dump_stack: implement arch-specific hardware description in task dumps
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / powerpc / kernel / process.c
CommitLineData
14cf11af 1/*
14cf11af
PM
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
14cf11af
PM
17#include <linux/errno.h>
18#include <linux/sched.h>
19#include <linux/kernel.h>
20#include <linux/mm.h>
21#include <linux/smp.h>
14cf11af
PM
22#include <linux/stddef.h>
23#include <linux/unistd.h>
24#include <linux/ptrace.h>
25#include <linux/slab.h>
26#include <linux/user.h>
27#include <linux/elf.h>
28#include <linux/init.h>
29#include <linux/prctl.h>
30#include <linux/init_task.h>
4b16f8e2 31#include <linux/export.h>
14cf11af
PM
32#include <linux/kallsyms.h>
33#include <linux/mqueue.h>
34#include <linux/hardirq.h>
06d67d54 35#include <linux/utsname.h>
6794c782 36#include <linux/ftrace.h>
79741dd3 37#include <linux/kernel_stat.h>
d839088c
AB
38#include <linux/personality.h>
39#include <linux/random.h>
5aae8a53 40#include <linux/hw_breakpoint.h>
14cf11af
PM
41
42#include <asm/pgtable.h>
43#include <asm/uaccess.h>
14cf11af
PM
44#include <asm/io.h>
45#include <asm/processor.h>
46#include <asm/mmu.h>
47#include <asm/prom.h>
76032de8 48#include <asm/machdep.h>
c6622f63 49#include <asm/time.h>
ae3a197e 50#include <asm/runlatch.h>
a7f31841 51#include <asm/syscalls.h>
ae3a197e 52#include <asm/switch_to.h>
fb09692e 53#include <asm/tm.h>
ae3a197e 54#include <asm/debug.h>
06d67d54
PM
55#ifdef CONFIG_PPC64
56#include <asm/firmware.h>
06d67d54 57#endif
d6a61bfc
LM
58#include <linux/kprobes.h>
59#include <linux/kdebug.h>
14cf11af 60
8b3c34cf
MN
61/* Transactional Memory debug */
62#ifdef TM_DEBUG_SW
63#define TM_DEBUG(x...) printk(KERN_INFO x)
64#else
65#define TM_DEBUG(x...) do { } while(0)
66#endif
67
14cf11af
PM
68extern unsigned long _get_SP(void);
69
70#ifndef CONFIG_SMP
71struct task_struct *last_task_used_math = NULL;
72struct task_struct *last_task_used_altivec = NULL;
ce48b210 73struct task_struct *last_task_used_vsx = NULL;
14cf11af
PM
74struct task_struct *last_task_used_spe = NULL;
75#endif
76
14cf11af
PM
77/*
78 * Make sure the floating-point register state in the
79 * the thread_struct is up to date for task tsk.
80 */
81void flush_fp_to_thread(struct task_struct *tsk)
82{
83 if (tsk->thread.regs) {
84 /*
85 * We need to disable preemption here because if we didn't,
86 * another process could get scheduled after the regs->msr
87 * test but before we have finished saving the FP registers
88 * to the thread_struct. That process could take over the
89 * FPU, and then when we get scheduled again we would store
90 * bogus values for the remaining FP registers.
91 */
92 preempt_disable();
93 if (tsk->thread.regs->msr & MSR_FP) {
94#ifdef CONFIG_SMP
95 /*
96 * This should only ever be called for current or
97 * for a stopped child process. Since we save away
98 * the FP register state on context switch on SMP,
99 * there is something wrong if a stopped child appears
100 * to still have its FP state in the CPU registers.
101 */
102 BUG_ON(tsk != current);
103#endif
0ee6c15e 104 giveup_fpu(tsk);
14cf11af
PM
105 }
106 preempt_enable();
107 }
108}
de56a948 109EXPORT_SYMBOL_GPL(flush_fp_to_thread);
14cf11af
PM
110
111void enable_kernel_fp(void)
112{
113 WARN_ON(preemptible());
114
115#ifdef CONFIG_SMP
116 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
117 giveup_fpu(current);
118 else
119 giveup_fpu(NULL); /* just enables FP for kernel */
120#else
121 giveup_fpu(last_task_used_math);
122#endif /* CONFIG_SMP */
123}
124EXPORT_SYMBOL(enable_kernel_fp);
125
14cf11af
PM
126#ifdef CONFIG_ALTIVEC
127void enable_kernel_altivec(void)
128{
129 WARN_ON(preemptible());
130
131#ifdef CONFIG_SMP
132 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
133 giveup_altivec(current);
134 else
35000870 135 giveup_altivec_notask();
14cf11af
PM
136#else
137 giveup_altivec(last_task_used_altivec);
138#endif /* CONFIG_SMP */
139}
140EXPORT_SYMBOL(enable_kernel_altivec);
141
142/*
143 * Make sure the VMX/Altivec register state in the
144 * the thread_struct is up to date for task tsk.
145 */
146void flush_altivec_to_thread(struct task_struct *tsk)
147{
148 if (tsk->thread.regs) {
149 preempt_disable();
150 if (tsk->thread.regs->msr & MSR_VEC) {
151#ifdef CONFIG_SMP
152 BUG_ON(tsk != current);
153#endif
0ee6c15e 154 giveup_altivec(tsk);
14cf11af
PM
155 }
156 preempt_enable();
157 }
158}
de56a948 159EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
14cf11af
PM
160#endif /* CONFIG_ALTIVEC */
161
ce48b210
MN
162#ifdef CONFIG_VSX
163#if 0
164/* not currently used, but some crazy RAID module might want to later */
165void enable_kernel_vsx(void)
166{
167 WARN_ON(preemptible());
168
169#ifdef CONFIG_SMP
170 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
171 giveup_vsx(current);
172 else
173 giveup_vsx(NULL); /* just enable vsx for kernel - force */
174#else
175 giveup_vsx(last_task_used_vsx);
176#endif /* CONFIG_SMP */
177}
178EXPORT_SYMBOL(enable_kernel_vsx);
179#endif
180
7c292170
MN
181void giveup_vsx(struct task_struct *tsk)
182{
183 giveup_fpu(tsk);
184 giveup_altivec(tsk);
185 __giveup_vsx(tsk);
186}
187
ce48b210
MN
188void flush_vsx_to_thread(struct task_struct *tsk)
189{
190 if (tsk->thread.regs) {
191 preempt_disable();
192 if (tsk->thread.regs->msr & MSR_VSX) {
193#ifdef CONFIG_SMP
194 BUG_ON(tsk != current);
195#endif
196 giveup_vsx(tsk);
197 }
198 preempt_enable();
199 }
200}
de56a948 201EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
ce48b210
MN
202#endif /* CONFIG_VSX */
203
14cf11af
PM
204#ifdef CONFIG_SPE
205
206void enable_kernel_spe(void)
207{
208 WARN_ON(preemptible());
209
210#ifdef CONFIG_SMP
211 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
212 giveup_spe(current);
213 else
214 giveup_spe(NULL); /* just enable SPE for kernel - force */
215#else
216 giveup_spe(last_task_used_spe);
217#endif /* __SMP __ */
218}
219EXPORT_SYMBOL(enable_kernel_spe);
220
221void flush_spe_to_thread(struct task_struct *tsk)
222{
223 if (tsk->thread.regs) {
224 preempt_disable();
225 if (tsk->thread.regs->msr & MSR_SPE) {
226#ifdef CONFIG_SMP
227 BUG_ON(tsk != current);
228#endif
685659ee 229 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
0ee6c15e 230 giveup_spe(tsk);
14cf11af
PM
231 }
232 preempt_enable();
233 }
234}
14cf11af
PM
235#endif /* CONFIG_SPE */
236
5388fb10 237#ifndef CONFIG_SMP
48abec07
PM
238/*
239 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
240 * and the current task has some state, discard it.
241 */
5388fb10 242void discard_lazy_cpu_state(void)
48abec07 243{
48abec07
PM
244 preempt_disable();
245 if (last_task_used_math == current)
246 last_task_used_math = NULL;
247#ifdef CONFIG_ALTIVEC
248 if (last_task_used_altivec == current)
249 last_task_used_altivec = NULL;
250#endif /* CONFIG_ALTIVEC */
ce48b210
MN
251#ifdef CONFIG_VSX
252 if (last_task_used_vsx == current)
253 last_task_used_vsx = NULL;
254#endif /* CONFIG_VSX */
48abec07
PM
255#ifdef CONFIG_SPE
256 if (last_task_used_spe == current)
257 last_task_used_spe = NULL;
258#endif
259 preempt_enable();
48abec07 260}
5388fb10 261#endif /* CONFIG_SMP */
48abec07 262
3bffb652
DK
263#ifdef CONFIG_PPC_ADV_DEBUG_REGS
264void do_send_trap(struct pt_regs *regs, unsigned long address,
265 unsigned long error_code, int signal_code, int breakpt)
266{
267 siginfo_t info;
268
41ab5266 269 current->thread.trap_nr = signal_code;
3bffb652
DK
270 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
271 11, SIGSEGV) == NOTIFY_STOP)
272 return;
273
274 /* Deliver the signal to userspace */
275 info.si_signo = SIGTRAP;
276 info.si_errno = breakpt; /* breakpoint or watchpoint id */
277 info.si_code = signal_code;
278 info.si_addr = (void __user *)address;
279 force_sig_info(SIGTRAP, &info, current);
280}
281#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
9422de3e 282void do_break (struct pt_regs *regs, unsigned long address,
d6a61bfc
LM
283 unsigned long error_code)
284{
285 siginfo_t info;
286
41ab5266 287 current->thread.trap_nr = TRAP_HWBKPT;
d6a61bfc
LM
288 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
289 11, SIGSEGV) == NOTIFY_STOP)
290 return;
291
9422de3e 292 if (debugger_break_match(regs))
d6a61bfc
LM
293 return;
294
9422de3e
MN
295 /* Clear the breakpoint */
296 hw_breakpoint_disable();
d6a61bfc
LM
297
298 /* Deliver the signal to userspace */
299 info.si_signo = SIGTRAP;
300 info.si_errno = 0;
301 info.si_code = TRAP_HWBKPT;
302 info.si_addr = (void __user *)address;
303 force_sig_info(SIGTRAP, &info, current);
304}
3bffb652 305#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
d6a61bfc 306
9422de3e 307static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
a2ceff5e 308
3bffb652
DK
309#ifdef CONFIG_PPC_ADV_DEBUG_REGS
310/*
311 * Set the debug registers back to their default "safe" values.
312 */
313static void set_debug_reg_defaults(struct thread_struct *thread)
314{
315 thread->iac1 = thread->iac2 = 0;
316#if CONFIG_PPC_ADV_DEBUG_IACS > 2
317 thread->iac3 = thread->iac4 = 0;
318#endif
319 thread->dac1 = thread->dac2 = 0;
320#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
321 thread->dvc1 = thread->dvc2 = 0;
322#endif
323 thread->dbcr0 = 0;
324#ifdef CONFIG_BOOKE
325 /*
326 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
327 */
328 thread->dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | \
329 DBCR1_IAC3US | DBCR1_IAC4US;
330 /*
331 * Force Data Address Compare User/Supervisor bits to be User-only
332 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
333 */
334 thread->dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
335#else
336 thread->dbcr1 = 0;
337#endif
338}
339
340static void prime_debug_regs(struct thread_struct *thread)
341{
342 mtspr(SPRN_IAC1, thread->iac1);
343 mtspr(SPRN_IAC2, thread->iac2);
344#if CONFIG_PPC_ADV_DEBUG_IACS > 2
345 mtspr(SPRN_IAC3, thread->iac3);
346 mtspr(SPRN_IAC4, thread->iac4);
347#endif
348 mtspr(SPRN_DAC1, thread->dac1);
349 mtspr(SPRN_DAC2, thread->dac2);
350#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
351 mtspr(SPRN_DVC1, thread->dvc1);
352 mtspr(SPRN_DVC2, thread->dvc2);
353#endif
354 mtspr(SPRN_DBCR0, thread->dbcr0);
355 mtspr(SPRN_DBCR1, thread->dbcr1);
356#ifdef CONFIG_BOOKE
357 mtspr(SPRN_DBCR2, thread->dbcr2);
358#endif
359}
360/*
361 * Unless neither the old or new thread are making use of the
362 * debug registers, set the debug registers from the values
363 * stored in the new thread.
364 */
365static void switch_booke_debug_regs(struct thread_struct *new_thread)
366{
367 if ((current->thread.dbcr0 & DBCR0_IDM)
368 || (new_thread->dbcr0 & DBCR0_IDM))
369 prime_debug_regs(new_thread);
370}
371#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
e0780b72 372#ifndef CONFIG_HAVE_HW_BREAKPOINT
3bffb652
DK
373static void set_debug_reg_defaults(struct thread_struct *thread)
374{
9422de3e
MN
375 thread->hw_brk.address = 0;
376 thread->hw_brk.type = 0;
b9818c33 377 set_breakpoint(&thread->hw_brk);
3bffb652 378}
e0780b72 379#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
3bffb652
DK
380#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
381
172ae2e7 382#ifdef CONFIG_PPC_ADV_DEBUG_REGS
9422de3e
MN
383static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
384{
d6a61bfc 385 mtspr(SPRN_DAC1, dabr);
221c185d
DK
386#ifdef CONFIG_PPC_47x
387 isync();
388#endif
9422de3e
MN
389 return 0;
390}
c6c9eace 391#elif defined(CONFIG_PPC_BOOK3S)
9422de3e
MN
392static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
393{
c6c9eace 394 mtspr(SPRN_DABR, dabr);
4474ef05 395 mtspr(SPRN_DABRX, dabrx);
cab0af98 396 return 0;
14cf11af 397}
9422de3e
MN
398#else
399static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
400{
401 return -EINVAL;
402}
403#endif
404
405static inline int set_dabr(struct arch_hw_breakpoint *brk)
406{
407 unsigned long dabr, dabrx;
408
409 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
410 dabrx = ((brk->type >> 3) & 0x7);
411
412 if (ppc_md.set_dabr)
413 return ppc_md.set_dabr(dabr, dabrx);
414
415 return __set_dabr(dabr, dabrx);
416}
417
bf99de36
MN
418static inline int set_dawr(struct arch_hw_breakpoint *brk)
419{
05d694ea 420 unsigned long dawr, dawrx, mrd;
bf99de36
MN
421
422 dawr = brk->address;
423
424 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
425 << (63 - 58); //* read/write bits */
426 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
427 << (63 - 59); //* translate */
428 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
429 >> 3; //* PRIM bits */
05d694ea
MN
430 /* dawr length is stored in field MDR bits 48:53. Matches range in
431 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
432 0b111111=64DW.
433 brk->len is in bytes.
434 This aligns up to double word size, shifts and does the bias.
435 */
436 mrd = ((brk->len + 7) >> 3) - 1;
437 dawrx |= (mrd & 0x3f) << (63 - 53);
bf99de36
MN
438
439 if (ppc_md.set_dawr)
440 return ppc_md.set_dawr(dawr, dawrx);
441 mtspr(SPRN_DAWR, dawr);
442 mtspr(SPRN_DAWRX, dawrx);
443 return 0;
444}
445
b9818c33 446int set_breakpoint(struct arch_hw_breakpoint *brk)
9422de3e
MN
447{
448 __get_cpu_var(current_brk) = *brk;
449
bf99de36
MN
450 if (cpu_has_feature(CPU_FTR_DAWR))
451 return set_dawr(brk);
452
9422de3e
MN
453 return set_dabr(brk);
454}
14cf11af 455
06d67d54
PM
456#ifdef CONFIG_PPC64
457DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
06d67d54 458#endif
14cf11af 459
9422de3e
MN
460static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
461 struct arch_hw_breakpoint *b)
462{
463 if (a->address != b->address)
464 return false;
465 if (a->type != b->type)
466 return false;
467 if (a->len != b->len)
468 return false;
469 return true;
470}
fb09692e
MN
471#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
472static inline void tm_reclaim_task(struct task_struct *tsk)
473{
474 /* We have to work out if we're switching from/to a task that's in the
475 * middle of a transaction.
476 *
477 * In switching we need to maintain a 2nd register state as
478 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
479 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
480 * (current) FPRs into oldtask->thread.transact_fpr[].
481 *
482 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
483 */
484 struct thread_struct *thr = &tsk->thread;
485
486 if (!thr->regs)
487 return;
488
489 if (!MSR_TM_ACTIVE(thr->regs->msr))
490 goto out_and_saveregs;
491
492 /* Stash the original thread MSR, as giveup_fpu et al will
493 * modify it. We hold onto it to see whether the task used
494 * FP & vector regs.
495 */
496 thr->tm_orig_msr = thr->regs->msr;
497
498 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
499 "ccr=%lx, msr=%lx, trap=%lx)\n",
500 tsk->pid, thr->regs->nip,
501 thr->regs->ccr, thr->regs->msr,
502 thr->regs->trap);
503
504 tm_reclaim(thr, thr->regs->msr, TM_CAUSE_RESCHED);
505
506 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
507 tsk->pid);
508
509out_and_saveregs:
510 /* Always save the regs here, even if a transaction's not active.
511 * This context-switches a thread's TM info SPRs. We do it here to
512 * be consistent with the restore path (in recheckpoint) which
513 * cannot happen later in _switch().
514 */
515 tm_save_sprs(thr);
516}
517
bc2a9408 518static inline void tm_recheckpoint_new_task(struct task_struct *new)
fb09692e
MN
519{
520 unsigned long msr;
521
522 if (!cpu_has_feature(CPU_FTR_TM))
523 return;
524
525 /* Recheckpoint the registers of the thread we're about to switch to.
526 *
527 * If the task was using FP, we non-lazily reload both the original and
528 * the speculative FP register states. This is because the kernel
529 * doesn't see if/when a TM rollback occurs, so if we take an FP
530 * unavoidable later, we are unable to determine which set of FP regs
531 * need to be restored.
532 */
533 if (!new->thread.regs)
534 return;
535
536 /* The TM SPRs are restored here, so that TEXASR.FS can be set
537 * before the trecheckpoint and no explosion occurs.
538 */
539 tm_restore_sprs(&new->thread);
540
541 if (!MSR_TM_ACTIVE(new->thread.regs->msr))
542 return;
543 msr = new->thread.tm_orig_msr;
544 /* Recheckpoint to restore original checkpointed register state. */
545 TM_DEBUG("*** tm_recheckpoint of pid %d "
546 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
547 new->pid, new->thread.regs->msr, msr);
548
549 /* This loads the checkpointed FP/VEC state, if used */
550 tm_recheckpoint(&new->thread, msr);
551
552 /* This loads the speculative FP/VEC state, if used */
553 if (msr & MSR_FP) {
554 do_load_up_transact_fpu(&new->thread);
555 new->thread.regs->msr |=
556 (MSR_FP | new->thread.fpexc_mode);
557 }
f110c0c1 558#ifdef CONFIG_ALTIVEC
fb09692e
MN
559 if (msr & MSR_VEC) {
560 do_load_up_transact_altivec(&new->thread);
561 new->thread.regs->msr |= MSR_VEC;
562 }
f110c0c1 563#endif
fb09692e
MN
564 /* We may as well turn on VSX too since all the state is restored now */
565 if (msr & MSR_VSX)
566 new->thread.regs->msr |= MSR_VSX;
567
568 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
569 "(kernel msr 0x%lx)\n",
570 new->pid, mfmsr());
571}
572
573static inline void __switch_to_tm(struct task_struct *prev)
574{
575 if (cpu_has_feature(CPU_FTR_TM)) {
576 tm_enable();
577 tm_reclaim_task(prev);
578 }
579}
580#else
581#define tm_recheckpoint_new_task(new)
582#define __switch_to_tm(prev)
583#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
9422de3e 584
14cf11af
PM
585struct task_struct *__switch_to(struct task_struct *prev,
586 struct task_struct *new)
587{
588 struct thread_struct *new_thread, *old_thread;
589 unsigned long flags;
590 struct task_struct *last;
d6bf29b4
PZ
591#ifdef CONFIG_PPC_BOOK3S_64
592 struct ppc64_tlb_batch *batch;
593#endif
14cf11af 594
bc2a9408
MN
595 __switch_to_tm(prev);
596
14cf11af
PM
597#ifdef CONFIG_SMP
598 /* avoid complexity of lazy save/restore of fpu
599 * by just saving it every time we switch out if
600 * this task used the fpu during the last quantum.
601 *
602 * If it tries to use the fpu again, it'll trap and
603 * reload its fp regs. So we don't have to do a restore
604 * every switch, just a save.
605 * -- Cort
606 */
607 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
608 giveup_fpu(prev);
609#ifdef CONFIG_ALTIVEC
610 /*
611 * If the previous thread used altivec in the last quantum
612 * (thus changing altivec regs) then save them.
613 * We used to check the VRSAVE register but not all apps
614 * set it, so we don't rely on it now (and in fact we need
615 * to save & restore VSCR even if VRSAVE == 0). -- paulus
616 *
617 * On SMP we always save/restore altivec regs just to avoid the
618 * complexity of changing processors.
619 * -- Cort
620 */
621 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
622 giveup_altivec(prev);
14cf11af 623#endif /* CONFIG_ALTIVEC */
ce48b210
MN
624#ifdef CONFIG_VSX
625 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
7c292170
MN
626 /* VMX and FPU registers are already save here */
627 __giveup_vsx(prev);
ce48b210 628#endif /* CONFIG_VSX */
14cf11af
PM
629#ifdef CONFIG_SPE
630 /*
631 * If the previous thread used spe in the last quantum
632 * (thus changing spe regs) then save them.
633 *
634 * On SMP we always save/restore spe regs just to avoid the
635 * complexity of changing processors.
636 */
637 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
638 giveup_spe(prev);
c0c0d996
PM
639#endif /* CONFIG_SPE */
640
641#else /* CONFIG_SMP */
642#ifdef CONFIG_ALTIVEC
643 /* Avoid the trap. On smp this this never happens since
644 * we don't set last_task_used_altivec -- Cort
645 */
646 if (new->thread.regs && last_task_used_altivec == new)
647 new->thread.regs->msr |= MSR_VEC;
648#endif /* CONFIG_ALTIVEC */
ce48b210
MN
649#ifdef CONFIG_VSX
650 if (new->thread.regs && last_task_used_vsx == new)
651 new->thread.regs->msr |= MSR_VSX;
652#endif /* CONFIG_VSX */
c0c0d996 653#ifdef CONFIG_SPE
14cf11af
PM
654 /* Avoid the trap. On smp this this never happens since
655 * we don't set last_task_used_spe
656 */
657 if (new->thread.regs && last_task_used_spe == new)
658 new->thread.regs->msr |= MSR_SPE;
659#endif /* CONFIG_SPE */
c0c0d996 660
14cf11af
PM
661#endif /* CONFIG_SMP */
662
172ae2e7 663#ifdef CONFIG_PPC_ADV_DEBUG_REGS
3bffb652 664 switch_booke_debug_regs(&new->thread);
c6c9eace 665#else
5aae8a53
P
666/*
667 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
668 * schedule DABR
669 */
670#ifndef CONFIG_HAVE_HW_BREAKPOINT
9422de3e 671 if (unlikely(hw_brk_match(&__get_cpu_var(current_brk), &new->thread.hw_brk)))
b9818c33 672 set_breakpoint(&new->thread.hw_brk);
5aae8a53 673#endif /* CONFIG_HAVE_HW_BREAKPOINT */
d6a61bfc
LM
674#endif
675
c6c9eace 676
14cf11af
PM
677 new_thread = &new->thread;
678 old_thread = &current->thread;
06d67d54
PM
679
680#ifdef CONFIG_PPC64
681 /*
682 * Collect processor utilization data per process
683 */
684 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
685 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
686 long unsigned start_tb, current_tb;
687 start_tb = old_thread->start_tb;
688 cu->current_tb = current_tb = mfspr(SPRN_PURR);
689 old_thread->accum_tb += (current_tb - start_tb);
690 new_thread->start_tb = current_tb;
691 }
d6bf29b4
PZ
692#endif /* CONFIG_PPC64 */
693
694#ifdef CONFIG_PPC_BOOK3S_64
695 batch = &__get_cpu_var(ppc64_tlb_batch);
696 if (batch->active) {
697 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
698 if (batch->index)
699 __flush_tlb_pending(batch);
700 batch->active = 0;
701 }
702#endif /* CONFIG_PPC_BOOK3S_64 */
06d67d54 703
14cf11af 704 local_irq_save(flags);
c6622f63 705
44387e9f
AB
706 /*
707 * We can't take a PMU exception inside _switch() since there is a
708 * window where the kernel stack SLB and the kernel stack are out
709 * of sync. Hard disable here.
710 */
711 hard_irq_disable();
bc2a9408
MN
712
713 tm_recheckpoint_new_task(new);
714
14cf11af
PM
715 last = _switch(old_thread, new_thread);
716
d6bf29b4
PZ
717#ifdef CONFIG_PPC_BOOK3S_64
718 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
719 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
720 batch = &__get_cpu_var(ppc64_tlb_batch);
721 batch->active = 1;
722 }
723#endif /* CONFIG_PPC_BOOK3S_64 */
724
14cf11af
PM
725 local_irq_restore(flags);
726
727 return last;
728}
729
06d67d54
PM
730static int instructions_to_print = 16;
731
06d67d54
PM
732static void show_instructions(struct pt_regs *regs)
733{
734 int i;
735 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
736 sizeof(int));
737
738 printk("Instruction dump:");
739
740 for (i = 0; i < instructions_to_print; i++) {
741 int instr;
742
743 if (!(i % 8))
744 printk("\n");
745
0de2d820
SW
746#if !defined(CONFIG_BOOKE)
747 /* If executing with the IMMU off, adjust pc rather
748 * than print XXXXXXXX.
749 */
750 if (!(regs->msr & MSR_IR))
751 pc = (unsigned long)phys_to_virt(pc);
752#endif
753
af308377
SR
754 /* We use __get_user here *only* to avoid an OOPS on a
755 * bad address because the pc *should* only be a
756 * kernel address.
757 */
00ae36de
AB
758 if (!__kernel_text_address(pc) ||
759 __get_user(instr, (unsigned int __user *)pc)) {
40c8cefa 760 printk(KERN_CONT "XXXXXXXX ");
06d67d54
PM
761 } else {
762 if (regs->nip == pc)
40c8cefa 763 printk(KERN_CONT "<%08x> ", instr);
06d67d54 764 else
40c8cefa 765 printk(KERN_CONT "%08x ", instr);
06d67d54
PM
766 }
767
768 pc += sizeof(int);
769 }
770
771 printk("\n");
772}
773
774static struct regbit {
775 unsigned long bit;
776 const char *name;
777} msr_bits[] = {
3bfd0c9c
AB
778#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
779 {MSR_SF, "SF"},
780 {MSR_HV, "HV"},
781#endif
782 {MSR_VEC, "VEC"},
783 {MSR_VSX, "VSX"},
784#ifdef CONFIG_BOOKE
785 {MSR_CE, "CE"},
786#endif
06d67d54
PM
787 {MSR_EE, "EE"},
788 {MSR_PR, "PR"},
789 {MSR_FP, "FP"},
790 {MSR_ME, "ME"},
3bfd0c9c 791#ifdef CONFIG_BOOKE
1b98326b 792 {MSR_DE, "DE"},
3bfd0c9c
AB
793#else
794 {MSR_SE, "SE"},
795 {MSR_BE, "BE"},
796#endif
06d67d54
PM
797 {MSR_IR, "IR"},
798 {MSR_DR, "DR"},
3bfd0c9c
AB
799 {MSR_PMM, "PMM"},
800#ifndef CONFIG_BOOKE
801 {MSR_RI, "RI"},
802 {MSR_LE, "LE"},
803#endif
06d67d54
PM
804 {0, NULL}
805};
806
807static void printbits(unsigned long val, struct regbit *bits)
808{
809 const char *sep = "";
810
811 printk("<");
812 for (; bits->bit; ++bits)
813 if (val & bits->bit) {
814 printk("%s%s", sep, bits->name);
815 sep = ",";
816 }
817 printk(">");
818}
819
820#ifdef CONFIG_PPC64
f6f7dde3 821#define REG "%016lx"
06d67d54
PM
822#define REGS_PER_LINE 4
823#define LAST_VOLATILE 13
824#else
f6f7dde3 825#define REG "%08lx"
06d67d54
PM
826#define REGS_PER_LINE 8
827#define LAST_VOLATILE 12
828#endif
829
14cf11af
PM
830void show_regs(struct pt_regs * regs)
831{
832 int i, trap;
833
06d67d54
PM
834 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
835 regs->nip, regs->link, regs->ctr);
836 printk("REGS: %p TRAP: %04lx %s (%s)\n",
96b644bd 837 regs, regs->trap, print_tainted(), init_utsname()->release);
06d67d54
PM
838 printk("MSR: "REG" ", regs->msr);
839 printbits(regs->msr, msr_bits);
f6f7dde3 840 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
7230c564
BH
841#ifdef CONFIG_PPC64
842 printk("SOFTE: %ld\n", regs->softe);
843#endif
14cf11af 844 trap = TRAP(regs);
5115a026
MN
845 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
846 printk("CFAR: "REG"\n", regs->orig_gpr3);
14cf11af 847 if (trap == 0x300 || trap == 0x600)
ba28c9aa 848#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
14170789
KG
849 printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
850#else
7071854b 851 printk("DAR: "REG", DSISR: %08lx\n", regs->dar, regs->dsisr);
14170789 852#endif
06d67d54 853 printk("TASK = %p[%d] '%s' THREAD: %p",
19c5870c 854 current, task_pid_nr(current), current->comm, task_thread_info(current));
14cf11af
PM
855
856#ifdef CONFIG_SMP
79ccd1be 857 printk(" CPU: %d", raw_smp_processor_id());
14cf11af
PM
858#endif /* CONFIG_SMP */
859
860 for (i = 0; i < 32; i++) {
06d67d54 861 if ((i % REGS_PER_LINE) == 0)
a2367194 862 printk("\nGPR%02d: ", i);
06d67d54
PM
863 printk(REG " ", regs->gpr[i]);
864 if (i == LAST_VOLATILE && !FULL_REGS(regs))
14cf11af
PM
865 break;
866 }
867 printk("\n");
868#ifdef CONFIG_KALLSYMS
869 /*
870 * Lookup NIP late so we have the best change of getting the
871 * above info out without failing
872 */
058c78f4
BH
873 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
874 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
14cf11af 875#endif
afc07701
MN
876#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
877 printk("PACATMSCRATCH [%llx]\n", get_paca()->tm_scratch);
878#endif
14cf11af 879 show_stack(current, (unsigned long *) regs->gpr[1]);
06d67d54
PM
880 if (!user_mode(regs))
881 show_instructions(regs);
14cf11af
PM
882}
883
884void exit_thread(void)
885{
48abec07 886 discard_lazy_cpu_state();
14cf11af
PM
887}
888
889void flush_thread(void)
890{
48abec07 891 discard_lazy_cpu_state();
14cf11af 892
e0780b72 893#ifdef CONFIG_HAVE_HW_BREAKPOINT
5aae8a53 894 flush_ptrace_hw_breakpoint(current);
e0780b72 895#else /* CONFIG_HAVE_HW_BREAKPOINT */
3bffb652 896 set_debug_reg_defaults(&current->thread);
e0780b72 897#endif /* CONFIG_HAVE_HW_BREAKPOINT */
14cf11af
PM
898}
899
900void
901release_thread(struct task_struct *t)
902{
903}
904
905/*
55ccf3fe
SS
906 * this gets called so that we can store coprocessor state into memory and
907 * copy the current task into the new thread.
14cf11af 908 */
55ccf3fe 909int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
14cf11af 910{
55ccf3fe
SS
911 flush_fp_to_thread(src);
912 flush_altivec_to_thread(src);
913 flush_vsx_to_thread(src);
914 flush_spe_to_thread(src);
5aae8a53 915#ifdef CONFIG_HAVE_HW_BREAKPOINT
55ccf3fe 916 flush_ptrace_hw_breakpoint(src);
5aae8a53 917#endif /* CONFIG_HAVE_HW_BREAKPOINT */
55ccf3fe
SS
918
919 *dst = *src;
920 return 0;
14cf11af
PM
921}
922
923/*
924 * Copy a thread..
925 */
efcac658
AK
926extern unsigned long dscr_default; /* defined in arch/powerpc/kernel/sysfs.c */
927
6f2c55b8 928int copy_thread(unsigned long clone_flags, unsigned long usp,
afa86fc4 929 unsigned long arg, struct task_struct *p)
14cf11af
PM
930{
931 struct pt_regs *childregs, *kregs;
932 extern void ret_from_fork(void);
58254e10
AV
933 extern void ret_from_kernel_thread(void);
934 void (*f)(void);
0cec6fd1 935 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
14cf11af 936
14cf11af
PM
937 /* Copy registers */
938 sp -= sizeof(struct pt_regs);
939 childregs = (struct pt_regs *) sp;
ab75819d 940 if (unlikely(p->flags & PF_KTHREAD)) {
138d1ce8 941 struct thread_info *ti = (void *)task_stack_page(p);
58254e10 942 memset(childregs, 0, sizeof(struct pt_regs));
14cf11af 943 childregs->gpr[1] = sp + sizeof(struct pt_regs);
53b50f94 944 childregs->gpr[14] = usp; /* function */
58254e10 945#ifdef CONFIG_PPC64
b5e2fc1c 946 clear_tsk_thread_flag(p, TIF_32BIT);
138d1ce8 947 childregs->softe = 1;
06d67d54 948#endif
58254e10 949 childregs->gpr[15] = arg;
14cf11af 950 p->thread.regs = NULL; /* no user register state */
138d1ce8 951 ti->flags |= _TIF_RESTOREALL;
58254e10 952 f = ret_from_kernel_thread;
14cf11af 953 } else {
afa86fc4 954 struct pt_regs *regs = current_pt_regs();
58254e10
AV
955 CHECK_FULL_REGS(regs);
956 *childregs = *regs;
ea516b11
AV
957 if (usp)
958 childregs->gpr[1] = usp;
14cf11af 959 p->thread.regs = childregs;
58254e10 960 childregs->gpr[3] = 0; /* Result from fork() */
06d67d54
PM
961 if (clone_flags & CLONE_SETTLS) {
962#ifdef CONFIG_PPC64
9904b005 963 if (!is_32bit_task())
06d67d54
PM
964 childregs->gpr[13] = childregs->gpr[6];
965 else
966#endif
967 childregs->gpr[2] = childregs->gpr[6];
968 }
58254e10
AV
969
970 f = ret_from_fork;
14cf11af 971 }
14cf11af 972 sp -= STACK_FRAME_OVERHEAD;
14cf11af
PM
973
974 /*
975 * The way this works is that at some point in the future
976 * some task will call _switch to switch to the new task.
977 * That will pop off the stack frame created below and start
978 * the new task running at ret_from_fork. The new task will
979 * do some house keeping and then return from the fork or clone
980 * system call, using the stack frame created above.
981 */
982 sp -= sizeof(struct pt_regs);
983 kregs = (struct pt_regs *) sp;
984 sp -= STACK_FRAME_OVERHEAD;
985 p->thread.ksp = sp;
85218827
KG
986 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
987 _ALIGN_UP(sizeof(struct thread_info), 16);
14cf11af 988
94491685 989#ifdef CONFIG_PPC_STD_MMU_64
44ae3ab3 990 if (mmu_has_feature(MMU_FTR_SLB)) {
1189be65 991 unsigned long sp_vsid;
3c726f8d 992 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
06d67d54 993
44ae3ab3 994 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1189be65
PM
995 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
996 << SLB_VSID_SHIFT_1T;
997 else
998 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
999 << SLB_VSID_SHIFT;
3c726f8d 1000 sp_vsid |= SLB_VSID_KERNEL | llp;
06d67d54
PM
1001 p->thread.ksp_vsid = sp_vsid;
1002 }
747bea91 1003#endif /* CONFIG_PPC_STD_MMU_64 */
efcac658
AK
1004#ifdef CONFIG_PPC64
1005 if (cpu_has_feature(CPU_FTR_DSCR)) {
1021cb26
AB
1006 p->thread.dscr_inherit = current->thread.dscr_inherit;
1007 p->thread.dscr = current->thread.dscr;
efcac658 1008 }
92779245
HM
1009 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1010 p->thread.ppr = INIT_PPR;
efcac658 1011#endif
06d67d54
PM
1012 /*
1013 * The PPC64 ABI makes use of a TOC to contain function
1014 * pointers. The function (ret_from_except) is actually a pointer
1015 * to the TOC entry. The first entry is a pointer to the actual
1016 * function.
58254e10 1017 */
747bea91 1018#ifdef CONFIG_PPC64
58254e10 1019 kregs->nip = *((unsigned long *)f);
06d67d54 1020#else
58254e10 1021 kregs->nip = (unsigned long)f;
06d67d54 1022#endif
14cf11af
PM
1023 return 0;
1024}
1025
1026/*
1027 * Set up a thread for executing a new program
1028 */
06d67d54 1029void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
14cf11af 1030{
90eac727
ME
1031#ifdef CONFIG_PPC64
1032 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1033#endif
1034
06d67d54
PM
1035 /*
1036 * If we exec out of a kernel thread then thread.regs will not be
1037 * set. Do it now.
1038 */
1039 if (!current->thread.regs) {
0cec6fd1
AV
1040 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1041 current->thread.regs = regs - 1;
06d67d54
PM
1042 }
1043
14cf11af
PM
1044 memset(regs->gpr, 0, sizeof(regs->gpr));
1045 regs->ctr = 0;
1046 regs->link = 0;
1047 regs->xer = 0;
1048 regs->ccr = 0;
14cf11af 1049 regs->gpr[1] = sp;
06d67d54 1050
474f8196
RM
1051 /*
1052 * We have just cleared all the nonvolatile GPRs, so make
1053 * FULL_REGS(regs) return true. This is necessary to allow
1054 * ptrace to examine the thread immediately after exec.
1055 */
1056 regs->trap &= ~1UL;
1057
06d67d54
PM
1058#ifdef CONFIG_PPC32
1059 regs->mq = 0;
1060 regs->nip = start;
14cf11af 1061 regs->msr = MSR_USER;
06d67d54 1062#else
9904b005 1063 if (!is_32bit_task()) {
90eac727 1064 unsigned long entry, toc;
06d67d54
PM
1065
1066 /* start is a relocated pointer to the function descriptor for
1067 * the elf _start routine. The first entry in the function
1068 * descriptor is the entry address of _start and the second
1069 * entry is the TOC value we need to use.
1070 */
1071 __get_user(entry, (unsigned long __user *)start);
1072 __get_user(toc, (unsigned long __user *)start+1);
1073
1074 /* Check whether the e_entry function descriptor entries
1075 * need to be relocated before we can use them.
1076 */
1077 if (load_addr != 0) {
1078 entry += load_addr;
1079 toc += load_addr;
1080 }
1081 regs->nip = entry;
1082 regs->gpr[2] = toc;
1083 regs->msr = MSR_USER64;
d4bf9a78
SR
1084 } else {
1085 regs->nip = start;
1086 regs->gpr[2] = 0;
1087 regs->msr = MSR_USER32;
06d67d54
PM
1088 }
1089#endif
48abec07 1090 discard_lazy_cpu_state();
ce48b210
MN
1091#ifdef CONFIG_VSX
1092 current->thread.used_vsr = 0;
1093#endif
14cf11af 1094 memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
25c8a78b 1095 current->thread.fpscr.val = 0;
14cf11af
PM
1096#ifdef CONFIG_ALTIVEC
1097 memset(current->thread.vr, 0, sizeof(current->thread.vr));
1098 memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
06d67d54 1099 current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
14cf11af
PM
1100 current->thread.vrsave = 0;
1101 current->thread.used_vr = 0;
1102#endif /* CONFIG_ALTIVEC */
1103#ifdef CONFIG_SPE
1104 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1105 current->thread.acc = 0;
1106 current->thread.spefscr = 0;
1107 current->thread.used_spe = 0;
1108#endif /* CONFIG_SPE */
bc2a9408
MN
1109#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1110 if (cpu_has_feature(CPU_FTR_TM))
1111 regs->msr |= MSR_TM;
1112 current->thread.tm_tfhar = 0;
1113 current->thread.tm_texasr = 0;
1114 current->thread.tm_tfiar = 0;
1115#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
14cf11af
PM
1116}
1117
1118#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1119 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1120
1121int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1122{
1123 struct pt_regs *regs = tsk->thread.regs;
1124
1125 /* This is a bit hairy. If we are an SPE enabled processor
1126 * (have embedded fp) we store the IEEE exception enable flags in
1127 * fpexc_mode. fpexc_mode is also used for setting FP exception
1128 * mode (asyn, precise, disabled) for 'Classic' FP. */
1129 if (val & PR_FP_EXC_SW_ENABLE) {
1130#ifdef CONFIG_SPE
5e14d21e
KG
1131 if (cpu_has_feature(CPU_FTR_SPE)) {
1132 tsk->thread.fpexc_mode = val &
1133 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1134 return 0;
1135 } else {
1136 return -EINVAL;
1137 }
14cf11af
PM
1138#else
1139 return -EINVAL;
1140#endif
14cf11af 1141 }
06d67d54
PM
1142
1143 /* on a CONFIG_SPE this does not hurt us. The bits that
1144 * __pack_fe01 use do not overlap with bits used for
1145 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1146 * on CONFIG_SPE implementations are reserved so writing to
1147 * them does not change anything */
1148 if (val > PR_FP_EXC_PRECISE)
1149 return -EINVAL;
1150 tsk->thread.fpexc_mode = __pack_fe01(val);
1151 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1152 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1153 | tsk->thread.fpexc_mode;
14cf11af
PM
1154 return 0;
1155}
1156
1157int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1158{
1159 unsigned int val;
1160
1161 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1162#ifdef CONFIG_SPE
5e14d21e
KG
1163 if (cpu_has_feature(CPU_FTR_SPE))
1164 val = tsk->thread.fpexc_mode;
1165 else
1166 return -EINVAL;
14cf11af
PM
1167#else
1168 return -EINVAL;
1169#endif
1170 else
1171 val = __unpack_fe01(tsk->thread.fpexc_mode);
1172 return put_user(val, (unsigned int __user *) adr);
1173}
1174
fab5db97
PM
1175int set_endian(struct task_struct *tsk, unsigned int val)
1176{
1177 struct pt_regs *regs = tsk->thread.regs;
1178
1179 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1180 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1181 return -EINVAL;
1182
1183 if (regs == NULL)
1184 return -EINVAL;
1185
1186 if (val == PR_ENDIAN_BIG)
1187 regs->msr &= ~MSR_LE;
1188 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1189 regs->msr |= MSR_LE;
1190 else
1191 return -EINVAL;
1192
1193 return 0;
1194}
1195
1196int get_endian(struct task_struct *tsk, unsigned long adr)
1197{
1198 struct pt_regs *regs = tsk->thread.regs;
1199 unsigned int val;
1200
1201 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1202 !cpu_has_feature(CPU_FTR_REAL_LE))
1203 return -EINVAL;
1204
1205 if (regs == NULL)
1206 return -EINVAL;
1207
1208 if (regs->msr & MSR_LE) {
1209 if (cpu_has_feature(CPU_FTR_REAL_LE))
1210 val = PR_ENDIAN_LITTLE;
1211 else
1212 val = PR_ENDIAN_PPC_LITTLE;
1213 } else
1214 val = PR_ENDIAN_BIG;
1215
1216 return put_user(val, (unsigned int __user *)adr);
1217}
1218
e9370ae1
PM
1219int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1220{
1221 tsk->thread.align_ctl = val;
1222 return 0;
1223}
1224
1225int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1226{
1227 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1228}
1229
bb72c481
PM
1230static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1231 unsigned long nbytes)
1232{
1233 unsigned long stack_page;
1234 unsigned long cpu = task_cpu(p);
1235
1236 /*
1237 * Avoid crashing if the stack has overflowed and corrupted
1238 * task_cpu(p), which is in the thread_info struct.
1239 */
1240 if (cpu < NR_CPUS && cpu_possible(cpu)) {
1241 stack_page = (unsigned long) hardirq_ctx[cpu];
1242 if (sp >= stack_page + sizeof(struct thread_struct)
1243 && sp <= stack_page + THREAD_SIZE - nbytes)
1244 return 1;
1245
1246 stack_page = (unsigned long) softirq_ctx[cpu];
1247 if (sp >= stack_page + sizeof(struct thread_struct)
1248 && sp <= stack_page + THREAD_SIZE - nbytes)
1249 return 1;
1250 }
1251 return 0;
1252}
1253
2f25194d 1254int validate_sp(unsigned long sp, struct task_struct *p,
14cf11af
PM
1255 unsigned long nbytes)
1256{
0cec6fd1 1257 unsigned long stack_page = (unsigned long)task_stack_page(p);
14cf11af
PM
1258
1259 if (sp >= stack_page + sizeof(struct thread_struct)
1260 && sp <= stack_page + THREAD_SIZE - nbytes)
1261 return 1;
1262
bb72c481 1263 return valid_irq_stack(sp, p, nbytes);
14cf11af
PM
1264}
1265
2f25194d
AB
1266EXPORT_SYMBOL(validate_sp);
1267
14cf11af
PM
1268unsigned long get_wchan(struct task_struct *p)
1269{
1270 unsigned long ip, sp;
1271 int count = 0;
1272
1273 if (!p || p == current || p->state == TASK_RUNNING)
1274 return 0;
1275
1276 sp = p->thread.ksp;
ec2b36b9 1277 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
14cf11af
PM
1278 return 0;
1279
1280 do {
1281 sp = *(unsigned long *)sp;
ec2b36b9 1282 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
14cf11af
PM
1283 return 0;
1284 if (count > 0) {
ec2b36b9 1285 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
14cf11af
PM
1286 if (!in_sched_functions(ip))
1287 return ip;
1288 }
1289 } while (count++ < 16);
1290 return 0;
1291}
06d67d54 1292
c4d04be1 1293static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
06d67d54
PM
1294
1295void show_stack(struct task_struct *tsk, unsigned long *stack)
1296{
1297 unsigned long sp, ip, lr, newsp;
1298 int count = 0;
1299 int firstframe = 1;
6794c782
SR
1300#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1301 int curr_frame = current->curr_ret_stack;
1302 extern void return_to_handler(void);
9135c3cc
SR
1303 unsigned long rth = (unsigned long)return_to_handler;
1304 unsigned long mrth = -1;
6794c782 1305#ifdef CONFIG_PPC64
9135c3cc
SR
1306 extern void mod_return_to_handler(void);
1307 rth = *(unsigned long *)rth;
1308 mrth = (unsigned long)mod_return_to_handler;
1309 mrth = *(unsigned long *)mrth;
6794c782
SR
1310#endif
1311#endif
06d67d54
PM
1312
1313 sp = (unsigned long) stack;
1314 if (tsk == NULL)
1315 tsk = current;
1316 if (sp == 0) {
1317 if (tsk == current)
1318 asm("mr %0,1" : "=r" (sp));
1319 else
1320 sp = tsk->thread.ksp;
1321 }
1322
1323 lr = 0;
1324 printk("Call Trace:\n");
1325 do {
ec2b36b9 1326 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
06d67d54
PM
1327 return;
1328
1329 stack = (unsigned long *) sp;
1330 newsp = stack[0];
ec2b36b9 1331 ip = stack[STACK_FRAME_LR_SAVE];
06d67d54 1332 if (!firstframe || ip != lr) {
058c78f4 1333 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
6794c782 1334#ifdef CONFIG_FUNCTION_GRAPH_TRACER
9135c3cc 1335 if ((ip == rth || ip == mrth) && curr_frame >= 0) {
6794c782
SR
1336 printk(" (%pS)",
1337 (void *)current->ret_stack[curr_frame].ret);
1338 curr_frame--;
1339 }
1340#endif
06d67d54
PM
1341 if (firstframe)
1342 printk(" (unreliable)");
1343 printk("\n");
1344 }
1345 firstframe = 0;
1346
1347 /*
1348 * See if this is an exception frame.
1349 * We look for the "regshere" marker in the current frame.
1350 */
ec2b36b9
BH
1351 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1352 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
06d67d54
PM
1353 struct pt_regs *regs = (struct pt_regs *)
1354 (sp + STACK_FRAME_OVERHEAD);
06d67d54 1355 lr = regs->link;
058c78f4
BH
1356 printk("--- Exception: %lx at %pS\n LR = %pS\n",
1357 regs->trap, (void *)regs->nip, (void *)lr);
06d67d54
PM
1358 firstframe = 1;
1359 }
1360
1361 sp = newsp;
1362 } while (count++ < kstack_depth_to_print);
1363}
1364
cb2c9b27 1365#ifdef CONFIG_PPC64
fe1952fc
BH
1366/* Called with hard IRQs off */
1367void __ppc64_runlatch_on(void)
cb2c9b27 1368{
fe1952fc 1369 struct thread_info *ti = current_thread_info();
cb2c9b27
AB
1370 unsigned long ctrl;
1371
fe1952fc
BH
1372 ctrl = mfspr(SPRN_CTRLF);
1373 ctrl |= CTRL_RUNLATCH;
1374 mtspr(SPRN_CTRLT, ctrl);
cb2c9b27 1375
fae2e0fb 1376 ti->local_flags |= _TLF_RUNLATCH;
cb2c9b27
AB
1377}
1378
fe1952fc 1379/* Called with hard IRQs off */
4138d653 1380void __ppc64_runlatch_off(void)
cb2c9b27 1381{
fe1952fc 1382 struct thread_info *ti = current_thread_info();
cb2c9b27
AB
1383 unsigned long ctrl;
1384
fae2e0fb 1385 ti->local_flags &= ~_TLF_RUNLATCH;
cb2c9b27 1386
4138d653
AB
1387 ctrl = mfspr(SPRN_CTRLF);
1388 ctrl &= ~CTRL_RUNLATCH;
1389 mtspr(SPRN_CTRLT, ctrl);
cb2c9b27 1390}
fe1952fc 1391#endif /* CONFIG_PPC64 */
f6a61680 1392
d839088c
AB
1393unsigned long arch_align_stack(unsigned long sp)
1394{
1395 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1396 sp -= get_random_int() & ~PAGE_MASK;
1397 return sp & ~0xf;
1398}
912f9ee2
AB
1399
1400static inline unsigned long brk_rnd(void)
1401{
1402 unsigned long rnd = 0;
1403
1404 /* 8MB for 32bit, 1GB for 64bit */
1405 if (is_32bit_task())
1406 rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1407 else
1408 rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1409
1410 return rnd << PAGE_SHIFT;
1411}
1412
1413unsigned long arch_randomize_brk(struct mm_struct *mm)
1414{
8bbde7a7
AB
1415 unsigned long base = mm->brk;
1416 unsigned long ret;
1417
ce7a35c7 1418#ifdef CONFIG_PPC_STD_MMU_64
8bbde7a7
AB
1419 /*
1420 * If we are using 1TB segments and we are allowed to randomise
1421 * the heap, we can put it above 1TB so it is backed by a 1TB
1422 * segment. Otherwise the heap will be in the bottom 1TB
1423 * which always uses 256MB segments and this may result in a
1424 * performance penalty.
1425 */
1426 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1427 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1428#endif
1429
1430 ret = PAGE_ALIGN(base + brk_rnd());
912f9ee2
AB
1431
1432 if (ret < mm->brk)
1433 return mm->brk;
1434
1435 return ret;
1436}
501cb16d
AB
1437
1438unsigned long randomize_et_dyn(unsigned long base)
1439{
1440 unsigned long ret = PAGE_ALIGN(base + brk_rnd());
1441
1442 if (ret < base)
1443 return base;
1444
1445 return ret;
1446}