sched: Set skip_clock_update in yield_task_fair()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
e6e6685a
GC
77#ifdef CONFIG_PARAVIRT
78#include <asm/paravirt.h>
79#endif
1da177e4 80
029632fb 81#include "sched.h"
391e43da 82#include "../workqueue_sched.h"
6e0534f2 83
a8d154b0 84#define CREATE_TRACE_POINTS
ad8d75ff 85#include <trace/events/sched.h>
a8d154b0 86
029632fb 87void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 88{
58088ad0
PT
89 unsigned long delta;
90 ktime_t soft, hard, now;
d0b27fa7 91
58088ad0
PT
92 for (;;) {
93 if (hrtimer_active(period_timer))
94 break;
95
96 now = hrtimer_cb_get_time(period_timer);
97 hrtimer_forward(period_timer, now, period);
d0b27fa7 98
58088ad0
PT
99 soft = hrtimer_get_softexpires(period_timer);
100 hard = hrtimer_get_expires(period_timer);
101 delta = ktime_to_ns(ktime_sub(hard, soft));
102 __hrtimer_start_range_ns(period_timer, soft, delta,
103 HRTIMER_MODE_ABS_PINNED, 0);
104 }
105}
106
029632fb
PZ
107DEFINE_MUTEX(sched_domains_mutex);
108DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 109
fe44d621 110static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 111
029632fb 112void update_rq_clock(struct rq *rq)
3e51f33f 113{
fe44d621 114 s64 delta;
305e6835 115
61eadef6 116 if (rq->skip_clock_update > 0)
f26f9aff 117 return;
aa483808 118
fe44d621
PZ
119 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
120 rq->clock += delta;
121 update_rq_clock_task(rq, delta);
3e51f33f
PZ
122}
123
bf5c91ba
IM
124/*
125 * Debugging: various feature bits
126 */
f00b45c1 127
f00b45c1
PZ
128#define SCHED_FEAT(name, enabled) \
129 (1UL << __SCHED_FEAT_##name) * enabled |
130
bf5c91ba 131const_debug unsigned int sysctl_sched_features =
391e43da 132#include "features.h"
f00b45c1
PZ
133 0;
134
135#undef SCHED_FEAT
136
137#ifdef CONFIG_SCHED_DEBUG
138#define SCHED_FEAT(name, enabled) \
139 #name ,
140
983ed7a6 141static __read_mostly char *sched_feat_names[] = {
391e43da 142#include "features.h"
f00b45c1
PZ
143 NULL
144};
145
146#undef SCHED_FEAT
147
34f3a814 148static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 149{
f00b45c1
PZ
150 int i;
151
152 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
153 if (!(sysctl_sched_features & (1UL << i)))
154 seq_puts(m, "NO_");
155 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 156 }
34f3a814 157 seq_puts(m, "\n");
f00b45c1 158
34f3a814 159 return 0;
f00b45c1
PZ
160}
161
162static ssize_t
163sched_feat_write(struct file *filp, const char __user *ubuf,
164 size_t cnt, loff_t *ppos)
165{
166 char buf[64];
7740191c 167 char *cmp;
f00b45c1
PZ
168 int neg = 0;
169 int i;
170
171 if (cnt > 63)
172 cnt = 63;
173
174 if (copy_from_user(&buf, ubuf, cnt))
175 return -EFAULT;
176
177 buf[cnt] = 0;
7740191c 178 cmp = strstrip(buf);
f00b45c1 179
524429c3 180 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
181 neg = 1;
182 cmp += 3;
183 }
184
185 for (i = 0; sched_feat_names[i]; i++) {
7740191c 186 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f00b45c1
PZ
187 if (neg)
188 sysctl_sched_features &= ~(1UL << i);
189 else
190 sysctl_sched_features |= (1UL << i);
191 break;
192 }
193 }
194
195 if (!sched_feat_names[i])
196 return -EINVAL;
197
42994724 198 *ppos += cnt;
f00b45c1
PZ
199
200 return cnt;
201}
202
34f3a814
LZ
203static int sched_feat_open(struct inode *inode, struct file *filp)
204{
205 return single_open(filp, sched_feat_show, NULL);
206}
207
828c0950 208static const struct file_operations sched_feat_fops = {
34f3a814
LZ
209 .open = sched_feat_open,
210 .write = sched_feat_write,
211 .read = seq_read,
212 .llseek = seq_lseek,
213 .release = single_release,
f00b45c1
PZ
214};
215
216static __init int sched_init_debug(void)
217{
f00b45c1
PZ
218 debugfs_create_file("sched_features", 0644, NULL, NULL,
219 &sched_feat_fops);
220
221 return 0;
222}
223late_initcall(sched_init_debug);
224
225#endif
226
b82d9fdd
PZ
227/*
228 * Number of tasks to iterate in a single balance run.
229 * Limited because this is done with IRQs disabled.
230 */
231const_debug unsigned int sysctl_sched_nr_migrate = 32;
232
e9e9250b
PZ
233/*
234 * period over which we average the RT time consumption, measured
235 * in ms.
236 *
237 * default: 1s
238 */
239const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
240
029632fb
PZ
241/*
242 * period over which we measure -rt task cpu usage in us.
243 * default: 1s
244 */
245unsigned int sysctl_sched_rt_period = 1000000;
8a25d5de 246
029632fb
PZ
247__read_mostly int scheduler_running;
248
249/*
250 * part of the period that we allow rt tasks to run in us.
251 * default: 0.95s
252 */
253int sysctl_sched_rt_runtime = 950000;
4866cde0 254
4866cde0 255
1da177e4 256
0970d299 257/*
0122ec5b 258 * __task_rq_lock - lock the rq @p resides on.
b29739f9 259 */
70b97a7f 260static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
261 __acquires(rq->lock)
262{
0970d299
PZ
263 struct rq *rq;
264
0122ec5b
PZ
265 lockdep_assert_held(&p->pi_lock);
266
3a5c359a 267 for (;;) {
0970d299 268 rq = task_rq(p);
05fa785c 269 raw_spin_lock(&rq->lock);
65cc8e48 270 if (likely(rq == task_rq(p)))
3a5c359a 271 return rq;
05fa785c 272 raw_spin_unlock(&rq->lock);
b29739f9 273 }
b29739f9
IM
274}
275
1da177e4 276/*
0122ec5b 277 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 278 */
70b97a7f 279static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 280 __acquires(p->pi_lock)
1da177e4
LT
281 __acquires(rq->lock)
282{
70b97a7f 283 struct rq *rq;
1da177e4 284
3a5c359a 285 for (;;) {
0122ec5b 286 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 287 rq = task_rq(p);
05fa785c 288 raw_spin_lock(&rq->lock);
65cc8e48 289 if (likely(rq == task_rq(p)))
3a5c359a 290 return rq;
0122ec5b
PZ
291 raw_spin_unlock(&rq->lock);
292 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 293 }
1da177e4
LT
294}
295
a9957449 296static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
297 __releases(rq->lock)
298{
05fa785c 299 raw_spin_unlock(&rq->lock);
b29739f9
IM
300}
301
0122ec5b
PZ
302static inline void
303task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 304 __releases(rq->lock)
0122ec5b 305 __releases(p->pi_lock)
1da177e4 306{
0122ec5b
PZ
307 raw_spin_unlock(&rq->lock);
308 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
309}
310
1da177e4 311/*
cc2a73b5 312 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 313 */
a9957449 314static struct rq *this_rq_lock(void)
1da177e4
LT
315 __acquires(rq->lock)
316{
70b97a7f 317 struct rq *rq;
1da177e4
LT
318
319 local_irq_disable();
320 rq = this_rq();
05fa785c 321 raw_spin_lock(&rq->lock);
1da177e4
LT
322
323 return rq;
324}
325
8f4d37ec
PZ
326#ifdef CONFIG_SCHED_HRTICK
327/*
328 * Use HR-timers to deliver accurate preemption points.
329 *
330 * Its all a bit involved since we cannot program an hrt while holding the
331 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
332 * reschedule event.
333 *
334 * When we get rescheduled we reprogram the hrtick_timer outside of the
335 * rq->lock.
336 */
8f4d37ec 337
8f4d37ec
PZ
338static void hrtick_clear(struct rq *rq)
339{
340 if (hrtimer_active(&rq->hrtick_timer))
341 hrtimer_cancel(&rq->hrtick_timer);
342}
343
8f4d37ec
PZ
344/*
345 * High-resolution timer tick.
346 * Runs from hardirq context with interrupts disabled.
347 */
348static enum hrtimer_restart hrtick(struct hrtimer *timer)
349{
350 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
351
352 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
353
05fa785c 354 raw_spin_lock(&rq->lock);
3e51f33f 355 update_rq_clock(rq);
8f4d37ec 356 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 357 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
358
359 return HRTIMER_NORESTART;
360}
361
95e904c7 362#ifdef CONFIG_SMP
31656519
PZ
363/*
364 * called from hardirq (IPI) context
365 */
366static void __hrtick_start(void *arg)
b328ca18 367{
31656519 368 struct rq *rq = arg;
b328ca18 369
05fa785c 370 raw_spin_lock(&rq->lock);
31656519
PZ
371 hrtimer_restart(&rq->hrtick_timer);
372 rq->hrtick_csd_pending = 0;
05fa785c 373 raw_spin_unlock(&rq->lock);
b328ca18
PZ
374}
375
31656519
PZ
376/*
377 * Called to set the hrtick timer state.
378 *
379 * called with rq->lock held and irqs disabled
380 */
029632fb 381void hrtick_start(struct rq *rq, u64 delay)
b328ca18 382{
31656519
PZ
383 struct hrtimer *timer = &rq->hrtick_timer;
384 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 385
cc584b21 386 hrtimer_set_expires(timer, time);
31656519
PZ
387
388 if (rq == this_rq()) {
389 hrtimer_restart(timer);
390 } else if (!rq->hrtick_csd_pending) {
6e275637 391 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
392 rq->hrtick_csd_pending = 1;
393 }
b328ca18
PZ
394}
395
396static int
397hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
398{
399 int cpu = (int)(long)hcpu;
400
401 switch (action) {
402 case CPU_UP_CANCELED:
403 case CPU_UP_CANCELED_FROZEN:
404 case CPU_DOWN_PREPARE:
405 case CPU_DOWN_PREPARE_FROZEN:
406 case CPU_DEAD:
407 case CPU_DEAD_FROZEN:
31656519 408 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
409 return NOTIFY_OK;
410 }
411
412 return NOTIFY_DONE;
413}
414
fa748203 415static __init void init_hrtick(void)
b328ca18
PZ
416{
417 hotcpu_notifier(hotplug_hrtick, 0);
418}
31656519
PZ
419#else
420/*
421 * Called to set the hrtick timer state.
422 *
423 * called with rq->lock held and irqs disabled
424 */
029632fb 425void hrtick_start(struct rq *rq, u64 delay)
31656519 426{
7f1e2ca9 427 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 428 HRTIMER_MODE_REL_PINNED, 0);
31656519 429}
b328ca18 430
006c75f1 431static inline void init_hrtick(void)
8f4d37ec 432{
8f4d37ec 433}
31656519 434#endif /* CONFIG_SMP */
8f4d37ec 435
31656519 436static void init_rq_hrtick(struct rq *rq)
8f4d37ec 437{
31656519
PZ
438#ifdef CONFIG_SMP
439 rq->hrtick_csd_pending = 0;
8f4d37ec 440
31656519
PZ
441 rq->hrtick_csd.flags = 0;
442 rq->hrtick_csd.func = __hrtick_start;
443 rq->hrtick_csd.info = rq;
444#endif
8f4d37ec 445
31656519
PZ
446 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
447 rq->hrtick_timer.function = hrtick;
8f4d37ec 448}
006c75f1 449#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
450static inline void hrtick_clear(struct rq *rq)
451{
452}
453
8f4d37ec
PZ
454static inline void init_rq_hrtick(struct rq *rq)
455{
456}
457
b328ca18
PZ
458static inline void init_hrtick(void)
459{
460}
006c75f1 461#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 462
c24d20db
IM
463/*
464 * resched_task - mark a task 'to be rescheduled now'.
465 *
466 * On UP this means the setting of the need_resched flag, on SMP it
467 * might also involve a cross-CPU call to trigger the scheduler on
468 * the target CPU.
469 */
470#ifdef CONFIG_SMP
471
472#ifndef tsk_is_polling
473#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
474#endif
475
029632fb 476void resched_task(struct task_struct *p)
c24d20db
IM
477{
478 int cpu;
479
05fa785c 480 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 481
5ed0cec0 482 if (test_tsk_need_resched(p))
c24d20db
IM
483 return;
484
5ed0cec0 485 set_tsk_need_resched(p);
c24d20db
IM
486
487 cpu = task_cpu(p);
488 if (cpu == smp_processor_id())
489 return;
490
491 /* NEED_RESCHED must be visible before we test polling */
492 smp_mb();
493 if (!tsk_is_polling(p))
494 smp_send_reschedule(cpu);
495}
496
029632fb 497void resched_cpu(int cpu)
c24d20db
IM
498{
499 struct rq *rq = cpu_rq(cpu);
500 unsigned long flags;
501
05fa785c 502 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
503 return;
504 resched_task(cpu_curr(cpu));
05fa785c 505 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 506}
06d8308c
TG
507
508#ifdef CONFIG_NO_HZ
83cd4fe2
VP
509/*
510 * In the semi idle case, use the nearest busy cpu for migrating timers
511 * from an idle cpu. This is good for power-savings.
512 *
513 * We don't do similar optimization for completely idle system, as
514 * selecting an idle cpu will add more delays to the timers than intended
515 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
516 */
517int get_nohz_timer_target(void)
518{
519 int cpu = smp_processor_id();
520 int i;
521 struct sched_domain *sd;
522
057f3fad 523 rcu_read_lock();
83cd4fe2 524 for_each_domain(cpu, sd) {
057f3fad
PZ
525 for_each_cpu(i, sched_domain_span(sd)) {
526 if (!idle_cpu(i)) {
527 cpu = i;
528 goto unlock;
529 }
530 }
83cd4fe2 531 }
057f3fad
PZ
532unlock:
533 rcu_read_unlock();
83cd4fe2
VP
534 return cpu;
535}
06d8308c
TG
536/*
537 * When add_timer_on() enqueues a timer into the timer wheel of an
538 * idle CPU then this timer might expire before the next timer event
539 * which is scheduled to wake up that CPU. In case of a completely
540 * idle system the next event might even be infinite time into the
541 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
542 * leaves the inner idle loop so the newly added timer is taken into
543 * account when the CPU goes back to idle and evaluates the timer
544 * wheel for the next timer event.
545 */
546void wake_up_idle_cpu(int cpu)
547{
548 struct rq *rq = cpu_rq(cpu);
549
550 if (cpu == smp_processor_id())
551 return;
552
553 /*
554 * This is safe, as this function is called with the timer
555 * wheel base lock of (cpu) held. When the CPU is on the way
556 * to idle and has not yet set rq->curr to idle then it will
557 * be serialized on the timer wheel base lock and take the new
558 * timer into account automatically.
559 */
560 if (rq->curr != rq->idle)
561 return;
562
563 /*
564 * We can set TIF_RESCHED on the idle task of the other CPU
565 * lockless. The worst case is that the other CPU runs the
566 * idle task through an additional NOOP schedule()
567 */
5ed0cec0 568 set_tsk_need_resched(rq->idle);
06d8308c
TG
569
570 /* NEED_RESCHED must be visible before we test polling */
571 smp_mb();
572 if (!tsk_is_polling(rq->idle))
573 smp_send_reschedule(cpu);
574}
39c0cbe2 575
ca38062e
SS
576static inline bool got_nohz_idle_kick(void)
577{
578 return idle_cpu(smp_processor_id()) && this_rq()->nohz_balance_kick;
579}
580
581#else /* CONFIG_NO_HZ */
582
583static inline bool got_nohz_idle_kick(void)
584{
585 return false;
586}
587
6d6bc0ad 588#endif /* CONFIG_NO_HZ */
06d8308c 589
029632fb 590void sched_avg_update(struct rq *rq)
e9e9250b
PZ
591{
592 s64 period = sched_avg_period();
593
594 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
595 /*
596 * Inline assembly required to prevent the compiler
597 * optimising this loop into a divmod call.
598 * See __iter_div_u64_rem() for another example of this.
599 */
600 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
601 rq->age_stamp += period;
602 rq->rt_avg /= 2;
603 }
604}
605
6d6bc0ad 606#else /* !CONFIG_SMP */
029632fb 607void resched_task(struct task_struct *p)
c24d20db 608{
05fa785c 609 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 610 set_tsk_need_resched(p);
c24d20db 611}
6d6bc0ad 612#endif /* CONFIG_SMP */
c24d20db 613
a790de99
PT
614#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
615 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 616/*
8277434e
PT
617 * Iterate task_group tree rooted at *from, calling @down when first entering a
618 * node and @up when leaving it for the final time.
619 *
620 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 621 */
029632fb 622int walk_tg_tree_from(struct task_group *from,
8277434e 623 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
624{
625 struct task_group *parent, *child;
eb755805 626 int ret;
c09595f6 627
8277434e
PT
628 parent = from;
629
c09595f6 630down:
eb755805
PZ
631 ret = (*down)(parent, data);
632 if (ret)
8277434e 633 goto out;
c09595f6
PZ
634 list_for_each_entry_rcu(child, &parent->children, siblings) {
635 parent = child;
636 goto down;
637
638up:
029632fb
PZ
639 continue;
640 }
641 ret = (*up)(parent, data);
642 if (ret || parent == from)
643 goto out;
1e3c88bd 644
029632fb
PZ
645 child = parent;
646 parent = parent->parent;
647 if (parent)
648 goto up;
649out:
650 return ret;
9c217245
IM
651}
652
029632fb 653int tg_nop(struct task_group *tg, void *data)
9c217245 654{
029632fb 655 return 0;
9c217245 656}
029632fb
PZ
657#endif
658
659void update_cpu_load(struct rq *this_rq);
9c217245 660
45bf76df
IM
661static void set_load_weight(struct task_struct *p)
662{
f05998d4
NR
663 int prio = p->static_prio - MAX_RT_PRIO;
664 struct load_weight *load = &p->se.load;
665
dd41f596
IM
666 /*
667 * SCHED_IDLE tasks get minimal weight:
668 */
669 if (p->policy == SCHED_IDLE) {
c8b28116 670 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 671 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
672 return;
673 }
71f8bd46 674
c8b28116 675 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 676 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
677}
678
371fd7e7 679static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 680{
a64692a3 681 update_rq_clock(rq);
dd41f596 682 sched_info_queued(p);
371fd7e7 683 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
684}
685
371fd7e7 686static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 687{
a64692a3 688 update_rq_clock(rq);
46ac22ba 689 sched_info_dequeued(p);
371fd7e7 690 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
691}
692
1e3c88bd
PZ
693/*
694 * activate_task - move a task to the runqueue.
695 */
029632fb 696void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
697{
698 if (task_contributes_to_load(p))
699 rq->nr_uninterruptible--;
700
371fd7e7 701 enqueue_task(rq, p, flags);
1e3c88bd
PZ
702}
703
704/*
705 * deactivate_task - remove a task from the runqueue.
706 */
029632fb 707void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
708{
709 if (task_contributes_to_load(p))
710 rq->nr_uninterruptible++;
711
371fd7e7 712 dequeue_task(rq, p, flags);
1e3c88bd
PZ
713}
714
b52bfee4
VP
715#ifdef CONFIG_IRQ_TIME_ACCOUNTING
716
305e6835
VP
717/*
718 * There are no locks covering percpu hardirq/softirq time.
719 * They are only modified in account_system_vtime, on corresponding CPU
720 * with interrupts disabled. So, writes are safe.
721 * They are read and saved off onto struct rq in update_rq_clock().
722 * This may result in other CPU reading this CPU's irq time and can
723 * race with irq/account_system_vtime on this CPU. We would either get old
8e92c201
PZ
724 * or new value with a side effect of accounting a slice of irq time to wrong
725 * task when irq is in progress while we read rq->clock. That is a worthy
726 * compromise in place of having locks on each irq in account_system_time.
305e6835 727 */
b52bfee4
VP
728static DEFINE_PER_CPU(u64, cpu_hardirq_time);
729static DEFINE_PER_CPU(u64, cpu_softirq_time);
730
731static DEFINE_PER_CPU(u64, irq_start_time);
732static int sched_clock_irqtime;
733
734void enable_sched_clock_irqtime(void)
735{
736 sched_clock_irqtime = 1;
737}
738
739void disable_sched_clock_irqtime(void)
740{
741 sched_clock_irqtime = 0;
742}
743
8e92c201
PZ
744#ifndef CONFIG_64BIT
745static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
746
747static inline void irq_time_write_begin(void)
748{
749 __this_cpu_inc(irq_time_seq.sequence);
750 smp_wmb();
751}
752
753static inline void irq_time_write_end(void)
754{
755 smp_wmb();
756 __this_cpu_inc(irq_time_seq.sequence);
757}
758
759static inline u64 irq_time_read(int cpu)
760{
761 u64 irq_time;
762 unsigned seq;
763
764 do {
765 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
766 irq_time = per_cpu(cpu_softirq_time, cpu) +
767 per_cpu(cpu_hardirq_time, cpu);
768 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
769
770 return irq_time;
771}
772#else /* CONFIG_64BIT */
773static inline void irq_time_write_begin(void)
774{
775}
776
777static inline void irq_time_write_end(void)
778{
779}
780
781static inline u64 irq_time_read(int cpu)
305e6835 782{
305e6835
VP
783 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
784}
8e92c201 785#endif /* CONFIG_64BIT */
305e6835 786
fe44d621
PZ
787/*
788 * Called before incrementing preempt_count on {soft,}irq_enter
789 * and before decrementing preempt_count on {soft,}irq_exit.
790 */
b52bfee4
VP
791void account_system_vtime(struct task_struct *curr)
792{
793 unsigned long flags;
fe44d621 794 s64 delta;
b52bfee4 795 int cpu;
b52bfee4
VP
796
797 if (!sched_clock_irqtime)
798 return;
799
800 local_irq_save(flags);
801
b52bfee4 802 cpu = smp_processor_id();
fe44d621
PZ
803 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
804 __this_cpu_add(irq_start_time, delta);
805
8e92c201 806 irq_time_write_begin();
b52bfee4
VP
807 /*
808 * We do not account for softirq time from ksoftirqd here.
809 * We want to continue accounting softirq time to ksoftirqd thread
810 * in that case, so as not to confuse scheduler with a special task
811 * that do not consume any time, but still wants to run.
812 */
813 if (hardirq_count())
fe44d621 814 __this_cpu_add(cpu_hardirq_time, delta);
4dd53d89 815 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
fe44d621 816 __this_cpu_add(cpu_softirq_time, delta);
b52bfee4 817
8e92c201 818 irq_time_write_end();
b52bfee4
VP
819 local_irq_restore(flags);
820}
b7dadc38 821EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 822
e6e6685a
GC
823#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
824
825#ifdef CONFIG_PARAVIRT
826static inline u64 steal_ticks(u64 steal)
aa483808 827{
e6e6685a
GC
828 if (unlikely(steal > NSEC_PER_SEC))
829 return div_u64(steal, TICK_NSEC);
fe44d621 830
e6e6685a
GC
831 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
832}
833#endif
834
fe44d621 835static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 836{
095c0aa8
GC
837/*
838 * In theory, the compile should just see 0 here, and optimize out the call
839 * to sched_rt_avg_update. But I don't trust it...
840 */
841#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
842 s64 steal = 0, irq_delta = 0;
843#endif
844#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 845 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
846
847 /*
848 * Since irq_time is only updated on {soft,}irq_exit, we might run into
849 * this case when a previous update_rq_clock() happened inside a
850 * {soft,}irq region.
851 *
852 * When this happens, we stop ->clock_task and only update the
853 * prev_irq_time stamp to account for the part that fit, so that a next
854 * update will consume the rest. This ensures ->clock_task is
855 * monotonic.
856 *
857 * It does however cause some slight miss-attribution of {soft,}irq
858 * time, a more accurate solution would be to update the irq_time using
859 * the current rq->clock timestamp, except that would require using
860 * atomic ops.
861 */
862 if (irq_delta > delta)
863 irq_delta = delta;
864
865 rq->prev_irq_time += irq_delta;
866 delta -= irq_delta;
095c0aa8
GC
867#endif
868#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
869 if (static_branch((&paravirt_steal_rq_enabled))) {
870 u64 st;
871
872 steal = paravirt_steal_clock(cpu_of(rq));
873 steal -= rq->prev_steal_time_rq;
874
875 if (unlikely(steal > delta))
876 steal = delta;
877
878 st = steal_ticks(steal);
879 steal = st * TICK_NSEC;
880
881 rq->prev_steal_time_rq += steal;
882
883 delta -= steal;
884 }
885#endif
886
fe44d621
PZ
887 rq->clock_task += delta;
888
095c0aa8
GC
889#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
890 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
891 sched_rt_avg_update(rq, irq_delta + steal);
892#endif
aa483808
VP
893}
894
095c0aa8 895#ifdef CONFIG_IRQ_TIME_ACCOUNTING
abb74cef
VP
896static int irqtime_account_hi_update(void)
897{
898 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
899 unsigned long flags;
900 u64 latest_ns;
901 int ret = 0;
902
903 local_irq_save(flags);
904 latest_ns = this_cpu_read(cpu_hardirq_time);
905 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
906 ret = 1;
907 local_irq_restore(flags);
908 return ret;
909}
910
911static int irqtime_account_si_update(void)
912{
913 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
914 unsigned long flags;
915 u64 latest_ns;
916 int ret = 0;
917
918 local_irq_save(flags);
919 latest_ns = this_cpu_read(cpu_softirq_time);
920 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
921 ret = 1;
922 local_irq_restore(flags);
923 return ret;
924}
925
fe44d621 926#else /* CONFIG_IRQ_TIME_ACCOUNTING */
305e6835 927
abb74cef
VP
928#define sched_clock_irqtime (0)
929
095c0aa8 930#endif
b52bfee4 931
34f971f6
PZ
932void sched_set_stop_task(int cpu, struct task_struct *stop)
933{
934 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
935 struct task_struct *old_stop = cpu_rq(cpu)->stop;
936
937 if (stop) {
938 /*
939 * Make it appear like a SCHED_FIFO task, its something
940 * userspace knows about and won't get confused about.
941 *
942 * Also, it will make PI more or less work without too
943 * much confusion -- but then, stop work should not
944 * rely on PI working anyway.
945 */
946 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
947
948 stop->sched_class = &stop_sched_class;
949 }
950
951 cpu_rq(cpu)->stop = stop;
952
953 if (old_stop) {
954 /*
955 * Reset it back to a normal scheduling class so that
956 * it can die in pieces.
957 */
958 old_stop->sched_class = &rt_sched_class;
959 }
960}
961
14531189 962/*
dd41f596 963 * __normal_prio - return the priority that is based on the static prio
14531189 964 */
14531189
IM
965static inline int __normal_prio(struct task_struct *p)
966{
dd41f596 967 return p->static_prio;
14531189
IM
968}
969
b29739f9
IM
970/*
971 * Calculate the expected normal priority: i.e. priority
972 * without taking RT-inheritance into account. Might be
973 * boosted by interactivity modifiers. Changes upon fork,
974 * setprio syscalls, and whenever the interactivity
975 * estimator recalculates.
976 */
36c8b586 977static inline int normal_prio(struct task_struct *p)
b29739f9
IM
978{
979 int prio;
980
e05606d3 981 if (task_has_rt_policy(p))
b29739f9
IM
982 prio = MAX_RT_PRIO-1 - p->rt_priority;
983 else
984 prio = __normal_prio(p);
985 return prio;
986}
987
988/*
989 * Calculate the current priority, i.e. the priority
990 * taken into account by the scheduler. This value might
991 * be boosted by RT tasks, or might be boosted by
992 * interactivity modifiers. Will be RT if the task got
993 * RT-boosted. If not then it returns p->normal_prio.
994 */
36c8b586 995static int effective_prio(struct task_struct *p)
b29739f9
IM
996{
997 p->normal_prio = normal_prio(p);
998 /*
999 * If we are RT tasks or we were boosted to RT priority,
1000 * keep the priority unchanged. Otherwise, update priority
1001 * to the normal priority:
1002 */
1003 if (!rt_prio(p->prio))
1004 return p->normal_prio;
1005 return p->prio;
1006}
1007
1da177e4
LT
1008/**
1009 * task_curr - is this task currently executing on a CPU?
1010 * @p: the task in question.
1011 */
36c8b586 1012inline int task_curr(const struct task_struct *p)
1da177e4
LT
1013{
1014 return cpu_curr(task_cpu(p)) == p;
1015}
1016
cb469845
SR
1017static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1018 const struct sched_class *prev_class,
da7a735e 1019 int oldprio)
cb469845
SR
1020{
1021 if (prev_class != p->sched_class) {
1022 if (prev_class->switched_from)
da7a735e
PZ
1023 prev_class->switched_from(rq, p);
1024 p->sched_class->switched_to(rq, p);
1025 } else if (oldprio != p->prio)
1026 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1027}
1028
029632fb 1029void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1030{
1031 const struct sched_class *class;
1032
1033 if (p->sched_class == rq->curr->sched_class) {
1034 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1035 } else {
1036 for_each_class(class) {
1037 if (class == rq->curr->sched_class)
1038 break;
1039 if (class == p->sched_class) {
1040 resched_task(rq->curr);
1041 break;
1042 }
1043 }
1044 }
1045
1046 /*
1047 * A queue event has occurred, and we're going to schedule. In
1048 * this case, we can save a useless back to back clock update.
1049 */
fd2f4419 1050 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
1051 rq->skip_clock_update = 1;
1052}
1053
1da177e4 1054#ifdef CONFIG_SMP
dd41f596 1055void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1056{
e2912009
PZ
1057#ifdef CONFIG_SCHED_DEBUG
1058 /*
1059 * We should never call set_task_cpu() on a blocked task,
1060 * ttwu() will sort out the placement.
1061 */
077614ee
PZ
1062 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1063 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
0122ec5b
PZ
1064
1065#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1066 /*
1067 * The caller should hold either p->pi_lock or rq->lock, when changing
1068 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1069 *
1070 * sched_move_task() holds both and thus holding either pins the cgroup,
1071 * see set_task_rq().
1072 *
1073 * Furthermore, all task_rq users should acquire both locks, see
1074 * task_rq_lock().
1075 */
0122ec5b
PZ
1076 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1077 lockdep_is_held(&task_rq(p)->lock)));
1078#endif
e2912009
PZ
1079#endif
1080
de1d7286 1081 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1082
0c69774e
PZ
1083 if (task_cpu(p) != new_cpu) {
1084 p->se.nr_migrations++;
a8b0ca17 1085 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1086 }
dd41f596
IM
1087
1088 __set_task_cpu(p, new_cpu);
c65cc870
IM
1089}
1090
969c7921 1091struct migration_arg {
36c8b586 1092 struct task_struct *task;
1da177e4 1093 int dest_cpu;
70b97a7f 1094};
1da177e4 1095
969c7921
TH
1096static int migration_cpu_stop(void *data);
1097
1da177e4
LT
1098/*
1099 * wait_task_inactive - wait for a thread to unschedule.
1100 *
85ba2d86
RM
1101 * If @match_state is nonzero, it's the @p->state value just checked and
1102 * not expected to change. If it changes, i.e. @p might have woken up,
1103 * then return zero. When we succeed in waiting for @p to be off its CPU,
1104 * we return a positive number (its total switch count). If a second call
1105 * a short while later returns the same number, the caller can be sure that
1106 * @p has remained unscheduled the whole time.
1107 *
1da177e4
LT
1108 * The caller must ensure that the task *will* unschedule sometime soon,
1109 * else this function might spin for a *long* time. This function can't
1110 * be called with interrupts off, or it may introduce deadlock with
1111 * smp_call_function() if an IPI is sent by the same process we are
1112 * waiting to become inactive.
1113 */
85ba2d86 1114unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1115{
1116 unsigned long flags;
dd41f596 1117 int running, on_rq;
85ba2d86 1118 unsigned long ncsw;
70b97a7f 1119 struct rq *rq;
1da177e4 1120
3a5c359a
AK
1121 for (;;) {
1122 /*
1123 * We do the initial early heuristics without holding
1124 * any task-queue locks at all. We'll only try to get
1125 * the runqueue lock when things look like they will
1126 * work out!
1127 */
1128 rq = task_rq(p);
fa490cfd 1129
3a5c359a
AK
1130 /*
1131 * If the task is actively running on another CPU
1132 * still, just relax and busy-wait without holding
1133 * any locks.
1134 *
1135 * NOTE! Since we don't hold any locks, it's not
1136 * even sure that "rq" stays as the right runqueue!
1137 * But we don't care, since "task_running()" will
1138 * return false if the runqueue has changed and p
1139 * is actually now running somewhere else!
1140 */
85ba2d86
RM
1141 while (task_running(rq, p)) {
1142 if (match_state && unlikely(p->state != match_state))
1143 return 0;
3a5c359a 1144 cpu_relax();
85ba2d86 1145 }
fa490cfd 1146
3a5c359a
AK
1147 /*
1148 * Ok, time to look more closely! We need the rq
1149 * lock now, to be *sure*. If we're wrong, we'll
1150 * just go back and repeat.
1151 */
1152 rq = task_rq_lock(p, &flags);
27a9da65 1153 trace_sched_wait_task(p);
3a5c359a 1154 running = task_running(rq, p);
fd2f4419 1155 on_rq = p->on_rq;
85ba2d86 1156 ncsw = 0;
f31e11d8 1157 if (!match_state || p->state == match_state)
93dcf55f 1158 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1159 task_rq_unlock(rq, p, &flags);
fa490cfd 1160
85ba2d86
RM
1161 /*
1162 * If it changed from the expected state, bail out now.
1163 */
1164 if (unlikely(!ncsw))
1165 break;
1166
3a5c359a
AK
1167 /*
1168 * Was it really running after all now that we
1169 * checked with the proper locks actually held?
1170 *
1171 * Oops. Go back and try again..
1172 */
1173 if (unlikely(running)) {
1174 cpu_relax();
1175 continue;
1176 }
fa490cfd 1177
3a5c359a
AK
1178 /*
1179 * It's not enough that it's not actively running,
1180 * it must be off the runqueue _entirely_, and not
1181 * preempted!
1182 *
80dd99b3 1183 * So if it was still runnable (but just not actively
3a5c359a
AK
1184 * running right now), it's preempted, and we should
1185 * yield - it could be a while.
1186 */
1187 if (unlikely(on_rq)) {
8eb90c30
TG
1188 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1189
1190 set_current_state(TASK_UNINTERRUPTIBLE);
1191 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1192 continue;
1193 }
fa490cfd 1194
3a5c359a
AK
1195 /*
1196 * Ahh, all good. It wasn't running, and it wasn't
1197 * runnable, which means that it will never become
1198 * running in the future either. We're all done!
1199 */
1200 break;
1201 }
85ba2d86
RM
1202
1203 return ncsw;
1da177e4
LT
1204}
1205
1206/***
1207 * kick_process - kick a running thread to enter/exit the kernel
1208 * @p: the to-be-kicked thread
1209 *
1210 * Cause a process which is running on another CPU to enter
1211 * kernel-mode, without any delay. (to get signals handled.)
1212 *
25985edc 1213 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1214 * because all it wants to ensure is that the remote task enters
1215 * the kernel. If the IPI races and the task has been migrated
1216 * to another CPU then no harm is done and the purpose has been
1217 * achieved as well.
1218 */
36c8b586 1219void kick_process(struct task_struct *p)
1da177e4
LT
1220{
1221 int cpu;
1222
1223 preempt_disable();
1224 cpu = task_cpu(p);
1225 if ((cpu != smp_processor_id()) && task_curr(p))
1226 smp_send_reschedule(cpu);
1227 preempt_enable();
1228}
b43e3521 1229EXPORT_SYMBOL_GPL(kick_process);
476d139c 1230#endif /* CONFIG_SMP */
1da177e4 1231
970b13ba 1232#ifdef CONFIG_SMP
30da688e 1233/*
013fdb80 1234 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1235 */
5da9a0fb
PZ
1236static int select_fallback_rq(int cpu, struct task_struct *p)
1237{
1238 int dest_cpu;
1239 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1240
1241 /* Look for allowed, online CPU in same node. */
1242 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
fa17b507 1243 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5da9a0fb
PZ
1244 return dest_cpu;
1245
1246 /* Any allowed, online CPU? */
fa17b507 1247 dest_cpu = cpumask_any_and(tsk_cpus_allowed(p), cpu_active_mask);
5da9a0fb
PZ
1248 if (dest_cpu < nr_cpu_ids)
1249 return dest_cpu;
1250
1251 /* No more Mr. Nice Guy. */
48c5ccae
PZ
1252 dest_cpu = cpuset_cpus_allowed_fallback(p);
1253 /*
1254 * Don't tell them about moving exiting tasks or
1255 * kernel threads (both mm NULL), since they never
1256 * leave kernel.
1257 */
1258 if (p->mm && printk_ratelimit()) {
1259 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
1260 task_pid_nr(p), p->comm, cpu);
5da9a0fb
PZ
1261 }
1262
1263 return dest_cpu;
1264}
1265
e2912009 1266/*
013fdb80 1267 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1268 */
970b13ba 1269static inline
7608dec2 1270int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 1271{
7608dec2 1272 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
1273
1274 /*
1275 * In order not to call set_task_cpu() on a blocking task we need
1276 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1277 * cpu.
1278 *
1279 * Since this is common to all placement strategies, this lives here.
1280 *
1281 * [ this allows ->select_task() to simply return task_cpu(p) and
1282 * not worry about this generic constraint ]
1283 */
fa17b507 1284 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1285 !cpu_online(cpu)))
5da9a0fb 1286 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1287
1288 return cpu;
970b13ba 1289}
09a40af5
MG
1290
1291static void update_avg(u64 *avg, u64 sample)
1292{
1293 s64 diff = sample - *avg;
1294 *avg += diff >> 3;
1295}
970b13ba
PZ
1296#endif
1297
d7c01d27 1298static void
b84cb5df 1299ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1300{
d7c01d27 1301#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1302 struct rq *rq = this_rq();
1303
d7c01d27
PZ
1304#ifdef CONFIG_SMP
1305 int this_cpu = smp_processor_id();
1306
1307 if (cpu == this_cpu) {
1308 schedstat_inc(rq, ttwu_local);
1309 schedstat_inc(p, se.statistics.nr_wakeups_local);
1310 } else {
1311 struct sched_domain *sd;
1312
1313 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1314 rcu_read_lock();
d7c01d27
PZ
1315 for_each_domain(this_cpu, sd) {
1316 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1317 schedstat_inc(sd, ttwu_wake_remote);
1318 break;
1319 }
1320 }
057f3fad 1321 rcu_read_unlock();
d7c01d27 1322 }
f339b9dc
PZ
1323
1324 if (wake_flags & WF_MIGRATED)
1325 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1326
d7c01d27
PZ
1327#endif /* CONFIG_SMP */
1328
1329 schedstat_inc(rq, ttwu_count);
9ed3811a 1330 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1331
1332 if (wake_flags & WF_SYNC)
9ed3811a 1333 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1334
d7c01d27
PZ
1335#endif /* CONFIG_SCHEDSTATS */
1336}
1337
1338static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1339{
9ed3811a 1340 activate_task(rq, p, en_flags);
fd2f4419 1341 p->on_rq = 1;
c2f7115e
PZ
1342
1343 /* if a worker is waking up, notify workqueue */
1344 if (p->flags & PF_WQ_WORKER)
1345 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1346}
1347
23f41eeb
PZ
1348/*
1349 * Mark the task runnable and perform wakeup-preemption.
1350 */
89363381 1351static void
23f41eeb 1352ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1353{
89363381 1354 trace_sched_wakeup(p, true);
9ed3811a
TH
1355 check_preempt_curr(rq, p, wake_flags);
1356
1357 p->state = TASK_RUNNING;
1358#ifdef CONFIG_SMP
1359 if (p->sched_class->task_woken)
1360 p->sched_class->task_woken(rq, p);
1361
e69c6341 1362 if (rq->idle_stamp) {
9ed3811a
TH
1363 u64 delta = rq->clock - rq->idle_stamp;
1364 u64 max = 2*sysctl_sched_migration_cost;
1365
1366 if (delta > max)
1367 rq->avg_idle = max;
1368 else
1369 update_avg(&rq->avg_idle, delta);
1370 rq->idle_stamp = 0;
1371 }
1372#endif
1373}
1374
c05fbafb
PZ
1375static void
1376ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1377{
1378#ifdef CONFIG_SMP
1379 if (p->sched_contributes_to_load)
1380 rq->nr_uninterruptible--;
1381#endif
1382
1383 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1384 ttwu_do_wakeup(rq, p, wake_flags);
1385}
1386
1387/*
1388 * Called in case the task @p isn't fully descheduled from its runqueue,
1389 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1390 * since all we need to do is flip p->state to TASK_RUNNING, since
1391 * the task is still ->on_rq.
1392 */
1393static int ttwu_remote(struct task_struct *p, int wake_flags)
1394{
1395 struct rq *rq;
1396 int ret = 0;
1397
1398 rq = __task_rq_lock(p);
1399 if (p->on_rq) {
1400 ttwu_do_wakeup(rq, p, wake_flags);
1401 ret = 1;
1402 }
1403 __task_rq_unlock(rq);
1404
1405 return ret;
1406}
1407
317f3941 1408#ifdef CONFIG_SMP
fa14ff4a 1409static void sched_ttwu_pending(void)
317f3941
PZ
1410{
1411 struct rq *rq = this_rq();
fa14ff4a
PZ
1412 struct llist_node *llist = llist_del_all(&rq->wake_list);
1413 struct task_struct *p;
317f3941
PZ
1414
1415 raw_spin_lock(&rq->lock);
1416
fa14ff4a
PZ
1417 while (llist) {
1418 p = llist_entry(llist, struct task_struct, wake_entry);
1419 llist = llist_next(llist);
317f3941
PZ
1420 ttwu_do_activate(rq, p, 0);
1421 }
1422
1423 raw_spin_unlock(&rq->lock);
1424}
1425
1426void scheduler_ipi(void)
1427{
ca38062e 1428 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1429 return;
1430
1431 /*
1432 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1433 * traditionally all their work was done from the interrupt return
1434 * path. Now that we actually do some work, we need to make sure
1435 * we do call them.
1436 *
1437 * Some archs already do call them, luckily irq_enter/exit nest
1438 * properly.
1439 *
1440 * Arguably we should visit all archs and update all handlers,
1441 * however a fair share of IPIs are still resched only so this would
1442 * somewhat pessimize the simple resched case.
1443 */
1444 irq_enter();
fa14ff4a 1445 sched_ttwu_pending();
ca38062e
SS
1446
1447 /*
1448 * Check if someone kicked us for doing the nohz idle load balance.
1449 */
6eb57e0d
SS
1450 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1451 this_rq()->idle_balance = 1;
ca38062e 1452 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1453 }
c5d753a5 1454 irq_exit();
317f3941
PZ
1455}
1456
1457static void ttwu_queue_remote(struct task_struct *p, int cpu)
1458{
fa14ff4a 1459 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1460 smp_send_reschedule(cpu);
1461}
d6aa8f85
PZ
1462
1463#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1464static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
1465{
1466 struct rq *rq;
1467 int ret = 0;
1468
1469 rq = __task_rq_lock(p);
1470 if (p->on_cpu) {
1471 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1472 ttwu_do_wakeup(rq, p, wake_flags);
1473 ret = 1;
1474 }
1475 __task_rq_unlock(rq);
1476
1477 return ret;
1478
1479}
1480#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1481#endif /* CONFIG_SMP */
317f3941 1482
c05fbafb
PZ
1483static void ttwu_queue(struct task_struct *p, int cpu)
1484{
1485 struct rq *rq = cpu_rq(cpu);
1486
17d9f311 1487#if defined(CONFIG_SMP)
317f3941 1488 if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
f01114cb 1489 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1490 ttwu_queue_remote(p, cpu);
1491 return;
1492 }
1493#endif
1494
c05fbafb
PZ
1495 raw_spin_lock(&rq->lock);
1496 ttwu_do_activate(rq, p, 0);
1497 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1498}
1499
1500/**
1da177e4 1501 * try_to_wake_up - wake up a thread
9ed3811a 1502 * @p: the thread to be awakened
1da177e4 1503 * @state: the mask of task states that can be woken
9ed3811a 1504 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1505 *
1506 * Put it on the run-queue if it's not already there. The "current"
1507 * thread is always on the run-queue (except when the actual
1508 * re-schedule is in progress), and as such you're allowed to do
1509 * the simpler "current->state = TASK_RUNNING" to mark yourself
1510 * runnable without the overhead of this.
1511 *
9ed3811a
TH
1512 * Returns %true if @p was woken up, %false if it was already running
1513 * or @state didn't match @p's state.
1da177e4 1514 */
e4a52bcb
PZ
1515static int
1516try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1517{
1da177e4 1518 unsigned long flags;
c05fbafb 1519 int cpu, success = 0;
2398f2c6 1520
04e2f174 1521 smp_wmb();
013fdb80 1522 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1523 if (!(p->state & state))
1da177e4
LT
1524 goto out;
1525
c05fbafb 1526 success = 1; /* we're going to change ->state */
1da177e4 1527 cpu = task_cpu(p);
1da177e4 1528
c05fbafb
PZ
1529 if (p->on_rq && ttwu_remote(p, wake_flags))
1530 goto stat;
1da177e4 1531
1da177e4 1532#ifdef CONFIG_SMP
e9c84311 1533 /*
c05fbafb
PZ
1534 * If the owning (remote) cpu is still in the middle of schedule() with
1535 * this task as prev, wait until its done referencing the task.
e9c84311 1536 */
e4a52bcb
PZ
1537 while (p->on_cpu) {
1538#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1539 /*
d6aa8f85
PZ
1540 * In case the architecture enables interrupts in
1541 * context_switch(), we cannot busy wait, since that
1542 * would lead to deadlocks when an interrupt hits and
1543 * tries to wake up @prev. So bail and do a complete
1544 * remote wakeup.
e4a52bcb 1545 */
d6aa8f85 1546 if (ttwu_activate_remote(p, wake_flags))
c05fbafb 1547 goto stat;
d6aa8f85 1548#else
e4a52bcb 1549 cpu_relax();
d6aa8f85 1550#endif
371fd7e7 1551 }
0970d299 1552 /*
e4a52bcb 1553 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1554 */
e4a52bcb 1555 smp_rmb();
1da177e4 1556
a8e4f2ea 1557 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1558 p->state = TASK_WAKING;
e7693a36 1559
e4a52bcb 1560 if (p->sched_class->task_waking)
74f8e4b2 1561 p->sched_class->task_waking(p);
efbbd05a 1562
7608dec2 1563 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1564 if (task_cpu(p) != cpu) {
1565 wake_flags |= WF_MIGRATED;
e4a52bcb 1566 set_task_cpu(p, cpu);
f339b9dc 1567 }
1da177e4 1568#endif /* CONFIG_SMP */
1da177e4 1569
c05fbafb
PZ
1570 ttwu_queue(p, cpu);
1571stat:
b84cb5df 1572 ttwu_stat(p, cpu, wake_flags);
1da177e4 1573out:
013fdb80 1574 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1575
1576 return success;
1577}
1578
21aa9af0
TH
1579/**
1580 * try_to_wake_up_local - try to wake up a local task with rq lock held
1581 * @p: the thread to be awakened
1582 *
2acca55e 1583 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1584 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1585 * the current task.
21aa9af0
TH
1586 */
1587static void try_to_wake_up_local(struct task_struct *p)
1588{
1589 struct rq *rq = task_rq(p);
21aa9af0
TH
1590
1591 BUG_ON(rq != this_rq());
1592 BUG_ON(p == current);
1593 lockdep_assert_held(&rq->lock);
1594
2acca55e
PZ
1595 if (!raw_spin_trylock(&p->pi_lock)) {
1596 raw_spin_unlock(&rq->lock);
1597 raw_spin_lock(&p->pi_lock);
1598 raw_spin_lock(&rq->lock);
1599 }
1600
21aa9af0 1601 if (!(p->state & TASK_NORMAL))
2acca55e 1602 goto out;
21aa9af0 1603
fd2f4419 1604 if (!p->on_rq)
d7c01d27
PZ
1605 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1606
23f41eeb 1607 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1608 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1609out:
1610 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1611}
1612
50fa610a
DH
1613/**
1614 * wake_up_process - Wake up a specific process
1615 * @p: The process to be woken up.
1616 *
1617 * Attempt to wake up the nominated process and move it to the set of runnable
1618 * processes. Returns 1 if the process was woken up, 0 if it was already
1619 * running.
1620 *
1621 * It may be assumed that this function implies a write memory barrier before
1622 * changing the task state if and only if any tasks are woken up.
1623 */
7ad5b3a5 1624int wake_up_process(struct task_struct *p)
1da177e4 1625{
d9514f6c 1626 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 1627}
1da177e4
LT
1628EXPORT_SYMBOL(wake_up_process);
1629
7ad5b3a5 1630int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1631{
1632 return try_to_wake_up(p, state, 0);
1633}
1634
1da177e4
LT
1635/*
1636 * Perform scheduler related setup for a newly forked process p.
1637 * p is forked by current.
dd41f596
IM
1638 *
1639 * __sched_fork() is basic setup used by init_idle() too:
1640 */
1641static void __sched_fork(struct task_struct *p)
1642{
fd2f4419
PZ
1643 p->on_rq = 0;
1644
1645 p->se.on_rq = 0;
dd41f596
IM
1646 p->se.exec_start = 0;
1647 p->se.sum_exec_runtime = 0;
f6cf891c 1648 p->se.prev_sum_exec_runtime = 0;
6c594c21 1649 p->se.nr_migrations = 0;
da7a735e 1650 p->se.vruntime = 0;
fd2f4419 1651 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1652
1653#ifdef CONFIG_SCHEDSTATS
41acab88 1654 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1655#endif
476d139c 1656
fa717060 1657 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1658
e107be36
AK
1659#ifdef CONFIG_PREEMPT_NOTIFIERS
1660 INIT_HLIST_HEAD(&p->preempt_notifiers);
1661#endif
dd41f596
IM
1662}
1663
1664/*
1665 * fork()/clone()-time setup:
1666 */
3e51e3ed 1667void sched_fork(struct task_struct *p)
dd41f596 1668{
0122ec5b 1669 unsigned long flags;
dd41f596
IM
1670 int cpu = get_cpu();
1671
1672 __sched_fork(p);
06b83b5f 1673 /*
0017d735 1674 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1675 * nobody will actually run it, and a signal or other external
1676 * event cannot wake it up and insert it on the runqueue either.
1677 */
0017d735 1678 p->state = TASK_RUNNING;
dd41f596 1679
c350a04e
MG
1680 /*
1681 * Make sure we do not leak PI boosting priority to the child.
1682 */
1683 p->prio = current->normal_prio;
1684
b9dc29e7
MG
1685 /*
1686 * Revert to default priority/policy on fork if requested.
1687 */
1688 if (unlikely(p->sched_reset_on_fork)) {
c350a04e 1689 if (task_has_rt_policy(p)) {
b9dc29e7 1690 p->policy = SCHED_NORMAL;
6c697bdf 1691 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1692 p->rt_priority = 0;
1693 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1694 p->static_prio = NICE_TO_PRIO(0);
1695
1696 p->prio = p->normal_prio = __normal_prio(p);
1697 set_load_weight(p);
6c697bdf 1698
b9dc29e7
MG
1699 /*
1700 * We don't need the reset flag anymore after the fork. It has
1701 * fulfilled its duty:
1702 */
1703 p->sched_reset_on_fork = 0;
1704 }
ca94c442 1705
2ddbf952
HS
1706 if (!rt_prio(p->prio))
1707 p->sched_class = &fair_sched_class;
b29739f9 1708
cd29fe6f
PZ
1709 if (p->sched_class->task_fork)
1710 p->sched_class->task_fork(p);
1711
86951599
PZ
1712 /*
1713 * The child is not yet in the pid-hash so no cgroup attach races,
1714 * and the cgroup is pinned to this child due to cgroup_fork()
1715 * is ran before sched_fork().
1716 *
1717 * Silence PROVE_RCU.
1718 */
0122ec5b 1719 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1720 set_task_cpu(p, cpu);
0122ec5b 1721 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1722
52f17b6c 1723#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1724 if (likely(sched_info_on()))
52f17b6c 1725 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1726#endif
3ca7a440
PZ
1727#if defined(CONFIG_SMP)
1728 p->on_cpu = 0;
4866cde0 1729#endif
bdd4e85d 1730#ifdef CONFIG_PREEMPT_COUNT
4866cde0 1731 /* Want to start with kernel preemption disabled. */
a1261f54 1732 task_thread_info(p)->preempt_count = 1;
1da177e4 1733#endif
806c09a7 1734#ifdef CONFIG_SMP
917b627d 1735 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 1736#endif
917b627d 1737
476d139c 1738 put_cpu();
1da177e4
LT
1739}
1740
1741/*
1742 * wake_up_new_task - wake up a newly created task for the first time.
1743 *
1744 * This function will do some initial scheduler statistics housekeeping
1745 * that must be done for every newly created context, then puts the task
1746 * on the runqueue and wakes it.
1747 */
3e51e3ed 1748void wake_up_new_task(struct task_struct *p)
1da177e4
LT
1749{
1750 unsigned long flags;
dd41f596 1751 struct rq *rq;
fabf318e 1752
ab2515c4 1753 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
1754#ifdef CONFIG_SMP
1755 /*
1756 * Fork balancing, do it here and not earlier because:
1757 * - cpus_allowed can change in the fork path
1758 * - any previously selected cpu might disappear through hotplug
fabf318e 1759 */
ab2515c4 1760 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
0017d735
PZ
1761#endif
1762
ab2515c4 1763 rq = __task_rq_lock(p);
cd29fe6f 1764 activate_task(rq, p, 0);
fd2f4419 1765 p->on_rq = 1;
89363381 1766 trace_sched_wakeup_new(p, true);
a7558e01 1767 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 1768#ifdef CONFIG_SMP
efbbd05a
PZ
1769 if (p->sched_class->task_woken)
1770 p->sched_class->task_woken(rq, p);
9a897c5a 1771#endif
0122ec5b 1772 task_rq_unlock(rq, p, &flags);
1da177e4
LT
1773}
1774
e107be36
AK
1775#ifdef CONFIG_PREEMPT_NOTIFIERS
1776
1777/**
80dd99b3 1778 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 1779 * @notifier: notifier struct to register
e107be36
AK
1780 */
1781void preempt_notifier_register(struct preempt_notifier *notifier)
1782{
1783 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1784}
1785EXPORT_SYMBOL_GPL(preempt_notifier_register);
1786
1787/**
1788 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1789 * @notifier: notifier struct to unregister
e107be36
AK
1790 *
1791 * This is safe to call from within a preemption notifier.
1792 */
1793void preempt_notifier_unregister(struct preempt_notifier *notifier)
1794{
1795 hlist_del(&notifier->link);
1796}
1797EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1798
1799static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1800{
1801 struct preempt_notifier *notifier;
1802 struct hlist_node *node;
1803
1804 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1805 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1806}
1807
1808static void
1809fire_sched_out_preempt_notifiers(struct task_struct *curr,
1810 struct task_struct *next)
1811{
1812 struct preempt_notifier *notifier;
1813 struct hlist_node *node;
1814
1815 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1816 notifier->ops->sched_out(notifier, next);
1817}
1818
6d6bc0ad 1819#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
1820
1821static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1822{
1823}
1824
1825static void
1826fire_sched_out_preempt_notifiers(struct task_struct *curr,
1827 struct task_struct *next)
1828{
1829}
1830
6d6bc0ad 1831#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 1832
4866cde0
NP
1833/**
1834 * prepare_task_switch - prepare to switch tasks
1835 * @rq: the runqueue preparing to switch
421cee29 1836 * @prev: the current task that is being switched out
4866cde0
NP
1837 * @next: the task we are going to switch to.
1838 *
1839 * This is called with the rq lock held and interrupts off. It must
1840 * be paired with a subsequent finish_task_switch after the context
1841 * switch.
1842 *
1843 * prepare_task_switch sets up locking and calls architecture specific
1844 * hooks.
1845 */
e107be36
AK
1846static inline void
1847prepare_task_switch(struct rq *rq, struct task_struct *prev,
1848 struct task_struct *next)
4866cde0 1849{
fe4b04fa
PZ
1850 sched_info_switch(prev, next);
1851 perf_event_task_sched_out(prev, next);
e107be36 1852 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1853 prepare_lock_switch(rq, next);
1854 prepare_arch_switch(next);
fe4b04fa 1855 trace_sched_switch(prev, next);
4866cde0
NP
1856}
1857
1da177e4
LT
1858/**
1859 * finish_task_switch - clean up after a task-switch
344babaa 1860 * @rq: runqueue associated with task-switch
1da177e4
LT
1861 * @prev: the thread we just switched away from.
1862 *
4866cde0
NP
1863 * finish_task_switch must be called after the context switch, paired
1864 * with a prepare_task_switch call before the context switch.
1865 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1866 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1867 *
1868 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 1869 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
1870 * with the lock held can cause deadlocks; see schedule() for
1871 * details.)
1872 */
a9957449 1873static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1874 __releases(rq->lock)
1875{
1da177e4 1876 struct mm_struct *mm = rq->prev_mm;
55a101f8 1877 long prev_state;
1da177e4
LT
1878
1879 rq->prev_mm = NULL;
1880
1881 /*
1882 * A task struct has one reference for the use as "current".
c394cc9f 1883 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1884 * schedule one last time. The schedule call will never return, and
1885 * the scheduled task must drop that reference.
c394cc9f 1886 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1887 * still held, otherwise prev could be scheduled on another cpu, die
1888 * there before we look at prev->state, and then the reference would
1889 * be dropped twice.
1890 * Manfred Spraul <manfred@colorfullife.com>
1891 */
55a101f8 1892 prev_state = prev->state;
4866cde0 1893 finish_arch_switch(prev);
8381f65d
JI
1894#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1895 local_irq_disable();
1896#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
a8d757ef 1897 perf_event_task_sched_in(prev, current);
8381f65d
JI
1898#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1899 local_irq_enable();
1900#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 1901 finish_lock_switch(rq, prev);
e8fa1362 1902
e107be36 1903 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1904 if (mm)
1905 mmdrop(mm);
c394cc9f 1906 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1907 /*
1908 * Remove function-return probe instances associated with this
1909 * task and put them back on the free list.
9761eea8 1910 */
c6fd91f0 1911 kprobe_flush_task(prev);
1da177e4 1912 put_task_struct(prev);
c6fd91f0 1913 }
1da177e4
LT
1914}
1915
3f029d3c
GH
1916#ifdef CONFIG_SMP
1917
1918/* assumes rq->lock is held */
1919static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1920{
1921 if (prev->sched_class->pre_schedule)
1922 prev->sched_class->pre_schedule(rq, prev);
1923}
1924
1925/* rq->lock is NOT held, but preemption is disabled */
1926static inline void post_schedule(struct rq *rq)
1927{
1928 if (rq->post_schedule) {
1929 unsigned long flags;
1930
05fa785c 1931 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
1932 if (rq->curr->sched_class->post_schedule)
1933 rq->curr->sched_class->post_schedule(rq);
05fa785c 1934 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
1935
1936 rq->post_schedule = 0;
1937 }
1938}
1939
1940#else
da19ab51 1941
3f029d3c
GH
1942static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1943{
1944}
1945
1946static inline void post_schedule(struct rq *rq)
1947{
1da177e4
LT
1948}
1949
3f029d3c
GH
1950#endif
1951
1da177e4
LT
1952/**
1953 * schedule_tail - first thing a freshly forked thread must call.
1954 * @prev: the thread we just switched away from.
1955 */
36c8b586 1956asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1957 __releases(rq->lock)
1958{
70b97a7f
IM
1959 struct rq *rq = this_rq();
1960
4866cde0 1961 finish_task_switch(rq, prev);
da19ab51 1962
3f029d3c
GH
1963 /*
1964 * FIXME: do we need to worry about rq being invalidated by the
1965 * task_switch?
1966 */
1967 post_schedule(rq);
70b97a7f 1968
4866cde0
NP
1969#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1970 /* In this case, finish_task_switch does not reenable preemption */
1971 preempt_enable();
1972#endif
1da177e4 1973 if (current->set_child_tid)
b488893a 1974 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
1975}
1976
1977/*
1978 * context_switch - switch to the new MM and the new
1979 * thread's register state.
1980 */
dd41f596 1981static inline void
70b97a7f 1982context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1983 struct task_struct *next)
1da177e4 1984{
dd41f596 1985 struct mm_struct *mm, *oldmm;
1da177e4 1986
e107be36 1987 prepare_task_switch(rq, prev, next);
fe4b04fa 1988
dd41f596
IM
1989 mm = next->mm;
1990 oldmm = prev->active_mm;
9226d125
ZA
1991 /*
1992 * For paravirt, this is coupled with an exit in switch_to to
1993 * combine the page table reload and the switch backend into
1994 * one hypercall.
1995 */
224101ed 1996 arch_start_context_switch(prev);
9226d125 1997
31915ab4 1998 if (!mm) {
1da177e4
LT
1999 next->active_mm = oldmm;
2000 atomic_inc(&oldmm->mm_count);
2001 enter_lazy_tlb(oldmm, next);
2002 } else
2003 switch_mm(oldmm, mm, next);
2004
31915ab4 2005 if (!prev->mm) {
1da177e4 2006 prev->active_mm = NULL;
1da177e4
LT
2007 rq->prev_mm = oldmm;
2008 }
3a5f5e48
IM
2009 /*
2010 * Since the runqueue lock will be released by the next
2011 * task (which is an invalid locking op but in the case
2012 * of the scheduler it's an obvious special-case), so we
2013 * do an early lockdep release here:
2014 */
2015#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2016 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2017#endif
1da177e4
LT
2018
2019 /* Here we just switch the register state and the stack. */
2020 switch_to(prev, next, prev);
2021
dd41f596
IM
2022 barrier();
2023 /*
2024 * this_rq must be evaluated again because prev may have moved
2025 * CPUs since it called schedule(), thus the 'rq' on its stack
2026 * frame will be invalid.
2027 */
2028 finish_task_switch(this_rq(), prev);
1da177e4
LT
2029}
2030
2031/*
2032 * nr_running, nr_uninterruptible and nr_context_switches:
2033 *
2034 * externally visible scheduler statistics: current number of runnable
2035 * threads, current number of uninterruptible-sleeping threads, total
2036 * number of context switches performed since bootup.
2037 */
2038unsigned long nr_running(void)
2039{
2040 unsigned long i, sum = 0;
2041
2042 for_each_online_cpu(i)
2043 sum += cpu_rq(i)->nr_running;
2044
2045 return sum;
f711f609 2046}
1da177e4
LT
2047
2048unsigned long nr_uninterruptible(void)
f711f609 2049{
1da177e4 2050 unsigned long i, sum = 0;
f711f609 2051
0a945022 2052 for_each_possible_cpu(i)
1da177e4 2053 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
2054
2055 /*
1da177e4
LT
2056 * Since we read the counters lockless, it might be slightly
2057 * inaccurate. Do not allow it to go below zero though:
f711f609 2058 */
1da177e4
LT
2059 if (unlikely((long)sum < 0))
2060 sum = 0;
f711f609 2061
1da177e4 2062 return sum;
f711f609 2063}
f711f609 2064
1da177e4 2065unsigned long long nr_context_switches(void)
46cb4b7c 2066{
cc94abfc
SR
2067 int i;
2068 unsigned long long sum = 0;
46cb4b7c 2069
0a945022 2070 for_each_possible_cpu(i)
1da177e4 2071 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2072
1da177e4
LT
2073 return sum;
2074}
483b4ee6 2075
1da177e4
LT
2076unsigned long nr_iowait(void)
2077{
2078 unsigned long i, sum = 0;
483b4ee6 2079
0a945022 2080 for_each_possible_cpu(i)
1da177e4 2081 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2082
1da177e4
LT
2083 return sum;
2084}
483b4ee6 2085
8c215bd3 2086unsigned long nr_iowait_cpu(int cpu)
69d25870 2087{
8c215bd3 2088 struct rq *this = cpu_rq(cpu);
69d25870
AV
2089 return atomic_read(&this->nr_iowait);
2090}
46cb4b7c 2091
69d25870
AV
2092unsigned long this_cpu_load(void)
2093{
2094 struct rq *this = this_rq();
2095 return this->cpu_load[0];
2096}
e790fb0b 2097
46cb4b7c 2098
dce48a84
TG
2099/* Variables and functions for calc_load */
2100static atomic_long_t calc_load_tasks;
2101static unsigned long calc_load_update;
2102unsigned long avenrun[3];
2103EXPORT_SYMBOL(avenrun);
46cb4b7c 2104
74f5187a
PZ
2105static long calc_load_fold_active(struct rq *this_rq)
2106{
2107 long nr_active, delta = 0;
2108
2109 nr_active = this_rq->nr_running;
2110 nr_active += (long) this_rq->nr_uninterruptible;
2111
2112 if (nr_active != this_rq->calc_load_active) {
2113 delta = nr_active - this_rq->calc_load_active;
2114 this_rq->calc_load_active = nr_active;
2115 }
2116
2117 return delta;
2118}
2119
0f004f5a
PZ
2120static unsigned long
2121calc_load(unsigned long load, unsigned long exp, unsigned long active)
2122{
2123 load *= exp;
2124 load += active * (FIXED_1 - exp);
2125 load += 1UL << (FSHIFT - 1);
2126 return load >> FSHIFT;
2127}
2128
74f5187a
PZ
2129#ifdef CONFIG_NO_HZ
2130/*
2131 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2132 *
2133 * When making the ILB scale, we should try to pull this in as well.
2134 */
2135static atomic_long_t calc_load_tasks_idle;
2136
029632fb 2137void calc_load_account_idle(struct rq *this_rq)
74f5187a
PZ
2138{
2139 long delta;
2140
2141 delta = calc_load_fold_active(this_rq);
2142 if (delta)
2143 atomic_long_add(delta, &calc_load_tasks_idle);
2144}
2145
2146static long calc_load_fold_idle(void)
2147{
2148 long delta = 0;
2149
2150 /*
2151 * Its got a race, we don't care...
2152 */
2153 if (atomic_long_read(&calc_load_tasks_idle))
2154 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2155
2156 return delta;
2157}
0f004f5a
PZ
2158
2159/**
2160 * fixed_power_int - compute: x^n, in O(log n) time
2161 *
2162 * @x: base of the power
2163 * @frac_bits: fractional bits of @x
2164 * @n: power to raise @x to.
2165 *
2166 * By exploiting the relation between the definition of the natural power
2167 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2168 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2169 * (where: n_i \elem {0, 1}, the binary vector representing n),
2170 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2171 * of course trivially computable in O(log_2 n), the length of our binary
2172 * vector.
2173 */
2174static unsigned long
2175fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2176{
2177 unsigned long result = 1UL << frac_bits;
2178
2179 if (n) for (;;) {
2180 if (n & 1) {
2181 result *= x;
2182 result += 1UL << (frac_bits - 1);
2183 result >>= frac_bits;
2184 }
2185 n >>= 1;
2186 if (!n)
2187 break;
2188 x *= x;
2189 x += 1UL << (frac_bits - 1);
2190 x >>= frac_bits;
2191 }
2192
2193 return result;
2194}
2195
2196/*
2197 * a1 = a0 * e + a * (1 - e)
2198 *
2199 * a2 = a1 * e + a * (1 - e)
2200 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2201 * = a0 * e^2 + a * (1 - e) * (1 + e)
2202 *
2203 * a3 = a2 * e + a * (1 - e)
2204 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2205 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2206 *
2207 * ...
2208 *
2209 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2210 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2211 * = a0 * e^n + a * (1 - e^n)
2212 *
2213 * [1] application of the geometric series:
2214 *
2215 * n 1 - x^(n+1)
2216 * S_n := \Sum x^i = -------------
2217 * i=0 1 - x
2218 */
2219static unsigned long
2220calc_load_n(unsigned long load, unsigned long exp,
2221 unsigned long active, unsigned int n)
2222{
2223
2224 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2225}
2226
2227/*
2228 * NO_HZ can leave us missing all per-cpu ticks calling
2229 * calc_load_account_active(), but since an idle CPU folds its delta into
2230 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2231 * in the pending idle delta if our idle period crossed a load cycle boundary.
2232 *
2233 * Once we've updated the global active value, we need to apply the exponential
2234 * weights adjusted to the number of cycles missed.
2235 */
2236static void calc_global_nohz(unsigned long ticks)
2237{
2238 long delta, active, n;
2239
2240 if (time_before(jiffies, calc_load_update))
2241 return;
2242
2243 /*
2244 * If we crossed a calc_load_update boundary, make sure to fold
2245 * any pending idle changes, the respective CPUs might have
2246 * missed the tick driven calc_load_account_active() update
2247 * due to NO_HZ.
2248 */
2249 delta = calc_load_fold_idle();
2250 if (delta)
2251 atomic_long_add(delta, &calc_load_tasks);
2252
2253 /*
2254 * If we were idle for multiple load cycles, apply them.
2255 */
2256 if (ticks >= LOAD_FREQ) {
2257 n = ticks / LOAD_FREQ;
2258
2259 active = atomic_long_read(&calc_load_tasks);
2260 active = active > 0 ? active * FIXED_1 : 0;
2261
2262 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2263 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2264 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2265
2266 calc_load_update += n * LOAD_FREQ;
2267 }
2268
2269 /*
2270 * Its possible the remainder of the above division also crosses
2271 * a LOAD_FREQ period, the regular check in calc_global_load()
2272 * which comes after this will take care of that.
2273 *
2274 * Consider us being 11 ticks before a cycle completion, and us
2275 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
2276 * age us 4 cycles, and the test in calc_global_load() will
2277 * pick up the final one.
2278 */
2279}
74f5187a 2280#else
029632fb 2281void calc_load_account_idle(struct rq *this_rq)
74f5187a
PZ
2282{
2283}
2284
2285static inline long calc_load_fold_idle(void)
2286{
2287 return 0;
2288}
0f004f5a
PZ
2289
2290static void calc_global_nohz(unsigned long ticks)
2291{
2292}
74f5187a
PZ
2293#endif
2294
2d02494f
TG
2295/**
2296 * get_avenrun - get the load average array
2297 * @loads: pointer to dest load array
2298 * @offset: offset to add
2299 * @shift: shift count to shift the result left
2300 *
2301 * These values are estimates at best, so no need for locking.
2302 */
2303void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2304{
2305 loads[0] = (avenrun[0] + offset) << shift;
2306 loads[1] = (avenrun[1] + offset) << shift;
2307 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 2308}
46cb4b7c 2309
46cb4b7c 2310/*
dce48a84
TG
2311 * calc_load - update the avenrun load estimates 10 ticks after the
2312 * CPUs have updated calc_load_tasks.
7835b98b 2313 */
0f004f5a 2314void calc_global_load(unsigned long ticks)
7835b98b 2315{
dce48a84 2316 long active;
1da177e4 2317
0f004f5a
PZ
2318 calc_global_nohz(ticks);
2319
2320 if (time_before(jiffies, calc_load_update + 10))
dce48a84 2321 return;
1da177e4 2322
dce48a84
TG
2323 active = atomic_long_read(&calc_load_tasks);
2324 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 2325
dce48a84
TG
2326 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2327 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2328 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 2329
dce48a84
TG
2330 calc_load_update += LOAD_FREQ;
2331}
1da177e4 2332
dce48a84 2333/*
74f5187a
PZ
2334 * Called from update_cpu_load() to periodically update this CPU's
2335 * active count.
dce48a84
TG
2336 */
2337static void calc_load_account_active(struct rq *this_rq)
2338{
74f5187a 2339 long delta;
08c183f3 2340
74f5187a
PZ
2341 if (time_before(jiffies, this_rq->calc_load_update))
2342 return;
783609c6 2343
74f5187a
PZ
2344 delta = calc_load_fold_active(this_rq);
2345 delta += calc_load_fold_idle();
2346 if (delta)
dce48a84 2347 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
2348
2349 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
2350}
2351
fdf3e95d
VP
2352/*
2353 * The exact cpuload at various idx values, calculated at every tick would be
2354 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2355 *
2356 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2357 * on nth tick when cpu may be busy, then we have:
2358 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2359 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2360 *
2361 * decay_load_missed() below does efficient calculation of
2362 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2363 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2364 *
2365 * The calculation is approximated on a 128 point scale.
2366 * degrade_zero_ticks is the number of ticks after which load at any
2367 * particular idx is approximated to be zero.
2368 * degrade_factor is a precomputed table, a row for each load idx.
2369 * Each column corresponds to degradation factor for a power of two ticks,
2370 * based on 128 point scale.
2371 * Example:
2372 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2373 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2374 *
2375 * With this power of 2 load factors, we can degrade the load n times
2376 * by looking at 1 bits in n and doing as many mult/shift instead of
2377 * n mult/shifts needed by the exact degradation.
2378 */
2379#define DEGRADE_SHIFT 7
2380static const unsigned char
2381 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2382static const unsigned char
2383 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2384 {0, 0, 0, 0, 0, 0, 0, 0},
2385 {64, 32, 8, 0, 0, 0, 0, 0},
2386 {96, 72, 40, 12, 1, 0, 0},
2387 {112, 98, 75, 43, 15, 1, 0},
2388 {120, 112, 98, 76, 45, 16, 2} };
2389
2390/*
2391 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2392 * would be when CPU is idle and so we just decay the old load without
2393 * adding any new load.
2394 */
2395static unsigned long
2396decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2397{
2398 int j = 0;
2399
2400 if (!missed_updates)
2401 return load;
2402
2403 if (missed_updates >= degrade_zero_ticks[idx])
2404 return 0;
2405
2406 if (idx == 1)
2407 return load >> missed_updates;
2408
2409 while (missed_updates) {
2410 if (missed_updates % 2)
2411 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2412
2413 missed_updates >>= 1;
2414 j++;
2415 }
2416 return load;
2417}
2418
46cb4b7c 2419/*
dd41f596 2420 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
2421 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2422 * every tick. We fix it up based on jiffies.
46cb4b7c 2423 */
029632fb 2424void update_cpu_load(struct rq *this_rq)
46cb4b7c 2425{
495eca49 2426 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
2427 unsigned long curr_jiffies = jiffies;
2428 unsigned long pending_updates;
dd41f596 2429 int i, scale;
46cb4b7c 2430
dd41f596 2431 this_rq->nr_load_updates++;
46cb4b7c 2432
fdf3e95d
VP
2433 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
2434 if (curr_jiffies == this_rq->last_load_update_tick)
2435 return;
2436
2437 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2438 this_rq->last_load_update_tick = curr_jiffies;
2439
dd41f596 2440 /* Update our load: */
fdf3e95d
VP
2441 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2442 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 2443 unsigned long old_load, new_load;
7d1e6a9b 2444
dd41f596 2445 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 2446
dd41f596 2447 old_load = this_rq->cpu_load[i];
fdf3e95d 2448 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 2449 new_load = this_load;
a25707f3
IM
2450 /*
2451 * Round up the averaging division if load is increasing. This
2452 * prevents us from getting stuck on 9 if the load is 10, for
2453 * example.
2454 */
2455 if (new_load > old_load)
fdf3e95d
VP
2456 new_load += scale - 1;
2457
2458 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 2459 }
da2b71ed
SS
2460
2461 sched_avg_update(this_rq);
fdf3e95d
VP
2462}
2463
2464static void update_cpu_load_active(struct rq *this_rq)
2465{
2466 update_cpu_load(this_rq);
46cb4b7c 2467
74f5187a 2468 calc_load_account_active(this_rq);
46cb4b7c
SS
2469}
2470
dd41f596 2471#ifdef CONFIG_SMP
8a0be9ef 2472
46cb4b7c 2473/*
38022906
PZ
2474 * sched_exec - execve() is a valuable balancing opportunity, because at
2475 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2476 */
38022906 2477void sched_exec(void)
46cb4b7c 2478{
38022906 2479 struct task_struct *p = current;
1da177e4 2480 unsigned long flags;
0017d735 2481 int dest_cpu;
46cb4b7c 2482
8f42ced9 2483 raw_spin_lock_irqsave(&p->pi_lock, flags);
7608dec2 2484 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
2485 if (dest_cpu == smp_processor_id())
2486 goto unlock;
38022906 2487
8f42ced9 2488 if (likely(cpu_active(dest_cpu))) {
969c7921 2489 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2490
8f42ced9
PZ
2491 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2492 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2493 return;
2494 }
0017d735 2495unlock:
8f42ced9 2496 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2497}
dd41f596 2498
1da177e4
LT
2499#endif
2500
1da177e4
LT
2501DEFINE_PER_CPU(struct kernel_stat, kstat);
2502
2503EXPORT_PER_CPU_SYMBOL(kstat);
2504
2505/*
c5f8d995 2506 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2507 * @p in case that task is currently running.
c5f8d995
HS
2508 *
2509 * Called with task_rq_lock() held on @rq.
1da177e4 2510 */
c5f8d995
HS
2511static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2512{
2513 u64 ns = 0;
2514
2515 if (task_current(rq, p)) {
2516 update_rq_clock(rq);
305e6835 2517 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
2518 if ((s64)ns < 0)
2519 ns = 0;
2520 }
2521
2522 return ns;
2523}
2524
bb34d92f 2525unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2526{
1da177e4 2527 unsigned long flags;
41b86e9c 2528 struct rq *rq;
bb34d92f 2529 u64 ns = 0;
48f24c4d 2530
41b86e9c 2531 rq = task_rq_lock(p, &flags);
c5f8d995 2532 ns = do_task_delta_exec(p, rq);
0122ec5b 2533 task_rq_unlock(rq, p, &flags);
1508487e 2534
c5f8d995
HS
2535 return ns;
2536}
f06febc9 2537
c5f8d995
HS
2538/*
2539 * Return accounted runtime for the task.
2540 * In case the task is currently running, return the runtime plus current's
2541 * pending runtime that have not been accounted yet.
2542 */
2543unsigned long long task_sched_runtime(struct task_struct *p)
2544{
2545 unsigned long flags;
2546 struct rq *rq;
2547 u64 ns = 0;
2548
2549 rq = task_rq_lock(p, &flags);
2550 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2551 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2552
2553 return ns;
2554}
48f24c4d 2555
1da177e4
LT
2556/*
2557 * Account user cpu time to a process.
2558 * @p: the process that the cpu time gets accounted to
1da177e4 2559 * @cputime: the cpu time spent in user space since the last update
457533a7 2560 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 2561 */
457533a7
MS
2562void account_user_time(struct task_struct *p, cputime_t cputime,
2563 cputime_t cputime_scaled)
1da177e4
LT
2564{
2565 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2566 cputime64_t tmp;
2567
457533a7 2568 /* Add user time to process. */
1da177e4 2569 p->utime = cputime_add(p->utime, cputime);
457533a7 2570 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 2571 account_group_user_time(p, cputime);
1da177e4
LT
2572
2573 /* Add user time to cpustat. */
2574 tmp = cputime_to_cputime64(cputime);
2575 if (TASK_NICE(p) > 0)
2576 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2577 else
2578 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
2579
2580 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
2581 /* Account for user time used */
2582 acct_update_integrals(p);
1da177e4
LT
2583}
2584
94886b84
LV
2585/*
2586 * Account guest cpu time to a process.
2587 * @p: the process that the cpu time gets accounted to
2588 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 2589 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 2590 */
457533a7
MS
2591static void account_guest_time(struct task_struct *p, cputime_t cputime,
2592 cputime_t cputime_scaled)
94886b84
LV
2593{
2594 cputime64_t tmp;
2595 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2596
2597 tmp = cputime_to_cputime64(cputime);
2598
457533a7 2599 /* Add guest time to process. */
94886b84 2600 p->utime = cputime_add(p->utime, cputime);
457533a7 2601 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 2602 account_group_user_time(p, cputime);
94886b84
LV
2603 p->gtime = cputime_add(p->gtime, cputime);
2604
457533a7 2605 /* Add guest time to cpustat. */
ce0e7b28
RO
2606 if (TASK_NICE(p) > 0) {
2607 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2608 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
2609 } else {
2610 cpustat->user = cputime64_add(cpustat->user, tmp);
2611 cpustat->guest = cputime64_add(cpustat->guest, tmp);
2612 }
94886b84
LV
2613}
2614
70a89a66
VP
2615/*
2616 * Account system cpu time to a process and desired cpustat field
2617 * @p: the process that the cpu time gets accounted to
2618 * @cputime: the cpu time spent in kernel space since the last update
2619 * @cputime_scaled: cputime scaled by cpu frequency
2620 * @target_cputime64: pointer to cpustat field that has to be updated
2621 */
2622static inline
2623void __account_system_time(struct task_struct *p, cputime_t cputime,
2624 cputime_t cputime_scaled, cputime64_t *target_cputime64)
2625{
2626 cputime64_t tmp = cputime_to_cputime64(cputime);
2627
2628 /* Add system time to process. */
2629 p->stime = cputime_add(p->stime, cputime);
2630 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
2631 account_group_system_time(p, cputime);
2632
2633 /* Add system time to cpustat. */
2634 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
2635 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
2636
2637 /* Account for system time used */
2638 acct_update_integrals(p);
2639}
2640
1da177e4
LT
2641/*
2642 * Account system cpu time to a process.
2643 * @p: the process that the cpu time gets accounted to
2644 * @hardirq_offset: the offset to subtract from hardirq_count()
2645 * @cputime: the cpu time spent in kernel space since the last update
457533a7 2646 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
2647 */
2648void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 2649 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
2650{
2651 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70a89a66 2652 cputime64_t *target_cputime64;
1da177e4 2653
983ed7a6 2654 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 2655 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
2656 return;
2657 }
94886b84 2658
1da177e4 2659 if (hardirq_count() - hardirq_offset)
70a89a66 2660 target_cputime64 = &cpustat->irq;
75e1056f 2661 else if (in_serving_softirq())
70a89a66 2662 target_cputime64 = &cpustat->softirq;
1da177e4 2663 else
70a89a66 2664 target_cputime64 = &cpustat->system;
ef12fefa 2665
70a89a66 2666 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
1da177e4
LT
2667}
2668
c66f08be 2669/*
1da177e4 2670 * Account for involuntary wait time.
544b4a1f 2671 * @cputime: the cpu time spent in involuntary wait
c66f08be 2672 */
79741dd3 2673void account_steal_time(cputime_t cputime)
c66f08be 2674{
79741dd3
MS
2675 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2676 cputime64_t cputime64 = cputime_to_cputime64(cputime);
2677
2678 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
2679}
2680
1da177e4 2681/*
79741dd3
MS
2682 * Account for idle time.
2683 * @cputime: the cpu time spent in idle wait
1da177e4 2684 */
79741dd3 2685void account_idle_time(cputime_t cputime)
1da177e4
LT
2686{
2687 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 2688 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 2689 struct rq *rq = this_rq();
1da177e4 2690
79741dd3
MS
2691 if (atomic_read(&rq->nr_iowait) > 0)
2692 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
2693 else
2694 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
2695}
2696
e6e6685a
GC
2697static __always_inline bool steal_account_process_tick(void)
2698{
2699#ifdef CONFIG_PARAVIRT
2700 if (static_branch(&paravirt_steal_enabled)) {
2701 u64 steal, st = 0;
2702
2703 steal = paravirt_steal_clock(smp_processor_id());
2704 steal -= this_rq()->prev_steal_time;
2705
2706 st = steal_ticks(steal);
2707 this_rq()->prev_steal_time += st * TICK_NSEC;
2708
2709 account_steal_time(st);
2710 return st;
2711 }
2712#endif
2713 return false;
2714}
2715
79741dd3
MS
2716#ifndef CONFIG_VIRT_CPU_ACCOUNTING
2717
abb74cef
VP
2718#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2719/*
2720 * Account a tick to a process and cpustat
2721 * @p: the process that the cpu time gets accounted to
2722 * @user_tick: is the tick from userspace
2723 * @rq: the pointer to rq
2724 *
2725 * Tick demultiplexing follows the order
2726 * - pending hardirq update
2727 * - pending softirq update
2728 * - user_time
2729 * - idle_time
2730 * - system time
2731 * - check for guest_time
2732 * - else account as system_time
2733 *
2734 * Check for hardirq is done both for system and user time as there is
2735 * no timer going off while we are on hardirq and hence we may never get an
2736 * opportunity to update it solely in system time.
2737 * p->stime and friends are only updated on system time and not on irq
2738 * softirq as those do not count in task exec_runtime any more.
2739 */
2740static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2741 struct rq *rq)
2742{
2743 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2744 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
2745 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2746
e6e6685a
GC
2747 if (steal_account_process_tick())
2748 return;
2749
abb74cef
VP
2750 if (irqtime_account_hi_update()) {
2751 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2752 } else if (irqtime_account_si_update()) {
2753 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
414bee9b
VP
2754 } else if (this_cpu_ksoftirqd() == p) {
2755 /*
2756 * ksoftirqd time do not get accounted in cpu_softirq_time.
2757 * So, we have to handle it separately here.
2758 * Also, p->stime needs to be updated for ksoftirqd.
2759 */
2760 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2761 &cpustat->softirq);
abb74cef
VP
2762 } else if (user_tick) {
2763 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2764 } else if (p == rq->idle) {
2765 account_idle_time(cputime_one_jiffy);
2766 } else if (p->flags & PF_VCPU) { /* System time or guest time */
2767 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
2768 } else {
2769 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2770 &cpustat->system);
2771 }
2772}
2773
2774static void irqtime_account_idle_ticks(int ticks)
2775{
2776 int i;
2777 struct rq *rq = this_rq();
2778
2779 for (i = 0; i < ticks; i++)
2780 irqtime_account_process_tick(current, 0, rq);
2781}
544b4a1f 2782#else /* CONFIG_IRQ_TIME_ACCOUNTING */
abb74cef
VP
2783static void irqtime_account_idle_ticks(int ticks) {}
2784static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2785 struct rq *rq) {}
544b4a1f 2786#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
79741dd3
MS
2787
2788/*
2789 * Account a single tick of cpu time.
2790 * @p: the process that the cpu time gets accounted to
2791 * @user_tick: indicates if the tick is a user or a system tick
2792 */
2793void account_process_tick(struct task_struct *p, int user_tick)
2794{
a42548a1 2795 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
2796 struct rq *rq = this_rq();
2797
abb74cef
VP
2798 if (sched_clock_irqtime) {
2799 irqtime_account_process_tick(p, user_tick, rq);
2800 return;
2801 }
2802
e6e6685a
GC
2803 if (steal_account_process_tick())
2804 return;
2805
79741dd3 2806 if (user_tick)
a42548a1 2807 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 2808 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 2809 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
2810 one_jiffy_scaled);
2811 else
a42548a1 2812 account_idle_time(cputime_one_jiffy);
79741dd3
MS
2813}
2814
2815/*
2816 * Account multiple ticks of steal time.
2817 * @p: the process from which the cpu time has been stolen
2818 * @ticks: number of stolen ticks
2819 */
2820void account_steal_ticks(unsigned long ticks)
2821{
2822 account_steal_time(jiffies_to_cputime(ticks));
2823}
2824
2825/*
2826 * Account multiple ticks of idle time.
2827 * @ticks: number of stolen ticks
2828 */
2829void account_idle_ticks(unsigned long ticks)
2830{
abb74cef
VP
2831
2832 if (sched_clock_irqtime) {
2833 irqtime_account_idle_ticks(ticks);
2834 return;
2835 }
2836
79741dd3 2837 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
2838}
2839
79741dd3
MS
2840#endif
2841
49048622
BS
2842/*
2843 * Use precise platform statistics if available:
2844 */
2845#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 2846void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 2847{
d99ca3b9
HS
2848 *ut = p->utime;
2849 *st = p->stime;
49048622
BS
2850}
2851
0cf55e1e 2852void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 2853{
0cf55e1e
HS
2854 struct task_cputime cputime;
2855
2856 thread_group_cputime(p, &cputime);
2857
2858 *ut = cputime.utime;
2859 *st = cputime.stime;
49048622
BS
2860}
2861#else
761b1d26
HS
2862
2863#ifndef nsecs_to_cputime
b7b20df9 2864# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
2865#endif
2866
d180c5bc 2867void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 2868{
d99ca3b9 2869 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
2870
2871 /*
2872 * Use CFS's precise accounting:
2873 */
d180c5bc 2874 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
2875
2876 if (total) {
e75e863d 2877 u64 temp = rtime;
d180c5bc 2878
e75e863d 2879 temp *= utime;
49048622 2880 do_div(temp, total);
d180c5bc
HS
2881 utime = (cputime_t)temp;
2882 } else
2883 utime = rtime;
49048622 2884
d180c5bc
HS
2885 /*
2886 * Compare with previous values, to keep monotonicity:
2887 */
761b1d26 2888 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 2889 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 2890
d99ca3b9
HS
2891 *ut = p->prev_utime;
2892 *st = p->prev_stime;
49048622
BS
2893}
2894
0cf55e1e
HS
2895/*
2896 * Must be called with siglock held.
2897 */
2898void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 2899{
0cf55e1e
HS
2900 struct signal_struct *sig = p->signal;
2901 struct task_cputime cputime;
2902 cputime_t rtime, utime, total;
49048622 2903
0cf55e1e 2904 thread_group_cputime(p, &cputime);
49048622 2905
0cf55e1e
HS
2906 total = cputime_add(cputime.utime, cputime.stime);
2907 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 2908
0cf55e1e 2909 if (total) {
e75e863d 2910 u64 temp = rtime;
49048622 2911
e75e863d 2912 temp *= cputime.utime;
0cf55e1e
HS
2913 do_div(temp, total);
2914 utime = (cputime_t)temp;
2915 } else
2916 utime = rtime;
2917
2918 sig->prev_utime = max(sig->prev_utime, utime);
2919 sig->prev_stime = max(sig->prev_stime,
2920 cputime_sub(rtime, sig->prev_utime));
2921
2922 *ut = sig->prev_utime;
2923 *st = sig->prev_stime;
49048622 2924}
49048622 2925#endif
49048622 2926
7835b98b
CL
2927/*
2928 * This function gets called by the timer code, with HZ frequency.
2929 * We call it with interrupts disabled.
7835b98b
CL
2930 */
2931void scheduler_tick(void)
2932{
7835b98b
CL
2933 int cpu = smp_processor_id();
2934 struct rq *rq = cpu_rq(cpu);
dd41f596 2935 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2936
2937 sched_clock_tick();
dd41f596 2938
05fa785c 2939 raw_spin_lock(&rq->lock);
3e51f33f 2940 update_rq_clock(rq);
fdf3e95d 2941 update_cpu_load_active(rq);
fa85ae24 2942 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 2943 raw_spin_unlock(&rq->lock);
7835b98b 2944
e9d2b064 2945 perf_event_task_tick();
e220d2dc 2946
e418e1c2 2947#ifdef CONFIG_SMP
6eb57e0d 2948 rq->idle_balance = idle_cpu(cpu);
dd41f596 2949 trigger_load_balance(rq, cpu);
e418e1c2 2950#endif
1da177e4
LT
2951}
2952
132380a0 2953notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2954{
2955 if (in_lock_functions(addr)) {
2956 addr = CALLER_ADDR2;
2957 if (in_lock_functions(addr))
2958 addr = CALLER_ADDR3;
2959 }
2960 return addr;
2961}
1da177e4 2962
7e49fcce
SR
2963#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2964 defined(CONFIG_PREEMPT_TRACER))
2965
43627582 2966void __kprobes add_preempt_count(int val)
1da177e4 2967{
6cd8a4bb 2968#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2969 /*
2970 * Underflow?
2971 */
9a11b49a
IM
2972 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2973 return;
6cd8a4bb 2974#endif
1da177e4 2975 preempt_count() += val;
6cd8a4bb 2976#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2977 /*
2978 * Spinlock count overflowing soon?
2979 */
33859f7f
MOS
2980 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2981 PREEMPT_MASK - 10);
6cd8a4bb
SR
2982#endif
2983 if (preempt_count() == val)
2984 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
2985}
2986EXPORT_SYMBOL(add_preempt_count);
2987
43627582 2988void __kprobes sub_preempt_count(int val)
1da177e4 2989{
6cd8a4bb 2990#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2991 /*
2992 * Underflow?
2993 */
01e3eb82 2994 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2995 return;
1da177e4
LT
2996 /*
2997 * Is the spinlock portion underflowing?
2998 */
9a11b49a
IM
2999 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3000 !(preempt_count() & PREEMPT_MASK)))
3001 return;
6cd8a4bb 3002#endif
9a11b49a 3003
6cd8a4bb
SR
3004 if (preempt_count() == val)
3005 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3006 preempt_count() -= val;
3007}
3008EXPORT_SYMBOL(sub_preempt_count);
3009
3010#endif
3011
3012/*
dd41f596 3013 * Print scheduling while atomic bug:
1da177e4 3014 */
dd41f596 3015static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3016{
838225b4
SS
3017 struct pt_regs *regs = get_irq_regs();
3018
3df0fc5b
PZ
3019 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3020 prev->comm, prev->pid, preempt_count());
838225b4 3021
dd41f596 3022 debug_show_held_locks(prev);
e21f5b15 3023 print_modules();
dd41f596
IM
3024 if (irqs_disabled())
3025 print_irqtrace_events(prev);
838225b4
SS
3026
3027 if (regs)
3028 show_regs(regs);
3029 else
3030 dump_stack();
dd41f596 3031}
1da177e4 3032
dd41f596
IM
3033/*
3034 * Various schedule()-time debugging checks and statistics:
3035 */
3036static inline void schedule_debug(struct task_struct *prev)
3037{
1da177e4 3038 /*
41a2d6cf 3039 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3040 * schedule() atomically, we ignore that path for now.
3041 * Otherwise, whine if we are scheduling when we should not be.
3042 */
3f33a7ce 3043 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596 3044 __schedule_bug(prev);
b3fbab05 3045 rcu_sleep_check();
dd41f596 3046
1da177e4
LT
3047 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3048
2d72376b 3049 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
3050}
3051
6cecd084 3052static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 3053{
61eadef6 3054 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 3055 update_rq_clock(rq);
6cecd084 3056 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
3057}
3058
dd41f596
IM
3059/*
3060 * Pick up the highest-prio task:
3061 */
3062static inline struct task_struct *
b67802ea 3063pick_next_task(struct rq *rq)
dd41f596 3064{
5522d5d5 3065 const struct sched_class *class;
dd41f596 3066 struct task_struct *p;
1da177e4
LT
3067
3068 /*
dd41f596
IM
3069 * Optimization: we know that if all tasks are in
3070 * the fair class we can call that function directly:
1da177e4 3071 */
953bfcd1 3072 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 3073 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3074 if (likely(p))
3075 return p;
1da177e4
LT
3076 }
3077
34f971f6 3078 for_each_class(class) {
fb8d4724 3079 p = class->pick_next_task(rq);
dd41f596
IM
3080 if (p)
3081 return p;
dd41f596 3082 }
34f971f6
PZ
3083
3084 BUG(); /* the idle class will always have a runnable task */
dd41f596 3085}
1da177e4 3086
dd41f596 3087/*
c259e01a 3088 * __schedule() is the main scheduler function.
dd41f596 3089 */
c259e01a 3090static void __sched __schedule(void)
dd41f596
IM
3091{
3092 struct task_struct *prev, *next;
67ca7bde 3093 unsigned long *switch_count;
dd41f596 3094 struct rq *rq;
31656519 3095 int cpu;
dd41f596 3096
ff743345
PZ
3097need_resched:
3098 preempt_disable();
dd41f596
IM
3099 cpu = smp_processor_id();
3100 rq = cpu_rq(cpu);
25502a6c 3101 rcu_note_context_switch(cpu);
dd41f596 3102 prev = rq->curr;
dd41f596 3103
dd41f596 3104 schedule_debug(prev);
1da177e4 3105
31656519 3106 if (sched_feat(HRTICK))
f333fdc9 3107 hrtick_clear(rq);
8f4d37ec 3108
05fa785c 3109 raw_spin_lock_irq(&rq->lock);
1da177e4 3110
246d86b5 3111 switch_count = &prev->nivcsw;
1da177e4 3112 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 3113 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3114 prev->state = TASK_RUNNING;
21aa9af0 3115 } else {
2acca55e
PZ
3116 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3117 prev->on_rq = 0;
3118
21aa9af0 3119 /*
2acca55e
PZ
3120 * If a worker went to sleep, notify and ask workqueue
3121 * whether it wants to wake up a task to maintain
3122 * concurrency.
21aa9af0
TH
3123 */
3124 if (prev->flags & PF_WQ_WORKER) {
3125 struct task_struct *to_wakeup;
3126
3127 to_wakeup = wq_worker_sleeping(prev, cpu);
3128 if (to_wakeup)
3129 try_to_wake_up_local(to_wakeup);
3130 }
21aa9af0 3131 }
dd41f596 3132 switch_count = &prev->nvcsw;
1da177e4
LT
3133 }
3134
3f029d3c 3135 pre_schedule(rq, prev);
f65eda4f 3136
dd41f596 3137 if (unlikely(!rq->nr_running))
1da177e4 3138 idle_balance(cpu, rq);
1da177e4 3139
df1c99d4 3140 put_prev_task(rq, prev);
b67802ea 3141 next = pick_next_task(rq);
f26f9aff
MG
3142 clear_tsk_need_resched(prev);
3143 rq->skip_clock_update = 0;
1da177e4 3144
1da177e4 3145 if (likely(prev != next)) {
1da177e4
LT
3146 rq->nr_switches++;
3147 rq->curr = next;
3148 ++*switch_count;
3149
dd41f596 3150 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 3151 /*
246d86b5
ON
3152 * The context switch have flipped the stack from under us
3153 * and restored the local variables which were saved when
3154 * this task called schedule() in the past. prev == current
3155 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
3156 */
3157 cpu = smp_processor_id();
3158 rq = cpu_rq(cpu);
1da177e4 3159 } else
05fa785c 3160 raw_spin_unlock_irq(&rq->lock);
1da177e4 3161
3f029d3c 3162 post_schedule(rq);
1da177e4 3163
1da177e4 3164 preempt_enable_no_resched();
ff743345 3165 if (need_resched())
1da177e4
LT
3166 goto need_resched;
3167}
c259e01a 3168
9c40cef2
TG
3169static inline void sched_submit_work(struct task_struct *tsk)
3170{
3171 if (!tsk->state)
3172 return;
3173 /*
3174 * If we are going to sleep and we have plugged IO queued,
3175 * make sure to submit it to avoid deadlocks.
3176 */
3177 if (blk_needs_flush_plug(tsk))
3178 blk_schedule_flush_plug(tsk);
3179}
3180
6ebbe7a0 3181asmlinkage void __sched schedule(void)
c259e01a 3182{
9c40cef2
TG
3183 struct task_struct *tsk = current;
3184
3185 sched_submit_work(tsk);
c259e01a
TG
3186 __schedule();
3187}
1da177e4
LT
3188EXPORT_SYMBOL(schedule);
3189
c08f7829 3190#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d 3191
c6eb3dda
PZ
3192static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3193{
c6eb3dda 3194 if (lock->owner != owner)
307bf980 3195 return false;
0d66bf6d
PZ
3196
3197 /*
c6eb3dda
PZ
3198 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3199 * lock->owner still matches owner, if that fails, owner might
3200 * point to free()d memory, if it still matches, the rcu_read_lock()
3201 * ensures the memory stays valid.
0d66bf6d 3202 */
c6eb3dda 3203 barrier();
0d66bf6d 3204
307bf980 3205 return owner->on_cpu;
c6eb3dda 3206}
0d66bf6d 3207
c6eb3dda
PZ
3208/*
3209 * Look out! "owner" is an entirely speculative pointer
3210 * access and not reliable.
3211 */
3212int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3213{
3214 if (!sched_feat(OWNER_SPIN))
3215 return 0;
0d66bf6d 3216
307bf980 3217 rcu_read_lock();
c6eb3dda
PZ
3218 while (owner_running(lock, owner)) {
3219 if (need_resched())
307bf980 3220 break;
0d66bf6d 3221
335d7afb 3222 arch_mutex_cpu_relax();
0d66bf6d 3223 }
307bf980 3224 rcu_read_unlock();
4b402210 3225
c6eb3dda 3226 /*
307bf980
TG
3227 * We break out the loop above on need_resched() and when the
3228 * owner changed, which is a sign for heavy contention. Return
3229 * success only when lock->owner is NULL.
c6eb3dda 3230 */
307bf980 3231 return lock->owner == NULL;
0d66bf6d
PZ
3232}
3233#endif
3234
1da177e4
LT
3235#ifdef CONFIG_PREEMPT
3236/*
2ed6e34f 3237 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3238 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3239 * occur there and call schedule directly.
3240 */
d1f74e20 3241asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
3242{
3243 struct thread_info *ti = current_thread_info();
6478d880 3244
1da177e4
LT
3245 /*
3246 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3247 * we do not want to preempt the current task. Just return..
1da177e4 3248 */
beed33a8 3249 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3250 return;
3251
3a5c359a 3252 do {
d1f74e20 3253 add_preempt_count_notrace(PREEMPT_ACTIVE);
c259e01a 3254 __schedule();
d1f74e20 3255 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 3256
3a5c359a
AK
3257 /*
3258 * Check again in case we missed a preemption opportunity
3259 * between schedule and now.
3260 */
3261 barrier();
5ed0cec0 3262 } while (need_resched());
1da177e4 3263}
1da177e4
LT
3264EXPORT_SYMBOL(preempt_schedule);
3265
3266/*
2ed6e34f 3267 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3268 * off of irq context.
3269 * Note, that this is called and return with irqs disabled. This will
3270 * protect us against recursive calling from irq.
3271 */
3272asmlinkage void __sched preempt_schedule_irq(void)
3273{
3274 struct thread_info *ti = current_thread_info();
6478d880 3275
2ed6e34f 3276 /* Catch callers which need to be fixed */
1da177e4
LT
3277 BUG_ON(ti->preempt_count || !irqs_disabled());
3278
3a5c359a
AK
3279 do {
3280 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 3281 local_irq_enable();
c259e01a 3282 __schedule();
3a5c359a 3283 local_irq_disable();
3a5c359a 3284 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3285
3a5c359a
AK
3286 /*
3287 * Check again in case we missed a preemption opportunity
3288 * between schedule and now.
3289 */
3290 barrier();
5ed0cec0 3291 } while (need_resched());
1da177e4
LT
3292}
3293
3294#endif /* CONFIG_PREEMPT */
3295
63859d4f 3296int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3297 void *key)
1da177e4 3298{
63859d4f 3299 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3300}
1da177e4
LT
3301EXPORT_SYMBOL(default_wake_function);
3302
3303/*
41a2d6cf
IM
3304 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3305 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3306 * number) then we wake all the non-exclusive tasks and one exclusive task.
3307 *
3308 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3309 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3310 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3311 */
78ddb08f 3312static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 3313 int nr_exclusive, int wake_flags, void *key)
1da177e4 3314{
2e45874c 3315 wait_queue_t *curr, *next;
1da177e4 3316
2e45874c 3317 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3318 unsigned flags = curr->flags;
3319
63859d4f 3320 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 3321 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3322 break;
3323 }
3324}
3325
3326/**
3327 * __wake_up - wake up threads blocked on a waitqueue.
3328 * @q: the waitqueue
3329 * @mode: which threads
3330 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3331 * @key: is directly passed to the wakeup function
50fa610a
DH
3332 *
3333 * It may be assumed that this function implies a write memory barrier before
3334 * changing the task state if and only if any tasks are woken up.
1da177e4 3335 */
7ad5b3a5 3336void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3337 int nr_exclusive, void *key)
1da177e4
LT
3338{
3339 unsigned long flags;
3340
3341 spin_lock_irqsave(&q->lock, flags);
3342 __wake_up_common(q, mode, nr_exclusive, 0, key);
3343 spin_unlock_irqrestore(&q->lock, flags);
3344}
1da177e4
LT
3345EXPORT_SYMBOL(__wake_up);
3346
3347/*
3348 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3349 */
7ad5b3a5 3350void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
3351{
3352 __wake_up_common(q, mode, 1, 0, NULL);
3353}
22c43c81 3354EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 3355
4ede816a
DL
3356void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3357{
3358 __wake_up_common(q, mode, 1, 0, key);
3359}
bf294b41 3360EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 3361
1da177e4 3362/**
4ede816a 3363 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
3364 * @q: the waitqueue
3365 * @mode: which threads
3366 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 3367 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
3368 *
3369 * The sync wakeup differs that the waker knows that it will schedule
3370 * away soon, so while the target thread will be woken up, it will not
3371 * be migrated to another CPU - ie. the two threads are 'synchronized'
3372 * with each other. This can prevent needless bouncing between CPUs.
3373 *
3374 * On UP it can prevent extra preemption.
50fa610a
DH
3375 *
3376 * It may be assumed that this function implies a write memory barrier before
3377 * changing the task state if and only if any tasks are woken up.
1da177e4 3378 */
4ede816a
DL
3379void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3380 int nr_exclusive, void *key)
1da177e4
LT
3381{
3382 unsigned long flags;
7d478721 3383 int wake_flags = WF_SYNC;
1da177e4
LT
3384
3385 if (unlikely(!q))
3386 return;
3387
3388 if (unlikely(!nr_exclusive))
7d478721 3389 wake_flags = 0;
1da177e4
LT
3390
3391 spin_lock_irqsave(&q->lock, flags);
7d478721 3392 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
3393 spin_unlock_irqrestore(&q->lock, flags);
3394}
4ede816a
DL
3395EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3396
3397/*
3398 * __wake_up_sync - see __wake_up_sync_key()
3399 */
3400void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3401{
3402 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3403}
1da177e4
LT
3404EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3405
65eb3dc6
KD
3406/**
3407 * complete: - signals a single thread waiting on this completion
3408 * @x: holds the state of this particular completion
3409 *
3410 * This will wake up a single thread waiting on this completion. Threads will be
3411 * awakened in the same order in which they were queued.
3412 *
3413 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
3414 *
3415 * It may be assumed that this function implies a write memory barrier before
3416 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3417 */
b15136e9 3418void complete(struct completion *x)
1da177e4
LT
3419{
3420 unsigned long flags;
3421
3422 spin_lock_irqsave(&x->wait.lock, flags);
3423 x->done++;
d9514f6c 3424 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
3425 spin_unlock_irqrestore(&x->wait.lock, flags);
3426}
3427EXPORT_SYMBOL(complete);
3428
65eb3dc6
KD
3429/**
3430 * complete_all: - signals all threads waiting on this completion
3431 * @x: holds the state of this particular completion
3432 *
3433 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
3434 *
3435 * It may be assumed that this function implies a write memory barrier before
3436 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3437 */
b15136e9 3438void complete_all(struct completion *x)
1da177e4
LT
3439{
3440 unsigned long flags;
3441
3442 spin_lock_irqsave(&x->wait.lock, flags);
3443 x->done += UINT_MAX/2;
d9514f6c 3444 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
3445 spin_unlock_irqrestore(&x->wait.lock, flags);
3446}
3447EXPORT_SYMBOL(complete_all);
3448
8cbbe86d
AK
3449static inline long __sched
3450do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3451{
1da177e4
LT
3452 if (!x->done) {
3453 DECLARE_WAITQUEUE(wait, current);
3454
a93d2f17 3455 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 3456 do {
94d3d824 3457 if (signal_pending_state(state, current)) {
ea71a546
ON
3458 timeout = -ERESTARTSYS;
3459 break;
8cbbe86d
AK
3460 }
3461 __set_current_state(state);
1da177e4
LT
3462 spin_unlock_irq(&x->wait.lock);
3463 timeout = schedule_timeout(timeout);
3464 spin_lock_irq(&x->wait.lock);
ea71a546 3465 } while (!x->done && timeout);
1da177e4 3466 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
3467 if (!x->done)
3468 return timeout;
1da177e4
LT
3469 }
3470 x->done--;
ea71a546 3471 return timeout ?: 1;
1da177e4 3472}
1da177e4 3473
8cbbe86d
AK
3474static long __sched
3475wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3476{
1da177e4
LT
3477 might_sleep();
3478
3479 spin_lock_irq(&x->wait.lock);
8cbbe86d 3480 timeout = do_wait_for_common(x, timeout, state);
1da177e4 3481 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3482 return timeout;
3483}
1da177e4 3484
65eb3dc6
KD
3485/**
3486 * wait_for_completion: - waits for completion of a task
3487 * @x: holds the state of this particular completion
3488 *
3489 * This waits to be signaled for completion of a specific task. It is NOT
3490 * interruptible and there is no timeout.
3491 *
3492 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3493 * and interrupt capability. Also see complete().
3494 */
b15136e9 3495void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
3496{
3497 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 3498}
8cbbe86d 3499EXPORT_SYMBOL(wait_for_completion);
1da177e4 3500
65eb3dc6
KD
3501/**
3502 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3503 * @x: holds the state of this particular completion
3504 * @timeout: timeout value in jiffies
3505 *
3506 * This waits for either a completion of a specific task to be signaled or for a
3507 * specified timeout to expire. The timeout is in jiffies. It is not
3508 * interruptible.
c6dc7f05
BF
3509 *
3510 * The return value is 0 if timed out, and positive (at least 1, or number of
3511 * jiffies left till timeout) if completed.
65eb3dc6 3512 */
b15136e9 3513unsigned long __sched
8cbbe86d 3514wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 3515{
8cbbe86d 3516 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 3517}
8cbbe86d 3518EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 3519
65eb3dc6
KD
3520/**
3521 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3522 * @x: holds the state of this particular completion
3523 *
3524 * This waits for completion of a specific task to be signaled. It is
3525 * interruptible.
c6dc7f05
BF
3526 *
3527 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 3528 */
8cbbe86d 3529int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 3530{
51e97990
AK
3531 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3532 if (t == -ERESTARTSYS)
3533 return t;
3534 return 0;
0fec171c 3535}
8cbbe86d 3536EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 3537
65eb3dc6
KD
3538/**
3539 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3540 * @x: holds the state of this particular completion
3541 * @timeout: timeout value in jiffies
3542 *
3543 * This waits for either a completion of a specific task to be signaled or for a
3544 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
c6dc7f05
BF
3545 *
3546 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3547 * positive (at least 1, or number of jiffies left till timeout) if completed.
65eb3dc6 3548 */
6bf41237 3549long __sched
8cbbe86d
AK
3550wait_for_completion_interruptible_timeout(struct completion *x,
3551 unsigned long timeout)
0fec171c 3552{
8cbbe86d 3553 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 3554}
8cbbe86d 3555EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 3556
65eb3dc6
KD
3557/**
3558 * wait_for_completion_killable: - waits for completion of a task (killable)
3559 * @x: holds the state of this particular completion
3560 *
3561 * This waits to be signaled for completion of a specific task. It can be
3562 * interrupted by a kill signal.
c6dc7f05
BF
3563 *
3564 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 3565 */
009e577e
MW
3566int __sched wait_for_completion_killable(struct completion *x)
3567{
3568 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3569 if (t == -ERESTARTSYS)
3570 return t;
3571 return 0;
3572}
3573EXPORT_SYMBOL(wait_for_completion_killable);
3574
0aa12fb4
SW
3575/**
3576 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3577 * @x: holds the state of this particular completion
3578 * @timeout: timeout value in jiffies
3579 *
3580 * This waits for either a completion of a specific task to be
3581 * signaled or for a specified timeout to expire. It can be
3582 * interrupted by a kill signal. The timeout is in jiffies.
c6dc7f05
BF
3583 *
3584 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3585 * positive (at least 1, or number of jiffies left till timeout) if completed.
0aa12fb4 3586 */
6bf41237 3587long __sched
0aa12fb4
SW
3588wait_for_completion_killable_timeout(struct completion *x,
3589 unsigned long timeout)
3590{
3591 return wait_for_common(x, timeout, TASK_KILLABLE);
3592}
3593EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3594
be4de352
DC
3595/**
3596 * try_wait_for_completion - try to decrement a completion without blocking
3597 * @x: completion structure
3598 *
3599 * Returns: 0 if a decrement cannot be done without blocking
3600 * 1 if a decrement succeeded.
3601 *
3602 * If a completion is being used as a counting completion,
3603 * attempt to decrement the counter without blocking. This
3604 * enables us to avoid waiting if the resource the completion
3605 * is protecting is not available.
3606 */
3607bool try_wait_for_completion(struct completion *x)
3608{
7539a3b3 3609 unsigned long flags;
be4de352
DC
3610 int ret = 1;
3611
7539a3b3 3612 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3613 if (!x->done)
3614 ret = 0;
3615 else
3616 x->done--;
7539a3b3 3617 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3618 return ret;
3619}
3620EXPORT_SYMBOL(try_wait_for_completion);
3621
3622/**
3623 * completion_done - Test to see if a completion has any waiters
3624 * @x: completion structure
3625 *
3626 * Returns: 0 if there are waiters (wait_for_completion() in progress)
3627 * 1 if there are no waiters.
3628 *
3629 */
3630bool completion_done(struct completion *x)
3631{
7539a3b3 3632 unsigned long flags;
be4de352
DC
3633 int ret = 1;
3634
7539a3b3 3635 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3636 if (!x->done)
3637 ret = 0;
7539a3b3 3638 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3639 return ret;
3640}
3641EXPORT_SYMBOL(completion_done);
3642
8cbbe86d
AK
3643static long __sched
3644sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 3645{
0fec171c
IM
3646 unsigned long flags;
3647 wait_queue_t wait;
3648
3649 init_waitqueue_entry(&wait, current);
1da177e4 3650
8cbbe86d 3651 __set_current_state(state);
1da177e4 3652
8cbbe86d
AK
3653 spin_lock_irqsave(&q->lock, flags);
3654 __add_wait_queue(q, &wait);
3655 spin_unlock(&q->lock);
3656 timeout = schedule_timeout(timeout);
3657 spin_lock_irq(&q->lock);
3658 __remove_wait_queue(q, &wait);
3659 spin_unlock_irqrestore(&q->lock, flags);
3660
3661 return timeout;
3662}
3663
3664void __sched interruptible_sleep_on(wait_queue_head_t *q)
3665{
3666 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3667}
1da177e4
LT
3668EXPORT_SYMBOL(interruptible_sleep_on);
3669
0fec171c 3670long __sched
95cdf3b7 3671interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3672{
8cbbe86d 3673 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 3674}
1da177e4
LT
3675EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3676
0fec171c 3677void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3678{
8cbbe86d 3679 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3680}
1da177e4
LT
3681EXPORT_SYMBOL(sleep_on);
3682
0fec171c 3683long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3684{
8cbbe86d 3685 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 3686}
1da177e4
LT
3687EXPORT_SYMBOL(sleep_on_timeout);
3688
b29739f9
IM
3689#ifdef CONFIG_RT_MUTEXES
3690
3691/*
3692 * rt_mutex_setprio - set the current priority of a task
3693 * @p: task
3694 * @prio: prio value (kernel-internal form)
3695 *
3696 * This function changes the 'effective' priority of a task. It does
3697 * not touch ->normal_prio like __setscheduler().
3698 *
3699 * Used by the rt_mutex code to implement priority inheritance logic.
3700 */
36c8b586 3701void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3702{
83b699ed 3703 int oldprio, on_rq, running;
70b97a7f 3704 struct rq *rq;
83ab0aa0 3705 const struct sched_class *prev_class;
b29739f9
IM
3706
3707 BUG_ON(prio < 0 || prio > MAX_PRIO);
3708
0122ec5b 3709 rq = __task_rq_lock(p);
b29739f9 3710
a8027073 3711 trace_sched_pi_setprio(p, prio);
d5f9f942 3712 oldprio = p->prio;
83ab0aa0 3713 prev_class = p->sched_class;
fd2f4419 3714 on_rq = p->on_rq;
051a1d1a 3715 running = task_current(rq, p);
0e1f3483 3716 if (on_rq)
69be72c1 3717 dequeue_task(rq, p, 0);
0e1f3483
HS
3718 if (running)
3719 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
3720
3721 if (rt_prio(prio))
3722 p->sched_class = &rt_sched_class;
3723 else
3724 p->sched_class = &fair_sched_class;
3725
b29739f9
IM
3726 p->prio = prio;
3727
0e1f3483
HS
3728 if (running)
3729 p->sched_class->set_curr_task(rq);
da7a735e 3730 if (on_rq)
371fd7e7 3731 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 3732
da7a735e 3733 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3734 __task_rq_unlock(rq);
b29739f9
IM
3735}
3736
3737#endif
3738
36c8b586 3739void set_user_nice(struct task_struct *p, long nice)
1da177e4 3740{
dd41f596 3741 int old_prio, delta, on_rq;
1da177e4 3742 unsigned long flags;
70b97a7f 3743 struct rq *rq;
1da177e4
LT
3744
3745 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3746 return;
3747 /*
3748 * We have to be careful, if called from sys_setpriority(),
3749 * the task might be in the middle of scheduling on another CPU.
3750 */
3751 rq = task_rq_lock(p, &flags);
3752 /*
3753 * The RT priorities are set via sched_setscheduler(), but we still
3754 * allow the 'normal' nice value to be set - but as expected
3755 * it wont have any effect on scheduling until the task is
dd41f596 3756 * SCHED_FIFO/SCHED_RR:
1da177e4 3757 */
e05606d3 3758 if (task_has_rt_policy(p)) {
1da177e4
LT
3759 p->static_prio = NICE_TO_PRIO(nice);
3760 goto out_unlock;
3761 }
fd2f4419 3762 on_rq = p->on_rq;
c09595f6 3763 if (on_rq)
69be72c1 3764 dequeue_task(rq, p, 0);
1da177e4 3765
1da177e4 3766 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3767 set_load_weight(p);
b29739f9
IM
3768 old_prio = p->prio;
3769 p->prio = effective_prio(p);
3770 delta = p->prio - old_prio;
1da177e4 3771
dd41f596 3772 if (on_rq) {
371fd7e7 3773 enqueue_task(rq, p, 0);
1da177e4 3774 /*
d5f9f942
AM
3775 * If the task increased its priority or is running and
3776 * lowered its priority, then reschedule its CPU:
1da177e4 3777 */
d5f9f942 3778 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3779 resched_task(rq->curr);
3780 }
3781out_unlock:
0122ec5b 3782 task_rq_unlock(rq, p, &flags);
1da177e4 3783}
1da177e4
LT
3784EXPORT_SYMBOL(set_user_nice);
3785
e43379f1
MM
3786/*
3787 * can_nice - check if a task can reduce its nice value
3788 * @p: task
3789 * @nice: nice value
3790 */
36c8b586 3791int can_nice(const struct task_struct *p, const int nice)
e43379f1 3792{
024f4747
MM
3793 /* convert nice value [19,-20] to rlimit style value [1,40] */
3794 int nice_rlim = 20 - nice;
48f24c4d 3795
78d7d407 3796 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3797 capable(CAP_SYS_NICE));
3798}
3799
1da177e4
LT
3800#ifdef __ARCH_WANT_SYS_NICE
3801
3802/*
3803 * sys_nice - change the priority of the current process.
3804 * @increment: priority increment
3805 *
3806 * sys_setpriority is a more generic, but much slower function that
3807 * does similar things.
3808 */
5add95d4 3809SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3810{
48f24c4d 3811 long nice, retval;
1da177e4
LT
3812
3813 /*
3814 * Setpriority might change our priority at the same moment.
3815 * We don't have to worry. Conceptually one call occurs first
3816 * and we have a single winner.
3817 */
e43379f1
MM
3818 if (increment < -40)
3819 increment = -40;
1da177e4
LT
3820 if (increment > 40)
3821 increment = 40;
3822
2b8f836f 3823 nice = TASK_NICE(current) + increment;
1da177e4
LT
3824 if (nice < -20)
3825 nice = -20;
3826 if (nice > 19)
3827 nice = 19;
3828
e43379f1
MM
3829 if (increment < 0 && !can_nice(current, nice))
3830 return -EPERM;
3831
1da177e4
LT
3832 retval = security_task_setnice(current, nice);
3833 if (retval)
3834 return retval;
3835
3836 set_user_nice(current, nice);
3837 return 0;
3838}
3839
3840#endif
3841
3842/**
3843 * task_prio - return the priority value of a given task.
3844 * @p: the task in question.
3845 *
3846 * This is the priority value as seen by users in /proc.
3847 * RT tasks are offset by -200. Normal tasks are centered
3848 * around 0, value goes from -16 to +15.
3849 */
36c8b586 3850int task_prio(const struct task_struct *p)
1da177e4
LT
3851{
3852 return p->prio - MAX_RT_PRIO;
3853}
3854
3855/**
3856 * task_nice - return the nice value of a given task.
3857 * @p: the task in question.
3858 */
36c8b586 3859int task_nice(const struct task_struct *p)
1da177e4
LT
3860{
3861 return TASK_NICE(p);
3862}
150d8bed 3863EXPORT_SYMBOL(task_nice);
1da177e4
LT
3864
3865/**
3866 * idle_cpu - is a given cpu idle currently?
3867 * @cpu: the processor in question.
3868 */
3869int idle_cpu(int cpu)
3870{
908a3283
TG
3871 struct rq *rq = cpu_rq(cpu);
3872
3873 if (rq->curr != rq->idle)
3874 return 0;
3875
3876 if (rq->nr_running)
3877 return 0;
3878
3879#ifdef CONFIG_SMP
3880 if (!llist_empty(&rq->wake_list))
3881 return 0;
3882#endif
3883
3884 return 1;
1da177e4
LT
3885}
3886
1da177e4
LT
3887/**
3888 * idle_task - return the idle task for a given cpu.
3889 * @cpu: the processor in question.
3890 */
36c8b586 3891struct task_struct *idle_task(int cpu)
1da177e4
LT
3892{
3893 return cpu_rq(cpu)->idle;
3894}
3895
3896/**
3897 * find_process_by_pid - find a process with a matching PID value.
3898 * @pid: the pid in question.
3899 */
a9957449 3900static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3901{
228ebcbe 3902 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3903}
3904
3905/* Actually do priority change: must hold rq lock. */
dd41f596
IM
3906static void
3907__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 3908{
1da177e4
LT
3909 p->policy = policy;
3910 p->rt_priority = prio;
b29739f9
IM
3911 p->normal_prio = normal_prio(p);
3912 /* we are holding p->pi_lock already */
3913 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
3914 if (rt_prio(p->prio))
3915 p->sched_class = &rt_sched_class;
3916 else
3917 p->sched_class = &fair_sched_class;
2dd73a4f 3918 set_load_weight(p);
1da177e4
LT
3919}
3920
c69e8d9c
DH
3921/*
3922 * check the target process has a UID that matches the current process's
3923 */
3924static bool check_same_owner(struct task_struct *p)
3925{
3926 const struct cred *cred = current_cred(), *pcred;
3927 bool match;
3928
3929 rcu_read_lock();
3930 pcred = __task_cred(p);
b0e77598
SH
3931 if (cred->user->user_ns == pcred->user->user_ns)
3932 match = (cred->euid == pcred->euid ||
3933 cred->euid == pcred->uid);
3934 else
3935 match = false;
c69e8d9c
DH
3936 rcu_read_unlock();
3937 return match;
3938}
3939
961ccddd 3940static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3941 const struct sched_param *param, bool user)
1da177e4 3942{
83b699ed 3943 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 3944 unsigned long flags;
83ab0aa0 3945 const struct sched_class *prev_class;
70b97a7f 3946 struct rq *rq;
ca94c442 3947 int reset_on_fork;
1da177e4 3948
66e5393a
SR
3949 /* may grab non-irq protected spin_locks */
3950 BUG_ON(in_interrupt());
1da177e4
LT
3951recheck:
3952 /* double check policy once rq lock held */
ca94c442
LP
3953 if (policy < 0) {
3954 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3955 policy = oldpolicy = p->policy;
ca94c442
LP
3956 } else {
3957 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3958 policy &= ~SCHED_RESET_ON_FORK;
3959
3960 if (policy != SCHED_FIFO && policy != SCHED_RR &&
3961 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3962 policy != SCHED_IDLE)
3963 return -EINVAL;
3964 }
3965
1da177e4
LT
3966 /*
3967 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3968 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3969 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
3970 */
3971 if (param->sched_priority < 0 ||
95cdf3b7 3972 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 3973 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 3974 return -EINVAL;
e05606d3 3975 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
3976 return -EINVAL;
3977
37e4ab3f
OC
3978 /*
3979 * Allow unprivileged RT tasks to decrease priority:
3980 */
961ccddd 3981 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 3982 if (rt_policy(policy)) {
a44702e8
ON
3983 unsigned long rlim_rtprio =
3984 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3985
3986 /* can't set/change the rt policy */
3987 if (policy != p->policy && !rlim_rtprio)
3988 return -EPERM;
3989
3990 /* can't increase priority */
3991 if (param->sched_priority > p->rt_priority &&
3992 param->sched_priority > rlim_rtprio)
3993 return -EPERM;
3994 }
c02aa73b 3995
dd41f596 3996 /*
c02aa73b
DH
3997 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3998 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3999 */
c02aa73b
DH
4000 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4001 if (!can_nice(p, TASK_NICE(p)))
4002 return -EPERM;
4003 }
5fe1d75f 4004
37e4ab3f 4005 /* can't change other user's priorities */
c69e8d9c 4006 if (!check_same_owner(p))
37e4ab3f 4007 return -EPERM;
ca94c442
LP
4008
4009 /* Normal users shall not reset the sched_reset_on_fork flag */
4010 if (p->sched_reset_on_fork && !reset_on_fork)
4011 return -EPERM;
37e4ab3f 4012 }
1da177e4 4013
725aad24 4014 if (user) {
b0ae1981 4015 retval = security_task_setscheduler(p);
725aad24
JF
4016 if (retval)
4017 return retval;
4018 }
4019
b29739f9
IM
4020 /*
4021 * make sure no PI-waiters arrive (or leave) while we are
4022 * changing the priority of the task:
0122ec5b 4023 *
25985edc 4024 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4025 * runqueue lock must be held.
4026 */
0122ec5b 4027 rq = task_rq_lock(p, &flags);
dc61b1d6 4028
34f971f6
PZ
4029 /*
4030 * Changing the policy of the stop threads its a very bad idea
4031 */
4032 if (p == rq->stop) {
0122ec5b 4033 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
4034 return -EINVAL;
4035 }
4036
a51e9198
DF
4037 /*
4038 * If not changing anything there's no need to proceed further:
4039 */
4040 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
4041 param->sched_priority == p->rt_priority))) {
4042
4043 __task_rq_unlock(rq);
4044 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4045 return 0;
4046 }
4047
dc61b1d6
PZ
4048#ifdef CONFIG_RT_GROUP_SCHED
4049 if (user) {
4050 /*
4051 * Do not allow realtime tasks into groups that have no runtime
4052 * assigned.
4053 */
4054 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4055 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4056 !task_group_is_autogroup(task_group(p))) {
0122ec5b 4057 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
4058 return -EPERM;
4059 }
4060 }
4061#endif
4062
1da177e4
LT
4063 /* recheck policy now with rq lock held */
4064 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4065 policy = oldpolicy = -1;
0122ec5b 4066 task_rq_unlock(rq, p, &flags);
1da177e4
LT
4067 goto recheck;
4068 }
fd2f4419 4069 on_rq = p->on_rq;
051a1d1a 4070 running = task_current(rq, p);
0e1f3483 4071 if (on_rq)
2e1cb74a 4072 deactivate_task(rq, p, 0);
0e1f3483
HS
4073 if (running)
4074 p->sched_class->put_prev_task(rq, p);
f6b53205 4075
ca94c442
LP
4076 p->sched_reset_on_fork = reset_on_fork;
4077
1da177e4 4078 oldprio = p->prio;
83ab0aa0 4079 prev_class = p->sched_class;
dd41f596 4080 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4081
0e1f3483
HS
4082 if (running)
4083 p->sched_class->set_curr_task(rq);
da7a735e 4084 if (on_rq)
dd41f596 4085 activate_task(rq, p, 0);
cb469845 4086
da7a735e 4087 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 4088 task_rq_unlock(rq, p, &flags);
b29739f9 4089
95e02ca9
TG
4090 rt_mutex_adjust_pi(p);
4091
1da177e4
LT
4092 return 0;
4093}
961ccddd
RR
4094
4095/**
4096 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4097 * @p: the task in question.
4098 * @policy: new policy.
4099 * @param: structure containing the new RT priority.
4100 *
4101 * NOTE that the task may be already dead.
4102 */
4103int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4104 const struct sched_param *param)
961ccddd
RR
4105{
4106 return __sched_setscheduler(p, policy, param, true);
4107}
1da177e4
LT
4108EXPORT_SYMBOL_GPL(sched_setscheduler);
4109
961ccddd
RR
4110/**
4111 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4112 * @p: the task in question.
4113 * @policy: new policy.
4114 * @param: structure containing the new RT priority.
4115 *
4116 * Just like sched_setscheduler, only don't bother checking if the
4117 * current context has permission. For example, this is needed in
4118 * stop_machine(): we create temporary high priority worker threads,
4119 * but our caller might not have that capability.
4120 */
4121int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4122 const struct sched_param *param)
961ccddd
RR
4123{
4124 return __sched_setscheduler(p, policy, param, false);
4125}
4126
95cdf3b7
IM
4127static int
4128do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4129{
1da177e4
LT
4130 struct sched_param lparam;
4131 struct task_struct *p;
36c8b586 4132 int retval;
1da177e4
LT
4133
4134 if (!param || pid < 0)
4135 return -EINVAL;
4136 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4137 return -EFAULT;
5fe1d75f
ON
4138
4139 rcu_read_lock();
4140 retval = -ESRCH;
1da177e4 4141 p = find_process_by_pid(pid);
5fe1d75f
ON
4142 if (p != NULL)
4143 retval = sched_setscheduler(p, policy, &lparam);
4144 rcu_read_unlock();
36c8b586 4145
1da177e4
LT
4146 return retval;
4147}
4148
4149/**
4150 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4151 * @pid: the pid in question.
4152 * @policy: new policy.
4153 * @param: structure containing the new RT priority.
4154 */
5add95d4
HC
4155SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4156 struct sched_param __user *, param)
1da177e4 4157{
c21761f1
JB
4158 /* negative values for policy are not valid */
4159 if (policy < 0)
4160 return -EINVAL;
4161
1da177e4
LT
4162 return do_sched_setscheduler(pid, policy, param);
4163}
4164
4165/**
4166 * sys_sched_setparam - set/change the RT priority of a thread
4167 * @pid: the pid in question.
4168 * @param: structure containing the new RT priority.
4169 */
5add95d4 4170SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4171{
4172 return do_sched_setscheduler(pid, -1, param);
4173}
4174
4175/**
4176 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4177 * @pid: the pid in question.
4178 */
5add95d4 4179SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4180{
36c8b586 4181 struct task_struct *p;
3a5c359a 4182 int retval;
1da177e4
LT
4183
4184 if (pid < 0)
3a5c359a 4185 return -EINVAL;
1da177e4
LT
4186
4187 retval = -ESRCH;
5fe85be0 4188 rcu_read_lock();
1da177e4
LT
4189 p = find_process_by_pid(pid);
4190 if (p) {
4191 retval = security_task_getscheduler(p);
4192 if (!retval)
ca94c442
LP
4193 retval = p->policy
4194 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4195 }
5fe85be0 4196 rcu_read_unlock();
1da177e4
LT
4197 return retval;
4198}
4199
4200/**
ca94c442 4201 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4202 * @pid: the pid in question.
4203 * @param: structure containing the RT priority.
4204 */
5add95d4 4205SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4206{
4207 struct sched_param lp;
36c8b586 4208 struct task_struct *p;
3a5c359a 4209 int retval;
1da177e4
LT
4210
4211 if (!param || pid < 0)
3a5c359a 4212 return -EINVAL;
1da177e4 4213
5fe85be0 4214 rcu_read_lock();
1da177e4
LT
4215 p = find_process_by_pid(pid);
4216 retval = -ESRCH;
4217 if (!p)
4218 goto out_unlock;
4219
4220 retval = security_task_getscheduler(p);
4221 if (retval)
4222 goto out_unlock;
4223
4224 lp.sched_priority = p->rt_priority;
5fe85be0 4225 rcu_read_unlock();
1da177e4
LT
4226
4227 /*
4228 * This one might sleep, we cannot do it with a spinlock held ...
4229 */
4230 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4231
1da177e4
LT
4232 return retval;
4233
4234out_unlock:
5fe85be0 4235 rcu_read_unlock();
1da177e4
LT
4236 return retval;
4237}
4238
96f874e2 4239long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4240{
5a16f3d3 4241 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4242 struct task_struct *p;
4243 int retval;
1da177e4 4244
95402b38 4245 get_online_cpus();
23f5d142 4246 rcu_read_lock();
1da177e4
LT
4247
4248 p = find_process_by_pid(pid);
4249 if (!p) {
23f5d142 4250 rcu_read_unlock();
95402b38 4251 put_online_cpus();
1da177e4
LT
4252 return -ESRCH;
4253 }
4254
23f5d142 4255 /* Prevent p going away */
1da177e4 4256 get_task_struct(p);
23f5d142 4257 rcu_read_unlock();
1da177e4 4258
5a16f3d3
RR
4259 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4260 retval = -ENOMEM;
4261 goto out_put_task;
4262 }
4263 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4264 retval = -ENOMEM;
4265 goto out_free_cpus_allowed;
4266 }
1da177e4 4267 retval = -EPERM;
b0e77598 4268 if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
1da177e4
LT
4269 goto out_unlock;
4270
b0ae1981 4271 retval = security_task_setscheduler(p);
e7834f8f
DQ
4272 if (retval)
4273 goto out_unlock;
4274
5a16f3d3
RR
4275 cpuset_cpus_allowed(p, cpus_allowed);
4276 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 4277again:
5a16f3d3 4278 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4279
8707d8b8 4280 if (!retval) {
5a16f3d3
RR
4281 cpuset_cpus_allowed(p, cpus_allowed);
4282 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4283 /*
4284 * We must have raced with a concurrent cpuset
4285 * update. Just reset the cpus_allowed to the
4286 * cpuset's cpus_allowed
4287 */
5a16f3d3 4288 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4289 goto again;
4290 }
4291 }
1da177e4 4292out_unlock:
5a16f3d3
RR
4293 free_cpumask_var(new_mask);
4294out_free_cpus_allowed:
4295 free_cpumask_var(cpus_allowed);
4296out_put_task:
1da177e4 4297 put_task_struct(p);
95402b38 4298 put_online_cpus();
1da177e4
LT
4299 return retval;
4300}
4301
4302static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4303 struct cpumask *new_mask)
1da177e4 4304{
96f874e2
RR
4305 if (len < cpumask_size())
4306 cpumask_clear(new_mask);
4307 else if (len > cpumask_size())
4308 len = cpumask_size();
4309
1da177e4
LT
4310 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4311}
4312
4313/**
4314 * sys_sched_setaffinity - set the cpu affinity of a process
4315 * @pid: pid of the process
4316 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4317 * @user_mask_ptr: user-space pointer to the new cpu mask
4318 */
5add95d4
HC
4319SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4320 unsigned long __user *, user_mask_ptr)
1da177e4 4321{
5a16f3d3 4322 cpumask_var_t new_mask;
1da177e4
LT
4323 int retval;
4324
5a16f3d3
RR
4325 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4326 return -ENOMEM;
1da177e4 4327
5a16f3d3
RR
4328 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4329 if (retval == 0)
4330 retval = sched_setaffinity(pid, new_mask);
4331 free_cpumask_var(new_mask);
4332 return retval;
1da177e4
LT
4333}
4334
96f874e2 4335long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4336{
36c8b586 4337 struct task_struct *p;
31605683 4338 unsigned long flags;
1da177e4 4339 int retval;
1da177e4 4340
95402b38 4341 get_online_cpus();
23f5d142 4342 rcu_read_lock();
1da177e4
LT
4343
4344 retval = -ESRCH;
4345 p = find_process_by_pid(pid);
4346 if (!p)
4347 goto out_unlock;
4348
e7834f8f
DQ
4349 retval = security_task_getscheduler(p);
4350 if (retval)
4351 goto out_unlock;
4352
013fdb80 4353 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 4354 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 4355 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4356
4357out_unlock:
23f5d142 4358 rcu_read_unlock();
95402b38 4359 put_online_cpus();
1da177e4 4360
9531b62f 4361 return retval;
1da177e4
LT
4362}
4363
4364/**
4365 * sys_sched_getaffinity - get the cpu affinity of a process
4366 * @pid: pid of the process
4367 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4368 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4369 */
5add95d4
HC
4370SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4371 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4372{
4373 int ret;
f17c8607 4374 cpumask_var_t mask;
1da177e4 4375
84fba5ec 4376 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4377 return -EINVAL;
4378 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4379 return -EINVAL;
4380
f17c8607
RR
4381 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4382 return -ENOMEM;
1da177e4 4383
f17c8607
RR
4384 ret = sched_getaffinity(pid, mask);
4385 if (ret == 0) {
8bc037fb 4386 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4387
4388 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4389 ret = -EFAULT;
4390 else
cd3d8031 4391 ret = retlen;
f17c8607
RR
4392 }
4393 free_cpumask_var(mask);
1da177e4 4394
f17c8607 4395 return ret;
1da177e4
LT
4396}
4397
4398/**
4399 * sys_sched_yield - yield the current processor to other threads.
4400 *
dd41f596
IM
4401 * This function yields the current CPU to other tasks. If there are no
4402 * other threads running on this CPU then this function will return.
1da177e4 4403 */
5add95d4 4404SYSCALL_DEFINE0(sched_yield)
1da177e4 4405{
70b97a7f 4406 struct rq *rq = this_rq_lock();
1da177e4 4407
2d72376b 4408 schedstat_inc(rq, yld_count);
4530d7ab 4409 current->sched_class->yield_task(rq);
1da177e4
LT
4410
4411 /*
4412 * Since we are going to call schedule() anyway, there's
4413 * no need to preempt or enable interrupts:
4414 */
4415 __release(rq->lock);
8a25d5de 4416 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4417 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
4418 preempt_enable_no_resched();
4419
4420 schedule();
4421
4422 return 0;
4423}
4424
d86ee480
PZ
4425static inline int should_resched(void)
4426{
4427 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4428}
4429
e7b38404 4430static void __cond_resched(void)
1da177e4 4431{
e7aaaa69 4432 add_preempt_count(PREEMPT_ACTIVE);
c259e01a 4433 __schedule();
e7aaaa69 4434 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
4435}
4436
02b67cc3 4437int __sched _cond_resched(void)
1da177e4 4438{
d86ee480 4439 if (should_resched()) {
1da177e4
LT
4440 __cond_resched();
4441 return 1;
4442 }
4443 return 0;
4444}
02b67cc3 4445EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4446
4447/*
613afbf8 4448 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4449 * call schedule, and on return reacquire the lock.
4450 *
41a2d6cf 4451 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4452 * operations here to prevent schedule() from being called twice (once via
4453 * spin_unlock(), once by hand).
4454 */
613afbf8 4455int __cond_resched_lock(spinlock_t *lock)
1da177e4 4456{
d86ee480 4457 int resched = should_resched();
6df3cecb
JK
4458 int ret = 0;
4459
f607c668
PZ
4460 lockdep_assert_held(lock);
4461
95c354fe 4462 if (spin_needbreak(lock) || resched) {
1da177e4 4463 spin_unlock(lock);
d86ee480 4464 if (resched)
95c354fe
NP
4465 __cond_resched();
4466 else
4467 cpu_relax();
6df3cecb 4468 ret = 1;
1da177e4 4469 spin_lock(lock);
1da177e4 4470 }
6df3cecb 4471 return ret;
1da177e4 4472}
613afbf8 4473EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4474
613afbf8 4475int __sched __cond_resched_softirq(void)
1da177e4
LT
4476{
4477 BUG_ON(!in_softirq());
4478
d86ee480 4479 if (should_resched()) {
98d82567 4480 local_bh_enable();
1da177e4
LT
4481 __cond_resched();
4482 local_bh_disable();
4483 return 1;
4484 }
4485 return 0;
4486}
613afbf8 4487EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4488
1da177e4
LT
4489/**
4490 * yield - yield the current processor to other threads.
4491 *
72fd4a35 4492 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4493 * thread runnable and calls sys_sched_yield().
4494 */
4495void __sched yield(void)
4496{
4497 set_current_state(TASK_RUNNING);
4498 sys_sched_yield();
4499}
1da177e4
LT
4500EXPORT_SYMBOL(yield);
4501
d95f4122
MG
4502/**
4503 * yield_to - yield the current processor to another thread in
4504 * your thread group, or accelerate that thread toward the
4505 * processor it's on.
16addf95
RD
4506 * @p: target task
4507 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4508 *
4509 * It's the caller's job to ensure that the target task struct
4510 * can't go away on us before we can do any checks.
4511 *
4512 * Returns true if we indeed boosted the target task.
4513 */
4514bool __sched yield_to(struct task_struct *p, bool preempt)
4515{
4516 struct task_struct *curr = current;
4517 struct rq *rq, *p_rq;
4518 unsigned long flags;
4519 bool yielded = 0;
4520
4521 local_irq_save(flags);
4522 rq = this_rq();
4523
4524again:
4525 p_rq = task_rq(p);
4526 double_rq_lock(rq, p_rq);
4527 while (task_rq(p) != p_rq) {
4528 double_rq_unlock(rq, p_rq);
4529 goto again;
4530 }
4531
4532 if (!curr->sched_class->yield_to_task)
4533 goto out;
4534
4535 if (curr->sched_class != p->sched_class)
4536 goto out;
4537
4538 if (task_running(p_rq, p) || p->state)
4539 goto out;
4540
4541 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4542 if (yielded) {
d95f4122 4543 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4544 /*
4545 * Make p's CPU reschedule; pick_next_entity takes care of
4546 * fairness.
4547 */
4548 if (preempt && rq != p_rq)
4549 resched_task(p_rq->curr);
916671c0
MG
4550 } else {
4551 /*
4552 * We might have set it in task_yield_fair(), but are
4553 * not going to schedule(), so don't want to skip
4554 * the next update.
4555 */
4556 rq->skip_clock_update = 0;
6d1cafd8 4557 }
d95f4122
MG
4558
4559out:
4560 double_rq_unlock(rq, p_rq);
4561 local_irq_restore(flags);
4562
4563 if (yielded)
4564 schedule();
4565
4566 return yielded;
4567}
4568EXPORT_SYMBOL_GPL(yield_to);
4569
1da177e4 4570/*
41a2d6cf 4571 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4572 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4573 */
4574void __sched io_schedule(void)
4575{
54d35f29 4576 struct rq *rq = raw_rq();
1da177e4 4577
0ff92245 4578 delayacct_blkio_start();
1da177e4 4579 atomic_inc(&rq->nr_iowait);
73c10101 4580 blk_flush_plug(current);
8f0dfc34 4581 current->in_iowait = 1;
1da177e4 4582 schedule();
8f0dfc34 4583 current->in_iowait = 0;
1da177e4 4584 atomic_dec(&rq->nr_iowait);
0ff92245 4585 delayacct_blkio_end();
1da177e4 4586}
1da177e4
LT
4587EXPORT_SYMBOL(io_schedule);
4588
4589long __sched io_schedule_timeout(long timeout)
4590{
54d35f29 4591 struct rq *rq = raw_rq();
1da177e4
LT
4592 long ret;
4593
0ff92245 4594 delayacct_blkio_start();
1da177e4 4595 atomic_inc(&rq->nr_iowait);
73c10101 4596 blk_flush_plug(current);
8f0dfc34 4597 current->in_iowait = 1;
1da177e4 4598 ret = schedule_timeout(timeout);
8f0dfc34 4599 current->in_iowait = 0;
1da177e4 4600 atomic_dec(&rq->nr_iowait);
0ff92245 4601 delayacct_blkio_end();
1da177e4
LT
4602 return ret;
4603}
4604
4605/**
4606 * sys_sched_get_priority_max - return maximum RT priority.
4607 * @policy: scheduling class.
4608 *
4609 * this syscall returns the maximum rt_priority that can be used
4610 * by a given scheduling class.
4611 */
5add95d4 4612SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4613{
4614 int ret = -EINVAL;
4615
4616 switch (policy) {
4617 case SCHED_FIFO:
4618 case SCHED_RR:
4619 ret = MAX_USER_RT_PRIO-1;
4620 break;
4621 case SCHED_NORMAL:
b0a9499c 4622 case SCHED_BATCH:
dd41f596 4623 case SCHED_IDLE:
1da177e4
LT
4624 ret = 0;
4625 break;
4626 }
4627 return ret;
4628}
4629
4630/**
4631 * sys_sched_get_priority_min - return minimum RT priority.
4632 * @policy: scheduling class.
4633 *
4634 * this syscall returns the minimum rt_priority that can be used
4635 * by a given scheduling class.
4636 */
5add95d4 4637SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4638{
4639 int ret = -EINVAL;
4640
4641 switch (policy) {
4642 case SCHED_FIFO:
4643 case SCHED_RR:
4644 ret = 1;
4645 break;
4646 case SCHED_NORMAL:
b0a9499c 4647 case SCHED_BATCH:
dd41f596 4648 case SCHED_IDLE:
1da177e4
LT
4649 ret = 0;
4650 }
4651 return ret;
4652}
4653
4654/**
4655 * sys_sched_rr_get_interval - return the default timeslice of a process.
4656 * @pid: pid of the process.
4657 * @interval: userspace pointer to the timeslice value.
4658 *
4659 * this syscall writes the default timeslice value of a given process
4660 * into the user-space timespec buffer. A value of '0' means infinity.
4661 */
17da2bd9 4662SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4663 struct timespec __user *, interval)
1da177e4 4664{
36c8b586 4665 struct task_struct *p;
a4ec24b4 4666 unsigned int time_slice;
dba091b9
TG
4667 unsigned long flags;
4668 struct rq *rq;
3a5c359a 4669 int retval;
1da177e4 4670 struct timespec t;
1da177e4
LT
4671
4672 if (pid < 0)
3a5c359a 4673 return -EINVAL;
1da177e4
LT
4674
4675 retval = -ESRCH;
1a551ae7 4676 rcu_read_lock();
1da177e4
LT
4677 p = find_process_by_pid(pid);
4678 if (!p)
4679 goto out_unlock;
4680
4681 retval = security_task_getscheduler(p);
4682 if (retval)
4683 goto out_unlock;
4684
dba091b9
TG
4685 rq = task_rq_lock(p, &flags);
4686 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4687 task_rq_unlock(rq, p, &flags);
a4ec24b4 4688
1a551ae7 4689 rcu_read_unlock();
a4ec24b4 4690 jiffies_to_timespec(time_slice, &t);
1da177e4 4691 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4692 return retval;
3a5c359a 4693
1da177e4 4694out_unlock:
1a551ae7 4695 rcu_read_unlock();
1da177e4
LT
4696 return retval;
4697}
4698
7c731e0a 4699static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4700
82a1fcb9 4701void sched_show_task(struct task_struct *p)
1da177e4 4702{
1da177e4 4703 unsigned long free = 0;
36c8b586 4704 unsigned state;
1da177e4 4705
1da177e4 4706 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4707 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4708 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4709#if BITS_PER_LONG == 32
1da177e4 4710 if (state == TASK_RUNNING)
3df0fc5b 4711 printk(KERN_CONT " running ");
1da177e4 4712 else
3df0fc5b 4713 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4714#else
4715 if (state == TASK_RUNNING)
3df0fc5b 4716 printk(KERN_CONT " running task ");
1da177e4 4717 else
3df0fc5b 4718 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4719#endif
4720#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4721 free = stack_not_used(p);
1da177e4 4722#endif
3df0fc5b 4723 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
4724 task_pid_nr(p), task_pid_nr(p->real_parent),
4725 (unsigned long)task_thread_info(p)->flags);
1da177e4 4726
5fb5e6de 4727 show_stack(p, NULL);
1da177e4
LT
4728}
4729
e59e2ae2 4730void show_state_filter(unsigned long state_filter)
1da177e4 4731{
36c8b586 4732 struct task_struct *g, *p;
1da177e4 4733
4bd77321 4734#if BITS_PER_LONG == 32
3df0fc5b
PZ
4735 printk(KERN_INFO
4736 " task PC stack pid father\n");
1da177e4 4737#else
3df0fc5b
PZ
4738 printk(KERN_INFO
4739 " task PC stack pid father\n");
1da177e4 4740#endif
510f5acc 4741 rcu_read_lock();
1da177e4
LT
4742 do_each_thread(g, p) {
4743 /*
4744 * reset the NMI-timeout, listing all files on a slow
25985edc 4745 * console might take a lot of time:
1da177e4
LT
4746 */
4747 touch_nmi_watchdog();
39bc89fd 4748 if (!state_filter || (p->state & state_filter))
82a1fcb9 4749 sched_show_task(p);
1da177e4
LT
4750 } while_each_thread(g, p);
4751
04c9167f
JF
4752 touch_all_softlockup_watchdogs();
4753
dd41f596
IM
4754#ifdef CONFIG_SCHED_DEBUG
4755 sysrq_sched_debug_show();
4756#endif
510f5acc 4757 rcu_read_unlock();
e59e2ae2
IM
4758 /*
4759 * Only show locks if all tasks are dumped:
4760 */
93335a21 4761 if (!state_filter)
e59e2ae2 4762 debug_show_all_locks();
1da177e4
LT
4763}
4764
1df21055
IM
4765void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4766{
dd41f596 4767 idle->sched_class = &idle_sched_class;
1df21055
IM
4768}
4769
f340c0d1
IM
4770/**
4771 * init_idle - set up an idle thread for a given CPU
4772 * @idle: task in question
4773 * @cpu: cpu the idle task belongs to
4774 *
4775 * NOTE: this function does not set the idle thread's NEED_RESCHED
4776 * flag, to make booting more robust.
4777 */
5c1e1767 4778void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4779{
70b97a7f 4780 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4781 unsigned long flags;
4782
05fa785c 4783 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4784
dd41f596 4785 __sched_fork(idle);
06b83b5f 4786 idle->state = TASK_RUNNING;
dd41f596
IM
4787 idle->se.exec_start = sched_clock();
4788
1e1b6c51 4789 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4790 /*
4791 * We're having a chicken and egg problem, even though we are
4792 * holding rq->lock, the cpu isn't yet set to this cpu so the
4793 * lockdep check in task_group() will fail.
4794 *
4795 * Similar case to sched_fork(). / Alternatively we could
4796 * use task_rq_lock() here and obtain the other rq->lock.
4797 *
4798 * Silence PROVE_RCU
4799 */
4800 rcu_read_lock();
dd41f596 4801 __set_task_cpu(idle, cpu);
6506cf6c 4802 rcu_read_unlock();
1da177e4 4803
1da177e4 4804 rq->curr = rq->idle = idle;
3ca7a440
PZ
4805#if defined(CONFIG_SMP)
4806 idle->on_cpu = 1;
4866cde0 4807#endif
05fa785c 4808 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4809
4810 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 4811 task_thread_info(idle)->preempt_count = 0;
625f2a37 4812
dd41f596
IM
4813 /*
4814 * The idle tasks have their own, simple scheduling class:
4815 */
4816 idle->sched_class = &idle_sched_class;
868baf07 4817 ftrace_graph_init_idle_task(idle, cpu);
f1c6f1a7
CE
4818#if defined(CONFIG_SMP)
4819 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4820#endif
1da177e4
LT
4821}
4822
1da177e4 4823#ifdef CONFIG_SMP
1e1b6c51
KM
4824void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4825{
4826 if (p->sched_class && p->sched_class->set_cpus_allowed)
4827 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4828
4829 cpumask_copy(&p->cpus_allowed, new_mask);
4830 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4831}
4832
1da177e4
LT
4833/*
4834 * This is how migration works:
4835 *
969c7921
TH
4836 * 1) we invoke migration_cpu_stop() on the target CPU using
4837 * stop_one_cpu().
4838 * 2) stopper starts to run (implicitly forcing the migrated thread
4839 * off the CPU)
4840 * 3) it checks whether the migrated task is still in the wrong runqueue.
4841 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4842 * it and puts it into the right queue.
969c7921
TH
4843 * 5) stopper completes and stop_one_cpu() returns and the migration
4844 * is done.
1da177e4
LT
4845 */
4846
4847/*
4848 * Change a given task's CPU affinity. Migrate the thread to a
4849 * proper CPU and schedule it away if the CPU it's executing on
4850 * is removed from the allowed bitmask.
4851 *
4852 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4853 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4854 * call is not atomic; no spinlocks may be held.
4855 */
96f874e2 4856int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4857{
4858 unsigned long flags;
70b97a7f 4859 struct rq *rq;
969c7921 4860 unsigned int dest_cpu;
48f24c4d 4861 int ret = 0;
1da177e4
LT
4862
4863 rq = task_rq_lock(p, &flags);
e2912009 4864
db44fc01
YZ
4865 if (cpumask_equal(&p->cpus_allowed, new_mask))
4866 goto out;
4867
6ad4c188 4868 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4869 ret = -EINVAL;
4870 goto out;
4871 }
4872
db44fc01 4873 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
9985b0ba
DR
4874 ret = -EINVAL;
4875 goto out;
4876 }
4877
1e1b6c51 4878 do_set_cpus_allowed(p, new_mask);
73fe6aae 4879
1da177e4 4880 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4881 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4882 goto out;
4883
969c7921 4884 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4885 if (p->on_rq) {
969c7921 4886 struct migration_arg arg = { p, dest_cpu };
1da177e4 4887 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4888 task_rq_unlock(rq, p, &flags);
969c7921 4889 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4890 tlb_migrate_finish(p->mm);
4891 return 0;
4892 }
4893out:
0122ec5b 4894 task_rq_unlock(rq, p, &flags);
48f24c4d 4895
1da177e4
LT
4896 return ret;
4897}
cd8ba7cd 4898EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4899
4900/*
41a2d6cf 4901 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4902 * this because either it can't run here any more (set_cpus_allowed()
4903 * away from this CPU, or CPU going down), or because we're
4904 * attempting to rebalance this task on exec (sched_exec).
4905 *
4906 * So we race with normal scheduler movements, but that's OK, as long
4907 * as the task is no longer on this CPU.
efc30814
KK
4908 *
4909 * Returns non-zero if task was successfully migrated.
1da177e4 4910 */
efc30814 4911static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4912{
70b97a7f 4913 struct rq *rq_dest, *rq_src;
e2912009 4914 int ret = 0;
1da177e4 4915
e761b772 4916 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4917 return ret;
1da177e4
LT
4918
4919 rq_src = cpu_rq(src_cpu);
4920 rq_dest = cpu_rq(dest_cpu);
4921
0122ec5b 4922 raw_spin_lock(&p->pi_lock);
1da177e4
LT
4923 double_rq_lock(rq_src, rq_dest);
4924 /* Already moved. */
4925 if (task_cpu(p) != src_cpu)
b1e38734 4926 goto done;
1da177e4 4927 /* Affinity changed (again). */
fa17b507 4928 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4929 goto fail;
1da177e4 4930
e2912009
PZ
4931 /*
4932 * If we're not on a rq, the next wake-up will ensure we're
4933 * placed properly.
4934 */
fd2f4419 4935 if (p->on_rq) {
2e1cb74a 4936 deactivate_task(rq_src, p, 0);
e2912009 4937 set_task_cpu(p, dest_cpu);
dd41f596 4938 activate_task(rq_dest, p, 0);
15afe09b 4939 check_preempt_curr(rq_dest, p, 0);
1da177e4 4940 }
b1e38734 4941done:
efc30814 4942 ret = 1;
b1e38734 4943fail:
1da177e4 4944 double_rq_unlock(rq_src, rq_dest);
0122ec5b 4945 raw_spin_unlock(&p->pi_lock);
efc30814 4946 return ret;
1da177e4
LT
4947}
4948
4949/*
969c7921
TH
4950 * migration_cpu_stop - this will be executed by a highprio stopper thread
4951 * and performs thread migration by bumping thread off CPU then
4952 * 'pushing' onto another runqueue.
1da177e4 4953 */
969c7921 4954static int migration_cpu_stop(void *data)
1da177e4 4955{
969c7921 4956 struct migration_arg *arg = data;
f7b4cddc 4957
969c7921
TH
4958 /*
4959 * The original target cpu might have gone down and we might
4960 * be on another cpu but it doesn't matter.
4961 */
f7b4cddc 4962 local_irq_disable();
969c7921 4963 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4964 local_irq_enable();
1da177e4 4965 return 0;
f7b4cddc
ON
4966}
4967
1da177e4 4968#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4969
054b9108 4970/*
48c5ccae
PZ
4971 * Ensures that the idle task is using init_mm right before its cpu goes
4972 * offline.
054b9108 4973 */
48c5ccae 4974void idle_task_exit(void)
1da177e4 4975{
48c5ccae 4976 struct mm_struct *mm = current->active_mm;
e76bd8d9 4977
48c5ccae 4978 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4979
48c5ccae
PZ
4980 if (mm != &init_mm)
4981 switch_mm(mm, &init_mm, current);
4982 mmdrop(mm);
1da177e4
LT
4983}
4984
4985/*
4986 * While a dead CPU has no uninterruptible tasks queued at this point,
4987 * it might still have a nonzero ->nr_uninterruptible counter, because
4988 * for performance reasons the counter is not stricly tracking tasks to
4989 * their home CPUs. So we just add the counter to another CPU's counter,
4990 * to keep the global sum constant after CPU-down:
4991 */
70b97a7f 4992static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 4993{
6ad4c188 4994 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4 4995
1da177e4
LT
4996 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4997 rq_src->nr_uninterruptible = 0;
1da177e4
LT
4998}
4999
dd41f596 5000/*
48c5ccae 5001 * remove the tasks which were accounted by rq from calc_load_tasks.
1da177e4 5002 */
48c5ccae 5003static void calc_global_load_remove(struct rq *rq)
1da177e4 5004{
48c5ccae
PZ
5005 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5006 rq->calc_load_active = 0;
1da177e4
LT
5007}
5008
48f24c4d 5009/*
48c5ccae
PZ
5010 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5011 * try_to_wake_up()->select_task_rq().
5012 *
5013 * Called with rq->lock held even though we'er in stop_machine() and
5014 * there's no concurrency possible, we hold the required locks anyway
5015 * because of lock validation efforts.
1da177e4 5016 */
48c5ccae 5017static void migrate_tasks(unsigned int dead_cpu)
1da177e4 5018{
70b97a7f 5019 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
5020 struct task_struct *next, *stop = rq->stop;
5021 int dest_cpu;
1da177e4
LT
5022
5023 /*
48c5ccae
PZ
5024 * Fudge the rq selection such that the below task selection loop
5025 * doesn't get stuck on the currently eligible stop task.
5026 *
5027 * We're currently inside stop_machine() and the rq is either stuck
5028 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5029 * either way we should never end up calling schedule() until we're
5030 * done here.
1da177e4 5031 */
48c5ccae 5032 rq->stop = NULL;
48f24c4d 5033
8cb120d3
PT
5034 /* Ensure any throttled groups are reachable by pick_next_task */
5035 unthrottle_offline_cfs_rqs(rq);
5036
dd41f596 5037 for ( ; ; ) {
48c5ccae
PZ
5038 /*
5039 * There's this thread running, bail when that's the only
5040 * remaining thread.
5041 */
5042 if (rq->nr_running == 1)
dd41f596 5043 break;
48c5ccae 5044
b67802ea 5045 next = pick_next_task(rq);
48c5ccae 5046 BUG_ON(!next);
79c53799 5047 next->sched_class->put_prev_task(rq, next);
e692ab53 5048
48c5ccae
PZ
5049 /* Find suitable destination for @next, with force if needed. */
5050 dest_cpu = select_fallback_rq(dead_cpu, next);
5051 raw_spin_unlock(&rq->lock);
5052
5053 __migrate_task(next, dead_cpu, dest_cpu);
5054
5055 raw_spin_lock(&rq->lock);
1da177e4 5056 }
dce48a84 5057
48c5ccae 5058 rq->stop = stop;
dce48a84 5059}
48c5ccae 5060
1da177e4
LT
5061#endif /* CONFIG_HOTPLUG_CPU */
5062
e692ab53
NP
5063#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5064
5065static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5066 {
5067 .procname = "sched_domain",
c57baf1e 5068 .mode = 0555,
e0361851 5069 },
56992309 5070 {}
e692ab53
NP
5071};
5072
5073static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5074 {
5075 .procname = "kernel",
c57baf1e 5076 .mode = 0555,
e0361851
AD
5077 .child = sd_ctl_dir,
5078 },
56992309 5079 {}
e692ab53
NP
5080};
5081
5082static struct ctl_table *sd_alloc_ctl_entry(int n)
5083{
5084 struct ctl_table *entry =
5cf9f062 5085 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5086
e692ab53
NP
5087 return entry;
5088}
5089
6382bc90
MM
5090static void sd_free_ctl_entry(struct ctl_table **tablep)
5091{
cd790076 5092 struct ctl_table *entry;
6382bc90 5093
cd790076
MM
5094 /*
5095 * In the intermediate directories, both the child directory and
5096 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5097 * will always be set. In the lowest directory the names are
cd790076
MM
5098 * static strings and all have proc handlers.
5099 */
5100 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5101 if (entry->child)
5102 sd_free_ctl_entry(&entry->child);
cd790076
MM
5103 if (entry->proc_handler == NULL)
5104 kfree(entry->procname);
5105 }
6382bc90
MM
5106
5107 kfree(*tablep);
5108 *tablep = NULL;
5109}
5110
e692ab53 5111static void
e0361851 5112set_table_entry(struct ctl_table *entry,
e692ab53
NP
5113 const char *procname, void *data, int maxlen,
5114 mode_t mode, proc_handler *proc_handler)
5115{
e692ab53
NP
5116 entry->procname = procname;
5117 entry->data = data;
5118 entry->maxlen = maxlen;
5119 entry->mode = mode;
5120 entry->proc_handler = proc_handler;
5121}
5122
5123static struct ctl_table *
5124sd_alloc_ctl_domain_table(struct sched_domain *sd)
5125{
a5d8c348 5126 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 5127
ad1cdc1d
MM
5128 if (table == NULL)
5129 return NULL;
5130
e0361851 5131 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5132 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5133 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5134 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5135 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5136 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5137 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5138 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5139 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5140 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5141 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5142 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5143 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5144 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5145 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5146 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5147 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5148 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5149 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5150 &sd->cache_nice_tries,
5151 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5152 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5153 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
5154 set_table_entry(&table[11], "name", sd->name,
5155 CORENAME_MAX_SIZE, 0444, proc_dostring);
5156 /* &table[12] is terminator */
e692ab53
NP
5157
5158 return table;
5159}
5160
9a4e7159 5161static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5162{
5163 struct ctl_table *entry, *table;
5164 struct sched_domain *sd;
5165 int domain_num = 0, i;
5166 char buf[32];
5167
5168 for_each_domain(cpu, sd)
5169 domain_num++;
5170 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5171 if (table == NULL)
5172 return NULL;
e692ab53
NP
5173
5174 i = 0;
5175 for_each_domain(cpu, sd) {
5176 snprintf(buf, 32, "domain%d", i);
e692ab53 5177 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5178 entry->mode = 0555;
e692ab53
NP
5179 entry->child = sd_alloc_ctl_domain_table(sd);
5180 entry++;
5181 i++;
5182 }
5183 return table;
5184}
5185
5186static struct ctl_table_header *sd_sysctl_header;
6382bc90 5187static void register_sched_domain_sysctl(void)
e692ab53 5188{
6ad4c188 5189 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5190 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5191 char buf[32];
5192
7378547f
MM
5193 WARN_ON(sd_ctl_dir[0].child);
5194 sd_ctl_dir[0].child = entry;
5195
ad1cdc1d
MM
5196 if (entry == NULL)
5197 return;
5198
6ad4c188 5199 for_each_possible_cpu(i) {
e692ab53 5200 snprintf(buf, 32, "cpu%d", i);
e692ab53 5201 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5202 entry->mode = 0555;
e692ab53 5203 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5204 entry++;
e692ab53 5205 }
7378547f
MM
5206
5207 WARN_ON(sd_sysctl_header);
e692ab53
NP
5208 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5209}
6382bc90 5210
7378547f 5211/* may be called multiple times per register */
6382bc90
MM
5212static void unregister_sched_domain_sysctl(void)
5213{
7378547f
MM
5214 if (sd_sysctl_header)
5215 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5216 sd_sysctl_header = NULL;
7378547f
MM
5217 if (sd_ctl_dir[0].child)
5218 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5219}
e692ab53 5220#else
6382bc90
MM
5221static void register_sched_domain_sysctl(void)
5222{
5223}
5224static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5225{
5226}
5227#endif
5228
1f11eb6a
GH
5229static void set_rq_online(struct rq *rq)
5230{
5231 if (!rq->online) {
5232 const struct sched_class *class;
5233
c6c4927b 5234 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5235 rq->online = 1;
5236
5237 for_each_class(class) {
5238 if (class->rq_online)
5239 class->rq_online(rq);
5240 }
5241 }
5242}
5243
5244static void set_rq_offline(struct rq *rq)
5245{
5246 if (rq->online) {
5247 const struct sched_class *class;
5248
5249 for_each_class(class) {
5250 if (class->rq_offline)
5251 class->rq_offline(rq);
5252 }
5253
c6c4927b 5254 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5255 rq->online = 0;
5256 }
5257}
5258
1da177e4
LT
5259/*
5260 * migration_call - callback that gets triggered when a CPU is added.
5261 * Here we can start up the necessary migration thread for the new CPU.
5262 */
48f24c4d
IM
5263static int __cpuinit
5264migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5265{
48f24c4d 5266 int cpu = (long)hcpu;
1da177e4 5267 unsigned long flags;
969c7921 5268 struct rq *rq = cpu_rq(cpu);
1da177e4 5269
48c5ccae 5270 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5271
1da177e4 5272 case CPU_UP_PREPARE:
a468d389 5273 rq->calc_load_update = calc_load_update;
1da177e4 5274 break;
48f24c4d 5275
1da177e4 5276 case CPU_ONLINE:
1f94ef59 5277 /* Update our root-domain */
05fa785c 5278 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5279 if (rq->rd) {
c6c4927b 5280 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5281
5282 set_rq_online(rq);
1f94ef59 5283 }
05fa785c 5284 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5285 break;
48f24c4d 5286
1da177e4 5287#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5288 case CPU_DYING:
317f3941 5289 sched_ttwu_pending();
57d885fe 5290 /* Update our root-domain */
05fa785c 5291 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5292 if (rq->rd) {
c6c4927b 5293 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5294 set_rq_offline(rq);
57d885fe 5295 }
48c5ccae
PZ
5296 migrate_tasks(cpu);
5297 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5298 raw_spin_unlock_irqrestore(&rq->lock, flags);
48c5ccae
PZ
5299
5300 migrate_nr_uninterruptible(rq);
5301 calc_global_load_remove(rq);
57d885fe 5302 break;
1da177e4
LT
5303#endif
5304 }
49c022e6
PZ
5305
5306 update_max_interval();
5307
1da177e4
LT
5308 return NOTIFY_OK;
5309}
5310
f38b0820
PM
5311/*
5312 * Register at high priority so that task migration (migrate_all_tasks)
5313 * happens before everything else. This has to be lower priority than
cdd6c482 5314 * the notifier in the perf_event subsystem, though.
1da177e4 5315 */
26c2143b 5316static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 5317 .notifier_call = migration_call,
50a323b7 5318 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5319};
5320
3a101d05
TH
5321static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5322 unsigned long action, void *hcpu)
5323{
5324 switch (action & ~CPU_TASKS_FROZEN) {
5325 case CPU_ONLINE:
5326 case CPU_DOWN_FAILED:
5327 set_cpu_active((long)hcpu, true);
5328 return NOTIFY_OK;
5329 default:
5330 return NOTIFY_DONE;
5331 }
5332}
5333
5334static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5335 unsigned long action, void *hcpu)
5336{
5337 switch (action & ~CPU_TASKS_FROZEN) {
5338 case CPU_DOWN_PREPARE:
5339 set_cpu_active((long)hcpu, false);
5340 return NOTIFY_OK;
5341 default:
5342 return NOTIFY_DONE;
5343 }
5344}
5345
7babe8db 5346static int __init migration_init(void)
1da177e4
LT
5347{
5348 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5349 int err;
48f24c4d 5350
3a101d05 5351 /* Initialize migration for the boot CPU */
07dccf33
AM
5352 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5353 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5354 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5355 register_cpu_notifier(&migration_notifier);
7babe8db 5356
3a101d05
TH
5357 /* Register cpu active notifiers */
5358 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5359 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5360
a004cd42 5361 return 0;
1da177e4 5362}
7babe8db 5363early_initcall(migration_init);
1da177e4
LT
5364#endif
5365
5366#ifdef CONFIG_SMP
476f3534 5367
4cb98839
PZ
5368static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5369
3e9830dc 5370#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5371
f6630114
MT
5372static __read_mostly int sched_domain_debug_enabled;
5373
5374static int __init sched_domain_debug_setup(char *str)
5375{
5376 sched_domain_debug_enabled = 1;
5377
5378 return 0;
5379}
5380early_param("sched_debug", sched_domain_debug_setup);
5381
7c16ec58 5382static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5383 struct cpumask *groupmask)
1da177e4 5384{
4dcf6aff 5385 struct sched_group *group = sd->groups;
434d53b0 5386 char str[256];
1da177e4 5387
968ea6d8 5388 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5389 cpumask_clear(groupmask);
4dcf6aff
IM
5390
5391 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5392
5393 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5394 printk("does not load-balance\n");
4dcf6aff 5395 if (sd->parent)
3df0fc5b
PZ
5396 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5397 " has parent");
4dcf6aff 5398 return -1;
41c7ce9a
NP
5399 }
5400
3df0fc5b 5401 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5402
758b2cdc 5403 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5404 printk(KERN_ERR "ERROR: domain->span does not contain "
5405 "CPU%d\n", cpu);
4dcf6aff 5406 }
758b2cdc 5407 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5408 printk(KERN_ERR "ERROR: domain->groups does not contain"
5409 " CPU%d\n", cpu);
4dcf6aff 5410 }
1da177e4 5411
4dcf6aff 5412 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5413 do {
4dcf6aff 5414 if (!group) {
3df0fc5b
PZ
5415 printk("\n");
5416 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5417 break;
5418 }
5419
9c3f75cb 5420 if (!group->sgp->power) {
3df0fc5b
PZ
5421 printk(KERN_CONT "\n");
5422 printk(KERN_ERR "ERROR: domain->cpu_power not "
5423 "set\n");
4dcf6aff
IM
5424 break;
5425 }
1da177e4 5426
758b2cdc 5427 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5428 printk(KERN_CONT "\n");
5429 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5430 break;
5431 }
1da177e4 5432
758b2cdc 5433 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5434 printk(KERN_CONT "\n");
5435 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5436 break;
5437 }
1da177e4 5438
758b2cdc 5439 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5440
968ea6d8 5441 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5442
3df0fc5b 5443 printk(KERN_CONT " %s", str);
9c3f75cb 5444 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 5445 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 5446 group->sgp->power);
381512cf 5447 }
1da177e4 5448
4dcf6aff
IM
5449 group = group->next;
5450 } while (group != sd->groups);
3df0fc5b 5451 printk(KERN_CONT "\n");
1da177e4 5452
758b2cdc 5453 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5454 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5455
758b2cdc
RR
5456 if (sd->parent &&
5457 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5458 printk(KERN_ERR "ERROR: parent span is not a superset "
5459 "of domain->span\n");
4dcf6aff
IM
5460 return 0;
5461}
1da177e4 5462
4dcf6aff
IM
5463static void sched_domain_debug(struct sched_domain *sd, int cpu)
5464{
5465 int level = 0;
1da177e4 5466
f6630114
MT
5467 if (!sched_domain_debug_enabled)
5468 return;
5469
4dcf6aff
IM
5470 if (!sd) {
5471 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5472 return;
5473 }
1da177e4 5474
4dcf6aff
IM
5475 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5476
5477 for (;;) {
4cb98839 5478 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5479 break;
1da177e4
LT
5480 level++;
5481 sd = sd->parent;
33859f7f 5482 if (!sd)
4dcf6aff
IM
5483 break;
5484 }
1da177e4 5485}
6d6bc0ad 5486#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5487# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 5488#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5489
1a20ff27 5490static int sd_degenerate(struct sched_domain *sd)
245af2c7 5491{
758b2cdc 5492 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5493 return 1;
5494
5495 /* Following flags need at least 2 groups */
5496 if (sd->flags & (SD_LOAD_BALANCE |
5497 SD_BALANCE_NEWIDLE |
5498 SD_BALANCE_FORK |
89c4710e
SS
5499 SD_BALANCE_EXEC |
5500 SD_SHARE_CPUPOWER |
5501 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5502 if (sd->groups != sd->groups->next)
5503 return 0;
5504 }
5505
5506 /* Following flags don't use groups */
c88d5910 5507 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5508 return 0;
5509
5510 return 1;
5511}
5512
48f24c4d
IM
5513static int
5514sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5515{
5516 unsigned long cflags = sd->flags, pflags = parent->flags;
5517
5518 if (sd_degenerate(parent))
5519 return 1;
5520
758b2cdc 5521 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5522 return 0;
5523
245af2c7
SS
5524 /* Flags needing groups don't count if only 1 group in parent */
5525 if (parent->groups == parent->groups->next) {
5526 pflags &= ~(SD_LOAD_BALANCE |
5527 SD_BALANCE_NEWIDLE |
5528 SD_BALANCE_FORK |
89c4710e
SS
5529 SD_BALANCE_EXEC |
5530 SD_SHARE_CPUPOWER |
5531 SD_SHARE_PKG_RESOURCES);
5436499e
KC
5532 if (nr_node_ids == 1)
5533 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5534 }
5535 if (~cflags & pflags)
5536 return 0;
5537
5538 return 1;
5539}
5540
dce840a0 5541static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5542{
dce840a0 5543 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5544
68e74568 5545 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
5546 free_cpumask_var(rd->rto_mask);
5547 free_cpumask_var(rd->online);
5548 free_cpumask_var(rd->span);
5549 kfree(rd);
5550}
5551
57d885fe
GH
5552static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5553{
a0490fa3 5554 struct root_domain *old_rd = NULL;
57d885fe 5555 unsigned long flags;
57d885fe 5556
05fa785c 5557 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5558
5559 if (rq->rd) {
a0490fa3 5560 old_rd = rq->rd;
57d885fe 5561
c6c4927b 5562 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5563 set_rq_offline(rq);
57d885fe 5564
c6c4927b 5565 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5566
a0490fa3
IM
5567 /*
5568 * If we dont want to free the old_rt yet then
5569 * set old_rd to NULL to skip the freeing later
5570 * in this function:
5571 */
5572 if (!atomic_dec_and_test(&old_rd->refcount))
5573 old_rd = NULL;
57d885fe
GH
5574 }
5575
5576 atomic_inc(&rd->refcount);
5577 rq->rd = rd;
5578
c6c4927b 5579 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5580 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5581 set_rq_online(rq);
57d885fe 5582
05fa785c 5583 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5584
5585 if (old_rd)
dce840a0 5586 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5587}
5588
68c38fc3 5589static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5590{
5591 memset(rd, 0, sizeof(*rd));
5592
68c38fc3 5593 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5594 goto out;
68c38fc3 5595 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5596 goto free_span;
68c38fc3 5597 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 5598 goto free_online;
6e0534f2 5599
68c38fc3 5600 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5601 goto free_rto_mask;
c6c4927b 5602 return 0;
6e0534f2 5603
68e74568
RR
5604free_rto_mask:
5605 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
5606free_online:
5607 free_cpumask_var(rd->online);
5608free_span:
5609 free_cpumask_var(rd->span);
0c910d28 5610out:
c6c4927b 5611 return -ENOMEM;
57d885fe
GH
5612}
5613
029632fb
PZ
5614/*
5615 * By default the system creates a single root-domain with all cpus as
5616 * members (mimicking the global state we have today).
5617 */
5618struct root_domain def_root_domain;
5619
57d885fe
GH
5620static void init_defrootdomain(void)
5621{
68c38fc3 5622 init_rootdomain(&def_root_domain);
c6c4927b 5623
57d885fe
GH
5624 atomic_set(&def_root_domain.refcount, 1);
5625}
5626
dc938520 5627static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5628{
5629 struct root_domain *rd;
5630
5631 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5632 if (!rd)
5633 return NULL;
5634
68c38fc3 5635 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5636 kfree(rd);
5637 return NULL;
5638 }
57d885fe
GH
5639
5640 return rd;
5641}
5642
e3589f6c
PZ
5643static void free_sched_groups(struct sched_group *sg, int free_sgp)
5644{
5645 struct sched_group *tmp, *first;
5646
5647 if (!sg)
5648 return;
5649
5650 first = sg;
5651 do {
5652 tmp = sg->next;
5653
5654 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5655 kfree(sg->sgp);
5656
5657 kfree(sg);
5658 sg = tmp;
5659 } while (sg != first);
5660}
5661
dce840a0
PZ
5662static void free_sched_domain(struct rcu_head *rcu)
5663{
5664 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5665
5666 /*
5667 * If its an overlapping domain it has private groups, iterate and
5668 * nuke them all.
5669 */
5670 if (sd->flags & SD_OVERLAP) {
5671 free_sched_groups(sd->groups, 1);
5672 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 5673 kfree(sd->groups->sgp);
dce840a0 5674 kfree(sd->groups);
9c3f75cb 5675 }
dce840a0
PZ
5676 kfree(sd);
5677}
5678
5679static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5680{
5681 call_rcu(&sd->rcu, free_sched_domain);
5682}
5683
5684static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5685{
5686 for (; sd; sd = sd->parent)
5687 destroy_sched_domain(sd, cpu);
5688}
5689
1da177e4 5690/*
0eab9146 5691 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5692 * hold the hotplug lock.
5693 */
0eab9146
IM
5694static void
5695cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5696{
70b97a7f 5697 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5698 struct sched_domain *tmp;
5699
5700 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5701 for (tmp = sd; tmp; ) {
245af2c7
SS
5702 struct sched_domain *parent = tmp->parent;
5703 if (!parent)
5704 break;
f29c9b1c 5705
1a848870 5706 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5707 tmp->parent = parent->parent;
1a848870
SS
5708 if (parent->parent)
5709 parent->parent->child = tmp;
dce840a0 5710 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5711 } else
5712 tmp = tmp->parent;
245af2c7
SS
5713 }
5714
1a848870 5715 if (sd && sd_degenerate(sd)) {
dce840a0 5716 tmp = sd;
245af2c7 5717 sd = sd->parent;
dce840a0 5718 destroy_sched_domain(tmp, cpu);
1a848870
SS
5719 if (sd)
5720 sd->child = NULL;
5721 }
1da177e4 5722
4cb98839 5723 sched_domain_debug(sd, cpu);
1da177e4 5724
57d885fe 5725 rq_attach_root(rq, rd);
dce840a0 5726 tmp = rq->sd;
674311d5 5727 rcu_assign_pointer(rq->sd, sd);
dce840a0 5728 destroy_sched_domains(tmp, cpu);
1da177e4
LT
5729}
5730
5731/* cpus with isolated domains */
dcc30a35 5732static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5733
5734/* Setup the mask of cpus configured for isolated domains */
5735static int __init isolated_cpu_setup(char *str)
5736{
bdddd296 5737 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5738 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5739 return 1;
5740}
5741
8927f494 5742__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5743
9c1cfda2 5744#ifdef CONFIG_NUMA
198e2f18 5745
9c1cfda2
JH
5746/**
5747 * find_next_best_node - find the next node to include in a sched_domain
5748 * @node: node whose sched_domain we're building
5749 * @used_nodes: nodes already in the sched_domain
5750 *
41a2d6cf 5751 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
5752 * finds the closest node not already in the @used_nodes map.
5753 *
5754 * Should use nodemask_t.
5755 */
c5f59f08 5756static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2 5757{
7142d17e 5758 int i, n, val, min_val, best_node = -1;
9c1cfda2
JH
5759
5760 min_val = INT_MAX;
5761
076ac2af 5762 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 5763 /* Start at @node */
076ac2af 5764 n = (node + i) % nr_node_ids;
9c1cfda2
JH
5765
5766 if (!nr_cpus_node(n))
5767 continue;
5768
5769 /* Skip already used nodes */
c5f59f08 5770 if (node_isset(n, *used_nodes))
9c1cfda2
JH
5771 continue;
5772
5773 /* Simple min distance search */
5774 val = node_distance(node, n);
5775
5776 if (val < min_val) {
5777 min_val = val;
5778 best_node = n;
5779 }
5780 }
5781
7142d17e
HD
5782 if (best_node != -1)
5783 node_set(best_node, *used_nodes);
9c1cfda2
JH
5784 return best_node;
5785}
5786
5787/**
5788 * sched_domain_node_span - get a cpumask for a node's sched_domain
5789 * @node: node whose cpumask we're constructing
73486722 5790 * @span: resulting cpumask
9c1cfda2 5791 *
41a2d6cf 5792 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
5793 * should be one that prevents unnecessary balancing, but also spreads tasks
5794 * out optimally.
5795 */
96f874e2 5796static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 5797{
c5f59f08 5798 nodemask_t used_nodes;
48f24c4d 5799 int i;
9c1cfda2 5800
6ca09dfc 5801 cpumask_clear(span);
c5f59f08 5802 nodes_clear(used_nodes);
9c1cfda2 5803
6ca09dfc 5804 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 5805 node_set(node, used_nodes);
9c1cfda2
JH
5806
5807 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 5808 int next_node = find_next_best_node(node, &used_nodes);
7142d17e
HD
5809 if (next_node < 0)
5810 break;
6ca09dfc 5811 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 5812 }
9c1cfda2 5813}
d3081f52
PZ
5814
5815static const struct cpumask *cpu_node_mask(int cpu)
5816{
5817 lockdep_assert_held(&sched_domains_mutex);
5818
5819 sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
5820
5821 return sched_domains_tmpmask;
5822}
2c402dc3
PZ
5823
5824static const struct cpumask *cpu_allnodes_mask(int cpu)
5825{
5826 return cpu_possible_mask;
5827}
6d6bc0ad 5828#endif /* CONFIG_NUMA */
9c1cfda2 5829
d3081f52
PZ
5830static const struct cpumask *cpu_cpu_mask(int cpu)
5831{
5832 return cpumask_of_node(cpu_to_node(cpu));
5833}
5834
5c45bf27 5835int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 5836
dce840a0
PZ
5837struct sd_data {
5838 struct sched_domain **__percpu sd;
5839 struct sched_group **__percpu sg;
9c3f75cb 5840 struct sched_group_power **__percpu sgp;
dce840a0
PZ
5841};
5842
49a02c51 5843struct s_data {
21d42ccf 5844 struct sched_domain ** __percpu sd;
49a02c51
AH
5845 struct root_domain *rd;
5846};
5847
2109b99e 5848enum s_alloc {
2109b99e 5849 sa_rootdomain,
21d42ccf 5850 sa_sd,
dce840a0 5851 sa_sd_storage,
2109b99e
AH
5852 sa_none,
5853};
5854
54ab4ff4
PZ
5855struct sched_domain_topology_level;
5856
5857typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
5858typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5859
e3589f6c
PZ
5860#define SDTL_OVERLAP 0x01
5861
eb7a74e6 5862struct sched_domain_topology_level {
2c402dc3
PZ
5863 sched_domain_init_f init;
5864 sched_domain_mask_f mask;
e3589f6c 5865 int flags;
54ab4ff4 5866 struct sd_data data;
eb7a74e6
PZ
5867};
5868
e3589f6c
PZ
5869static int
5870build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5871{
5872 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5873 const struct cpumask *span = sched_domain_span(sd);
5874 struct cpumask *covered = sched_domains_tmpmask;
5875 struct sd_data *sdd = sd->private;
5876 struct sched_domain *child;
5877 int i;
5878
5879 cpumask_clear(covered);
5880
5881 for_each_cpu(i, span) {
5882 struct cpumask *sg_span;
5883
5884 if (cpumask_test_cpu(i, covered))
5885 continue;
5886
5887 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5888 GFP_KERNEL, cpu_to_node(i));
5889
5890 if (!sg)
5891 goto fail;
5892
5893 sg_span = sched_group_cpus(sg);
5894
5895 child = *per_cpu_ptr(sdd->sd, i);
5896 if (child->child) {
5897 child = child->child;
5898 cpumask_copy(sg_span, sched_domain_span(child));
5899 } else
5900 cpumask_set_cpu(i, sg_span);
5901
5902 cpumask_or(covered, covered, sg_span);
5903
5904 sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
5905 atomic_inc(&sg->sgp->ref);
5906
5907 if (cpumask_test_cpu(cpu, sg_span))
5908 groups = sg;
5909
5910 if (!first)
5911 first = sg;
5912 if (last)
5913 last->next = sg;
5914 last = sg;
5915 last->next = first;
5916 }
5917 sd->groups = groups;
5918
5919 return 0;
5920
5921fail:
5922 free_sched_groups(first, 0);
5923
5924 return -ENOMEM;
5925}
5926
dce840a0 5927static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5928{
dce840a0
PZ
5929 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5930 struct sched_domain *child = sd->child;
1da177e4 5931
dce840a0
PZ
5932 if (child)
5933 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5934
9c3f75cb 5935 if (sg) {
dce840a0 5936 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 5937 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 5938 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 5939 }
dce840a0
PZ
5940
5941 return cpu;
1e9f28fa 5942}
1e9f28fa 5943
01a08546 5944/*
dce840a0
PZ
5945 * build_sched_groups will build a circular linked list of the groups
5946 * covered by the given span, and will set each group's ->cpumask correctly,
5947 * and ->cpu_power to 0.
e3589f6c
PZ
5948 *
5949 * Assumes the sched_domain tree is fully constructed
01a08546 5950 */
e3589f6c
PZ
5951static int
5952build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5953{
dce840a0
PZ
5954 struct sched_group *first = NULL, *last = NULL;
5955 struct sd_data *sdd = sd->private;
5956 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5957 struct cpumask *covered;
dce840a0 5958 int i;
9c1cfda2 5959
e3589f6c
PZ
5960 get_group(cpu, sdd, &sd->groups);
5961 atomic_inc(&sd->groups->ref);
5962
5963 if (cpu != cpumask_first(sched_domain_span(sd)))
5964 return 0;
5965
f96225fd
PZ
5966 lockdep_assert_held(&sched_domains_mutex);
5967 covered = sched_domains_tmpmask;
5968
dce840a0 5969 cpumask_clear(covered);
6711cab4 5970
dce840a0
PZ
5971 for_each_cpu(i, span) {
5972 struct sched_group *sg;
5973 int group = get_group(i, sdd, &sg);
5974 int j;
6711cab4 5975
dce840a0
PZ
5976 if (cpumask_test_cpu(i, covered))
5977 continue;
6711cab4 5978
dce840a0 5979 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 5980 sg->sgp->power = 0;
0601a88d 5981
dce840a0
PZ
5982 for_each_cpu(j, span) {
5983 if (get_group(j, sdd, NULL) != group)
5984 continue;
0601a88d 5985
dce840a0
PZ
5986 cpumask_set_cpu(j, covered);
5987 cpumask_set_cpu(j, sched_group_cpus(sg));
5988 }
0601a88d 5989
dce840a0
PZ
5990 if (!first)
5991 first = sg;
5992 if (last)
5993 last->next = sg;
5994 last = sg;
5995 }
5996 last->next = first;
e3589f6c
PZ
5997
5998 return 0;
0601a88d 5999}
51888ca2 6000
89c4710e
SS
6001/*
6002 * Initialize sched groups cpu_power.
6003 *
6004 * cpu_power indicates the capacity of sched group, which is used while
6005 * distributing the load between different sched groups in a sched domain.
6006 * Typically cpu_power for all the groups in a sched domain will be same unless
6007 * there are asymmetries in the topology. If there are asymmetries, group
6008 * having more cpu_power will pickup more load compared to the group having
6009 * less cpu_power.
89c4710e
SS
6010 */
6011static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6012{
e3589f6c 6013 struct sched_group *sg = sd->groups;
89c4710e 6014
e3589f6c
PZ
6015 WARN_ON(!sd || !sg);
6016
6017 do {
6018 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6019 sg = sg->next;
6020 } while (sg != sd->groups);
89c4710e 6021
e3589f6c
PZ
6022 if (cpu != group_first_cpu(sg))
6023 return;
aae6d3dd 6024
d274cb30 6025 update_group_power(sd, cpu);
89c4710e
SS
6026}
6027
029632fb
PZ
6028int __weak arch_sd_sibling_asym_packing(void)
6029{
6030 return 0*SD_ASYM_PACKING;
6031}
6032
7c16ec58
MT
6033/*
6034 * Initializers for schedule domains
6035 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6036 */
6037
a5d8c348
IM
6038#ifdef CONFIG_SCHED_DEBUG
6039# define SD_INIT_NAME(sd, type) sd->name = #type
6040#else
6041# define SD_INIT_NAME(sd, type) do { } while (0)
6042#endif
6043
54ab4ff4
PZ
6044#define SD_INIT_FUNC(type) \
6045static noinline struct sched_domain * \
6046sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
6047{ \
6048 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
6049 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
6050 SD_INIT_NAME(sd, type); \
6051 sd->private = &tl->data; \
6052 return sd; \
7c16ec58
MT
6053}
6054
6055SD_INIT_FUNC(CPU)
6056#ifdef CONFIG_NUMA
6057 SD_INIT_FUNC(ALLNODES)
6058 SD_INIT_FUNC(NODE)
6059#endif
6060#ifdef CONFIG_SCHED_SMT
6061 SD_INIT_FUNC(SIBLING)
6062#endif
6063#ifdef CONFIG_SCHED_MC
6064 SD_INIT_FUNC(MC)
6065#endif
01a08546
HC
6066#ifdef CONFIG_SCHED_BOOK
6067 SD_INIT_FUNC(BOOK)
6068#endif
7c16ec58 6069
1d3504fc 6070static int default_relax_domain_level = -1;
60495e77 6071int sched_domain_level_max;
1d3504fc
HS
6072
6073static int __init setup_relax_domain_level(char *str)
6074{
30e0e178
LZ
6075 unsigned long val;
6076
6077 val = simple_strtoul(str, NULL, 0);
60495e77 6078 if (val < sched_domain_level_max)
30e0e178
LZ
6079 default_relax_domain_level = val;
6080
1d3504fc
HS
6081 return 1;
6082}
6083__setup("relax_domain_level=", setup_relax_domain_level);
6084
6085static void set_domain_attribute(struct sched_domain *sd,
6086 struct sched_domain_attr *attr)
6087{
6088 int request;
6089
6090 if (!attr || attr->relax_domain_level < 0) {
6091 if (default_relax_domain_level < 0)
6092 return;
6093 else
6094 request = default_relax_domain_level;
6095 } else
6096 request = attr->relax_domain_level;
6097 if (request < sd->level) {
6098 /* turn off idle balance on this domain */
c88d5910 6099 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6100 } else {
6101 /* turn on idle balance on this domain */
c88d5910 6102 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6103 }
6104}
6105
54ab4ff4
PZ
6106static void __sdt_free(const struct cpumask *cpu_map);
6107static int __sdt_alloc(const struct cpumask *cpu_map);
6108
2109b99e
AH
6109static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6110 const struct cpumask *cpu_map)
6111{
6112 switch (what) {
2109b99e 6113 case sa_rootdomain:
822ff793
PZ
6114 if (!atomic_read(&d->rd->refcount))
6115 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6116 case sa_sd:
6117 free_percpu(d->sd); /* fall through */
dce840a0 6118 case sa_sd_storage:
54ab4ff4 6119 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6120 case sa_none:
6121 break;
6122 }
6123}
3404c8d9 6124
2109b99e
AH
6125static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6126 const struct cpumask *cpu_map)
6127{
dce840a0
PZ
6128 memset(d, 0, sizeof(*d));
6129
54ab4ff4
PZ
6130 if (__sdt_alloc(cpu_map))
6131 return sa_sd_storage;
dce840a0
PZ
6132 d->sd = alloc_percpu(struct sched_domain *);
6133 if (!d->sd)
6134 return sa_sd_storage;
2109b99e 6135 d->rd = alloc_rootdomain();
dce840a0 6136 if (!d->rd)
21d42ccf 6137 return sa_sd;
2109b99e
AH
6138 return sa_rootdomain;
6139}
57d885fe 6140
dce840a0
PZ
6141/*
6142 * NULL the sd_data elements we've used to build the sched_domain and
6143 * sched_group structure so that the subsequent __free_domain_allocs()
6144 * will not free the data we're using.
6145 */
6146static void claim_allocations(int cpu, struct sched_domain *sd)
6147{
6148 struct sd_data *sdd = sd->private;
dce840a0
PZ
6149
6150 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6151 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6152
e3589f6c 6153 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6154 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
6155
6156 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 6157 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
6158}
6159
2c402dc3
PZ
6160#ifdef CONFIG_SCHED_SMT
6161static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 6162{
2c402dc3 6163 return topology_thread_cpumask(cpu);
3bd65a80 6164}
2c402dc3 6165#endif
7f4588f3 6166
d069b916
PZ
6167/*
6168 * Topology list, bottom-up.
6169 */
2c402dc3 6170static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
6171#ifdef CONFIG_SCHED_SMT
6172 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 6173#endif
1e9f28fa 6174#ifdef CONFIG_SCHED_MC
2c402dc3 6175 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 6176#endif
d069b916
PZ
6177#ifdef CONFIG_SCHED_BOOK
6178 { sd_init_BOOK, cpu_book_mask, },
6179#endif
6180 { sd_init_CPU, cpu_cpu_mask, },
6181#ifdef CONFIG_NUMA
e3589f6c 6182 { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
d069b916 6183 { sd_init_ALLNODES, cpu_allnodes_mask, },
1da177e4 6184#endif
eb7a74e6
PZ
6185 { NULL, },
6186};
6187
6188static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6189
54ab4ff4
PZ
6190static int __sdt_alloc(const struct cpumask *cpu_map)
6191{
6192 struct sched_domain_topology_level *tl;
6193 int j;
6194
6195 for (tl = sched_domain_topology; tl->init; tl++) {
6196 struct sd_data *sdd = &tl->data;
6197
6198 sdd->sd = alloc_percpu(struct sched_domain *);
6199 if (!sdd->sd)
6200 return -ENOMEM;
6201
6202 sdd->sg = alloc_percpu(struct sched_group *);
6203 if (!sdd->sg)
6204 return -ENOMEM;
6205
9c3f75cb
PZ
6206 sdd->sgp = alloc_percpu(struct sched_group_power *);
6207 if (!sdd->sgp)
6208 return -ENOMEM;
6209
54ab4ff4
PZ
6210 for_each_cpu(j, cpu_map) {
6211 struct sched_domain *sd;
6212 struct sched_group *sg;
9c3f75cb 6213 struct sched_group_power *sgp;
54ab4ff4
PZ
6214
6215 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6216 GFP_KERNEL, cpu_to_node(j));
6217 if (!sd)
6218 return -ENOMEM;
6219
6220 *per_cpu_ptr(sdd->sd, j) = sd;
6221
6222 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6223 GFP_KERNEL, cpu_to_node(j));
6224 if (!sg)
6225 return -ENOMEM;
6226
6227 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb
PZ
6228
6229 sgp = kzalloc_node(sizeof(struct sched_group_power),
6230 GFP_KERNEL, cpu_to_node(j));
6231 if (!sgp)
6232 return -ENOMEM;
6233
6234 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
6235 }
6236 }
6237
6238 return 0;
6239}
6240
6241static void __sdt_free(const struct cpumask *cpu_map)
6242{
6243 struct sched_domain_topology_level *tl;
6244 int j;
6245
6246 for (tl = sched_domain_topology; tl->init; tl++) {
6247 struct sd_data *sdd = &tl->data;
6248
6249 for_each_cpu(j, cpu_map) {
e3589f6c
PZ
6250 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
6251 if (sd && (sd->flags & SD_OVERLAP))
6252 free_sched_groups(sd->groups, 0);
feff8fa0 6253 kfree(*per_cpu_ptr(sdd->sd, j));
54ab4ff4 6254 kfree(*per_cpu_ptr(sdd->sg, j));
9c3f75cb 6255 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
6256 }
6257 free_percpu(sdd->sd);
6258 free_percpu(sdd->sg);
9c3f75cb 6259 free_percpu(sdd->sgp);
54ab4ff4
PZ
6260 }
6261}
6262
2c402dc3
PZ
6263struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6264 struct s_data *d, const struct cpumask *cpu_map,
d069b916 6265 struct sched_domain_attr *attr, struct sched_domain *child,
2c402dc3
PZ
6266 int cpu)
6267{
54ab4ff4 6268 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 6269 if (!sd)
d069b916 6270 return child;
2c402dc3
PZ
6271
6272 set_domain_attribute(sd, attr);
6273 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6274 if (child) {
6275 sd->level = child->level + 1;
6276 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6277 child->parent = sd;
60495e77 6278 }
d069b916 6279 sd->child = child;
2c402dc3
PZ
6280
6281 return sd;
6282}
6283
2109b99e
AH
6284/*
6285 * Build sched domains for a given set of cpus and attach the sched domains
6286 * to the individual cpus
6287 */
dce840a0
PZ
6288static int build_sched_domains(const struct cpumask *cpu_map,
6289 struct sched_domain_attr *attr)
2109b99e
AH
6290{
6291 enum s_alloc alloc_state = sa_none;
dce840a0 6292 struct sched_domain *sd;
2109b99e 6293 struct s_data d;
822ff793 6294 int i, ret = -ENOMEM;
9c1cfda2 6295
2109b99e
AH
6296 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6297 if (alloc_state != sa_rootdomain)
6298 goto error;
9c1cfda2 6299
dce840a0 6300 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6301 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6302 struct sched_domain_topology_level *tl;
6303
3bd65a80 6304 sd = NULL;
e3589f6c 6305 for (tl = sched_domain_topology; tl->init; tl++) {
2c402dc3 6306 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
e3589f6c
PZ
6307 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6308 sd->flags |= SD_OVERLAP;
d110235d
PZ
6309 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6310 break;
e3589f6c 6311 }
d274cb30 6312
d069b916
PZ
6313 while (sd->child)
6314 sd = sd->child;
6315
21d42ccf 6316 *per_cpu_ptr(d.sd, i) = sd;
dce840a0
PZ
6317 }
6318
6319 /* Build the groups for the domains */
6320 for_each_cpu(i, cpu_map) {
6321 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6322 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6323 if (sd->flags & SD_OVERLAP) {
6324 if (build_overlap_sched_groups(sd, i))
6325 goto error;
6326 } else {
6327 if (build_sched_groups(sd, i))
6328 goto error;
6329 }
1cf51902 6330 }
a06dadbe 6331 }
9c1cfda2 6332
1da177e4 6333 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6334 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6335 if (!cpumask_test_cpu(i, cpu_map))
6336 continue;
9c1cfda2 6337
dce840a0
PZ
6338 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6339 claim_allocations(i, sd);
cd4ea6ae 6340 init_sched_groups_power(i, sd);
dce840a0 6341 }
f712c0c7 6342 }
9c1cfda2 6343
1da177e4 6344 /* Attach the domains */
dce840a0 6345 rcu_read_lock();
abcd083a 6346 for_each_cpu(i, cpu_map) {
21d42ccf 6347 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6348 cpu_attach_domain(sd, d.rd, i);
1da177e4 6349 }
dce840a0 6350 rcu_read_unlock();
51888ca2 6351
822ff793 6352 ret = 0;
51888ca2 6353error:
2109b99e 6354 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6355 return ret;
1da177e4 6356}
029190c5 6357
acc3f5d7 6358static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6359static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6360static struct sched_domain_attr *dattr_cur;
6361 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6362
6363/*
6364 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6365 * cpumask) fails, then fallback to a single sched domain,
6366 * as determined by the single cpumask fallback_doms.
029190c5 6367 */
4212823f 6368static cpumask_var_t fallback_doms;
029190c5 6369
ee79d1bd
HC
6370/*
6371 * arch_update_cpu_topology lets virtualized architectures update the
6372 * cpu core maps. It is supposed to return 1 if the topology changed
6373 * or 0 if it stayed the same.
6374 */
6375int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 6376{
ee79d1bd 6377 return 0;
22e52b07
HC
6378}
6379
acc3f5d7
RR
6380cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6381{
6382 int i;
6383 cpumask_var_t *doms;
6384
6385 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6386 if (!doms)
6387 return NULL;
6388 for (i = 0; i < ndoms; i++) {
6389 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6390 free_sched_domains(doms, i);
6391 return NULL;
6392 }
6393 }
6394 return doms;
6395}
6396
6397void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6398{
6399 unsigned int i;
6400 for (i = 0; i < ndoms; i++)
6401 free_cpumask_var(doms[i]);
6402 kfree(doms);
6403}
6404
1a20ff27 6405/*
41a2d6cf 6406 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6407 * For now this just excludes isolated cpus, but could be used to
6408 * exclude other special cases in the future.
1a20ff27 6409 */
c4a8849a 6410static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6411{
7378547f
MM
6412 int err;
6413
22e52b07 6414 arch_update_cpu_topology();
029190c5 6415 ndoms_cur = 1;
acc3f5d7 6416 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6417 if (!doms_cur)
acc3f5d7
RR
6418 doms_cur = &fallback_doms;
6419 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 6420 dattr_cur = NULL;
dce840a0 6421 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6422 register_sched_domain_sysctl();
7378547f
MM
6423
6424 return err;
1a20ff27
DG
6425}
6426
1a20ff27
DG
6427/*
6428 * Detach sched domains from a group of cpus specified in cpu_map
6429 * These cpus will now be attached to the NULL domain
6430 */
96f874e2 6431static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6432{
6433 int i;
6434
dce840a0 6435 rcu_read_lock();
abcd083a 6436 for_each_cpu(i, cpu_map)
57d885fe 6437 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6438 rcu_read_unlock();
1a20ff27
DG
6439}
6440
1d3504fc
HS
6441/* handle null as "default" */
6442static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6443 struct sched_domain_attr *new, int idx_new)
6444{
6445 struct sched_domain_attr tmp;
6446
6447 /* fast path */
6448 if (!new && !cur)
6449 return 1;
6450
6451 tmp = SD_ATTR_INIT;
6452 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6453 new ? (new + idx_new) : &tmp,
6454 sizeof(struct sched_domain_attr));
6455}
6456
029190c5
PJ
6457/*
6458 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6459 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6460 * doms_new[] to the current sched domain partitioning, doms_cur[].
6461 * It destroys each deleted domain and builds each new domain.
6462 *
acc3f5d7 6463 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6464 * The masks don't intersect (don't overlap.) We should setup one
6465 * sched domain for each mask. CPUs not in any of the cpumasks will
6466 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6467 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6468 * it as it is.
6469 *
acc3f5d7
RR
6470 * The passed in 'doms_new' should be allocated using
6471 * alloc_sched_domains. This routine takes ownership of it and will
6472 * free_sched_domains it when done with it. If the caller failed the
6473 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6474 * and partition_sched_domains() will fallback to the single partition
6475 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6476 *
96f874e2 6477 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6478 * ndoms_new == 0 is a special case for destroying existing domains,
6479 * and it will not create the default domain.
dfb512ec 6480 *
029190c5
PJ
6481 * Call with hotplug lock held
6482 */
acc3f5d7 6483void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6484 struct sched_domain_attr *dattr_new)
029190c5 6485{
dfb512ec 6486 int i, j, n;
d65bd5ec 6487 int new_topology;
029190c5 6488
712555ee 6489 mutex_lock(&sched_domains_mutex);
a1835615 6490
7378547f
MM
6491 /* always unregister in case we don't destroy any domains */
6492 unregister_sched_domain_sysctl();
6493
d65bd5ec
HC
6494 /* Let architecture update cpu core mappings. */
6495 new_topology = arch_update_cpu_topology();
6496
dfb512ec 6497 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6498
6499 /* Destroy deleted domains */
6500 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6501 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6502 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6503 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6504 goto match1;
6505 }
6506 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6507 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6508match1:
6509 ;
6510 }
6511
e761b772
MK
6512 if (doms_new == NULL) {
6513 ndoms_cur = 0;
acc3f5d7 6514 doms_new = &fallback_doms;
6ad4c188 6515 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6516 WARN_ON_ONCE(dattr_new);
e761b772
MK
6517 }
6518
029190c5
PJ
6519 /* Build new domains */
6520 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 6521 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 6522 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6523 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6524 goto match2;
6525 }
6526 /* no match - add a new doms_new */
dce840a0 6527 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6528match2:
6529 ;
6530 }
6531
6532 /* Remember the new sched domains */
acc3f5d7
RR
6533 if (doms_cur != &fallback_doms)
6534 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6535 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6536 doms_cur = doms_new;
1d3504fc 6537 dattr_cur = dattr_new;
029190c5 6538 ndoms_cur = ndoms_new;
7378547f
MM
6539
6540 register_sched_domain_sysctl();
a1835615 6541
712555ee 6542 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6543}
6544
5c45bf27 6545#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c4a8849a 6546static void reinit_sched_domains(void)
5c45bf27 6547{
95402b38 6548 get_online_cpus();
dfb512ec
MK
6549
6550 /* Destroy domains first to force the rebuild */
6551 partition_sched_domains(0, NULL, NULL);
6552
e761b772 6553 rebuild_sched_domains();
95402b38 6554 put_online_cpus();
5c45bf27
SS
6555}
6556
6557static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6558{
afb8a9b7 6559 unsigned int level = 0;
5c45bf27 6560
afb8a9b7
GS
6561 if (sscanf(buf, "%u", &level) != 1)
6562 return -EINVAL;
6563
6564 /*
6565 * level is always be positive so don't check for
6566 * level < POWERSAVINGS_BALANCE_NONE which is 0
6567 * What happens on 0 or 1 byte write,
6568 * need to check for count as well?
6569 */
6570
6571 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
6572 return -EINVAL;
6573
6574 if (smt)
afb8a9b7 6575 sched_smt_power_savings = level;
5c45bf27 6576 else
afb8a9b7 6577 sched_mc_power_savings = level;
5c45bf27 6578
c4a8849a 6579 reinit_sched_domains();
5c45bf27 6580
c70f22d2 6581 return count;
5c45bf27
SS
6582}
6583
5c45bf27 6584#ifdef CONFIG_SCHED_MC
f718cd4a 6585static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 6586 struct sysdev_class_attribute *attr,
f718cd4a 6587 char *page)
5c45bf27
SS
6588{
6589 return sprintf(page, "%u\n", sched_mc_power_savings);
6590}
f718cd4a 6591static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 6592 struct sysdev_class_attribute *attr,
48f24c4d 6593 const char *buf, size_t count)
5c45bf27
SS
6594{
6595 return sched_power_savings_store(buf, count, 0);
6596}
f718cd4a
AK
6597static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
6598 sched_mc_power_savings_show,
6599 sched_mc_power_savings_store);
5c45bf27
SS
6600#endif
6601
6602#ifdef CONFIG_SCHED_SMT
f718cd4a 6603static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 6604 struct sysdev_class_attribute *attr,
f718cd4a 6605 char *page)
5c45bf27
SS
6606{
6607 return sprintf(page, "%u\n", sched_smt_power_savings);
6608}
f718cd4a 6609static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 6610 struct sysdev_class_attribute *attr,
48f24c4d 6611 const char *buf, size_t count)
5c45bf27
SS
6612{
6613 return sched_power_savings_store(buf, count, 1);
6614}
f718cd4a
AK
6615static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
6616 sched_smt_power_savings_show,
6707de00
AB
6617 sched_smt_power_savings_store);
6618#endif
6619
39aac648 6620int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
6621{
6622 int err = 0;
6623
6624#ifdef CONFIG_SCHED_SMT
6625 if (smt_capable())
6626 err = sysfs_create_file(&cls->kset.kobj,
6627 &attr_sched_smt_power_savings.attr);
6628#endif
6629#ifdef CONFIG_SCHED_MC
6630 if (!err && mc_capable())
6631 err = sysfs_create_file(&cls->kset.kobj,
6632 &attr_sched_mc_power_savings.attr);
6633#endif
6634 return err;
6635}
6d6bc0ad 6636#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 6637
1da177e4 6638/*
3a101d05
TH
6639 * Update cpusets according to cpu_active mask. If cpusets are
6640 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6641 * around partition_sched_domains().
1da177e4 6642 */
0b2e918a
TH
6643static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6644 void *hcpu)
e761b772 6645{
3a101d05 6646 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 6647 case CPU_ONLINE:
6ad4c188 6648 case CPU_DOWN_FAILED:
3a101d05 6649 cpuset_update_active_cpus();
e761b772 6650 return NOTIFY_OK;
3a101d05
TH
6651 default:
6652 return NOTIFY_DONE;
6653 }
6654}
e761b772 6655
0b2e918a
TH
6656static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6657 void *hcpu)
3a101d05
TH
6658{
6659 switch (action & ~CPU_TASKS_FROZEN) {
6660 case CPU_DOWN_PREPARE:
6661 cpuset_update_active_cpus();
6662 return NOTIFY_OK;
e761b772
MK
6663 default:
6664 return NOTIFY_DONE;
6665 }
6666}
e761b772 6667
1da177e4
LT
6668void __init sched_init_smp(void)
6669{
dcc30a35
RR
6670 cpumask_var_t non_isolated_cpus;
6671
6672 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6673 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6674
95402b38 6675 get_online_cpus();
712555ee 6676 mutex_lock(&sched_domains_mutex);
c4a8849a 6677 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6678 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6679 if (cpumask_empty(non_isolated_cpus))
6680 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6681 mutex_unlock(&sched_domains_mutex);
95402b38 6682 put_online_cpus();
e761b772 6683
3a101d05
TH
6684 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6685 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
6686
6687 /* RT runtime code needs to handle some hotplug events */
6688 hotcpu_notifier(update_runtime, 0);
6689
b328ca18 6690 init_hrtick();
5c1e1767
NP
6691
6692 /* Move init over to a non-isolated CPU */
dcc30a35 6693 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6694 BUG();
19978ca6 6695 sched_init_granularity();
dcc30a35 6696 free_cpumask_var(non_isolated_cpus);
4212823f 6697
0e3900e6 6698 init_sched_rt_class();
1da177e4
LT
6699}
6700#else
6701void __init sched_init_smp(void)
6702{
19978ca6 6703 sched_init_granularity();
1da177e4
LT
6704}
6705#endif /* CONFIG_SMP */
6706
cd1bb94b
AB
6707const_debug unsigned int sysctl_timer_migration = 1;
6708
1da177e4
LT
6709int in_sched_functions(unsigned long addr)
6710{
1da177e4
LT
6711 return in_lock_functions(addr) ||
6712 (addr >= (unsigned long)__sched_text_start
6713 && addr < (unsigned long)__sched_text_end);
6714}
6715
029632fb
PZ
6716#ifdef CONFIG_CGROUP_SCHED
6717struct task_group root_task_group;
052f1dc7 6718#endif
6f505b16 6719
029632fb 6720DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6f505b16 6721
1da177e4
LT
6722void __init sched_init(void)
6723{
dd41f596 6724 int i, j;
434d53b0
MT
6725 unsigned long alloc_size = 0, ptr;
6726
6727#ifdef CONFIG_FAIR_GROUP_SCHED
6728 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6729#endif
6730#ifdef CONFIG_RT_GROUP_SCHED
6731 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6732#endif
df7c8e84 6733#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6734 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6735#endif
434d53b0 6736 if (alloc_size) {
36b7b6d4 6737 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6738
6739#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6740 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6741 ptr += nr_cpu_ids * sizeof(void **);
6742
07e06b01 6743 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6744 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6745
6d6bc0ad 6746#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6747#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6748 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6749 ptr += nr_cpu_ids * sizeof(void **);
6750
07e06b01 6751 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6752 ptr += nr_cpu_ids * sizeof(void **);
6753
6d6bc0ad 6754#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6755#ifdef CONFIG_CPUMASK_OFFSTACK
6756 for_each_possible_cpu(i) {
6757 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6758 ptr += cpumask_size();
6759 }
6760#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6761 }
dd41f596 6762
57d885fe
GH
6763#ifdef CONFIG_SMP
6764 init_defrootdomain();
6765#endif
6766
d0b27fa7
PZ
6767 init_rt_bandwidth(&def_rt_bandwidth,
6768 global_rt_period(), global_rt_runtime());
6769
6770#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6771 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6772 global_rt_period(), global_rt_runtime());
6d6bc0ad 6773#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6774
7c941438 6775#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6776 list_add(&root_task_group.list, &task_groups);
6777 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6778 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6779 autogroup_init(&init_task);
7c941438 6780#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6781
0a945022 6782 for_each_possible_cpu(i) {
70b97a7f 6783 struct rq *rq;
1da177e4
LT
6784
6785 rq = cpu_rq(i);
05fa785c 6786 raw_spin_lock_init(&rq->lock);
7897986b 6787 rq->nr_running = 0;
dce48a84
TG
6788 rq->calc_load_active = 0;
6789 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6790 init_cfs_rq(&rq->cfs);
6f505b16 6791 init_rt_rq(&rq->rt, rq);
dd41f596 6792#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6793 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6794 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6795 /*
07e06b01 6796 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6797 *
6798 * In case of task-groups formed thr' the cgroup filesystem, it
6799 * gets 100% of the cpu resources in the system. This overall
6800 * system cpu resource is divided among the tasks of
07e06b01 6801 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6802 * based on each entity's (task or task-group's) weight
6803 * (se->load.weight).
6804 *
07e06b01 6805 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6806 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6807 * then A0's share of the cpu resource is:
6808 *
0d905bca 6809 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6810 *
07e06b01
YZ
6811 * We achieve this by letting root_task_group's tasks sit
6812 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6813 */
ab84d31e 6814 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6815 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6816#endif /* CONFIG_FAIR_GROUP_SCHED */
6817
6818 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6819#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 6820 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 6821 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6822#endif
1da177e4 6823
dd41f596
IM
6824 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6825 rq->cpu_load[j] = 0;
fdf3e95d
VP
6826
6827 rq->last_load_update_tick = jiffies;
6828
1da177e4 6829#ifdef CONFIG_SMP
41c7ce9a 6830 rq->sd = NULL;
57d885fe 6831 rq->rd = NULL;
1399fa78 6832 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 6833 rq->post_schedule = 0;
1da177e4 6834 rq->active_balance = 0;
dd41f596 6835 rq->next_balance = jiffies;
1da177e4 6836 rq->push_cpu = 0;
0a2966b4 6837 rq->cpu = i;
1f11eb6a 6838 rq->online = 0;
eae0c9df
MG
6839 rq->idle_stamp = 0;
6840 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 6841 rq_attach_root(rq, &def_root_domain);
83cd4fe2
VP
6842#ifdef CONFIG_NO_HZ
6843 rq->nohz_balance_kick = 0;
83cd4fe2 6844#endif
1da177e4 6845#endif
8f4d37ec 6846 init_rq_hrtick(rq);
1da177e4 6847 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6848 }
6849
2dd73a4f 6850 set_load_weight(&init_task);
b50f60ce 6851
e107be36
AK
6852#ifdef CONFIG_PREEMPT_NOTIFIERS
6853 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6854#endif
6855
b50f60ce 6856#ifdef CONFIG_RT_MUTEXES
732375c6 6857 plist_head_init(&init_task.pi_waiters);
b50f60ce
HC
6858#endif
6859
1da177e4
LT
6860 /*
6861 * The boot idle thread does lazy MMU switching as well:
6862 */
6863 atomic_inc(&init_mm.mm_count);
6864 enter_lazy_tlb(&init_mm, current);
6865
6866 /*
6867 * Make us the idle thread. Technically, schedule() should not be
6868 * called from this thread, however somewhere below it might be,
6869 * but because we are the idle thread, we just pick up running again
6870 * when this runqueue becomes "idle".
6871 */
6872 init_idle(current, smp_processor_id());
dce48a84
TG
6873
6874 calc_load_update = jiffies + LOAD_FREQ;
6875
dd41f596
IM
6876 /*
6877 * During early bootup we pretend to be a normal task:
6878 */
6879 current->sched_class = &fair_sched_class;
6892b75e 6880
bf4d83f6 6881#ifdef CONFIG_SMP
4cb98839 6882 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
6883 /* May be allocated at isolcpus cmdline parse time */
6884 if (cpu_isolated_map == NULL)
6885 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
029632fb
PZ
6886#endif
6887 init_sched_fair_class();
6a7b3dc3 6888
6892b75e 6889 scheduler_running = 1;
1da177e4
LT
6890}
6891
d902db1e 6892#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6893static inline int preempt_count_equals(int preempt_offset)
6894{
234da7bc 6895 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 6896
4ba8216c 6897 return (nested == preempt_offset);
e4aafea2
FW
6898}
6899
d894837f 6900void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6901{
1da177e4
LT
6902 static unsigned long prev_jiffy; /* ratelimiting */
6903
b3fbab05 6904 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
e4aafea2
FW
6905 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6906 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
6907 return;
6908 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6909 return;
6910 prev_jiffy = jiffies;
6911
3df0fc5b
PZ
6912 printk(KERN_ERR
6913 "BUG: sleeping function called from invalid context at %s:%d\n",
6914 file, line);
6915 printk(KERN_ERR
6916 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6917 in_atomic(), irqs_disabled(),
6918 current->pid, current->comm);
aef745fc
IM
6919
6920 debug_show_held_locks(current);
6921 if (irqs_disabled())
6922 print_irqtrace_events(current);
6923 dump_stack();
1da177e4
LT
6924}
6925EXPORT_SYMBOL(__might_sleep);
6926#endif
6927
6928#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
6929static void normalize_task(struct rq *rq, struct task_struct *p)
6930{
da7a735e
PZ
6931 const struct sched_class *prev_class = p->sched_class;
6932 int old_prio = p->prio;
3a5e4dc1 6933 int on_rq;
3e51f33f 6934
fd2f4419 6935 on_rq = p->on_rq;
3a5e4dc1
AK
6936 if (on_rq)
6937 deactivate_task(rq, p, 0);
6938 __setscheduler(rq, p, SCHED_NORMAL, 0);
6939 if (on_rq) {
6940 activate_task(rq, p, 0);
6941 resched_task(rq->curr);
6942 }
da7a735e
PZ
6943
6944 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
6945}
6946
1da177e4
LT
6947void normalize_rt_tasks(void)
6948{
a0f98a1c 6949 struct task_struct *g, *p;
1da177e4 6950 unsigned long flags;
70b97a7f 6951 struct rq *rq;
1da177e4 6952
4cf5d77a 6953 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 6954 do_each_thread(g, p) {
178be793
IM
6955 /*
6956 * Only normalize user tasks:
6957 */
6958 if (!p->mm)
6959 continue;
6960
6cfb0d5d 6961 p->se.exec_start = 0;
6cfb0d5d 6962#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
6963 p->se.statistics.wait_start = 0;
6964 p->se.statistics.sleep_start = 0;
6965 p->se.statistics.block_start = 0;
6cfb0d5d 6966#endif
dd41f596
IM
6967
6968 if (!rt_task(p)) {
6969 /*
6970 * Renice negative nice level userspace
6971 * tasks back to 0:
6972 */
6973 if (TASK_NICE(p) < 0 && p->mm)
6974 set_user_nice(p, 0);
1da177e4 6975 continue;
dd41f596 6976 }
1da177e4 6977
1d615482 6978 raw_spin_lock(&p->pi_lock);
b29739f9 6979 rq = __task_rq_lock(p);
1da177e4 6980
178be793 6981 normalize_task(rq, p);
3a5e4dc1 6982
b29739f9 6983 __task_rq_unlock(rq);
1d615482 6984 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
6985 } while_each_thread(g, p);
6986
4cf5d77a 6987 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
6988}
6989
6990#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 6991
67fc4e0c 6992#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 6993/*
67fc4e0c 6994 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
6995 *
6996 * They can only be called when the whole system has been
6997 * stopped - every CPU needs to be quiescent, and no scheduling
6998 * activity can take place. Using them for anything else would
6999 * be a serious bug, and as a result, they aren't even visible
7000 * under any other configuration.
7001 */
7002
7003/**
7004 * curr_task - return the current task for a given cpu.
7005 * @cpu: the processor in question.
7006 *
7007 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7008 */
36c8b586 7009struct task_struct *curr_task(int cpu)
1df5c10a
LT
7010{
7011 return cpu_curr(cpu);
7012}
7013
67fc4e0c
JW
7014#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7015
7016#ifdef CONFIG_IA64
1df5c10a
LT
7017/**
7018 * set_curr_task - set the current task for a given cpu.
7019 * @cpu: the processor in question.
7020 * @p: the task pointer to set.
7021 *
7022 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7023 * are serviced on a separate stack. It allows the architecture to switch the
7024 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7025 * must be called with all CPU's synchronized, and interrupts disabled, the
7026 * and caller must save the original value of the current task (see
7027 * curr_task() above) and restore that value before reenabling interrupts and
7028 * re-starting the system.
7029 *
7030 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7031 */
36c8b586 7032void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7033{
7034 cpu_curr(cpu) = p;
7035}
7036
7037#endif
29f59db3 7038
052f1dc7 7039#ifdef CONFIG_RT_GROUP_SCHED
6d6bc0ad 7040#else /* !CONFIG_RT_GROUP_SCHED */
6d6bc0ad 7041#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 7042
7c941438 7043#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7044/* task_group_lock serializes the addition/removal of task groups */
7045static DEFINE_SPINLOCK(task_group_lock);
7046
bccbe08a
PZ
7047static void free_sched_group(struct task_group *tg)
7048{
7049 free_fair_sched_group(tg);
7050 free_rt_sched_group(tg);
e9aa1dd1 7051 autogroup_free(tg);
bccbe08a
PZ
7052 kfree(tg);
7053}
7054
7055/* allocate runqueue etc for a new task group */
ec7dc8ac 7056struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7057{
7058 struct task_group *tg;
7059 unsigned long flags;
bccbe08a
PZ
7060
7061 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7062 if (!tg)
7063 return ERR_PTR(-ENOMEM);
7064
ec7dc8ac 7065 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7066 goto err;
7067
ec7dc8ac 7068 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7069 goto err;
7070
8ed36996 7071 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7072 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7073
7074 WARN_ON(!parent); /* root should already exist */
7075
7076 tg->parent = parent;
f473aa5e 7077 INIT_LIST_HEAD(&tg->children);
09f2724a 7078 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7079 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 7080
9b5b7751 7081 return tg;
29f59db3
SV
7082
7083err:
6f505b16 7084 free_sched_group(tg);
29f59db3
SV
7085 return ERR_PTR(-ENOMEM);
7086}
7087
9b5b7751 7088/* rcu callback to free various structures associated with a task group */
6f505b16 7089static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7090{
29f59db3 7091 /* now it should be safe to free those cfs_rqs */
6f505b16 7092 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7093}
7094
9b5b7751 7095/* Destroy runqueue etc associated with a task group */
4cf86d77 7096void sched_destroy_group(struct task_group *tg)
29f59db3 7097{
8ed36996 7098 unsigned long flags;
9b5b7751 7099 int i;
29f59db3 7100
3d4b47b4
PZ
7101 /* end participation in shares distribution */
7102 for_each_possible_cpu(i)
bccbe08a 7103 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7104
7105 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7106 list_del_rcu(&tg->list);
f473aa5e 7107 list_del_rcu(&tg->siblings);
8ed36996 7108 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 7109
9b5b7751 7110 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 7111 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
7112}
7113
9b5b7751 7114/* change task's runqueue when it moves between groups.
3a252015
IM
7115 * The caller of this function should have put the task in its new group
7116 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7117 * reflect its new group.
9b5b7751
SV
7118 */
7119void sched_move_task(struct task_struct *tsk)
29f59db3
SV
7120{
7121 int on_rq, running;
7122 unsigned long flags;
7123 struct rq *rq;
7124
7125 rq = task_rq_lock(tsk, &flags);
7126
051a1d1a 7127 running = task_current(rq, tsk);
fd2f4419 7128 on_rq = tsk->on_rq;
29f59db3 7129
0e1f3483 7130 if (on_rq)
29f59db3 7131 dequeue_task(rq, tsk, 0);
0e1f3483
HS
7132 if (unlikely(running))
7133 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 7134
810b3817 7135#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
7136 if (tsk->sched_class->task_move_group)
7137 tsk->sched_class->task_move_group(tsk, on_rq);
7138 else
810b3817 7139#endif
b2b5ce02 7140 set_task_rq(tsk, task_cpu(tsk));
810b3817 7141
0e1f3483
HS
7142 if (unlikely(running))
7143 tsk->sched_class->set_curr_task(rq);
7144 if (on_rq)
371fd7e7 7145 enqueue_task(rq, tsk, 0);
29f59db3 7146
0122ec5b 7147 task_rq_unlock(rq, tsk, &flags);
29f59db3 7148}
7c941438 7149#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7150
052f1dc7 7151#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7 7152#endif
5cb350ba 7153
a790de99 7154#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
9f0c1e56
PZ
7155static unsigned long to_ratio(u64 period, u64 runtime)
7156{
7157 if (runtime == RUNTIME_INF)
9a7e0b18 7158 return 1ULL << 20;
9f0c1e56 7159
9a7e0b18 7160 return div64_u64(runtime << 20, period);
9f0c1e56 7161}
a790de99
PT
7162#endif
7163
7164#ifdef CONFIG_RT_GROUP_SCHED
7165/*
7166 * Ensure that the real time constraints are schedulable.
7167 */
7168static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7169
9a7e0b18
PZ
7170/* Must be called with tasklist_lock held */
7171static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7172{
9a7e0b18 7173 struct task_struct *g, *p;
b40b2e8e 7174
9a7e0b18 7175 do_each_thread(g, p) {
029632fb 7176 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
7177 return 1;
7178 } while_each_thread(g, p);
b40b2e8e 7179
9a7e0b18
PZ
7180 return 0;
7181}
b40b2e8e 7182
9a7e0b18
PZ
7183struct rt_schedulable_data {
7184 struct task_group *tg;
7185 u64 rt_period;
7186 u64 rt_runtime;
7187};
b40b2e8e 7188
a790de99 7189static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7190{
7191 struct rt_schedulable_data *d = data;
7192 struct task_group *child;
7193 unsigned long total, sum = 0;
7194 u64 period, runtime;
b40b2e8e 7195
9a7e0b18
PZ
7196 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7197 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7198
9a7e0b18
PZ
7199 if (tg == d->tg) {
7200 period = d->rt_period;
7201 runtime = d->rt_runtime;
b40b2e8e 7202 }
b40b2e8e 7203
4653f803
PZ
7204 /*
7205 * Cannot have more runtime than the period.
7206 */
7207 if (runtime > period && runtime != RUNTIME_INF)
7208 return -EINVAL;
6f505b16 7209
4653f803
PZ
7210 /*
7211 * Ensure we don't starve existing RT tasks.
7212 */
9a7e0b18
PZ
7213 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7214 return -EBUSY;
6f505b16 7215
9a7e0b18 7216 total = to_ratio(period, runtime);
6f505b16 7217
4653f803
PZ
7218 /*
7219 * Nobody can have more than the global setting allows.
7220 */
7221 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7222 return -EINVAL;
6f505b16 7223
4653f803
PZ
7224 /*
7225 * The sum of our children's runtime should not exceed our own.
7226 */
9a7e0b18
PZ
7227 list_for_each_entry_rcu(child, &tg->children, siblings) {
7228 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7229 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7230
9a7e0b18
PZ
7231 if (child == d->tg) {
7232 period = d->rt_period;
7233 runtime = d->rt_runtime;
7234 }
6f505b16 7235
9a7e0b18 7236 sum += to_ratio(period, runtime);
9f0c1e56 7237 }
6f505b16 7238
9a7e0b18
PZ
7239 if (sum > total)
7240 return -EINVAL;
7241
7242 return 0;
6f505b16
PZ
7243}
7244
9a7e0b18 7245static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7246{
8277434e
PT
7247 int ret;
7248
9a7e0b18
PZ
7249 struct rt_schedulable_data data = {
7250 .tg = tg,
7251 .rt_period = period,
7252 .rt_runtime = runtime,
7253 };
7254
8277434e
PT
7255 rcu_read_lock();
7256 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7257 rcu_read_unlock();
7258
7259 return ret;
521f1a24
DG
7260}
7261
ab84d31e 7262static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7263 u64 rt_period, u64 rt_runtime)
6f505b16 7264{
ac086bc2 7265 int i, err = 0;
9f0c1e56 7266
9f0c1e56 7267 mutex_lock(&rt_constraints_mutex);
521f1a24 7268 read_lock(&tasklist_lock);
9a7e0b18
PZ
7269 err = __rt_schedulable(tg, rt_period, rt_runtime);
7270 if (err)
9f0c1e56 7271 goto unlock;
ac086bc2 7272
0986b11b 7273 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7274 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7275 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7276
7277 for_each_possible_cpu(i) {
7278 struct rt_rq *rt_rq = tg->rt_rq[i];
7279
0986b11b 7280 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7281 rt_rq->rt_runtime = rt_runtime;
0986b11b 7282 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7283 }
0986b11b 7284 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7285unlock:
521f1a24 7286 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7287 mutex_unlock(&rt_constraints_mutex);
7288
7289 return err;
6f505b16
PZ
7290}
7291
d0b27fa7
PZ
7292int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7293{
7294 u64 rt_runtime, rt_period;
7295
7296 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7297 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7298 if (rt_runtime_us < 0)
7299 rt_runtime = RUNTIME_INF;
7300
ab84d31e 7301 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7302}
7303
9f0c1e56
PZ
7304long sched_group_rt_runtime(struct task_group *tg)
7305{
7306 u64 rt_runtime_us;
7307
d0b27fa7 7308 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7309 return -1;
7310
d0b27fa7 7311 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7312 do_div(rt_runtime_us, NSEC_PER_USEC);
7313 return rt_runtime_us;
7314}
d0b27fa7
PZ
7315
7316int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7317{
7318 u64 rt_runtime, rt_period;
7319
7320 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7321 rt_runtime = tg->rt_bandwidth.rt_runtime;
7322
619b0488
R
7323 if (rt_period == 0)
7324 return -EINVAL;
7325
ab84d31e 7326 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7327}
7328
7329long sched_group_rt_period(struct task_group *tg)
7330{
7331 u64 rt_period_us;
7332
7333 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7334 do_div(rt_period_us, NSEC_PER_USEC);
7335 return rt_period_us;
7336}
7337
7338static int sched_rt_global_constraints(void)
7339{
4653f803 7340 u64 runtime, period;
d0b27fa7
PZ
7341 int ret = 0;
7342
ec5d4989
HS
7343 if (sysctl_sched_rt_period <= 0)
7344 return -EINVAL;
7345
4653f803
PZ
7346 runtime = global_rt_runtime();
7347 period = global_rt_period();
7348
7349 /*
7350 * Sanity check on the sysctl variables.
7351 */
7352 if (runtime > period && runtime != RUNTIME_INF)
7353 return -EINVAL;
10b612f4 7354
d0b27fa7 7355 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7356 read_lock(&tasklist_lock);
4653f803 7357 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7358 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7359 mutex_unlock(&rt_constraints_mutex);
7360
7361 return ret;
7362}
54e99124
DG
7363
7364int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7365{
7366 /* Don't accept realtime tasks when there is no way for them to run */
7367 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7368 return 0;
7369
7370 return 1;
7371}
7372
6d6bc0ad 7373#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7374static int sched_rt_global_constraints(void)
7375{
ac086bc2
PZ
7376 unsigned long flags;
7377 int i;
7378
ec5d4989
HS
7379 if (sysctl_sched_rt_period <= 0)
7380 return -EINVAL;
7381
60aa605d
PZ
7382 /*
7383 * There's always some RT tasks in the root group
7384 * -- migration, kstopmachine etc..
7385 */
7386 if (sysctl_sched_rt_runtime == 0)
7387 return -EBUSY;
7388
0986b11b 7389 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7390 for_each_possible_cpu(i) {
7391 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7392
0986b11b 7393 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7394 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7395 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7396 }
0986b11b 7397 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7398
d0b27fa7
PZ
7399 return 0;
7400}
6d6bc0ad 7401#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7402
7403int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7404 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7405 loff_t *ppos)
7406{
7407 int ret;
7408 int old_period, old_runtime;
7409 static DEFINE_MUTEX(mutex);
7410
7411 mutex_lock(&mutex);
7412 old_period = sysctl_sched_rt_period;
7413 old_runtime = sysctl_sched_rt_runtime;
7414
8d65af78 7415 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7416
7417 if (!ret && write) {
7418 ret = sched_rt_global_constraints();
7419 if (ret) {
7420 sysctl_sched_rt_period = old_period;
7421 sysctl_sched_rt_runtime = old_runtime;
7422 } else {
7423 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7424 def_rt_bandwidth.rt_period =
7425 ns_to_ktime(global_rt_period());
7426 }
7427 }
7428 mutex_unlock(&mutex);
7429
7430 return ret;
7431}
68318b8e 7432
052f1dc7 7433#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
7434
7435/* return corresponding task_group object of a cgroup */
2b01dfe3 7436static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 7437{
2b01dfe3
PM
7438 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7439 struct task_group, css);
68318b8e
SV
7440}
7441
7442static struct cgroup_subsys_state *
2b01dfe3 7443cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 7444{
ec7dc8ac 7445 struct task_group *tg, *parent;
68318b8e 7446
2b01dfe3 7447 if (!cgrp->parent) {
68318b8e 7448 /* This is early initialization for the top cgroup */
07e06b01 7449 return &root_task_group.css;
68318b8e
SV
7450 }
7451
ec7dc8ac
DG
7452 parent = cgroup_tg(cgrp->parent);
7453 tg = sched_create_group(parent);
68318b8e
SV
7454 if (IS_ERR(tg))
7455 return ERR_PTR(-ENOMEM);
7456
68318b8e
SV
7457 return &tg->css;
7458}
7459
41a2d6cf
IM
7460static void
7461cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 7462{
2b01dfe3 7463 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7464
7465 sched_destroy_group(tg);
7466}
7467
41a2d6cf 7468static int
be367d09 7469cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 7470{
b68aa230 7471#ifdef CONFIG_RT_GROUP_SCHED
54e99124 7472 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
7473 return -EINVAL;
7474#else
68318b8e
SV
7475 /* We don't support RT-tasks being in separate groups */
7476 if (tsk->sched_class != &fair_sched_class)
7477 return -EINVAL;
b68aa230 7478#endif
be367d09
BB
7479 return 0;
7480}
68318b8e 7481
68318b8e 7482static void
f780bdb7 7483cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e
SV
7484{
7485 sched_move_task(tsk);
7486}
7487
068c5cc5 7488static void
d41d5a01
PZ
7489cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
7490 struct cgroup *old_cgrp, struct task_struct *task)
068c5cc5
PZ
7491{
7492 /*
7493 * cgroup_exit() is called in the copy_process() failure path.
7494 * Ignore this case since the task hasn't ran yet, this avoids
7495 * trying to poke a half freed task state from generic code.
7496 */
7497 if (!(task->flags & PF_EXITING))
7498 return;
7499
7500 sched_move_task(task);
7501}
7502
052f1dc7 7503#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 7504static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 7505 u64 shareval)
68318b8e 7506{
c8b28116 7507 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
68318b8e
SV
7508}
7509
f4c753b7 7510static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 7511{
2b01dfe3 7512 struct task_group *tg = cgroup_tg(cgrp);
68318b8e 7513
c8b28116 7514 return (u64) scale_load_down(tg->shares);
68318b8e 7515}
ab84d31e
PT
7516
7517#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7518static DEFINE_MUTEX(cfs_constraints_mutex);
7519
ab84d31e
PT
7520const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7521const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7522
a790de99
PT
7523static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7524
ab84d31e
PT
7525static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7526{
56f570e5 7527 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7528 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7529
7530 if (tg == &root_task_group)
7531 return -EINVAL;
7532
7533 /*
7534 * Ensure we have at some amount of bandwidth every period. This is
7535 * to prevent reaching a state of large arrears when throttled via
7536 * entity_tick() resulting in prolonged exit starvation.
7537 */
7538 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7539 return -EINVAL;
7540
7541 /*
7542 * Likewise, bound things on the otherside by preventing insane quota
7543 * periods. This also allows us to normalize in computing quota
7544 * feasibility.
7545 */
7546 if (period > max_cfs_quota_period)
7547 return -EINVAL;
7548
a790de99
PT
7549 mutex_lock(&cfs_constraints_mutex);
7550 ret = __cfs_schedulable(tg, period, quota);
7551 if (ret)
7552 goto out_unlock;
7553
58088ad0 7554 runtime_enabled = quota != RUNTIME_INF;
56f570e5
PT
7555 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7556 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
ab84d31e
PT
7557 raw_spin_lock_irq(&cfs_b->lock);
7558 cfs_b->period = ns_to_ktime(period);
7559 cfs_b->quota = quota;
58088ad0 7560
a9cf55b2 7561 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7562 /* restart the period timer (if active) to handle new period expiry */
7563 if (runtime_enabled && cfs_b->timer_active) {
7564 /* force a reprogram */
7565 cfs_b->timer_active = 0;
7566 __start_cfs_bandwidth(cfs_b);
7567 }
ab84d31e
PT
7568 raw_spin_unlock_irq(&cfs_b->lock);
7569
7570 for_each_possible_cpu(i) {
7571 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7572 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7573
7574 raw_spin_lock_irq(&rq->lock);
58088ad0 7575 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7576 cfs_rq->runtime_remaining = 0;
671fd9da 7577
029632fb 7578 if (cfs_rq->throttled)
671fd9da 7579 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7580 raw_spin_unlock_irq(&rq->lock);
7581 }
a790de99
PT
7582out_unlock:
7583 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7584
a790de99 7585 return ret;
ab84d31e
PT
7586}
7587
7588int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7589{
7590 u64 quota, period;
7591
029632fb 7592 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7593 if (cfs_quota_us < 0)
7594 quota = RUNTIME_INF;
7595 else
7596 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7597
7598 return tg_set_cfs_bandwidth(tg, period, quota);
7599}
7600
7601long tg_get_cfs_quota(struct task_group *tg)
7602{
7603 u64 quota_us;
7604
029632fb 7605 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7606 return -1;
7607
029632fb 7608 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7609 do_div(quota_us, NSEC_PER_USEC);
7610
7611 return quota_us;
7612}
7613
7614int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7615{
7616 u64 quota, period;
7617
7618 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7619 quota = tg->cfs_bandwidth.quota;
ab84d31e
PT
7620
7621 if (period <= 0)
7622 return -EINVAL;
7623
7624 return tg_set_cfs_bandwidth(tg, period, quota);
7625}
7626
7627long tg_get_cfs_period(struct task_group *tg)
7628{
7629 u64 cfs_period_us;
7630
029632fb 7631 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7632 do_div(cfs_period_us, NSEC_PER_USEC);
7633
7634 return cfs_period_us;
7635}
7636
7637static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7638{
7639 return tg_get_cfs_quota(cgroup_tg(cgrp));
7640}
7641
7642static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7643 s64 cfs_quota_us)
7644{
7645 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7646}
7647
7648static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7649{
7650 return tg_get_cfs_period(cgroup_tg(cgrp));
7651}
7652
7653static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7654 u64 cfs_period_us)
7655{
7656 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7657}
7658
a790de99
PT
7659struct cfs_schedulable_data {
7660 struct task_group *tg;
7661 u64 period, quota;
7662};
7663
7664/*
7665 * normalize group quota/period to be quota/max_period
7666 * note: units are usecs
7667 */
7668static u64 normalize_cfs_quota(struct task_group *tg,
7669 struct cfs_schedulable_data *d)
7670{
7671 u64 quota, period;
7672
7673 if (tg == d->tg) {
7674 period = d->period;
7675 quota = d->quota;
7676 } else {
7677 period = tg_get_cfs_period(tg);
7678 quota = tg_get_cfs_quota(tg);
7679 }
7680
7681 /* note: these should typically be equivalent */
7682 if (quota == RUNTIME_INF || quota == -1)
7683 return RUNTIME_INF;
7684
7685 return to_ratio(period, quota);
7686}
7687
7688static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7689{
7690 struct cfs_schedulable_data *d = data;
029632fb 7691 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7692 s64 quota = 0, parent_quota = -1;
7693
7694 if (!tg->parent) {
7695 quota = RUNTIME_INF;
7696 } else {
029632fb 7697 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7698
7699 quota = normalize_cfs_quota(tg, d);
7700 parent_quota = parent_b->hierarchal_quota;
7701
7702 /*
7703 * ensure max(child_quota) <= parent_quota, inherit when no
7704 * limit is set
7705 */
7706 if (quota == RUNTIME_INF)
7707 quota = parent_quota;
7708 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7709 return -EINVAL;
7710 }
7711 cfs_b->hierarchal_quota = quota;
7712
7713 return 0;
7714}
7715
7716static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7717{
8277434e 7718 int ret;
a790de99
PT
7719 struct cfs_schedulable_data data = {
7720 .tg = tg,
7721 .period = period,
7722 .quota = quota,
7723 };
7724
7725 if (quota != RUNTIME_INF) {
7726 do_div(data.period, NSEC_PER_USEC);
7727 do_div(data.quota, NSEC_PER_USEC);
7728 }
7729
8277434e
PT
7730 rcu_read_lock();
7731 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7732 rcu_read_unlock();
7733
7734 return ret;
a790de99 7735}
e8da1b18
NR
7736
7737static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7738 struct cgroup_map_cb *cb)
7739{
7740 struct task_group *tg = cgroup_tg(cgrp);
029632fb 7741 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18
NR
7742
7743 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7744 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7745 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7746
7747 return 0;
7748}
ab84d31e 7749#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7750#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7751
052f1dc7 7752#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 7753static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 7754 s64 val)
6f505b16 7755{
06ecb27c 7756 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
7757}
7758
06ecb27c 7759static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 7760{
06ecb27c 7761 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 7762}
d0b27fa7
PZ
7763
7764static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7765 u64 rt_period_us)
7766{
7767 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7768}
7769
7770static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7771{
7772 return sched_group_rt_period(cgroup_tg(cgrp));
7773}
6d6bc0ad 7774#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7775
fe5c7cc2 7776static struct cftype cpu_files[] = {
052f1dc7 7777#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7778 {
7779 .name = "shares",
f4c753b7
PM
7780 .read_u64 = cpu_shares_read_u64,
7781 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7782 },
052f1dc7 7783#endif
ab84d31e
PT
7784#ifdef CONFIG_CFS_BANDWIDTH
7785 {
7786 .name = "cfs_quota_us",
7787 .read_s64 = cpu_cfs_quota_read_s64,
7788 .write_s64 = cpu_cfs_quota_write_s64,
7789 },
7790 {
7791 .name = "cfs_period_us",
7792 .read_u64 = cpu_cfs_period_read_u64,
7793 .write_u64 = cpu_cfs_period_write_u64,
7794 },
e8da1b18
NR
7795 {
7796 .name = "stat",
7797 .read_map = cpu_stats_show,
7798 },
ab84d31e 7799#endif
052f1dc7 7800#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7801 {
9f0c1e56 7802 .name = "rt_runtime_us",
06ecb27c
PM
7803 .read_s64 = cpu_rt_runtime_read,
7804 .write_s64 = cpu_rt_runtime_write,
6f505b16 7805 },
d0b27fa7
PZ
7806 {
7807 .name = "rt_period_us",
f4c753b7
PM
7808 .read_u64 = cpu_rt_period_read_uint,
7809 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7810 },
052f1dc7 7811#endif
68318b8e
SV
7812};
7813
7814static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7815{
fe5c7cc2 7816 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
7817}
7818
7819struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
7820 .name = "cpu",
7821 .create = cpu_cgroup_create,
7822 .destroy = cpu_cgroup_destroy,
f780bdb7
BB
7823 .can_attach_task = cpu_cgroup_can_attach_task,
7824 .attach_task = cpu_cgroup_attach_task,
068c5cc5 7825 .exit = cpu_cgroup_exit,
38605cae
IM
7826 .populate = cpu_cgroup_populate,
7827 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
7828 .early_init = 1,
7829};
7830
052f1dc7 7831#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
7832
7833#ifdef CONFIG_CGROUP_CPUACCT
7834
7835/*
7836 * CPU accounting code for task groups.
7837 *
7838 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7839 * (balbir@in.ibm.com).
7840 */
7841
934352f2 7842/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
7843struct cpuacct {
7844 struct cgroup_subsys_state css;
7845 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 7846 u64 __percpu *cpuusage;
ef12fefa 7847 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 7848 struct cpuacct *parent;
d842de87
SV
7849};
7850
7851struct cgroup_subsys cpuacct_subsys;
7852
7853/* return cpu accounting group corresponding to this container */
32cd756a 7854static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 7855{
32cd756a 7856 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
7857 struct cpuacct, css);
7858}
7859
7860/* return cpu accounting group to which this task belongs */
7861static inline struct cpuacct *task_ca(struct task_struct *tsk)
7862{
7863 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
7864 struct cpuacct, css);
7865}
7866
7867/* create a new cpu accounting group */
7868static struct cgroup_subsys_state *cpuacct_create(
32cd756a 7869 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
7870{
7871 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 7872 int i;
d842de87
SV
7873
7874 if (!ca)
ef12fefa 7875 goto out;
d842de87
SV
7876
7877 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
7878 if (!ca->cpuusage)
7879 goto out_free_ca;
7880
7881 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
7882 if (percpu_counter_init(&ca->cpustat[i], 0))
7883 goto out_free_counters;
d842de87 7884
934352f2
BR
7885 if (cgrp->parent)
7886 ca->parent = cgroup_ca(cgrp->parent);
7887
d842de87 7888 return &ca->css;
ef12fefa
BR
7889
7890out_free_counters:
7891 while (--i >= 0)
7892 percpu_counter_destroy(&ca->cpustat[i]);
7893 free_percpu(ca->cpuusage);
7894out_free_ca:
7895 kfree(ca);
7896out:
7897 return ERR_PTR(-ENOMEM);
d842de87
SV
7898}
7899
7900/* destroy an existing cpu accounting group */
41a2d6cf 7901static void
32cd756a 7902cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 7903{
32cd756a 7904 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 7905 int i;
d842de87 7906
ef12fefa
BR
7907 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
7908 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
7909 free_percpu(ca->cpuusage);
7910 kfree(ca);
7911}
7912
720f5498
KC
7913static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
7914{
b36128c8 7915 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
7916 u64 data;
7917
7918#ifndef CONFIG_64BIT
7919 /*
7920 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
7921 */
05fa785c 7922 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 7923 data = *cpuusage;
05fa785c 7924 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
7925#else
7926 data = *cpuusage;
7927#endif
7928
7929 return data;
7930}
7931
7932static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
7933{
b36128c8 7934 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
7935
7936#ifndef CONFIG_64BIT
7937 /*
7938 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
7939 */
05fa785c 7940 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 7941 *cpuusage = val;
05fa785c 7942 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
7943#else
7944 *cpuusage = val;
7945#endif
7946}
7947
d842de87 7948/* return total cpu usage (in nanoseconds) of a group */
32cd756a 7949static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 7950{
32cd756a 7951 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
7952 u64 totalcpuusage = 0;
7953 int i;
7954
720f5498
KC
7955 for_each_present_cpu(i)
7956 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
7957
7958 return totalcpuusage;
7959}
7960
0297b803
DG
7961static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
7962 u64 reset)
7963{
7964 struct cpuacct *ca = cgroup_ca(cgrp);
7965 int err = 0;
7966 int i;
7967
7968 if (reset) {
7969 err = -EINVAL;
7970 goto out;
7971 }
7972
720f5498
KC
7973 for_each_present_cpu(i)
7974 cpuacct_cpuusage_write(ca, i, 0);
0297b803 7975
0297b803
DG
7976out:
7977 return err;
7978}
7979
e9515c3c
KC
7980static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
7981 struct seq_file *m)
7982{
7983 struct cpuacct *ca = cgroup_ca(cgroup);
7984 u64 percpu;
7985 int i;
7986
7987 for_each_present_cpu(i) {
7988 percpu = cpuacct_cpuusage_read(ca, i);
7989 seq_printf(m, "%llu ", (unsigned long long) percpu);
7990 }
7991 seq_printf(m, "\n");
7992 return 0;
7993}
7994
ef12fefa
BR
7995static const char *cpuacct_stat_desc[] = {
7996 [CPUACCT_STAT_USER] = "user",
7997 [CPUACCT_STAT_SYSTEM] = "system",
7998};
7999
8000static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8001 struct cgroup_map_cb *cb)
8002{
8003 struct cpuacct *ca = cgroup_ca(cgrp);
8004 int i;
8005
8006 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
8007 s64 val = percpu_counter_read(&ca->cpustat[i]);
8008 val = cputime64_to_clock_t(val);
8009 cb->fill(cb, cpuacct_stat_desc[i], val);
8010 }
8011 return 0;
8012}
8013
d842de87
SV
8014static struct cftype files[] = {
8015 {
8016 .name = "usage",
f4c753b7
PM
8017 .read_u64 = cpuusage_read,
8018 .write_u64 = cpuusage_write,
d842de87 8019 },
e9515c3c
KC
8020 {
8021 .name = "usage_percpu",
8022 .read_seq_string = cpuacct_percpu_seq_read,
8023 },
ef12fefa
BR
8024 {
8025 .name = "stat",
8026 .read_map = cpuacct_stats_show,
8027 },
d842de87
SV
8028};
8029
32cd756a 8030static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8031{
32cd756a 8032 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
8033}
8034
8035/*
8036 * charge this task's execution time to its accounting group.
8037 *
8038 * called with rq->lock held.
8039 */
029632fb 8040void cpuacct_charge(struct task_struct *tsk, u64 cputime)
d842de87
SV
8041{
8042 struct cpuacct *ca;
934352f2 8043 int cpu;
d842de87 8044
c40c6f85 8045 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
8046 return;
8047
934352f2 8048 cpu = task_cpu(tsk);
a18b83b7
BR
8049
8050 rcu_read_lock();
8051
d842de87 8052 ca = task_ca(tsk);
d842de87 8053
934352f2 8054 for (; ca; ca = ca->parent) {
b36128c8 8055 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
8056 *cpuusage += cputime;
8057 }
a18b83b7
BR
8058
8059 rcu_read_unlock();
d842de87
SV
8060}
8061
fa535a77
AB
8062/*
8063 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
8064 * in cputime_t units. As a result, cpuacct_update_stats calls
8065 * percpu_counter_add with values large enough to always overflow the
8066 * per cpu batch limit causing bad SMP scalability.
8067 *
8068 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
8069 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
8070 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
8071 */
8072#ifdef CONFIG_SMP
8073#define CPUACCT_BATCH \
8074 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
8075#else
8076#define CPUACCT_BATCH 0
8077#endif
8078
ef12fefa
BR
8079/*
8080 * Charge the system/user time to the task's accounting group.
8081 */
029632fb 8082void cpuacct_update_stats(struct task_struct *tsk,
ef12fefa
BR
8083 enum cpuacct_stat_index idx, cputime_t val)
8084{
8085 struct cpuacct *ca;
fa535a77 8086 int batch = CPUACCT_BATCH;
ef12fefa
BR
8087
8088 if (unlikely(!cpuacct_subsys.active))
8089 return;
8090
8091 rcu_read_lock();
8092 ca = task_ca(tsk);
8093
8094 do {
fa535a77 8095 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
8096 ca = ca->parent;
8097 } while (ca);
8098 rcu_read_unlock();
8099}
8100
d842de87
SV
8101struct cgroup_subsys cpuacct_subsys = {
8102 .name = "cpuacct",
8103 .create = cpuacct_create,
8104 .destroy = cpuacct_destroy,
8105 .populate = cpuacct_populate,
8106 .subsys_id = cpuacct_subsys_id,
8107};
8108#endif /* CONFIG_CGROUP_CPUACCT */