3663 *
3664 * This waits for either a completion of a specific task to be signaled or for a
3665 * specified timeout to expire. The timeout is in jiffies. It is not
3666 * interruptible.
c6dc7f05
BF
3667 *
3668 * The return value is 0 if timed out, and positive (at least 1, or number of
3669 * jiffies left till timeout) if completed.
65eb3dc6 3670 */
b15136e9 3671unsigned long __sched
8cbbe86d 3672wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 3673{
8cbbe86d 3674 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 3675}
8cbbe86d 3676EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 3677
65eb3dc6
KD
3678/**
3679 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3680 * @x: holds the state of this particular completion
3681 *
3682 * This waits for completion of a specific task to be signaled. It is
3683 * interruptible.
c6dc7f05
BF
3684 *
3685 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 3686 */
8cbbe86d 3687int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 3688{
51e97990
AK
3689 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3690 if (t == -ERESTARTSYS)
3691 return t;
3692 return 0;
0fec171c 3693}
8cbbe86d 3694EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 3695
65eb3dc6
KD
3696/**
3697 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3698 * @x: holds the state of this particular completion
3699 * @timeout: timeout value in jiffies
3700 *
3701 * This waits for either a completion of a specific task to be signaled or for a
3702 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
c6dc7f05
BF
3703 *
3704 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3705 * positive (at least 1, or number of jiffies left till timeout) if completed.
65eb3dc6 3706 */
6bf41237 3707long __sched
8cbbe86d
AK
3708wait_for_completion_interruptible_timeout(struct completion *x,
3709 unsigned long timeout)
0fec171c 3710{
8cbbe86d 3711 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 3712}
8cbbe86d 3713EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 3714
65eb3dc6
KD
3715/**
3716 * wait_for_completion_killable: - waits for completion of a task (killable)
3717 * @x: holds the state of this particular completion
3718 *
3719 * This waits to be signaled for completion of a specific task. It can be
3720 * interrupted by a kill signal.
c6dc7f05
BF
3721 *
3722 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 3723 */
009e577e
MW
3724int __sched wait_for_completion_killable(struct completion *x)
3725{
3726 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3727 if (t == -ERESTARTSYS)
3728 return t;
3729 return 0;
3730}
3731EXPORT_SYMBOL(wait_for_completion_killable);
3732
0aa12fb4
SW
3733/**
3734 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3735 * @x: holds the state of this particular completion
3736 * @timeout: timeout value in jiffies
3737 *
3738 * This waits for either a completion of a specific task to be
3739 * signaled or for a specified timeout to expire. It can be
3740 * interrupted by a kill signal. The timeout is in jiffies.
c6dc7f05
BF
3741 *
3742 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3743 * positive (at least 1, or number of jiffies left till timeout) if completed.
0aa12fb4 3744 */
6bf41237 3745long __sched
0aa12fb4
SW
3746wait_for_completion_killable_timeout(struct completion *x,
3747 unsigned long timeout)
3748{
3749 return wait_for_common(x, timeout, TASK_KILLABLE);
3750}
3751EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3752
be4de352
DC
3753/**
3754 * try_wait_for_completion - try to decrement a completion without blocking
3755 * @x: completion structure
3756 *
3757 * Returns: 0 if a decrement cannot be done without blocking
3758 * 1 if a decrement succeeded.
3759 *
3760 * If a completion is being used as a counting completion,
3761 * attempt to decrement the counter without blocking. This
3762 * enables us to avoid waiting if the resource the completion
3763 * is protecting is not available.
3764 */
3765bool try_wait_for_completion(struct completion *x)
3766{
7539a3b3 3767 unsigned long flags;
be4de352
DC
3768 int ret = 1;
3769
7539a3b3 3770 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3771 if (!x->done)
3772 ret = 0;
3773 else
3774 x->done--;
7539a3b3 3775 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3776 return ret;
3777}
3778EXPORT_SYMBOL(try_wait_for_completion);
3779
3780/**
3781 * completion_done - Test to see if a completion has any waiters
3782 * @x: completion structure
3783 *
3784 * Returns: 0 if there are waiters (wait_for_completion() in progress)
3785 * 1 if there are no waiters.
3786 *
3787 */
3788bool completion_done(struct completion *x)
3789{
7539a3b3 3790 unsigned long flags;
be4de352
DC
3791 int ret = 1;
3792
7539a3b3 3793 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3794 if (!x->done)
3795 ret = 0;
7539a3b3 3796 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3797 return ret;
3798}
3799EXPORT_SYMBOL(completion_done);
3800
8cbbe86d
AK
3801static long __sched
3802sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 3803{
0fec171c
IM
3804 unsigned long flags;
3805 wait_queue_t wait;
3806
3807 init_waitqueue_entry(&wait, current);
1da177e4 3808
8cbbe86d 3809 __set_current_state(state);
1da177e4 3810
8cbbe86d
AK
3811 spin_lock_irqsave(&q->lock, flags);
3812 __add_wait_queue(q, &wait);
3813 spin_unlock(&q->lock);
3814 timeout = schedule_timeout(timeout);
3815 spin_lock_irq(&q->lock);
3816 __remove_wait_queue(q, &wait);
3817 spin_unlock_irqrestore(&q->lock, flags);
3818
3819 return timeout;
3820}
3821
3822void __sched interruptible_sleep_on(wait_queue_head_t *q)
3823{
3824 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3825}
1da177e4
LT
3826EXPORT_SYMBOL(interruptible_sleep_on);
3827
0fec171c 3828long __sched
95cdf3b7 3829interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3830{
8cbbe86d 3831 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 3832}
1da177e4
LT
3833EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3834
0fec171c 3835void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3836{
8cbbe86d 3837 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3838}
1da177e4
LT
3839EXPORT_SYMBOL(sleep_on);
3840
0fec171c 3841long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3842{
8cbbe86d 3843 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 3844}
1da177e4
LT
3845EXPORT_SYMBOL(sleep_on_timeout);
3846
b29739f9
IM
3847#ifdef CONFIG_RT_MUTEXES
3848
3849/*
3850 * rt_mutex_setprio - set the current priority of a task
3851 * @p: task
3852 * @prio: prio value (kernel-internal form)
3853 *
3854 * This function changes the 'effective' priority of a task. It does
3855 * not touch ->normal_prio like __setscheduler().
3856 *
3857 * Used by the rt_mutex code to implement priority inheritance logic.
3858 */
36c8b586 3859void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3860{
83b699ed 3861 int oldprio, on_rq, running;
70b97a7f 3862 struct rq *rq;
83ab0aa0 3863 const struct sched_class *prev_class;
b29739f9
IM
3864
3865 BUG_ON(prio < 0 || prio > MAX_PRIO);
3866
0122ec5b 3867 rq = __task_rq_lock(p);
b29739f9 3868
1c4dd99b
TG
3869 /*
3870 * Idle task boosting is a nono in general. There is one
3871 * exception, when PREEMPT_RT and NOHZ is active:
3872 *
3873 * The idle task calls get_next_timer_interrupt() and holds
3874 * the timer wheel base->lock on the CPU and another CPU wants
3875 * to access the timer (probably to cancel it). We can safely
3876 * ignore the boosting request, as the idle CPU runs this code
3877 * with interrupts disabled and will complete the lock
3878 * protected section without being interrupted. So there is no
3879 * real need to boost.
3880 */
3881 if (unlikely(p == rq->idle)) {
3882 WARN_ON(p != rq->curr);
3883 WARN_ON(p->pi_blocked_on);
3884 goto out_unlock;
3885 }
3886
a8027073 3887 trace_sched_pi_setprio(p, prio);
d5f9f942 3888 oldprio = p->prio;
83ab0aa0 3889 prev_class = p->sched_class;
fd2f4419 3890 on_rq = p->on_rq;
051a1d1a 3891 running = task_current(rq, p);
0e1f3483 3892 if (on_rq)
69be72c1 3893 dequeue_task(rq, p, 0);
0e1f3483
HS
3894 if (running)
3895 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
3896
3897 if (rt_prio(prio))
3898 p->sched_class = &rt_sched_class;
3899 else
3900 p->sched_class = &fair_sched_class;
3901
b29739f9
IM
3902 p->prio = prio;
3903
0e1f3483
HS
3904 if (running)
3905 p->sched_class->set_curr_task(rq);
da7a735e 3906 if (on_rq)
371fd7e7 3907 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 3908
da7a735e 3909 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3910out_unlock:
0122ec5b 3911 __task_rq_unlock(rq);
b29739f9 3912}
b29739f9 3913#endif
36c8b586 3914void set_user_nice(struct task_struct *p, long nice)
1da177e4 3915{
dd41f596 3916 int old_prio, delta, on_rq;
1da177e4 3917 unsigned long flags;
70b97a7f 3918 struct rq *rq;
1da177e4
LT
3919
3920 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3921 return;
3922 /*
3923 * We have to be careful, if called from sys_setpriority(),
3924 * the task might be in the middle of scheduling on another CPU.
3925 */
3926 rq = task_rq_lock(p, &flags);
3927 /*
3928 * The RT priorities are set via sched_setscheduler(), but we still
3929 * allow the 'normal' nice value to be set - but as expected
3930 * it wont have any effect on scheduling until the task is
dd41f596 3931 * SCHED_FIFO/SCHED_RR:
1da177e4 3932 */
e05606d3 3933 if (task_has_rt_policy(p)) {
1da177e4
LT
3934 p->static_prio = NICE_TO_PRIO(nice);
3935 goto out_unlock;
3936 }
fd2f4419 3937 on_rq = p->on_rq;
c09595f6 3938 if (on_rq)
69be72c1 3939 dequeue_task(rq, p, 0);
1da177e4 3940
1da177e4 3941 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3942 set_load_weight(p);
b29739f9
IM
3943 old_prio = p->prio;
3944 p->prio = effective_prio(p);
3945 delta = p->prio - old_prio;
1da177e4 3946
dd41f596 3947 if (on_rq) {
371fd7e7 3948 enqueue_task(rq, p, 0);
1da177e4 3949 /*
d5f9f942
AM
3950 * If the task increased its priority or is running and
3951 * lowered its priority, then reschedule its CPU:
1da177e4 3952 */
d5f9f942 3953 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3954 resched_task(rq->curr);
3955 }
3956out_unlock:
0122ec5b 3957 task_rq_unlock(rq, p, &flags);
1da177e4 3958}
1da177e4
LT
3959EXPORT_SYMBOL(set_user_nice);
3960
e43379f1
MM
3961/*
3962 * can_nice - check if a task can reduce its nice value
3963 * @p: task
3964 * @nice: nice value
3965 */
36c8b586 3966int can_nice(const struct task_struct *p, const int nice)
e43379f1 3967{
024f4747
MM
3968 /* convert nice value [19,-20] to rlimit style value [1,40] */
3969 int nice_rlim = 20 - nice;
48f24c4d 3970
78d7d407 3971 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3972 capable(CAP_SYS_NICE));
3973}
3974
1da177e4
LT
3975#ifdef __ARCH_WANT_SYS_NICE
3976
3977/*
3978 * sys_nice - change the priority of the current process.
3979 * @increment: priority increment
3980 *
3981 * sys_setpriority is a more generic, but much slower function that
3982 * does similar things.
3983 */
5add95d4 3984SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3985{
48f24c4d 3986 long nice, retval;
1da177e4
LT
3987
3988 /*
3989 * Setpriority might change our priority at the same moment.
3990 * We don't have to worry. Conceptually one call occurs first
3991 * and we have a single winner.
3992 */
e43379f1
MM
3993 if (increment < -40)
3994 increment = -40;
1da177e4
LT
3995 if (increment > 40)
3996 increment = 40;
3997
2b8f836f 3998 nice = TASK_NICE(current) + increment;
1da177e4
LT
3999 if (nice < -20)
4000 nice = -20;
4001 if (nice > 19)
4002 nice = 19;
4003
e43379f1
MM
4004 if (increment < 0 && !can_nice(current, nice))
4005 return -EPERM;
4006
1da177e4
LT
4007 retval = security_task_setnice(current, nice);
4008 if (retval)
4009 return retval;
4010
4011 set_user_nice(current, nice);
4012 return 0;
4013}
4014
4015#endif
4016
4017/**
4018 * task_prio - return the priority value of a given task.
4019 * @p: the task in question.
4020 *
4021 * This is the priority value as seen by users in /proc.
4022 * RT tasks are offset by -200. Normal tasks are centered
4023 * around 0, value goes from -16 to +15.
4024 */
36c8b586 4025int task_prio(const struct task_struct *p)
1da177e4
LT
4026{
4027 return p->prio - MAX_RT_PRIO;
4028}
4029
4030/**
4031 * task_nice - return the nice value of a given task.
4032 * @p: the task in question.
4033 */
36c8b586 4034int task_nice(const struct task_struct *p)
1da177e4
LT
4035{
4036 return TASK_NICE(p);
4037}
150d8bed 4038EXPORT_SYMBOL(task_nice);
1da177e4
LT
4039
4040/**
4041 * idle_cpu - is a given cpu idle currently?
4042 * @cpu: the processor in question.
4043 */
4044int idle_cpu(int cpu)
4045{
908a3283
TG
4046 struct rq *rq = cpu_rq(cpu);
4047
4048 if (rq->curr != rq->idle)
4049 return 0;
4050
4051 if (rq->nr_running)
4052 return 0;
4053
4054#ifdef CONFIG_SMP
4055 if (!llist_empty(&rq->wake_list))
4056 return 0;
4057#endif
4058
4059 return 1;
1da177e4
LT
4060}
4061
1da177e4
LT
4062/**
4063 * idle_task - return the idle task for a given cpu.
4064 * @cpu: the processor in question.
4065 */
36c8b586 4066struct task_struct *idle_task(int cpu)
1da177e4
LT
4067{
4068 return cpu_rq(cpu)->idle;
4069}
4070
4071/**
4072 * find_process_by_pid - find a process with a matching PID value.
4073 * @pid: the pid in question.
4074 */
a9957449 4075static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4076{
228ebcbe 4077 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4078}
4079
4080/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4081static void
4082__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4083{
1da177e4
LT
4084 p->policy = policy;
4085 p->rt_priority = prio;
b29739f9
IM
4086 p->normal_prio = normal_prio(p);
4087 /* we are holding p->pi_lock already */
4088 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4089 if (rt_prio(p->prio))
4090 p->sched_class = &rt_sched_class;
4091 else
4092 p->sched_class = &fair_sched_class;
2dd73a4f 4093 set_load_weight(p);
1da177e4
LT
4094}
4095
c69e8d9c
DH
4096/*
4097 * check the target process has a UID that matches the current process's
4098 */
4099static bool check_same_owner(struct task_struct *p)
4100{
4101 const struct cred *cred = current_cred(), *pcred;
4102 bool match;
4103
4104 rcu_read_lock();
4105 pcred = __task_cred(p);
9c806aa0
EB
4106 match = (uid_eq(cred->euid, pcred->euid) ||
4107 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
4108 rcu_read_unlock();
4109 return match;
4110}
4111
961ccddd 4112static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4113 const struct sched_param *param, bool user)
1da177e4 4114{
83b699ed 4115 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4116 unsigned long flags;
83ab0aa0 4117 const struct sched_class *prev_class;
70b97a7f 4118 struct rq *rq;
ca94c442 4119 int reset_on_fork;
1da177e4 4120
66e5393a
SR
4121 /* may grab non-irq protected spin_locks */
4122 BUG_ON(in_interrupt());
1da177e4
LT
4123recheck:
4124 /* double check policy once rq lock held */
ca94c442
LP
4125 if (policy < 0) {
4126 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4127 policy = oldpolicy = p->policy;
ca94c442
LP
4128 } else {
4129 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4130 policy &= ~SCHED_RESET_ON_FORK;
4131
4132 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4133 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4134 policy != SCHED_IDLE)
4135 return -EINVAL;
4136 }
4137
1da177e4
LT
4138 /*
4139 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4140 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4141 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4142 */
4143 if (param->sched_priority < 0 ||
95cdf3b7 4144 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4145 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4146 return -EINVAL;
e05606d3 4147 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4148 return -EINVAL;
4149
37e4ab3f
OC
4150 /*
4151 * Allow unprivileged RT tasks to decrease priority:
4152 */
961ccddd 4153 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4154 if (rt_policy(policy)) {
a44702e8
ON
4155 unsigned long rlim_rtprio =
4156 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4157
4158 /* can't set/change the rt policy */
4159 if (policy != p->policy && !rlim_rtprio)
4160 return -EPERM;
4161
4162 /* can't increase priority */
4163 if (param->sched_priority > p->rt_priority &&
4164 param->sched_priority > rlim_rtprio)
4165 return -EPERM;
4166 }
c02aa73b 4167
dd41f596 4168 /*
c02aa73b
DH
4169 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4170 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4171 */
c02aa73b
DH
4172 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4173 if (!can_nice(p, TASK_NICE(p)))
4174 return -EPERM;
4175 }
5fe1d75f 4176
37e4ab3f 4177 /* can't change other user's priorities */
c69e8d9c 4178 if (!check_same_owner(p))
37e4ab3f 4179 return -EPERM;
ca94c442
LP
4180
4181 /* Normal users shall not reset the sched_reset_on_fork flag */
4182 if (p->sched_reset_on_fork && !reset_on_fork)
4183 return -EPERM;
37e4ab3f 4184 }
1da177e4 4185
725aad24 4186 if (user) {
b0ae1981 4187 retval = security_task_setscheduler(p);
725aad24
JF
4188 if (retval)
4189 return retval;
4190 }
4191
b29739f9
IM
4192 /*
4193 * make sure no PI-waiters arrive (or leave) while we are
4194 * changing the priority of the task:
0122ec5b 4195 *
25985edc 4196 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4197 * runqueue lock must be held.
4198 */
0122ec5b 4199 rq = task_rq_lock(p, &flags);
dc61b1d6 4200
34f971f6
PZ
4201 /*
4202 * Changing the policy of the stop threads its a very bad idea
4203 */
4204 if (p == rq->stop) {
0122ec5b 4205 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
4206 return -EINVAL;
4207 }
4208
a51e9198
DF
4209 /*
4210 * If not changing anything there's no need to proceed further:
4211 */
4212 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
4213 param->sched_priority == p->rt_priority))) {
4214
4215 __task_rq_unlock(rq);
4216 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4217 return 0;
4218 }
4219
dc61b1d6
PZ
4220#ifdef CONFIG_RT_GROUP_SCHED
4221 if (user) {
4222 /*
4223 * Do not allow realtime tasks into groups that have no runtime
4224 * assigned.
4225 */
4226 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4227 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4228 !task_group_is_autogroup(task_group(p))) {
0122ec5b 4229 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
4230 return -EPERM;
4231 }
4232 }
4233#endif
4234
1da177e4
LT
4235 /* recheck policy now with rq lock held */
4236 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4237 policy = oldpolicy = -1;
0122ec5b 4238 task_rq_unlock(rq, p, &flags);
1da177e4
LT
4239 goto recheck;
4240 }
fd2f4419 4241 on_rq = p->on_rq;
051a1d1a 4242 running = task_current(rq, p);
0e1f3483 4243 if (on_rq)
4ca9b72b 4244 dequeue_task(rq, p, 0);
0e1f3483
HS
4245 if (running)
4246 p->sched_class->put_prev_task(rq, p);
f6b53205 4247
ca94c442
LP
4248 p->sched_reset_on_fork = reset_on_fork;
4249
1da177e4 4250 oldprio = p->prio;
83ab0aa0 4251 prev_class = p->sched_class;
dd41f596 4252 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4253
0e1f3483
HS
4254 if (running)
4255 p->sched_class->set_curr_task(rq);
da7a735e 4256 if (on_rq)
4ca9b72b 4257 enqueue_task(rq, p, 0);
cb469845 4258
da7a735e 4259 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 4260 task_rq_unlock(rq, p, &flags);
b29739f9 4261
95e02ca9
TG
4262 rt_mutex_adjust_pi(p);
4263
1da177e4
LT
4264 return 0;
4265}
961ccddd
RR
4266
4267/**
4268 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4269 * @p: the task in question.
4270 * @policy: new policy.
4271 * @param: structure containing the new RT priority.
4272 *
4273 * NOTE that the task may be already dead.
4274 */
4275int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4276 const struct sched_param *param)
961ccddd
RR
4277{
4278 return __sched_setscheduler(p, policy, param, true);
4279}
1da177e4
LT
4280EXPORT_SYMBOL_GPL(sched_setscheduler);
4281
961ccddd
RR
4282/**
4283 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4284 * @p: the task in question.
4285 * @policy: new policy.
4286 * @param: structure containing the new RT priority.
4287 *
4288 * Just like sched_setscheduler, only don't bother checking if the
4289 * current context has permission. For example, this is needed in
4290 * stop_machine(): we create temporary high priority worker threads,
4291 * but our caller might not have that capability.
4292 */
4293int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4294 const struct sched_param *param)
961ccddd
RR
4295{
4296 return __sched_setscheduler(p, policy, param, false);
4297}
4298
95cdf3b7
IM
4299static int
4300do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4301{
1da177e4
LT
4302 struct sched_param lparam;
4303 struct task_struct *p;
36c8b586 4304 int retval;
1da177e4
LT
4305
4306 if (!param || pid < 0)
4307 return -EINVAL;
4308 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4309 return -EFAULT;
5fe1d75f
ON
4310
4311 rcu_read_lock();
4312 retval = -ESRCH;
1da177e4 4313 p = find_process_by_pid(pid);
5fe1d75f
ON
4314 if (p != NULL)
4315 retval = sched_setscheduler(p, policy, &lparam);
4316 rcu_read_unlock();
36c8b586 4317
1da177e4
LT
4318 return retval;
4319}
4320
4321/**
4322 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4323 * @pid: the pid in question.
4324 * @policy: new policy.
4325 * @param: structure containing the new RT priority.
4326 */
5add95d4
HC
4327SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4328 struct sched_param __user *, param)
1da177e4 4329{
c21761f1
JB
4330 /* negative values for policy are not valid */
4331 if (policy < 0)
4332 return -EINVAL;
4333
1da177e4
LT
4334 return do_sched_setscheduler(pid, policy, param);
4335}
4336
4337/**
4338 * sys_sched_setparam - set/change the RT priority of a thread
4339 * @pid: the pid in question.
4340 * @param: structure containing the new RT priority.
4341 */
5add95d4 4342SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4343{
4344 return do_sched_setscheduler(pid, -1, param);
4345}
4346
4347/**
4348 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4349 * @pid: the pid in question.
4350 */
5add95d4 4351SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4352{
36c8b586 4353 struct task_struct *p;
3a5c359a 4354 int retval;
1da177e4
LT
4355
4356 if (pid < 0)
3a5c359a 4357 return -EINVAL;
1da177e4
LT
4358
4359 retval = -ESRCH;
5fe85be0 4360 rcu_read_lock();
1da177e4
LT
4361 p = find_process_by_pid(pid);
4362 if (p) {
4363 retval = security_task_getscheduler(p);
4364 if (!retval)
ca94c442
LP
4365 retval = p->policy
4366 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4367 }
5fe85be0 4368 rcu_read_unlock();
1da177e4
LT
4369 return retval;
4370}
4371
4372/**
ca94c442 4373 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4374 * @pid: the pid in question.
4375 * @param: structure containing the RT priority.
4376 */
5add95d4 4377SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4378{
4379 struct sched_param lp;
36c8b586 4380 struct task_struct *p;
3a5c359a 4381 int retval;
1da177e4
LT
4382
4383 if (!param || pid < 0)
3a5c359a 4384 return -EINVAL;
1da177e4 4385
5fe85be0 4386 rcu_read_lock();
1da177e4
LT
4387 p = find_process_by_pid(pid);
4388 retval = -ESRCH;
4389 if (!p)
4390 goto out_unlock;
4391
4392 retval = security_task_getscheduler(p);
4393 if (retval)
4394 goto out_unlock;
4395
4396 lp.sched_priority = p->rt_priority;
5fe85be0 4397 rcu_read_unlock();
1da177e4
LT
4398
4399 /*
4400 * This one might sleep, we cannot do it with a spinlock held ...
4401 */
4402 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4403
1da177e4
LT
4404 return retval;
4405
4406out_unlock:
5fe85be0 4407 rcu_read_unlock();
1da177e4
LT
4408 return retval;
4409}
4410
96f874e2 4411long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4412{
5a16f3d3 4413 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4414 struct task_struct *p;
4415 int retval;
1da177e4 4416
95402b38 4417 get_online_cpus();
23f5d142 4418 rcu_read_lock();
1da177e4
LT
4419
4420 p = find_process_by_pid(pid);
4421 if (!p) {
23f5d142 4422 rcu_read_unlock();
95402b38 4423 put_online_cpus();
1da177e4
LT
4424 return -ESRCH;
4425 }
4426
23f5d142 4427 /* Prevent p going away */
1da177e4 4428 get_task_struct(p);
23f5d142 4429 rcu_read_unlock();
1da177e4 4430
5a16f3d3
RR
4431 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4432 retval = -ENOMEM;
4433 goto out_put_task;
4434 }
4435 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4436 retval = -ENOMEM;
4437 goto out_free_cpus_allowed;
4438 }
1da177e4 4439 retval = -EPERM;
f1c84dae 4440 if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
1da177e4
LT
4441 goto out_unlock;
4442
b0ae1981 4443 retval = security_task_setscheduler(p);
e7834f8f
DQ
4444 if (retval)
4445 goto out_unlock;
4446
5a16f3d3
RR
4447 cpuset_cpus_allowed(p, cpus_allowed);
4448 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 4449again:
5a16f3d3 4450 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4451
8707d8b8 4452 if (!retval) {
5a16f3d3
RR
4453 cpuset_cpus_allowed(p, cpus_allowed);
4454 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4455 /*
4456 * We must have raced with a concurrent cpuset
4457 * update. Just reset the cpus_allowed to the
4458 * cpuset's cpus_allowed
4459 */
5a16f3d3 4460 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4461 goto again;
4462 }
4463 }
1da177e4 4464out_unlock:
5a16f3d3
RR
4465 free_cpumask_var(new_mask);
4466out_free_cpus_allowed:
4467 free_cpumask_var(cpus_allowed);
4468out_put_task:
1da177e4 4469 put_task_struct(p);
95402b38 4470 put_online_cpus();
1da177e4
LT
4471 return retval;
4472}
4473
4474static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4475 struct cpumask *new_mask)
1da177e4 4476{
96f874e2
RR
4477 if (len < cpumask_size())
4478 cpumask_clear(new_mask);
4479 else if (len > cpumask_size())
4480 len = cpumask_size();
4481
1da177e4
LT
4482 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4483}
4484
4485/**
4486 * sys_sched_setaffinity - set the cpu affinity of a process
4487 * @pid: pid of the process
4488 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4489 * @user_mask_ptr: user-space pointer to the new cpu mask
4490 */
5add95d4
HC
4491SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4492 unsigned long __user *, user_mask_ptr)
1da177e4 4493{
5a16f3d3 4494 cpumask_var_t new_mask;
1da177e4
LT
4495 int retval;
4496
5a16f3d3
RR
4497 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4498 return -ENOMEM;
1da177e4 4499
5a16f3d3
RR
4500 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4501 if (retval == 0)
4502 retval = sched_setaffinity(pid, new_mask);
4503 free_cpumask_var(new_mask);
4504 return retval;
1da177e4
LT
4505}
4506
96f874e2 4507long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4508{
36c8b586 4509 struct task_struct *p;
31605683 4510 unsigned long flags;
1da177e4 4511 int retval;
1da177e4 4512
95402b38 4513 get_online_cpus();
23f5d142 4514 rcu_read_lock();
1da177e4
LT
4515
4516 retval = -ESRCH;
4517 p = find_process_by_pid(pid);
4518 if (!p)
4519 goto out_unlock;
4520
e7834f8f
DQ
4521 retval = security_task_getscheduler(p);
4522 if (retval)
4523 goto out_unlock;
4524
013fdb80 4525 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 4526 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 4527 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4528
4529out_unlock:
23f5d142 4530 rcu_read_unlock();
95402b38 4531 put_online_cpus();
1da177e4 4532
9531b62f 4533 return retval;
1da177e4
LT
4534}
4535
4536/**
4537 * sys_sched_getaffinity - get the cpu affinity of a process
4538 * @pid: pid of the process
4539 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4540 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4541 */
5add95d4
HC
4542SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4543 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4544{
4545 int ret;
f17c8607 4546 cpumask_var_t mask;
1da177e4 4547
84fba5ec 4548 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4549 return -EINVAL;
4550 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4551 return -EINVAL;
4552
f17c8607
RR
4553 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4554 return -ENOMEM;
1da177e4 4555
f17c8607
RR
4556 ret = sched_getaffinity(pid, mask);
4557 if (ret == 0) {
8bc037fb 4558 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4559
4560 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4561 ret = -EFAULT;
4562 else
cd3d8031 4563 ret = retlen;
f17c8607
RR
4564 }
4565 free_cpumask_var(mask);
1da177e4 4566
f17c8607 4567 return ret;
1da177e4
LT
4568}
4569
4570/**
4571 * sys_sched_yield - yield the current processor to other threads.
4572 *
dd41f596
IM
4573 * This function yields the current CPU to other tasks. If there are no
4574 * other threads running on this CPU then this function will return.
1da177e4 4575 */
5add95d4 4576SYSCALL_DEFINE0(sched_yield)
1da177e4 4577{
70b97a7f 4578 struct rq *rq = this_rq_lock();
1da177e4 4579
2d72376b 4580 schedstat_inc(rq, yld_count);
4530d7ab 4581 current->sched_class->yield_task(rq);
1da177e4
LT
4582
4583 /*
4584 * Since we are going to call schedule() anyway, there's
4585 * no need to preempt or enable interrupts:
4586 */
4587 __release(rq->lock);
8a25d5de 4588 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4589 do_raw_spin_unlock(&rq->lock);
ba74c144 4590 sched_preempt_enable_no_resched();
1da177e4
LT
4591
4592 schedule();
4593
4594 return 0;
4595}
4596
d86ee480
PZ
4597static inline int should_resched(void)
4598{
4599 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4600}
4601
e7b38404 4602static void __cond_resched(void)
1da177e4 4603{
e7aaaa69 4604 add_preempt_count(PREEMPT_ACTIVE);
c259e01a 4605 __schedule();
e7aaaa69 4606 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
4607}
4608
02b67cc3 4609int __sched _cond_resched(void)
1da177e4 4610{
d86ee480 4611 if (should_resched()) {
1da177e4
LT
4612 __cond_resched();
4613 return 1;
4614 }
4615 return 0;
4616}
02b67cc3 4617EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4618
4619/*
613afbf8 4620 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4621 * call schedule, and on return reacquire the lock.
4622 *
41a2d6cf 4623 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4624 * operations here to prevent schedule() from being called twice (once via
4625 * spin_unlock(), once by hand).
4626 */
613afbf8 4627int __cond_resched_lock(spinlock_t *lock)
1da177e4 4628{
d86ee480 4629 int resched = should_resched();
6df3cecb
JK
4630 int ret = 0;
4631
f607c668
PZ
4632 lockdep_assert_held(lock);
4633
95c354fe 4634 if (spin_needbreak(lock) || resched) {
1da177e4 4635 spin_unlock(lock);
d86ee480 4636 if (resched)
95c354fe
NP
4637 __cond_resched();
4638 else
4639 cpu_relax();
6df3cecb 4640 ret = 1;
1da177e4 4641 spin_lock(lock);
1da177e4 4642 }
6df3cecb 4643 return ret;
1da177e4 4644}
613afbf8 4645EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4646
613afbf8 4647int __sched __cond_resched_softirq(void)
1da177e4
LT
4648{
4649 BUG_ON(!in_softirq());
4650
d86ee480 4651 if (should_resched()) {
98d82567 4652 local_bh_enable();
1da177e4
LT
4653 __cond_resched();
4654 local_bh_disable();
4655 return 1;
4656 }
4657 return 0;
4658}
613afbf8 4659EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4660
1da177e4
LT
4661/**
4662 * yield - yield the current processor to other threads.
4663 *
8e3fabfd
PZ
4664 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4665 *
4666 * The scheduler is at all times free to pick the calling task as the most
4667 * eligible task to run, if removing the yield() call from your code breaks
4668 * it, its already broken.
4669 *
4670 * Typical broken usage is:
4671 *
4672 * while (!event)
4673 * yield();
4674 *
4675 * where one assumes that yield() will let 'the other' process run that will
4676 * make event true. If the current task is a SCHED_FIFO task that will never
4677 * happen. Never use yield() as a progress guarantee!!
4678 *
4679 * If you want to use yield() to wait for something, use wait_event().
4680 * If you want to use yield() to be 'nice' for others, use cond_resched().
4681 * If you still want to use yield(), do not!
1da177e4
LT
4682 */
4683void __sched yield(void)
4684{
4685 set_current_state(TASK_RUNNING);
4686 sys_sched_yield();
4687}
1da177e4
LT
4688EXPORT_SYMBOL(yield);
4689
d95f4122
MG
4690/**
4691 * yield_to - yield the current processor to another thread in
4692 * your thread group, or accelerate that thread toward the
4693 * processor it's on.
16addf95
RD
4694 * @p: target task
4695 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4696 *
4697 * It's the caller's job to ensure that the target task struct
4698 * can't go away on us before we can do any checks.
4699 *
4700 * Returns true if we indeed boosted the target task.
4701 */
4702bool __sched yield_to(struct task_struct *p, bool preempt)
4703{
4704 struct task_struct *curr = current;
4705 struct rq *rq, *p_rq;
4706 unsigned long flags;
4707 bool yielded = 0;
4708
4709 local_irq_save(flags);
4710 rq = this_rq();
4711
4712again:
4713 p_rq = task_rq(p);
4714 double_rq_lock(rq, p_rq);
4715 while (task_rq(p) != p_rq) {
4716 double_rq_unlock(rq, p_rq);
4717 goto again;
4718 }
4719
4720 if (!curr->sched_class->yield_to_task)
4721 goto out;
4722
4723 if (curr->sched_class != p->sched_class)
4724 goto out;
4725
4726 if (task_running(p_rq, p) || p->state)
4727 goto out;
4728
4729 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4730 if (yielded) {
d95f4122 4731 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4732 /*
4733 * Make p's CPU reschedule; pick_next_entity takes care of
4734 * fairness.
4735 */
4736 if (preempt && rq != p_rq)
4737 resched_task(p_rq->curr);
916671c0
MG
4738 } else {
4739 /*
4740 * We might have set it in task_yield_fair(), but are
4741 * not going to schedule(), so don't want to skip
4742 * the next update.
4743 */
4744 rq->skip_clock_update = 0;
6d1cafd8 4745 }
d95f4122
MG
4746
4747out:
4748 double_rq_unlock(rq, p_rq);
4749 local_irq_restore(flags);
4750
4751 if (yielded)
4752 schedule();
4753
4754 return yielded;
4755}
4756EXPORT_SYMBOL_GPL(yield_to);
4757
1da177e4 4758/*
41a2d6cf 4759 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4760 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4761 */
4762void __sched io_schedule(void)
4763{
54d35f29 4764 struct rq *rq = raw_rq();
1da177e4 4765
0ff92245 4766 delayacct_blkio_start();
1da177e4 4767 atomic_inc(&rq->nr_iowait);
73c10101 4768 blk_flush_plug(current);
8f0dfc34 4769 current->in_iowait = 1;
1da177e4 4770 schedule();
8f0dfc34 4771 current->in_iowait = 0;
1da177e4 4772 atomic_dec(&rq->nr_iowait);
0ff92245 4773 delayacct_blkio_end();
1da177e4 4774}
1da177e4
LT
4775EXPORT_SYMBOL(io_schedule);
4776
4777long __sched io_schedule_timeout(long timeout)
4778{
54d35f29 4779 struct rq *rq = raw_rq();
1da177e4
LT
4780 long ret;
4781
0ff92245 4782 delayacct_blkio_start();
1da177e4 4783 atomic_inc(&rq->nr_iowait);
73c10101 4784 blk_flush_plug(current);
8f0dfc34 4785 current->in_iowait = 1;
1da177e4 4786 ret = schedule_timeout(timeout);
8f0dfc34 4787 current->in_iowait = 0;
1da177e4 4788 atomic_dec(&rq->nr_iowait);
0ff92245 4789 delayacct_blkio_end();
1da177e4
LT
4790 return ret;
4791}
4792
4793/**
4794 * sys_sched_get_priority_max - return maximum RT priority.
4795 * @policy: scheduling class.
4796 *
4797 * this syscall returns the maximum rt_priority that can be used
4798 * by a given scheduling class.
4799 */
5add95d4 4800SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4801{
4802 int ret = -EINVAL;
4803
4804 switch (policy) {
4805 case SCHED_FIFO:
4806 case SCHED_RR:
4807 ret = MAX_USER_RT_PRIO-1;
4808 break;
4809 case SCHED_NORMAL:
b0a9499c 4810 case SCHED_BATCH:
dd41f596 4811 case SCHED_IDLE:
1da177e4
LT
4812 ret = 0;
4813 break;
4814 }
4815 return ret;
4816}
4817
4818/**
4819 * sys_sched_get_priority_min - return minimum RT priority.
4820 * @policy: scheduling class.
4821 *
4822 * this syscall returns the minimum rt_priority that can be used
4823 * by a given scheduling class.
4824 */
5add95d4 4825SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4826{
4827 int ret = -EINVAL;
4828
4829 switch (policy) {
4830 case SCHED_FIFO:
4831 case SCHED_RR:
4832 ret = 1;
4833 break;
4834 case SCHED_NORMAL:
b0a9499c 4835 case SCHED_BATCH:
dd41f596 4836 case SCHED_IDLE:
1da177e4
LT
4837 ret = 0;
4838 }
4839 return ret;
4840}
4841
4842/**
4843 * sys_sched_rr_get_interval - return the default timeslice of a process.
4844 * @pid: pid of the process.
4845 * @interval: userspace pointer to the timeslice value.
4846 *
4847 * this syscall writes the default timeslice value of a given process
4848 * into the user-space timespec buffer. A value of '0' means infinity.
4849 */
17da2bd9 4850SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4851 struct timespec __user *, interval)
1da177e4 4852{
36c8b586 4853 struct task_struct *p;
a4ec24b4 4854 unsigned int time_slice;
dba091b9
TG
4855 unsigned long flags;
4856 struct rq *rq;
3a5c359a 4857 int retval;
1da177e4 4858 struct timespec t;
1da177e4
LT
4859
4860 if (pid < 0)
3a5c359a 4861 return -EINVAL;
1da177e4
LT
4862
4863 retval = -ESRCH;
1a551ae7 4864 rcu_read_lock();
1da177e4
LT
4865 p = find_process_by_pid(pid);
4866 if (!p)
4867 goto out_unlock;
4868
4869 retval = security_task_getscheduler(p);
4870 if (retval)
4871 goto out_unlock;
4872
dba091b9
TG
4873 rq = task_rq_lock(p, &flags);
4874 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4875 task_rq_unlock(rq, p, &flags);
a4ec24b4 4876
1a551ae7 4877 rcu_read_unlock();
a4ec24b4 4878 jiffies_to_timespec(time_slice, &t);
1da177e4 4879 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4880 return retval;
3a5c359a 4881
1da177e4 4882out_unlock:
1a551ae7 4883 rcu_read_unlock();
1da177e4
LT
4884 return retval;
4885}
4886
7c731e0a 4887static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4888
82a1fcb9 4889void sched_show_task(struct task_struct *p)
1da177e4 4890{
1da177e4 4891 unsigned long free = 0;
36c8b586 4892 unsigned state;
1da177e4 4893
1da177e4 4894 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4895 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4896 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4897#if BITS_PER_LONG == 32
1da177e4 4898 if (state == TASK_RUNNING)
3df0fc5b 4899 printk(KERN_CONT " running ");
1da177e4 4900 else
3df0fc5b 4901 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4902#else
4903 if (state == TASK_RUNNING)
3df0fc5b 4904 printk(KERN_CONT " running task ");
1da177e4 4905 else
3df0fc5b 4906 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4907#endif
4908#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4909 free = stack_not_used(p);
1da177e4 4910#endif
3df0fc5b 4911 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
07cde260 4912 task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
aa47b7e0 4913 (unsigned long)task_thread_info(p)->flags);
1da177e4 4914
5fb5e6de 4915 show_stack(p, NULL);
1da177e4
LT
4916}
4917
e59e2ae2 4918void show_state_filter(unsigned long state_filter)
1da177e4 4919{
36c8b586 4920 struct task_struct *g, *p;
1da177e4 4921
4bd77321 4922#if BITS_PER_LONG == 32
3df0fc5b
PZ
4923 printk(KERN_INFO
4924 " task PC stack pid father\n");
1da177e4 4925#else
3df0fc5b
PZ
4926 printk(KERN_INFO
4927 " task PC stack pid father\n");
1da177e4 4928#endif
510f5acc 4929 rcu_read_lock();
1da177e4
LT
4930 do_each_thread(g, p) {
4931 /*
4932 * reset the NMI-timeout, listing all files on a slow
25985edc 4933 * console might take a lot of time:
1da177e4
LT
4934 */
4935 touch_nmi_watchdog();
39bc89fd 4936 if (!state_filter || (p->state & state_filter))
82a1fcb9 4937 sched_show_task(p);
1da177e4
LT
4938 } while_each_thread(g, p);
4939
04c9167f
JF
4940 touch_all_softlockup_watchdogs();
4941
dd41f596
IM
4942#ifdef CONFIG_SCHED_DEBUG
4943 sysrq_sched_debug_show();
4944#endif
510f5acc 4945 rcu_read_unlock();
e59e2ae2
IM
4946 /*
4947 * Only show locks if all tasks are dumped:
4948 */
93335a21 4949 if (!state_filter)
e59e2ae2 4950 debug_show_all_locks();
1da177e4
LT
4951}
4952
1df21055
IM
4953void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4954{
dd41f596 4955 idle->sched_class = &idle_sched_class;
1df21055
IM
4956}
4957
f340c0d1
IM
4958/**
4959 * init_idle - set up an idle thread for a given CPU
4960 * @idle: task in question
4961 * @cpu: cpu the idle task belongs to
4962 *
4963 * NOTE: this function does not set the idle thread's NEED_RESCHED
4964 * flag, to make booting more robust.
4965 */
5c1e1767 4966void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4967{
70b97a7f 4968 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4969 unsigned long flags;
4970
05fa785c 4971 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4972
dd41f596 4973 __sched_fork(idle);
06b83b5f 4974 idle->state = TASK_RUNNING;
dd41f596
IM
4975 idle->se.exec_start = sched_clock();
4976
1e1b6c51 4977 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4978 /*
4979 * We're having a chicken and egg problem, even though we are
4980 * holding rq->lock, the cpu isn't yet set to this cpu so the
4981 * lockdep check in task_group() will fail.
4982 *
4983 * Similar case to sched_fork(). / Alternatively we could
4984 * use task_rq_lock() here and obtain the other rq->lock.
4985 *
4986 * Silence PROVE_RCU
4987 */
4988 rcu_read_lock();
dd41f596 4989 __set_task_cpu(idle, cpu);
6506cf6c 4990 rcu_read_unlock();
1da177e4 4991
1da177e4 4992 rq->curr = rq->idle = idle;
3ca7a440
PZ
4993#if defined(CONFIG_SMP)
4994 idle->on_cpu = 1;
4866cde0 4995#endif
05fa785c 4996 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4997
4998 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 4999 task_thread_info(idle)->preempt_count = 0;
55cd5340 5000
dd41f596
IM
5001 /*
5002 * The idle tasks have their own, simple scheduling class:
5003 */
5004 idle->sched_class = &idle_sched_class;
868baf07 5005 ftrace_graph_init_idle_task(idle, cpu);
f1c6f1a7
CE
5006#if defined(CONFIG_SMP)
5007 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5008#endif
19978ca6
IM
5009}
5010
1da177e4 5011#ifdef CONFIG_SMP
1e1b6c51
KM
5012void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
5013{
5014 if (p->sched_class && p->sched_class->set_cpus_allowed)
5015 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
5016
5017 cpumask_copy(&p->cpus_allowed, new_mask);
5018 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
5019}
5020
1da177e4
LT
5021/*
5022 * This is how migration works:
5023 *
969c7921
TH
5024 * 1) we invoke migration_cpu_stop() on the target CPU using
5025 * stop_one_cpu().
5026 * 2) stopper starts to run (implicitly forcing the migrated thread
5027 * off the CPU)
5028 * 3) it checks whether the migrated task is still in the wrong runqueue.
5029 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 5030 * it and puts it into the right queue.
969c7921
TH
5031 * 5) stopper completes and stop_one_cpu() returns and the migration
5032 * is done.
1da177e4
LT
5033 */
5034
5035/*
5036 * Change a given task's CPU affinity. Migrate the thread to a
5037 * proper CPU and schedule it away if the CPU it's executing on
5038 * is removed from the allowed bitmask.
5039 *
5040 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5041 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5042 * call is not atomic; no spinlocks may be held.
5043 */
96f874e2 5044int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
5045{
5046 unsigned long flags;
70b97a7f 5047 struct rq *rq;
969c7921 5048 unsigned int dest_cpu;
48f24c4d 5049 int ret = 0;
1da177e4
LT
5050
5051 rq = task_rq_lock(p, &flags);
e2912009 5052
db44fc01
YZ
5053 if (cpumask_equal(&p->cpus_allowed, new_mask))
5054 goto out;
5055
6ad4c188 5056 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5057 ret = -EINVAL;
5058 goto out;
5059 }
5060
db44fc01 5061 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
9985b0ba
DR
5062 ret = -EINVAL;
5063 goto out;
5064 }
5065
1e1b6c51 5066 do_set_cpus_allowed(p, new_mask);
73fe6aae 5067
1da177e4 5068 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5069 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5070 goto out;
5071
969c7921 5072 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 5073 if (p->on_rq) {
969c7921 5074 struct migration_arg arg = { p, dest_cpu };
1da177e4 5075 /* Need help from migration thread: drop lock and wait. */
0122ec5b 5076 task_rq_unlock(rq, p, &flags);
969c7921 5077 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
5078 tlb_migrate_finish(p->mm);
5079 return 0;
5080 }
5081out:
0122ec5b 5082 task_rq_unlock(rq, p, &flags);
48f24c4d 5083
1da177e4
LT
5084 return ret;
5085}
cd8ba7cd 5086EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5087
5088/*
41a2d6cf 5089 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5090 * this because either it can't run here any more (set_cpus_allowed()
5091 * away from this CPU, or CPU going down), or because we're
5092 * attempting to rebalance this task on exec (sched_exec).
5093 *
5094 * So we race with normal scheduler movements, but that's OK, as long
5095 * as the task is no longer on this CPU.
efc30814
KK
5096 *
5097 * Returns non-zero if task was successfully migrated.
1da177e4 5098 */
efc30814 5099static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5100{
70b97a7f 5101 struct rq *rq_dest, *rq_src;
e2912009 5102 int ret = 0;
1da177e4 5103
e761b772 5104 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5105 return ret;
1da177e4
LT
5106
5107 rq_src = cpu_rq(src_cpu);
5108 rq_dest = cpu_rq(dest_cpu);
5109
0122ec5b 5110 raw_spin_lock(&p->pi_lock);
1da177e4
LT
5111 double_rq_lock(rq_src, rq_dest);
5112 /* Already moved. */
5113 if (task_cpu(p) != src_cpu)
b1e38734 5114 goto done;
1da177e4 5115 /* Affinity changed (again). */
fa17b507 5116 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 5117 goto fail;
1da177e4 5118
e2912009
PZ
5119 /*
5120 * If we're not on a rq, the next wake-up will ensure we're
5121 * placed properly.
5122 */
fd2f4419 5123 if (p->on_rq) {
4ca9b72b 5124 dequeue_task(rq_src, p, 0);
e2912009 5125 set_task_cpu(p, dest_cpu);
4ca9b72b 5126 enqueue_task(rq_dest, p, 0);
15afe09b 5127 check_preempt_curr(rq_dest, p, 0);
1da177e4 5128 }
b1e38734 5129done:
efc30814 5130 ret = 1;
b1e38734 5131fail:
1da177e4 5132 double_rq_unlock(rq_src, rq_dest);
0122ec5b 5133 raw_spin_unlock(&p->pi_lock);
efc30814 5134 return ret;
1da177e4
LT
5135}
5136
5137/*
969c7921
TH
5138 * migration_cpu_stop - this will be executed by a highprio stopper thread
5139 * and performs thread migration by bumping thread off CPU then
5140 * 'pushing' onto another runqueue.
1da177e4 5141 */
969c7921 5142static int migration_cpu_stop(void *data)
1da177e4 5143{
969c7921 5144 struct migration_arg *arg = data;
f7b4cddc 5145
969c7921
TH
5146 /*
5147 * The original target cpu might have gone down and we might
5148 * be on another cpu but it doesn't matter.
5149 */
f7b4cddc 5150 local_irq_disable();
969c7921 5151 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 5152 local_irq_enable();
1da177e4 5153 return 0;
f7b4cddc
ON
5154}
5155
1da177e4 5156#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 5157
054b9108 5158/*
48c5ccae
PZ
5159 * Ensures that the idle task is using init_mm right before its cpu goes
5160 * offline.
054b9108 5161 */
48c5ccae 5162void idle_task_exit(void)
1da177e4 5163{
48c5ccae 5164 struct mm_struct *mm = current->active_mm;
e76bd8d9 5165
48c5ccae 5166 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5167
48c5ccae
PZ
5168 if (mm != &init_mm)
5169 switch_mm(mm, &init_mm, current);
5170 mmdrop(mm);
1da177e4
LT
5171}
5172
5173/*
5174 * While a dead CPU has no uninterruptible tasks queued at this point,
5175 * it might still have a nonzero ->nr_uninterruptible counter, because
5176 * for performance reasons the counter is not stricly tracking tasks to
5177 * their home CPUs. So we just add the counter to another CPU's counter,
5178 * to keep the global sum constant after CPU-down:
5179 */
70b97a7f 5180static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5181{
6ad4c188 5182 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4 5183
1da177e4
LT
5184 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5185 rq_src->nr_uninterruptible = 0;
1da177e4
LT
5186}
5187
dd41f596 5188/*
48c5ccae 5189 * remove the tasks which were accounted by rq from calc_load_tasks.
1da177e4 5190 */
48c5ccae 5191static void calc_global_load_remove(struct rq *rq)
1da177e4 5192{
48c5ccae
PZ
5193 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5194 rq->calc_load_active = 0;
1da177e4
LT
5195}
5196
48f24c4d 5197/*
48c5ccae
PZ
5198 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5199 * try_to_wake_up()->select_task_rq().
5200 *
5201 * Called with rq->lock held even though we'er in stop_machine() and
5202 * there's no concurrency possible, we hold the required locks anyway
5203 * because of lock validation efforts.
1da177e4 5204 */
48c5ccae 5205static void migrate_tasks(unsigned int dead_cpu)
1da177e4 5206{
70b97a7f 5207 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
5208 struct task_struct *next, *stop = rq->stop;
5209 int dest_cpu;
1da177e4
LT
5210
5211 /*
48c5ccae
PZ
5212 * Fudge the rq selection such that the below task selection loop
5213 * doesn't get stuck on the currently eligible stop task.
5214 *
5215 * We're currently inside stop_machine() and the rq is either stuck
5216 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5217 * either way we should never end up calling schedule() until we're
5218 * done here.
1da177e4 5219 */
48c5ccae 5220 rq->stop = NULL;
48f24c4d 5221
8cb120d3
PT
5222 /* Ensure any throttled groups are reachable by pick_next_task */
5223 unthrottle_offline_cfs_rqs(rq);
5224
dd41f596 5225 for ( ; ; ) {
48c5ccae
PZ
5226 /*
5227 * There's this thread running, bail when that's the only
5228 * remaining thread.
5229 */
5230 if (rq->nr_running == 1)
dd41f596 5231 break;
48c5ccae 5232
b67802ea 5233 next = pick_next_task(rq);
48c5ccae 5234 BUG_ON(!next);
79c53799 5235 next->sched_class->put_prev_task(rq, next);
e692ab53 5236
48c5ccae
PZ
5237 /* Find suitable destination for @next, with force if needed. */
5238 dest_cpu = select_fallback_rq(dead_cpu, next);
5239 raw_spin_unlock(&rq->lock);
5240
5241 __migrate_task(next, dead_cpu, dest_cpu);
5242
5243 raw_spin_lock(&rq->lock);
1da177e4 5244 }
dce48a84 5245
48c5ccae 5246 rq->stop = stop;
dce48a84 5247}
48c5ccae 5248
1da177e4
LT
5249#endif /* CONFIG_HOTPLUG_CPU */
5250
e692ab53
NP
5251#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5252
5253static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5254 {
5255 .procname = "sched_domain",
c57baf1e 5256 .mode = 0555,
e0361851 5257 },
56992309 5258 {}
e692ab53
NP
5259};
5260
5261static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5262 {
5263 .procname = "kernel",
c57baf1e 5264 .mode = 0555,
e0361851
AD
5265 .child = sd_ctl_dir,
5266 },
56992309 5267 {}
e692ab53
NP
5268};
5269
5270static struct ctl_table *sd_alloc_ctl_entry(int n)
5271{
5272 struct ctl_table *entry =
5cf9f062 5273 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5274
e692ab53
NP
5275 return entry;
5276}
5277
6382bc90
MM
5278static void sd_free_ctl_entry(struct ctl_table **tablep)
5279{
cd790076 5280 struct ctl_table *entry;
6382bc90 5281
cd790076
MM
5282 /*
5283 * In the intermediate directories, both the child directory and
5284 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5285 * will always be set. In the lowest directory the names are
cd790076
MM
5286 * static strings and all have proc handlers.
5287 */
5288 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5289 if (entry->child)
5290 sd_free_ctl_entry(&entry->child);
cd790076
MM
5291 if (entry->proc_handler == NULL)
5292 kfree(entry->procname);
5293 }
6382bc90
MM
5294
5295 kfree(*tablep);
5296 *tablep = NULL;
5297}
5298
e692ab53 5299static void
e0361851 5300set_table_entry(struct ctl_table *entry,
e692ab53 5301 const char *procname, void *data, int maxlen,
36fcb589 5302 umode_t mode, proc_handler *proc_handler)
e692ab53 5303{
e692ab53
NP
5304 entry->procname = procname;
5305 entry->data = data;
5306 entry->maxlen = maxlen;
5307 entry->mode = mode;
5308 entry->proc_handler = proc_handler;
5309}
5310
5311static struct ctl_table *
5312sd_alloc_ctl_domain_table(struct sched_domain *sd)
5313{
a5d8c348 5314 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 5315
ad1cdc1d
MM
5316 if (table == NULL)
5317 return NULL;
5318
e0361851 5319 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5320 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5321 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5322 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5323 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5324 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5325 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5326 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5327 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5328 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5329 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5330 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5331 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5332 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5333 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5334 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5335 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5336 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5337 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5338 &sd->cache_nice_tries,
5339 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5340 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5341 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
5342 set_table_entry(&table[11], "name", sd->name,
5343 CORENAME_MAX_SIZE, 0444, proc_dostring);
5344 /* &table[12] is terminator */
e692ab53
NP
5345
5346 return table;
5347}
5348
9a4e7159 5349static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5350{
5351 struct ctl_table *entry, *table;
5352 struct sched_domain *sd;
5353 int domain_num = 0, i;
5354 char buf[32];
5355
5356 for_each_domain(cpu, sd)
5357 domain_num++;
5358 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5359 if (table == NULL)
5360 return NULL;
e692ab53
NP
5361
5362 i = 0;
5363 for_each_domain(cpu, sd) {
5364 snprintf(buf, 32, "domain%d", i);
e692ab53 5365 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5366 entry->mode = 0555;
e692ab53
NP
5367 entry->child = sd_alloc_ctl_domain_table(sd);
5368 entry++;
5369 i++;
5370 }
5371 return table;
5372}
5373
5374static struct ctl_table_header *sd_sysctl_header;
6382bc90 5375static void register_sched_domain_sysctl(void)
e692ab53 5376{
6ad4c188 5377 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5378 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5379 char buf[32];
5380
7378547f
MM
5381 WARN_ON(sd_ctl_dir[0].child);
5382 sd_ctl_dir[0].child = entry;
5383
ad1cdc1d
MM
5384 if (entry == NULL)
5385 return;
5386
6ad4c188 5387 for_each_possible_cpu(i) {
e692ab53 5388 snprintf(buf, 32, "cpu%d", i);
e692ab53 5389 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5390 entry->mode = 0555;
e692ab53 5391 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5392 entry++;
e692ab53 5393 }
7378547f
MM
5394
5395 WARN_ON(sd_sysctl_header);
e692ab53
NP
5396 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5397}
6382bc90 5398
7378547f 5399/* may be called multiple times per register */
6382bc90
MM
5400static void unregister_sched_domain_sysctl(void)
5401{
7378547f
MM
5402 if (sd_sysctl_header)
5403 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5404 sd_sysctl_header = NULL;
7378547f
MM
5405 if (sd_ctl_dir[0].child)
5406 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5407}
e692ab53 5408#else
6382bc90
MM
5409static void register_sched_domain_sysctl(void)
5410{
5411}
5412static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5413{
5414}
5415#endif
5416
1f11eb6a
GH
5417static void set_rq_online(struct rq *rq)
5418{
5419 if (!rq->online) {
5420 const struct sched_class *class;
5421
c6c4927b 5422 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5423 rq->online = 1;
5424
5425 for_each_class(class) {
5426 if (class->rq_online)
5427 class->rq_online(rq);
5428 }
5429 }
5430}
5431
5432static void set_rq_offline(struct rq *rq)
5433{
5434 if (rq->online) {
5435 const struct sched_class *class;
5436
5437 for_each_class(class) {
5438 if (class->rq_offline)
5439 class->rq_offline(rq);
5440 }
5441
c6c4927b 5442 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5443 rq->online = 0;
5444 }
5445}
5446
1da177e4
LT
5447/*
5448 * migration_call - callback that gets triggered when a CPU is added.
5449 * Here we can start up the necessary migration thread for the new CPU.
5450 */
48f24c4d
IM
5451static int __cpuinit
5452migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5453{
48f24c4d 5454 int cpu = (long)hcpu;
1da177e4 5455 unsigned long flags;
969c7921 5456 struct rq *rq = cpu_rq(cpu);
1da177e4 5457
48c5ccae 5458 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5459
1da177e4 5460 case CPU_UP_PREPARE:
a468d389 5461 rq->calc_load_update = calc_load_update;
1da177e4 5462 break;
48f24c4d 5463
1da177e4 5464 case CPU_ONLINE:
1f94ef59 5465 /* Update our root-domain */
05fa785c 5466 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5467 if (rq->rd) {
c6c4927b 5468 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5469
5470 set_rq_online(rq);
1f94ef59 5471 }
05fa785c 5472 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5473 break;
48f24c4d 5474
1da177e4 5475#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5476 case CPU_DYING:
317f3941 5477 sched_ttwu_pending();
57d885fe 5478 /* Update our root-domain */
05fa785c 5479 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5480 if (rq->rd) {
c6c4927b 5481 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5482 set_rq_offline(rq);
57d885fe 5483 }
48c5ccae
PZ
5484 migrate_tasks(cpu);
5485 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5486 raw_spin_unlock_irqrestore(&rq->lock, flags);
48c5ccae
PZ
5487
5488 migrate_nr_uninterruptible(rq);
5489 calc_global_load_remove(rq);
57d885fe 5490 break;
1da177e4
LT
5491#endif
5492 }
49c022e6
PZ
5493
5494 update_max_interval();
5495
1da177e4
LT
5496 return NOTIFY_OK;
5497}
5498
f38b0820
PM
5499/*
5500 * Register at high priority so that task migration (migrate_all_tasks)
5501 * happens before everything else. This has to be lower priority than
cdd6c482 5502 * the notifier in the perf_event subsystem, though.
1da177e4 5503 */
26c2143b 5504static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 5505 .notifier_call = migration_call,
50a323b7 5506 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5507};
5508
3a101d05
TH
5509static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5510 unsigned long action, void *hcpu)
5511{
5512 switch (action & ~CPU_TASKS_FROZEN) {
5fbd036b 5513 case CPU_STARTING:
3a101d05
TH
5514 case CPU_DOWN_FAILED:
5515 set_cpu_active((long)hcpu, true);
5516 return NOTIFY_OK;
5517 default:
5518 return NOTIFY_DONE;
5519 }
5520}
5521
5522static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5523 unsigned long action, void *hcpu)
5524{
5525 switch (action & ~CPU_TASKS_FROZEN) {
5526 case CPU_DOWN_PREPARE:
5527 set_cpu_active((long)hcpu, false);
5528 return NOTIFY_OK;
5529 default:
5530 return NOTIFY_DONE;
5531 }
5532}
5533
7babe8db 5534static int __init migration_init(void)
1da177e4
LT
5535{
5536 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5537 int err;
48f24c4d 5538
3a101d05 5539 /* Initialize migration for the boot CPU */
07dccf33
AM
5540 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5541 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5542 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5543 register_cpu_notifier(&migration_notifier);
7babe8db 5544
3a101d05
TH
5545 /* Register cpu active notifiers */
5546 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5547 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5548
a004cd42 5549 return 0;
1da177e4 5550}
7babe8db 5551early_initcall(migration_init);
1da177e4
LT
5552#endif
5553
5554#ifdef CONFIG_SMP
476f3534 5555
4cb98839
PZ
5556static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5557
3e9830dc 5558#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5559
f6630114
MT
5560static __read_mostly int sched_domain_debug_enabled;
5561
5562static int __init sched_domain_debug_setup(char *str)
5563{
5564 sched_domain_debug_enabled = 1;
5565
5566 return 0;
5567}
5568early_param("sched_debug", sched_domain_debug_setup);
5569
7c16ec58 5570static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5571 struct cpumask *groupmask)
1da177e4 5572{
4dcf6aff 5573 struct sched_group *group = sd->groups;
434d53b0 5574 char str[256];
1da177e4 5575
968ea6d8 5576 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5577 cpumask_clear(groupmask);
4dcf6aff
IM
5578
5579 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5580
5581 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5582 printk("does not load-balance\n");
4dcf6aff 5583 if (sd->parent)
3df0fc5b
PZ
5584 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5585 " has parent");
4dcf6aff 5586 return -1;
41c7ce9a
NP
5587 }
5588
3df0fc5b 5589 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5590
758b2cdc 5591 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5592 printk(KERN_ERR "ERROR: domain->span does not contain "
5593 "CPU%d\n", cpu);
4dcf6aff 5594 }
758b2cdc 5595 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5596 printk(KERN_ERR "ERROR: domain->groups does not contain"
5597 " CPU%d\n", cpu);
4dcf6aff 5598 }
1da177e4 5599
4dcf6aff 5600 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5601 do {
4dcf6aff 5602 if (!group) {
3df0fc5b
PZ
5603 printk("\n");
5604 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5605 break;
5606 }
5607
9c3f75cb 5608 if (!group->sgp->power) {
3df0fc5b
PZ
5609 printk(KERN_CONT "\n");
5610 printk(KERN_ERR "ERROR: domain->cpu_power not "
5611 "set\n");
4dcf6aff
IM
5612 break;
5613 }
1da177e4 5614
758b2cdc 5615 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5616 printk(KERN_CONT "\n");
5617 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5618 break;
5619 }
1da177e4 5620
cb83b629
PZ
5621 if (!(sd->flags & SD_OVERLAP) &&
5622 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5623 printk(KERN_CONT "\n");
5624 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5625 break;
5626 }
1da177e4 5627
758b2cdc 5628 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5629
968ea6d8 5630 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5631
3df0fc5b 5632 printk(KERN_CONT " %s", str);
9c3f75cb 5633 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 5634 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 5635 group->sgp->power);
381512cf 5636 }
1da177e4 5637
4dcf6aff
IM
5638 group = group->next;
5639 } while (group != sd->groups);
3df0fc5b 5640 printk(KERN_CONT "\n");
1da177e4 5641
758b2cdc 5642 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5643 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5644
758b2cdc
RR
5645 if (sd->parent &&
5646 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5647 printk(KERN_ERR "ERROR: parent span is not a superset "
5648 "of domain->span\n");
4dcf6aff
IM
5649 return 0;
5650}
1da177e4 5651
4dcf6aff
IM
5652static void sched_domain_debug(struct sched_domain *sd, int cpu)
5653{
5654 int level = 0;
1da177e4 5655
f6630114
MT
5656 if (!sched_domain_debug_enabled)
5657 return;
5658
4dcf6aff
IM
5659 if (!sd) {
5660 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5661 return;
5662 }
1da177e4 5663
4dcf6aff
IM
5664 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5665
5666 for (;;) {
4cb98839 5667 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5668 break;
1da177e4
LT
5669 level++;
5670 sd = sd->parent;
33859f7f 5671 if (!sd)
4dcf6aff
IM
5672 break;
5673 }
1da177e4 5674}
6d6bc0ad 5675#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5676# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 5677#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5678
1a20ff27 5679static int sd_degenerate(struct sched_domain *sd)
245af2c7 5680{
758b2cdc 5681 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5682 return 1;
5683
5684 /* Following flags need at least 2 groups */
5685 if (sd->flags & (SD_LOAD_BALANCE |
5686 SD_BALANCE_NEWIDLE |
5687 SD_BALANCE_FORK |
89c4710e
SS
5688 SD_BALANCE_EXEC |
5689 SD_SHARE_CPUPOWER |
5690 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5691 if (sd->groups != sd->groups->next)
5692 return 0;
5693 }
5694
5695 /* Following flags don't use groups */
c88d5910 5696 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5697 return 0;
5698
5699 return 1;
5700}
5701
48f24c4d
IM
5702static int
5703sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5704{
5705 unsigned long cflags = sd->flags, pflags = parent->flags;
5706
5707 if (sd_degenerate(parent))
5708 return 1;
5709
758b2cdc 5710 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5711 return 0;
5712
245af2c7
SS
5713 /* Flags needing groups don't count if only 1 group in parent */
5714 if (parent->groups == parent->groups->next) {
5715 pflags &= ~(SD_LOAD_BALANCE |
5716 SD_BALANCE_NEWIDLE |
5717 SD_BALANCE_FORK |
89c4710e
SS
5718 SD_BALANCE_EXEC |
5719 SD_SHARE_CPUPOWER |
5720 SD_SHARE_PKG_RESOURCES);
5436499e
KC
5721 if (nr_node_ids == 1)
5722 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5723 }
5724 if (~cflags & pflags)
5725 return 0;
5726
5727 return 1;
5728}
5729
dce840a0 5730static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5731{
dce840a0 5732 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5733
68e74568 5734 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
5735 free_cpumask_var(rd->rto_mask);
5736 free_cpumask_var(rd->online);
5737 free_cpumask_var(rd->span);
5738 kfree(rd);
5739}
5740
57d885fe
GH
5741static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5742{
a0490fa3 5743 struct root_domain *old_rd = NULL;
57d885fe 5744 unsigned long flags;
57d885fe 5745
05fa785c 5746 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5747
5748 if (rq->rd) {
a0490fa3 5749 old_rd = rq->rd;
57d885fe 5750
c6c4927b 5751 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5752 set_rq_offline(rq);
57d885fe 5753
c6c4927b 5754 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5755
a0490fa3
IM
5756 /*
5757 * If we dont want to free the old_rt yet then
5758 * set old_rd to NULL to skip the freeing later
5759 * in this function:
5760 */
5761 if (!atomic_dec_and_test(&old_rd->refcount))
5762 old_rd = NULL;
57d885fe
GH
5763 }
5764
5765 atomic_inc(&rd->refcount);
5766 rq->rd = rd;
5767
c6c4927b 5768 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5769 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5770 set_rq_online(rq);
57d885fe 5771
05fa785c 5772 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5773
5774 if (old_rd)
dce840a0 5775 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5776}
5777
68c38fc3 5778static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5779{
5780 memset(rd, 0, sizeof(*rd));
5781
68c38fc3 5782 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5783 goto out;
68c38fc3 5784 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5785 goto free_span;
68c38fc3 5786 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 5787 goto free_online;
6e0534f2 5788
68c38fc3 5789 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5790 goto free_rto_mask;
c6c4927b 5791 return 0;
6e0534f2 5792
68e74568
RR
5793free_rto_mask:
5794 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
5795free_online:
5796 free_cpumask_var(rd->online);
5797free_span:
5798 free_cpumask_var(rd->span);
0c910d28 5799out:
c6c4927b 5800 return -ENOMEM;
57d885fe
GH
5801}
5802
029632fb
PZ
5803/*
5804 * By default the system creates a single root-domain with all cpus as
5805 * members (mimicking the global state we have today).
5806 */
5807struct root_domain def_root_domain;
5808
57d885fe
GH
5809static void init_defrootdomain(void)
5810{
68c38fc3 5811 init_rootdomain(&def_root_domain);
c6c4927b 5812
57d885fe
GH
5813 atomic_set(&def_root_domain.refcount, 1);
5814}
5815
dc938520 5816static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5817{
5818 struct root_domain *rd;
5819
5820 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5821 if (!rd)
5822 return NULL;
5823
68c38fc3 5824 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5825 kfree(rd);
5826 return NULL;
5827 }
57d885fe
GH
5828
5829 return rd;
5830}
5831
e3589f6c
PZ
5832static void free_sched_groups(struct sched_group *sg, int free_sgp)
5833{
5834 struct sched_group *tmp, *first;
5835
5836 if (!sg)
5837 return;
5838
5839 first = sg;
5840 do {
5841 tmp = sg->next;
5842
5843 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5844 kfree(sg->sgp);
5845
5846 kfree(sg);
5847 sg = tmp;
5848 } while (sg != first);
5849}
5850
dce840a0
PZ
5851static void free_sched_domain(struct rcu_head *rcu)
5852{
5853 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5854
5855 /*
5856 * If its an overlapping domain it has private groups, iterate and
5857 * nuke them all.
5858 */
5859 if (sd->flags & SD_OVERLAP) {
5860 free_sched_groups(sd->groups, 1);
5861 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 5862 kfree(sd->groups->sgp);
dce840a0 5863 kfree(sd->groups);
9c3f75cb 5864 }
dce840a0
PZ
5865 kfree(sd);
5866}
5867
5868static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5869{
5870 call_rcu(&sd->rcu, free_sched_domain);
5871}
5872
5873static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5874{
5875 for (; sd; sd = sd->parent)
5876 destroy_sched_domain(sd, cpu);
5877}
5878
518cd623
PZ
5879/*
5880 * Keep a special pointer to the highest sched_domain that has
5881 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5882 * allows us to avoid some pointer chasing select_idle_sibling().
5883 *
5884 * Also keep a unique ID per domain (we use the first cpu number in
5885 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5886 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5887 */
5888DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5889DEFINE_PER_CPU(int, sd_llc_id);
5890
5891static void update_top_cache_domain(int cpu)
5892{
5893 struct sched_domain *sd;
5894 int id = cpu;
5895
5896 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5897 if (sd)
5898 id = cpumask_first(sched_domain_span(sd));
5899
5900 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5901 per_cpu(sd_llc_id, cpu) = id;
5902}
5903
1da177e4 5904/*
0eab9146 5905 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5906 * hold the hotplug lock.
5907 */
0eab9146
IM
5908static void
5909cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5910{
70b97a7f 5911 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5912 struct sched_domain *tmp;
5913
5914 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5915 for (tmp = sd; tmp; ) {
245af2c7
SS
5916 struct sched_domain *parent = tmp->parent;
5917 if (!parent)
5918 break;
f29c9b1c 5919
1a848870 5920 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5921 tmp->parent = parent->parent;
1a848870
SS
5922 if (parent->parent)
5923 parent->parent->child = tmp;
dce840a0 5924 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5925 } else
5926 tmp = tmp->parent;
245af2c7
SS
5927 }
5928
1a848870 5929 if (sd && sd_degenerate(sd)) {
dce840a0 5930 tmp = sd;
245af2c7 5931 sd = sd->parent;
dce840a0 5932 destroy_sched_domain(tmp, cpu);
1a848870
SS
5933 if (sd)
5934 sd->child = NULL;
5935 }
1da177e4 5936
4cb98839 5937 sched_domain_debug(sd, cpu);
1da177e4 5938
57d885fe 5939 rq_attach_root(rq, rd);
dce840a0 5940 tmp = rq->sd;
674311d5 5941 rcu_assign_pointer(rq->sd, sd);
dce840a0 5942 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5943
5944 update_top_cache_domain(cpu);
1da177e4
LT
5945}
5946
5947/* cpus with isolated domains */
dcc30a35 5948static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5949
5950/* Setup the mask of cpus configured for isolated domains */
5951static int __init isolated_cpu_setup(char *str)
5952{
bdddd296 5953 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5954 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5955 return 1;
5956}
5957
8927f494 5958__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5959
d3081f52
PZ
5960static const struct cpumask *cpu_cpu_mask(int cpu)
5961{
5962 return cpumask_of_node(cpu_to_node(cpu));
5963}
5964
dce840a0
PZ
5965struct sd_data {
5966 struct sched_domain **__percpu sd;
5967 struct sched_group **__percpu sg;
9c3f75cb 5968 struct sched_group_power **__percpu sgp;
dce840a0
PZ
5969};
5970
49a02c51 5971struct s_data {
21d42ccf 5972 struct sched_domain ** __percpu sd;
49a02c51
AH
5973 struct root_domain *rd;
5974};
5975
2109b99e 5976enum s_alloc {
2109b99e 5977 sa_rootdomain,
21d42ccf 5978 sa_sd,
dce840a0 5979 sa_sd_storage,
2109b99e
AH
5980 sa_none,
5981};
5982
54ab4ff4
PZ
5983struct sched_domain_topology_level;
5984
5985typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
5986typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5987
e3589f6c
PZ
5988#define SDTL_OVERLAP 0x01
5989
eb7a74e6 5990struct sched_domain_topology_level {
2c402dc3
PZ
5991 sched_domain_init_f init;
5992 sched_domain_mask_f mask;
e3589f6c 5993 int flags;
cb83b629 5994 int numa_level;
54ab4ff4 5995 struct sd_data data;
eb7a74e6
PZ
5996};
5997
e3589f6c
PZ
5998static int
5999build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6000{
6001 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6002 const struct cpumask *span = sched_domain_span(sd);
6003 struct cpumask *covered = sched_domains_tmpmask;
6004 struct sd_data *sdd = sd->private;
6005 struct sched_domain *child;
6006 int i;
6007
6008 cpumask_clear(covered);
6009
6010 for_each_cpu(i, span) {
6011 struct cpumask *sg_span;
6012
6013 if (cpumask_test_cpu(i, covered))
6014 continue;
6015
6016 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 6017 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
6018
6019 if (!sg)
6020 goto fail;
6021
6022 sg_span = sched_group_cpus(sg);
6023
6024 child = *per_cpu_ptr(sdd->sd, i);
6025 if (child->child) {
6026 child = child->child;
6027 cpumask_copy(sg_span, sched_domain_span(child));
6028 } else
6029 cpumask_set_cpu(i, sg_span);
6030
6031 cpumask_or(covered, covered, sg_span);
6032
74a5ce20 6033 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
e3589f6c
PZ
6034 atomic_inc(&sg->sgp->ref);
6035
74a5ce20
PZ
6036 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6037 cpumask_first(sg_span) == cpu) {
6038 WARN_ON_ONCE(!cpumask_test_cpu(cpu, sg_span));
e3589f6c 6039 groups = sg;
74a5ce20 6040 }
e3589f6c
PZ
6041
6042 if (!first)
6043 first = sg;
6044 if (last)
6045 last->next = sg;
6046 last = sg;
6047 last->next = first;
6048 }
6049 sd->groups = groups;
6050
6051 return 0;
6052
6053fail:
6054 free_sched_groups(first, 0);
6055
6056 return -ENOMEM;
6057}
6058
dce840a0 6059static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6060{
dce840a0
PZ
6061 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6062 struct sched_domain *child = sd->child;
1da177e4 6063
dce840a0
PZ
6064 if (child)
6065 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6066
9c3f75cb 6067 if (sg) {
dce840a0 6068 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 6069 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 6070 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 6071 }
dce840a0
PZ
6072
6073 return cpu;
1e9f28fa 6074}
1e9f28fa 6075
01a08546 6076/*
dce840a0
PZ
6077 * build_sched_groups will build a circular linked list of the groups
6078 * covered by the given span, and will set each group's ->cpumask correctly,
6079 * and ->cpu_power to 0.
e3589f6c
PZ
6080 *
6081 * Assumes the sched_domain tree is fully constructed
01a08546 6082 */
e3589f6c
PZ
6083static int
6084build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6085{
dce840a0
PZ
6086 struct sched_group *first = NULL, *last = NULL;
6087 struct sd_data *sdd = sd->private;
6088 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6089 struct cpumask *covered;
dce840a0 6090 int i;
9c1cfda2 6091
e3589f6c
PZ
6092 get_group(cpu, sdd, &sd->groups);
6093 atomic_inc(&sd->groups->ref);
6094
6095 if (cpu != cpumask_first(sched_domain_span(sd)))
6096 return 0;
6097
f96225fd
PZ
6098 lockdep_assert_held(&sched_domains_mutex);
6099 covered = sched_domains_tmpmask;
6100
dce840a0 6101 cpumask_clear(covered);
6711cab4 6102
dce840a0
PZ
6103 for_each_cpu(i, span) {
6104 struct sched_group *sg;
6105 int group = get_group(i, sdd, &sg);
6106 int j;
6711cab4 6107
dce840a0
PZ
6108 if (cpumask_test_cpu(i, covered))
6109 continue;
6711cab4 6110
dce840a0 6111 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 6112 sg->sgp->power = 0;
0601a88d 6113
dce840a0
PZ
6114 for_each_cpu(j, span) {
6115 if (get_group(j, sdd, NULL) != group)
6116 continue;
0601a88d 6117
dce840a0
PZ
6118 cpumask_set_cpu(j, covered);
6119 cpumask_set_cpu(j, sched_group_cpus(sg));
6120 }
0601a88d 6121
dce840a0
PZ
6122 if (!first)
6123 first = sg;
6124 if (last)
6125 last->next = sg;
6126 last = sg;
6127 }
6128 last->next = first;
e3589f6c
PZ
6129
6130 return 0;
0601a88d 6131}
51888ca2 6132
89c4710e
SS
6133/*
6134 * Initialize sched groups cpu_power.
6135 *
6136 * cpu_power indicates the capacity of sched group, which is used while
6137 * distributing the load between different sched groups in a sched domain.
6138 * Typically cpu_power for all the groups in a sched domain will be same unless
6139 * there are asymmetries in the topology. If there are asymmetries, group
6140 * having more cpu_power will pickup more load compared to the group having
6141 * less cpu_power.
89c4710e
SS
6142 */
6143static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6144{
e3589f6c 6145 struct sched_group *sg = sd->groups;
89c4710e 6146
e3589f6c
PZ
6147 WARN_ON(!sd || !sg);
6148
6149 do {
6150 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6151 sg = sg->next;
6152 } while (sg != sd->groups);
89c4710e 6153
e3589f6c
PZ
6154 if (cpu != group_first_cpu(sg))
6155 return;
aae6d3dd 6156
d274cb30 6157 update_group_power(sd, cpu);
69e1e811 6158 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6159}
6160
029632fb
PZ
6161int __weak arch_sd_sibling_asym_packing(void)
6162{
6163 return 0*SD_ASYM_PACKING;
89c4710e
SS
6164}
6165
7c16ec58
MT
6166/*
6167 * Initializers for schedule domains
6168 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6169 */
6170
a5d8c348
IM
6171#ifdef CONFIG_SCHED_DEBUG
6172# define SD_INIT_NAME(sd, type) sd->name = #type
6173#else
6174# define SD_INIT_NAME(sd, type) do { } while (0)
6175#endif
6176
54ab4ff4
PZ
6177#define SD_INIT_FUNC(type) \
6178static noinline struct sched_domain * \
6179sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
6180{ \
6181 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
6182 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
6183 SD_INIT_NAME(sd, type); \
6184 sd->private = &tl->data; \
6185 return sd; \
7c16ec58
MT
6186}
6187
6188SD_INIT_FUNC(CPU)
7c16ec58
MT
6189#ifdef CONFIG_SCHED_SMT
6190 SD_INIT_FUNC(SIBLING)
6191#endif
6192#ifdef CONFIG_SCHED_MC
6193 SD_INIT_FUNC(MC)
6194#endif
01a08546
HC
6195#ifdef CONFIG_SCHED_BOOK
6196 SD_INIT_FUNC(BOOK)
6197#endif
7c16ec58 6198
1d3504fc 6199static int default_relax_domain_level = -1;
60495e77 6200int sched_domain_level_max;
1d3504fc
HS
6201
6202static int __init setup_relax_domain_level(char *str)
6203{
30e0e178
LZ
6204 unsigned long val;
6205
6206 val = simple_strtoul(str, NULL, 0);
60495e77 6207 if (val < sched_domain_level_max)
30e0e178
LZ
6208 default_relax_domain_level = val;
6209
1d3504fc
HS
6210 return 1;
6211}
6212__setup("relax_domain_level=", setup_relax_domain_level);
6213
6214static void set_domain_attribute(struct sched_domain *sd,
6215 struct sched_domain_attr *attr)
6216{
6217 int request;
6218
6219 if (!attr || attr->relax_domain_level < 0) {
6220 if (default_relax_domain_level < 0)
6221 return;
6222 else
6223 request = default_relax_domain_level;
6224 } else
6225 request = attr->relax_domain_level;
6226 if (request < sd->level) {
6227 /* turn off idle balance on this domain */
c88d5910 6228 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6229 } else {
6230 /* turn on idle balance on this domain */
c88d5910 6231 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6232 }
6233}
6234
54ab4ff4
PZ
6235static void __sdt_free(const struct cpumask *cpu_map);
6236static int __sdt_alloc(const struct cpumask *cpu_map);
6237
2109b99e
AH
6238static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6239 const struct cpumask *cpu_map)
6240{
6241 switch (what) {
2109b99e 6242 case sa_rootdomain:
822ff793
PZ
6243 if (!atomic_read(&d->rd->refcount))
6244 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6245 case sa_sd:
6246 free_percpu(d->sd); /* fall through */
dce840a0 6247 case sa_sd_storage:
54ab4ff4 6248 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6249 case sa_none:
6250 break;
6251 }
6252}
3404c8d9 6253
2109b99e
AH
6254static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6255 const struct cpumask *cpu_map)
6256{
dce840a0
PZ
6257 memset(d, 0, sizeof(*d));
6258
54ab4ff4
PZ
6259 if (__sdt_alloc(cpu_map))
6260 return sa_sd_storage;
dce840a0
PZ
6261 d->sd = alloc_percpu(struct sched_domain *);
6262 if (!d->sd)
6263 return sa_sd_storage;
2109b99e 6264 d->rd = alloc_rootdomain();
dce840a0 6265 if (!d->rd)
21d42ccf 6266 return sa_sd;
2109b99e
AH
6267 return sa_rootdomain;
6268}
57d885fe 6269
dce840a0
PZ
6270/*
6271 * NULL the sd_data elements we've used to build the sched_domain and
6272 * sched_group structure so that the subsequent __free_domain_allocs()
6273 * will not free the data we're using.
6274 */
6275static void claim_allocations(int cpu, struct sched_domain *sd)
6276{
6277 struct sd_data *sdd = sd->private;
dce840a0
PZ
6278
6279 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6280 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6281
e3589f6c 6282 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6283 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
6284
6285 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 6286 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
6287}
6288
2c402dc3
PZ
6289#ifdef CONFIG_SCHED_SMT
6290static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 6291{
2c402dc3 6292 return topology_thread_cpumask(cpu);
3bd65a80 6293}
2c402dc3 6294#endif
7f4588f3 6295
d069b916
PZ
6296/*
6297 * Topology list, bottom-up.
6298 */
2c402dc3 6299static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
6300#ifdef CONFIG_SCHED_SMT
6301 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 6302#endif
1e9f28fa 6303#ifdef CONFIG_SCHED_MC
2c402dc3 6304 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 6305#endif
d069b916
PZ
6306#ifdef CONFIG_SCHED_BOOK
6307 { sd_init_BOOK, cpu_book_mask, },
6308#endif
6309 { sd_init_CPU, cpu_cpu_mask, },
eb7a74e6
PZ
6310 { NULL, },
6311};
6312
6313static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6314
cb83b629
PZ
6315#ifdef CONFIG_NUMA
6316
6317static int sched_domains_numa_levels;
6318static int sched_domains_numa_scale;
6319static int *sched_domains_numa_distance;
6320static struct cpumask ***sched_domains_numa_masks;
6321static int sched_domains_curr_level;
6322
cb83b629
PZ
6323static inline int sd_local_flags(int level)
6324{
6325 if (sched_domains_numa_distance[level] > REMOTE_DISTANCE)
6326 return 0;
6327
6328 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6329}
6330
6331static struct sched_domain *
6332sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6333{
6334 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6335 int level = tl->numa_level;
6336 int sd_weight = cpumask_weight(
6337 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6338
6339 *sd = (struct sched_domain){
6340 .min_interval = sd_weight,
6341 .max_interval = 2*sd_weight,
6342 .busy_factor = 32,
870a0bb5 6343 .imbalance_pct = 125,
cb83b629
PZ
6344 .cache_nice_tries = 2,
6345 .busy_idx = 3,
6346 .idle_idx = 2,
6347 .newidle_idx = 0,
6348 .wake_idx = 0,
6349 .forkexec_idx = 0,
6350
6351 .flags = 1*SD_LOAD_BALANCE
6352 | 1*SD_BALANCE_NEWIDLE
6353 | 0*SD_BALANCE_EXEC
6354 | 0*SD_BALANCE_FORK
6355 | 0*SD_BALANCE_WAKE
6356 | 0*SD_WAKE_AFFINE
6357 | 0*SD_PREFER_LOCAL
6358 | 0*SD_SHARE_CPUPOWER
cb83b629
PZ
6359 | 0*SD_SHARE_PKG_RESOURCES
6360 | 1*SD_SERIALIZE
6361 | 0*SD_PREFER_SIBLING
6362 | sd_local_flags(level)
6363 ,
6364 .last_balance = jiffies,
6365 .balance_interval = sd_weight,
6366 };
6367 SD_INIT_NAME(sd, NUMA);
6368 sd->private = &tl->data;
6369
6370 /*
6371 * Ugly hack to pass state to sd_numa_mask()...
6372 */
6373 sched_domains_curr_level = tl->numa_level;
6374
6375 return sd;
6376}
6377
6378static const struct cpumask *sd_numa_mask(int cpu)
6379{
6380 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6381}
6382
6383static void sched_init_numa(void)
6384{
6385 int next_distance, curr_distance = node_distance(0, 0);
6386 struct sched_domain_topology_level *tl;
6387 int level = 0;
6388 int i, j, k;
6389
6390 sched_domains_numa_scale = curr_distance;
6391 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6392 if (!sched_domains_numa_distance)
6393 return;
6394
6395 /*
6396 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6397 * unique distances in the node_distance() table.
6398 *
6399 * Assumes node_distance(0,j) includes all distances in
6400 * node_distance(i,j) in order to avoid cubic time.
6401 *
6402 * XXX: could be optimized to O(n log n) by using sort()
6403 */
6404 next_distance = curr_distance;
6405 for (i = 0; i < nr_node_ids; i++) {
6406 for (j = 0; j < nr_node_ids; j++) {
6407 int distance = node_distance(0, j);
6408 if (distance > curr_distance &&
6409 (distance < next_distance ||
6410 next_distance == curr_distance))
6411 next_distance = distance;
6412 }
6413 if (next_distance != curr_distance) {
6414 sched_domains_numa_distance[level++] = next_distance;
6415 sched_domains_numa_levels = level;
6416 curr_distance = next_distance;
6417 } else break;
6418 }
6419 /*
6420 * 'level' contains the number of unique distances, excluding the
6421 * identity distance node_distance(i,i).
6422 *
6423 * The sched_domains_nume_distance[] array includes the actual distance
6424 * numbers.
6425 */
6426
6427 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6428 if (!sched_domains_numa_masks)
6429 return;
6430
6431 /*
6432 * Now for each level, construct a mask per node which contains all
6433 * cpus of nodes that are that many hops away from us.
6434 */
6435 for (i = 0; i < level; i++) {
6436 sched_domains_numa_masks[i] =
6437 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6438 if (!sched_domains_numa_masks[i])
6439 return;
6440
6441 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6442 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6443 if (!mask)
6444 return;
6445
6446 sched_domains_numa_masks[i][j] = mask;
6447
6448 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6449 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6450 continue;
6451
6452 cpumask_or(mask, mask, cpumask_of_node(k));
6453 }
6454 }
6455 }
6456
6457 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6458 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6459 if (!tl)
6460 return;
6461
6462 /*
6463 * Copy the default topology bits..
6464 */
6465 for (i = 0; default_topology[i].init; i++)
6466 tl[i] = default_topology[i];
6467
6468 /*
6469 * .. and append 'j' levels of NUMA goodness.
6470 */
6471 for (j = 0; j < level; i++, j++) {
6472 tl[i] = (struct sched_domain_topology_level){
6473 .init = sd_numa_init,
6474 .mask = sd_numa_mask,
6475 .flags = SDTL_OVERLAP,
6476 .numa_level = j,
6477 };
6478 }
6479
6480 sched_domain_topology = tl;
6481}
6482#else
6483static inline void sched_init_numa(void)
6484{
6485}
6486#endif /* CONFIG_NUMA */
6487
54ab4ff4
PZ
6488static int __sdt_alloc(const struct cpumask *cpu_map)
6489{
6490 struct sched_domain_topology_level *tl;
6491 int j;
6492
6493 for (tl = sched_domain_topology; tl->init; tl++) {
6494 struct sd_data *sdd = &tl->data;
6495
6496 sdd->sd = alloc_percpu(struct sched_domain *);
6497 if (!sdd->sd)
6498 return -ENOMEM;
6499
6500 sdd->sg = alloc_percpu(struct sched_group *);
6501 if (!sdd->sg)
6502 return -ENOMEM;
6503
9c3f75cb
PZ
6504 sdd->sgp = alloc_percpu(struct sched_group_power *);
6505 if (!sdd->sgp)
6506 return -ENOMEM;
6507
54ab4ff4
PZ
6508 for_each_cpu(j, cpu_map) {
6509 struct sched_domain *sd;
6510 struct sched_group *sg;
9c3f75cb 6511 struct sched_group_power *sgp;
54ab4ff4
PZ
6512
6513 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6514 GFP_KERNEL, cpu_to_node(j));
6515 if (!sd)
6516 return -ENOMEM;
6517
6518 *per_cpu_ptr(sdd->sd, j) = sd;
6519
6520 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6521 GFP_KERNEL, cpu_to_node(j));
6522 if (!sg)
6523 return -ENOMEM;
6524
30b4e9eb
IM
6525 sg->next = sg;
6526
54ab4ff4 6527 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb
PZ
6528
6529 sgp = kzalloc_node(sizeof(struct sched_group_power),
6530 GFP_KERNEL, cpu_to_node(j));
6531 if (!sgp)
6532 return -ENOMEM;
6533
6534 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
6535 }
6536 }
6537
6538 return 0;
6539}
6540
6541static void __sdt_free(const struct cpumask *cpu_map)
6542{
6543 struct sched_domain_topology_level *tl;
6544 int j;
6545
6546 for (tl = sched_domain_topology; tl->init; tl++) {
6547 struct sd_data *sdd = &tl->data;
6548
6549 for_each_cpu(j, cpu_map) {
fb2cf2c6 6550 struct sched_domain *sd;
6551
6552 if (sdd->sd) {
6553 sd = *per_cpu_ptr(sdd->sd, j);
6554 if (sd && (sd->flags & SD_OVERLAP))
6555 free_sched_groups(sd->groups, 0);
6556 kfree(*per_cpu_ptr(sdd->sd, j));
6557 }
6558
6559 if (sdd->sg)
6560 kfree(*per_cpu_ptr(sdd->sg, j));
6561 if (sdd->sgp)
6562 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
6563 }
6564 free_percpu(sdd->sd);
fb2cf2c6 6565 sdd->sd = NULL;
54ab4ff4 6566 free_percpu(sdd->sg);
fb2cf2c6 6567 sdd->sg = NULL;
9c3f75cb 6568 free_percpu(sdd->sgp);
fb2cf2c6 6569 sdd->sgp = NULL;
54ab4ff4
PZ
6570 }
6571}
6572
2c402dc3
PZ
6573struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6574 struct s_data *d, const struct cpumask *cpu_map,
d069b916 6575 struct sched_domain_attr *attr, struct sched_domain *child,
2c402dc3
PZ
6576 int cpu)
6577{
54ab4ff4 6578 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 6579 if (!sd)
d069b916 6580 return child;
2c402dc3
PZ
6581
6582 set_domain_attribute(sd, attr);
6583 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6584 if (child) {
6585 sd->level = child->level + 1;
6586 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6587 child->parent = sd;
60495e77 6588 }
d069b916 6589 sd->child = child;
2c402dc3
PZ
6590
6591 return sd;
6592}
6593
2109b99e
AH
6594/*
6595 * Build sched domains for a given set of cpus and attach the sched domains
6596 * to the individual cpus
6597 */
dce840a0
PZ
6598static int build_sched_domains(const struct cpumask *cpu_map,
6599 struct sched_domain_attr *attr)
2109b99e
AH
6600{
6601 enum s_alloc alloc_state = sa_none;
dce840a0 6602 struct sched_domain *sd;
2109b99e 6603 struct s_data d;
822ff793 6604 int i, ret = -ENOMEM;
9c1cfda2 6605
2109b99e
AH
6606 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6607 if (alloc_state != sa_rootdomain)
6608 goto error;
9c1cfda2 6609
dce840a0 6610 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6611 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6612 struct sched_domain_topology_level *tl;
6613
3bd65a80 6614 sd = NULL;
e3589f6c 6615 for (tl = sched_domain_topology; tl->init; tl++) {
2c402dc3 6616 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
e3589f6c
PZ
6617 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6618 sd->flags |= SD_OVERLAP;
d110235d
PZ
6619 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6620 break;
e3589f6c 6621 }
d274cb30 6622
d069b916
PZ
6623 while (sd->child)
6624 sd = sd->child;
6625
21d42ccf 6626 *per_cpu_ptr(d.sd, i) = sd;
dce840a0
PZ
6627 }
6628
6629 /* Build the groups for the domains */
6630 for_each_cpu(i, cpu_map) {
6631 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6632 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6633 if (sd->flags & SD_OVERLAP) {
6634 if (build_overlap_sched_groups(sd, i))
6635 goto error;
6636 } else {
6637 if (build_sched_groups(sd, i))
6638 goto error;
6639 }
1cf51902 6640 }
a06dadbe 6641 }
9c1cfda2 6642
1da177e4 6643 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6644 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6645 if (!cpumask_test_cpu(i, cpu_map))
6646 continue;
9c1cfda2 6647
dce840a0
PZ
6648 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6649 claim_allocations(i, sd);
cd4ea6ae 6650 init_sched_groups_power(i, sd);
dce840a0 6651 }
f712c0c7 6652 }
9c1cfda2 6653
1da177e4 6654 /* Attach the domains */
dce840a0 6655 rcu_read_lock();
abcd083a 6656 for_each_cpu(i, cpu_map) {
21d42ccf 6657 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6658 cpu_attach_domain(sd, d.rd, i);
1da177e4 6659 }
dce840a0 6660 rcu_read_unlock();
51888ca2 6661
822ff793 6662 ret = 0;
51888ca2 6663error:
2109b99e 6664 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6665 return ret;
1da177e4 6666}
029190c5 6667
acc3f5d7 6668static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6669static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6670static struct sched_domain_attr *dattr_cur;
6671 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6672
6673/*
6674 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6675 * cpumask) fails, then fallback to a single sched domain,
6676 * as determined by the single cpumask fallback_doms.
029190c5 6677 */
4212823f 6678static cpumask_var_t fallback_doms;
029190c5 6679
ee79d1bd
HC
6680/*
6681 * arch_update_cpu_topology lets virtualized architectures update the
6682 * cpu core maps. It is supposed to return 1 if the topology changed
6683 * or 0 if it stayed the same.
6684 */
6685int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 6686{
ee79d1bd 6687 return 0;
22e52b07
HC
6688}
6689
acc3f5d7
RR
6690cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6691{
6692 int i;
6693 cpumask_var_t *doms;
6694
6695 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6696 if (!doms)
6697 return NULL;
6698 for (i = 0; i < ndoms; i++) {
6699 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6700 free_sched_domains(doms, i);
6701 return NULL;
6702 }
6703 }
6704 return doms;
6705}
6706
6707void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6708{
6709 unsigned int i;
6710 for (i = 0; i < ndoms; i++)
6711 free_cpumask_var(doms[i]);
6712 kfree(doms);
6713}
6714
1a20ff27 6715/*
41a2d6cf 6716 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6717 * For now this just excludes isolated cpus, but could be used to
6718 * exclude other special cases in the future.
1a20ff27 6719 */
c4a8849a 6720static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6721{
7378547f
MM
6722 int err;
6723
22e52b07 6724 arch_update_cpu_topology();
029190c5 6725 ndoms_cur = 1;
acc3f5d7 6726 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6727 if (!doms_cur)
acc3f5d7
RR
6728 doms_cur = &fallback_doms;
6729 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 6730 dattr_cur = NULL;
dce840a0 6731 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6732 register_sched_domain_sysctl();
7378547f
MM
6733
6734 return err;
1a20ff27
DG
6735}
6736
1a20ff27
DG
6737/*
6738 * Detach sched domains from a group of cpus specified in cpu_map
6739 * These cpus will now be attached to the NULL domain
6740 */
96f874e2 6741static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6742{
6743 int i;
6744
dce840a0 6745 rcu_read_lock();
abcd083a 6746 for_each_cpu(i, cpu_map)
57d885fe 6747 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6748 rcu_read_unlock();
1a20ff27
DG
6749}
6750
1d3504fc
HS
6751/* handle null as "default" */
6752static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6753 struct sched_domain_attr *new, int idx_new)
6754{
6755 struct sched_domain_attr tmp;
6756
6757 /* fast path */
6758 if (!new && !cur)
6759 return 1;
6760
6761 tmp = SD_ATTR_INIT;
6762 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6763 new ? (new + idx_new) : &tmp,
6764 sizeof(struct sched_domain_attr));
6765}
6766
029190c5
PJ
6767/*
6768 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6769 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6770 * doms_new[] to the current sched domain partitioning, doms_cur[].
6771 * It destroys each deleted domain and builds each new domain.
6772 *
acc3f5d7 6773 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6774 * The masks don't intersect (don't overlap.) We should setup one
6775 * sched domain for each mask. CPUs not in any of the cpumasks will
6776 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6777 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6778 * it as it is.
6779 *
acc3f5d7
RR
6780 * The passed in 'doms_new' should be allocated using
6781 * alloc_sched_domains. This routine takes ownership of it and will
6782 * free_sched_domains it when done with it. If the caller failed the
6783 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6784 * and partition_sched_domains() will fallback to the single partition
6785 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6786 *
96f874e2 6787 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6788 * ndoms_new == 0 is a special case for destroying existing domains,
6789 * and it will not create the default domain.
dfb512ec 6790 *
029190c5
PJ
6791 * Call with hotplug lock held
6792 */
acc3f5d7 6793void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6794 struct sched_domain_attr *dattr_new)
029190c5 6795{
dfb512ec 6796 int i, j, n;
d65bd5ec 6797 int new_topology;
029190c5 6798
712555ee 6799 mutex_lock(&sched_domains_mutex);
a1835615 6800
7378547f
MM
6801 /* always unregister in case we don't destroy any domains */
6802 unregister_sched_domain_sysctl();
6803
d65bd5ec
HC
6804 /* Let architecture update cpu core mappings. */
6805 new_topology = arch_update_cpu_topology();
6806
dfb512ec 6807 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6808
6809 /* Destroy deleted domains */
6810 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6811 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6812 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6813 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6814 goto match1;
6815 }
6816 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6817 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6818match1:
6819 ;
6820 }
6821
e761b772
MK
6822 if (doms_new == NULL) {
6823 ndoms_cur = 0;
acc3f5d7 6824 doms_new = &fallback_doms;
6ad4c188 6825 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6826 WARN_ON_ONCE(dattr_new);
e761b772
MK
6827 }
6828
029190c5
PJ
6829 /* Build new domains */
6830 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 6831 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 6832 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6833 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6834 goto match2;
6835 }
6836 /* no match - add a new doms_new */
dce840a0 6837 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6838match2:
6839 ;
6840 }
6841
6842 /* Remember the new sched domains */
acc3f5d7
RR
6843 if (doms_cur != &fallback_doms)
6844 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6845 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6846 doms_cur = doms_new;
1d3504fc 6847 dattr_cur = dattr_new;
029190c5 6848 ndoms_cur = ndoms_new;
7378547f
MM
6849
6850 register_sched_domain_sysctl();
a1835615 6851
712555ee 6852 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6853}
6854
1da177e4 6855/*
3a101d05
TH
6856 * Update cpusets according to cpu_active mask. If cpusets are
6857 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6858 * around partition_sched_domains().
1da177e4 6859 */
0b2e918a
TH
6860static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6861 void *hcpu)
e761b772 6862{
3a101d05 6863 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 6864 case CPU_ONLINE:
6ad4c188 6865 case CPU_DOWN_FAILED:
3a101d05 6866 cpuset_update_active_cpus();
e761b772 6867 return NOTIFY_OK;
3a101d05
TH
6868 default:
6869 return NOTIFY_DONE;
6870 }
6871}
e761b772 6872
0b2e918a
TH
6873static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6874 void *hcpu)
3a101d05
TH
6875{
6876 switch (action & ~CPU_TASKS_FROZEN) {
6877 case CPU_DOWN_PREPARE:
6878 cpuset_update_active_cpus();
6879 return NOTIFY_OK;
e761b772
MK
6880 default:
6881 return NOTIFY_DONE;
6882 }
6883}
e761b772 6884
1da177e4
LT
6885void __init sched_init_smp(void)
6886{
dcc30a35
RR
6887 cpumask_var_t non_isolated_cpus;
6888
6889 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6890 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6891
cb83b629
PZ
6892 sched_init_numa();
6893
95402b38 6894 get_online_cpus();
712555ee 6895 mutex_lock(&sched_domains_mutex);
c4a8849a 6896 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6897 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6898 if (cpumask_empty(non_isolated_cpus))
6899 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6900 mutex_unlock(&sched_domains_mutex);
95402b38 6901 put_online_cpus();
e761b772 6902
3a101d05
TH
6903 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6904 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
6905
6906 /* RT runtime code needs to handle some hotplug events */
6907 hotcpu_notifier(update_runtime, 0);
6908
b328ca18 6909 init_hrtick();
5c1e1767
NP
6910
6911 /* Move init over to a non-isolated CPU */
dcc30a35 6912 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6913 BUG();
19978ca6 6914 sched_init_granularity();
dcc30a35 6915 free_cpumask_var(non_isolated_cpus);
4212823f 6916
0e3900e6 6917 init_sched_rt_class();
1da177e4
LT
6918}
6919#else
6920void __init sched_init_smp(void)
6921{
19978ca6 6922 sched_init_granularity();
1da177e4
LT
6923}
6924#endif /* CONFIG_SMP */
6925
cd1bb94b
AB
6926const_debug unsigned int sysctl_timer_migration = 1;
6927
1da177e4
LT
6928int in_sched_functions(unsigned long addr)
6929{
1da177e4
LT
6930 return in_lock_functions(addr) ||
6931 (addr >= (unsigned long)__sched_text_start
6932 && addr < (unsigned long)__sched_text_end);
6933}
6934
029632fb
PZ
6935#ifdef CONFIG_CGROUP_SCHED
6936struct task_group root_task_group;
052f1dc7 6937#endif
6f505b16 6938
029632fb 6939DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6f505b16 6940
1da177e4
LT
6941void __init sched_init(void)
6942{
dd41f596 6943 int i, j;
434d53b0
MT
6944 unsigned long alloc_size = 0, ptr;
6945
6946#ifdef CONFIG_FAIR_GROUP_SCHED
6947 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6948#endif
6949#ifdef CONFIG_RT_GROUP_SCHED
6950 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6951#endif
df7c8e84 6952#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6953 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6954#endif
434d53b0 6955 if (alloc_size) {
36b7b6d4 6956 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6957
6958#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6959 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6960 ptr += nr_cpu_ids * sizeof(void **);
6961
07e06b01 6962 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6963 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6964
6d6bc0ad 6965#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6966#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6967 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6968 ptr += nr_cpu_ids * sizeof(void **);
6969
07e06b01 6970 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6971 ptr += nr_cpu_ids * sizeof(void **);
6972
6d6bc0ad 6973#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6974#ifdef CONFIG_CPUMASK_OFFSTACK
6975 for_each_possible_cpu(i) {
6976 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6977 ptr += cpumask_size();
6978 }
6979#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6980 }
dd41f596 6981
57d885fe
GH
6982#ifdef CONFIG_SMP
6983 init_defrootdomain();
6984#endif
6985
d0b27fa7
PZ
6986 init_rt_bandwidth(&def_rt_bandwidth,
6987 global_rt_period(), global_rt_runtime());
6988
6989#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6990 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6991 global_rt_period(), global_rt_runtime());
6d6bc0ad 6992#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6993
7c941438 6994#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6995 list_add(&root_task_group.list, &task_groups);
6996 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6997 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6998 autogroup_init(&init_task);
54c707e9 6999
7c941438 7000#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7001
54c707e9
GC
7002#ifdef CONFIG_CGROUP_CPUACCT
7003 root_cpuacct.cpustat = &kernel_cpustat;
7004 root_cpuacct.cpuusage = alloc_percpu(u64);
7005 /* Too early, not expected to fail */
7006 BUG_ON(!root_cpuacct.cpuusage);
7007#endif
0a945022 7008 for_each_possible_cpu(i) {
70b97a7f 7009 struct rq *rq;
1da177e4
LT
7010
7011 rq = cpu_rq(i);
05fa785c 7012 raw_spin_lock_init(&rq->lock);
7897986b 7013 rq->nr_running = 0;
dce48a84
TG
7014 rq->calc_load_active = 0;
7015 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7016 init_cfs_rq(&rq->cfs);
6f505b16 7017 init_rt_rq(&rq->rt, rq);
dd41f596 7018#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7019 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7020 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7021 /*
07e06b01 7022 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7023 *
7024 * In case of task-groups formed thr' the cgroup filesystem, it
7025 * gets 100% of the cpu resources in the system. This overall
7026 * system cpu resource is divided among the tasks of
07e06b01 7027 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7028 * based on each entity's (task or task-group's) weight
7029 * (se->load.weight).
7030 *
07e06b01 7031 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7032 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7033 * then A0's share of the cpu resource is:
7034 *
0d905bca 7035 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7036 *
07e06b01
YZ
7037 * We achieve this by letting root_task_group's tasks sit
7038 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7039 */
ab84d31e 7040 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7041 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7042#endif /* CONFIG_FAIR_GROUP_SCHED */
7043
7044 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7045#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7046 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 7047 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7048#endif
1da177e4 7049
dd41f596
IM
7050 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7051 rq->cpu_load[j] = 0;
fdf3e95d
VP
7052
7053 rq->last_load_update_tick = jiffies;
7054
1da177e4 7055#ifdef CONFIG_SMP
41c7ce9a 7056 rq->sd = NULL;
57d885fe 7057 rq->rd = NULL;
1399fa78 7058 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 7059 rq->post_schedule = 0;
1da177e4 7060 rq->active_balance = 0;
dd41f596 7061 rq->next_balance = jiffies;
1da177e4 7062 rq->push_cpu = 0;
0a2966b4 7063 rq->cpu = i;
1f11eb6a 7064 rq->online = 0;
eae0c9df
MG
7065 rq->idle_stamp = 0;
7066 rq->avg_idle = 2*sysctl_sched_migration_cost;
367456c7
PZ
7067
7068 INIT_LIST_HEAD(&rq->cfs_tasks);
7069
dc938520 7070 rq_attach_root(rq, &def_root_domain);
83cd4fe2 7071#ifdef CONFIG_NO_HZ
1c792db7 7072 rq->nohz_flags = 0;
83cd4fe2 7073#endif
1da177e4 7074#endif
8f4d37ec 7075 init_rq_hrtick(rq);
1da177e4 7076 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7077 }
7078
2dd73a4f 7079 set_load_weight(&init_task);
b50f60ce 7080
e107be36
AK
7081#ifdef CONFIG_PREEMPT_NOTIFIERS
7082 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7083#endif
7084
b50f60ce 7085#ifdef CONFIG_RT_MUTEXES
732375c6 7086 plist_head_init(&init_task.pi_waiters);
b50f60ce
HC
7087#endif
7088
1da177e4
LT
7089 /*
7090 * The boot idle thread does lazy MMU switching as well:
7091 */
7092 atomic_inc(&init_mm.mm_count);
7093 enter_lazy_tlb(&init_mm, current);
7094
7095 /*
7096 * Make us the idle thread. Technically, schedule() should not be
7097 * called from this thread, however somewhere below it might be,
7098 * but because we are the idle thread, we just pick up running again
7099 * when this runqueue becomes "idle".
7100 */
7101 init_idle(current, smp_processor_id());
dce48a84
TG
7102
7103 calc_load_update = jiffies + LOAD_FREQ;
7104
dd41f596
IM
7105 /*
7106 * During early bootup we pretend to be a normal task:
7107 */
7108 current->sched_class = &fair_sched_class;
6892b75e 7109
bf4d83f6 7110#ifdef CONFIG_SMP
4cb98839 7111 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7112 /* May be allocated at isolcpus cmdline parse time */
7113 if (cpu_isolated_map == NULL)
7114 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7115 idle_thread_set_boot_cpu();
029632fb
PZ
7116#endif
7117 init_sched_fair_class();
6a7b3dc3 7118
6892b75e 7119 scheduler_running = 1;
1da177e4
LT
7120}
7121
d902db1e 7122#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7123static inline int preempt_count_equals(int preempt_offset)
7124{
234da7bc 7125 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7126
4ba8216c 7127 return (nested == preempt_offset);
e4aafea2
FW
7128}
7129
d894837f 7130void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7131{
1da177e4
LT
7132 static unsigned long prev_jiffy; /* ratelimiting */
7133
b3fbab05 7134 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
e4aafea2
FW
7135 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7136 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7137 return;
7138 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7139 return;
7140 prev_jiffy = jiffies;
7141
3df0fc5b
PZ
7142 printk(KERN_ERR
7143 "BUG: sleeping function called from invalid context at %s:%d\n",
7144 file, line);
7145 printk(KERN_ERR
7146 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7147 in_atomic(), irqs_disabled(),
7148 current->pid, current->comm);
aef745fc
IM
7149
7150 debug_show_held_locks(current);
7151 if (irqs_disabled())
7152 print_irqtrace_events(current);
7153 dump_stack();
1da177e4
LT
7154}
7155EXPORT_SYMBOL(__might_sleep);
7156#endif
7157
7158#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7159static void normalize_task(struct rq *rq, struct task_struct *p)
7160{
da7a735e
PZ
7161 const struct sched_class *prev_class = p->sched_class;
7162 int old_prio = p->prio;
3a5e4dc1 7163 int on_rq;
3e51f33f 7164
fd2f4419 7165 on_rq = p->on_rq;
3a5e4dc1 7166 if (on_rq)
4ca9b72b 7167 dequeue_task(rq, p, 0);
3a5e4dc1
AK
7168 __setscheduler(rq, p, SCHED_NORMAL, 0);
7169 if (on_rq) {
4ca9b72b 7170 enqueue_task(rq, p, 0);
3a5e4dc1
AK
7171 resched_task(rq->curr);
7172 }
da7a735e
PZ
7173
7174 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7175}
7176
1da177e4
LT
7177void normalize_rt_tasks(void)
7178{
a0f98a1c 7179 struct task_struct *g, *p;
1da177e4 7180 unsigned long flags;
70b97a7f 7181 struct rq *rq;
1da177e4 7182
4cf5d77a 7183 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7184 do_each_thread(g, p) {
178be793
IM
7185 /*
7186 * Only normalize user tasks:
7187 */
7188 if (!p->mm)
7189 continue;
7190
6cfb0d5d 7191 p->se.exec_start = 0;
6cfb0d5d 7192#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7193 p->se.statistics.wait_start = 0;
7194 p->se.statistics.sleep_start = 0;
7195 p->se.statistics.block_start = 0;
6cfb0d5d 7196#endif
dd41f596
IM
7197
7198 if (!rt_task(p)) {
7199 /*
7200 * Renice negative nice level userspace
7201 * tasks back to 0:
7202 */
7203 if (TASK_NICE(p) < 0 && p->mm)
7204 set_user_nice(p, 0);
1da177e4 7205 continue;
dd41f596 7206 }
1da177e4 7207
1d615482 7208 raw_spin_lock(&p->pi_lock);
b29739f9 7209 rq = __task_rq_lock(p);
1da177e4 7210
178be793 7211 normalize_task(rq, p);
3a5e4dc1 7212
b29739f9 7213 __task_rq_unlock(rq);
1d615482 7214 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7215 } while_each_thread(g, p);
7216
4cf5d77a 7217 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7218}
7219
7220#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7221
67fc4e0c 7222#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7223/*
67fc4e0c 7224 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7225 *
7226 * They can only be called when the whole system has been
7227 * stopped - every CPU needs to be quiescent, and no scheduling
7228 * activity can take place. Using them for anything else would
7229 * be a serious bug, and as a result, they aren't even visible
7230 * under any other configuration.
7231 */
7232
7233/**
7234 * curr_task - return the current task for a given cpu.
7235 * @cpu: the processor in question.
7236 *
7237 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7238 */
36c8b586 7239struct task_struct *curr_task(int cpu)
1df5c10a
LT
7240{
7241 return cpu_curr(cpu);
7242}
7243
67fc4e0c
JW
7244#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7245
7246#ifdef CONFIG_IA64
1df5c10a
LT
7247/**
7248 * set_curr_task - set the current task for a given cpu.
7249 * @cpu: the processor in question.
7250 * @p: the task pointer to set.
7251 *
7252 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7253 * are serviced on a separate stack. It allows the architecture to switch the
7254 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7255 * must be called with all CPU's synchronized, and interrupts disabled, the
7256 * and caller must save the original value of the current task (see
7257 * curr_task() above) and restore that value before reenabling interrupts and
7258 * re-starting the system.
7259 *
7260 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7261 */
36c8b586 7262void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7263{
7264 cpu_curr(cpu) = p;
7265}
7266
7267#endif
29f59db3 7268
7c941438 7269#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7270/* task_group_lock serializes the addition/removal of task groups */
7271static DEFINE_SPINLOCK(task_group_lock);
7272
bccbe08a
PZ
7273static void free_sched_group(struct task_group *tg)
7274{
7275 free_fair_sched_group(tg);
7276 free_rt_sched_group(tg);
e9aa1dd1 7277 autogroup_free(tg);
bccbe08a
PZ
7278 kfree(tg);
7279}
7280
7281/* allocate runqueue etc for a new task group */
ec7dc8ac 7282struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7283{
7284 struct task_group *tg;
7285 unsigned long flags;
bccbe08a
PZ
7286
7287 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7288 if (!tg)
7289 return ERR_PTR(-ENOMEM);
7290
ec7dc8ac 7291 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7292 goto err;
7293
ec7dc8ac 7294 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7295 goto err;
7296
8ed36996 7297 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7298 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7299
7300 WARN_ON(!parent); /* root should already exist */
7301
7302 tg->parent = parent;
f473aa5e 7303 INIT_LIST_HEAD(&tg->children);
09f2724a 7304 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7305 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 7306
9b5b7751 7307 return tg;
29f59db3
SV
7308
7309err:
6f505b16 7310 free_sched_group(tg);
29f59db3
SV
7311 return ERR_PTR(-ENOMEM);
7312}
7313
9b5b7751 7314/* rcu callback to free various structures associated with a task group */
6f505b16 7315static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7316{
29f59db3 7317 /* now it should be safe to free those cfs_rqs */
6f505b16 7318 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7319}
7320
9b5b7751 7321/* Destroy runqueue etc associated with a task group */
4cf86d77 7322void sched_destroy_group(struct task_group *tg)
29f59db3 7323{
8ed36996 7324 unsigned long flags;
9b5b7751 7325 int i;
29f59db3 7326
3d4b47b4
PZ
7327 /* end participation in shares distribution */
7328 for_each_possible_cpu(i)
bccbe08a 7329 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7330
7331 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7332 list_del_rcu(&tg->list);
f473aa5e 7333 list_del_rcu(&tg->siblings);
8ed36996 7334 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 7335
9b5b7751 7336 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 7337 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
7338}
7339
9b5b7751 7340/* change task's runqueue when it moves between groups.
3a252015
IM
7341 * The caller of this function should have put the task in its new group
7342 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7343 * reflect its new group.
9b5b7751
SV
7344 */
7345void sched_move_task(struct task_struct *tsk)
29f59db3
SV
7346{
7347 int on_rq, running;
7348 unsigned long flags;
7349 struct rq *rq;
7350
7351 rq = task_rq_lock(tsk, &flags);
7352
051a1d1a 7353 running = task_current(rq, tsk);
fd2f4419 7354 on_rq = tsk->on_rq;
29f59db3 7355
0e1f3483 7356 if (on_rq)
29f59db3 7357 dequeue_task(rq, tsk, 0);
0e1f3483
HS
7358 if (unlikely(running))
7359 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 7360
810b3817 7361#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
7362 if (tsk->sched_class->task_move_group)
7363 tsk->sched_class->task_move_group(tsk, on_rq);
7364 else
810b3817 7365#endif
b2b5ce02 7366 set_task_rq(tsk, task_cpu(tsk));
810b3817 7367
0e1f3483
HS
7368 if (unlikely(running))
7369 tsk->sched_class->set_curr_task(rq);
7370 if (on_rq)
371fd7e7 7371 enqueue_task(rq, tsk, 0);
29f59db3 7372
0122ec5b 7373 task_rq_unlock(rq, tsk, &flags);
29f59db3 7374}
7c941438 7375#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7376
a790de99 7377#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
9f0c1e56
PZ
7378static unsigned long to_ratio(u64 period, u64 runtime)
7379{
7380 if (runtime == RUNTIME_INF)
9a7e0b18 7381 return 1ULL << 20;
9f0c1e56 7382
9a7e0b18 7383 return div64_u64(runtime << 20, period);
9f0c1e56 7384}
a790de99
PT
7385#endif
7386
7387#ifdef CONFIG_RT_GROUP_SCHED
7388/*
7389 * Ensure that the real time constraints are schedulable.
7390 */
7391static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7392
9a7e0b18
PZ
7393/* Must be called with tasklist_lock held */
7394static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7395{
9a7e0b18 7396 struct task_struct *g, *p;
b40b2e8e 7397
9a7e0b18 7398 do_each_thread(g, p) {
029632fb 7399 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
7400 return 1;
7401 } while_each_thread(g, p);
b40b2e8e 7402
9a7e0b18
PZ
7403 return 0;
7404}
b40b2e8e 7405
9a7e0b18
PZ
7406struct rt_schedulable_data {
7407 struct task_group *tg;
7408 u64 rt_period;
7409 u64 rt_runtime;
7410};
b40b2e8e 7411
a790de99 7412static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7413{
7414 struct rt_schedulable_data *d = data;
7415 struct task_group *child;
7416 unsigned long total, sum = 0;
7417 u64 period, runtime;
b40b2e8e 7418
9a7e0b18
PZ
7419 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7420 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7421
9a7e0b18
PZ
7422 if (tg == d->tg) {
7423 period = d->rt_period;
7424 runtime = d->rt_runtime;
b40b2e8e 7425 }
b40b2e8e 7426
4653f803
PZ
7427 /*
7428 * Cannot have more runtime than the period.
7429 */
7430 if (runtime > period && runtime != RUNTIME_INF)
7431 return -EINVAL;
6f505b16 7432
4653f803
PZ
7433 /*
7434 * Ensure we don't starve existing RT tasks.
7435 */
9a7e0b18
PZ
7436 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7437 return -EBUSY;
6f505b16 7438
9a7e0b18 7439 total = to_ratio(period, runtime);
6f505b16 7440
4653f803
PZ
7441 /*
7442 * Nobody can have more than the global setting allows.
7443 */
7444 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7445 return -EINVAL;
6f505b16 7446
4653f803
PZ
7447 /*
7448 * The sum of our children's runtime should not exceed our own.
7449 */
9a7e0b18
PZ
7450 list_for_each_entry_rcu(child, &tg->children, siblings) {
7451 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7452 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7453
9a7e0b18
PZ
7454 if (child == d->tg) {
7455 period = d->rt_period;
7456 runtime = d->rt_runtime;
7457 }
6f505b16 7458
9a7e0b18 7459 sum += to_ratio(period, runtime);
9f0c1e56 7460 }
6f505b16 7461
9a7e0b18
PZ
7462 if (sum > total)
7463 return -EINVAL;
7464
7465 return 0;
6f505b16
PZ
7466}
7467
9a7e0b18 7468static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7469{
8277434e
PT
7470 int ret;
7471
9a7e0b18
PZ
7472 struct rt_schedulable_data data = {
7473 .tg = tg,
7474 .rt_period = period,
7475 .rt_runtime = runtime,
7476 };
7477
8277434e
PT
7478 rcu_read_lock();
7479 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7480 rcu_read_unlock();
7481
7482 return ret;
521f1a24
DG
7483}
7484
ab84d31e 7485static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7486 u64 rt_period, u64 rt_runtime)
6f505b16 7487{
ac086bc2 7488 int i, err = 0;
9f0c1e56 7489
9f0c1e56 7490 mutex_lock(&rt_constraints_mutex);
521f1a24 7491 read_lock(&tasklist_lock);
9a7e0b18
PZ
7492 err = __rt_schedulable(tg, rt_period, rt_runtime);
7493 if (err)
9f0c1e56 7494 goto unlock;
ac086bc2 7495
0986b11b 7496 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7497 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7498 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7499
7500 for_each_possible_cpu(i) {
7501 struct rt_rq *rt_rq = tg->rt_rq[i];
7502
0986b11b 7503 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7504 rt_rq->rt_runtime = rt_runtime;
0986b11b 7505 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7506 }
0986b11b 7507 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7508unlock:
521f1a24 7509 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7510 mutex_unlock(&rt_constraints_mutex);
7511
7512 return err;
6f505b16
PZ
7513}
7514
d0b27fa7
PZ
7515int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7516{
7517 u64 rt_runtime, rt_period;
7518
7519 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7520 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7521 if (rt_runtime_us < 0)
7522 rt_runtime = RUNTIME_INF;
7523
ab84d31e 7524 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7525}
7526
9f0c1e56
PZ
7527long sched_group_rt_runtime(struct task_group *tg)
7528{
7529 u64 rt_runtime_us;
7530
d0b27fa7 7531 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7532 return -1;
7533
d0b27fa7 7534 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7535 do_div(rt_runtime_us, NSEC_PER_USEC);
7536 return rt_runtime_us;
7537}
d0b27fa7
PZ
7538
7539int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7540{
7541 u64 rt_runtime, rt_period;
7542
7543 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7544 rt_runtime = tg->rt_bandwidth.rt_runtime;
7545
619b0488
R
7546 if (rt_period == 0)
7547 return -EINVAL;
7548
ab84d31e 7549 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7550}
7551
7552long sched_group_rt_period(struct task_group *tg)
7553{
7554 u64 rt_period_us;
7555
7556 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7557 do_div(rt_period_us, NSEC_PER_USEC);
7558 return rt_period_us;
7559}
7560
7561static int sched_rt_global_constraints(void)
7562{
4653f803 7563 u64 runtime, period;
d0b27fa7
PZ
7564 int ret = 0;
7565
ec5d4989
HS
7566 if (sysctl_sched_rt_period <= 0)
7567 return -EINVAL;
7568
4653f803
PZ
7569 runtime = global_rt_runtime();
7570 period = global_rt_period();
7571
7572 /*
7573 * Sanity check on the sysctl variables.
7574 */
7575 if (runtime > period && runtime != RUNTIME_INF)
7576 return -EINVAL;
10b612f4 7577
d0b27fa7 7578 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7579 read_lock(&tasklist_lock);
4653f803 7580 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7581 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7582 mutex_unlock(&rt_constraints_mutex);
7583
7584 return ret;
7585}
54e99124
DG
7586
7587int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7588{
7589 /* Don't accept realtime tasks when there is no way for them to run */
7590 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7591 return 0;
7592
7593 return 1;
7594}
7595
6d6bc0ad 7596#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7597static int sched_rt_global_constraints(void)
7598{
ac086bc2
PZ
7599 unsigned long flags;
7600 int i;
7601
ec5d4989
HS
7602 if (sysctl_sched_rt_period <= 0)
7603 return -EINVAL;
7604
60aa605d
PZ
7605 /*
7606 * There's always some RT tasks in the root group
7607 * -- migration, kstopmachine etc..
7608 */
7609 if (sysctl_sched_rt_runtime == 0)
7610 return -EBUSY;
7611
0986b11b 7612 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7613 for_each_possible_cpu(i) {
7614 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7615
0986b11b 7616 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7617 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7618 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7619 }
0986b11b 7620 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7621
d0b27fa7
PZ
7622 return 0;
7623}
6d6bc0ad 7624#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7625
7626int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7627 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7628 loff_t *ppos)
7629{
7630 int ret;
7631 int old_period, old_runtime;
7632 static DEFINE_MUTEX(mutex);
7633
7634 mutex_lock(&mutex);
7635 old_period = sysctl_sched_rt_period;
7636 old_runtime = sysctl_sched_rt_runtime;
7637
8d65af78 7638 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7639
7640 if (!ret && write) {
7641 ret = sched_rt_global_constraints();
7642 if (ret) {
7643 sysctl_sched_rt_period = old_period;
7644 sysctl_sched_rt_runtime = old_runtime;
7645 } else {
7646 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7647 def_rt_bandwidth.rt_period =
7648 ns_to_ktime(global_rt_period());
7649 }
7650 }
7651 mutex_unlock(&mutex);
7652
7653 return ret;
7654}
68318b8e 7655
052f1dc7 7656#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
7657
7658/* return corresponding task_group object of a cgroup */
2b01dfe3 7659static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 7660{
2b01dfe3
PM
7661 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7662 struct task_group, css);
68318b8e
SV
7663}
7664
761b3ef5 7665static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
68318b8e 7666{
ec7dc8ac 7667 struct task_group *tg, *parent;
68318b8e 7668
2b01dfe3 7669 if (!cgrp->parent) {
68318b8e 7670 /* This is early initialization for the top cgroup */
07e06b01 7671 return &root_task_group.css;
68318b8e
SV
7672 }
7673
ec7dc8ac
DG
7674 parent = cgroup_tg(cgrp->parent);
7675 tg = sched_create_group(parent);
68318b8e
SV
7676 if (IS_ERR(tg))
7677 return ERR_PTR(-ENOMEM);
7678
68318b8e
SV
7679 return &tg->css;
7680}
7681
761b3ef5 7682static void cpu_cgroup_destroy(struct cgroup *cgrp)
68318b8e 7683{
2b01dfe3 7684 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7685
7686 sched_destroy_group(tg);
7687}
7688
761b3ef5 7689static int cpu_cgroup_can_attach(struct cgroup *cgrp,
bb9d97b6 7690 struct cgroup_taskset *tset)
68318b8e 7691{
bb9d97b6
TH
7692 struct task_struct *task;
7693
7694 cgroup_taskset_for_each(task, cgrp, tset) {
b68aa230 7695#ifdef CONFIG_RT_GROUP_SCHED
bb9d97b6
TH
7696 if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7697 return -EINVAL;
b68aa230 7698#else
bb9d97b6
TH
7699 /* We don't support RT-tasks being in separate groups */
7700 if (task->sched_class != &fair_sched_class)
7701 return -EINVAL;
b68aa230 7702#endif
bb9d97b6 7703 }
be367d09
BB
7704 return 0;
7705}
68318b8e 7706
761b3ef5 7707static void cpu_cgroup_attach(struct cgroup *cgrp,
bb9d97b6 7708 struct cgroup_taskset *tset)
68318b8e 7709{
bb9d97b6
TH
7710 struct task_struct *task;
7711
7712 cgroup_taskset_for_each(task, cgrp, tset)
7713 sched_move_task(task);
68318b8e
SV
7714}
7715
068c5cc5 7716static void
761b3ef5
LZ
7717cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7718 struct task_struct *task)
068c5cc5
PZ
7719{
7720 /*
7721 * cgroup_exit() is called in the copy_process() failure path.
7722 * Ignore this case since the task hasn't ran yet, this avoids
7723 * trying to poke a half freed task state from generic code.
7724 */
7725 if (!(task->flags & PF_EXITING))
7726 return;
7727
7728 sched_move_task(task);
7729}
7730
052f1dc7 7731#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 7732static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 7733 u64 shareval)
68318b8e 7734{
c8b28116 7735 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
68318b8e
SV
7736}
7737
f4c753b7 7738static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 7739{
2b01dfe3 7740 struct task_group *tg = cgroup_tg(cgrp);
68318b8e 7741
c8b28116 7742 return (u64) scale_load_down(tg->shares);
68318b8e 7743}
ab84d31e
PT
7744
7745#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7746static DEFINE_MUTEX(cfs_constraints_mutex);
7747
ab84d31e
PT
7748const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7749const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7750
a790de99
PT
7751static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7752
ab84d31e
PT
7753static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7754{
56f570e5 7755 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7756 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7757
7758 if (tg == &root_task_group)
7759 return -EINVAL;
7760
7761 /*
7762 * Ensure we have at some amount of bandwidth every period. This is
7763 * to prevent reaching a state of large arrears when throttled via
7764 * entity_tick() resulting in prolonged exit starvation.
7765 */
7766 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7767 return -EINVAL;
7768
7769 /*
7770 * Likewise, bound things on the otherside by preventing insane quota
7771 * periods. This also allows us to normalize in computing quota
7772 * feasibility.
7773 */
7774 if (period > max_cfs_quota_period)
7775 return -EINVAL;
7776
a790de99
PT
7777 mutex_lock(&cfs_constraints_mutex);
7778 ret = __cfs_schedulable(tg, period, quota);
7779 if (ret)
7780 goto out_unlock;
7781
58088ad0 7782 runtime_enabled = quota != RUNTIME_INF;
56f570e5
PT
7783 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7784 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
ab84d31e
PT
7785 raw_spin_lock_irq(&cfs_b->lock);
7786 cfs_b->period = ns_to_ktime(period);
7787 cfs_b->quota = quota;
58088ad0 7788
a9cf55b2 7789 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7790 /* restart the period timer (if active) to handle new period expiry */
7791 if (runtime_enabled && cfs_b->timer_active) {
7792 /* force a reprogram */
7793 cfs_b->timer_active = 0;
7794 __start_cfs_bandwidth(cfs_b);
7795 }
ab84d31e
PT
7796 raw_spin_unlock_irq(&cfs_b->lock);
7797
7798 for_each_possible_cpu(i) {
7799 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7800 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7801
7802 raw_spin_lock_irq(&rq->lock);
58088ad0 7803 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7804 cfs_rq->runtime_remaining = 0;
671fd9da 7805
029632fb 7806 if (cfs_rq->throttled)
671fd9da 7807 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7808 raw_spin_unlock_irq(&rq->lock);
7809 }
a790de99
PT
7810out_unlock:
7811 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7812
a790de99 7813 return ret;
ab84d31e
PT
7814}
7815
7816int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7817{
7818 u64 quota, period;
7819
029632fb 7820 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7821 if (cfs_quota_us < 0)
7822 quota = RUNTIME_INF;
7823 else
7824 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7825
7826 return tg_set_cfs_bandwidth(tg, period, quota);
7827}
7828
7829long tg_get_cfs_quota(struct task_group *tg)
7830{
7831 u64 quota_us;
7832
029632fb 7833 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7834 return -1;
7835
029632fb 7836 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7837 do_div(quota_us, NSEC_PER_USEC);
7838
7839 return quota_us;
7840}
7841
7842int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7843{
7844 u64 quota, period;
7845
7846 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7847 quota = tg->cfs_bandwidth.quota;
ab84d31e 7848
ab84d31e
PT
7849 return tg_set_cfs_bandwidth(tg, period, quota);
7850}
7851
7852long tg_get_cfs_period(struct task_group *tg)
7853{
7854 u64 cfs_period_us;
7855
029632fb 7856 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7857 do_div(cfs_period_us, NSEC_PER_USEC);
7858
7859 return cfs_period_us;
7860}
7861
7862static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7863{
7864 return tg_get_cfs_quota(cgroup_tg(cgrp));
7865}
7866
7867static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7868 s64 cfs_quota_us)
7869{
7870 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7871}
7872
7873static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7874{
7875 return tg_get_cfs_period(cgroup_tg(cgrp));
7876}
7877
7878static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7879 u64 cfs_period_us)
7880{
7881 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7882}
7883
a790de99
PT
7884struct cfs_schedulable_data {
7885 struct task_group *tg;
7886 u64 period, quota;
7887};
7888
7889/*
7890 * normalize group quota/period to be quota/max_period
7891 * note: units are usecs
7892 */
7893static u64 normalize_cfs_quota(struct task_group *tg,
7894 struct cfs_schedulable_data *d)
7895{
7896 u64 quota, period;
7897
7898 if (tg == d->tg) {
7899 period = d->period;
7900 quota = d->quota;
7901 } else {
7902 period = tg_get_cfs_period(tg);
7903 quota = tg_get_cfs_quota(tg);
7904 }
7905
7906 /* note: these should typically be equivalent */
7907 if (quota == RUNTIME_INF || quota == -1)
7908 return RUNTIME_INF;
7909
7910 return to_ratio(period, quota);
7911}
7912
7913static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7914{
7915 struct cfs_schedulable_data *d = data;
029632fb 7916 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7917 s64 quota = 0, parent_quota = -1;
7918
7919 if (!tg->parent) {
7920 quota = RUNTIME_INF;
7921 } else {
029632fb 7922 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7923
7924 quota = normalize_cfs_quota(tg, d);
7925 parent_quota = parent_b->hierarchal_quota;
7926
7927 /*
7928 * ensure max(child_quota) <= parent_quota, inherit when no
7929 * limit is set
7930 */
7931 if (quota == RUNTIME_INF)
7932 quota = parent_quota;
7933 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7934 return -EINVAL;
7935 }
7936 cfs_b->hierarchal_quota = quota;
7937
7938 return 0;
7939}
7940
7941static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7942{
8277434e 7943 int ret;
a790de99
PT
7944 struct cfs_schedulable_data data = {
7945 .tg = tg,
7946 .period = period,
7947 .quota = quota,
7948 };
7949
7950 if (quota != RUNTIME_INF) {
7951 do_div(data.period, NSEC_PER_USEC);
7952 do_div(data.quota, NSEC_PER_USEC);
7953 }
7954
8277434e
PT
7955 rcu_read_lock();
7956 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7957 rcu_read_unlock();
7958
7959 return ret;
a790de99 7960}
e8da1b18
NR
7961
7962static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7963 struct cgroup_map_cb *cb)
7964{
7965 struct task_group *tg = cgroup_tg(cgrp);
029632fb 7966 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18
NR
7967
7968 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7969 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7970 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7971
7972 return 0;
7973}
ab84d31e 7974#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7975#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7976
052f1dc7 7977#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 7978static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 7979 s64 val)
6f505b16 7980{
06ecb27c 7981 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
7982}
7983
06ecb27c 7984static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 7985{
06ecb27c 7986 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 7987}
d0b27fa7
PZ
7988
7989static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7990 u64 rt_period_us)
7991{
7992 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7993}
7994
7995static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7996{
7997 return sched_group_rt_period(cgroup_tg(cgrp));
7998}
6d6bc0ad 7999#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8000
fe5c7cc2 8001static struct cftype cpu_files[] = {
052f1dc7 8002#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8003 {
8004 .name = "shares",
f4c753b7
PM
8005 .read_u64 = cpu_shares_read_u64,
8006 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8007 },
052f1dc7 8008#endif
ab84d31e
PT
8009#ifdef CONFIG_CFS_BANDWIDTH
8010 {
8011 .name = "cfs_quota_us",
8012 .read_s64 = cpu_cfs_quota_read_s64,
8013 .write_s64 = cpu_cfs_quota_write_s64,
8014 },
8015 {
8016 .name = "cfs_period_us",
8017 .read_u64 = cpu_cfs_period_read_u64,
8018 .write_u64 = cpu_cfs_period_write_u64,
8019 },
e8da1b18
NR
8020 {
8021 .name = "stat",
8022 .read_map = cpu_stats_show,
8023 },
ab84d31e 8024#endif
052f1dc7 8025#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8026 {
9f0c1e56 8027 .name = "rt_runtime_us",
06ecb27c
PM
8028 .read_s64 = cpu_rt_runtime_read,
8029 .write_s64 = cpu_rt_runtime_write,
6f505b16 8030 },
d0b27fa7
PZ
8031 {
8032 .name = "rt_period_us",
f4c753b7
PM
8033 .read_u64 = cpu_rt_period_read_uint,
8034 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8035 },
052f1dc7 8036#endif
4baf6e33 8037 { } /* terminate */
68318b8e
SV
8038};
8039
68318b8e 8040struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8041 .name = "cpu",
8042 .create = cpu_cgroup_create,
8043 .destroy = cpu_cgroup_destroy,
bb9d97b6
TH
8044 .can_attach = cpu_cgroup_can_attach,
8045 .attach = cpu_cgroup_attach,
068c5cc5 8046 .exit = cpu_cgroup_exit,
38605cae 8047 .subsys_id = cpu_cgroup_subsys_id,
4baf6e33 8048 .base_cftypes = cpu_files,
68318b8e
SV
8049 .early_init = 1,
8050};
8051
052f1dc7 8052#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8053
8054#ifdef CONFIG_CGROUP_CPUACCT
8055
8056/*
8057 * CPU accounting code for task groups.
8058 *
8059 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8060 * (balbir@in.ibm.com).
8061 */
8062
d842de87 8063/* create a new cpu accounting group */
761b3ef5 8064static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
d842de87 8065{
54c707e9 8066 struct cpuacct *ca;
d842de87 8067
54c707e9
GC
8068 if (!cgrp->parent)
8069 return &root_cpuacct.css;
8070
8071 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
d842de87 8072 if (!ca)
ef12fefa 8073 goto out;
d842de87
SV
8074
8075 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
8076 if (!ca->cpuusage)
8077 goto out_free_ca;
8078
54c707e9
GC
8079 ca->cpustat = alloc_percpu(struct kernel_cpustat);
8080 if (!ca->cpustat)
8081 goto out_free_cpuusage;
934352f2 8082
d842de87 8083 return &ca->css;
ef12fefa 8084
54c707e9 8085out_free_cpuusage:
ef12fefa
BR
8086 free_percpu(ca->cpuusage);
8087out_free_ca:
8088 kfree(ca);
8089out:
8090 return ERR_PTR(-ENOMEM);
d842de87
SV
8091}
8092
8093/* destroy an existing cpu accounting group */
761b3ef5 8094static void cpuacct_destroy(struct cgroup *cgrp)
d842de87 8095{
32cd756a 8096 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87 8097
54c707e9 8098 free_percpu(ca->cpustat);
d842de87
SV
8099 free_percpu(ca->cpuusage);
8100 kfree(ca);
8101}
8102
720f5498
KC
8103static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8104{
b36128c8 8105 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8106 u64 data;
8107
8108#ifndef CONFIG_64BIT
8109 /*
8110 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8111 */
05fa785c 8112 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8113 data = *cpuusage;
05fa785c 8114 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8115#else
8116 data = *cpuusage;
8117#endif
8118
8119 return data;
8120}
8121
8122static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8123{
b36128c8 8124 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8125
8126#ifndef CONFIG_64BIT
8127 /*
8128 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8129 */
05fa785c 8130 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8131 *cpuusage = val;
05fa785c 8132 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8133#else
8134 *cpuusage = val;
8135#endif
8136}
8137
d842de87 8138/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8139static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8140{
32cd756a 8141 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8142 u64 totalcpuusage = 0;
8143 int i;
8144
720f5498
KC
8145 for_each_present_cpu(i)
8146 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
8147
8148 return totalcpuusage;
8149}
8150
0297b803
DG
8151static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8152 u64 reset)
8153{
8154 struct cpuacct *ca = cgroup_ca(cgrp);
8155 int err = 0;
8156 int i;
8157
8158 if (reset) {
8159 err = -EINVAL;
8160 goto out;
8161 }
8162
720f5498
KC
8163 for_each_present_cpu(i)
8164 cpuacct_cpuusage_write(ca, i, 0);
0297b803 8165
0297b803
DG
8166out:
8167 return err;
8168}
8169
e9515c3c
KC
8170static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8171 struct seq_file *m)
8172{
8173 struct cpuacct *ca = cgroup_ca(cgroup);
8174 u64 percpu;
8175 int i;
8176
8177 for_each_present_cpu(i) {
8178 percpu = cpuacct_cpuusage_read(ca, i);
8179 seq_printf(m, "%llu ", (unsigned long long) percpu);
8180 }
8181 seq_printf(m, "\n");
8182 return 0;
8183}
8184
ef12fefa
BR
8185static const char *cpuacct_stat_desc[] = {
8186 [CPUACCT_STAT_USER] = "user",
8187 [CPUACCT_STAT_SYSTEM] = "system",
8188};
8189
8190static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
54c707e9 8191 struct cgroup_map_cb *cb)
ef12fefa
BR
8192{
8193 struct cpuacct *ca = cgroup_ca(cgrp);
54c707e9
GC
8194 int cpu;
8195 s64 val = 0;
ef12fefa 8196
54c707e9
GC
8197 for_each_online_cpu(cpu) {
8198 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8199 val += kcpustat->cpustat[CPUTIME_USER];
8200 val += kcpustat->cpustat[CPUTIME_NICE];
ef12fefa 8201 }
54c707e9
GC
8202 val = cputime64_to_clock_t(val);
8203 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
ef12fefa 8204
54c707e9
GC
8205 val = 0;
8206 for_each_online_cpu(cpu) {
8207 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8208 val += kcpustat->cpustat[CPUTIME_SYSTEM];
8209 val += kcpustat->cpustat[CPUTIME_IRQ];
8210 val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
ef12fefa 8211 }
54c707e9
GC
8212
8213 val = cputime64_to_clock_t(val);
8214 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8215
ef12fefa
BR
8216 return 0;
8217}
8218
d842de87
SV
8219static struct cftype files[] = {
8220 {
8221 .name = "usage",
f4c753b7
PM
8222 .read_u64 = cpuusage_read,
8223 .write_u64 = cpuusage_write,
d842de87 8224 },
e9515c3c
KC
8225 {
8226 .name = "usage_percpu",
8227 .read_seq_string = cpuacct_percpu_seq_read,
8228 },
ef12fefa
BR
8229 {
8230 .name = "stat",
8231 .read_map = cpuacct_stats_show,
8232 },
4baf6e33 8233 { } /* terminate */
d842de87
SV
8234};
8235
d842de87
SV
8236/*
8237 * charge this task's execution time to its accounting group.
8238 *
8239 * called with rq->lock held.
8240 */
029632fb 8241void cpuacct_charge(struct task_struct *tsk, u64 cputime)
d842de87
SV
8242{
8243 struct cpuacct *ca;
934352f2 8244 int cpu;
d842de87 8245
c40c6f85 8246 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
8247 return;
8248
934352f2 8249 cpu = task_cpu(tsk);
a18b83b7
BR
8250
8251 rcu_read_lock();
8252
d842de87 8253 ca = task_ca(tsk);
d842de87 8254
44252e42 8255 for (; ca; ca = parent_ca(ca)) {
b36128c8 8256 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
8257 *cpuusage += cputime;
8258 }
a18b83b7
BR
8259
8260 rcu_read_unlock();
d842de87
SV
8261}
8262
8263struct cgroup_subsys cpuacct_subsys = {
8264 .name = "cpuacct",
8265 .create = cpuacct_create,
8266 .destroy = cpuacct_destroy,
d842de87 8267 .subsys_id = cpuacct_subsys_id,
4baf6e33 8268 .base_cftypes = files,
d842de87
SV
8269};
8270#endif /* CONFIG_CGROUP_CPUACCT */