sched/numa: Don't scale the imbalance
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
1da177e4 75
96f951ed 76#include <asm/switch_to.h>
5517d86b 77#include <asm/tlb.h>
838225b4 78#include <asm/irq_regs.h>
db7e527d 79#include <asm/mutex.h>
e6e6685a
GC
80#ifdef CONFIG_PARAVIRT
81#include <asm/paravirt.h>
82#endif
1da177e4 83
029632fb 84#include "sched.h"
391e43da 85#include "../workqueue_sched.h"
6e0534f2 86
a8d154b0 87#define CREATE_TRACE_POINTS
ad8d75ff 88#include <trace/events/sched.h>
a8d154b0 89
029632fb 90void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 91{
58088ad0
PT
92 unsigned long delta;
93 ktime_t soft, hard, now;
d0b27fa7 94
58088ad0
PT
95 for (;;) {
96 if (hrtimer_active(period_timer))
97 break;
98
99 now = hrtimer_cb_get_time(period_timer);
100 hrtimer_forward(period_timer, now, period);
d0b27fa7 101
58088ad0
PT
102 soft = hrtimer_get_softexpires(period_timer);
103 hard = hrtimer_get_expires(period_timer);
104 delta = ktime_to_ns(ktime_sub(hard, soft));
105 __hrtimer_start_range_ns(period_timer, soft, delta,
106 HRTIMER_MODE_ABS_PINNED, 0);
107 }
108}
109
029632fb
PZ
110DEFINE_MUTEX(sched_domains_mutex);
111DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 112
fe44d621 113static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 114
029632fb 115void update_rq_clock(struct rq *rq)
3e51f33f 116{
fe44d621 117 s64 delta;
305e6835 118
61eadef6 119 if (rq->skip_clock_update > 0)
f26f9aff 120 return;
aa483808 121
fe44d621
PZ
122 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
123 rq->clock += delta;
124 update_rq_clock_task(rq, delta);
3e51f33f
PZ
125}
126
bf5c91ba
IM
127/*
128 * Debugging: various feature bits
129 */
f00b45c1 130
f00b45c1
PZ
131#define SCHED_FEAT(name, enabled) \
132 (1UL << __SCHED_FEAT_##name) * enabled |
133
bf5c91ba 134const_debug unsigned int sysctl_sched_features =
391e43da 135#include "features.h"
f00b45c1
PZ
136 0;
137
138#undef SCHED_FEAT
139
140#ifdef CONFIG_SCHED_DEBUG
141#define SCHED_FEAT(name, enabled) \
142 #name ,
143
983ed7a6 144static __read_mostly char *sched_feat_names[] = {
391e43da 145#include "features.h"
f00b45c1
PZ
146 NULL
147};
148
149#undef SCHED_FEAT
150
34f3a814 151static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 152{
f00b45c1
PZ
153 int i;
154
f8b6d1cc 155 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
156 if (!(sysctl_sched_features & (1UL << i)))
157 seq_puts(m, "NO_");
158 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 159 }
34f3a814 160 seq_puts(m, "\n");
f00b45c1 161
34f3a814 162 return 0;
f00b45c1
PZ
163}
164
f8b6d1cc
PZ
165#ifdef HAVE_JUMP_LABEL
166
c5905afb
IM
167#define jump_label_key__true STATIC_KEY_INIT_TRUE
168#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
169
170#define SCHED_FEAT(name, enabled) \
171 jump_label_key__##enabled ,
172
c5905afb 173struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
174#include "features.h"
175};
176
177#undef SCHED_FEAT
178
179static void sched_feat_disable(int i)
180{
c5905afb
IM
181 if (static_key_enabled(&sched_feat_keys[i]))
182 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
183}
184
185static void sched_feat_enable(int i)
186{
c5905afb
IM
187 if (!static_key_enabled(&sched_feat_keys[i]))
188 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
189}
190#else
191static void sched_feat_disable(int i) { };
192static void sched_feat_enable(int i) { };
193#endif /* HAVE_JUMP_LABEL */
194
f00b45c1
PZ
195static ssize_t
196sched_feat_write(struct file *filp, const char __user *ubuf,
197 size_t cnt, loff_t *ppos)
198{
199 char buf[64];
7740191c 200 char *cmp;
f00b45c1
PZ
201 int neg = 0;
202 int i;
203
204 if (cnt > 63)
205 cnt = 63;
206
207 if (copy_from_user(&buf, ubuf, cnt))
208 return -EFAULT;
209
210 buf[cnt] = 0;
7740191c 211 cmp = strstrip(buf);
f00b45c1 212
524429c3 213 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
214 neg = 1;
215 cmp += 3;
216 }
217
f8b6d1cc 218 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 219 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 220 if (neg) {
f00b45c1 221 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
222 sched_feat_disable(i);
223 } else {
f00b45c1 224 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
225 sched_feat_enable(i);
226 }
f00b45c1
PZ
227 break;
228 }
229 }
230
f8b6d1cc 231 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
232 return -EINVAL;
233
42994724 234 *ppos += cnt;
f00b45c1
PZ
235
236 return cnt;
237}
238
34f3a814
LZ
239static int sched_feat_open(struct inode *inode, struct file *filp)
240{
241 return single_open(filp, sched_feat_show, NULL);
242}
243
828c0950 244static const struct file_operations sched_feat_fops = {
34f3a814
LZ
245 .open = sched_feat_open,
246 .write = sched_feat_write,
247 .read = seq_read,
248 .llseek = seq_lseek,
249 .release = single_release,
f00b45c1
PZ
250};
251
252static __init int sched_init_debug(void)
253{
f00b45c1
PZ
254 debugfs_create_file("sched_features", 0644, NULL, NULL,
255 &sched_feat_fops);
256
257 return 0;
258}
259late_initcall(sched_init_debug);
f8b6d1cc 260#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 261
b82d9fdd
PZ
262/*
263 * Number of tasks to iterate in a single balance run.
264 * Limited because this is done with IRQs disabled.
265 */
266const_debug unsigned int sysctl_sched_nr_migrate = 32;
267
e9e9250b
PZ
268/*
269 * period over which we average the RT time consumption, measured
270 * in ms.
271 *
272 * default: 1s
273 */
274const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
275
fa85ae24 276/*
9f0c1e56 277 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
278 * default: 1s
279 */
9f0c1e56 280unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 281
029632fb 282__read_mostly int scheduler_running;
6892b75e 283
9f0c1e56
PZ
284/*
285 * part of the period that we allow rt tasks to run in us.
286 * default: 0.95s
287 */
288int sysctl_sched_rt_runtime = 950000;
fa85ae24 289
fa85ae24 290
1da177e4 291
0970d299 292/*
0122ec5b 293 * __task_rq_lock - lock the rq @p resides on.
b29739f9 294 */
70b97a7f 295static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
296 __acquires(rq->lock)
297{
0970d299
PZ
298 struct rq *rq;
299
0122ec5b
PZ
300 lockdep_assert_held(&p->pi_lock);
301
3a5c359a 302 for (;;) {
0970d299 303 rq = task_rq(p);
05fa785c 304 raw_spin_lock(&rq->lock);
65cc8e48 305 if (likely(rq == task_rq(p)))
3a5c359a 306 return rq;
05fa785c 307 raw_spin_unlock(&rq->lock);
b29739f9 308 }
b29739f9
IM
309}
310
1da177e4 311/*
0122ec5b 312 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 313 */
70b97a7f 314static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 315 __acquires(p->pi_lock)
1da177e4
LT
316 __acquires(rq->lock)
317{
70b97a7f 318 struct rq *rq;
1da177e4 319
3a5c359a 320 for (;;) {
0122ec5b 321 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 322 rq = task_rq(p);
05fa785c 323 raw_spin_lock(&rq->lock);
65cc8e48 324 if (likely(rq == task_rq(p)))
3a5c359a 325 return rq;
0122ec5b
PZ
326 raw_spin_unlock(&rq->lock);
327 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 328 }
1da177e4
LT
329}
330
a9957449 331static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
332 __releases(rq->lock)
333{
05fa785c 334 raw_spin_unlock(&rq->lock);
b29739f9
IM
335}
336
0122ec5b
PZ
337static inline void
338task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 339 __releases(rq->lock)
0122ec5b 340 __releases(p->pi_lock)
1da177e4 341{
0122ec5b
PZ
342 raw_spin_unlock(&rq->lock);
343 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
344}
345
1da177e4 346/*
cc2a73b5 347 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 348 */
a9957449 349static struct rq *this_rq_lock(void)
1da177e4
LT
350 __acquires(rq->lock)
351{
70b97a7f 352 struct rq *rq;
1da177e4
LT
353
354 local_irq_disable();
355 rq = this_rq();
05fa785c 356 raw_spin_lock(&rq->lock);
1da177e4
LT
357
358 return rq;
359}
360
8f4d37ec
PZ
361#ifdef CONFIG_SCHED_HRTICK
362/*
363 * Use HR-timers to deliver accurate preemption points.
364 *
365 * Its all a bit involved since we cannot program an hrt while holding the
366 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
367 * reschedule event.
368 *
369 * When we get rescheduled we reprogram the hrtick_timer outside of the
370 * rq->lock.
371 */
8f4d37ec 372
8f4d37ec
PZ
373static void hrtick_clear(struct rq *rq)
374{
375 if (hrtimer_active(&rq->hrtick_timer))
376 hrtimer_cancel(&rq->hrtick_timer);
377}
378
8f4d37ec
PZ
379/*
380 * High-resolution timer tick.
381 * Runs from hardirq context with interrupts disabled.
382 */
383static enum hrtimer_restart hrtick(struct hrtimer *timer)
384{
385 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
386
387 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
388
05fa785c 389 raw_spin_lock(&rq->lock);
3e51f33f 390 update_rq_clock(rq);
8f4d37ec 391 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 392 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
393
394 return HRTIMER_NORESTART;
395}
396
95e904c7 397#ifdef CONFIG_SMP
31656519
PZ
398/*
399 * called from hardirq (IPI) context
400 */
401static void __hrtick_start(void *arg)
b328ca18 402{
31656519 403 struct rq *rq = arg;
b328ca18 404
05fa785c 405 raw_spin_lock(&rq->lock);
31656519
PZ
406 hrtimer_restart(&rq->hrtick_timer);
407 rq->hrtick_csd_pending = 0;
05fa785c 408 raw_spin_unlock(&rq->lock);
b328ca18
PZ
409}
410
31656519
PZ
411/*
412 * Called to set the hrtick timer state.
413 *
414 * called with rq->lock held and irqs disabled
415 */
029632fb 416void hrtick_start(struct rq *rq, u64 delay)
b328ca18 417{
31656519
PZ
418 struct hrtimer *timer = &rq->hrtick_timer;
419 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 420
cc584b21 421 hrtimer_set_expires(timer, time);
31656519
PZ
422
423 if (rq == this_rq()) {
424 hrtimer_restart(timer);
425 } else if (!rq->hrtick_csd_pending) {
6e275637 426 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
427 rq->hrtick_csd_pending = 1;
428 }
b328ca18
PZ
429}
430
431static int
432hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
433{
434 int cpu = (int)(long)hcpu;
435
436 switch (action) {
437 case CPU_UP_CANCELED:
438 case CPU_UP_CANCELED_FROZEN:
439 case CPU_DOWN_PREPARE:
440 case CPU_DOWN_PREPARE_FROZEN:
441 case CPU_DEAD:
442 case CPU_DEAD_FROZEN:
31656519 443 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
444 return NOTIFY_OK;
445 }
446
447 return NOTIFY_DONE;
448}
449
fa748203 450static __init void init_hrtick(void)
b328ca18
PZ
451{
452 hotcpu_notifier(hotplug_hrtick, 0);
453}
31656519
PZ
454#else
455/*
456 * Called to set the hrtick timer state.
457 *
458 * called with rq->lock held and irqs disabled
459 */
029632fb 460void hrtick_start(struct rq *rq, u64 delay)
31656519 461{
7f1e2ca9 462 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 463 HRTIMER_MODE_REL_PINNED, 0);
31656519 464}
b328ca18 465
006c75f1 466static inline void init_hrtick(void)
8f4d37ec 467{
8f4d37ec 468}
31656519 469#endif /* CONFIG_SMP */
8f4d37ec 470
31656519 471static void init_rq_hrtick(struct rq *rq)
8f4d37ec 472{
31656519
PZ
473#ifdef CONFIG_SMP
474 rq->hrtick_csd_pending = 0;
8f4d37ec 475
31656519
PZ
476 rq->hrtick_csd.flags = 0;
477 rq->hrtick_csd.func = __hrtick_start;
478 rq->hrtick_csd.info = rq;
479#endif
8f4d37ec 480
31656519
PZ
481 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
482 rq->hrtick_timer.function = hrtick;
8f4d37ec 483}
006c75f1 484#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
485static inline void hrtick_clear(struct rq *rq)
486{
487}
488
8f4d37ec
PZ
489static inline void init_rq_hrtick(struct rq *rq)
490{
491}
492
b328ca18
PZ
493static inline void init_hrtick(void)
494{
495}
006c75f1 496#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 497
c24d20db
IM
498/*
499 * resched_task - mark a task 'to be rescheduled now'.
500 *
501 * On UP this means the setting of the need_resched flag, on SMP it
502 * might also involve a cross-CPU call to trigger the scheduler on
503 * the target CPU.
504 */
505#ifdef CONFIG_SMP
506
507#ifndef tsk_is_polling
508#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
509#endif
510
029632fb 511void resched_task(struct task_struct *p)
c24d20db
IM
512{
513 int cpu;
514
05fa785c 515 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 516
5ed0cec0 517 if (test_tsk_need_resched(p))
c24d20db
IM
518 return;
519
5ed0cec0 520 set_tsk_need_resched(p);
c24d20db
IM
521
522 cpu = task_cpu(p);
523 if (cpu == smp_processor_id())
524 return;
525
526 /* NEED_RESCHED must be visible before we test polling */
527 smp_mb();
528 if (!tsk_is_polling(p))
529 smp_send_reschedule(cpu);
530}
531
029632fb 532void resched_cpu(int cpu)
c24d20db
IM
533{
534 struct rq *rq = cpu_rq(cpu);
535 unsigned long flags;
536
05fa785c 537 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
538 return;
539 resched_task(cpu_curr(cpu));
05fa785c 540 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 541}
06d8308c
TG
542
543#ifdef CONFIG_NO_HZ
83cd4fe2
VP
544/*
545 * In the semi idle case, use the nearest busy cpu for migrating timers
546 * from an idle cpu. This is good for power-savings.
547 *
548 * We don't do similar optimization for completely idle system, as
549 * selecting an idle cpu will add more delays to the timers than intended
550 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
551 */
552int get_nohz_timer_target(void)
553{
554 int cpu = smp_processor_id();
555 int i;
556 struct sched_domain *sd;
557
057f3fad 558 rcu_read_lock();
83cd4fe2 559 for_each_domain(cpu, sd) {
057f3fad
PZ
560 for_each_cpu(i, sched_domain_span(sd)) {
561 if (!idle_cpu(i)) {
562 cpu = i;
563 goto unlock;
564 }
565 }
83cd4fe2 566 }
057f3fad
PZ
567unlock:
568 rcu_read_unlock();
83cd4fe2
VP
569 return cpu;
570}
06d8308c
TG
571/*
572 * When add_timer_on() enqueues a timer into the timer wheel of an
573 * idle CPU then this timer might expire before the next timer event
574 * which is scheduled to wake up that CPU. In case of a completely
575 * idle system the next event might even be infinite time into the
576 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
577 * leaves the inner idle loop so the newly added timer is taken into
578 * account when the CPU goes back to idle and evaluates the timer
579 * wheel for the next timer event.
580 */
581void wake_up_idle_cpu(int cpu)
582{
583 struct rq *rq = cpu_rq(cpu);
584
585 if (cpu == smp_processor_id())
586 return;
587
588 /*
589 * This is safe, as this function is called with the timer
590 * wheel base lock of (cpu) held. When the CPU is on the way
591 * to idle and has not yet set rq->curr to idle then it will
592 * be serialized on the timer wheel base lock and take the new
593 * timer into account automatically.
594 */
595 if (rq->curr != rq->idle)
596 return;
45bf76df 597
45bf76df 598 /*
06d8308c
TG
599 * We can set TIF_RESCHED on the idle task of the other CPU
600 * lockless. The worst case is that the other CPU runs the
601 * idle task through an additional NOOP schedule()
45bf76df 602 */
5ed0cec0 603 set_tsk_need_resched(rq->idle);
45bf76df 604
06d8308c
TG
605 /* NEED_RESCHED must be visible before we test polling */
606 smp_mb();
607 if (!tsk_is_polling(rq->idle))
608 smp_send_reschedule(cpu);
45bf76df
IM
609}
610
ca38062e 611static inline bool got_nohz_idle_kick(void)
45bf76df 612{
1c792db7
SS
613 int cpu = smp_processor_id();
614 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
45bf76df
IM
615}
616
ca38062e 617#else /* CONFIG_NO_HZ */
45bf76df 618
ca38062e 619static inline bool got_nohz_idle_kick(void)
2069dd75 620{
ca38062e 621 return false;
2069dd75
PZ
622}
623
6d6bc0ad 624#endif /* CONFIG_NO_HZ */
d842de87 625
029632fb 626void sched_avg_update(struct rq *rq)
18d95a28 627{
e9e9250b
PZ
628 s64 period = sched_avg_period();
629
630 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
631 /*
632 * Inline assembly required to prevent the compiler
633 * optimising this loop into a divmod call.
634 * See __iter_div_u64_rem() for another example of this.
635 */
636 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
637 rq->age_stamp += period;
638 rq->rt_avg /= 2;
639 }
18d95a28
PZ
640}
641
6d6bc0ad 642#else /* !CONFIG_SMP */
029632fb 643void resched_task(struct task_struct *p)
18d95a28 644{
05fa785c 645 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 646 set_tsk_need_resched(p);
18d95a28 647}
6d6bc0ad 648#endif /* CONFIG_SMP */
18d95a28 649
a790de99
PT
650#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
651 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 652/*
8277434e
PT
653 * Iterate task_group tree rooted at *from, calling @down when first entering a
654 * node and @up when leaving it for the final time.
655 *
656 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 657 */
029632fb 658int walk_tg_tree_from(struct task_group *from,
8277434e 659 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
660{
661 struct task_group *parent, *child;
eb755805 662 int ret;
c09595f6 663
8277434e
PT
664 parent = from;
665
c09595f6 666down:
eb755805
PZ
667 ret = (*down)(parent, data);
668 if (ret)
8277434e 669 goto out;
c09595f6
PZ
670 list_for_each_entry_rcu(child, &parent->children, siblings) {
671 parent = child;
672 goto down;
673
674up:
675 continue;
676 }
eb755805 677 ret = (*up)(parent, data);
8277434e
PT
678 if (ret || parent == from)
679 goto out;
c09595f6
PZ
680
681 child = parent;
682 parent = parent->parent;
683 if (parent)
684 goto up;
8277434e 685out:
eb755805 686 return ret;
c09595f6
PZ
687}
688
029632fb 689int tg_nop(struct task_group *tg, void *data)
eb755805 690{
e2b245f8 691 return 0;
eb755805 692}
18d95a28
PZ
693#endif
694
029632fb 695void update_cpu_load(struct rq *this_rq);
9c217245 696
45bf76df
IM
697static void set_load_weight(struct task_struct *p)
698{
f05998d4
NR
699 int prio = p->static_prio - MAX_RT_PRIO;
700 struct load_weight *load = &p->se.load;
701
dd41f596
IM
702 /*
703 * SCHED_IDLE tasks get minimal weight:
704 */
705 if (p->policy == SCHED_IDLE) {
c8b28116 706 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 707 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
708 return;
709 }
71f8bd46 710
c8b28116 711 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 712 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
713}
714
371fd7e7 715static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 716{
a64692a3 717 update_rq_clock(rq);
dd41f596 718 sched_info_queued(p);
371fd7e7 719 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
720}
721
371fd7e7 722static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 723{
a64692a3 724 update_rq_clock(rq);
46ac22ba 725 sched_info_dequeued(p);
371fd7e7 726 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
727}
728
029632fb 729void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
730{
731 if (task_contributes_to_load(p))
732 rq->nr_uninterruptible--;
733
371fd7e7 734 enqueue_task(rq, p, flags);
1e3c88bd
PZ
735}
736
029632fb 737void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
738{
739 if (task_contributes_to_load(p))
740 rq->nr_uninterruptible++;
741
371fd7e7 742 dequeue_task(rq, p, flags);
1e3c88bd
PZ
743}
744
b52bfee4
VP
745#ifdef CONFIG_IRQ_TIME_ACCOUNTING
746
305e6835
VP
747/*
748 * There are no locks covering percpu hardirq/softirq time.
749 * They are only modified in account_system_vtime, on corresponding CPU
750 * with interrupts disabled. So, writes are safe.
751 * They are read and saved off onto struct rq in update_rq_clock().
752 * This may result in other CPU reading this CPU's irq time and can
753 * race with irq/account_system_vtime on this CPU. We would either get old
8e92c201
PZ
754 * or new value with a side effect of accounting a slice of irq time to wrong
755 * task when irq is in progress while we read rq->clock. That is a worthy
756 * compromise in place of having locks on each irq in account_system_time.
305e6835 757 */
b52bfee4
VP
758static DEFINE_PER_CPU(u64, cpu_hardirq_time);
759static DEFINE_PER_CPU(u64, cpu_softirq_time);
760
761static DEFINE_PER_CPU(u64, irq_start_time);
762static int sched_clock_irqtime;
763
764void enable_sched_clock_irqtime(void)
765{
766 sched_clock_irqtime = 1;
767}
768
769void disable_sched_clock_irqtime(void)
770{
771 sched_clock_irqtime = 0;
772}
773
8e92c201
PZ
774#ifndef CONFIG_64BIT
775static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
776
777static inline void irq_time_write_begin(void)
778{
779 __this_cpu_inc(irq_time_seq.sequence);
780 smp_wmb();
781}
782
783static inline void irq_time_write_end(void)
784{
785 smp_wmb();
786 __this_cpu_inc(irq_time_seq.sequence);
787}
788
789static inline u64 irq_time_read(int cpu)
790{
791 u64 irq_time;
792 unsigned seq;
793
794 do {
795 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
796 irq_time = per_cpu(cpu_softirq_time, cpu) +
797 per_cpu(cpu_hardirq_time, cpu);
798 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
799
800 return irq_time;
801}
802#else /* CONFIG_64BIT */
803static inline void irq_time_write_begin(void)
804{
805}
806
807static inline void irq_time_write_end(void)
808{
809}
810
811static inline u64 irq_time_read(int cpu)
305e6835 812{
305e6835
VP
813 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
814}
8e92c201 815#endif /* CONFIG_64BIT */
305e6835 816
fe44d621
PZ
817/*
818 * Called before incrementing preempt_count on {soft,}irq_enter
819 * and before decrementing preempt_count on {soft,}irq_exit.
820 */
b52bfee4
VP
821void account_system_vtime(struct task_struct *curr)
822{
823 unsigned long flags;
fe44d621 824 s64 delta;
b52bfee4 825 int cpu;
b52bfee4
VP
826
827 if (!sched_clock_irqtime)
828 return;
829
830 local_irq_save(flags);
831
b52bfee4 832 cpu = smp_processor_id();
fe44d621
PZ
833 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
834 __this_cpu_add(irq_start_time, delta);
835
8e92c201 836 irq_time_write_begin();
b52bfee4
VP
837 /*
838 * We do not account for softirq time from ksoftirqd here.
839 * We want to continue accounting softirq time to ksoftirqd thread
840 * in that case, so as not to confuse scheduler with a special task
841 * that do not consume any time, but still wants to run.
842 */
843 if (hardirq_count())
fe44d621 844 __this_cpu_add(cpu_hardirq_time, delta);
4dd53d89 845 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
fe44d621 846 __this_cpu_add(cpu_softirq_time, delta);
b52bfee4 847
8e92c201 848 irq_time_write_end();
b52bfee4
VP
849 local_irq_restore(flags);
850}
b7dadc38 851EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 852
e6e6685a
GC
853#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
854
855#ifdef CONFIG_PARAVIRT
856static inline u64 steal_ticks(u64 steal)
aa483808 857{
e6e6685a
GC
858 if (unlikely(steal > NSEC_PER_SEC))
859 return div_u64(steal, TICK_NSEC);
fe44d621 860
e6e6685a
GC
861 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
862}
863#endif
864
fe44d621 865static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 866{
095c0aa8
GC
867/*
868 * In theory, the compile should just see 0 here, and optimize out the call
869 * to sched_rt_avg_update. But I don't trust it...
870 */
871#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
872 s64 steal = 0, irq_delta = 0;
873#endif
874#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 875 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
876
877 /*
878 * Since irq_time is only updated on {soft,}irq_exit, we might run into
879 * this case when a previous update_rq_clock() happened inside a
880 * {soft,}irq region.
881 *
882 * When this happens, we stop ->clock_task and only update the
883 * prev_irq_time stamp to account for the part that fit, so that a next
884 * update will consume the rest. This ensures ->clock_task is
885 * monotonic.
886 *
887 * It does however cause some slight miss-attribution of {soft,}irq
888 * time, a more accurate solution would be to update the irq_time using
889 * the current rq->clock timestamp, except that would require using
890 * atomic ops.
891 */
892 if (irq_delta > delta)
893 irq_delta = delta;
894
895 rq->prev_irq_time += irq_delta;
896 delta -= irq_delta;
095c0aa8
GC
897#endif
898#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 899 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
900 u64 st;
901
902 steal = paravirt_steal_clock(cpu_of(rq));
903 steal -= rq->prev_steal_time_rq;
904
905 if (unlikely(steal > delta))
906 steal = delta;
907
908 st = steal_ticks(steal);
909 steal = st * TICK_NSEC;
910
911 rq->prev_steal_time_rq += steal;
912
913 delta -= steal;
914 }
915#endif
916
fe44d621
PZ
917 rq->clock_task += delta;
918
095c0aa8
GC
919#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
920 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
921 sched_rt_avg_update(rq, irq_delta + steal);
922#endif
aa483808
VP
923}
924
095c0aa8 925#ifdef CONFIG_IRQ_TIME_ACCOUNTING
abb74cef
VP
926static int irqtime_account_hi_update(void)
927{
3292beb3 928 u64 *cpustat = kcpustat_this_cpu->cpustat;
abb74cef
VP
929 unsigned long flags;
930 u64 latest_ns;
931 int ret = 0;
932
933 local_irq_save(flags);
934 latest_ns = this_cpu_read(cpu_hardirq_time);
612ef28a 935 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
abb74cef
VP
936 ret = 1;
937 local_irq_restore(flags);
938 return ret;
939}
940
941static int irqtime_account_si_update(void)
942{
3292beb3 943 u64 *cpustat = kcpustat_this_cpu->cpustat;
abb74cef
VP
944 unsigned long flags;
945 u64 latest_ns;
946 int ret = 0;
947
948 local_irq_save(flags);
949 latest_ns = this_cpu_read(cpu_softirq_time);
612ef28a 950 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
abb74cef
VP
951 ret = 1;
952 local_irq_restore(flags);
953 return ret;
954}
955
fe44d621 956#else /* CONFIG_IRQ_TIME_ACCOUNTING */
305e6835 957
abb74cef
VP
958#define sched_clock_irqtime (0)
959
095c0aa8 960#endif
b52bfee4 961
34f971f6
PZ
962void sched_set_stop_task(int cpu, struct task_struct *stop)
963{
964 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
965 struct task_struct *old_stop = cpu_rq(cpu)->stop;
966
967 if (stop) {
968 /*
969 * Make it appear like a SCHED_FIFO task, its something
970 * userspace knows about and won't get confused about.
971 *
972 * Also, it will make PI more or less work without too
973 * much confusion -- but then, stop work should not
974 * rely on PI working anyway.
975 */
976 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
977
978 stop->sched_class = &stop_sched_class;
979 }
980
981 cpu_rq(cpu)->stop = stop;
982
983 if (old_stop) {
984 /*
985 * Reset it back to a normal scheduling class so that
986 * it can die in pieces.
987 */
988 old_stop->sched_class = &rt_sched_class;
989 }
990}
991
14531189 992/*
dd41f596 993 * __normal_prio - return the priority that is based on the static prio
14531189 994 */
14531189
IM
995static inline int __normal_prio(struct task_struct *p)
996{
dd41f596 997 return p->static_prio;
14531189
IM
998}
999
b29739f9
IM
1000/*
1001 * Calculate the expected normal priority: i.e. priority
1002 * without taking RT-inheritance into account. Might be
1003 * boosted by interactivity modifiers. Changes upon fork,
1004 * setprio syscalls, and whenever the interactivity
1005 * estimator recalculates.
1006 */
36c8b586 1007static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1008{
1009 int prio;
1010
e05606d3 1011 if (task_has_rt_policy(p))
b29739f9
IM
1012 prio = MAX_RT_PRIO-1 - p->rt_priority;
1013 else
1014 prio = __normal_prio(p);
1015 return prio;
1016}
1017
1018/*
1019 * Calculate the current priority, i.e. the priority
1020 * taken into account by the scheduler. This value might
1021 * be boosted by RT tasks, or might be boosted by
1022 * interactivity modifiers. Will be RT if the task got
1023 * RT-boosted. If not then it returns p->normal_prio.
1024 */
36c8b586 1025static int effective_prio(struct task_struct *p)
b29739f9
IM
1026{
1027 p->normal_prio = normal_prio(p);
1028 /*
1029 * If we are RT tasks or we were boosted to RT priority,
1030 * keep the priority unchanged. Otherwise, update priority
1031 * to the normal priority:
1032 */
1033 if (!rt_prio(p->prio))
1034 return p->normal_prio;
1035 return p->prio;
1036}
1037
1da177e4
LT
1038/**
1039 * task_curr - is this task currently executing on a CPU?
1040 * @p: the task in question.
1041 */
36c8b586 1042inline int task_curr(const struct task_struct *p)
1da177e4
LT
1043{
1044 return cpu_curr(task_cpu(p)) == p;
1045}
1046
cb469845
SR
1047static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1048 const struct sched_class *prev_class,
da7a735e 1049 int oldprio)
cb469845
SR
1050{
1051 if (prev_class != p->sched_class) {
1052 if (prev_class->switched_from)
da7a735e
PZ
1053 prev_class->switched_from(rq, p);
1054 p->sched_class->switched_to(rq, p);
1055 } else if (oldprio != p->prio)
1056 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1057}
1058
029632fb 1059void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1060{
1061 const struct sched_class *class;
1062
1063 if (p->sched_class == rq->curr->sched_class) {
1064 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1065 } else {
1066 for_each_class(class) {
1067 if (class == rq->curr->sched_class)
1068 break;
1069 if (class == p->sched_class) {
1070 resched_task(rq->curr);
1071 break;
1072 }
1073 }
1074 }
1075
1076 /*
1077 * A queue event has occurred, and we're going to schedule. In
1078 * this case, we can save a useless back to back clock update.
1079 */
fd2f4419 1080 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
1081 rq->skip_clock_update = 1;
1082}
1083
1da177e4 1084#ifdef CONFIG_SMP
dd41f596 1085void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1086{
e2912009
PZ
1087#ifdef CONFIG_SCHED_DEBUG
1088 /*
1089 * We should never call set_task_cpu() on a blocked task,
1090 * ttwu() will sort out the placement.
1091 */
077614ee
PZ
1092 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1093 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
0122ec5b
PZ
1094
1095#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1096 /*
1097 * The caller should hold either p->pi_lock or rq->lock, when changing
1098 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1099 *
1100 * sched_move_task() holds both and thus holding either pins the cgroup,
1101 * see set_task_rq().
1102 *
1103 * Furthermore, all task_rq users should acquire both locks, see
1104 * task_rq_lock().
1105 */
0122ec5b
PZ
1106 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1107 lockdep_is_held(&task_rq(p)->lock)));
1108#endif
e2912009
PZ
1109#endif
1110
de1d7286 1111 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1112
0c69774e
PZ
1113 if (task_cpu(p) != new_cpu) {
1114 p->se.nr_migrations++;
a8b0ca17 1115 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1116 }
dd41f596
IM
1117
1118 __set_task_cpu(p, new_cpu);
c65cc870
IM
1119}
1120
969c7921 1121struct migration_arg {
36c8b586 1122 struct task_struct *task;
1da177e4 1123 int dest_cpu;
70b97a7f 1124};
1da177e4 1125
969c7921
TH
1126static int migration_cpu_stop(void *data);
1127
1da177e4
LT
1128/*
1129 * wait_task_inactive - wait for a thread to unschedule.
1130 *
85ba2d86
RM
1131 * If @match_state is nonzero, it's the @p->state value just checked and
1132 * not expected to change. If it changes, i.e. @p might have woken up,
1133 * then return zero. When we succeed in waiting for @p to be off its CPU,
1134 * we return a positive number (its total switch count). If a second call
1135 * a short while later returns the same number, the caller can be sure that
1136 * @p has remained unscheduled the whole time.
1137 *
1da177e4
LT
1138 * The caller must ensure that the task *will* unschedule sometime soon,
1139 * else this function might spin for a *long* time. This function can't
1140 * be called with interrupts off, or it may introduce deadlock with
1141 * smp_call_function() if an IPI is sent by the same process we are
1142 * waiting to become inactive.
1143 */
85ba2d86 1144unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1145{
1146 unsigned long flags;
dd41f596 1147 int running, on_rq;
85ba2d86 1148 unsigned long ncsw;
70b97a7f 1149 struct rq *rq;
1da177e4 1150
3a5c359a
AK
1151 for (;;) {
1152 /*
1153 * We do the initial early heuristics without holding
1154 * any task-queue locks at all. We'll only try to get
1155 * the runqueue lock when things look like they will
1156 * work out!
1157 */
1158 rq = task_rq(p);
fa490cfd 1159
3a5c359a
AK
1160 /*
1161 * If the task is actively running on another CPU
1162 * still, just relax and busy-wait without holding
1163 * any locks.
1164 *
1165 * NOTE! Since we don't hold any locks, it's not
1166 * even sure that "rq" stays as the right runqueue!
1167 * But we don't care, since "task_running()" will
1168 * return false if the runqueue has changed and p
1169 * is actually now running somewhere else!
1170 */
85ba2d86
RM
1171 while (task_running(rq, p)) {
1172 if (match_state && unlikely(p->state != match_state))
1173 return 0;
3a5c359a 1174 cpu_relax();
85ba2d86 1175 }
fa490cfd 1176
3a5c359a
AK
1177 /*
1178 * Ok, time to look more closely! We need the rq
1179 * lock now, to be *sure*. If we're wrong, we'll
1180 * just go back and repeat.
1181 */
1182 rq = task_rq_lock(p, &flags);
27a9da65 1183 trace_sched_wait_task(p);
3a5c359a 1184 running = task_running(rq, p);
fd2f4419 1185 on_rq = p->on_rq;
85ba2d86 1186 ncsw = 0;
f31e11d8 1187 if (!match_state || p->state == match_state)
93dcf55f 1188 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1189 task_rq_unlock(rq, p, &flags);
fa490cfd 1190
85ba2d86
RM
1191 /*
1192 * If it changed from the expected state, bail out now.
1193 */
1194 if (unlikely(!ncsw))
1195 break;
1196
3a5c359a
AK
1197 /*
1198 * Was it really running after all now that we
1199 * checked with the proper locks actually held?
1200 *
1201 * Oops. Go back and try again..
1202 */
1203 if (unlikely(running)) {
1204 cpu_relax();
1205 continue;
1206 }
fa490cfd 1207
3a5c359a
AK
1208 /*
1209 * It's not enough that it's not actively running,
1210 * it must be off the runqueue _entirely_, and not
1211 * preempted!
1212 *
80dd99b3 1213 * So if it was still runnable (but just not actively
3a5c359a
AK
1214 * running right now), it's preempted, and we should
1215 * yield - it could be a while.
1216 */
1217 if (unlikely(on_rq)) {
8eb90c30
TG
1218 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1219
1220 set_current_state(TASK_UNINTERRUPTIBLE);
1221 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1222 continue;
1223 }
fa490cfd 1224
3a5c359a
AK
1225 /*
1226 * Ahh, all good. It wasn't running, and it wasn't
1227 * runnable, which means that it will never become
1228 * running in the future either. We're all done!
1229 */
1230 break;
1231 }
85ba2d86
RM
1232
1233 return ncsw;
1da177e4
LT
1234}
1235
1236/***
1237 * kick_process - kick a running thread to enter/exit the kernel
1238 * @p: the to-be-kicked thread
1239 *
1240 * Cause a process which is running on another CPU to enter
1241 * kernel-mode, without any delay. (to get signals handled.)
1242 *
25985edc 1243 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1244 * because all it wants to ensure is that the remote task enters
1245 * the kernel. If the IPI races and the task has been migrated
1246 * to another CPU then no harm is done and the purpose has been
1247 * achieved as well.
1248 */
36c8b586 1249void kick_process(struct task_struct *p)
1da177e4
LT
1250{
1251 int cpu;
1252
1253 preempt_disable();
1254 cpu = task_cpu(p);
1255 if ((cpu != smp_processor_id()) && task_curr(p))
1256 smp_send_reschedule(cpu);
1257 preempt_enable();
1258}
b43e3521 1259EXPORT_SYMBOL_GPL(kick_process);
476d139c 1260#endif /* CONFIG_SMP */
1da177e4 1261
970b13ba 1262#ifdef CONFIG_SMP
30da688e 1263/*
013fdb80 1264 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1265 */
5da9a0fb
PZ
1266static int select_fallback_rq(int cpu, struct task_struct *p)
1267{
5da9a0fb 1268 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2baab4e9
PZ
1269 enum { cpuset, possible, fail } state = cpuset;
1270 int dest_cpu;
5da9a0fb
PZ
1271
1272 /* Look for allowed, online CPU in same node. */
e3831edd 1273 for_each_cpu(dest_cpu, nodemask) {
2baab4e9
PZ
1274 if (!cpu_online(dest_cpu))
1275 continue;
1276 if (!cpu_active(dest_cpu))
1277 continue;
fa17b507 1278 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5da9a0fb 1279 return dest_cpu;
2baab4e9 1280 }
5da9a0fb 1281
2baab4e9
PZ
1282 for (;;) {
1283 /* Any allowed, online CPU? */
e3831edd 1284 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1285 if (!cpu_online(dest_cpu))
1286 continue;
1287 if (!cpu_active(dest_cpu))
1288 continue;
1289 goto out;
1290 }
5da9a0fb 1291
2baab4e9
PZ
1292 switch (state) {
1293 case cpuset:
1294 /* No more Mr. Nice Guy. */
1295 cpuset_cpus_allowed_fallback(p);
1296 state = possible;
1297 break;
1298
1299 case possible:
1300 do_set_cpus_allowed(p, cpu_possible_mask);
1301 state = fail;
1302 break;
1303
1304 case fail:
1305 BUG();
1306 break;
1307 }
1308 }
1309
1310out:
1311 if (state != cpuset) {
1312 /*
1313 * Don't tell them about moving exiting tasks or
1314 * kernel threads (both mm NULL), since they never
1315 * leave kernel.
1316 */
1317 if (p->mm && printk_ratelimit()) {
1318 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1319 task_pid_nr(p), p->comm, cpu);
1320 }
5da9a0fb
PZ
1321 }
1322
1323 return dest_cpu;
1324}
1325
e2912009 1326/*
013fdb80 1327 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1328 */
970b13ba 1329static inline
7608dec2 1330int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 1331{
7608dec2 1332 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
1333
1334 /*
1335 * In order not to call set_task_cpu() on a blocking task we need
1336 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1337 * cpu.
1338 *
1339 * Since this is common to all placement strategies, this lives here.
1340 *
1341 * [ this allows ->select_task() to simply return task_cpu(p) and
1342 * not worry about this generic constraint ]
1343 */
fa17b507 1344 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1345 !cpu_online(cpu)))
5da9a0fb 1346 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1347
1348 return cpu;
970b13ba 1349}
09a40af5
MG
1350
1351static void update_avg(u64 *avg, u64 sample)
1352{
1353 s64 diff = sample - *avg;
1354 *avg += diff >> 3;
1355}
970b13ba
PZ
1356#endif
1357
d7c01d27 1358static void
b84cb5df 1359ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1360{
d7c01d27 1361#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1362 struct rq *rq = this_rq();
1363
d7c01d27
PZ
1364#ifdef CONFIG_SMP
1365 int this_cpu = smp_processor_id();
1366
1367 if (cpu == this_cpu) {
1368 schedstat_inc(rq, ttwu_local);
1369 schedstat_inc(p, se.statistics.nr_wakeups_local);
1370 } else {
1371 struct sched_domain *sd;
1372
1373 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1374 rcu_read_lock();
d7c01d27
PZ
1375 for_each_domain(this_cpu, sd) {
1376 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1377 schedstat_inc(sd, ttwu_wake_remote);
1378 break;
1379 }
1380 }
057f3fad 1381 rcu_read_unlock();
d7c01d27 1382 }
f339b9dc
PZ
1383
1384 if (wake_flags & WF_MIGRATED)
1385 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1386
d7c01d27
PZ
1387#endif /* CONFIG_SMP */
1388
1389 schedstat_inc(rq, ttwu_count);
9ed3811a 1390 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1391
1392 if (wake_flags & WF_SYNC)
9ed3811a 1393 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1394
d7c01d27
PZ
1395#endif /* CONFIG_SCHEDSTATS */
1396}
1397
1398static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1399{
9ed3811a 1400 activate_task(rq, p, en_flags);
fd2f4419 1401 p->on_rq = 1;
c2f7115e
PZ
1402
1403 /* if a worker is waking up, notify workqueue */
1404 if (p->flags & PF_WQ_WORKER)
1405 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1406}
1407
23f41eeb
PZ
1408/*
1409 * Mark the task runnable and perform wakeup-preemption.
1410 */
89363381 1411static void
23f41eeb 1412ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1413{
89363381 1414 trace_sched_wakeup(p, true);
9ed3811a
TH
1415 check_preempt_curr(rq, p, wake_flags);
1416
1417 p->state = TASK_RUNNING;
1418#ifdef CONFIG_SMP
1419 if (p->sched_class->task_woken)
1420 p->sched_class->task_woken(rq, p);
1421
e69c6341 1422 if (rq->idle_stamp) {
9ed3811a
TH
1423 u64 delta = rq->clock - rq->idle_stamp;
1424 u64 max = 2*sysctl_sched_migration_cost;
1425
1426 if (delta > max)
1427 rq->avg_idle = max;
1428 else
1429 update_avg(&rq->avg_idle, delta);
1430 rq->idle_stamp = 0;
1431 }
1432#endif
1433}
1434
c05fbafb
PZ
1435static void
1436ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1437{
1438#ifdef CONFIG_SMP
1439 if (p->sched_contributes_to_load)
1440 rq->nr_uninterruptible--;
1441#endif
1442
1443 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1444 ttwu_do_wakeup(rq, p, wake_flags);
1445}
1446
1447/*
1448 * Called in case the task @p isn't fully descheduled from its runqueue,
1449 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1450 * since all we need to do is flip p->state to TASK_RUNNING, since
1451 * the task is still ->on_rq.
1452 */
1453static int ttwu_remote(struct task_struct *p, int wake_flags)
1454{
1455 struct rq *rq;
1456 int ret = 0;
1457
1458 rq = __task_rq_lock(p);
1459 if (p->on_rq) {
1460 ttwu_do_wakeup(rq, p, wake_flags);
1461 ret = 1;
1462 }
1463 __task_rq_unlock(rq);
1464
1465 return ret;
1466}
1467
317f3941 1468#ifdef CONFIG_SMP
fa14ff4a 1469static void sched_ttwu_pending(void)
317f3941
PZ
1470{
1471 struct rq *rq = this_rq();
fa14ff4a
PZ
1472 struct llist_node *llist = llist_del_all(&rq->wake_list);
1473 struct task_struct *p;
317f3941
PZ
1474
1475 raw_spin_lock(&rq->lock);
1476
fa14ff4a
PZ
1477 while (llist) {
1478 p = llist_entry(llist, struct task_struct, wake_entry);
1479 llist = llist_next(llist);
317f3941
PZ
1480 ttwu_do_activate(rq, p, 0);
1481 }
1482
1483 raw_spin_unlock(&rq->lock);
1484}
1485
1486void scheduler_ipi(void)
1487{
ca38062e 1488 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1489 return;
1490
1491 /*
1492 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1493 * traditionally all their work was done from the interrupt return
1494 * path. Now that we actually do some work, we need to make sure
1495 * we do call them.
1496 *
1497 * Some archs already do call them, luckily irq_enter/exit nest
1498 * properly.
1499 *
1500 * Arguably we should visit all archs and update all handlers,
1501 * however a fair share of IPIs are still resched only so this would
1502 * somewhat pessimize the simple resched case.
1503 */
1504 irq_enter();
fa14ff4a 1505 sched_ttwu_pending();
ca38062e
SS
1506
1507 /*
1508 * Check if someone kicked us for doing the nohz idle load balance.
1509 */
6eb57e0d
SS
1510 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1511 this_rq()->idle_balance = 1;
ca38062e 1512 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1513 }
c5d753a5 1514 irq_exit();
317f3941
PZ
1515}
1516
1517static void ttwu_queue_remote(struct task_struct *p, int cpu)
1518{
fa14ff4a 1519 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1520 smp_send_reschedule(cpu);
1521}
d6aa8f85
PZ
1522
1523#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1524static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
1525{
1526 struct rq *rq;
1527 int ret = 0;
1528
1529 rq = __task_rq_lock(p);
1530 if (p->on_cpu) {
1531 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1532 ttwu_do_wakeup(rq, p, wake_flags);
1533 ret = 1;
1534 }
1535 __task_rq_unlock(rq);
1536
1537 return ret;
1538
1539}
1540#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
518cd623 1541
39be3501 1542bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1543{
1544 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1545}
d6aa8f85 1546#endif /* CONFIG_SMP */
317f3941 1547
c05fbafb
PZ
1548static void ttwu_queue(struct task_struct *p, int cpu)
1549{
1550 struct rq *rq = cpu_rq(cpu);
1551
17d9f311 1552#if defined(CONFIG_SMP)
39be3501 1553 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1554 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1555 ttwu_queue_remote(p, cpu);
1556 return;
1557 }
1558#endif
1559
c05fbafb
PZ
1560 raw_spin_lock(&rq->lock);
1561 ttwu_do_activate(rq, p, 0);
1562 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1563}
1564
1565/**
1da177e4 1566 * try_to_wake_up - wake up a thread
9ed3811a 1567 * @p: the thread to be awakened
1da177e4 1568 * @state: the mask of task states that can be woken
9ed3811a 1569 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1570 *
1571 * Put it on the run-queue if it's not already there. The "current"
1572 * thread is always on the run-queue (except when the actual
1573 * re-schedule is in progress), and as such you're allowed to do
1574 * the simpler "current->state = TASK_RUNNING" to mark yourself
1575 * runnable without the overhead of this.
1576 *
9ed3811a
TH
1577 * Returns %true if @p was woken up, %false if it was already running
1578 * or @state didn't match @p's state.
1da177e4 1579 */
e4a52bcb
PZ
1580static int
1581try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1582{
1da177e4 1583 unsigned long flags;
c05fbafb 1584 int cpu, success = 0;
2398f2c6 1585
04e2f174 1586 smp_wmb();
013fdb80 1587 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1588 if (!(p->state & state))
1da177e4
LT
1589 goto out;
1590
c05fbafb 1591 success = 1; /* we're going to change ->state */
1da177e4 1592 cpu = task_cpu(p);
1da177e4 1593
c05fbafb
PZ
1594 if (p->on_rq && ttwu_remote(p, wake_flags))
1595 goto stat;
1da177e4 1596
1da177e4 1597#ifdef CONFIG_SMP
e9c84311 1598 /*
c05fbafb
PZ
1599 * If the owning (remote) cpu is still in the middle of schedule() with
1600 * this task as prev, wait until its done referencing the task.
e9c84311 1601 */
e4a52bcb
PZ
1602 while (p->on_cpu) {
1603#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1604 /*
d6aa8f85
PZ
1605 * In case the architecture enables interrupts in
1606 * context_switch(), we cannot busy wait, since that
1607 * would lead to deadlocks when an interrupt hits and
1608 * tries to wake up @prev. So bail and do a complete
1609 * remote wakeup.
e4a52bcb 1610 */
d6aa8f85 1611 if (ttwu_activate_remote(p, wake_flags))
c05fbafb 1612 goto stat;
d6aa8f85 1613#else
e4a52bcb 1614 cpu_relax();
d6aa8f85 1615#endif
371fd7e7 1616 }
0970d299 1617 /*
e4a52bcb 1618 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1619 */
e4a52bcb 1620 smp_rmb();
1da177e4 1621
a8e4f2ea 1622 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1623 p->state = TASK_WAKING;
e7693a36 1624
e4a52bcb 1625 if (p->sched_class->task_waking)
74f8e4b2 1626 p->sched_class->task_waking(p);
efbbd05a 1627
7608dec2 1628 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1629 if (task_cpu(p) != cpu) {
1630 wake_flags |= WF_MIGRATED;
e4a52bcb 1631 set_task_cpu(p, cpu);
f339b9dc 1632 }
1da177e4 1633#endif /* CONFIG_SMP */
1da177e4 1634
c05fbafb
PZ
1635 ttwu_queue(p, cpu);
1636stat:
b84cb5df 1637 ttwu_stat(p, cpu, wake_flags);
1da177e4 1638out:
013fdb80 1639 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1640
1641 return success;
1642}
1643
21aa9af0
TH
1644/**
1645 * try_to_wake_up_local - try to wake up a local task with rq lock held
1646 * @p: the thread to be awakened
1647 *
2acca55e 1648 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1649 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1650 * the current task.
21aa9af0
TH
1651 */
1652static void try_to_wake_up_local(struct task_struct *p)
1653{
1654 struct rq *rq = task_rq(p);
21aa9af0
TH
1655
1656 BUG_ON(rq != this_rq());
1657 BUG_ON(p == current);
1658 lockdep_assert_held(&rq->lock);
1659
2acca55e
PZ
1660 if (!raw_spin_trylock(&p->pi_lock)) {
1661 raw_spin_unlock(&rq->lock);
1662 raw_spin_lock(&p->pi_lock);
1663 raw_spin_lock(&rq->lock);
1664 }
1665
21aa9af0 1666 if (!(p->state & TASK_NORMAL))
2acca55e 1667 goto out;
21aa9af0 1668
fd2f4419 1669 if (!p->on_rq)
d7c01d27
PZ
1670 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1671
23f41eeb 1672 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1673 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1674out:
1675 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1676}
1677
50fa610a
DH
1678/**
1679 * wake_up_process - Wake up a specific process
1680 * @p: The process to be woken up.
1681 *
1682 * Attempt to wake up the nominated process and move it to the set of runnable
1683 * processes. Returns 1 if the process was woken up, 0 if it was already
1684 * running.
1685 *
1686 * It may be assumed that this function implies a write memory barrier before
1687 * changing the task state if and only if any tasks are woken up.
1688 */
7ad5b3a5 1689int wake_up_process(struct task_struct *p)
1da177e4 1690{
d9514f6c 1691 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 1692}
1da177e4
LT
1693EXPORT_SYMBOL(wake_up_process);
1694
7ad5b3a5 1695int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1696{
1697 return try_to_wake_up(p, state, 0);
1698}
1699
1da177e4
LT
1700/*
1701 * Perform scheduler related setup for a newly forked process p.
1702 * p is forked by current.
dd41f596
IM
1703 *
1704 * __sched_fork() is basic setup used by init_idle() too:
1705 */
1706static void __sched_fork(struct task_struct *p)
1707{
fd2f4419
PZ
1708 p->on_rq = 0;
1709
1710 p->se.on_rq = 0;
dd41f596
IM
1711 p->se.exec_start = 0;
1712 p->se.sum_exec_runtime = 0;
f6cf891c 1713 p->se.prev_sum_exec_runtime = 0;
6c594c21 1714 p->se.nr_migrations = 0;
da7a735e 1715 p->se.vruntime = 0;
fd2f4419 1716 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1717
1718#ifdef CONFIG_SCHEDSTATS
41acab88 1719 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1720#endif
476d139c 1721
fa717060 1722 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1723
e107be36
AK
1724#ifdef CONFIG_PREEMPT_NOTIFIERS
1725 INIT_HLIST_HEAD(&p->preempt_notifiers);
1726#endif
dd41f596
IM
1727}
1728
1729/*
1730 * fork()/clone()-time setup:
1731 */
3e51e3ed 1732void sched_fork(struct task_struct *p)
dd41f596 1733{
0122ec5b 1734 unsigned long flags;
dd41f596
IM
1735 int cpu = get_cpu();
1736
1737 __sched_fork(p);
06b83b5f 1738 /*
0017d735 1739 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1740 * nobody will actually run it, and a signal or other external
1741 * event cannot wake it up and insert it on the runqueue either.
1742 */
0017d735 1743 p->state = TASK_RUNNING;
dd41f596 1744
c350a04e
MG
1745 /*
1746 * Make sure we do not leak PI boosting priority to the child.
1747 */
1748 p->prio = current->normal_prio;
1749
b9dc29e7
MG
1750 /*
1751 * Revert to default priority/policy on fork if requested.
1752 */
1753 if (unlikely(p->sched_reset_on_fork)) {
c350a04e 1754 if (task_has_rt_policy(p)) {
b9dc29e7 1755 p->policy = SCHED_NORMAL;
6c697bdf 1756 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1757 p->rt_priority = 0;
1758 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1759 p->static_prio = NICE_TO_PRIO(0);
1760
1761 p->prio = p->normal_prio = __normal_prio(p);
1762 set_load_weight(p);
6c697bdf 1763
b9dc29e7
MG
1764 /*
1765 * We don't need the reset flag anymore after the fork. It has
1766 * fulfilled its duty:
1767 */
1768 p->sched_reset_on_fork = 0;
1769 }
ca94c442 1770
2ddbf952
HS
1771 if (!rt_prio(p->prio))
1772 p->sched_class = &fair_sched_class;
b29739f9 1773
cd29fe6f
PZ
1774 if (p->sched_class->task_fork)
1775 p->sched_class->task_fork(p);
1776
86951599
PZ
1777 /*
1778 * The child is not yet in the pid-hash so no cgroup attach races,
1779 * and the cgroup is pinned to this child due to cgroup_fork()
1780 * is ran before sched_fork().
1781 *
1782 * Silence PROVE_RCU.
1783 */
0122ec5b 1784 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1785 set_task_cpu(p, cpu);
0122ec5b 1786 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1787
52f17b6c 1788#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1789 if (likely(sched_info_on()))
52f17b6c 1790 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1791#endif
3ca7a440
PZ
1792#if defined(CONFIG_SMP)
1793 p->on_cpu = 0;
4866cde0 1794#endif
bdd4e85d 1795#ifdef CONFIG_PREEMPT_COUNT
4866cde0 1796 /* Want to start with kernel preemption disabled. */
a1261f54 1797 task_thread_info(p)->preempt_count = 1;
1da177e4 1798#endif
806c09a7 1799#ifdef CONFIG_SMP
917b627d 1800 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 1801#endif
917b627d 1802
476d139c 1803 put_cpu();
1da177e4
LT
1804}
1805
1806/*
1807 * wake_up_new_task - wake up a newly created task for the first time.
1808 *
1809 * This function will do some initial scheduler statistics housekeeping
1810 * that must be done for every newly created context, then puts the task
1811 * on the runqueue and wakes it.
1812 */
3e51e3ed 1813void wake_up_new_task(struct task_struct *p)
1da177e4
LT
1814{
1815 unsigned long flags;
dd41f596 1816 struct rq *rq;
fabf318e 1817
ab2515c4 1818 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
1819#ifdef CONFIG_SMP
1820 /*
1821 * Fork balancing, do it here and not earlier because:
1822 * - cpus_allowed can change in the fork path
1823 * - any previously selected cpu might disappear through hotplug
fabf318e 1824 */
ab2515c4 1825 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
0017d735
PZ
1826#endif
1827
ab2515c4 1828 rq = __task_rq_lock(p);
cd29fe6f 1829 activate_task(rq, p, 0);
fd2f4419 1830 p->on_rq = 1;
89363381 1831 trace_sched_wakeup_new(p, true);
a7558e01 1832 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 1833#ifdef CONFIG_SMP
efbbd05a
PZ
1834 if (p->sched_class->task_woken)
1835 p->sched_class->task_woken(rq, p);
9a897c5a 1836#endif
0122ec5b 1837 task_rq_unlock(rq, p, &flags);
1da177e4
LT
1838}
1839
e107be36
AK
1840#ifdef CONFIG_PREEMPT_NOTIFIERS
1841
1842/**
80dd99b3 1843 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 1844 * @notifier: notifier struct to register
e107be36
AK
1845 */
1846void preempt_notifier_register(struct preempt_notifier *notifier)
1847{
1848 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1849}
1850EXPORT_SYMBOL_GPL(preempt_notifier_register);
1851
1852/**
1853 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1854 * @notifier: notifier struct to unregister
e107be36
AK
1855 *
1856 * This is safe to call from within a preemption notifier.
1857 */
1858void preempt_notifier_unregister(struct preempt_notifier *notifier)
1859{
1860 hlist_del(&notifier->link);
1861}
1862EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1863
1864static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1865{
1866 struct preempt_notifier *notifier;
1867 struct hlist_node *node;
1868
1869 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1870 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1871}
1872
1873static void
1874fire_sched_out_preempt_notifiers(struct task_struct *curr,
1875 struct task_struct *next)
1876{
1877 struct preempt_notifier *notifier;
1878 struct hlist_node *node;
1879
1880 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1881 notifier->ops->sched_out(notifier, next);
1882}
1883
6d6bc0ad 1884#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
1885
1886static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1887{
1888}
1889
1890static void
1891fire_sched_out_preempt_notifiers(struct task_struct *curr,
1892 struct task_struct *next)
1893{
1894}
1895
6d6bc0ad 1896#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 1897
4866cde0
NP
1898/**
1899 * prepare_task_switch - prepare to switch tasks
1900 * @rq: the runqueue preparing to switch
421cee29 1901 * @prev: the current task that is being switched out
4866cde0
NP
1902 * @next: the task we are going to switch to.
1903 *
1904 * This is called with the rq lock held and interrupts off. It must
1905 * be paired with a subsequent finish_task_switch after the context
1906 * switch.
1907 *
1908 * prepare_task_switch sets up locking and calls architecture specific
1909 * hooks.
1910 */
e107be36
AK
1911static inline void
1912prepare_task_switch(struct rq *rq, struct task_struct *prev,
1913 struct task_struct *next)
4866cde0 1914{
fe4b04fa
PZ
1915 sched_info_switch(prev, next);
1916 perf_event_task_sched_out(prev, next);
e107be36 1917 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1918 prepare_lock_switch(rq, next);
1919 prepare_arch_switch(next);
fe4b04fa 1920 trace_sched_switch(prev, next);
4866cde0
NP
1921}
1922
1da177e4
LT
1923/**
1924 * finish_task_switch - clean up after a task-switch
344babaa 1925 * @rq: runqueue associated with task-switch
1da177e4
LT
1926 * @prev: the thread we just switched away from.
1927 *
4866cde0
NP
1928 * finish_task_switch must be called after the context switch, paired
1929 * with a prepare_task_switch call before the context switch.
1930 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1931 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1932 *
1933 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 1934 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
1935 * with the lock held can cause deadlocks; see schedule() for
1936 * details.)
1937 */
a9957449 1938static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1939 __releases(rq->lock)
1940{
1da177e4 1941 struct mm_struct *mm = rq->prev_mm;
55a101f8 1942 long prev_state;
1da177e4
LT
1943
1944 rq->prev_mm = NULL;
1945
1946 /*
1947 * A task struct has one reference for the use as "current".
c394cc9f 1948 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1949 * schedule one last time. The schedule call will never return, and
1950 * the scheduled task must drop that reference.
c394cc9f 1951 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1952 * still held, otherwise prev could be scheduled on another cpu, die
1953 * there before we look at prev->state, and then the reference would
1954 * be dropped twice.
1955 * Manfred Spraul <manfred@colorfullife.com>
1956 */
55a101f8 1957 prev_state = prev->state;
4866cde0 1958 finish_arch_switch(prev);
8381f65d
JI
1959#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1960 local_irq_disable();
1961#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
a8d757ef 1962 perf_event_task_sched_in(prev, current);
8381f65d
JI
1963#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1964 local_irq_enable();
1965#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 1966 finish_lock_switch(rq, prev);
01f23e16 1967 finish_arch_post_lock_switch();
e8fa1362 1968
e107be36 1969 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1970 if (mm)
1971 mmdrop(mm);
c394cc9f 1972 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1973 /*
1974 * Remove function-return probe instances associated with this
1975 * task and put them back on the free list.
9761eea8 1976 */
c6fd91f0 1977 kprobe_flush_task(prev);
1da177e4 1978 put_task_struct(prev);
c6fd91f0 1979 }
1da177e4
LT
1980}
1981
3f029d3c
GH
1982#ifdef CONFIG_SMP
1983
1984/* assumes rq->lock is held */
1985static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1986{
1987 if (prev->sched_class->pre_schedule)
1988 prev->sched_class->pre_schedule(rq, prev);
1989}
1990
1991/* rq->lock is NOT held, but preemption is disabled */
1992static inline void post_schedule(struct rq *rq)
1993{
1994 if (rq->post_schedule) {
1995 unsigned long flags;
1996
05fa785c 1997 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
1998 if (rq->curr->sched_class->post_schedule)
1999 rq->curr->sched_class->post_schedule(rq);
05fa785c 2000 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2001
2002 rq->post_schedule = 0;
2003 }
2004}
2005
2006#else
da19ab51 2007
3f029d3c
GH
2008static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2009{
2010}
2011
2012static inline void post_schedule(struct rq *rq)
2013{
1da177e4
LT
2014}
2015
3f029d3c
GH
2016#endif
2017
1da177e4
LT
2018/**
2019 * schedule_tail - first thing a freshly forked thread must call.
2020 * @prev: the thread we just switched away from.
2021 */
36c8b586 2022asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2023 __releases(rq->lock)
2024{
70b97a7f
IM
2025 struct rq *rq = this_rq();
2026
4866cde0 2027 finish_task_switch(rq, prev);
da19ab51 2028
3f029d3c
GH
2029 /*
2030 * FIXME: do we need to worry about rq being invalidated by the
2031 * task_switch?
2032 */
2033 post_schedule(rq);
70b97a7f 2034
4866cde0
NP
2035#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2036 /* In this case, finish_task_switch does not reenable preemption */
2037 preempt_enable();
2038#endif
1da177e4 2039 if (current->set_child_tid)
b488893a 2040 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2041}
2042
2043/*
2044 * context_switch - switch to the new MM and the new
2045 * thread's register state.
2046 */
dd41f596 2047static inline void
70b97a7f 2048context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2049 struct task_struct *next)
1da177e4 2050{
dd41f596 2051 struct mm_struct *mm, *oldmm;
1da177e4 2052
e107be36 2053 prepare_task_switch(rq, prev, next);
fe4b04fa 2054
dd41f596
IM
2055 mm = next->mm;
2056 oldmm = prev->active_mm;
9226d125
ZA
2057 /*
2058 * For paravirt, this is coupled with an exit in switch_to to
2059 * combine the page table reload and the switch backend into
2060 * one hypercall.
2061 */
224101ed 2062 arch_start_context_switch(prev);
9226d125 2063
31915ab4 2064 if (!mm) {
1da177e4
LT
2065 next->active_mm = oldmm;
2066 atomic_inc(&oldmm->mm_count);
2067 enter_lazy_tlb(oldmm, next);
2068 } else
2069 switch_mm(oldmm, mm, next);
2070
31915ab4 2071 if (!prev->mm) {
1da177e4 2072 prev->active_mm = NULL;
1da177e4
LT
2073 rq->prev_mm = oldmm;
2074 }
3a5f5e48
IM
2075 /*
2076 * Since the runqueue lock will be released by the next
2077 * task (which is an invalid locking op but in the case
2078 * of the scheduler it's an obvious special-case), so we
2079 * do an early lockdep release here:
2080 */
2081#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2082 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2083#endif
1da177e4
LT
2084
2085 /* Here we just switch the register state and the stack. */
2086 switch_to(prev, next, prev);
2087
dd41f596
IM
2088 barrier();
2089 /*
2090 * this_rq must be evaluated again because prev may have moved
2091 * CPUs since it called schedule(), thus the 'rq' on its stack
2092 * frame will be invalid.
2093 */
2094 finish_task_switch(this_rq(), prev);
1da177e4
LT
2095}
2096
2097/*
2098 * nr_running, nr_uninterruptible and nr_context_switches:
2099 *
2100 * externally visible scheduler statistics: current number of runnable
2101 * threads, current number of uninterruptible-sleeping threads, total
2102 * number of context switches performed since bootup.
2103 */
2104unsigned long nr_running(void)
2105{
2106 unsigned long i, sum = 0;
2107
2108 for_each_online_cpu(i)
2109 sum += cpu_rq(i)->nr_running;
2110
2111 return sum;
f711f609 2112}
1da177e4
LT
2113
2114unsigned long nr_uninterruptible(void)
f711f609 2115{
1da177e4 2116 unsigned long i, sum = 0;
f711f609 2117
0a945022 2118 for_each_possible_cpu(i)
1da177e4 2119 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
2120
2121 /*
1da177e4
LT
2122 * Since we read the counters lockless, it might be slightly
2123 * inaccurate. Do not allow it to go below zero though:
f711f609 2124 */
1da177e4
LT
2125 if (unlikely((long)sum < 0))
2126 sum = 0;
f711f609 2127
1da177e4 2128 return sum;
f711f609 2129}
f711f609 2130
1da177e4 2131unsigned long long nr_context_switches(void)
46cb4b7c 2132{
cc94abfc
SR
2133 int i;
2134 unsigned long long sum = 0;
46cb4b7c 2135
0a945022 2136 for_each_possible_cpu(i)
1da177e4 2137 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2138
1da177e4
LT
2139 return sum;
2140}
483b4ee6 2141
1da177e4
LT
2142unsigned long nr_iowait(void)
2143{
2144 unsigned long i, sum = 0;
483b4ee6 2145
0a945022 2146 for_each_possible_cpu(i)
1da177e4 2147 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2148
1da177e4
LT
2149 return sum;
2150}
483b4ee6 2151
8c215bd3 2152unsigned long nr_iowait_cpu(int cpu)
69d25870 2153{
8c215bd3 2154 struct rq *this = cpu_rq(cpu);
69d25870
AV
2155 return atomic_read(&this->nr_iowait);
2156}
46cb4b7c 2157
69d25870
AV
2158unsigned long this_cpu_load(void)
2159{
2160 struct rq *this = this_rq();
2161 return this->cpu_load[0];
2162}
e790fb0b 2163
46cb4b7c 2164
dce48a84
TG
2165/* Variables and functions for calc_load */
2166static atomic_long_t calc_load_tasks;
2167static unsigned long calc_load_update;
2168unsigned long avenrun[3];
2169EXPORT_SYMBOL(avenrun);
46cb4b7c 2170
74f5187a
PZ
2171static long calc_load_fold_active(struct rq *this_rq)
2172{
2173 long nr_active, delta = 0;
2174
2175 nr_active = this_rq->nr_running;
2176 nr_active += (long) this_rq->nr_uninterruptible;
2177
2178 if (nr_active != this_rq->calc_load_active) {
2179 delta = nr_active - this_rq->calc_load_active;
2180 this_rq->calc_load_active = nr_active;
2181 }
2182
2183 return delta;
2184}
2185
0f004f5a
PZ
2186static unsigned long
2187calc_load(unsigned long load, unsigned long exp, unsigned long active)
2188{
2189 load *= exp;
2190 load += active * (FIXED_1 - exp);
2191 load += 1UL << (FSHIFT - 1);
2192 return load >> FSHIFT;
2193}
2194
74f5187a
PZ
2195#ifdef CONFIG_NO_HZ
2196/*
2197 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2198 *
2199 * When making the ILB scale, we should try to pull this in as well.
2200 */
2201static atomic_long_t calc_load_tasks_idle;
2202
029632fb 2203void calc_load_account_idle(struct rq *this_rq)
74f5187a
PZ
2204{
2205 long delta;
2206
2207 delta = calc_load_fold_active(this_rq);
2208 if (delta)
2209 atomic_long_add(delta, &calc_load_tasks_idle);
2210}
2211
2212static long calc_load_fold_idle(void)
2213{
2214 long delta = 0;
2215
2216 /*
2217 * Its got a race, we don't care...
2218 */
2219 if (atomic_long_read(&calc_load_tasks_idle))
2220 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2221
2222 return delta;
2223}
0f004f5a
PZ
2224
2225/**
2226 * fixed_power_int - compute: x^n, in O(log n) time
2227 *
2228 * @x: base of the power
2229 * @frac_bits: fractional bits of @x
2230 * @n: power to raise @x to.
2231 *
2232 * By exploiting the relation between the definition of the natural power
2233 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2234 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2235 * (where: n_i \elem {0, 1}, the binary vector representing n),
2236 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2237 * of course trivially computable in O(log_2 n), the length of our binary
2238 * vector.
2239 */
2240static unsigned long
2241fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2242{
2243 unsigned long result = 1UL << frac_bits;
2244
2245 if (n) for (;;) {
2246 if (n & 1) {
2247 result *= x;
2248 result += 1UL << (frac_bits - 1);
2249 result >>= frac_bits;
2250 }
2251 n >>= 1;
2252 if (!n)
2253 break;
2254 x *= x;
2255 x += 1UL << (frac_bits - 1);
2256 x >>= frac_bits;
2257 }
2258
2259 return result;
2260}
2261
2262/*
2263 * a1 = a0 * e + a * (1 - e)
2264 *
2265 * a2 = a1 * e + a * (1 - e)
2266 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2267 * = a0 * e^2 + a * (1 - e) * (1 + e)
2268 *
2269 * a3 = a2 * e + a * (1 - e)
2270 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2271 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2272 *
2273 * ...
2274 *
2275 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2276 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2277 * = a0 * e^n + a * (1 - e^n)
2278 *
2279 * [1] application of the geometric series:
2280 *
2281 * n 1 - x^(n+1)
2282 * S_n := \Sum x^i = -------------
2283 * i=0 1 - x
2284 */
2285static unsigned long
2286calc_load_n(unsigned long load, unsigned long exp,
2287 unsigned long active, unsigned int n)
2288{
2289
2290 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2291}
2292
2293/*
2294 * NO_HZ can leave us missing all per-cpu ticks calling
2295 * calc_load_account_active(), but since an idle CPU folds its delta into
2296 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2297 * in the pending idle delta if our idle period crossed a load cycle boundary.
2298 *
2299 * Once we've updated the global active value, we need to apply the exponential
2300 * weights adjusted to the number of cycles missed.
2301 */
c308b56b 2302static void calc_global_nohz(void)
0f004f5a
PZ
2303{
2304 long delta, active, n;
2305
0f004f5a
PZ
2306 /*
2307 * If we crossed a calc_load_update boundary, make sure to fold
2308 * any pending idle changes, the respective CPUs might have
2309 * missed the tick driven calc_load_account_active() update
2310 * due to NO_HZ.
2311 */
2312 delta = calc_load_fold_idle();
2313 if (delta)
2314 atomic_long_add(delta, &calc_load_tasks);
2315
2316 /*
c308b56b 2317 * It could be the one fold was all it took, we done!
0f004f5a 2318 */
c308b56b
PZ
2319 if (time_before(jiffies, calc_load_update + 10))
2320 return;
0f004f5a 2321
c308b56b
PZ
2322 /*
2323 * Catch-up, fold however many we are behind still
2324 */
2325 delta = jiffies - calc_load_update - 10;
2326 n = 1 + (delta / LOAD_FREQ);
0f004f5a 2327
c308b56b
PZ
2328 active = atomic_long_read(&calc_load_tasks);
2329 active = active > 0 ? active * FIXED_1 : 0;
0f004f5a 2330
c308b56b
PZ
2331 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2332 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2333 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
0f004f5a 2334
c308b56b 2335 calc_load_update += n * LOAD_FREQ;
0f004f5a 2336}
74f5187a 2337#else
029632fb 2338void calc_load_account_idle(struct rq *this_rq)
74f5187a
PZ
2339{
2340}
2341
2342static inline long calc_load_fold_idle(void)
2343{
2344 return 0;
2345}
0f004f5a 2346
c308b56b 2347static void calc_global_nohz(void)
0f004f5a
PZ
2348{
2349}
74f5187a
PZ
2350#endif
2351
2d02494f
TG
2352/**
2353 * get_avenrun - get the load average array
2354 * @loads: pointer to dest load array
2355 * @offset: offset to add
2356 * @shift: shift count to shift the result left
2357 *
2358 * These values are estimates at best, so no need for locking.
2359 */
2360void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2361{
2362 loads[0] = (avenrun[0] + offset) << shift;
2363 loads[1] = (avenrun[1] + offset) << shift;
2364 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 2365}
46cb4b7c 2366
46cb4b7c 2367/*
dce48a84
TG
2368 * calc_load - update the avenrun load estimates 10 ticks after the
2369 * CPUs have updated calc_load_tasks.
7835b98b 2370 */
0f004f5a 2371void calc_global_load(unsigned long ticks)
7835b98b 2372{
dce48a84 2373 long active;
1da177e4 2374
0f004f5a 2375 if (time_before(jiffies, calc_load_update + 10))
dce48a84 2376 return;
1da177e4 2377
dce48a84
TG
2378 active = atomic_long_read(&calc_load_tasks);
2379 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 2380
dce48a84
TG
2381 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2382 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2383 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 2384
dce48a84 2385 calc_load_update += LOAD_FREQ;
c308b56b
PZ
2386
2387 /*
2388 * Account one period with whatever state we found before
2389 * folding in the nohz state and ageing the entire idle period.
2390 *
2391 * This avoids loosing a sample when we go idle between
2392 * calc_load_account_active() (10 ticks ago) and now and thus
2393 * under-accounting.
2394 */
2395 calc_global_nohz();
dce48a84 2396}
1da177e4 2397
dce48a84 2398/*
74f5187a
PZ
2399 * Called from update_cpu_load() to periodically update this CPU's
2400 * active count.
dce48a84
TG
2401 */
2402static void calc_load_account_active(struct rq *this_rq)
2403{
74f5187a 2404 long delta;
08c183f3 2405
74f5187a
PZ
2406 if (time_before(jiffies, this_rq->calc_load_update))
2407 return;
783609c6 2408
74f5187a
PZ
2409 delta = calc_load_fold_active(this_rq);
2410 delta += calc_load_fold_idle();
2411 if (delta)
dce48a84 2412 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
2413
2414 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
2415}
2416
fdf3e95d
VP
2417/*
2418 * The exact cpuload at various idx values, calculated at every tick would be
2419 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2420 *
2421 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2422 * on nth tick when cpu may be busy, then we have:
2423 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2424 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2425 *
2426 * decay_load_missed() below does efficient calculation of
2427 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2428 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2429 *
2430 * The calculation is approximated on a 128 point scale.
2431 * degrade_zero_ticks is the number of ticks after which load at any
2432 * particular idx is approximated to be zero.
2433 * degrade_factor is a precomputed table, a row for each load idx.
2434 * Each column corresponds to degradation factor for a power of two ticks,
2435 * based on 128 point scale.
2436 * Example:
2437 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2438 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2439 *
2440 * With this power of 2 load factors, we can degrade the load n times
2441 * by looking at 1 bits in n and doing as many mult/shift instead of
2442 * n mult/shifts needed by the exact degradation.
2443 */
2444#define DEGRADE_SHIFT 7
2445static const unsigned char
2446 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2447static const unsigned char
2448 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2449 {0, 0, 0, 0, 0, 0, 0, 0},
2450 {64, 32, 8, 0, 0, 0, 0, 0},
2451 {96, 72, 40, 12, 1, 0, 0},
2452 {112, 98, 75, 43, 15, 1, 0},
2453 {120, 112, 98, 76, 45, 16, 2} };
2454
2455/*
2456 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2457 * would be when CPU is idle and so we just decay the old load without
2458 * adding any new load.
2459 */
2460static unsigned long
2461decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2462{
2463 int j = 0;
2464
2465 if (!missed_updates)
2466 return load;
2467
2468 if (missed_updates >= degrade_zero_ticks[idx])
2469 return 0;
2470
2471 if (idx == 1)
2472 return load >> missed_updates;
2473
2474 while (missed_updates) {
2475 if (missed_updates % 2)
2476 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2477
2478 missed_updates >>= 1;
2479 j++;
2480 }
2481 return load;
2482}
2483
46cb4b7c 2484/*
dd41f596 2485 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
2486 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2487 * every tick. We fix it up based on jiffies.
46cb4b7c 2488 */
029632fb 2489void update_cpu_load(struct rq *this_rq)
46cb4b7c 2490{
495eca49 2491 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
2492 unsigned long curr_jiffies = jiffies;
2493 unsigned long pending_updates;
dd41f596 2494 int i, scale;
46cb4b7c 2495
dd41f596 2496 this_rq->nr_load_updates++;
46cb4b7c 2497
fdf3e95d
VP
2498 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
2499 if (curr_jiffies == this_rq->last_load_update_tick)
2500 return;
2501
2502 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2503 this_rq->last_load_update_tick = curr_jiffies;
2504
dd41f596 2505 /* Update our load: */
fdf3e95d
VP
2506 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2507 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 2508 unsigned long old_load, new_load;
7d1e6a9b 2509
dd41f596 2510 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 2511
dd41f596 2512 old_load = this_rq->cpu_load[i];
fdf3e95d 2513 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 2514 new_load = this_load;
a25707f3
IM
2515 /*
2516 * Round up the averaging division if load is increasing. This
2517 * prevents us from getting stuck on 9 if the load is 10, for
2518 * example.
2519 */
2520 if (new_load > old_load)
fdf3e95d
VP
2521 new_load += scale - 1;
2522
2523 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 2524 }
da2b71ed
SS
2525
2526 sched_avg_update(this_rq);
fdf3e95d
VP
2527}
2528
2529static void update_cpu_load_active(struct rq *this_rq)
2530{
2531 update_cpu_load(this_rq);
46cb4b7c 2532
74f5187a 2533 calc_load_account_active(this_rq);
46cb4b7c
SS
2534}
2535
dd41f596 2536#ifdef CONFIG_SMP
8a0be9ef 2537
46cb4b7c 2538/*
38022906
PZ
2539 * sched_exec - execve() is a valuable balancing opportunity, because at
2540 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2541 */
38022906 2542void sched_exec(void)
46cb4b7c 2543{
38022906 2544 struct task_struct *p = current;
1da177e4 2545 unsigned long flags;
0017d735 2546 int dest_cpu;
46cb4b7c 2547
8f42ced9 2548 raw_spin_lock_irqsave(&p->pi_lock, flags);
7608dec2 2549 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
2550 if (dest_cpu == smp_processor_id())
2551 goto unlock;
38022906 2552
8f42ced9 2553 if (likely(cpu_active(dest_cpu))) {
969c7921 2554 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2555
8f42ced9
PZ
2556 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2557 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2558 return;
2559 }
0017d735 2560unlock:
8f42ced9 2561 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2562}
dd41f596 2563
1da177e4
LT
2564#endif
2565
1da177e4 2566DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2567DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2568
2569EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2570EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2571
2572/*
c5f8d995 2573 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2574 * @p in case that task is currently running.
c5f8d995
HS
2575 *
2576 * Called with task_rq_lock() held on @rq.
1da177e4 2577 */
c5f8d995
HS
2578static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2579{
2580 u64 ns = 0;
2581
2582 if (task_current(rq, p)) {
2583 update_rq_clock(rq);
305e6835 2584 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
2585 if ((s64)ns < 0)
2586 ns = 0;
2587 }
2588
2589 return ns;
2590}
2591
bb34d92f 2592unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2593{
1da177e4 2594 unsigned long flags;
41b86e9c 2595 struct rq *rq;
bb34d92f 2596 u64 ns = 0;
48f24c4d 2597
41b86e9c 2598 rq = task_rq_lock(p, &flags);
c5f8d995 2599 ns = do_task_delta_exec(p, rq);
0122ec5b 2600 task_rq_unlock(rq, p, &flags);
1508487e 2601
c5f8d995
HS
2602 return ns;
2603}
f06febc9 2604
c5f8d995
HS
2605/*
2606 * Return accounted runtime for the task.
2607 * In case the task is currently running, return the runtime plus current's
2608 * pending runtime that have not been accounted yet.
2609 */
2610unsigned long long task_sched_runtime(struct task_struct *p)
2611{
2612 unsigned long flags;
2613 struct rq *rq;
2614 u64 ns = 0;
2615
2616 rq = task_rq_lock(p, &flags);
2617 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2618 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2619
2620 return ns;
2621}
48f24c4d 2622
54c707e9
GC
2623#ifdef CONFIG_CGROUP_CPUACCT
2624struct cgroup_subsys cpuacct_subsys;
2625struct cpuacct root_cpuacct;
2626#endif
2627
be726ffd
GC
2628static inline void task_group_account_field(struct task_struct *p, int index,
2629 u64 tmp)
54c707e9
GC
2630{
2631#ifdef CONFIG_CGROUP_CPUACCT
2632 struct kernel_cpustat *kcpustat;
2633 struct cpuacct *ca;
2634#endif
2635 /*
2636 * Since all updates are sure to touch the root cgroup, we
2637 * get ourselves ahead and touch it first. If the root cgroup
2638 * is the only cgroup, then nothing else should be necessary.
2639 *
2640 */
2641 __get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
2642
2643#ifdef CONFIG_CGROUP_CPUACCT
2644 if (unlikely(!cpuacct_subsys.active))
2645 return;
2646
2647 rcu_read_lock();
2648 ca = task_ca(p);
2649 while (ca && (ca != &root_cpuacct)) {
2650 kcpustat = this_cpu_ptr(ca->cpustat);
2651 kcpustat->cpustat[index] += tmp;
2652 ca = parent_ca(ca);
2653 }
2654 rcu_read_unlock();
2655#endif
2656}
2657
2658
1da177e4
LT
2659/*
2660 * Account user cpu time to a process.
2661 * @p: the process that the cpu time gets accounted to
1da177e4 2662 * @cputime: the cpu time spent in user space since the last update
457533a7 2663 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 2664 */
457533a7
MS
2665void account_user_time(struct task_struct *p, cputime_t cputime,
2666 cputime_t cputime_scaled)
1da177e4 2667{
3292beb3 2668 int index;
1da177e4 2669
457533a7 2670 /* Add user time to process. */
64861634
MS
2671 p->utime += cputime;
2672 p->utimescaled += cputime_scaled;
f06febc9 2673 account_group_user_time(p, cputime);
1da177e4 2674
3292beb3 2675 index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
ef12fefa 2676
1da177e4 2677 /* Add user time to cpustat. */
612ef28a 2678 task_group_account_field(p, index, (__force u64) cputime);
ef12fefa 2679
49b5cf34
JL
2680 /* Account for user time used */
2681 acct_update_integrals(p);
1da177e4
LT
2682}
2683
94886b84
LV
2684/*
2685 * Account guest cpu time to a process.
2686 * @p: the process that the cpu time gets accounted to
2687 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 2688 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 2689 */
457533a7
MS
2690static void account_guest_time(struct task_struct *p, cputime_t cputime,
2691 cputime_t cputime_scaled)
94886b84 2692{
3292beb3 2693 u64 *cpustat = kcpustat_this_cpu->cpustat;
94886b84 2694
457533a7 2695 /* Add guest time to process. */
64861634
MS
2696 p->utime += cputime;
2697 p->utimescaled += cputime_scaled;
f06febc9 2698 account_group_user_time(p, cputime);
64861634 2699 p->gtime += cputime;
94886b84 2700
457533a7 2701 /* Add guest time to cpustat. */
ce0e7b28 2702 if (TASK_NICE(p) > 0) {
612ef28a
MS
2703 cpustat[CPUTIME_NICE] += (__force u64) cputime;
2704 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
ce0e7b28 2705 } else {
612ef28a
MS
2706 cpustat[CPUTIME_USER] += (__force u64) cputime;
2707 cpustat[CPUTIME_GUEST] += (__force u64) cputime;
ce0e7b28 2708 }
94886b84
LV
2709}
2710
70a89a66
VP
2711/*
2712 * Account system cpu time to a process and desired cpustat field
2713 * @p: the process that the cpu time gets accounted to
2714 * @cputime: the cpu time spent in kernel space since the last update
2715 * @cputime_scaled: cputime scaled by cpu frequency
2716 * @target_cputime64: pointer to cpustat field that has to be updated
2717 */
2718static inline
2719void __account_system_time(struct task_struct *p, cputime_t cputime,
3292beb3 2720 cputime_t cputime_scaled, int index)
70a89a66 2721{
70a89a66 2722 /* Add system time to process. */
64861634
MS
2723 p->stime += cputime;
2724 p->stimescaled += cputime_scaled;
70a89a66
VP
2725 account_group_system_time(p, cputime);
2726
2727 /* Add system time to cpustat. */
612ef28a 2728 task_group_account_field(p, index, (__force u64) cputime);
70a89a66
VP
2729
2730 /* Account for system time used */
2731 acct_update_integrals(p);
2732}
2733
1da177e4
LT
2734/*
2735 * Account system cpu time to a process.
2736 * @p: the process that the cpu time gets accounted to
2737 * @hardirq_offset: the offset to subtract from hardirq_count()
2738 * @cputime: the cpu time spent in kernel space since the last update
457533a7 2739 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
2740 */
2741void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 2742 cputime_t cputime, cputime_t cputime_scaled)
1da177e4 2743{
3292beb3 2744 int index;
1da177e4 2745
983ed7a6 2746 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 2747 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
2748 return;
2749 }
94886b84 2750
1da177e4 2751 if (hardirq_count() - hardirq_offset)
3292beb3 2752 index = CPUTIME_IRQ;
75e1056f 2753 else if (in_serving_softirq())
3292beb3 2754 index = CPUTIME_SOFTIRQ;
1da177e4 2755 else
3292beb3 2756 index = CPUTIME_SYSTEM;
ef12fefa 2757
3292beb3 2758 __account_system_time(p, cputime, cputime_scaled, index);
1da177e4
LT
2759}
2760
c66f08be 2761/*
1da177e4 2762 * Account for involuntary wait time.
544b4a1f 2763 * @cputime: the cpu time spent in involuntary wait
c66f08be 2764 */
79741dd3 2765void account_steal_time(cputime_t cputime)
c66f08be 2766{
3292beb3 2767 u64 *cpustat = kcpustat_this_cpu->cpustat;
79741dd3 2768
612ef28a 2769 cpustat[CPUTIME_STEAL] += (__force u64) cputime;
c66f08be
MN
2770}
2771
1da177e4 2772/*
79741dd3
MS
2773 * Account for idle time.
2774 * @cputime: the cpu time spent in idle wait
1da177e4 2775 */
79741dd3 2776void account_idle_time(cputime_t cputime)
1da177e4 2777{
3292beb3 2778 u64 *cpustat = kcpustat_this_cpu->cpustat;
70b97a7f 2779 struct rq *rq = this_rq();
1da177e4 2780
79741dd3 2781 if (atomic_read(&rq->nr_iowait) > 0)
612ef28a 2782 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
79741dd3 2783 else
612ef28a 2784 cpustat[CPUTIME_IDLE] += (__force u64) cputime;
1da177e4
LT
2785}
2786
e6e6685a
GC
2787static __always_inline bool steal_account_process_tick(void)
2788{
2789#ifdef CONFIG_PARAVIRT
c5905afb 2790 if (static_key_false(&paravirt_steal_enabled)) {
e6e6685a
GC
2791 u64 steal, st = 0;
2792
2793 steal = paravirt_steal_clock(smp_processor_id());
2794 steal -= this_rq()->prev_steal_time;
2795
2796 st = steal_ticks(steal);
2797 this_rq()->prev_steal_time += st * TICK_NSEC;
2798
2799 account_steal_time(st);
2800 return st;
2801 }
2802#endif
2803 return false;
2804}
2805
79741dd3
MS
2806#ifndef CONFIG_VIRT_CPU_ACCOUNTING
2807
abb74cef
VP
2808#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2809/*
2810 * Account a tick to a process and cpustat
2811 * @p: the process that the cpu time gets accounted to
2812 * @user_tick: is the tick from userspace
2813 * @rq: the pointer to rq
2814 *
2815 * Tick demultiplexing follows the order
2816 * - pending hardirq update
2817 * - pending softirq update
2818 * - user_time
2819 * - idle_time
2820 * - system time
2821 * - check for guest_time
2822 * - else account as system_time
2823 *
2824 * Check for hardirq is done both for system and user time as there is
2825 * no timer going off while we are on hardirq and hence we may never get an
2826 * opportunity to update it solely in system time.
2827 * p->stime and friends are only updated on system time and not on irq
2828 * softirq as those do not count in task exec_runtime any more.
2829 */
2830static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2831 struct rq *rq)
2832{
2833 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3292beb3 2834 u64 *cpustat = kcpustat_this_cpu->cpustat;
abb74cef 2835
e6e6685a
GC
2836 if (steal_account_process_tick())
2837 return;
2838
abb74cef 2839 if (irqtime_account_hi_update()) {
612ef28a 2840 cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
abb74cef 2841 } else if (irqtime_account_si_update()) {
612ef28a 2842 cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
414bee9b
VP
2843 } else if (this_cpu_ksoftirqd() == p) {
2844 /*
2845 * ksoftirqd time do not get accounted in cpu_softirq_time.
2846 * So, we have to handle it separately here.
2847 * Also, p->stime needs to be updated for ksoftirqd.
2848 */
2849 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3292beb3 2850 CPUTIME_SOFTIRQ);
abb74cef
VP
2851 } else if (user_tick) {
2852 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2853 } else if (p == rq->idle) {
2854 account_idle_time(cputime_one_jiffy);
2855 } else if (p->flags & PF_VCPU) { /* System time or guest time */
2856 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
2857 } else {
2858 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3292beb3 2859 CPUTIME_SYSTEM);
abb74cef
VP
2860 }
2861}
2862
2863static void irqtime_account_idle_ticks(int ticks)
2864{
2865 int i;
2866 struct rq *rq = this_rq();
2867
2868 for (i = 0; i < ticks; i++)
2869 irqtime_account_process_tick(current, 0, rq);
2870}
544b4a1f 2871#else /* CONFIG_IRQ_TIME_ACCOUNTING */
abb74cef
VP
2872static void irqtime_account_idle_ticks(int ticks) {}
2873static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2874 struct rq *rq) {}
544b4a1f 2875#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
79741dd3
MS
2876
2877/*
2878 * Account a single tick of cpu time.
2879 * @p: the process that the cpu time gets accounted to
2880 * @user_tick: indicates if the tick is a user or a system tick
2881 */
2882void account_process_tick(struct task_struct *p, int user_tick)
2883{
a42548a1 2884 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
2885 struct rq *rq = this_rq();
2886
abb74cef
VP
2887 if (sched_clock_irqtime) {
2888 irqtime_account_process_tick(p, user_tick, rq);
2889 return;
2890 }
2891
e6e6685a
GC
2892 if (steal_account_process_tick())
2893 return;
2894
79741dd3 2895 if (user_tick)
a42548a1 2896 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 2897 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 2898 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
2899 one_jiffy_scaled);
2900 else
a42548a1 2901 account_idle_time(cputime_one_jiffy);
79741dd3
MS
2902}
2903
2904/*
2905 * Account multiple ticks of steal time.
2906 * @p: the process from which the cpu time has been stolen
2907 * @ticks: number of stolen ticks
2908 */
2909void account_steal_ticks(unsigned long ticks)
2910{
2911 account_steal_time(jiffies_to_cputime(ticks));
2912}
2913
2914/*
2915 * Account multiple ticks of idle time.
2916 * @ticks: number of stolen ticks
2917 */
2918void account_idle_ticks(unsigned long ticks)
2919{
abb74cef
VP
2920
2921 if (sched_clock_irqtime) {
2922 irqtime_account_idle_ticks(ticks);
2923 return;
2924 }
2925
79741dd3 2926 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
2927}
2928
79741dd3
MS
2929#endif
2930
49048622
BS
2931/*
2932 * Use precise platform statistics if available:
2933 */
2934#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 2935void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 2936{
d99ca3b9
HS
2937 *ut = p->utime;
2938 *st = p->stime;
49048622
BS
2939}
2940
0cf55e1e 2941void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 2942{
0cf55e1e
HS
2943 struct task_cputime cputime;
2944
2945 thread_group_cputime(p, &cputime);
2946
2947 *ut = cputime.utime;
2948 *st = cputime.stime;
49048622
BS
2949}
2950#else
761b1d26
HS
2951
2952#ifndef nsecs_to_cputime
b7b20df9 2953# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
2954#endif
2955
d180c5bc 2956void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 2957{
64861634 2958 cputime_t rtime, utime = p->utime, total = utime + p->stime;
49048622
BS
2959
2960 /*
2961 * Use CFS's precise accounting:
2962 */
d180c5bc 2963 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
2964
2965 if (total) {
64861634 2966 u64 temp = (__force u64) rtime;
d180c5bc 2967
64861634
MS
2968 temp *= (__force u64) utime;
2969 do_div(temp, (__force u32) total);
2970 utime = (__force cputime_t) temp;
d180c5bc
HS
2971 } else
2972 utime = rtime;
49048622 2973
d180c5bc
HS
2974 /*
2975 * Compare with previous values, to keep monotonicity:
2976 */
761b1d26 2977 p->prev_utime = max(p->prev_utime, utime);
64861634 2978 p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
49048622 2979
d99ca3b9
HS
2980 *ut = p->prev_utime;
2981 *st = p->prev_stime;
49048622
BS
2982}
2983
0cf55e1e
HS
2984/*
2985 * Must be called with siglock held.
2986 */
2987void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 2988{
0cf55e1e
HS
2989 struct signal_struct *sig = p->signal;
2990 struct task_cputime cputime;
2991 cputime_t rtime, utime, total;
49048622 2992
0cf55e1e 2993 thread_group_cputime(p, &cputime);
49048622 2994
64861634 2995 total = cputime.utime + cputime.stime;
0cf55e1e 2996 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 2997
0cf55e1e 2998 if (total) {
64861634 2999 u64 temp = (__force u64) rtime;
49048622 3000
64861634
MS
3001 temp *= (__force u64) cputime.utime;
3002 do_div(temp, (__force u32) total);
3003 utime = (__force cputime_t) temp;
0cf55e1e
HS
3004 } else
3005 utime = rtime;
3006
3007 sig->prev_utime = max(sig->prev_utime, utime);
64861634 3008 sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
0cf55e1e
HS
3009
3010 *ut = sig->prev_utime;
3011 *st = sig->prev_stime;
49048622 3012}
49048622 3013#endif
49048622 3014
7835b98b
CL
3015/*
3016 * This function gets called by the timer code, with HZ frequency.
3017 * We call it with interrupts disabled.
7835b98b
CL
3018 */
3019void scheduler_tick(void)
3020{
7835b98b
CL
3021 int cpu = smp_processor_id();
3022 struct rq *rq = cpu_rq(cpu);
dd41f596 3023 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3024
3025 sched_clock_tick();
dd41f596 3026
05fa785c 3027 raw_spin_lock(&rq->lock);
3e51f33f 3028 update_rq_clock(rq);
fdf3e95d 3029 update_cpu_load_active(rq);
fa85ae24 3030 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3031 raw_spin_unlock(&rq->lock);
7835b98b 3032
e9d2b064 3033 perf_event_task_tick();
e220d2dc 3034
e418e1c2 3035#ifdef CONFIG_SMP
6eb57e0d 3036 rq->idle_balance = idle_cpu(cpu);
dd41f596 3037 trigger_load_balance(rq, cpu);
e418e1c2 3038#endif
1da177e4
LT
3039}
3040
132380a0 3041notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3042{
3043 if (in_lock_functions(addr)) {
3044 addr = CALLER_ADDR2;
3045 if (in_lock_functions(addr))
3046 addr = CALLER_ADDR3;
3047 }
3048 return addr;
3049}
1da177e4 3050
7e49fcce
SR
3051#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3052 defined(CONFIG_PREEMPT_TRACER))
3053
43627582 3054void __kprobes add_preempt_count(int val)
1da177e4 3055{
6cd8a4bb 3056#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3057 /*
3058 * Underflow?
3059 */
9a11b49a
IM
3060 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3061 return;
6cd8a4bb 3062#endif
1da177e4 3063 preempt_count() += val;
6cd8a4bb 3064#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3065 /*
3066 * Spinlock count overflowing soon?
3067 */
33859f7f
MOS
3068 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3069 PREEMPT_MASK - 10);
6cd8a4bb
SR
3070#endif
3071 if (preempt_count() == val)
3072 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3073}
3074EXPORT_SYMBOL(add_preempt_count);
3075
43627582 3076void __kprobes sub_preempt_count(int val)
1da177e4 3077{
6cd8a4bb 3078#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3079 /*
3080 * Underflow?
3081 */
01e3eb82 3082 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3083 return;
1da177e4
LT
3084 /*
3085 * Is the spinlock portion underflowing?
3086 */
9a11b49a
IM
3087 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3088 !(preempt_count() & PREEMPT_MASK)))
3089 return;
6cd8a4bb 3090#endif
9a11b49a 3091
6cd8a4bb
SR
3092 if (preempt_count() == val)
3093 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3094 preempt_count() -= val;
3095}
3096EXPORT_SYMBOL(sub_preempt_count);
3097
3098#endif
3099
3100/*
dd41f596 3101 * Print scheduling while atomic bug:
1da177e4 3102 */
dd41f596 3103static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3104{
664dfa65
DJ
3105 if (oops_in_progress)
3106 return;
3107
3df0fc5b
PZ
3108 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3109 prev->comm, prev->pid, preempt_count());
838225b4 3110
dd41f596 3111 debug_show_held_locks(prev);
e21f5b15 3112 print_modules();
dd41f596
IM
3113 if (irqs_disabled())
3114 print_irqtrace_events(prev);
6135fc1e 3115 dump_stack();
dd41f596 3116}
1da177e4 3117
dd41f596
IM
3118/*
3119 * Various schedule()-time debugging checks and statistics:
3120 */
3121static inline void schedule_debug(struct task_struct *prev)
3122{
1da177e4 3123 /*
41a2d6cf 3124 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3125 * schedule() atomically, we ignore that path for now.
3126 * Otherwise, whine if we are scheduling when we should not be.
3127 */
3f33a7ce 3128 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596 3129 __schedule_bug(prev);
b3fbab05 3130 rcu_sleep_check();
dd41f596 3131
1da177e4
LT
3132 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3133
2d72376b 3134 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
3135}
3136
6cecd084 3137static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 3138{
61eadef6 3139 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 3140 update_rq_clock(rq);
6cecd084 3141 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
3142}
3143
dd41f596
IM
3144/*
3145 * Pick up the highest-prio task:
3146 */
3147static inline struct task_struct *
b67802ea 3148pick_next_task(struct rq *rq)
dd41f596 3149{
5522d5d5 3150 const struct sched_class *class;
dd41f596 3151 struct task_struct *p;
1da177e4
LT
3152
3153 /*
dd41f596
IM
3154 * Optimization: we know that if all tasks are in
3155 * the fair class we can call that function directly:
1da177e4 3156 */
953bfcd1 3157 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 3158 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3159 if (likely(p))
3160 return p;
1da177e4
LT
3161 }
3162
34f971f6 3163 for_each_class(class) {
fb8d4724 3164 p = class->pick_next_task(rq);
dd41f596
IM
3165 if (p)
3166 return p;
dd41f596 3167 }
34f971f6
PZ
3168
3169 BUG(); /* the idle class will always have a runnable task */
dd41f596 3170}
1da177e4 3171
dd41f596 3172/*
c259e01a 3173 * __schedule() is the main scheduler function.
dd41f596 3174 */
c259e01a 3175static void __sched __schedule(void)
dd41f596
IM
3176{
3177 struct task_struct *prev, *next;
67ca7bde 3178 unsigned long *switch_count;
dd41f596 3179 struct rq *rq;
31656519 3180 int cpu;
dd41f596 3181
ff743345
PZ
3182need_resched:
3183 preempt_disable();
dd41f596
IM
3184 cpu = smp_processor_id();
3185 rq = cpu_rq(cpu);
25502a6c 3186 rcu_note_context_switch(cpu);
dd41f596 3187 prev = rq->curr;
dd41f596 3188
dd41f596 3189 schedule_debug(prev);
1da177e4 3190
31656519 3191 if (sched_feat(HRTICK))
f333fdc9 3192 hrtick_clear(rq);
8f4d37ec 3193
05fa785c 3194 raw_spin_lock_irq(&rq->lock);
1da177e4 3195
246d86b5 3196 switch_count = &prev->nivcsw;
1da177e4 3197 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 3198 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3199 prev->state = TASK_RUNNING;
21aa9af0 3200 } else {
2acca55e
PZ
3201 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3202 prev->on_rq = 0;
3203
21aa9af0 3204 /*
2acca55e
PZ
3205 * If a worker went to sleep, notify and ask workqueue
3206 * whether it wants to wake up a task to maintain
3207 * concurrency.
21aa9af0
TH
3208 */
3209 if (prev->flags & PF_WQ_WORKER) {
3210 struct task_struct *to_wakeup;
3211
3212 to_wakeup = wq_worker_sleeping(prev, cpu);
3213 if (to_wakeup)
3214 try_to_wake_up_local(to_wakeup);
3215 }
21aa9af0 3216 }
dd41f596 3217 switch_count = &prev->nvcsw;
1da177e4
LT
3218 }
3219
3f029d3c 3220 pre_schedule(rq, prev);
f65eda4f 3221
dd41f596 3222 if (unlikely(!rq->nr_running))
1da177e4 3223 idle_balance(cpu, rq);
1da177e4 3224
df1c99d4 3225 put_prev_task(rq, prev);
b67802ea 3226 next = pick_next_task(rq);
f26f9aff
MG
3227 clear_tsk_need_resched(prev);
3228 rq->skip_clock_update = 0;
1da177e4 3229
1da177e4 3230 if (likely(prev != next)) {
1da177e4
LT
3231 rq->nr_switches++;
3232 rq->curr = next;
3233 ++*switch_count;
3234
dd41f596 3235 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 3236 /*
246d86b5
ON
3237 * The context switch have flipped the stack from under us
3238 * and restored the local variables which were saved when
3239 * this task called schedule() in the past. prev == current
3240 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
3241 */
3242 cpu = smp_processor_id();
3243 rq = cpu_rq(cpu);
1da177e4 3244 } else
05fa785c 3245 raw_spin_unlock_irq(&rq->lock);
1da177e4 3246
3f029d3c 3247 post_schedule(rq);
1da177e4 3248
ba74c144 3249 sched_preempt_enable_no_resched();
ff743345 3250 if (need_resched())
1da177e4
LT
3251 goto need_resched;
3252}
c259e01a 3253
9c40cef2
TG
3254static inline void sched_submit_work(struct task_struct *tsk)
3255{
3c7d5184 3256 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3257 return;
3258 /*
3259 * If we are going to sleep and we have plugged IO queued,
3260 * make sure to submit it to avoid deadlocks.
3261 */
3262 if (blk_needs_flush_plug(tsk))
3263 blk_schedule_flush_plug(tsk);
3264}
3265
6ebbe7a0 3266asmlinkage void __sched schedule(void)
c259e01a 3267{
9c40cef2
TG
3268 struct task_struct *tsk = current;
3269
3270 sched_submit_work(tsk);
c259e01a
TG
3271 __schedule();
3272}
1da177e4
LT
3273EXPORT_SYMBOL(schedule);
3274
c5491ea7
TG
3275/**
3276 * schedule_preempt_disabled - called with preemption disabled
3277 *
3278 * Returns with preemption disabled. Note: preempt_count must be 1
3279 */
3280void __sched schedule_preempt_disabled(void)
3281{
ba74c144 3282 sched_preempt_enable_no_resched();
c5491ea7
TG
3283 schedule();
3284 preempt_disable();
3285}
3286
c08f7829 3287#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d 3288
c6eb3dda
PZ
3289static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3290{
c6eb3dda 3291 if (lock->owner != owner)
307bf980 3292 return false;
0d66bf6d
PZ
3293
3294 /*
c6eb3dda
PZ
3295 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3296 * lock->owner still matches owner, if that fails, owner might
3297 * point to free()d memory, if it still matches, the rcu_read_lock()
3298 * ensures the memory stays valid.
0d66bf6d 3299 */
c6eb3dda 3300 barrier();
0d66bf6d 3301
307bf980 3302 return owner->on_cpu;
c6eb3dda 3303}
0d66bf6d 3304
c6eb3dda
PZ
3305/*
3306 * Look out! "owner" is an entirely speculative pointer
3307 * access and not reliable.
3308 */
3309int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3310{
3311 if (!sched_feat(OWNER_SPIN))
3312 return 0;
0d66bf6d 3313
307bf980 3314 rcu_read_lock();
c6eb3dda
PZ
3315 while (owner_running(lock, owner)) {
3316 if (need_resched())
307bf980 3317 break;
0d66bf6d 3318
335d7afb 3319 arch_mutex_cpu_relax();
0d66bf6d 3320 }
307bf980 3321 rcu_read_unlock();
4b402210 3322
c6eb3dda 3323 /*
307bf980
TG
3324 * We break out the loop above on need_resched() and when the
3325 * owner changed, which is a sign for heavy contention. Return
3326 * success only when lock->owner is NULL.
c6eb3dda 3327 */
307bf980 3328 return lock->owner == NULL;
0d66bf6d
PZ
3329}
3330#endif
3331
1da177e4
LT
3332#ifdef CONFIG_PREEMPT
3333/*
2ed6e34f 3334 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3335 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3336 * occur there and call schedule directly.
3337 */
d1f74e20 3338asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
3339{
3340 struct thread_info *ti = current_thread_info();
6478d880 3341
1da177e4
LT
3342 /*
3343 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3344 * we do not want to preempt the current task. Just return..
1da177e4 3345 */
beed33a8 3346 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3347 return;
3348
3a5c359a 3349 do {
d1f74e20 3350 add_preempt_count_notrace(PREEMPT_ACTIVE);
c259e01a 3351 __schedule();
d1f74e20 3352 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 3353
3a5c359a
AK
3354 /*
3355 * Check again in case we missed a preemption opportunity
3356 * between schedule and now.
3357 */
3358 barrier();
5ed0cec0 3359 } while (need_resched());
1da177e4 3360}
1da177e4
LT
3361EXPORT_SYMBOL(preempt_schedule);
3362
3363/*
2ed6e34f 3364 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3365 * off of irq context.
3366 * Note, that this is called and return with irqs disabled. This will
3367 * protect us against recursive calling from irq.
3368 */
3369asmlinkage void __sched preempt_schedule_irq(void)
3370{
3371 struct thread_info *ti = current_thread_info();
6478d880 3372
2ed6e34f 3373 /* Catch callers which need to be fixed */
1da177e4
LT
3374 BUG_ON(ti->preempt_count || !irqs_disabled());
3375
3a5c359a
AK
3376 do {
3377 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 3378 local_irq_enable();
c259e01a 3379 __schedule();
3a5c359a 3380 local_irq_disable();
3a5c359a 3381 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3382
3a5c359a
AK
3383 /*
3384 * Check again in case we missed a preemption opportunity
3385 * between schedule and now.
3386 */
3387 barrier();
5ed0cec0 3388 } while (need_resched());
1da177e4
LT
3389}
3390
3391#endif /* CONFIG_PREEMPT */
3392
63859d4f 3393int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3394 void *key)
1da177e4 3395{
63859d4f 3396 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3397}
1da177e4
LT
3398EXPORT_SYMBOL(default_wake_function);
3399
3400/*
41a2d6cf
IM
3401 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3402 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3403 * number) then we wake all the non-exclusive tasks and one exclusive task.
3404 *
3405 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3406 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3407 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3408 */
78ddb08f 3409static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 3410 int nr_exclusive, int wake_flags, void *key)
1da177e4 3411{
2e45874c 3412 wait_queue_t *curr, *next;
1da177e4 3413
2e45874c 3414 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3415 unsigned flags = curr->flags;
3416
63859d4f 3417 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 3418 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3419 break;
3420 }
3421}
3422
3423/**
3424 * __wake_up - wake up threads blocked on a waitqueue.
3425 * @q: the waitqueue
3426 * @mode: which threads
3427 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3428 * @key: is directly passed to the wakeup function
50fa610a
DH
3429 *
3430 * It may be assumed that this function implies a write memory barrier before
3431 * changing the task state if and only if any tasks are woken up.
1da177e4 3432 */
7ad5b3a5 3433void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3434 int nr_exclusive, void *key)
1da177e4
LT
3435{
3436 unsigned long flags;
3437
3438 spin_lock_irqsave(&q->lock, flags);
3439 __wake_up_common(q, mode, nr_exclusive, 0, key);
3440 spin_unlock_irqrestore(&q->lock, flags);
3441}
1da177e4
LT
3442EXPORT_SYMBOL(__wake_up);
3443
3444/*
3445 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3446 */
63b20011 3447void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
1da177e4 3448{
63b20011 3449 __wake_up_common(q, mode, nr, 0, NULL);
1da177e4 3450}
22c43c81 3451EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 3452
4ede816a
DL
3453void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3454{
3455 __wake_up_common(q, mode, 1, 0, key);
3456}
bf294b41 3457EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 3458
1da177e4 3459/**
4ede816a 3460 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
3461 * @q: the waitqueue
3462 * @mode: which threads
3463 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 3464 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
3465 *
3466 * The sync wakeup differs that the waker knows that it will schedule
3467 * away soon, so while the target thread will be woken up, it will not
3468 * be migrated to another CPU - ie. the two threads are 'synchronized'
3469 * with each other. This can prevent needless bouncing between CPUs.
3470 *
3471 * On UP it can prevent extra preemption.
50fa610a
DH
3472 *
3473 * It may be assumed that this function implies a write memory barrier before
3474 * changing the task state if and only if any tasks are woken up.
1da177e4 3475 */
4ede816a
DL
3476void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3477 int nr_exclusive, void *key)
1da177e4
LT
3478{
3479 unsigned long flags;
7d478721 3480 int wake_flags = WF_SYNC;
1da177e4
LT
3481
3482 if (unlikely(!q))
3483 return;
3484
3485 if (unlikely(!nr_exclusive))
7d478721 3486 wake_flags = 0;
1da177e4
LT
3487
3488 spin_lock_irqsave(&q->lock, flags);
7d478721 3489 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
3490 spin_unlock_irqrestore(&q->lock, flags);
3491}
4ede816a
DL
3492EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3493
3494/*
3495 * __wake_up_sync - see __wake_up_sync_key()
3496 */
3497void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3498{
3499 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3500}
1da177e4
LT
3501EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3502
65eb3dc6
KD
3503/**
3504 * complete: - signals a single thread waiting on this completion
3505 * @x: holds the state of this particular completion
3506 *
3507 * This will wake up a single thread waiting on this completion. Threads will be
3508 * awakened in the same order in which they were queued.
3509 *
3510 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
3511 *
3512 * It may be assumed that this function implies a write memory barrier before
3513 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3514 */
b15136e9 3515void complete(struct completion *x)
1da177e4
LT
3516{
3517 unsigned long flags;
3518
3519 spin_lock_irqsave(&x->wait.lock, flags);
3520 x->done++;
d9514f6c 3521 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
3522 spin_unlock_irqrestore(&x->wait.lock, flags);
3523}
3524EXPORT_SYMBOL(complete);
3525
65eb3dc6
KD
3526/**
3527 * complete_all: - signals all threads waiting on this completion
3528 * @x: holds the state of this particular completion
3529 *
3530 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
3531 *
3532 * It may be assumed that this function implies a write memory barrier before
3533 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3534 */
b15136e9 3535void complete_all(struct completion *x)
1da177e4
LT
3536{
3537 unsigned long flags;
3538
3539 spin_lock_irqsave(&x->wait.lock, flags);
3540 x->done += UINT_MAX/2;
d9514f6c 3541 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
3542 spin_unlock_irqrestore(&x->wait.lock, flags);
3543}
3544EXPORT_SYMBOL(complete_all);
3545
8cbbe86d
AK
3546static inline long __sched
3547do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3548{
1da177e4
LT
3549 if (!x->done) {
3550 DECLARE_WAITQUEUE(wait, current);
3551
a93d2f17 3552 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 3553 do {
94d3d824 3554 if (signal_pending_state(state, current)) {
ea71a546
ON
3555 timeout = -ERESTARTSYS;
3556 break;
8cbbe86d
AK
3557 }
3558 __set_current_state(state);
1da177e4
LT
3559 spin_unlock_irq(&x->wait.lock);
3560 timeout = schedule_timeout(timeout);
3561 spin_lock_irq(&x->wait.lock);
ea71a546 3562 } while (!x->done && timeout);
1da177e4 3563 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
3564 if (!x->done)
3565 return timeout;
1da177e4
LT
3566 }
3567 x->done--;
ea71a546 3568 return timeout ?: 1;
1da177e4 3569}
1da177e4 3570
8cbbe86d
AK
3571static long __sched
3572wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3573{
1da177e4
LT
3574 might_sleep();
3575
3576 spin_lock_irq(&x->wait.lock);
8cbbe86d 3577 timeout = do_wait_for_common(x, timeout, state);
1da177e4 3578 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3579 return timeout;
3580}
1da177e4 3581
65eb3dc6
KD
3582/**
3583 * wait_for_completion: - waits for completion of a task
3584 * @x: holds the state of this particular completion
3585 *
3586 * This waits to be signaled for completion of a specific task. It is NOT
3587 * interruptible and there is no timeout.
3588 *
3589 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3590 * and interrupt capability. Also see complete().
3591 */
b15136e9 3592void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
3593{
3594 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 3595}
8cbbe86d 3596EXPORT_SYMBOL(wait_for_completion);
1da177e4 3597
65eb3dc6
KD
3598/**
3599 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3600 * @x: holds the state of this particular completion
3601 * @timeout: timeout value in jiffies
3602 *
3603 * This waits for either a completion of a specific task to be signaled or for a
3604 * specified timeout to expire. The timeout is in jiffies. It is not
3605 * interruptible.
c6dc7f05
BF
3606 *
3607 * The return value is 0 if timed out, and positive (at least 1, or number of
3608 * jiffies left till timeout) if completed.
65eb3dc6 3609 */
b15136e9 3610unsigned long __sched
8cbbe86d 3611wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 3612{
8cbbe86d 3613 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 3614}
8cbbe86d 3615EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 3616
65eb3dc6
KD
3617/**
3618 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3619 * @x: holds the state of this particular completion
3620 *
3621 * This waits for completion of a specific task to be signaled. It is
3622 * interruptible.
c6dc7f05
BF
3623 *
3624 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 3625 */
8cbbe86d 3626int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 3627{
51e97990
AK
3628 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3629 if (t == -ERESTARTSYS)
3630 return t;
3631 return 0;
0fec171c 3632}
8cbbe86d 3633EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 3634
65eb3dc6
KD
3635/**
3636 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3637 * @x: holds the state of this particular completion
3638 * @timeout: timeout value in jiffies
3639 *
3640 * This waits for either a completion of a specific task to be signaled or for a
3641 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
c6dc7f05
BF
3642 *
3643 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3644 * positive (at least 1, or number of jiffies left till timeout) if completed.
65eb3dc6 3645 */
6bf41237 3646long __sched
8cbbe86d
AK
3647wait_for_completion_interruptible_timeout(struct completion *x,
3648 unsigned long timeout)
0fec171c 3649{
8cbbe86d 3650 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 3651}
8cbbe86d 3652EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 3653
65eb3dc6
KD
3654/**
3655 * wait_for_completion_killable: - waits for completion of a task (killable)
3656 * @x: holds the state of this particular completion
3657 *
3658 * This waits to be signaled for completion of a specific task. It can be
3659 * interrupted by a kill signal.
c6dc7f05
BF
3660 *
3661 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 3662 */
009e577e
MW
3663int __sched wait_for_completion_killable(struct completion *x)
3664{
3665 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3666 if (t == -ERESTARTSYS)
3667 return t;
3668 return 0;
3669}
3670EXPORT_SYMBOL(wait_for_completion_killable);
3671
0aa12fb4
SW
3672/**
3673 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3674 * @x: holds the state of this particular completion
3675 * @timeout: timeout value in jiffies
3676 *
3677 * This waits for either a completion of a specific task to be
3678 * signaled or for a specified timeout to expire. It can be
3679 * interrupted by a kill signal. The timeout is in jiffies.
c6dc7f05
BF
3680 *
3681 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3682 * positive (at least 1, or number of jiffies left till timeout) if completed.
0aa12fb4 3683 */
6bf41237 3684long __sched
0aa12fb4
SW
3685wait_for_completion_killable_timeout(struct completion *x,
3686 unsigned long timeout)
3687{
3688 return wait_for_common(x, timeout, TASK_KILLABLE);
3689}
3690EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3691
be4de352
DC
3692/**
3693 * try_wait_for_completion - try to decrement a completion without blocking
3694 * @x: completion structure
3695 *
3696 * Returns: 0 if a decrement cannot be done without blocking
3697 * 1 if a decrement succeeded.
3698 *
3699 * If a completion is being used as a counting completion,
3700 * attempt to decrement the counter without blocking. This
3701 * enables us to avoid waiting if the resource the completion
3702 * is protecting is not available.
3703 */
3704bool try_wait_for_completion(struct completion *x)
3705{
7539a3b3 3706 unsigned long flags;
be4de352
DC
3707 int ret = 1;
3708
7539a3b3 3709 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3710 if (!x->done)
3711 ret = 0;
3712 else
3713 x->done--;
7539a3b3 3714 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3715 return ret;
3716}
3717EXPORT_SYMBOL(try_wait_for_completion);
3718
3719/**
3720 * completion_done - Test to see if a completion has any waiters
3721 * @x: completion structure
3722 *
3723 * Returns: 0 if there are waiters (wait_for_completion() in progress)
3724 * 1 if there are no waiters.
3725 *
3726 */
3727bool completion_done(struct completion *x)
3728{
7539a3b3 3729 unsigned long flags;
be4de352
DC
3730 int ret = 1;
3731
7539a3b3 3732 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3733 if (!x->done)
3734 ret = 0;
7539a3b3 3735 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3736 return ret;
3737}
3738EXPORT_SYMBOL(completion_done);
3739
8cbbe86d
AK
3740static long __sched
3741sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 3742{
0fec171c
IM
3743 unsigned long flags;
3744 wait_queue_t wait;
3745
3746 init_waitqueue_entry(&wait, current);
1da177e4 3747
8cbbe86d 3748 __set_current_state(state);
1da177e4 3749
8cbbe86d
AK
3750 spin_lock_irqsave(&q->lock, flags);
3751 __add_wait_queue(q, &wait);
3752 spin_unlock(&q->lock);
3753 timeout = schedule_timeout(timeout);
3754 spin_lock_irq(&q->lock);
3755 __remove_wait_queue(q, &wait);
3756 spin_unlock_irqrestore(&q->lock, flags);
3757
3758 return timeout;
3759}
3760
3761void __sched interruptible_sleep_on(wait_queue_head_t *q)
3762{
3763 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3764}
1da177e4
LT
3765EXPORT_SYMBOL(interruptible_sleep_on);
3766
0fec171c 3767long __sched
95cdf3b7 3768interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3769{
8cbbe86d 3770 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 3771}
1da177e4
LT
3772EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3773
0fec171c 3774void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3775{
8cbbe86d 3776 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3777}
1da177e4
LT
3778EXPORT_SYMBOL(sleep_on);
3779
0fec171c 3780long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3781{
8cbbe86d 3782 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 3783}
1da177e4
LT
3784EXPORT_SYMBOL(sleep_on_timeout);
3785
b29739f9
IM
3786#ifdef CONFIG_RT_MUTEXES
3787
3788/*
3789 * rt_mutex_setprio - set the current priority of a task
3790 * @p: task
3791 * @prio: prio value (kernel-internal form)
3792 *
3793 * This function changes the 'effective' priority of a task. It does
3794 * not touch ->normal_prio like __setscheduler().
3795 *
3796 * Used by the rt_mutex code to implement priority inheritance logic.
3797 */
36c8b586 3798void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3799{
83b699ed 3800 int oldprio, on_rq, running;
70b97a7f 3801 struct rq *rq;
83ab0aa0 3802 const struct sched_class *prev_class;
b29739f9
IM
3803
3804 BUG_ON(prio < 0 || prio > MAX_PRIO);
3805
0122ec5b 3806 rq = __task_rq_lock(p);
b29739f9 3807
1c4dd99b
TG
3808 /*
3809 * Idle task boosting is a nono in general. There is one
3810 * exception, when PREEMPT_RT and NOHZ is active:
3811 *
3812 * The idle task calls get_next_timer_interrupt() and holds
3813 * the timer wheel base->lock on the CPU and another CPU wants
3814 * to access the timer (probably to cancel it). We can safely
3815 * ignore the boosting request, as the idle CPU runs this code
3816 * with interrupts disabled and will complete the lock
3817 * protected section without being interrupted. So there is no
3818 * real need to boost.
3819 */
3820 if (unlikely(p == rq->idle)) {
3821 WARN_ON(p != rq->curr);
3822 WARN_ON(p->pi_blocked_on);
3823 goto out_unlock;
3824 }
3825
a8027073 3826 trace_sched_pi_setprio(p, prio);
d5f9f942 3827 oldprio = p->prio;
83ab0aa0 3828 prev_class = p->sched_class;
fd2f4419 3829 on_rq = p->on_rq;
051a1d1a 3830 running = task_current(rq, p);
0e1f3483 3831 if (on_rq)
69be72c1 3832 dequeue_task(rq, p, 0);
0e1f3483
HS
3833 if (running)
3834 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
3835
3836 if (rt_prio(prio))
3837 p->sched_class = &rt_sched_class;
3838 else
3839 p->sched_class = &fair_sched_class;
3840
b29739f9
IM
3841 p->prio = prio;
3842
0e1f3483
HS
3843 if (running)
3844 p->sched_class->set_curr_task(rq);
da7a735e 3845 if (on_rq)
371fd7e7 3846 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 3847
da7a735e 3848 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3849out_unlock:
0122ec5b 3850 __task_rq_unlock(rq);
b29739f9 3851}
b29739f9 3852#endif
36c8b586 3853void set_user_nice(struct task_struct *p, long nice)
1da177e4 3854{
dd41f596 3855 int old_prio, delta, on_rq;
1da177e4 3856 unsigned long flags;
70b97a7f 3857 struct rq *rq;
1da177e4
LT
3858
3859 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3860 return;
3861 /*
3862 * We have to be careful, if called from sys_setpriority(),
3863 * the task might be in the middle of scheduling on another CPU.
3864 */
3865 rq = task_rq_lock(p, &flags);
3866 /*
3867 * The RT priorities are set via sched_setscheduler(), but we still
3868 * allow the 'normal' nice value to be set - but as expected
3869 * it wont have any effect on scheduling until the task is
dd41f596 3870 * SCHED_FIFO/SCHED_RR:
1da177e4 3871 */
e05606d3 3872 if (task_has_rt_policy(p)) {
1da177e4
LT
3873 p->static_prio = NICE_TO_PRIO(nice);
3874 goto out_unlock;
3875 }
fd2f4419 3876 on_rq = p->on_rq;
c09595f6 3877 if (on_rq)
69be72c1 3878 dequeue_task(rq, p, 0);
1da177e4 3879
1da177e4 3880 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3881 set_load_weight(p);
b29739f9
IM
3882 old_prio = p->prio;
3883 p->prio = effective_prio(p);
3884 delta = p->prio - old_prio;
1da177e4 3885
dd41f596 3886 if (on_rq) {
371fd7e7 3887 enqueue_task(rq, p, 0);
1da177e4 3888 /*
d5f9f942
AM
3889 * If the task increased its priority or is running and
3890 * lowered its priority, then reschedule its CPU:
1da177e4 3891 */
d5f9f942 3892 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3893 resched_task(rq->curr);
3894 }
3895out_unlock:
0122ec5b 3896 task_rq_unlock(rq, p, &flags);
1da177e4 3897}
1da177e4
LT
3898EXPORT_SYMBOL(set_user_nice);
3899
e43379f1
MM
3900/*
3901 * can_nice - check if a task can reduce its nice value
3902 * @p: task
3903 * @nice: nice value
3904 */
36c8b586 3905int can_nice(const struct task_struct *p, const int nice)
e43379f1 3906{
024f4747
MM
3907 /* convert nice value [19,-20] to rlimit style value [1,40] */
3908 int nice_rlim = 20 - nice;
48f24c4d 3909
78d7d407 3910 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3911 capable(CAP_SYS_NICE));
3912}
3913
1da177e4
LT
3914#ifdef __ARCH_WANT_SYS_NICE
3915
3916/*
3917 * sys_nice - change the priority of the current process.
3918 * @increment: priority increment
3919 *
3920 * sys_setpriority is a more generic, but much slower function that
3921 * does similar things.
3922 */
5add95d4 3923SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3924{
48f24c4d 3925 long nice, retval;
1da177e4
LT
3926
3927 /*
3928 * Setpriority might change our priority at the same moment.
3929 * We don't have to worry. Conceptually one call occurs first
3930 * and we have a single winner.
3931 */
e43379f1
MM
3932 if (increment < -40)
3933 increment = -40;
1da177e4
LT
3934 if (increment > 40)
3935 increment = 40;
3936
2b8f836f 3937 nice = TASK_NICE(current) + increment;
1da177e4
LT
3938 if (nice < -20)
3939 nice = -20;
3940 if (nice > 19)
3941 nice = 19;
3942
e43379f1
MM
3943 if (increment < 0 && !can_nice(current, nice))
3944 return -EPERM;
3945
1da177e4
LT
3946 retval = security_task_setnice(current, nice);
3947 if (retval)
3948 return retval;
3949
3950 set_user_nice(current, nice);
3951 return 0;
3952}
3953
3954#endif
3955
3956/**
3957 * task_prio - return the priority value of a given task.
3958 * @p: the task in question.
3959 *
3960 * This is the priority value as seen by users in /proc.
3961 * RT tasks are offset by -200. Normal tasks are centered
3962 * around 0, value goes from -16 to +15.
3963 */
36c8b586 3964int task_prio(const struct task_struct *p)
1da177e4
LT
3965{
3966 return p->prio - MAX_RT_PRIO;
3967}
3968
3969/**
3970 * task_nice - return the nice value of a given task.
3971 * @p: the task in question.
3972 */
36c8b586 3973int task_nice(const struct task_struct *p)
1da177e4
LT
3974{
3975 return TASK_NICE(p);
3976}
150d8bed 3977EXPORT_SYMBOL(task_nice);
1da177e4
LT
3978
3979/**
3980 * idle_cpu - is a given cpu idle currently?
3981 * @cpu: the processor in question.
3982 */
3983int idle_cpu(int cpu)
3984{
908a3283
TG
3985 struct rq *rq = cpu_rq(cpu);
3986
3987 if (rq->curr != rq->idle)
3988 return 0;
3989
3990 if (rq->nr_running)
3991 return 0;
3992
3993#ifdef CONFIG_SMP
3994 if (!llist_empty(&rq->wake_list))
3995 return 0;
3996#endif
3997
3998 return 1;
1da177e4
LT
3999}
4000
1da177e4
LT
4001/**
4002 * idle_task - return the idle task for a given cpu.
4003 * @cpu: the processor in question.
4004 */
36c8b586 4005struct task_struct *idle_task(int cpu)
1da177e4
LT
4006{
4007 return cpu_rq(cpu)->idle;
4008}
4009
4010/**
4011 * find_process_by_pid - find a process with a matching PID value.
4012 * @pid: the pid in question.
4013 */
a9957449 4014static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4015{
228ebcbe 4016 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4017}
4018
4019/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4020static void
4021__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4022{
1da177e4
LT
4023 p->policy = policy;
4024 p->rt_priority = prio;
b29739f9
IM
4025 p->normal_prio = normal_prio(p);
4026 /* we are holding p->pi_lock already */
4027 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4028 if (rt_prio(p->prio))
4029 p->sched_class = &rt_sched_class;
4030 else
4031 p->sched_class = &fair_sched_class;
2dd73a4f 4032 set_load_weight(p);
1da177e4
LT
4033}
4034
c69e8d9c
DH
4035/*
4036 * check the target process has a UID that matches the current process's
4037 */
4038static bool check_same_owner(struct task_struct *p)
4039{
4040 const struct cred *cred = current_cred(), *pcred;
4041 bool match;
4042
4043 rcu_read_lock();
4044 pcred = __task_cred(p);
b0e77598
SH
4045 if (cred->user->user_ns == pcred->user->user_ns)
4046 match = (cred->euid == pcred->euid ||
4047 cred->euid == pcred->uid);
4048 else
4049 match = false;
c69e8d9c
DH
4050 rcu_read_unlock();
4051 return match;
4052}
4053
961ccddd 4054static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4055 const struct sched_param *param, bool user)
1da177e4 4056{
83b699ed 4057 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4058 unsigned long flags;
83ab0aa0 4059 const struct sched_class *prev_class;
70b97a7f 4060 struct rq *rq;
ca94c442 4061 int reset_on_fork;
1da177e4 4062
66e5393a
SR
4063 /* may grab non-irq protected spin_locks */
4064 BUG_ON(in_interrupt());
1da177e4
LT
4065recheck:
4066 /* double check policy once rq lock held */
ca94c442
LP
4067 if (policy < 0) {
4068 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4069 policy = oldpolicy = p->policy;
ca94c442
LP
4070 } else {
4071 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4072 policy &= ~SCHED_RESET_ON_FORK;
4073
4074 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4075 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4076 policy != SCHED_IDLE)
4077 return -EINVAL;
4078 }
4079
1da177e4
LT
4080 /*
4081 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4082 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4083 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4084 */
4085 if (param->sched_priority < 0 ||
95cdf3b7 4086 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4087 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4088 return -EINVAL;
e05606d3 4089 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4090 return -EINVAL;
4091
37e4ab3f
OC
4092 /*
4093 * Allow unprivileged RT tasks to decrease priority:
4094 */
961ccddd 4095 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4096 if (rt_policy(policy)) {
a44702e8
ON
4097 unsigned long rlim_rtprio =
4098 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4099
4100 /* can't set/change the rt policy */
4101 if (policy != p->policy && !rlim_rtprio)
4102 return -EPERM;
4103
4104 /* can't increase priority */
4105 if (param->sched_priority > p->rt_priority &&
4106 param->sched_priority > rlim_rtprio)
4107 return -EPERM;
4108 }
c02aa73b 4109
dd41f596 4110 /*
c02aa73b
DH
4111 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4112 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4113 */
c02aa73b
DH
4114 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4115 if (!can_nice(p, TASK_NICE(p)))
4116 return -EPERM;
4117 }
5fe1d75f 4118
37e4ab3f 4119 /* can't change other user's priorities */
c69e8d9c 4120 if (!check_same_owner(p))
37e4ab3f 4121 return -EPERM;
ca94c442
LP
4122
4123 /* Normal users shall not reset the sched_reset_on_fork flag */
4124 if (p->sched_reset_on_fork && !reset_on_fork)
4125 return -EPERM;
37e4ab3f 4126 }
1da177e4 4127
725aad24 4128 if (user) {
b0ae1981 4129 retval = security_task_setscheduler(p);
725aad24
JF
4130 if (retval)
4131 return retval;
4132 }
4133
b29739f9
IM
4134 /*
4135 * make sure no PI-waiters arrive (or leave) while we are
4136 * changing the priority of the task:
0122ec5b 4137 *
25985edc 4138 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4139 * runqueue lock must be held.
4140 */
0122ec5b 4141 rq = task_rq_lock(p, &flags);
dc61b1d6 4142
34f971f6
PZ
4143 /*
4144 * Changing the policy of the stop threads its a very bad idea
4145 */
4146 if (p == rq->stop) {
0122ec5b 4147 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
4148 return -EINVAL;
4149 }
4150
a51e9198
DF
4151 /*
4152 * If not changing anything there's no need to proceed further:
4153 */
4154 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
4155 param->sched_priority == p->rt_priority))) {
4156
4157 __task_rq_unlock(rq);
4158 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4159 return 0;
4160 }
4161
dc61b1d6
PZ
4162#ifdef CONFIG_RT_GROUP_SCHED
4163 if (user) {
4164 /*
4165 * Do not allow realtime tasks into groups that have no runtime
4166 * assigned.
4167 */
4168 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4169 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4170 !task_group_is_autogroup(task_group(p))) {
0122ec5b 4171 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
4172 return -EPERM;
4173 }
4174 }
4175#endif
4176
1da177e4
LT
4177 /* recheck policy now with rq lock held */
4178 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4179 policy = oldpolicy = -1;
0122ec5b 4180 task_rq_unlock(rq, p, &flags);
1da177e4
LT
4181 goto recheck;
4182 }
fd2f4419 4183 on_rq = p->on_rq;
051a1d1a 4184 running = task_current(rq, p);
0e1f3483 4185 if (on_rq)
4ca9b72b 4186 dequeue_task(rq, p, 0);
0e1f3483
HS
4187 if (running)
4188 p->sched_class->put_prev_task(rq, p);
f6b53205 4189
ca94c442
LP
4190 p->sched_reset_on_fork = reset_on_fork;
4191
1da177e4 4192 oldprio = p->prio;
83ab0aa0 4193 prev_class = p->sched_class;
dd41f596 4194 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4195
0e1f3483
HS
4196 if (running)
4197 p->sched_class->set_curr_task(rq);
da7a735e 4198 if (on_rq)
4ca9b72b 4199 enqueue_task(rq, p, 0);
cb469845 4200
da7a735e 4201 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 4202 task_rq_unlock(rq, p, &flags);
b29739f9 4203
95e02ca9
TG
4204 rt_mutex_adjust_pi(p);
4205
1da177e4
LT
4206 return 0;
4207}
961ccddd
RR
4208
4209/**
4210 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4211 * @p: the task in question.
4212 * @policy: new policy.
4213 * @param: structure containing the new RT priority.
4214 *
4215 * NOTE that the task may be already dead.
4216 */
4217int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4218 const struct sched_param *param)
961ccddd
RR
4219{
4220 return __sched_setscheduler(p, policy, param, true);
4221}
1da177e4
LT
4222EXPORT_SYMBOL_GPL(sched_setscheduler);
4223
961ccddd
RR
4224/**
4225 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4226 * @p: the task in question.
4227 * @policy: new policy.
4228 * @param: structure containing the new RT priority.
4229 *
4230 * Just like sched_setscheduler, only don't bother checking if the
4231 * current context has permission. For example, this is needed in
4232 * stop_machine(): we create temporary high priority worker threads,
4233 * but our caller might not have that capability.
4234 */
4235int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4236 const struct sched_param *param)
961ccddd
RR
4237{
4238 return __sched_setscheduler(p, policy, param, false);
4239}
4240
95cdf3b7
IM
4241static int
4242do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4243{
1da177e4
LT
4244 struct sched_param lparam;
4245 struct task_struct *p;
36c8b586 4246 int retval;
1da177e4
LT
4247
4248 if (!param || pid < 0)
4249 return -EINVAL;
4250 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4251 return -EFAULT;
5fe1d75f
ON
4252
4253 rcu_read_lock();
4254 retval = -ESRCH;
1da177e4 4255 p = find_process_by_pid(pid);
5fe1d75f
ON
4256 if (p != NULL)
4257 retval = sched_setscheduler(p, policy, &lparam);
4258 rcu_read_unlock();
36c8b586 4259
1da177e4
LT
4260 return retval;
4261}
4262
4263/**
4264 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4265 * @pid: the pid in question.
4266 * @policy: new policy.
4267 * @param: structure containing the new RT priority.
4268 */
5add95d4
HC
4269SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4270 struct sched_param __user *, param)
1da177e4 4271{
c21761f1
JB
4272 /* negative values for policy are not valid */
4273 if (policy < 0)
4274 return -EINVAL;
4275
1da177e4
LT
4276 return do_sched_setscheduler(pid, policy, param);
4277}
4278
4279/**
4280 * sys_sched_setparam - set/change the RT priority of a thread
4281 * @pid: the pid in question.
4282 * @param: structure containing the new RT priority.
4283 */
5add95d4 4284SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4285{
4286 return do_sched_setscheduler(pid, -1, param);
4287}
4288
4289/**
4290 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4291 * @pid: the pid in question.
4292 */
5add95d4 4293SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4294{
36c8b586 4295 struct task_struct *p;
3a5c359a 4296 int retval;
1da177e4
LT
4297
4298 if (pid < 0)
3a5c359a 4299 return -EINVAL;
1da177e4
LT
4300
4301 retval = -ESRCH;
5fe85be0 4302 rcu_read_lock();
1da177e4
LT
4303 p = find_process_by_pid(pid);
4304 if (p) {
4305 retval = security_task_getscheduler(p);
4306 if (!retval)
ca94c442
LP
4307 retval = p->policy
4308 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4309 }
5fe85be0 4310 rcu_read_unlock();
1da177e4
LT
4311 return retval;
4312}
4313
4314/**
ca94c442 4315 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4316 * @pid: the pid in question.
4317 * @param: structure containing the RT priority.
4318 */
5add95d4 4319SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4320{
4321 struct sched_param lp;
36c8b586 4322 struct task_struct *p;
3a5c359a 4323 int retval;
1da177e4
LT
4324
4325 if (!param || pid < 0)
3a5c359a 4326 return -EINVAL;
1da177e4 4327
5fe85be0 4328 rcu_read_lock();
1da177e4
LT
4329 p = find_process_by_pid(pid);
4330 retval = -ESRCH;
4331 if (!p)
4332 goto out_unlock;
4333
4334 retval = security_task_getscheduler(p);
4335 if (retval)
4336 goto out_unlock;
4337
4338 lp.sched_priority = p->rt_priority;
5fe85be0 4339 rcu_read_unlock();
1da177e4
LT
4340
4341 /*
4342 * This one might sleep, we cannot do it with a spinlock held ...
4343 */
4344 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4345
1da177e4
LT
4346 return retval;
4347
4348out_unlock:
5fe85be0 4349 rcu_read_unlock();
1da177e4
LT
4350 return retval;
4351}
4352
96f874e2 4353long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4354{
5a16f3d3 4355 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4356 struct task_struct *p;
4357 int retval;
1da177e4 4358
95402b38 4359 get_online_cpus();
23f5d142 4360 rcu_read_lock();
1da177e4
LT
4361
4362 p = find_process_by_pid(pid);
4363 if (!p) {
23f5d142 4364 rcu_read_unlock();
95402b38 4365 put_online_cpus();
1da177e4
LT
4366 return -ESRCH;
4367 }
4368
23f5d142 4369 /* Prevent p going away */
1da177e4 4370 get_task_struct(p);
23f5d142 4371 rcu_read_unlock();
1da177e4 4372
5a16f3d3
RR
4373 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4374 retval = -ENOMEM;
4375 goto out_put_task;
4376 }
4377 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4378 retval = -ENOMEM;
4379 goto out_free_cpus_allowed;
4380 }
1da177e4 4381 retval = -EPERM;
f1c84dae 4382 if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
1da177e4
LT
4383 goto out_unlock;
4384
b0ae1981 4385 retval = security_task_setscheduler(p);
e7834f8f
DQ
4386 if (retval)
4387 goto out_unlock;
4388
5a16f3d3
RR
4389 cpuset_cpus_allowed(p, cpus_allowed);
4390 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 4391again:
5a16f3d3 4392 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4393
8707d8b8 4394 if (!retval) {
5a16f3d3
RR
4395 cpuset_cpus_allowed(p, cpus_allowed);
4396 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4397 /*
4398 * We must have raced with a concurrent cpuset
4399 * update. Just reset the cpus_allowed to the
4400 * cpuset's cpus_allowed
4401 */
5a16f3d3 4402 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4403 goto again;
4404 }
4405 }
1da177e4 4406out_unlock:
5a16f3d3
RR
4407 free_cpumask_var(new_mask);
4408out_free_cpus_allowed:
4409 free_cpumask_var(cpus_allowed);
4410out_put_task:
1da177e4 4411 put_task_struct(p);
95402b38 4412 put_online_cpus();
1da177e4
LT
4413 return retval;
4414}
4415
4416static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4417 struct cpumask *new_mask)
1da177e4 4418{
96f874e2
RR
4419 if (len < cpumask_size())
4420 cpumask_clear(new_mask);
4421 else if (len > cpumask_size())
4422 len = cpumask_size();
4423
1da177e4
LT
4424 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4425}
4426
4427/**
4428 * sys_sched_setaffinity - set the cpu affinity of a process
4429 * @pid: pid of the process
4430 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4431 * @user_mask_ptr: user-space pointer to the new cpu mask
4432 */
5add95d4
HC
4433SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4434 unsigned long __user *, user_mask_ptr)
1da177e4 4435{
5a16f3d3 4436 cpumask_var_t new_mask;
1da177e4
LT
4437 int retval;
4438
5a16f3d3
RR
4439 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4440 return -ENOMEM;
1da177e4 4441
5a16f3d3
RR
4442 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4443 if (retval == 0)
4444 retval = sched_setaffinity(pid, new_mask);
4445 free_cpumask_var(new_mask);
4446 return retval;
1da177e4
LT
4447}
4448
96f874e2 4449long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4450{
36c8b586 4451 struct task_struct *p;
31605683 4452 unsigned long flags;
1da177e4 4453 int retval;
1da177e4 4454
95402b38 4455 get_online_cpus();
23f5d142 4456 rcu_read_lock();
1da177e4
LT
4457
4458 retval = -ESRCH;
4459 p = find_process_by_pid(pid);
4460 if (!p)
4461 goto out_unlock;
4462
e7834f8f
DQ
4463 retval = security_task_getscheduler(p);
4464 if (retval)
4465 goto out_unlock;
4466
013fdb80 4467 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 4468 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 4469 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4470
4471out_unlock:
23f5d142 4472 rcu_read_unlock();
95402b38 4473 put_online_cpus();
1da177e4 4474
9531b62f 4475 return retval;
1da177e4
LT
4476}
4477
4478/**
4479 * sys_sched_getaffinity - get the cpu affinity of a process
4480 * @pid: pid of the process
4481 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4482 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4483 */
5add95d4
HC
4484SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4485 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4486{
4487 int ret;
f17c8607 4488 cpumask_var_t mask;
1da177e4 4489
84fba5ec 4490 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4491 return -EINVAL;
4492 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4493 return -EINVAL;
4494
f17c8607
RR
4495 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4496 return -ENOMEM;
1da177e4 4497
f17c8607
RR
4498 ret = sched_getaffinity(pid, mask);
4499 if (ret == 0) {
8bc037fb 4500 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4501
4502 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4503 ret = -EFAULT;
4504 else
cd3d8031 4505 ret = retlen;
f17c8607
RR
4506 }
4507 free_cpumask_var(mask);
1da177e4 4508
f17c8607 4509 return ret;
1da177e4
LT
4510}
4511
4512/**
4513 * sys_sched_yield - yield the current processor to other threads.
4514 *
dd41f596
IM
4515 * This function yields the current CPU to other tasks. If there are no
4516 * other threads running on this CPU then this function will return.
1da177e4 4517 */
5add95d4 4518SYSCALL_DEFINE0(sched_yield)
1da177e4 4519{
70b97a7f 4520 struct rq *rq = this_rq_lock();
1da177e4 4521
2d72376b 4522 schedstat_inc(rq, yld_count);
4530d7ab 4523 current->sched_class->yield_task(rq);
1da177e4
LT
4524
4525 /*
4526 * Since we are going to call schedule() anyway, there's
4527 * no need to preempt or enable interrupts:
4528 */
4529 __release(rq->lock);
8a25d5de 4530 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4531 do_raw_spin_unlock(&rq->lock);
ba74c144 4532 sched_preempt_enable_no_resched();
1da177e4
LT
4533
4534 schedule();
4535
4536 return 0;
4537}
4538
d86ee480
PZ
4539static inline int should_resched(void)
4540{
4541 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4542}
4543
e7b38404 4544static void __cond_resched(void)
1da177e4 4545{
e7aaaa69 4546 add_preempt_count(PREEMPT_ACTIVE);
c259e01a 4547 __schedule();
e7aaaa69 4548 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
4549}
4550
02b67cc3 4551int __sched _cond_resched(void)
1da177e4 4552{
d86ee480 4553 if (should_resched()) {
1da177e4
LT
4554 __cond_resched();
4555 return 1;
4556 }
4557 return 0;
4558}
02b67cc3 4559EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4560
4561/*
613afbf8 4562 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4563 * call schedule, and on return reacquire the lock.
4564 *
41a2d6cf 4565 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4566 * operations here to prevent schedule() from being called twice (once via
4567 * spin_unlock(), once by hand).
4568 */
613afbf8 4569int __cond_resched_lock(spinlock_t *lock)
1da177e4 4570{
d86ee480 4571 int resched = should_resched();
6df3cecb
JK
4572 int ret = 0;
4573
f607c668
PZ
4574 lockdep_assert_held(lock);
4575
95c354fe 4576 if (spin_needbreak(lock) || resched) {
1da177e4 4577 spin_unlock(lock);
d86ee480 4578 if (resched)
95c354fe
NP
4579 __cond_resched();
4580 else
4581 cpu_relax();
6df3cecb 4582 ret = 1;
1da177e4 4583 spin_lock(lock);
1da177e4 4584 }
6df3cecb 4585 return ret;
1da177e4 4586}
613afbf8 4587EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4588
613afbf8 4589int __sched __cond_resched_softirq(void)
1da177e4
LT
4590{
4591 BUG_ON(!in_softirq());
4592
d86ee480 4593 if (should_resched()) {
98d82567 4594 local_bh_enable();
1da177e4
LT
4595 __cond_resched();
4596 local_bh_disable();
4597 return 1;
4598 }
4599 return 0;
4600}
613afbf8 4601EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4602
1da177e4
LT
4603/**
4604 * yield - yield the current processor to other threads.
4605 *
8e3fabfd
PZ
4606 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4607 *
4608 * The scheduler is at all times free to pick the calling task as the most
4609 * eligible task to run, if removing the yield() call from your code breaks
4610 * it, its already broken.
4611 *
4612 * Typical broken usage is:
4613 *
4614 * while (!event)
4615 * yield();
4616 *
4617 * where one assumes that yield() will let 'the other' process run that will
4618 * make event true. If the current task is a SCHED_FIFO task that will never
4619 * happen. Never use yield() as a progress guarantee!!
4620 *
4621 * If you want to use yield() to wait for something, use wait_event().
4622 * If you want to use yield() to be 'nice' for others, use cond_resched().
4623 * If you still want to use yield(), do not!
1da177e4
LT
4624 */
4625void __sched yield(void)
4626{
4627 set_current_state(TASK_RUNNING);
4628 sys_sched_yield();
4629}
1da177e4
LT
4630EXPORT_SYMBOL(yield);
4631
d95f4122
MG
4632/**
4633 * yield_to - yield the current processor to another thread in
4634 * your thread group, or accelerate that thread toward the
4635 * processor it's on.
16addf95
RD
4636 * @p: target task
4637 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4638 *
4639 * It's the caller's job to ensure that the target task struct
4640 * can't go away on us before we can do any checks.
4641 *
4642 * Returns true if we indeed boosted the target task.
4643 */
4644bool __sched yield_to(struct task_struct *p, bool preempt)
4645{
4646 struct task_struct *curr = current;
4647 struct rq *rq, *p_rq;
4648 unsigned long flags;
4649 bool yielded = 0;
4650
4651 local_irq_save(flags);
4652 rq = this_rq();
4653
4654again:
4655 p_rq = task_rq(p);
4656 double_rq_lock(rq, p_rq);
4657 while (task_rq(p) != p_rq) {
4658 double_rq_unlock(rq, p_rq);
4659 goto again;
4660 }
4661
4662 if (!curr->sched_class->yield_to_task)
4663 goto out;
4664
4665 if (curr->sched_class != p->sched_class)
4666 goto out;
4667
4668 if (task_running(p_rq, p) || p->state)
4669 goto out;
4670
4671 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4672 if (yielded) {
d95f4122 4673 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4674 /*
4675 * Make p's CPU reschedule; pick_next_entity takes care of
4676 * fairness.
4677 */
4678 if (preempt && rq != p_rq)
4679 resched_task(p_rq->curr);
916671c0
MG
4680 } else {
4681 /*
4682 * We might have set it in task_yield_fair(), but are
4683 * not going to schedule(), so don't want to skip
4684 * the next update.
4685 */
4686 rq->skip_clock_update = 0;
6d1cafd8 4687 }
d95f4122
MG
4688
4689out:
4690 double_rq_unlock(rq, p_rq);
4691 local_irq_restore(flags);
4692
4693 if (yielded)
4694 schedule();
4695
4696 return yielded;
4697}
4698EXPORT_SYMBOL_GPL(yield_to);
4699
1da177e4 4700/*
41a2d6cf 4701 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4702 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4703 */
4704void __sched io_schedule(void)
4705{
54d35f29 4706 struct rq *rq = raw_rq();
1da177e4 4707
0ff92245 4708 delayacct_blkio_start();
1da177e4 4709 atomic_inc(&rq->nr_iowait);
73c10101 4710 blk_flush_plug(current);
8f0dfc34 4711 current->in_iowait = 1;
1da177e4 4712 schedule();
8f0dfc34 4713 current->in_iowait = 0;
1da177e4 4714 atomic_dec(&rq->nr_iowait);
0ff92245 4715 delayacct_blkio_end();
1da177e4 4716}
1da177e4
LT
4717EXPORT_SYMBOL(io_schedule);
4718
4719long __sched io_schedule_timeout(long timeout)
4720{
54d35f29 4721 struct rq *rq = raw_rq();
1da177e4
LT
4722 long ret;
4723
0ff92245 4724 delayacct_blkio_start();
1da177e4 4725 atomic_inc(&rq->nr_iowait);
73c10101 4726 blk_flush_plug(current);
8f0dfc34 4727 current->in_iowait = 1;
1da177e4 4728 ret = schedule_timeout(timeout);
8f0dfc34 4729 current->in_iowait = 0;
1da177e4 4730 atomic_dec(&rq->nr_iowait);
0ff92245 4731 delayacct_blkio_end();
1da177e4
LT
4732 return ret;
4733}
4734
4735/**
4736 * sys_sched_get_priority_max - return maximum RT priority.
4737 * @policy: scheduling class.
4738 *
4739 * this syscall returns the maximum rt_priority that can be used
4740 * by a given scheduling class.
4741 */
5add95d4 4742SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4743{
4744 int ret = -EINVAL;
4745
4746 switch (policy) {
4747 case SCHED_FIFO:
4748 case SCHED_RR:
4749 ret = MAX_USER_RT_PRIO-1;
4750 break;
4751 case SCHED_NORMAL:
b0a9499c 4752 case SCHED_BATCH:
dd41f596 4753 case SCHED_IDLE:
1da177e4
LT
4754 ret = 0;
4755 break;
4756 }
4757 return ret;
4758}
4759
4760/**
4761 * sys_sched_get_priority_min - return minimum RT priority.
4762 * @policy: scheduling class.
4763 *
4764 * this syscall returns the minimum rt_priority that can be used
4765 * by a given scheduling class.
4766 */
5add95d4 4767SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4768{
4769 int ret = -EINVAL;
4770
4771 switch (policy) {
4772 case SCHED_FIFO:
4773 case SCHED_RR:
4774 ret = 1;
4775 break;
4776 case SCHED_NORMAL:
b0a9499c 4777 case SCHED_BATCH:
dd41f596 4778 case SCHED_IDLE:
1da177e4
LT
4779 ret = 0;
4780 }
4781 return ret;
4782}
4783
4784/**
4785 * sys_sched_rr_get_interval - return the default timeslice of a process.
4786 * @pid: pid of the process.
4787 * @interval: userspace pointer to the timeslice value.
4788 *
4789 * this syscall writes the default timeslice value of a given process
4790 * into the user-space timespec buffer. A value of '0' means infinity.
4791 */
17da2bd9 4792SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4793 struct timespec __user *, interval)
1da177e4 4794{
36c8b586 4795 struct task_struct *p;
a4ec24b4 4796 unsigned int time_slice;
dba091b9
TG
4797 unsigned long flags;
4798 struct rq *rq;
3a5c359a 4799 int retval;
1da177e4 4800 struct timespec t;
1da177e4
LT
4801
4802 if (pid < 0)
3a5c359a 4803 return -EINVAL;
1da177e4
LT
4804
4805 retval = -ESRCH;
1a551ae7 4806 rcu_read_lock();
1da177e4
LT
4807 p = find_process_by_pid(pid);
4808 if (!p)
4809 goto out_unlock;
4810
4811 retval = security_task_getscheduler(p);
4812 if (retval)
4813 goto out_unlock;
4814
dba091b9
TG
4815 rq = task_rq_lock(p, &flags);
4816 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4817 task_rq_unlock(rq, p, &flags);
a4ec24b4 4818
1a551ae7 4819 rcu_read_unlock();
a4ec24b4 4820 jiffies_to_timespec(time_slice, &t);
1da177e4 4821 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4822 return retval;
3a5c359a 4823
1da177e4 4824out_unlock:
1a551ae7 4825 rcu_read_unlock();
1da177e4
LT
4826 return retval;
4827}
4828
7c731e0a 4829static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4830
82a1fcb9 4831void sched_show_task(struct task_struct *p)
1da177e4 4832{
1da177e4 4833 unsigned long free = 0;
36c8b586 4834 unsigned state;
1da177e4 4835
1da177e4 4836 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4837 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4838 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4839#if BITS_PER_LONG == 32
1da177e4 4840 if (state == TASK_RUNNING)
3df0fc5b 4841 printk(KERN_CONT " running ");
1da177e4 4842 else
3df0fc5b 4843 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4844#else
4845 if (state == TASK_RUNNING)
3df0fc5b 4846 printk(KERN_CONT " running task ");
1da177e4 4847 else
3df0fc5b 4848 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4849#endif
4850#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4851 free = stack_not_used(p);
1da177e4 4852#endif
3df0fc5b 4853 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
07cde260 4854 task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
aa47b7e0 4855 (unsigned long)task_thread_info(p)->flags);
1da177e4 4856
5fb5e6de 4857 show_stack(p, NULL);
1da177e4
LT
4858}
4859
e59e2ae2 4860void show_state_filter(unsigned long state_filter)
1da177e4 4861{
36c8b586 4862 struct task_struct *g, *p;
1da177e4 4863
4bd77321 4864#if BITS_PER_LONG == 32
3df0fc5b
PZ
4865 printk(KERN_INFO
4866 " task PC stack pid father\n");
1da177e4 4867#else
3df0fc5b
PZ
4868 printk(KERN_INFO
4869 " task PC stack pid father\n");
1da177e4 4870#endif
510f5acc 4871 rcu_read_lock();
1da177e4
LT
4872 do_each_thread(g, p) {
4873 /*
4874 * reset the NMI-timeout, listing all files on a slow
25985edc 4875 * console might take a lot of time:
1da177e4
LT
4876 */
4877 touch_nmi_watchdog();
39bc89fd 4878 if (!state_filter || (p->state & state_filter))
82a1fcb9 4879 sched_show_task(p);
1da177e4
LT
4880 } while_each_thread(g, p);
4881
04c9167f
JF
4882 touch_all_softlockup_watchdogs();
4883
dd41f596
IM
4884#ifdef CONFIG_SCHED_DEBUG
4885 sysrq_sched_debug_show();
4886#endif
510f5acc 4887 rcu_read_unlock();
e59e2ae2
IM
4888 /*
4889 * Only show locks if all tasks are dumped:
4890 */
93335a21 4891 if (!state_filter)
e59e2ae2 4892 debug_show_all_locks();
1da177e4
LT
4893}
4894
1df21055
IM
4895void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4896{
dd41f596 4897 idle->sched_class = &idle_sched_class;
1df21055
IM
4898}
4899
f340c0d1
IM
4900/**
4901 * init_idle - set up an idle thread for a given CPU
4902 * @idle: task in question
4903 * @cpu: cpu the idle task belongs to
4904 *
4905 * NOTE: this function does not set the idle thread's NEED_RESCHED
4906 * flag, to make booting more robust.
4907 */
5c1e1767 4908void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4909{
70b97a7f 4910 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4911 unsigned long flags;
4912
05fa785c 4913 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4914
dd41f596 4915 __sched_fork(idle);
06b83b5f 4916 idle->state = TASK_RUNNING;
dd41f596
IM
4917 idle->se.exec_start = sched_clock();
4918
1e1b6c51 4919 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4920 /*
4921 * We're having a chicken and egg problem, even though we are
4922 * holding rq->lock, the cpu isn't yet set to this cpu so the
4923 * lockdep check in task_group() will fail.
4924 *
4925 * Similar case to sched_fork(). / Alternatively we could
4926 * use task_rq_lock() here and obtain the other rq->lock.
4927 *
4928 * Silence PROVE_RCU
4929 */
4930 rcu_read_lock();
dd41f596 4931 __set_task_cpu(idle, cpu);
6506cf6c 4932 rcu_read_unlock();
1da177e4 4933
1da177e4 4934 rq->curr = rq->idle = idle;
3ca7a440
PZ
4935#if defined(CONFIG_SMP)
4936 idle->on_cpu = 1;
4866cde0 4937#endif
05fa785c 4938 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4939
4940 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 4941 task_thread_info(idle)->preempt_count = 0;
55cd5340 4942
dd41f596
IM
4943 /*
4944 * The idle tasks have their own, simple scheduling class:
4945 */
4946 idle->sched_class = &idle_sched_class;
868baf07 4947 ftrace_graph_init_idle_task(idle, cpu);
f1c6f1a7
CE
4948#if defined(CONFIG_SMP)
4949 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4950#endif
19978ca6
IM
4951}
4952
1da177e4 4953#ifdef CONFIG_SMP
1e1b6c51
KM
4954void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4955{
4956 if (p->sched_class && p->sched_class->set_cpus_allowed)
4957 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4958
4959 cpumask_copy(&p->cpus_allowed, new_mask);
4960 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4961}
4962
1da177e4
LT
4963/*
4964 * This is how migration works:
4965 *
969c7921
TH
4966 * 1) we invoke migration_cpu_stop() on the target CPU using
4967 * stop_one_cpu().
4968 * 2) stopper starts to run (implicitly forcing the migrated thread
4969 * off the CPU)
4970 * 3) it checks whether the migrated task is still in the wrong runqueue.
4971 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4972 * it and puts it into the right queue.
969c7921
TH
4973 * 5) stopper completes and stop_one_cpu() returns and the migration
4974 * is done.
1da177e4
LT
4975 */
4976
4977/*
4978 * Change a given task's CPU affinity. Migrate the thread to a
4979 * proper CPU and schedule it away if the CPU it's executing on
4980 * is removed from the allowed bitmask.
4981 *
4982 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4983 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4984 * call is not atomic; no spinlocks may be held.
4985 */
96f874e2 4986int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4987{
4988 unsigned long flags;
70b97a7f 4989 struct rq *rq;
969c7921 4990 unsigned int dest_cpu;
48f24c4d 4991 int ret = 0;
1da177e4
LT
4992
4993 rq = task_rq_lock(p, &flags);
e2912009 4994
db44fc01
YZ
4995 if (cpumask_equal(&p->cpus_allowed, new_mask))
4996 goto out;
4997
6ad4c188 4998 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4999 ret = -EINVAL;
5000 goto out;
5001 }
5002
db44fc01 5003 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
9985b0ba
DR
5004 ret = -EINVAL;
5005 goto out;
5006 }
5007
1e1b6c51 5008 do_set_cpus_allowed(p, new_mask);
73fe6aae 5009
1da177e4 5010 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5011 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5012 goto out;
5013
969c7921 5014 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 5015 if (p->on_rq) {
969c7921 5016 struct migration_arg arg = { p, dest_cpu };
1da177e4 5017 /* Need help from migration thread: drop lock and wait. */
0122ec5b 5018 task_rq_unlock(rq, p, &flags);
969c7921 5019 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
5020 tlb_migrate_finish(p->mm);
5021 return 0;
5022 }
5023out:
0122ec5b 5024 task_rq_unlock(rq, p, &flags);
48f24c4d 5025
1da177e4
LT
5026 return ret;
5027}
cd8ba7cd 5028EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5029
5030/*
41a2d6cf 5031 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5032 * this because either it can't run here any more (set_cpus_allowed()
5033 * away from this CPU, or CPU going down), or because we're
5034 * attempting to rebalance this task on exec (sched_exec).
5035 *
5036 * So we race with normal scheduler movements, but that's OK, as long
5037 * as the task is no longer on this CPU.
efc30814
KK
5038 *
5039 * Returns non-zero if task was successfully migrated.
1da177e4 5040 */
efc30814 5041static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5042{
70b97a7f 5043 struct rq *rq_dest, *rq_src;
e2912009 5044 int ret = 0;
1da177e4 5045
e761b772 5046 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5047 return ret;
1da177e4
LT
5048
5049 rq_src = cpu_rq(src_cpu);
5050 rq_dest = cpu_rq(dest_cpu);
5051
0122ec5b 5052 raw_spin_lock(&p->pi_lock);
1da177e4
LT
5053 double_rq_lock(rq_src, rq_dest);
5054 /* Already moved. */
5055 if (task_cpu(p) != src_cpu)
b1e38734 5056 goto done;
1da177e4 5057 /* Affinity changed (again). */
fa17b507 5058 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 5059 goto fail;
1da177e4 5060
e2912009
PZ
5061 /*
5062 * If we're not on a rq, the next wake-up will ensure we're
5063 * placed properly.
5064 */
fd2f4419 5065 if (p->on_rq) {
4ca9b72b 5066 dequeue_task(rq_src, p, 0);
e2912009 5067 set_task_cpu(p, dest_cpu);
4ca9b72b 5068 enqueue_task(rq_dest, p, 0);
15afe09b 5069 check_preempt_curr(rq_dest, p, 0);
1da177e4 5070 }
b1e38734 5071done:
efc30814 5072 ret = 1;
b1e38734 5073fail:
1da177e4 5074 double_rq_unlock(rq_src, rq_dest);
0122ec5b 5075 raw_spin_unlock(&p->pi_lock);
efc30814 5076 return ret;
1da177e4
LT
5077}
5078
5079/*
969c7921
TH
5080 * migration_cpu_stop - this will be executed by a highprio stopper thread
5081 * and performs thread migration by bumping thread off CPU then
5082 * 'pushing' onto another runqueue.
1da177e4 5083 */
969c7921 5084static int migration_cpu_stop(void *data)
1da177e4 5085{
969c7921 5086 struct migration_arg *arg = data;
f7b4cddc 5087
969c7921
TH
5088 /*
5089 * The original target cpu might have gone down and we might
5090 * be on another cpu but it doesn't matter.
5091 */
f7b4cddc 5092 local_irq_disable();
969c7921 5093 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 5094 local_irq_enable();
1da177e4 5095 return 0;
f7b4cddc
ON
5096}
5097
1da177e4 5098#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 5099
054b9108 5100/*
48c5ccae
PZ
5101 * Ensures that the idle task is using init_mm right before its cpu goes
5102 * offline.
054b9108 5103 */
48c5ccae 5104void idle_task_exit(void)
1da177e4 5105{
48c5ccae 5106 struct mm_struct *mm = current->active_mm;
e76bd8d9 5107
48c5ccae 5108 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5109
48c5ccae
PZ
5110 if (mm != &init_mm)
5111 switch_mm(mm, &init_mm, current);
5112 mmdrop(mm);
1da177e4
LT
5113}
5114
5115/*
5116 * While a dead CPU has no uninterruptible tasks queued at this point,
5117 * it might still have a nonzero ->nr_uninterruptible counter, because
5118 * for performance reasons the counter is not stricly tracking tasks to
5119 * their home CPUs. So we just add the counter to another CPU's counter,
5120 * to keep the global sum constant after CPU-down:
5121 */
70b97a7f 5122static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5123{
6ad4c188 5124 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4 5125
1da177e4
LT
5126 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5127 rq_src->nr_uninterruptible = 0;
1da177e4
LT
5128}
5129
dd41f596 5130/*
48c5ccae 5131 * remove the tasks which were accounted by rq from calc_load_tasks.
1da177e4 5132 */
48c5ccae 5133static void calc_global_load_remove(struct rq *rq)
1da177e4 5134{
48c5ccae
PZ
5135 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5136 rq->calc_load_active = 0;
1da177e4
LT
5137}
5138
48f24c4d 5139/*
48c5ccae
PZ
5140 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5141 * try_to_wake_up()->select_task_rq().
5142 *
5143 * Called with rq->lock held even though we'er in stop_machine() and
5144 * there's no concurrency possible, we hold the required locks anyway
5145 * because of lock validation efforts.
1da177e4 5146 */
48c5ccae 5147static void migrate_tasks(unsigned int dead_cpu)
1da177e4 5148{
70b97a7f 5149 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
5150 struct task_struct *next, *stop = rq->stop;
5151 int dest_cpu;
1da177e4
LT
5152
5153 /*
48c5ccae
PZ
5154 * Fudge the rq selection such that the below task selection loop
5155 * doesn't get stuck on the currently eligible stop task.
5156 *
5157 * We're currently inside stop_machine() and the rq is either stuck
5158 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5159 * either way we should never end up calling schedule() until we're
5160 * done here.
1da177e4 5161 */
48c5ccae 5162 rq->stop = NULL;
48f24c4d 5163
8cb120d3
PT
5164 /* Ensure any throttled groups are reachable by pick_next_task */
5165 unthrottle_offline_cfs_rqs(rq);
5166
dd41f596 5167 for ( ; ; ) {
48c5ccae
PZ
5168 /*
5169 * There's this thread running, bail when that's the only
5170 * remaining thread.
5171 */
5172 if (rq->nr_running == 1)
dd41f596 5173 break;
48c5ccae 5174
b67802ea 5175 next = pick_next_task(rq);
48c5ccae 5176 BUG_ON(!next);
79c53799 5177 next->sched_class->put_prev_task(rq, next);
e692ab53 5178
48c5ccae
PZ
5179 /* Find suitable destination for @next, with force if needed. */
5180 dest_cpu = select_fallback_rq(dead_cpu, next);
5181 raw_spin_unlock(&rq->lock);
5182
5183 __migrate_task(next, dead_cpu, dest_cpu);
5184
5185 raw_spin_lock(&rq->lock);
1da177e4 5186 }
dce48a84 5187
48c5ccae 5188 rq->stop = stop;
dce48a84 5189}
48c5ccae 5190
1da177e4
LT
5191#endif /* CONFIG_HOTPLUG_CPU */
5192
e692ab53
NP
5193#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5194
5195static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5196 {
5197 .procname = "sched_domain",
c57baf1e 5198 .mode = 0555,
e0361851 5199 },
56992309 5200 {}
e692ab53
NP
5201};
5202
5203static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5204 {
5205 .procname = "kernel",
c57baf1e 5206 .mode = 0555,
e0361851
AD
5207 .child = sd_ctl_dir,
5208 },
56992309 5209 {}
e692ab53
NP
5210};
5211
5212static struct ctl_table *sd_alloc_ctl_entry(int n)
5213{
5214 struct ctl_table *entry =
5cf9f062 5215 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5216
e692ab53
NP
5217 return entry;
5218}
5219
6382bc90
MM
5220static void sd_free_ctl_entry(struct ctl_table **tablep)
5221{
cd790076 5222 struct ctl_table *entry;
6382bc90 5223
cd790076
MM
5224 /*
5225 * In the intermediate directories, both the child directory and
5226 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5227 * will always be set. In the lowest directory the names are
cd790076
MM
5228 * static strings and all have proc handlers.
5229 */
5230 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5231 if (entry->child)
5232 sd_free_ctl_entry(&entry->child);
cd790076
MM
5233 if (entry->proc_handler == NULL)
5234 kfree(entry->procname);
5235 }
6382bc90
MM
5236
5237 kfree(*tablep);
5238 *tablep = NULL;
5239}
5240
e692ab53 5241static void
e0361851 5242set_table_entry(struct ctl_table *entry,
e692ab53 5243 const char *procname, void *data, int maxlen,
36fcb589 5244 umode_t mode, proc_handler *proc_handler)
e692ab53 5245{
e692ab53
NP
5246 entry->procname = procname;
5247 entry->data = data;
5248 entry->maxlen = maxlen;
5249 entry->mode = mode;
5250 entry->proc_handler = proc_handler;
5251}
5252
5253static struct ctl_table *
5254sd_alloc_ctl_domain_table(struct sched_domain *sd)
5255{
a5d8c348 5256 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 5257
ad1cdc1d
MM
5258 if (table == NULL)
5259 return NULL;
5260
e0361851 5261 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5262 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5263 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5264 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5265 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5266 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5267 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5268 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5269 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5270 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5271 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5272 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5273 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5274 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5275 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5276 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5277 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5278 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5279 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5280 &sd->cache_nice_tries,
5281 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5282 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5283 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
5284 set_table_entry(&table[11], "name", sd->name,
5285 CORENAME_MAX_SIZE, 0444, proc_dostring);
5286 /* &table[12] is terminator */
e692ab53
NP
5287
5288 return table;
5289}
5290
9a4e7159 5291static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5292{
5293 struct ctl_table *entry, *table;
5294 struct sched_domain *sd;
5295 int domain_num = 0, i;
5296 char buf[32];
5297
5298 for_each_domain(cpu, sd)
5299 domain_num++;
5300 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5301 if (table == NULL)
5302 return NULL;
e692ab53
NP
5303
5304 i = 0;
5305 for_each_domain(cpu, sd) {
5306 snprintf(buf, 32, "domain%d", i);
e692ab53 5307 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5308 entry->mode = 0555;
e692ab53
NP
5309 entry->child = sd_alloc_ctl_domain_table(sd);
5310 entry++;
5311 i++;
5312 }
5313 return table;
5314}
5315
5316static struct ctl_table_header *sd_sysctl_header;
6382bc90 5317static void register_sched_domain_sysctl(void)
e692ab53 5318{
6ad4c188 5319 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5320 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5321 char buf[32];
5322
7378547f
MM
5323 WARN_ON(sd_ctl_dir[0].child);
5324 sd_ctl_dir[0].child = entry;
5325
ad1cdc1d
MM
5326 if (entry == NULL)
5327 return;
5328
6ad4c188 5329 for_each_possible_cpu(i) {
e692ab53 5330 snprintf(buf, 32, "cpu%d", i);
e692ab53 5331 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5332 entry->mode = 0555;
e692ab53 5333 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5334 entry++;
e692ab53 5335 }
7378547f
MM
5336
5337 WARN_ON(sd_sysctl_header);
e692ab53
NP
5338 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5339}
6382bc90 5340
7378547f 5341/* may be called multiple times per register */
6382bc90
MM
5342static void unregister_sched_domain_sysctl(void)
5343{
7378547f
MM
5344 if (sd_sysctl_header)
5345 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5346 sd_sysctl_header = NULL;
7378547f
MM
5347 if (sd_ctl_dir[0].child)
5348 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5349}
e692ab53 5350#else
6382bc90
MM
5351static void register_sched_domain_sysctl(void)
5352{
5353}
5354static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5355{
5356}
5357#endif
5358
1f11eb6a
GH
5359static void set_rq_online(struct rq *rq)
5360{
5361 if (!rq->online) {
5362 const struct sched_class *class;
5363
c6c4927b 5364 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5365 rq->online = 1;
5366
5367 for_each_class(class) {
5368 if (class->rq_online)
5369 class->rq_online(rq);
5370 }
5371 }
5372}
5373
5374static void set_rq_offline(struct rq *rq)
5375{
5376 if (rq->online) {
5377 const struct sched_class *class;
5378
5379 for_each_class(class) {
5380 if (class->rq_offline)
5381 class->rq_offline(rq);
5382 }
5383
c6c4927b 5384 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5385 rq->online = 0;
5386 }
5387}
5388
1da177e4
LT
5389/*
5390 * migration_call - callback that gets triggered when a CPU is added.
5391 * Here we can start up the necessary migration thread for the new CPU.
5392 */
48f24c4d
IM
5393static int __cpuinit
5394migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5395{
48f24c4d 5396 int cpu = (long)hcpu;
1da177e4 5397 unsigned long flags;
969c7921 5398 struct rq *rq = cpu_rq(cpu);
1da177e4 5399
48c5ccae 5400 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5401
1da177e4 5402 case CPU_UP_PREPARE:
a468d389 5403 rq->calc_load_update = calc_load_update;
1da177e4 5404 break;
48f24c4d 5405
1da177e4 5406 case CPU_ONLINE:
1f94ef59 5407 /* Update our root-domain */
05fa785c 5408 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5409 if (rq->rd) {
c6c4927b 5410 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5411
5412 set_rq_online(rq);
1f94ef59 5413 }
05fa785c 5414 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5415 break;
48f24c4d 5416
1da177e4 5417#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5418 case CPU_DYING:
317f3941 5419 sched_ttwu_pending();
57d885fe 5420 /* Update our root-domain */
05fa785c 5421 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5422 if (rq->rd) {
c6c4927b 5423 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5424 set_rq_offline(rq);
57d885fe 5425 }
48c5ccae
PZ
5426 migrate_tasks(cpu);
5427 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5428 raw_spin_unlock_irqrestore(&rq->lock, flags);
48c5ccae
PZ
5429
5430 migrate_nr_uninterruptible(rq);
5431 calc_global_load_remove(rq);
57d885fe 5432 break;
1da177e4
LT
5433#endif
5434 }
49c022e6
PZ
5435
5436 update_max_interval();
5437
1da177e4
LT
5438 return NOTIFY_OK;
5439}
5440
f38b0820
PM
5441/*
5442 * Register at high priority so that task migration (migrate_all_tasks)
5443 * happens before everything else. This has to be lower priority than
cdd6c482 5444 * the notifier in the perf_event subsystem, though.
1da177e4 5445 */
26c2143b 5446static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 5447 .notifier_call = migration_call,
50a323b7 5448 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5449};
5450
3a101d05
TH
5451static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5452 unsigned long action, void *hcpu)
5453{
5454 switch (action & ~CPU_TASKS_FROZEN) {
5fbd036b 5455 case CPU_STARTING:
3a101d05
TH
5456 case CPU_DOWN_FAILED:
5457 set_cpu_active((long)hcpu, true);
5458 return NOTIFY_OK;
5459 default:
5460 return NOTIFY_DONE;
5461 }
5462}
5463
5464static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5465 unsigned long action, void *hcpu)
5466{
5467 switch (action & ~CPU_TASKS_FROZEN) {
5468 case CPU_DOWN_PREPARE:
5469 set_cpu_active((long)hcpu, false);
5470 return NOTIFY_OK;
5471 default:
5472 return NOTIFY_DONE;
5473 }
5474}
5475
7babe8db 5476static int __init migration_init(void)
1da177e4
LT
5477{
5478 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5479 int err;
48f24c4d 5480
3a101d05 5481 /* Initialize migration for the boot CPU */
07dccf33
AM
5482 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5483 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5484 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5485 register_cpu_notifier(&migration_notifier);
7babe8db 5486
3a101d05
TH
5487 /* Register cpu active notifiers */
5488 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5489 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5490
a004cd42 5491 return 0;
1da177e4 5492}
7babe8db 5493early_initcall(migration_init);
1da177e4
LT
5494#endif
5495
5496#ifdef CONFIG_SMP
476f3534 5497
4cb98839
PZ
5498static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5499
3e9830dc 5500#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5501
f6630114
MT
5502static __read_mostly int sched_domain_debug_enabled;
5503
5504static int __init sched_domain_debug_setup(char *str)
5505{
5506 sched_domain_debug_enabled = 1;
5507
5508 return 0;
5509}
5510early_param("sched_debug", sched_domain_debug_setup);
5511
7c16ec58 5512static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5513 struct cpumask *groupmask)
1da177e4 5514{
4dcf6aff 5515 struct sched_group *group = sd->groups;
434d53b0 5516 char str[256];
1da177e4 5517
968ea6d8 5518 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5519 cpumask_clear(groupmask);
4dcf6aff
IM
5520
5521 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5522
5523 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5524 printk("does not load-balance\n");
4dcf6aff 5525 if (sd->parent)
3df0fc5b
PZ
5526 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5527 " has parent");
4dcf6aff 5528 return -1;
41c7ce9a
NP
5529 }
5530
3df0fc5b 5531 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5532
758b2cdc 5533 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5534 printk(KERN_ERR "ERROR: domain->span does not contain "
5535 "CPU%d\n", cpu);
4dcf6aff 5536 }
758b2cdc 5537 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5538 printk(KERN_ERR "ERROR: domain->groups does not contain"
5539 " CPU%d\n", cpu);
4dcf6aff 5540 }
1da177e4 5541
4dcf6aff 5542 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5543 do {
4dcf6aff 5544 if (!group) {
3df0fc5b
PZ
5545 printk("\n");
5546 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5547 break;
5548 }
5549
9c3f75cb 5550 if (!group->sgp->power) {
3df0fc5b
PZ
5551 printk(KERN_CONT "\n");
5552 printk(KERN_ERR "ERROR: domain->cpu_power not "
5553 "set\n");
4dcf6aff
IM
5554 break;
5555 }
1da177e4 5556
758b2cdc 5557 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5558 printk(KERN_CONT "\n");
5559 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5560 break;
5561 }
1da177e4 5562
cb83b629
PZ
5563 if (!(sd->flags & SD_OVERLAP) &&
5564 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5565 printk(KERN_CONT "\n");
5566 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5567 break;
5568 }
1da177e4 5569
758b2cdc 5570 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5571
968ea6d8 5572 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5573
3df0fc5b 5574 printk(KERN_CONT " %s", str);
9c3f75cb 5575 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 5576 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 5577 group->sgp->power);
381512cf 5578 }
1da177e4 5579
4dcf6aff
IM
5580 group = group->next;
5581 } while (group != sd->groups);
3df0fc5b 5582 printk(KERN_CONT "\n");
1da177e4 5583
758b2cdc 5584 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5585 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5586
758b2cdc
RR
5587 if (sd->parent &&
5588 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5589 printk(KERN_ERR "ERROR: parent span is not a superset "
5590 "of domain->span\n");
4dcf6aff
IM
5591 return 0;
5592}
1da177e4 5593
4dcf6aff
IM
5594static void sched_domain_debug(struct sched_domain *sd, int cpu)
5595{
5596 int level = 0;
1da177e4 5597
f6630114
MT
5598 if (!sched_domain_debug_enabled)
5599 return;
5600
4dcf6aff
IM
5601 if (!sd) {
5602 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5603 return;
5604 }
1da177e4 5605
4dcf6aff
IM
5606 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5607
5608 for (;;) {
4cb98839 5609 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5610 break;
1da177e4
LT
5611 level++;
5612 sd = sd->parent;
33859f7f 5613 if (!sd)
4dcf6aff
IM
5614 break;
5615 }
1da177e4 5616}
6d6bc0ad 5617#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5618# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 5619#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5620
1a20ff27 5621static int sd_degenerate(struct sched_domain *sd)
245af2c7 5622{
758b2cdc 5623 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5624 return 1;
5625
5626 /* Following flags need at least 2 groups */
5627 if (sd->flags & (SD_LOAD_BALANCE |
5628 SD_BALANCE_NEWIDLE |
5629 SD_BALANCE_FORK |
89c4710e
SS
5630 SD_BALANCE_EXEC |
5631 SD_SHARE_CPUPOWER |
5632 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5633 if (sd->groups != sd->groups->next)
5634 return 0;
5635 }
5636
5637 /* Following flags don't use groups */
c88d5910 5638 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5639 return 0;
5640
5641 return 1;
5642}
5643
48f24c4d
IM
5644static int
5645sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5646{
5647 unsigned long cflags = sd->flags, pflags = parent->flags;
5648
5649 if (sd_degenerate(parent))
5650 return 1;
5651
758b2cdc 5652 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5653 return 0;
5654
245af2c7
SS
5655 /* Flags needing groups don't count if only 1 group in parent */
5656 if (parent->groups == parent->groups->next) {
5657 pflags &= ~(SD_LOAD_BALANCE |
5658 SD_BALANCE_NEWIDLE |
5659 SD_BALANCE_FORK |
89c4710e
SS
5660 SD_BALANCE_EXEC |
5661 SD_SHARE_CPUPOWER |
5662 SD_SHARE_PKG_RESOURCES);
5436499e
KC
5663 if (nr_node_ids == 1)
5664 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5665 }
5666 if (~cflags & pflags)
5667 return 0;
5668
5669 return 1;
5670}
5671
dce840a0 5672static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5673{
dce840a0 5674 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5675
68e74568 5676 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
5677 free_cpumask_var(rd->rto_mask);
5678 free_cpumask_var(rd->online);
5679 free_cpumask_var(rd->span);
5680 kfree(rd);
5681}
5682
57d885fe
GH
5683static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5684{
a0490fa3 5685 struct root_domain *old_rd = NULL;
57d885fe 5686 unsigned long flags;
57d885fe 5687
05fa785c 5688 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5689
5690 if (rq->rd) {
a0490fa3 5691 old_rd = rq->rd;
57d885fe 5692
c6c4927b 5693 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5694 set_rq_offline(rq);
57d885fe 5695
c6c4927b 5696 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5697
a0490fa3
IM
5698 /*
5699 * If we dont want to free the old_rt yet then
5700 * set old_rd to NULL to skip the freeing later
5701 * in this function:
5702 */
5703 if (!atomic_dec_and_test(&old_rd->refcount))
5704 old_rd = NULL;
57d885fe
GH
5705 }
5706
5707 atomic_inc(&rd->refcount);
5708 rq->rd = rd;
5709
c6c4927b 5710 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5711 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5712 set_rq_online(rq);
57d885fe 5713
05fa785c 5714 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5715
5716 if (old_rd)
dce840a0 5717 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5718}
5719
68c38fc3 5720static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5721{
5722 memset(rd, 0, sizeof(*rd));
5723
68c38fc3 5724 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5725 goto out;
68c38fc3 5726 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5727 goto free_span;
68c38fc3 5728 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 5729 goto free_online;
6e0534f2 5730
68c38fc3 5731 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5732 goto free_rto_mask;
c6c4927b 5733 return 0;
6e0534f2 5734
68e74568
RR
5735free_rto_mask:
5736 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
5737free_online:
5738 free_cpumask_var(rd->online);
5739free_span:
5740 free_cpumask_var(rd->span);
0c910d28 5741out:
c6c4927b 5742 return -ENOMEM;
57d885fe
GH
5743}
5744
029632fb
PZ
5745/*
5746 * By default the system creates a single root-domain with all cpus as
5747 * members (mimicking the global state we have today).
5748 */
5749struct root_domain def_root_domain;
5750
57d885fe
GH
5751static void init_defrootdomain(void)
5752{
68c38fc3 5753 init_rootdomain(&def_root_domain);
c6c4927b 5754
57d885fe
GH
5755 atomic_set(&def_root_domain.refcount, 1);
5756}
5757
dc938520 5758static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5759{
5760 struct root_domain *rd;
5761
5762 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5763 if (!rd)
5764 return NULL;
5765
68c38fc3 5766 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5767 kfree(rd);
5768 return NULL;
5769 }
57d885fe
GH
5770
5771 return rd;
5772}
5773
e3589f6c
PZ
5774static void free_sched_groups(struct sched_group *sg, int free_sgp)
5775{
5776 struct sched_group *tmp, *first;
5777
5778 if (!sg)
5779 return;
5780
5781 first = sg;
5782 do {
5783 tmp = sg->next;
5784
5785 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5786 kfree(sg->sgp);
5787
5788 kfree(sg);
5789 sg = tmp;
5790 } while (sg != first);
5791}
5792
dce840a0
PZ
5793static void free_sched_domain(struct rcu_head *rcu)
5794{
5795 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5796
5797 /*
5798 * If its an overlapping domain it has private groups, iterate and
5799 * nuke them all.
5800 */
5801 if (sd->flags & SD_OVERLAP) {
5802 free_sched_groups(sd->groups, 1);
5803 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 5804 kfree(sd->groups->sgp);
dce840a0 5805 kfree(sd->groups);
9c3f75cb 5806 }
dce840a0
PZ
5807 kfree(sd);
5808}
5809
5810static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5811{
5812 call_rcu(&sd->rcu, free_sched_domain);
5813}
5814
5815static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5816{
5817 for (; sd; sd = sd->parent)
5818 destroy_sched_domain(sd, cpu);
5819}
5820
518cd623
PZ
5821/*
5822 * Keep a special pointer to the highest sched_domain that has
5823 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5824 * allows us to avoid some pointer chasing select_idle_sibling().
5825 *
5826 * Also keep a unique ID per domain (we use the first cpu number in
5827 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5828 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5829 */
5830DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5831DEFINE_PER_CPU(int, sd_llc_id);
5832
5833static void update_top_cache_domain(int cpu)
5834{
5835 struct sched_domain *sd;
5836 int id = cpu;
5837
5838 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5839 if (sd)
5840 id = cpumask_first(sched_domain_span(sd));
5841
5842 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5843 per_cpu(sd_llc_id, cpu) = id;
5844}
5845
1da177e4 5846/*
0eab9146 5847 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5848 * hold the hotplug lock.
5849 */
0eab9146
IM
5850static void
5851cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5852{
70b97a7f 5853 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5854 struct sched_domain *tmp;
5855
5856 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5857 for (tmp = sd; tmp; ) {
245af2c7
SS
5858 struct sched_domain *parent = tmp->parent;
5859 if (!parent)
5860 break;
f29c9b1c 5861
1a848870 5862 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5863 tmp->parent = parent->parent;
1a848870
SS
5864 if (parent->parent)
5865 parent->parent->child = tmp;
dce840a0 5866 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5867 } else
5868 tmp = tmp->parent;
245af2c7
SS
5869 }
5870
1a848870 5871 if (sd && sd_degenerate(sd)) {
dce840a0 5872 tmp = sd;
245af2c7 5873 sd = sd->parent;
dce840a0 5874 destroy_sched_domain(tmp, cpu);
1a848870
SS
5875 if (sd)
5876 sd->child = NULL;
5877 }
1da177e4 5878
4cb98839 5879 sched_domain_debug(sd, cpu);
1da177e4 5880
57d885fe 5881 rq_attach_root(rq, rd);
dce840a0 5882 tmp = rq->sd;
674311d5 5883 rcu_assign_pointer(rq->sd, sd);
dce840a0 5884 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5885
5886 update_top_cache_domain(cpu);
1da177e4
LT
5887}
5888
5889/* cpus with isolated domains */
dcc30a35 5890static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5891
5892/* Setup the mask of cpus configured for isolated domains */
5893static int __init isolated_cpu_setup(char *str)
5894{
bdddd296 5895 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5896 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5897 return 1;
5898}
5899
8927f494 5900__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5901
d3081f52
PZ
5902static const struct cpumask *cpu_cpu_mask(int cpu)
5903{
5904 return cpumask_of_node(cpu_to_node(cpu));
5905}
5906
5c45bf27 5907int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 5908
dce840a0
PZ
5909struct sd_data {
5910 struct sched_domain **__percpu sd;
5911 struct sched_group **__percpu sg;
9c3f75cb 5912 struct sched_group_power **__percpu sgp;
dce840a0
PZ
5913};
5914
49a02c51 5915struct s_data {
21d42ccf 5916 struct sched_domain ** __percpu sd;
49a02c51
AH
5917 struct root_domain *rd;
5918};
5919
2109b99e 5920enum s_alloc {
2109b99e 5921 sa_rootdomain,
21d42ccf 5922 sa_sd,
dce840a0 5923 sa_sd_storage,
2109b99e
AH
5924 sa_none,
5925};
5926
54ab4ff4
PZ
5927struct sched_domain_topology_level;
5928
5929typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
5930typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5931
e3589f6c
PZ
5932#define SDTL_OVERLAP 0x01
5933
eb7a74e6 5934struct sched_domain_topology_level {
2c402dc3
PZ
5935 sched_domain_init_f init;
5936 sched_domain_mask_f mask;
e3589f6c 5937 int flags;
cb83b629 5938 int numa_level;
54ab4ff4 5939 struct sd_data data;
eb7a74e6
PZ
5940};
5941
e3589f6c
PZ
5942static int
5943build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5944{
5945 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5946 const struct cpumask *span = sched_domain_span(sd);
5947 struct cpumask *covered = sched_domains_tmpmask;
5948 struct sd_data *sdd = sd->private;
5949 struct sched_domain *child;
5950 int i;
5951
5952 cpumask_clear(covered);
5953
5954 for_each_cpu(i, span) {
5955 struct cpumask *sg_span;
5956
5957 if (cpumask_test_cpu(i, covered))
5958 continue;
5959
5960 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5961 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5962
5963 if (!sg)
5964 goto fail;
5965
5966 sg_span = sched_group_cpus(sg);
5967
5968 child = *per_cpu_ptr(sdd->sd, i);
5969 if (child->child) {
5970 child = child->child;
5971 cpumask_copy(sg_span, sched_domain_span(child));
5972 } else
5973 cpumask_set_cpu(i, sg_span);
5974
5975 cpumask_or(covered, covered, sg_span);
5976
5977 sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
5978 atomic_inc(&sg->sgp->ref);
5979
5980 if (cpumask_test_cpu(cpu, sg_span))
5981 groups = sg;
5982
5983 if (!first)
5984 first = sg;
5985 if (last)
5986 last->next = sg;
5987 last = sg;
5988 last->next = first;
5989 }
5990 sd->groups = groups;
5991
5992 return 0;
5993
5994fail:
5995 free_sched_groups(first, 0);
5996
5997 return -ENOMEM;
5998}
5999
dce840a0 6000static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6001{
dce840a0
PZ
6002 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6003 struct sched_domain *child = sd->child;
1da177e4 6004
dce840a0
PZ
6005 if (child)
6006 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6007
9c3f75cb 6008 if (sg) {
dce840a0 6009 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 6010 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 6011 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 6012 }
dce840a0
PZ
6013
6014 return cpu;
1e9f28fa 6015}
1e9f28fa 6016
01a08546 6017/*
dce840a0
PZ
6018 * build_sched_groups will build a circular linked list of the groups
6019 * covered by the given span, and will set each group's ->cpumask correctly,
6020 * and ->cpu_power to 0.
e3589f6c
PZ
6021 *
6022 * Assumes the sched_domain tree is fully constructed
01a08546 6023 */
e3589f6c
PZ
6024static int
6025build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6026{
dce840a0
PZ
6027 struct sched_group *first = NULL, *last = NULL;
6028 struct sd_data *sdd = sd->private;
6029 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6030 struct cpumask *covered;
dce840a0 6031 int i;
9c1cfda2 6032
e3589f6c
PZ
6033 get_group(cpu, sdd, &sd->groups);
6034 atomic_inc(&sd->groups->ref);
6035
6036 if (cpu != cpumask_first(sched_domain_span(sd)))
6037 return 0;
6038
f96225fd
PZ
6039 lockdep_assert_held(&sched_domains_mutex);
6040 covered = sched_domains_tmpmask;
6041
dce840a0 6042 cpumask_clear(covered);
6711cab4 6043
dce840a0
PZ
6044 for_each_cpu(i, span) {
6045 struct sched_group *sg;
6046 int group = get_group(i, sdd, &sg);
6047 int j;
6711cab4 6048
dce840a0
PZ
6049 if (cpumask_test_cpu(i, covered))
6050 continue;
6711cab4 6051
dce840a0 6052 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 6053 sg->sgp->power = 0;
0601a88d 6054
dce840a0
PZ
6055 for_each_cpu(j, span) {
6056 if (get_group(j, sdd, NULL) != group)
6057 continue;
0601a88d 6058
dce840a0
PZ
6059 cpumask_set_cpu(j, covered);
6060 cpumask_set_cpu(j, sched_group_cpus(sg));
6061 }
0601a88d 6062
dce840a0
PZ
6063 if (!first)
6064 first = sg;
6065 if (last)
6066 last->next = sg;
6067 last = sg;
6068 }
6069 last->next = first;
e3589f6c
PZ
6070
6071 return 0;
0601a88d 6072}
51888ca2 6073
89c4710e
SS
6074/*
6075 * Initialize sched groups cpu_power.
6076 *
6077 * cpu_power indicates the capacity of sched group, which is used while
6078 * distributing the load between different sched groups in a sched domain.
6079 * Typically cpu_power for all the groups in a sched domain will be same unless
6080 * there are asymmetries in the topology. If there are asymmetries, group
6081 * having more cpu_power will pickup more load compared to the group having
6082 * less cpu_power.
89c4710e
SS
6083 */
6084static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6085{
e3589f6c 6086 struct sched_group *sg = sd->groups;
89c4710e 6087
e3589f6c
PZ
6088 WARN_ON(!sd || !sg);
6089
6090 do {
6091 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6092 sg = sg->next;
6093 } while (sg != sd->groups);
89c4710e 6094
e3589f6c
PZ
6095 if (cpu != group_first_cpu(sg))
6096 return;
aae6d3dd 6097
d274cb30 6098 update_group_power(sd, cpu);
69e1e811 6099 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6100}
6101
029632fb
PZ
6102int __weak arch_sd_sibling_asym_packing(void)
6103{
6104 return 0*SD_ASYM_PACKING;
89c4710e
SS
6105}
6106
7c16ec58
MT
6107/*
6108 * Initializers for schedule domains
6109 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6110 */
6111
a5d8c348
IM
6112#ifdef CONFIG_SCHED_DEBUG
6113# define SD_INIT_NAME(sd, type) sd->name = #type
6114#else
6115# define SD_INIT_NAME(sd, type) do { } while (0)
6116#endif
6117
54ab4ff4
PZ
6118#define SD_INIT_FUNC(type) \
6119static noinline struct sched_domain * \
6120sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
6121{ \
6122 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
6123 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
6124 SD_INIT_NAME(sd, type); \
6125 sd->private = &tl->data; \
6126 return sd; \
7c16ec58
MT
6127}
6128
6129SD_INIT_FUNC(CPU)
7c16ec58
MT
6130#ifdef CONFIG_SCHED_SMT
6131 SD_INIT_FUNC(SIBLING)
6132#endif
6133#ifdef CONFIG_SCHED_MC
6134 SD_INIT_FUNC(MC)
6135#endif
01a08546
HC
6136#ifdef CONFIG_SCHED_BOOK
6137 SD_INIT_FUNC(BOOK)
6138#endif
7c16ec58 6139
1d3504fc 6140static int default_relax_domain_level = -1;
60495e77 6141int sched_domain_level_max;
1d3504fc
HS
6142
6143static int __init setup_relax_domain_level(char *str)
6144{
30e0e178
LZ
6145 unsigned long val;
6146
6147 val = simple_strtoul(str, NULL, 0);
60495e77 6148 if (val < sched_domain_level_max)
30e0e178
LZ
6149 default_relax_domain_level = val;
6150
1d3504fc
HS
6151 return 1;
6152}
6153__setup("relax_domain_level=", setup_relax_domain_level);
6154
6155static void set_domain_attribute(struct sched_domain *sd,
6156 struct sched_domain_attr *attr)
6157{
6158 int request;
6159
6160 if (!attr || attr->relax_domain_level < 0) {
6161 if (default_relax_domain_level < 0)
6162 return;
6163 else
6164 request = default_relax_domain_level;
6165 } else
6166 request = attr->relax_domain_level;
6167 if (request < sd->level) {
6168 /* turn off idle balance on this domain */
c88d5910 6169 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6170 } else {
6171 /* turn on idle balance on this domain */
c88d5910 6172 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6173 }
6174}
6175
54ab4ff4
PZ
6176static void __sdt_free(const struct cpumask *cpu_map);
6177static int __sdt_alloc(const struct cpumask *cpu_map);
6178
2109b99e
AH
6179static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6180 const struct cpumask *cpu_map)
6181{
6182 switch (what) {
2109b99e 6183 case sa_rootdomain:
822ff793
PZ
6184 if (!atomic_read(&d->rd->refcount))
6185 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6186 case sa_sd:
6187 free_percpu(d->sd); /* fall through */
dce840a0 6188 case sa_sd_storage:
54ab4ff4 6189 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6190 case sa_none:
6191 break;
6192 }
6193}
3404c8d9 6194
2109b99e
AH
6195static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6196 const struct cpumask *cpu_map)
6197{
dce840a0
PZ
6198 memset(d, 0, sizeof(*d));
6199
54ab4ff4
PZ
6200 if (__sdt_alloc(cpu_map))
6201 return sa_sd_storage;
dce840a0
PZ
6202 d->sd = alloc_percpu(struct sched_domain *);
6203 if (!d->sd)
6204 return sa_sd_storage;
2109b99e 6205 d->rd = alloc_rootdomain();
dce840a0 6206 if (!d->rd)
21d42ccf 6207 return sa_sd;
2109b99e
AH
6208 return sa_rootdomain;
6209}
57d885fe 6210
dce840a0
PZ
6211/*
6212 * NULL the sd_data elements we've used to build the sched_domain and
6213 * sched_group structure so that the subsequent __free_domain_allocs()
6214 * will not free the data we're using.
6215 */
6216static void claim_allocations(int cpu, struct sched_domain *sd)
6217{
6218 struct sd_data *sdd = sd->private;
dce840a0
PZ
6219
6220 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6221 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6222
e3589f6c 6223 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6224 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
6225
6226 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 6227 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
6228}
6229
2c402dc3
PZ
6230#ifdef CONFIG_SCHED_SMT
6231static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 6232{
2c402dc3 6233 return topology_thread_cpumask(cpu);
3bd65a80 6234}
2c402dc3 6235#endif
7f4588f3 6236
d069b916
PZ
6237/*
6238 * Topology list, bottom-up.
6239 */
2c402dc3 6240static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
6241#ifdef CONFIG_SCHED_SMT
6242 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 6243#endif
1e9f28fa 6244#ifdef CONFIG_SCHED_MC
2c402dc3 6245 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 6246#endif
d069b916
PZ
6247#ifdef CONFIG_SCHED_BOOK
6248 { sd_init_BOOK, cpu_book_mask, },
6249#endif
6250 { sd_init_CPU, cpu_cpu_mask, },
eb7a74e6
PZ
6251 { NULL, },
6252};
6253
6254static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6255
cb83b629
PZ
6256#ifdef CONFIG_NUMA
6257
6258static int sched_domains_numa_levels;
6259static int sched_domains_numa_scale;
6260static int *sched_domains_numa_distance;
6261static struct cpumask ***sched_domains_numa_masks;
6262static int sched_domains_curr_level;
6263
cb83b629
PZ
6264static inline int sd_local_flags(int level)
6265{
6266 if (sched_domains_numa_distance[level] > REMOTE_DISTANCE)
6267 return 0;
6268
6269 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6270}
6271
6272static struct sched_domain *
6273sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6274{
6275 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6276 int level = tl->numa_level;
6277 int sd_weight = cpumask_weight(
6278 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6279
6280 *sd = (struct sched_domain){
6281 .min_interval = sd_weight,
6282 .max_interval = 2*sd_weight,
6283 .busy_factor = 32,
870a0bb5 6284 .imbalance_pct = 125,
cb83b629
PZ
6285 .cache_nice_tries = 2,
6286 .busy_idx = 3,
6287 .idle_idx = 2,
6288 .newidle_idx = 0,
6289 .wake_idx = 0,
6290 .forkexec_idx = 0,
6291
6292 .flags = 1*SD_LOAD_BALANCE
6293 | 1*SD_BALANCE_NEWIDLE
6294 | 0*SD_BALANCE_EXEC
6295 | 0*SD_BALANCE_FORK
6296 | 0*SD_BALANCE_WAKE
6297 | 0*SD_WAKE_AFFINE
6298 | 0*SD_PREFER_LOCAL
6299 | 0*SD_SHARE_CPUPOWER
6300 | 0*SD_POWERSAVINGS_BALANCE
6301 | 0*SD_SHARE_PKG_RESOURCES
6302 | 1*SD_SERIALIZE
6303 | 0*SD_PREFER_SIBLING
6304 | sd_local_flags(level)
6305 ,
6306 .last_balance = jiffies,
6307 .balance_interval = sd_weight,
6308 };
6309 SD_INIT_NAME(sd, NUMA);
6310 sd->private = &tl->data;
6311
6312 /*
6313 * Ugly hack to pass state to sd_numa_mask()...
6314 */
6315 sched_domains_curr_level = tl->numa_level;
6316
6317 return sd;
6318}
6319
6320static const struct cpumask *sd_numa_mask(int cpu)
6321{
6322 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6323}
6324
6325static void sched_init_numa(void)
6326{
6327 int next_distance, curr_distance = node_distance(0, 0);
6328 struct sched_domain_topology_level *tl;
6329 int level = 0;
6330 int i, j, k;
6331
6332 sched_domains_numa_scale = curr_distance;
6333 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6334 if (!sched_domains_numa_distance)
6335 return;
6336
6337 /*
6338 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6339 * unique distances in the node_distance() table.
6340 *
6341 * Assumes node_distance(0,j) includes all distances in
6342 * node_distance(i,j) in order to avoid cubic time.
6343 *
6344 * XXX: could be optimized to O(n log n) by using sort()
6345 */
6346 next_distance = curr_distance;
6347 for (i = 0; i < nr_node_ids; i++) {
6348 for (j = 0; j < nr_node_ids; j++) {
6349 int distance = node_distance(0, j);
6350 if (distance > curr_distance &&
6351 (distance < next_distance ||
6352 next_distance == curr_distance))
6353 next_distance = distance;
6354 }
6355 if (next_distance != curr_distance) {
6356 sched_domains_numa_distance[level++] = next_distance;
6357 sched_domains_numa_levels = level;
6358 curr_distance = next_distance;
6359 } else break;
6360 }
6361 /*
6362 * 'level' contains the number of unique distances, excluding the
6363 * identity distance node_distance(i,i).
6364 *
6365 * The sched_domains_nume_distance[] array includes the actual distance
6366 * numbers.
6367 */
6368
6369 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6370 if (!sched_domains_numa_masks)
6371 return;
6372
6373 /*
6374 * Now for each level, construct a mask per node which contains all
6375 * cpus of nodes that are that many hops away from us.
6376 */
6377 for (i = 0; i < level; i++) {
6378 sched_domains_numa_masks[i] =
6379 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6380 if (!sched_domains_numa_masks[i])
6381 return;
6382
6383 for (j = 0; j < nr_node_ids; j++) {
6384 struct cpumask *mask = kzalloc_node(cpumask_size(), GFP_KERNEL, j);
6385 if (!mask)
6386 return;
6387
6388 sched_domains_numa_masks[i][j] = mask;
6389
6390 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6391 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6392 continue;
6393
6394 cpumask_or(mask, mask, cpumask_of_node(k));
6395 }
6396 }
6397 }
6398
6399 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6400 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6401 if (!tl)
6402 return;
6403
6404 /*
6405 * Copy the default topology bits..
6406 */
6407 for (i = 0; default_topology[i].init; i++)
6408 tl[i] = default_topology[i];
6409
6410 /*
6411 * .. and append 'j' levels of NUMA goodness.
6412 */
6413 for (j = 0; j < level; i++, j++) {
6414 tl[i] = (struct sched_domain_topology_level){
6415 .init = sd_numa_init,
6416 .mask = sd_numa_mask,
6417 .flags = SDTL_OVERLAP,
6418 .numa_level = j,
6419 };
6420 }
6421
6422 sched_domain_topology = tl;
6423}
6424#else
6425static inline void sched_init_numa(void)
6426{
6427}
6428#endif /* CONFIG_NUMA */
6429
54ab4ff4
PZ
6430static int __sdt_alloc(const struct cpumask *cpu_map)
6431{
6432 struct sched_domain_topology_level *tl;
6433 int j;
6434
6435 for (tl = sched_domain_topology; tl->init; tl++) {
6436 struct sd_data *sdd = &tl->data;
6437
6438 sdd->sd = alloc_percpu(struct sched_domain *);
6439 if (!sdd->sd)
6440 return -ENOMEM;
6441
6442 sdd->sg = alloc_percpu(struct sched_group *);
6443 if (!sdd->sg)
6444 return -ENOMEM;
6445
9c3f75cb
PZ
6446 sdd->sgp = alloc_percpu(struct sched_group_power *);
6447 if (!sdd->sgp)
6448 return -ENOMEM;
6449
54ab4ff4
PZ
6450 for_each_cpu(j, cpu_map) {
6451 struct sched_domain *sd;
6452 struct sched_group *sg;
9c3f75cb 6453 struct sched_group_power *sgp;
54ab4ff4
PZ
6454
6455 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6456 GFP_KERNEL, cpu_to_node(j));
6457 if (!sd)
6458 return -ENOMEM;
6459
6460 *per_cpu_ptr(sdd->sd, j) = sd;
6461
6462 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6463 GFP_KERNEL, cpu_to_node(j));
6464 if (!sg)
6465 return -ENOMEM;
6466
6467 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb
PZ
6468
6469 sgp = kzalloc_node(sizeof(struct sched_group_power),
6470 GFP_KERNEL, cpu_to_node(j));
6471 if (!sgp)
6472 return -ENOMEM;
6473
6474 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
6475 }
6476 }
6477
6478 return 0;
6479}
6480
6481static void __sdt_free(const struct cpumask *cpu_map)
6482{
6483 struct sched_domain_topology_level *tl;
6484 int j;
6485
6486 for (tl = sched_domain_topology; tl->init; tl++) {
6487 struct sd_data *sdd = &tl->data;
6488
6489 for_each_cpu(j, cpu_map) {
fb2cf2c6 6490 struct sched_domain *sd;
6491
6492 if (sdd->sd) {
6493 sd = *per_cpu_ptr(sdd->sd, j);
6494 if (sd && (sd->flags & SD_OVERLAP))
6495 free_sched_groups(sd->groups, 0);
6496 kfree(*per_cpu_ptr(sdd->sd, j));
6497 }
6498
6499 if (sdd->sg)
6500 kfree(*per_cpu_ptr(sdd->sg, j));
6501 if (sdd->sgp)
6502 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
6503 }
6504 free_percpu(sdd->sd);
fb2cf2c6 6505 sdd->sd = NULL;
54ab4ff4 6506 free_percpu(sdd->sg);
fb2cf2c6 6507 sdd->sg = NULL;
9c3f75cb 6508 free_percpu(sdd->sgp);
fb2cf2c6 6509 sdd->sgp = NULL;
54ab4ff4
PZ
6510 }
6511}
6512
2c402dc3
PZ
6513struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6514 struct s_data *d, const struct cpumask *cpu_map,
d069b916 6515 struct sched_domain_attr *attr, struct sched_domain *child,
2c402dc3
PZ
6516 int cpu)
6517{
54ab4ff4 6518 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 6519 if (!sd)
d069b916 6520 return child;
2c402dc3
PZ
6521
6522 set_domain_attribute(sd, attr);
6523 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6524 if (child) {
6525 sd->level = child->level + 1;
6526 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6527 child->parent = sd;
60495e77 6528 }
d069b916 6529 sd->child = child;
2c402dc3
PZ
6530
6531 return sd;
6532}
6533
2109b99e
AH
6534/*
6535 * Build sched domains for a given set of cpus and attach the sched domains
6536 * to the individual cpus
6537 */
dce840a0
PZ
6538static int build_sched_domains(const struct cpumask *cpu_map,
6539 struct sched_domain_attr *attr)
2109b99e
AH
6540{
6541 enum s_alloc alloc_state = sa_none;
dce840a0 6542 struct sched_domain *sd;
2109b99e 6543 struct s_data d;
822ff793 6544 int i, ret = -ENOMEM;
9c1cfda2 6545
2109b99e
AH
6546 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6547 if (alloc_state != sa_rootdomain)
6548 goto error;
9c1cfda2 6549
dce840a0 6550 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6551 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6552 struct sched_domain_topology_level *tl;
6553
3bd65a80 6554 sd = NULL;
e3589f6c 6555 for (tl = sched_domain_topology; tl->init; tl++) {
2c402dc3 6556 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
e3589f6c
PZ
6557 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6558 sd->flags |= SD_OVERLAP;
d110235d
PZ
6559 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6560 break;
e3589f6c 6561 }
d274cb30 6562
d069b916
PZ
6563 while (sd->child)
6564 sd = sd->child;
6565
21d42ccf 6566 *per_cpu_ptr(d.sd, i) = sd;
dce840a0
PZ
6567 }
6568
6569 /* Build the groups for the domains */
6570 for_each_cpu(i, cpu_map) {
6571 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6572 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6573 if (sd->flags & SD_OVERLAP) {
6574 if (build_overlap_sched_groups(sd, i))
6575 goto error;
6576 } else {
6577 if (build_sched_groups(sd, i))
6578 goto error;
6579 }
1cf51902 6580 }
a06dadbe 6581 }
9c1cfda2 6582
1da177e4 6583 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6584 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6585 if (!cpumask_test_cpu(i, cpu_map))
6586 continue;
9c1cfda2 6587
dce840a0
PZ
6588 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6589 claim_allocations(i, sd);
cd4ea6ae 6590 init_sched_groups_power(i, sd);
dce840a0 6591 }
f712c0c7 6592 }
9c1cfda2 6593
1da177e4 6594 /* Attach the domains */
dce840a0 6595 rcu_read_lock();
abcd083a 6596 for_each_cpu(i, cpu_map) {
21d42ccf 6597 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6598 cpu_attach_domain(sd, d.rd, i);
1da177e4 6599 }
dce840a0 6600 rcu_read_unlock();
51888ca2 6601
822ff793 6602 ret = 0;
51888ca2 6603error:
2109b99e 6604 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6605 return ret;
1da177e4 6606}
029190c5 6607
acc3f5d7 6608static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6609static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6610static struct sched_domain_attr *dattr_cur;
6611 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6612
6613/*
6614 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6615 * cpumask) fails, then fallback to a single sched domain,
6616 * as determined by the single cpumask fallback_doms.
029190c5 6617 */
4212823f 6618static cpumask_var_t fallback_doms;
029190c5 6619
ee79d1bd
HC
6620/*
6621 * arch_update_cpu_topology lets virtualized architectures update the
6622 * cpu core maps. It is supposed to return 1 if the topology changed
6623 * or 0 if it stayed the same.
6624 */
6625int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 6626{
ee79d1bd 6627 return 0;
22e52b07
HC
6628}
6629
acc3f5d7
RR
6630cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6631{
6632 int i;
6633 cpumask_var_t *doms;
6634
6635 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6636 if (!doms)
6637 return NULL;
6638 for (i = 0; i < ndoms; i++) {
6639 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6640 free_sched_domains(doms, i);
6641 return NULL;
6642 }
6643 }
6644 return doms;
6645}
6646
6647void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6648{
6649 unsigned int i;
6650 for (i = 0; i < ndoms; i++)
6651 free_cpumask_var(doms[i]);
6652 kfree(doms);
6653}
6654
1a20ff27 6655/*
41a2d6cf 6656 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6657 * For now this just excludes isolated cpus, but could be used to
6658 * exclude other special cases in the future.
1a20ff27 6659 */
c4a8849a 6660static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6661{
7378547f
MM
6662 int err;
6663
22e52b07 6664 arch_update_cpu_topology();
029190c5 6665 ndoms_cur = 1;
acc3f5d7 6666 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6667 if (!doms_cur)
acc3f5d7
RR
6668 doms_cur = &fallback_doms;
6669 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 6670 dattr_cur = NULL;
dce840a0 6671 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6672 register_sched_domain_sysctl();
7378547f
MM
6673
6674 return err;
1a20ff27
DG
6675}
6676
1a20ff27
DG
6677/*
6678 * Detach sched domains from a group of cpus specified in cpu_map
6679 * These cpus will now be attached to the NULL domain
6680 */
96f874e2 6681static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6682{
6683 int i;
6684
dce840a0 6685 rcu_read_lock();
abcd083a 6686 for_each_cpu(i, cpu_map)
57d885fe 6687 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6688 rcu_read_unlock();
1a20ff27
DG
6689}
6690
1d3504fc
HS
6691/* handle null as "default" */
6692static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6693 struct sched_domain_attr *new, int idx_new)
6694{
6695 struct sched_domain_attr tmp;
6696
6697 /* fast path */
6698 if (!new && !cur)
6699 return 1;
6700
6701 tmp = SD_ATTR_INIT;
6702 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6703 new ? (new + idx_new) : &tmp,
6704 sizeof(struct sched_domain_attr));
6705}
6706
029190c5
PJ
6707/*
6708 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6709 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6710 * doms_new[] to the current sched domain partitioning, doms_cur[].
6711 * It destroys each deleted domain and builds each new domain.
6712 *
acc3f5d7 6713 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6714 * The masks don't intersect (don't overlap.) We should setup one
6715 * sched domain for each mask. CPUs not in any of the cpumasks will
6716 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6717 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6718 * it as it is.
6719 *
acc3f5d7
RR
6720 * The passed in 'doms_new' should be allocated using
6721 * alloc_sched_domains. This routine takes ownership of it and will
6722 * free_sched_domains it when done with it. If the caller failed the
6723 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6724 * and partition_sched_domains() will fallback to the single partition
6725 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6726 *
96f874e2 6727 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6728 * ndoms_new == 0 is a special case for destroying existing domains,
6729 * and it will not create the default domain.
dfb512ec 6730 *
029190c5
PJ
6731 * Call with hotplug lock held
6732 */
acc3f5d7 6733void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6734 struct sched_domain_attr *dattr_new)
029190c5 6735{
dfb512ec 6736 int i, j, n;
d65bd5ec 6737 int new_topology;
029190c5 6738
712555ee 6739 mutex_lock(&sched_domains_mutex);
a1835615 6740
7378547f
MM
6741 /* always unregister in case we don't destroy any domains */
6742 unregister_sched_domain_sysctl();
6743
d65bd5ec
HC
6744 /* Let architecture update cpu core mappings. */
6745 new_topology = arch_update_cpu_topology();
6746
dfb512ec 6747 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6748
6749 /* Destroy deleted domains */
6750 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6751 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6752 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6753 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6754 goto match1;
6755 }
6756 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6757 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6758match1:
6759 ;
6760 }
6761
e761b772
MK
6762 if (doms_new == NULL) {
6763 ndoms_cur = 0;
acc3f5d7 6764 doms_new = &fallback_doms;
6ad4c188 6765 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6766 WARN_ON_ONCE(dattr_new);
e761b772
MK
6767 }
6768
029190c5
PJ
6769 /* Build new domains */
6770 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 6771 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 6772 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6773 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6774 goto match2;
6775 }
6776 /* no match - add a new doms_new */
dce840a0 6777 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6778match2:
6779 ;
6780 }
6781
6782 /* Remember the new sched domains */
acc3f5d7
RR
6783 if (doms_cur != &fallback_doms)
6784 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6785 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6786 doms_cur = doms_new;
1d3504fc 6787 dattr_cur = dattr_new;
029190c5 6788 ndoms_cur = ndoms_new;
7378547f
MM
6789
6790 register_sched_domain_sysctl();
a1835615 6791
712555ee 6792 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6793}
6794
5c45bf27 6795#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c4a8849a 6796static void reinit_sched_domains(void)
5c45bf27 6797{
95402b38 6798 get_online_cpus();
dfb512ec
MK
6799
6800 /* Destroy domains first to force the rebuild */
6801 partition_sched_domains(0, NULL, NULL);
6802
e761b772 6803 rebuild_sched_domains();
95402b38 6804 put_online_cpus();
5c45bf27
SS
6805}
6806
6807static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6808{
afb8a9b7 6809 unsigned int level = 0;
5c45bf27 6810
afb8a9b7
GS
6811 if (sscanf(buf, "%u", &level) != 1)
6812 return -EINVAL;
6813
6814 /*
6815 * level is always be positive so don't check for
6816 * level < POWERSAVINGS_BALANCE_NONE which is 0
6817 * What happens on 0 or 1 byte write,
6818 * need to check for count as well?
6819 */
6820
6821 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
6822 return -EINVAL;
6823
6824 if (smt)
afb8a9b7 6825 sched_smt_power_savings = level;
5c45bf27 6826 else
afb8a9b7 6827 sched_mc_power_savings = level;
5c45bf27 6828
c4a8849a 6829 reinit_sched_domains();
5c45bf27 6830
c70f22d2 6831 return count;
5c45bf27
SS
6832}
6833
5c45bf27 6834#ifdef CONFIG_SCHED_MC
8a25a2fd
KS
6835static ssize_t sched_mc_power_savings_show(struct device *dev,
6836 struct device_attribute *attr,
6837 char *buf)
5c45bf27 6838{
8a25a2fd 6839 return sprintf(buf, "%u\n", sched_mc_power_savings);
5c45bf27 6840}
8a25a2fd
KS
6841static ssize_t sched_mc_power_savings_store(struct device *dev,
6842 struct device_attribute *attr,
48f24c4d 6843 const char *buf, size_t count)
5c45bf27
SS
6844{
6845 return sched_power_savings_store(buf, count, 0);
6846}
8a25a2fd
KS
6847static DEVICE_ATTR(sched_mc_power_savings, 0644,
6848 sched_mc_power_savings_show,
6849 sched_mc_power_savings_store);
5c45bf27
SS
6850#endif
6851
6852#ifdef CONFIG_SCHED_SMT
8a25a2fd
KS
6853static ssize_t sched_smt_power_savings_show(struct device *dev,
6854 struct device_attribute *attr,
6855 char *buf)
5c45bf27 6856{
8a25a2fd 6857 return sprintf(buf, "%u\n", sched_smt_power_savings);
5c45bf27 6858}
8a25a2fd
KS
6859static ssize_t sched_smt_power_savings_store(struct device *dev,
6860 struct device_attribute *attr,
48f24c4d 6861 const char *buf, size_t count)
5c45bf27
SS
6862{
6863 return sched_power_savings_store(buf, count, 1);
6864}
8a25a2fd 6865static DEVICE_ATTR(sched_smt_power_savings, 0644,
f718cd4a 6866 sched_smt_power_savings_show,
6707de00
AB
6867 sched_smt_power_savings_store);
6868#endif
6869
8a25a2fd 6870int __init sched_create_sysfs_power_savings_entries(struct device *dev)
6707de00
AB
6871{
6872 int err = 0;
6873
6874#ifdef CONFIG_SCHED_SMT
6875 if (smt_capable())
8a25a2fd 6876 err = device_create_file(dev, &dev_attr_sched_smt_power_savings);
6707de00
AB
6877#endif
6878#ifdef CONFIG_SCHED_MC
6879 if (!err && mc_capable())
8a25a2fd 6880 err = device_create_file(dev, &dev_attr_sched_mc_power_savings);
6707de00
AB
6881#endif
6882 return err;
6883}
6d6bc0ad 6884#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 6885
1da177e4 6886/*
3a101d05
TH
6887 * Update cpusets according to cpu_active mask. If cpusets are
6888 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6889 * around partition_sched_domains().
1da177e4 6890 */
0b2e918a
TH
6891static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6892 void *hcpu)
e761b772 6893{
3a101d05 6894 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 6895 case CPU_ONLINE:
6ad4c188 6896 case CPU_DOWN_FAILED:
3a101d05 6897 cpuset_update_active_cpus();
e761b772 6898 return NOTIFY_OK;
3a101d05
TH
6899 default:
6900 return NOTIFY_DONE;
6901 }
6902}
e761b772 6903
0b2e918a
TH
6904static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6905 void *hcpu)
3a101d05
TH
6906{
6907 switch (action & ~CPU_TASKS_FROZEN) {
6908 case CPU_DOWN_PREPARE:
6909 cpuset_update_active_cpus();
6910 return NOTIFY_OK;
e761b772
MK
6911 default:
6912 return NOTIFY_DONE;
6913 }
6914}
e761b772 6915
1da177e4
LT
6916void __init sched_init_smp(void)
6917{
dcc30a35
RR
6918 cpumask_var_t non_isolated_cpus;
6919
6920 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6921 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6922
cb83b629
PZ
6923 sched_init_numa();
6924
95402b38 6925 get_online_cpus();
712555ee 6926 mutex_lock(&sched_domains_mutex);
c4a8849a 6927 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6928 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6929 if (cpumask_empty(non_isolated_cpus))
6930 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6931 mutex_unlock(&sched_domains_mutex);
95402b38 6932 put_online_cpus();
e761b772 6933
3a101d05
TH
6934 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6935 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
6936
6937 /* RT runtime code needs to handle some hotplug events */
6938 hotcpu_notifier(update_runtime, 0);
6939
b328ca18 6940 init_hrtick();
5c1e1767
NP
6941
6942 /* Move init over to a non-isolated CPU */
dcc30a35 6943 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6944 BUG();
19978ca6 6945 sched_init_granularity();
dcc30a35 6946 free_cpumask_var(non_isolated_cpus);
4212823f 6947
0e3900e6 6948 init_sched_rt_class();
1da177e4
LT
6949}
6950#else
6951void __init sched_init_smp(void)
6952{
19978ca6 6953 sched_init_granularity();
1da177e4
LT
6954}
6955#endif /* CONFIG_SMP */
6956
cd1bb94b
AB
6957const_debug unsigned int sysctl_timer_migration = 1;
6958
1da177e4
LT
6959int in_sched_functions(unsigned long addr)
6960{
1da177e4
LT
6961 return in_lock_functions(addr) ||
6962 (addr >= (unsigned long)__sched_text_start
6963 && addr < (unsigned long)__sched_text_end);
6964}
6965
029632fb
PZ
6966#ifdef CONFIG_CGROUP_SCHED
6967struct task_group root_task_group;
052f1dc7 6968#endif
6f505b16 6969
029632fb 6970DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6f505b16 6971
1da177e4
LT
6972void __init sched_init(void)
6973{
dd41f596 6974 int i, j;
434d53b0
MT
6975 unsigned long alloc_size = 0, ptr;
6976
6977#ifdef CONFIG_FAIR_GROUP_SCHED
6978 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6979#endif
6980#ifdef CONFIG_RT_GROUP_SCHED
6981 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6982#endif
df7c8e84 6983#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6984 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6985#endif
434d53b0 6986 if (alloc_size) {
36b7b6d4 6987 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6988
6989#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6990 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6991 ptr += nr_cpu_ids * sizeof(void **);
6992
07e06b01 6993 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6994 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6995
6d6bc0ad 6996#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6997#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6998 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6999 ptr += nr_cpu_ids * sizeof(void **);
7000
07e06b01 7001 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7002 ptr += nr_cpu_ids * sizeof(void **);
7003
6d6bc0ad 7004#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
7005#ifdef CONFIG_CPUMASK_OFFSTACK
7006 for_each_possible_cpu(i) {
7007 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7008 ptr += cpumask_size();
7009 }
7010#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 7011 }
dd41f596 7012
57d885fe
GH
7013#ifdef CONFIG_SMP
7014 init_defrootdomain();
7015#endif
7016
d0b27fa7
PZ
7017 init_rt_bandwidth(&def_rt_bandwidth,
7018 global_rt_period(), global_rt_runtime());
7019
7020#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7021 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7022 global_rt_period(), global_rt_runtime());
6d6bc0ad 7023#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7024
7c941438 7025#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
7026 list_add(&root_task_group.list, &task_groups);
7027 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7028 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7029 autogroup_init(&init_task);
54c707e9 7030
7c941438 7031#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7032
54c707e9
GC
7033#ifdef CONFIG_CGROUP_CPUACCT
7034 root_cpuacct.cpustat = &kernel_cpustat;
7035 root_cpuacct.cpuusage = alloc_percpu(u64);
7036 /* Too early, not expected to fail */
7037 BUG_ON(!root_cpuacct.cpuusage);
7038#endif
0a945022 7039 for_each_possible_cpu(i) {
70b97a7f 7040 struct rq *rq;
1da177e4
LT
7041
7042 rq = cpu_rq(i);
05fa785c 7043 raw_spin_lock_init(&rq->lock);
7897986b 7044 rq->nr_running = 0;
dce48a84
TG
7045 rq->calc_load_active = 0;
7046 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7047 init_cfs_rq(&rq->cfs);
6f505b16 7048 init_rt_rq(&rq->rt, rq);
dd41f596 7049#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7050 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7051 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7052 /*
07e06b01 7053 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7054 *
7055 * In case of task-groups formed thr' the cgroup filesystem, it
7056 * gets 100% of the cpu resources in the system. This overall
7057 * system cpu resource is divided among the tasks of
07e06b01 7058 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7059 * based on each entity's (task or task-group's) weight
7060 * (se->load.weight).
7061 *
07e06b01 7062 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7063 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7064 * then A0's share of the cpu resource is:
7065 *
0d905bca 7066 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7067 *
07e06b01
YZ
7068 * We achieve this by letting root_task_group's tasks sit
7069 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7070 */
ab84d31e 7071 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7072 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7073#endif /* CONFIG_FAIR_GROUP_SCHED */
7074
7075 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7076#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7077 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 7078 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7079#endif
1da177e4 7080
dd41f596
IM
7081 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7082 rq->cpu_load[j] = 0;
fdf3e95d
VP
7083
7084 rq->last_load_update_tick = jiffies;
7085
1da177e4 7086#ifdef CONFIG_SMP
41c7ce9a 7087 rq->sd = NULL;
57d885fe 7088 rq->rd = NULL;
1399fa78 7089 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 7090 rq->post_schedule = 0;
1da177e4 7091 rq->active_balance = 0;
dd41f596 7092 rq->next_balance = jiffies;
1da177e4 7093 rq->push_cpu = 0;
0a2966b4 7094 rq->cpu = i;
1f11eb6a 7095 rq->online = 0;
eae0c9df
MG
7096 rq->idle_stamp = 0;
7097 rq->avg_idle = 2*sysctl_sched_migration_cost;
367456c7
PZ
7098
7099 INIT_LIST_HEAD(&rq->cfs_tasks);
7100
dc938520 7101 rq_attach_root(rq, &def_root_domain);
83cd4fe2 7102#ifdef CONFIG_NO_HZ
1c792db7 7103 rq->nohz_flags = 0;
83cd4fe2 7104#endif
1da177e4 7105#endif
8f4d37ec 7106 init_rq_hrtick(rq);
1da177e4 7107 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7108 }
7109
2dd73a4f 7110 set_load_weight(&init_task);
b50f60ce 7111
e107be36
AK
7112#ifdef CONFIG_PREEMPT_NOTIFIERS
7113 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7114#endif
7115
b50f60ce 7116#ifdef CONFIG_RT_MUTEXES
732375c6 7117 plist_head_init(&init_task.pi_waiters);
b50f60ce
HC
7118#endif
7119
1da177e4
LT
7120 /*
7121 * The boot idle thread does lazy MMU switching as well:
7122 */
7123 atomic_inc(&init_mm.mm_count);
7124 enter_lazy_tlb(&init_mm, current);
7125
7126 /*
7127 * Make us the idle thread. Technically, schedule() should not be
7128 * called from this thread, however somewhere below it might be,
7129 * but because we are the idle thread, we just pick up running again
7130 * when this runqueue becomes "idle".
7131 */
7132 init_idle(current, smp_processor_id());
dce48a84
TG
7133
7134 calc_load_update = jiffies + LOAD_FREQ;
7135
dd41f596
IM
7136 /*
7137 * During early bootup we pretend to be a normal task:
7138 */
7139 current->sched_class = &fair_sched_class;
6892b75e 7140
bf4d83f6 7141#ifdef CONFIG_SMP
4cb98839 7142 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7143 /* May be allocated at isolcpus cmdline parse time */
7144 if (cpu_isolated_map == NULL)
7145 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
029632fb
PZ
7146#endif
7147 init_sched_fair_class();
6a7b3dc3 7148
6892b75e 7149 scheduler_running = 1;
1da177e4
LT
7150}
7151
d902db1e 7152#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7153static inline int preempt_count_equals(int preempt_offset)
7154{
234da7bc 7155 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7156
4ba8216c 7157 return (nested == preempt_offset);
e4aafea2
FW
7158}
7159
d894837f 7160void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7161{
1da177e4
LT
7162 static unsigned long prev_jiffy; /* ratelimiting */
7163
b3fbab05 7164 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
e4aafea2
FW
7165 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7166 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7167 return;
7168 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7169 return;
7170 prev_jiffy = jiffies;
7171
3df0fc5b
PZ
7172 printk(KERN_ERR
7173 "BUG: sleeping function called from invalid context at %s:%d\n",
7174 file, line);
7175 printk(KERN_ERR
7176 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7177 in_atomic(), irqs_disabled(),
7178 current->pid, current->comm);
aef745fc
IM
7179
7180 debug_show_held_locks(current);
7181 if (irqs_disabled())
7182 print_irqtrace_events(current);
7183 dump_stack();
1da177e4
LT
7184}
7185EXPORT_SYMBOL(__might_sleep);
7186#endif
7187
7188#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7189static void normalize_task(struct rq *rq, struct task_struct *p)
7190{
da7a735e
PZ
7191 const struct sched_class *prev_class = p->sched_class;
7192 int old_prio = p->prio;
3a5e4dc1 7193 int on_rq;
3e51f33f 7194
fd2f4419 7195 on_rq = p->on_rq;
3a5e4dc1 7196 if (on_rq)
4ca9b72b 7197 dequeue_task(rq, p, 0);
3a5e4dc1
AK
7198 __setscheduler(rq, p, SCHED_NORMAL, 0);
7199 if (on_rq) {
4ca9b72b 7200 enqueue_task(rq, p, 0);
3a5e4dc1
AK
7201 resched_task(rq->curr);
7202 }
da7a735e
PZ
7203
7204 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7205}
7206
1da177e4
LT
7207void normalize_rt_tasks(void)
7208{
a0f98a1c 7209 struct task_struct *g, *p;
1da177e4 7210 unsigned long flags;
70b97a7f 7211 struct rq *rq;
1da177e4 7212
4cf5d77a 7213 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7214 do_each_thread(g, p) {
178be793
IM
7215 /*
7216 * Only normalize user tasks:
7217 */
7218 if (!p->mm)
7219 continue;
7220
6cfb0d5d 7221 p->se.exec_start = 0;
6cfb0d5d 7222#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7223 p->se.statistics.wait_start = 0;
7224 p->se.statistics.sleep_start = 0;
7225 p->se.statistics.block_start = 0;
6cfb0d5d 7226#endif
dd41f596
IM
7227
7228 if (!rt_task(p)) {
7229 /*
7230 * Renice negative nice level userspace
7231 * tasks back to 0:
7232 */
7233 if (TASK_NICE(p) < 0 && p->mm)
7234 set_user_nice(p, 0);
1da177e4 7235 continue;
dd41f596 7236 }
1da177e4 7237
1d615482 7238 raw_spin_lock(&p->pi_lock);
b29739f9 7239 rq = __task_rq_lock(p);
1da177e4 7240
178be793 7241 normalize_task(rq, p);
3a5e4dc1 7242
b29739f9 7243 __task_rq_unlock(rq);
1d615482 7244 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7245 } while_each_thread(g, p);
7246
4cf5d77a 7247 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7248}
7249
7250#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7251
67fc4e0c 7252#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7253/*
67fc4e0c 7254 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7255 *
7256 * They can only be called when the whole system has been
7257 * stopped - every CPU needs to be quiescent, and no scheduling
7258 * activity can take place. Using them for anything else would
7259 * be a serious bug, and as a result, they aren't even visible
7260 * under any other configuration.
7261 */
7262
7263/**
7264 * curr_task - return the current task for a given cpu.
7265 * @cpu: the processor in question.
7266 *
7267 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7268 */
36c8b586 7269struct task_struct *curr_task(int cpu)
1df5c10a
LT
7270{
7271 return cpu_curr(cpu);
7272}
7273
67fc4e0c
JW
7274#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7275
7276#ifdef CONFIG_IA64
1df5c10a
LT
7277/**
7278 * set_curr_task - set the current task for a given cpu.
7279 * @cpu: the processor in question.
7280 * @p: the task pointer to set.
7281 *
7282 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7283 * are serviced on a separate stack. It allows the architecture to switch the
7284 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7285 * must be called with all CPU's synchronized, and interrupts disabled, the
7286 * and caller must save the original value of the current task (see
7287 * curr_task() above) and restore that value before reenabling interrupts and
7288 * re-starting the system.
7289 *
7290 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7291 */
36c8b586 7292void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7293{
7294 cpu_curr(cpu) = p;
7295}
7296
7297#endif
29f59db3 7298
7c941438 7299#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7300/* task_group_lock serializes the addition/removal of task groups */
7301static DEFINE_SPINLOCK(task_group_lock);
7302
bccbe08a
PZ
7303static void free_sched_group(struct task_group *tg)
7304{
7305 free_fair_sched_group(tg);
7306 free_rt_sched_group(tg);
e9aa1dd1 7307 autogroup_free(tg);
bccbe08a
PZ
7308 kfree(tg);
7309}
7310
7311/* allocate runqueue etc for a new task group */
ec7dc8ac 7312struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7313{
7314 struct task_group *tg;
7315 unsigned long flags;
bccbe08a
PZ
7316
7317 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7318 if (!tg)
7319 return ERR_PTR(-ENOMEM);
7320
ec7dc8ac 7321 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7322 goto err;
7323
ec7dc8ac 7324 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7325 goto err;
7326
8ed36996 7327 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7328 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7329
7330 WARN_ON(!parent); /* root should already exist */
7331
7332 tg->parent = parent;
f473aa5e 7333 INIT_LIST_HEAD(&tg->children);
09f2724a 7334 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7335 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 7336
9b5b7751 7337 return tg;
29f59db3
SV
7338
7339err:
6f505b16 7340 free_sched_group(tg);
29f59db3
SV
7341 return ERR_PTR(-ENOMEM);
7342}
7343
9b5b7751 7344/* rcu callback to free various structures associated with a task group */
6f505b16 7345static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7346{
29f59db3 7347 /* now it should be safe to free those cfs_rqs */
6f505b16 7348 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7349}
7350
9b5b7751 7351/* Destroy runqueue etc associated with a task group */
4cf86d77 7352void sched_destroy_group(struct task_group *tg)
29f59db3 7353{
8ed36996 7354 unsigned long flags;
9b5b7751 7355 int i;
29f59db3 7356
3d4b47b4
PZ
7357 /* end participation in shares distribution */
7358 for_each_possible_cpu(i)
bccbe08a 7359 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7360
7361 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7362 list_del_rcu(&tg->list);
f473aa5e 7363 list_del_rcu(&tg->siblings);
8ed36996 7364 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 7365
9b5b7751 7366 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 7367 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
7368}
7369
9b5b7751 7370/* change task's runqueue when it moves between groups.
3a252015
IM
7371 * The caller of this function should have put the task in its new group
7372 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7373 * reflect its new group.
9b5b7751
SV
7374 */
7375void sched_move_task(struct task_struct *tsk)
29f59db3
SV
7376{
7377 int on_rq, running;
7378 unsigned long flags;
7379 struct rq *rq;
7380
7381 rq = task_rq_lock(tsk, &flags);
7382
051a1d1a 7383 running = task_current(rq, tsk);
fd2f4419 7384 on_rq = tsk->on_rq;
29f59db3 7385
0e1f3483 7386 if (on_rq)
29f59db3 7387 dequeue_task(rq, tsk, 0);
0e1f3483
HS
7388 if (unlikely(running))
7389 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 7390
810b3817 7391#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
7392 if (tsk->sched_class->task_move_group)
7393 tsk->sched_class->task_move_group(tsk, on_rq);
7394 else
810b3817 7395#endif
b2b5ce02 7396 set_task_rq(tsk, task_cpu(tsk));
810b3817 7397
0e1f3483
HS
7398 if (unlikely(running))
7399 tsk->sched_class->set_curr_task(rq);
7400 if (on_rq)
371fd7e7 7401 enqueue_task(rq, tsk, 0);
29f59db3 7402
0122ec5b 7403 task_rq_unlock(rq, tsk, &flags);
29f59db3 7404}
7c941438 7405#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7406
a790de99 7407#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
9f0c1e56
PZ
7408static unsigned long to_ratio(u64 period, u64 runtime)
7409{
7410 if (runtime == RUNTIME_INF)
9a7e0b18 7411 return 1ULL << 20;
9f0c1e56 7412
9a7e0b18 7413 return div64_u64(runtime << 20, period);
9f0c1e56 7414}
a790de99
PT
7415#endif
7416
7417#ifdef CONFIG_RT_GROUP_SCHED
7418/*
7419 * Ensure that the real time constraints are schedulable.
7420 */
7421static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7422
9a7e0b18
PZ
7423/* Must be called with tasklist_lock held */
7424static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7425{
9a7e0b18 7426 struct task_struct *g, *p;
b40b2e8e 7427
9a7e0b18 7428 do_each_thread(g, p) {
029632fb 7429 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
7430 return 1;
7431 } while_each_thread(g, p);
b40b2e8e 7432
9a7e0b18
PZ
7433 return 0;
7434}
b40b2e8e 7435
9a7e0b18
PZ
7436struct rt_schedulable_data {
7437 struct task_group *tg;
7438 u64 rt_period;
7439 u64 rt_runtime;
7440};
b40b2e8e 7441
a790de99 7442static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7443{
7444 struct rt_schedulable_data *d = data;
7445 struct task_group *child;
7446 unsigned long total, sum = 0;
7447 u64 period, runtime;
b40b2e8e 7448
9a7e0b18
PZ
7449 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7450 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7451
9a7e0b18
PZ
7452 if (tg == d->tg) {
7453 period = d->rt_period;
7454 runtime = d->rt_runtime;
b40b2e8e 7455 }
b40b2e8e 7456
4653f803
PZ
7457 /*
7458 * Cannot have more runtime than the period.
7459 */
7460 if (runtime > period && runtime != RUNTIME_INF)
7461 return -EINVAL;
6f505b16 7462
4653f803
PZ
7463 /*
7464 * Ensure we don't starve existing RT tasks.
7465 */
9a7e0b18
PZ
7466 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7467 return -EBUSY;
6f505b16 7468
9a7e0b18 7469 total = to_ratio(period, runtime);
6f505b16 7470
4653f803
PZ
7471 /*
7472 * Nobody can have more than the global setting allows.
7473 */
7474 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7475 return -EINVAL;
6f505b16 7476
4653f803
PZ
7477 /*
7478 * The sum of our children's runtime should not exceed our own.
7479 */
9a7e0b18
PZ
7480 list_for_each_entry_rcu(child, &tg->children, siblings) {
7481 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7482 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7483
9a7e0b18
PZ
7484 if (child == d->tg) {
7485 period = d->rt_period;
7486 runtime = d->rt_runtime;
7487 }
6f505b16 7488
9a7e0b18 7489 sum += to_ratio(period, runtime);
9f0c1e56 7490 }
6f505b16 7491
9a7e0b18
PZ
7492 if (sum > total)
7493 return -EINVAL;
7494
7495 return 0;
6f505b16
PZ
7496}
7497
9a7e0b18 7498static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7499{
8277434e
PT
7500 int ret;
7501
9a7e0b18
PZ
7502 struct rt_schedulable_data data = {
7503 .tg = tg,
7504 .rt_period = period,
7505 .rt_runtime = runtime,
7506 };
7507
8277434e
PT
7508 rcu_read_lock();
7509 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7510 rcu_read_unlock();
7511
7512 return ret;
521f1a24
DG
7513}
7514
ab84d31e 7515static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7516 u64 rt_period, u64 rt_runtime)
6f505b16 7517{
ac086bc2 7518 int i, err = 0;
9f0c1e56 7519
9f0c1e56 7520 mutex_lock(&rt_constraints_mutex);
521f1a24 7521 read_lock(&tasklist_lock);
9a7e0b18
PZ
7522 err = __rt_schedulable(tg, rt_period, rt_runtime);
7523 if (err)
9f0c1e56 7524 goto unlock;
ac086bc2 7525
0986b11b 7526 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7527 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7528 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7529
7530 for_each_possible_cpu(i) {
7531 struct rt_rq *rt_rq = tg->rt_rq[i];
7532
0986b11b 7533 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7534 rt_rq->rt_runtime = rt_runtime;
0986b11b 7535 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7536 }
0986b11b 7537 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7538unlock:
521f1a24 7539 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7540 mutex_unlock(&rt_constraints_mutex);
7541
7542 return err;
6f505b16
PZ
7543}
7544
d0b27fa7
PZ
7545int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7546{
7547 u64 rt_runtime, rt_period;
7548
7549 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7550 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7551 if (rt_runtime_us < 0)
7552 rt_runtime = RUNTIME_INF;
7553
ab84d31e 7554 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7555}
7556
9f0c1e56
PZ
7557long sched_group_rt_runtime(struct task_group *tg)
7558{
7559 u64 rt_runtime_us;
7560
d0b27fa7 7561 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7562 return -1;
7563
d0b27fa7 7564 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7565 do_div(rt_runtime_us, NSEC_PER_USEC);
7566 return rt_runtime_us;
7567}
d0b27fa7
PZ
7568
7569int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7570{
7571 u64 rt_runtime, rt_period;
7572
7573 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7574 rt_runtime = tg->rt_bandwidth.rt_runtime;
7575
619b0488
R
7576 if (rt_period == 0)
7577 return -EINVAL;
7578
ab84d31e 7579 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7580}
7581
7582long sched_group_rt_period(struct task_group *tg)
7583{
7584 u64 rt_period_us;
7585
7586 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7587 do_div(rt_period_us, NSEC_PER_USEC);
7588 return rt_period_us;
7589}
7590
7591static int sched_rt_global_constraints(void)
7592{
4653f803 7593 u64 runtime, period;
d0b27fa7
PZ
7594 int ret = 0;
7595
ec5d4989
HS
7596 if (sysctl_sched_rt_period <= 0)
7597 return -EINVAL;
7598
4653f803
PZ
7599 runtime = global_rt_runtime();
7600 period = global_rt_period();
7601
7602 /*
7603 * Sanity check on the sysctl variables.
7604 */
7605 if (runtime > period && runtime != RUNTIME_INF)
7606 return -EINVAL;
10b612f4 7607
d0b27fa7 7608 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7609 read_lock(&tasklist_lock);
4653f803 7610 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7611 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7612 mutex_unlock(&rt_constraints_mutex);
7613
7614 return ret;
7615}
54e99124
DG
7616
7617int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7618{
7619 /* Don't accept realtime tasks when there is no way for them to run */
7620 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7621 return 0;
7622
7623 return 1;
7624}
7625
6d6bc0ad 7626#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7627static int sched_rt_global_constraints(void)
7628{
ac086bc2
PZ
7629 unsigned long flags;
7630 int i;
7631
ec5d4989
HS
7632 if (sysctl_sched_rt_period <= 0)
7633 return -EINVAL;
7634
60aa605d
PZ
7635 /*
7636 * There's always some RT tasks in the root group
7637 * -- migration, kstopmachine etc..
7638 */
7639 if (sysctl_sched_rt_runtime == 0)
7640 return -EBUSY;
7641
0986b11b 7642 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7643 for_each_possible_cpu(i) {
7644 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7645
0986b11b 7646 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7647 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7648 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7649 }
0986b11b 7650 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7651
d0b27fa7
PZ
7652 return 0;
7653}
6d6bc0ad 7654#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7655
7656int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7657 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7658 loff_t *ppos)
7659{
7660 int ret;
7661 int old_period, old_runtime;
7662 static DEFINE_MUTEX(mutex);
7663
7664 mutex_lock(&mutex);
7665 old_period = sysctl_sched_rt_period;
7666 old_runtime = sysctl_sched_rt_runtime;
7667
8d65af78 7668 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7669
7670 if (!ret && write) {
7671 ret = sched_rt_global_constraints();
7672 if (ret) {
7673 sysctl_sched_rt_period = old_period;
7674 sysctl_sched_rt_runtime = old_runtime;
7675 } else {
7676 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7677 def_rt_bandwidth.rt_period =
7678 ns_to_ktime(global_rt_period());
7679 }
7680 }
7681 mutex_unlock(&mutex);
7682
7683 return ret;
7684}
68318b8e 7685
052f1dc7 7686#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
7687
7688/* return corresponding task_group object of a cgroup */
2b01dfe3 7689static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 7690{
2b01dfe3
PM
7691 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7692 struct task_group, css);
68318b8e
SV
7693}
7694
761b3ef5 7695static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
68318b8e 7696{
ec7dc8ac 7697 struct task_group *tg, *parent;
68318b8e 7698
2b01dfe3 7699 if (!cgrp->parent) {
68318b8e 7700 /* This is early initialization for the top cgroup */
07e06b01 7701 return &root_task_group.css;
68318b8e
SV
7702 }
7703
ec7dc8ac
DG
7704 parent = cgroup_tg(cgrp->parent);
7705 tg = sched_create_group(parent);
68318b8e
SV
7706 if (IS_ERR(tg))
7707 return ERR_PTR(-ENOMEM);
7708
68318b8e
SV
7709 return &tg->css;
7710}
7711
761b3ef5 7712static void cpu_cgroup_destroy(struct cgroup *cgrp)
68318b8e 7713{
2b01dfe3 7714 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7715
7716 sched_destroy_group(tg);
7717}
7718
761b3ef5 7719static int cpu_cgroup_can_attach(struct cgroup *cgrp,
bb9d97b6 7720 struct cgroup_taskset *tset)
68318b8e 7721{
bb9d97b6
TH
7722 struct task_struct *task;
7723
7724 cgroup_taskset_for_each(task, cgrp, tset) {
b68aa230 7725#ifdef CONFIG_RT_GROUP_SCHED
bb9d97b6
TH
7726 if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7727 return -EINVAL;
b68aa230 7728#else
bb9d97b6
TH
7729 /* We don't support RT-tasks being in separate groups */
7730 if (task->sched_class != &fair_sched_class)
7731 return -EINVAL;
b68aa230 7732#endif
bb9d97b6 7733 }
be367d09
BB
7734 return 0;
7735}
68318b8e 7736
761b3ef5 7737static void cpu_cgroup_attach(struct cgroup *cgrp,
bb9d97b6 7738 struct cgroup_taskset *tset)
68318b8e 7739{
bb9d97b6
TH
7740 struct task_struct *task;
7741
7742 cgroup_taskset_for_each(task, cgrp, tset)
7743 sched_move_task(task);
68318b8e
SV
7744}
7745
068c5cc5 7746static void
761b3ef5
LZ
7747cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7748 struct task_struct *task)
068c5cc5
PZ
7749{
7750 /*
7751 * cgroup_exit() is called in the copy_process() failure path.
7752 * Ignore this case since the task hasn't ran yet, this avoids
7753 * trying to poke a half freed task state from generic code.
7754 */
7755 if (!(task->flags & PF_EXITING))
7756 return;
7757
7758 sched_move_task(task);
7759}
7760
052f1dc7 7761#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 7762static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 7763 u64 shareval)
68318b8e 7764{
c8b28116 7765 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
68318b8e
SV
7766}
7767
f4c753b7 7768static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 7769{
2b01dfe3 7770 struct task_group *tg = cgroup_tg(cgrp);
68318b8e 7771
c8b28116 7772 return (u64) scale_load_down(tg->shares);
68318b8e 7773}
ab84d31e
PT
7774
7775#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7776static DEFINE_MUTEX(cfs_constraints_mutex);
7777
ab84d31e
PT
7778const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7779const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7780
a790de99
PT
7781static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7782
ab84d31e
PT
7783static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7784{
56f570e5 7785 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7786 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7787
7788 if (tg == &root_task_group)
7789 return -EINVAL;
7790
7791 /*
7792 * Ensure we have at some amount of bandwidth every period. This is
7793 * to prevent reaching a state of large arrears when throttled via
7794 * entity_tick() resulting in prolonged exit starvation.
7795 */
7796 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7797 return -EINVAL;
7798
7799 /*
7800 * Likewise, bound things on the otherside by preventing insane quota
7801 * periods. This also allows us to normalize in computing quota
7802 * feasibility.
7803 */
7804 if (period > max_cfs_quota_period)
7805 return -EINVAL;
7806
a790de99
PT
7807 mutex_lock(&cfs_constraints_mutex);
7808 ret = __cfs_schedulable(tg, period, quota);
7809 if (ret)
7810 goto out_unlock;
7811
58088ad0 7812 runtime_enabled = quota != RUNTIME_INF;
56f570e5
PT
7813 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7814 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
ab84d31e
PT
7815 raw_spin_lock_irq(&cfs_b->lock);
7816 cfs_b->period = ns_to_ktime(period);
7817 cfs_b->quota = quota;
58088ad0 7818
a9cf55b2 7819 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7820 /* restart the period timer (if active) to handle new period expiry */
7821 if (runtime_enabled && cfs_b->timer_active) {
7822 /* force a reprogram */
7823 cfs_b->timer_active = 0;
7824 __start_cfs_bandwidth(cfs_b);
7825 }
ab84d31e
PT
7826 raw_spin_unlock_irq(&cfs_b->lock);
7827
7828 for_each_possible_cpu(i) {
7829 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7830 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7831
7832 raw_spin_lock_irq(&rq->lock);
58088ad0 7833 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7834 cfs_rq->runtime_remaining = 0;
671fd9da 7835
029632fb 7836 if (cfs_rq->throttled)
671fd9da 7837 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7838 raw_spin_unlock_irq(&rq->lock);
7839 }
a790de99
PT
7840out_unlock:
7841 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7842
a790de99 7843 return ret;
ab84d31e
PT
7844}
7845
7846int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7847{
7848 u64 quota, period;
7849
029632fb 7850 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7851 if (cfs_quota_us < 0)
7852 quota = RUNTIME_INF;
7853 else
7854 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7855
7856 return tg_set_cfs_bandwidth(tg, period, quota);
7857}
7858
7859long tg_get_cfs_quota(struct task_group *tg)
7860{
7861 u64 quota_us;
7862
029632fb 7863 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7864 return -1;
7865
029632fb 7866 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7867 do_div(quota_us, NSEC_PER_USEC);
7868
7869 return quota_us;
7870}
7871
7872int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7873{
7874 u64 quota, period;
7875
7876 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7877 quota = tg->cfs_bandwidth.quota;
ab84d31e 7878
ab84d31e
PT
7879 return tg_set_cfs_bandwidth(tg, period, quota);
7880}
7881
7882long tg_get_cfs_period(struct task_group *tg)
7883{
7884 u64 cfs_period_us;
7885
029632fb 7886 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7887 do_div(cfs_period_us, NSEC_PER_USEC);
7888
7889 return cfs_period_us;
7890}
7891
7892static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7893{
7894 return tg_get_cfs_quota(cgroup_tg(cgrp));
7895}
7896
7897static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7898 s64 cfs_quota_us)
7899{
7900 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7901}
7902
7903static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7904{
7905 return tg_get_cfs_period(cgroup_tg(cgrp));
7906}
7907
7908static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7909 u64 cfs_period_us)
7910{
7911 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7912}
7913
a790de99
PT
7914struct cfs_schedulable_data {
7915 struct task_group *tg;
7916 u64 period, quota;
7917};
7918
7919/*
7920 * normalize group quota/period to be quota/max_period
7921 * note: units are usecs
7922 */
7923static u64 normalize_cfs_quota(struct task_group *tg,
7924 struct cfs_schedulable_data *d)
7925{
7926 u64 quota, period;
7927
7928 if (tg == d->tg) {
7929 period = d->period;
7930 quota = d->quota;
7931 } else {
7932 period = tg_get_cfs_period(tg);
7933 quota = tg_get_cfs_quota(tg);
7934 }
7935
7936 /* note: these should typically be equivalent */
7937 if (quota == RUNTIME_INF || quota == -1)
7938 return RUNTIME_INF;
7939
7940 return to_ratio(period, quota);
7941}
7942
7943static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7944{
7945 struct cfs_schedulable_data *d = data;
029632fb 7946 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7947 s64 quota = 0, parent_quota = -1;
7948
7949 if (!tg->parent) {
7950 quota = RUNTIME_INF;
7951 } else {
029632fb 7952 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7953
7954 quota = normalize_cfs_quota(tg, d);
7955 parent_quota = parent_b->hierarchal_quota;
7956
7957 /*
7958 * ensure max(child_quota) <= parent_quota, inherit when no
7959 * limit is set
7960 */
7961 if (quota == RUNTIME_INF)
7962 quota = parent_quota;
7963 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7964 return -EINVAL;
7965 }
7966 cfs_b->hierarchal_quota = quota;
7967
7968 return 0;
7969}
7970
7971static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7972{
8277434e 7973 int ret;
a790de99
PT
7974 struct cfs_schedulable_data data = {
7975 .tg = tg,
7976 .period = period,
7977 .quota = quota,
7978 };
7979
7980 if (quota != RUNTIME_INF) {
7981 do_div(data.period, NSEC_PER_USEC);
7982 do_div(data.quota, NSEC_PER_USEC);
7983 }
7984
8277434e
PT
7985 rcu_read_lock();
7986 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7987 rcu_read_unlock();
7988
7989 return ret;
a790de99 7990}
e8da1b18
NR
7991
7992static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7993 struct cgroup_map_cb *cb)
7994{
7995 struct task_group *tg = cgroup_tg(cgrp);
029632fb 7996 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18
NR
7997
7998 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7999 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
8000 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
8001
8002 return 0;
8003}
ab84d31e 8004#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8005#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8006
052f1dc7 8007#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8008static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8009 s64 val)
6f505b16 8010{
06ecb27c 8011 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8012}
8013
06ecb27c 8014static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8015{
06ecb27c 8016 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8017}
d0b27fa7
PZ
8018
8019static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8020 u64 rt_period_us)
8021{
8022 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8023}
8024
8025static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8026{
8027 return sched_group_rt_period(cgroup_tg(cgrp));
8028}
6d6bc0ad 8029#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8030
fe5c7cc2 8031static struct cftype cpu_files[] = {
052f1dc7 8032#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8033 {
8034 .name = "shares",
f4c753b7
PM
8035 .read_u64 = cpu_shares_read_u64,
8036 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8037 },
052f1dc7 8038#endif
ab84d31e
PT
8039#ifdef CONFIG_CFS_BANDWIDTH
8040 {
8041 .name = "cfs_quota_us",
8042 .read_s64 = cpu_cfs_quota_read_s64,
8043 .write_s64 = cpu_cfs_quota_write_s64,
8044 },
8045 {
8046 .name = "cfs_period_us",
8047 .read_u64 = cpu_cfs_period_read_u64,
8048 .write_u64 = cpu_cfs_period_write_u64,
8049 },
e8da1b18
NR
8050 {
8051 .name = "stat",
8052 .read_map = cpu_stats_show,
8053 },
ab84d31e 8054#endif
052f1dc7 8055#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8056 {
9f0c1e56 8057 .name = "rt_runtime_us",
06ecb27c
PM
8058 .read_s64 = cpu_rt_runtime_read,
8059 .write_s64 = cpu_rt_runtime_write,
6f505b16 8060 },
d0b27fa7
PZ
8061 {
8062 .name = "rt_period_us",
f4c753b7
PM
8063 .read_u64 = cpu_rt_period_read_uint,
8064 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8065 },
052f1dc7 8066#endif
68318b8e
SV
8067};
8068
8069static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8070{
fe5c7cc2 8071 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8072}
8073
8074struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8075 .name = "cpu",
8076 .create = cpu_cgroup_create,
8077 .destroy = cpu_cgroup_destroy,
bb9d97b6
TH
8078 .can_attach = cpu_cgroup_can_attach,
8079 .attach = cpu_cgroup_attach,
068c5cc5 8080 .exit = cpu_cgroup_exit,
38605cae
IM
8081 .populate = cpu_cgroup_populate,
8082 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8083 .early_init = 1,
8084};
8085
052f1dc7 8086#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8087
8088#ifdef CONFIG_CGROUP_CPUACCT
8089
8090/*
8091 * CPU accounting code for task groups.
8092 *
8093 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8094 * (balbir@in.ibm.com).
8095 */
8096
d842de87 8097/* create a new cpu accounting group */
761b3ef5 8098static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
d842de87 8099{
54c707e9 8100 struct cpuacct *ca;
d842de87 8101
54c707e9
GC
8102 if (!cgrp->parent)
8103 return &root_cpuacct.css;
8104
8105 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
d842de87 8106 if (!ca)
ef12fefa 8107 goto out;
d842de87
SV
8108
8109 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
8110 if (!ca->cpuusage)
8111 goto out_free_ca;
8112
54c707e9
GC
8113 ca->cpustat = alloc_percpu(struct kernel_cpustat);
8114 if (!ca->cpustat)
8115 goto out_free_cpuusage;
934352f2 8116
d842de87 8117 return &ca->css;
ef12fefa 8118
54c707e9 8119out_free_cpuusage:
ef12fefa
BR
8120 free_percpu(ca->cpuusage);
8121out_free_ca:
8122 kfree(ca);
8123out:
8124 return ERR_PTR(-ENOMEM);
d842de87
SV
8125}
8126
8127/* destroy an existing cpu accounting group */
761b3ef5 8128static void cpuacct_destroy(struct cgroup *cgrp)
d842de87 8129{
32cd756a 8130 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87 8131
54c707e9 8132 free_percpu(ca->cpustat);
d842de87
SV
8133 free_percpu(ca->cpuusage);
8134 kfree(ca);
8135}
8136
720f5498
KC
8137static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8138{
b36128c8 8139 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8140 u64 data;
8141
8142#ifndef CONFIG_64BIT
8143 /*
8144 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8145 */
05fa785c 8146 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8147 data = *cpuusage;
05fa785c 8148 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8149#else
8150 data = *cpuusage;
8151#endif
8152
8153 return data;
8154}
8155
8156static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8157{
b36128c8 8158 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8159
8160#ifndef CONFIG_64BIT
8161 /*
8162 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8163 */
05fa785c 8164 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8165 *cpuusage = val;
05fa785c 8166 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8167#else
8168 *cpuusage = val;
8169#endif
8170}
8171
d842de87 8172/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8173static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8174{
32cd756a 8175 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8176 u64 totalcpuusage = 0;
8177 int i;
8178
720f5498
KC
8179 for_each_present_cpu(i)
8180 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
8181
8182 return totalcpuusage;
8183}
8184
0297b803
DG
8185static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8186 u64 reset)
8187{
8188 struct cpuacct *ca = cgroup_ca(cgrp);
8189 int err = 0;
8190 int i;
8191
8192 if (reset) {
8193 err = -EINVAL;
8194 goto out;
8195 }
8196
720f5498
KC
8197 for_each_present_cpu(i)
8198 cpuacct_cpuusage_write(ca, i, 0);
0297b803 8199
0297b803
DG
8200out:
8201 return err;
8202}
8203
e9515c3c
KC
8204static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8205 struct seq_file *m)
8206{
8207 struct cpuacct *ca = cgroup_ca(cgroup);
8208 u64 percpu;
8209 int i;
8210
8211 for_each_present_cpu(i) {
8212 percpu = cpuacct_cpuusage_read(ca, i);
8213 seq_printf(m, "%llu ", (unsigned long long) percpu);
8214 }
8215 seq_printf(m, "\n");
8216 return 0;
8217}
8218
ef12fefa
BR
8219static const char *cpuacct_stat_desc[] = {
8220 [CPUACCT_STAT_USER] = "user",
8221 [CPUACCT_STAT_SYSTEM] = "system",
8222};
8223
8224static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
54c707e9 8225 struct cgroup_map_cb *cb)
ef12fefa
BR
8226{
8227 struct cpuacct *ca = cgroup_ca(cgrp);
54c707e9
GC
8228 int cpu;
8229 s64 val = 0;
ef12fefa 8230
54c707e9
GC
8231 for_each_online_cpu(cpu) {
8232 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8233 val += kcpustat->cpustat[CPUTIME_USER];
8234 val += kcpustat->cpustat[CPUTIME_NICE];
ef12fefa 8235 }
54c707e9
GC
8236 val = cputime64_to_clock_t(val);
8237 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
ef12fefa 8238
54c707e9
GC
8239 val = 0;
8240 for_each_online_cpu(cpu) {
8241 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8242 val += kcpustat->cpustat[CPUTIME_SYSTEM];
8243 val += kcpustat->cpustat[CPUTIME_IRQ];
8244 val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
ef12fefa 8245 }
54c707e9
GC
8246
8247 val = cputime64_to_clock_t(val);
8248 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8249
ef12fefa
BR
8250 return 0;
8251}
8252
d842de87
SV
8253static struct cftype files[] = {
8254 {
8255 .name = "usage",
f4c753b7
PM
8256 .read_u64 = cpuusage_read,
8257 .write_u64 = cpuusage_write,
d842de87 8258 },
e9515c3c
KC
8259 {
8260 .name = "usage_percpu",
8261 .read_seq_string = cpuacct_percpu_seq_read,
8262 },
ef12fefa
BR
8263 {
8264 .name = "stat",
8265 .read_map = cpuacct_stats_show,
8266 },
d842de87
SV
8267};
8268
32cd756a 8269static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8270{
32cd756a 8271 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
8272}
8273
8274/*
8275 * charge this task's execution time to its accounting group.
8276 *
8277 * called with rq->lock held.
8278 */
029632fb 8279void cpuacct_charge(struct task_struct *tsk, u64 cputime)
d842de87
SV
8280{
8281 struct cpuacct *ca;
934352f2 8282 int cpu;
d842de87 8283
c40c6f85 8284 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
8285 return;
8286
934352f2 8287 cpu = task_cpu(tsk);
a18b83b7
BR
8288
8289 rcu_read_lock();
8290
d842de87 8291 ca = task_ca(tsk);
d842de87 8292
44252e42 8293 for (; ca; ca = parent_ca(ca)) {
b36128c8 8294 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
8295 *cpuusage += cputime;
8296 }
a18b83b7
BR
8297
8298 rcu_read_unlock();
d842de87
SV
8299}
8300
8301struct cgroup_subsys cpuacct_subsys = {
8302 .name = "cpuacct",
8303 .create = cpuacct_create,
8304 .destroy = cpuacct_destroy,
8305 .populate = cpuacct_populate,
8306 .subsys_id = cpuacct_subsys_id,
8307};
8308#endif /* CONFIG_CGROUP_CPUACCT */