powerpc/rtas: Only sleep in rtas_busy_delay if we have useful work to do
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / powerpc / kernel / process.c
CommitLineData
14cf11af 1/*
14cf11af
PM
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
14cf11af
PM
17#include <linux/errno.h>
18#include <linux/sched.h>
19#include <linux/kernel.h>
20#include <linux/mm.h>
21#include <linux/smp.h>
14cf11af
PM
22#include <linux/stddef.h>
23#include <linux/unistd.h>
24#include <linux/ptrace.h>
25#include <linux/slab.h>
26#include <linux/user.h>
27#include <linux/elf.h>
28#include <linux/init.h>
29#include <linux/prctl.h>
30#include <linux/init_task.h>
31#include <linux/module.h>
32#include <linux/kallsyms.h>
33#include <linux/mqueue.h>
34#include <linux/hardirq.h>
06d67d54 35#include <linux/utsname.h>
6794c782 36#include <linux/ftrace.h>
79741dd3 37#include <linux/kernel_stat.h>
d839088c
AB
38#include <linux/personality.h>
39#include <linux/random.h>
5aae8a53 40#include <linux/hw_breakpoint.h>
14cf11af
PM
41
42#include <asm/pgtable.h>
43#include <asm/uaccess.h>
44#include <asm/system.h>
45#include <asm/io.h>
46#include <asm/processor.h>
47#include <asm/mmu.h>
48#include <asm/prom.h>
76032de8 49#include <asm/machdep.h>
c6622f63 50#include <asm/time.h>
a7f31841 51#include <asm/syscalls.h>
06d67d54
PM
52#ifdef CONFIG_PPC64
53#include <asm/firmware.h>
06d67d54 54#endif
d6a61bfc
LM
55#include <linux/kprobes.h>
56#include <linux/kdebug.h>
14cf11af
PM
57
58extern unsigned long _get_SP(void);
59
60#ifndef CONFIG_SMP
61struct task_struct *last_task_used_math = NULL;
62struct task_struct *last_task_used_altivec = NULL;
ce48b210 63struct task_struct *last_task_used_vsx = NULL;
14cf11af
PM
64struct task_struct *last_task_used_spe = NULL;
65#endif
66
14cf11af
PM
67/*
68 * Make sure the floating-point register state in the
69 * the thread_struct is up to date for task tsk.
70 */
71void flush_fp_to_thread(struct task_struct *tsk)
72{
73 if (tsk->thread.regs) {
74 /*
75 * We need to disable preemption here because if we didn't,
76 * another process could get scheduled after the regs->msr
77 * test but before we have finished saving the FP registers
78 * to the thread_struct. That process could take over the
79 * FPU, and then when we get scheduled again we would store
80 * bogus values for the remaining FP registers.
81 */
82 preempt_disable();
83 if (tsk->thread.regs->msr & MSR_FP) {
84#ifdef CONFIG_SMP
85 /*
86 * This should only ever be called for current or
87 * for a stopped child process. Since we save away
88 * the FP register state on context switch on SMP,
89 * there is something wrong if a stopped child appears
90 * to still have its FP state in the CPU registers.
91 */
92 BUG_ON(tsk != current);
93#endif
0ee6c15e 94 giveup_fpu(tsk);
14cf11af
PM
95 }
96 preempt_enable();
97 }
98}
99
100void enable_kernel_fp(void)
101{
102 WARN_ON(preemptible());
103
104#ifdef CONFIG_SMP
105 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
106 giveup_fpu(current);
107 else
108 giveup_fpu(NULL); /* just enables FP for kernel */
109#else
110 giveup_fpu(last_task_used_math);
111#endif /* CONFIG_SMP */
112}
113EXPORT_SYMBOL(enable_kernel_fp);
114
14cf11af
PM
115#ifdef CONFIG_ALTIVEC
116void enable_kernel_altivec(void)
117{
118 WARN_ON(preemptible());
119
120#ifdef CONFIG_SMP
121 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
122 giveup_altivec(current);
123 else
124 giveup_altivec(NULL); /* just enable AltiVec for kernel - force */
125#else
126 giveup_altivec(last_task_used_altivec);
127#endif /* CONFIG_SMP */
128}
129EXPORT_SYMBOL(enable_kernel_altivec);
130
131/*
132 * Make sure the VMX/Altivec register state in the
133 * the thread_struct is up to date for task tsk.
134 */
135void flush_altivec_to_thread(struct task_struct *tsk)
136{
137 if (tsk->thread.regs) {
138 preempt_disable();
139 if (tsk->thread.regs->msr & MSR_VEC) {
140#ifdef CONFIG_SMP
141 BUG_ON(tsk != current);
142#endif
0ee6c15e 143 giveup_altivec(tsk);
14cf11af
PM
144 }
145 preempt_enable();
146 }
147}
14cf11af
PM
148#endif /* CONFIG_ALTIVEC */
149
ce48b210
MN
150#ifdef CONFIG_VSX
151#if 0
152/* not currently used, but some crazy RAID module might want to later */
153void enable_kernel_vsx(void)
154{
155 WARN_ON(preemptible());
156
157#ifdef CONFIG_SMP
158 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
159 giveup_vsx(current);
160 else
161 giveup_vsx(NULL); /* just enable vsx for kernel - force */
162#else
163 giveup_vsx(last_task_used_vsx);
164#endif /* CONFIG_SMP */
165}
166EXPORT_SYMBOL(enable_kernel_vsx);
167#endif
168
7c292170
MN
169void giveup_vsx(struct task_struct *tsk)
170{
171 giveup_fpu(tsk);
172 giveup_altivec(tsk);
173 __giveup_vsx(tsk);
174}
175
ce48b210
MN
176void flush_vsx_to_thread(struct task_struct *tsk)
177{
178 if (tsk->thread.regs) {
179 preempt_disable();
180 if (tsk->thread.regs->msr & MSR_VSX) {
181#ifdef CONFIG_SMP
182 BUG_ON(tsk != current);
183#endif
184 giveup_vsx(tsk);
185 }
186 preempt_enable();
187 }
188}
ce48b210
MN
189#endif /* CONFIG_VSX */
190
14cf11af
PM
191#ifdef CONFIG_SPE
192
193void enable_kernel_spe(void)
194{
195 WARN_ON(preemptible());
196
197#ifdef CONFIG_SMP
198 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
199 giveup_spe(current);
200 else
201 giveup_spe(NULL); /* just enable SPE for kernel - force */
202#else
203 giveup_spe(last_task_used_spe);
204#endif /* __SMP __ */
205}
206EXPORT_SYMBOL(enable_kernel_spe);
207
208void flush_spe_to_thread(struct task_struct *tsk)
209{
210 if (tsk->thread.regs) {
211 preempt_disable();
212 if (tsk->thread.regs->msr & MSR_SPE) {
213#ifdef CONFIG_SMP
214 BUG_ON(tsk != current);
215#endif
0ee6c15e 216 giveup_spe(tsk);
14cf11af
PM
217 }
218 preempt_enable();
219 }
220}
14cf11af
PM
221#endif /* CONFIG_SPE */
222
5388fb10 223#ifndef CONFIG_SMP
48abec07
PM
224/*
225 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
226 * and the current task has some state, discard it.
227 */
5388fb10 228void discard_lazy_cpu_state(void)
48abec07 229{
48abec07
PM
230 preempt_disable();
231 if (last_task_used_math == current)
232 last_task_used_math = NULL;
233#ifdef CONFIG_ALTIVEC
234 if (last_task_used_altivec == current)
235 last_task_used_altivec = NULL;
236#endif /* CONFIG_ALTIVEC */
ce48b210
MN
237#ifdef CONFIG_VSX
238 if (last_task_used_vsx == current)
239 last_task_used_vsx = NULL;
240#endif /* CONFIG_VSX */
48abec07
PM
241#ifdef CONFIG_SPE
242 if (last_task_used_spe == current)
243 last_task_used_spe = NULL;
244#endif
245 preempt_enable();
48abec07 246}
5388fb10 247#endif /* CONFIG_SMP */
48abec07 248
3bffb652
DK
249#ifdef CONFIG_PPC_ADV_DEBUG_REGS
250void do_send_trap(struct pt_regs *regs, unsigned long address,
251 unsigned long error_code, int signal_code, int breakpt)
252{
253 siginfo_t info;
254
255 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
256 11, SIGSEGV) == NOTIFY_STOP)
257 return;
258
259 /* Deliver the signal to userspace */
260 info.si_signo = SIGTRAP;
261 info.si_errno = breakpt; /* breakpoint or watchpoint id */
262 info.si_code = signal_code;
263 info.si_addr = (void __user *)address;
264 force_sig_info(SIGTRAP, &info, current);
265}
266#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
d6a61bfc
LM
267void do_dabr(struct pt_regs *regs, unsigned long address,
268 unsigned long error_code)
269{
270 siginfo_t info;
271
272 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
273 11, SIGSEGV) == NOTIFY_STOP)
274 return;
275
276 if (debugger_dabr_match(regs))
277 return;
278
d6a61bfc
LM
279 /* Clear the DABR */
280 set_dabr(0);
281
282 /* Deliver the signal to userspace */
283 info.si_signo = SIGTRAP;
284 info.si_errno = 0;
285 info.si_code = TRAP_HWBKPT;
286 info.si_addr = (void __user *)address;
287 force_sig_info(SIGTRAP, &info, current);
288}
3bffb652 289#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
d6a61bfc 290
a2ceff5e
ME
291static DEFINE_PER_CPU(unsigned long, current_dabr);
292
3bffb652
DK
293#ifdef CONFIG_PPC_ADV_DEBUG_REGS
294/*
295 * Set the debug registers back to their default "safe" values.
296 */
297static void set_debug_reg_defaults(struct thread_struct *thread)
298{
299 thread->iac1 = thread->iac2 = 0;
300#if CONFIG_PPC_ADV_DEBUG_IACS > 2
301 thread->iac3 = thread->iac4 = 0;
302#endif
303 thread->dac1 = thread->dac2 = 0;
304#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
305 thread->dvc1 = thread->dvc2 = 0;
306#endif
307 thread->dbcr0 = 0;
308#ifdef CONFIG_BOOKE
309 /*
310 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
311 */
312 thread->dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | \
313 DBCR1_IAC3US | DBCR1_IAC4US;
314 /*
315 * Force Data Address Compare User/Supervisor bits to be User-only
316 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
317 */
318 thread->dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
319#else
320 thread->dbcr1 = 0;
321#endif
322}
323
324static void prime_debug_regs(struct thread_struct *thread)
325{
326 mtspr(SPRN_IAC1, thread->iac1);
327 mtspr(SPRN_IAC2, thread->iac2);
328#if CONFIG_PPC_ADV_DEBUG_IACS > 2
329 mtspr(SPRN_IAC3, thread->iac3);
330 mtspr(SPRN_IAC4, thread->iac4);
331#endif
332 mtspr(SPRN_DAC1, thread->dac1);
333 mtspr(SPRN_DAC2, thread->dac2);
334#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
335 mtspr(SPRN_DVC1, thread->dvc1);
336 mtspr(SPRN_DVC2, thread->dvc2);
337#endif
338 mtspr(SPRN_DBCR0, thread->dbcr0);
339 mtspr(SPRN_DBCR1, thread->dbcr1);
340#ifdef CONFIG_BOOKE
341 mtspr(SPRN_DBCR2, thread->dbcr2);
342#endif
343}
344/*
345 * Unless neither the old or new thread are making use of the
346 * debug registers, set the debug registers from the values
347 * stored in the new thread.
348 */
349static void switch_booke_debug_regs(struct thread_struct *new_thread)
350{
351 if ((current->thread.dbcr0 & DBCR0_IDM)
352 || (new_thread->dbcr0 & DBCR0_IDM))
353 prime_debug_regs(new_thread);
354}
355#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
e0780b72 356#ifndef CONFIG_HAVE_HW_BREAKPOINT
3bffb652
DK
357static void set_debug_reg_defaults(struct thread_struct *thread)
358{
359 if (thread->dabr) {
360 thread->dabr = 0;
361 set_dabr(0);
362 }
363}
e0780b72 364#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
3bffb652
DK
365#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
366
14cf11af
PM
367int set_dabr(unsigned long dabr)
368{
a2ceff5e
ME
369 __get_cpu_var(current_dabr) = dabr;
370
cab0af98
ME
371 if (ppc_md.set_dabr)
372 return ppc_md.set_dabr(dabr);
14cf11af 373
791cc501 374 /* XXX should we have a CPU_FTR_HAS_DABR ? */
172ae2e7 375#ifdef CONFIG_PPC_ADV_DEBUG_REGS
d6a61bfc 376 mtspr(SPRN_DAC1, dabr);
221c185d
DK
377#ifdef CONFIG_PPC_47x
378 isync();
379#endif
c6c9eace
BH
380#elif defined(CONFIG_PPC_BOOK3S)
381 mtspr(SPRN_DABR, dabr);
d6a61bfc
LM
382#endif
383
c6c9eace 384
cab0af98 385 return 0;
14cf11af
PM
386}
387
06d67d54
PM
388#ifdef CONFIG_PPC64
389DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
06d67d54 390#endif
14cf11af
PM
391
392struct task_struct *__switch_to(struct task_struct *prev,
393 struct task_struct *new)
394{
395 struct thread_struct *new_thread, *old_thread;
396 unsigned long flags;
397 struct task_struct *last;
398
399#ifdef CONFIG_SMP
400 /* avoid complexity of lazy save/restore of fpu
401 * by just saving it every time we switch out if
402 * this task used the fpu during the last quantum.
403 *
404 * If it tries to use the fpu again, it'll trap and
405 * reload its fp regs. So we don't have to do a restore
406 * every switch, just a save.
407 * -- Cort
408 */
409 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
410 giveup_fpu(prev);
411#ifdef CONFIG_ALTIVEC
412 /*
413 * If the previous thread used altivec in the last quantum
414 * (thus changing altivec regs) then save them.
415 * We used to check the VRSAVE register but not all apps
416 * set it, so we don't rely on it now (and in fact we need
417 * to save & restore VSCR even if VRSAVE == 0). -- paulus
418 *
419 * On SMP we always save/restore altivec regs just to avoid the
420 * complexity of changing processors.
421 * -- Cort
422 */
423 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
424 giveup_altivec(prev);
14cf11af 425#endif /* CONFIG_ALTIVEC */
ce48b210
MN
426#ifdef CONFIG_VSX
427 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
7c292170
MN
428 /* VMX and FPU registers are already save here */
429 __giveup_vsx(prev);
ce48b210 430#endif /* CONFIG_VSX */
14cf11af
PM
431#ifdef CONFIG_SPE
432 /*
433 * If the previous thread used spe in the last quantum
434 * (thus changing spe regs) then save them.
435 *
436 * On SMP we always save/restore spe regs just to avoid the
437 * complexity of changing processors.
438 */
439 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
440 giveup_spe(prev);
c0c0d996
PM
441#endif /* CONFIG_SPE */
442
443#else /* CONFIG_SMP */
444#ifdef CONFIG_ALTIVEC
445 /* Avoid the trap. On smp this this never happens since
446 * we don't set last_task_used_altivec -- Cort
447 */
448 if (new->thread.regs && last_task_used_altivec == new)
449 new->thread.regs->msr |= MSR_VEC;
450#endif /* CONFIG_ALTIVEC */
ce48b210
MN
451#ifdef CONFIG_VSX
452 if (new->thread.regs && last_task_used_vsx == new)
453 new->thread.regs->msr |= MSR_VSX;
454#endif /* CONFIG_VSX */
c0c0d996 455#ifdef CONFIG_SPE
14cf11af
PM
456 /* Avoid the trap. On smp this this never happens since
457 * we don't set last_task_used_spe
458 */
459 if (new->thread.regs && last_task_used_spe == new)
460 new->thread.regs->msr |= MSR_SPE;
461#endif /* CONFIG_SPE */
c0c0d996 462
14cf11af
PM
463#endif /* CONFIG_SMP */
464
172ae2e7 465#ifdef CONFIG_PPC_ADV_DEBUG_REGS
3bffb652 466 switch_booke_debug_regs(&new->thread);
c6c9eace 467#else
5aae8a53
P
468/*
469 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
470 * schedule DABR
471 */
472#ifndef CONFIG_HAVE_HW_BREAKPOINT
c6c9eace
BH
473 if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr))
474 set_dabr(new->thread.dabr);
5aae8a53 475#endif /* CONFIG_HAVE_HW_BREAKPOINT */
d6a61bfc
LM
476#endif
477
c6c9eace 478
14cf11af
PM
479 new_thread = &new->thread;
480 old_thread = &current->thread;
06d67d54 481
a2e19811
BH
482#if defined(CONFIG_PPC_BOOK3E_64)
483 /* XXX Current Book3E code doesn't deal with kernel side DBCR0,
484 * we always hold the user values, so we set it now.
485 *
486 * However, we ensure the kernel MSR:DE is appropriately cleared too
487 * to avoid spurrious single step exceptions in the kernel.
488 *
489 * This will have to change to merge with the ppc32 code at some point,
490 * but I don't like much what ppc32 is doing today so there's some
491 * thinking needed there
492 */
493 if ((new_thread->dbcr0 | old_thread->dbcr0) & DBCR0_IDM) {
494 u32 dbcr0;
495
496 mtmsr(mfmsr() & ~MSR_DE);
497 isync();
498 dbcr0 = mfspr(SPRN_DBCR0);
499 dbcr0 = (dbcr0 & DBCR0_EDM) | new_thread->dbcr0;
500 mtspr(SPRN_DBCR0, dbcr0);
501 }
502#endif /* CONFIG_PPC64_BOOK3E */
503
06d67d54
PM
504#ifdef CONFIG_PPC64
505 /*
506 * Collect processor utilization data per process
507 */
508 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
509 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
510 long unsigned start_tb, current_tb;
511 start_tb = old_thread->start_tb;
512 cu->current_tb = current_tb = mfspr(SPRN_PURR);
513 old_thread->accum_tb += (current_tb - start_tb);
514 new_thread->start_tb = current_tb;
515 }
516#endif
517
14cf11af 518 local_irq_save(flags);
c6622f63
PM
519
520 account_system_vtime(current);
81a3843f 521 account_process_vtime(current);
c6622f63 522
44387e9f
AB
523 /*
524 * We can't take a PMU exception inside _switch() since there is a
525 * window where the kernel stack SLB and the kernel stack are out
526 * of sync. Hard disable here.
527 */
528 hard_irq_disable();
14cf11af
PM
529 last = _switch(old_thread, new_thread);
530
531 local_irq_restore(flags);
532
533 return last;
534}
535
06d67d54
PM
536static int instructions_to_print = 16;
537
06d67d54
PM
538static void show_instructions(struct pt_regs *regs)
539{
540 int i;
541 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
542 sizeof(int));
543
544 printk("Instruction dump:");
545
546 for (i = 0; i < instructions_to_print; i++) {
547 int instr;
548
549 if (!(i % 8))
550 printk("\n");
551
0de2d820
SW
552#if !defined(CONFIG_BOOKE)
553 /* If executing with the IMMU off, adjust pc rather
554 * than print XXXXXXXX.
555 */
556 if (!(regs->msr & MSR_IR))
557 pc = (unsigned long)phys_to_virt(pc);
558#endif
559
af308377
SR
560 /* We use __get_user here *only* to avoid an OOPS on a
561 * bad address because the pc *should* only be a
562 * kernel address.
563 */
00ae36de
AB
564 if (!__kernel_text_address(pc) ||
565 __get_user(instr, (unsigned int __user *)pc)) {
06d67d54
PM
566 printk("XXXXXXXX ");
567 } else {
568 if (regs->nip == pc)
569 printk("<%08x> ", instr);
570 else
571 printk("%08x ", instr);
572 }
573
574 pc += sizeof(int);
575 }
576
577 printk("\n");
578}
579
580static struct regbit {
581 unsigned long bit;
582 const char *name;
583} msr_bits[] = {
584 {MSR_EE, "EE"},
585 {MSR_PR, "PR"},
586 {MSR_FP, "FP"},
ce48b210
MN
587 {MSR_VEC, "VEC"},
588 {MSR_VSX, "VSX"},
06d67d54 589 {MSR_ME, "ME"},
1b98326b
KG
590 {MSR_CE, "CE"},
591 {MSR_DE, "DE"},
06d67d54
PM
592 {MSR_IR, "IR"},
593 {MSR_DR, "DR"},
594 {0, NULL}
595};
596
597static void printbits(unsigned long val, struct regbit *bits)
598{
599 const char *sep = "";
600
601 printk("<");
602 for (; bits->bit; ++bits)
603 if (val & bits->bit) {
604 printk("%s%s", sep, bits->name);
605 sep = ",";
606 }
607 printk(">");
608}
609
610#ifdef CONFIG_PPC64
f6f7dde3 611#define REG "%016lx"
06d67d54
PM
612#define REGS_PER_LINE 4
613#define LAST_VOLATILE 13
614#else
f6f7dde3 615#define REG "%08lx"
06d67d54
PM
616#define REGS_PER_LINE 8
617#define LAST_VOLATILE 12
618#endif
619
14cf11af
PM
620void show_regs(struct pt_regs * regs)
621{
622 int i, trap;
623
06d67d54
PM
624 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
625 regs->nip, regs->link, regs->ctr);
626 printk("REGS: %p TRAP: %04lx %s (%s)\n",
96b644bd 627 regs, regs->trap, print_tainted(), init_utsname()->release);
06d67d54
PM
628 printk("MSR: "REG" ", regs->msr);
629 printbits(regs->msr, msr_bits);
f6f7dde3 630 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
14cf11af
PM
631 trap = TRAP(regs);
632 if (trap == 0x300 || trap == 0x600)
172ae2e7 633#ifdef CONFIG_PPC_ADV_DEBUG_REGS
14170789
KG
634 printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
635#else
7071854b 636 printk("DAR: "REG", DSISR: %08lx\n", regs->dar, regs->dsisr);
14170789 637#endif
06d67d54 638 printk("TASK = %p[%d] '%s' THREAD: %p",
19c5870c 639 current, task_pid_nr(current), current->comm, task_thread_info(current));
14cf11af
PM
640
641#ifdef CONFIG_SMP
79ccd1be 642 printk(" CPU: %d", raw_smp_processor_id());
14cf11af
PM
643#endif /* CONFIG_SMP */
644
645 for (i = 0; i < 32; i++) {
06d67d54 646 if ((i % REGS_PER_LINE) == 0)
a2367194 647 printk("\nGPR%02d: ", i);
06d67d54
PM
648 printk(REG " ", regs->gpr[i]);
649 if (i == LAST_VOLATILE && !FULL_REGS(regs))
14cf11af
PM
650 break;
651 }
652 printk("\n");
653#ifdef CONFIG_KALLSYMS
654 /*
655 * Lookup NIP late so we have the best change of getting the
656 * above info out without failing
657 */
058c78f4
BH
658 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
659 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
14cf11af
PM
660#endif
661 show_stack(current, (unsigned long *) regs->gpr[1]);
06d67d54
PM
662 if (!user_mode(regs))
663 show_instructions(regs);
14cf11af
PM
664}
665
666void exit_thread(void)
667{
48abec07 668 discard_lazy_cpu_state();
14cf11af
PM
669}
670
671void flush_thread(void)
672{
48abec07 673 discard_lazy_cpu_state();
14cf11af 674
e0780b72 675#ifdef CONFIG_HAVE_HW_BREAKPOINT
5aae8a53 676 flush_ptrace_hw_breakpoint(current);
e0780b72 677#else /* CONFIG_HAVE_HW_BREAKPOINT */
3bffb652 678 set_debug_reg_defaults(&current->thread);
e0780b72 679#endif /* CONFIG_HAVE_HW_BREAKPOINT */
14cf11af
PM
680}
681
682void
683release_thread(struct task_struct *t)
684{
685}
686
687/*
688 * This gets called before we allocate a new thread and copy
689 * the current task into it.
690 */
691void prepare_to_copy(struct task_struct *tsk)
692{
693 flush_fp_to_thread(current);
694 flush_altivec_to_thread(current);
ce48b210 695 flush_vsx_to_thread(current);
14cf11af 696 flush_spe_to_thread(current);
5aae8a53
P
697#ifdef CONFIG_HAVE_HW_BREAKPOINT
698 flush_ptrace_hw_breakpoint(tsk);
699#endif /* CONFIG_HAVE_HW_BREAKPOINT */
14cf11af
PM
700}
701
702/*
703 * Copy a thread..
704 */
efcac658
AK
705extern unsigned long dscr_default; /* defined in arch/powerpc/kernel/sysfs.c */
706
6f2c55b8 707int copy_thread(unsigned long clone_flags, unsigned long usp,
06d67d54
PM
708 unsigned long unused, struct task_struct *p,
709 struct pt_regs *regs)
14cf11af
PM
710{
711 struct pt_regs *childregs, *kregs;
712 extern void ret_from_fork(void);
0cec6fd1 713 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
14cf11af
PM
714
715 CHECK_FULL_REGS(regs);
716 /* Copy registers */
717 sp -= sizeof(struct pt_regs);
718 childregs = (struct pt_regs *) sp;
719 *childregs = *regs;
720 if ((childregs->msr & MSR_PR) == 0) {
721 /* for kernel thread, set `current' and stackptr in new task */
722 childregs->gpr[1] = sp + sizeof(struct pt_regs);
06d67d54 723#ifdef CONFIG_PPC32
14cf11af 724 childregs->gpr[2] = (unsigned long) p;
06d67d54 725#else
b5e2fc1c 726 clear_tsk_thread_flag(p, TIF_32BIT);
06d67d54 727#endif
14cf11af
PM
728 p->thread.regs = NULL; /* no user register state */
729 } else {
730 childregs->gpr[1] = usp;
731 p->thread.regs = childregs;
06d67d54
PM
732 if (clone_flags & CLONE_SETTLS) {
733#ifdef CONFIG_PPC64
9904b005 734 if (!is_32bit_task())
06d67d54
PM
735 childregs->gpr[13] = childregs->gpr[6];
736 else
737#endif
738 childregs->gpr[2] = childregs->gpr[6];
739 }
14cf11af
PM
740 }
741 childregs->gpr[3] = 0; /* Result from fork() */
742 sp -= STACK_FRAME_OVERHEAD;
14cf11af
PM
743
744 /*
745 * The way this works is that at some point in the future
746 * some task will call _switch to switch to the new task.
747 * That will pop off the stack frame created below and start
748 * the new task running at ret_from_fork. The new task will
749 * do some house keeping and then return from the fork or clone
750 * system call, using the stack frame created above.
751 */
752 sp -= sizeof(struct pt_regs);
753 kregs = (struct pt_regs *) sp;
754 sp -= STACK_FRAME_OVERHEAD;
755 p->thread.ksp = sp;
85218827
KG
756 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
757 _ALIGN_UP(sizeof(struct thread_info), 16);
14cf11af 758
94491685 759#ifdef CONFIG_PPC_STD_MMU_64
06d67d54 760 if (cpu_has_feature(CPU_FTR_SLB)) {
1189be65 761 unsigned long sp_vsid;
3c726f8d 762 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
06d67d54 763
1189be65
PM
764 if (cpu_has_feature(CPU_FTR_1T_SEGMENT))
765 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
766 << SLB_VSID_SHIFT_1T;
767 else
768 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
769 << SLB_VSID_SHIFT;
3c726f8d 770 sp_vsid |= SLB_VSID_KERNEL | llp;
06d67d54
PM
771 p->thread.ksp_vsid = sp_vsid;
772 }
747bea91 773#endif /* CONFIG_PPC_STD_MMU_64 */
efcac658
AK
774#ifdef CONFIG_PPC64
775 if (cpu_has_feature(CPU_FTR_DSCR)) {
776 if (current->thread.dscr_inherit) {
777 p->thread.dscr_inherit = 1;
778 p->thread.dscr = current->thread.dscr;
779 } else if (0 != dscr_default) {
780 p->thread.dscr_inherit = 1;
781 p->thread.dscr = dscr_default;
782 } else {
783 p->thread.dscr_inherit = 0;
784 p->thread.dscr = 0;
785 }
786 }
787#endif
06d67d54
PM
788
789 /*
790 * The PPC64 ABI makes use of a TOC to contain function
791 * pointers. The function (ret_from_except) is actually a pointer
792 * to the TOC entry. The first entry is a pointer to the actual
793 * function.
794 */
747bea91 795#ifdef CONFIG_PPC64
06d67d54
PM
796 kregs->nip = *((unsigned long *)ret_from_fork);
797#else
798 kregs->nip = (unsigned long)ret_from_fork;
06d67d54 799#endif
14cf11af
PM
800
801 return 0;
802}
803
804/*
805 * Set up a thread for executing a new program
806 */
06d67d54 807void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
14cf11af 808{
90eac727
ME
809#ifdef CONFIG_PPC64
810 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
811#endif
812
14cf11af 813 set_fs(USER_DS);
06d67d54
PM
814
815 /*
816 * If we exec out of a kernel thread then thread.regs will not be
817 * set. Do it now.
818 */
819 if (!current->thread.regs) {
0cec6fd1
AV
820 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
821 current->thread.regs = regs - 1;
06d67d54
PM
822 }
823
14cf11af
PM
824 memset(regs->gpr, 0, sizeof(regs->gpr));
825 regs->ctr = 0;
826 regs->link = 0;
827 regs->xer = 0;
828 regs->ccr = 0;
14cf11af 829 regs->gpr[1] = sp;
06d67d54 830
474f8196
RM
831 /*
832 * We have just cleared all the nonvolatile GPRs, so make
833 * FULL_REGS(regs) return true. This is necessary to allow
834 * ptrace to examine the thread immediately after exec.
835 */
836 regs->trap &= ~1UL;
837
06d67d54
PM
838#ifdef CONFIG_PPC32
839 regs->mq = 0;
840 regs->nip = start;
14cf11af 841 regs->msr = MSR_USER;
06d67d54 842#else
9904b005 843 if (!is_32bit_task()) {
90eac727 844 unsigned long entry, toc;
06d67d54
PM
845
846 /* start is a relocated pointer to the function descriptor for
847 * the elf _start routine. The first entry in the function
848 * descriptor is the entry address of _start and the second
849 * entry is the TOC value we need to use.
850 */
851 __get_user(entry, (unsigned long __user *)start);
852 __get_user(toc, (unsigned long __user *)start+1);
853
854 /* Check whether the e_entry function descriptor entries
855 * need to be relocated before we can use them.
856 */
857 if (load_addr != 0) {
858 entry += load_addr;
859 toc += load_addr;
860 }
861 regs->nip = entry;
862 regs->gpr[2] = toc;
863 regs->msr = MSR_USER64;
d4bf9a78
SR
864 } else {
865 regs->nip = start;
866 regs->gpr[2] = 0;
867 regs->msr = MSR_USER32;
06d67d54
PM
868 }
869#endif
870
48abec07 871 discard_lazy_cpu_state();
ce48b210
MN
872#ifdef CONFIG_VSX
873 current->thread.used_vsr = 0;
874#endif
14cf11af 875 memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
25c8a78b 876 current->thread.fpscr.val = 0;
14cf11af
PM
877#ifdef CONFIG_ALTIVEC
878 memset(current->thread.vr, 0, sizeof(current->thread.vr));
879 memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
06d67d54 880 current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
14cf11af
PM
881 current->thread.vrsave = 0;
882 current->thread.used_vr = 0;
883#endif /* CONFIG_ALTIVEC */
884#ifdef CONFIG_SPE
885 memset(current->thread.evr, 0, sizeof(current->thread.evr));
886 current->thread.acc = 0;
887 current->thread.spefscr = 0;
888 current->thread.used_spe = 0;
889#endif /* CONFIG_SPE */
890}
891
892#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
893 | PR_FP_EXC_RES | PR_FP_EXC_INV)
894
895int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
896{
897 struct pt_regs *regs = tsk->thread.regs;
898
899 /* This is a bit hairy. If we are an SPE enabled processor
900 * (have embedded fp) we store the IEEE exception enable flags in
901 * fpexc_mode. fpexc_mode is also used for setting FP exception
902 * mode (asyn, precise, disabled) for 'Classic' FP. */
903 if (val & PR_FP_EXC_SW_ENABLE) {
904#ifdef CONFIG_SPE
5e14d21e
KG
905 if (cpu_has_feature(CPU_FTR_SPE)) {
906 tsk->thread.fpexc_mode = val &
907 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
908 return 0;
909 } else {
910 return -EINVAL;
911 }
14cf11af
PM
912#else
913 return -EINVAL;
914#endif
14cf11af 915 }
06d67d54
PM
916
917 /* on a CONFIG_SPE this does not hurt us. The bits that
918 * __pack_fe01 use do not overlap with bits used for
919 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
920 * on CONFIG_SPE implementations are reserved so writing to
921 * them does not change anything */
922 if (val > PR_FP_EXC_PRECISE)
923 return -EINVAL;
924 tsk->thread.fpexc_mode = __pack_fe01(val);
925 if (regs != NULL && (regs->msr & MSR_FP) != 0)
926 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
927 | tsk->thread.fpexc_mode;
14cf11af
PM
928 return 0;
929}
930
931int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
932{
933 unsigned int val;
934
935 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
936#ifdef CONFIG_SPE
5e14d21e
KG
937 if (cpu_has_feature(CPU_FTR_SPE))
938 val = tsk->thread.fpexc_mode;
939 else
940 return -EINVAL;
14cf11af
PM
941#else
942 return -EINVAL;
943#endif
944 else
945 val = __unpack_fe01(tsk->thread.fpexc_mode);
946 return put_user(val, (unsigned int __user *) adr);
947}
948
fab5db97
PM
949int set_endian(struct task_struct *tsk, unsigned int val)
950{
951 struct pt_regs *regs = tsk->thread.regs;
952
953 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
954 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
955 return -EINVAL;
956
957 if (regs == NULL)
958 return -EINVAL;
959
960 if (val == PR_ENDIAN_BIG)
961 regs->msr &= ~MSR_LE;
962 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
963 regs->msr |= MSR_LE;
964 else
965 return -EINVAL;
966
967 return 0;
968}
969
970int get_endian(struct task_struct *tsk, unsigned long adr)
971{
972 struct pt_regs *regs = tsk->thread.regs;
973 unsigned int val;
974
975 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
976 !cpu_has_feature(CPU_FTR_REAL_LE))
977 return -EINVAL;
978
979 if (regs == NULL)
980 return -EINVAL;
981
982 if (regs->msr & MSR_LE) {
983 if (cpu_has_feature(CPU_FTR_REAL_LE))
984 val = PR_ENDIAN_LITTLE;
985 else
986 val = PR_ENDIAN_PPC_LITTLE;
987 } else
988 val = PR_ENDIAN_BIG;
989
990 return put_user(val, (unsigned int __user *)adr);
991}
992
e9370ae1
PM
993int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
994{
995 tsk->thread.align_ctl = val;
996 return 0;
997}
998
999int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1000{
1001 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1002}
1003
06d67d54
PM
1004#define TRUNC_PTR(x) ((typeof(x))(((unsigned long)(x)) & 0xffffffff))
1005
14cf11af
PM
1006int sys_clone(unsigned long clone_flags, unsigned long usp,
1007 int __user *parent_tidp, void __user *child_threadptr,
1008 int __user *child_tidp, int p6,
1009 struct pt_regs *regs)
1010{
1011 CHECK_FULL_REGS(regs);
1012 if (usp == 0)
1013 usp = regs->gpr[1]; /* stack pointer for child */
06d67d54 1014#ifdef CONFIG_PPC64
9904b005 1015 if (is_32bit_task()) {
06d67d54
PM
1016 parent_tidp = TRUNC_PTR(parent_tidp);
1017 child_tidp = TRUNC_PTR(child_tidp);
1018 }
1019#endif
14cf11af
PM
1020 return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
1021}
1022
1023int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
1024 unsigned long p4, unsigned long p5, unsigned long p6,
1025 struct pt_regs *regs)
1026{
1027 CHECK_FULL_REGS(regs);
1028 return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
1029}
1030
1031int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
1032 unsigned long p4, unsigned long p5, unsigned long p6,
1033 struct pt_regs *regs)
1034{
1035 CHECK_FULL_REGS(regs);
1036 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
1037 regs, 0, NULL, NULL);
1038}
1039
1040int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
1041 unsigned long a3, unsigned long a4, unsigned long a5,
1042 struct pt_regs *regs)
1043{
1044 int error;
06d67d54 1045 char *filename;
14cf11af 1046
c7887325 1047 filename = getname((const char __user *) a0);
14cf11af
PM
1048 error = PTR_ERR(filename);
1049 if (IS_ERR(filename))
1050 goto out;
1051 flush_fp_to_thread(current);
1052 flush_altivec_to_thread(current);
1053 flush_spe_to_thread(current);
d7627467
DH
1054 error = do_execve(filename,
1055 (const char __user *const __user *) a1,
1056 (const char __user *const __user *) a2, regs);
14cf11af
PM
1057 putname(filename);
1058out:
1059 return error;
1060}
1061
bb72c481
PM
1062static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1063 unsigned long nbytes)
1064{
1065 unsigned long stack_page;
1066 unsigned long cpu = task_cpu(p);
1067
1068 /*
1069 * Avoid crashing if the stack has overflowed and corrupted
1070 * task_cpu(p), which is in the thread_info struct.
1071 */
1072 if (cpu < NR_CPUS && cpu_possible(cpu)) {
1073 stack_page = (unsigned long) hardirq_ctx[cpu];
1074 if (sp >= stack_page + sizeof(struct thread_struct)
1075 && sp <= stack_page + THREAD_SIZE - nbytes)
1076 return 1;
1077
1078 stack_page = (unsigned long) softirq_ctx[cpu];
1079 if (sp >= stack_page + sizeof(struct thread_struct)
1080 && sp <= stack_page + THREAD_SIZE - nbytes)
1081 return 1;
1082 }
1083 return 0;
1084}
1085
2f25194d 1086int validate_sp(unsigned long sp, struct task_struct *p,
14cf11af
PM
1087 unsigned long nbytes)
1088{
0cec6fd1 1089 unsigned long stack_page = (unsigned long)task_stack_page(p);
14cf11af
PM
1090
1091 if (sp >= stack_page + sizeof(struct thread_struct)
1092 && sp <= stack_page + THREAD_SIZE - nbytes)
1093 return 1;
1094
bb72c481 1095 return valid_irq_stack(sp, p, nbytes);
14cf11af
PM
1096}
1097
2f25194d
AB
1098EXPORT_SYMBOL(validate_sp);
1099
14cf11af
PM
1100unsigned long get_wchan(struct task_struct *p)
1101{
1102 unsigned long ip, sp;
1103 int count = 0;
1104
1105 if (!p || p == current || p->state == TASK_RUNNING)
1106 return 0;
1107
1108 sp = p->thread.ksp;
ec2b36b9 1109 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
14cf11af
PM
1110 return 0;
1111
1112 do {
1113 sp = *(unsigned long *)sp;
ec2b36b9 1114 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
14cf11af
PM
1115 return 0;
1116 if (count > 0) {
ec2b36b9 1117 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
14cf11af
PM
1118 if (!in_sched_functions(ip))
1119 return ip;
1120 }
1121 } while (count++ < 16);
1122 return 0;
1123}
06d67d54 1124
c4d04be1 1125static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
06d67d54
PM
1126
1127void show_stack(struct task_struct *tsk, unsigned long *stack)
1128{
1129 unsigned long sp, ip, lr, newsp;
1130 int count = 0;
1131 int firstframe = 1;
6794c782
SR
1132#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1133 int curr_frame = current->curr_ret_stack;
1134 extern void return_to_handler(void);
9135c3cc
SR
1135 unsigned long rth = (unsigned long)return_to_handler;
1136 unsigned long mrth = -1;
6794c782 1137#ifdef CONFIG_PPC64
9135c3cc
SR
1138 extern void mod_return_to_handler(void);
1139 rth = *(unsigned long *)rth;
1140 mrth = (unsigned long)mod_return_to_handler;
1141 mrth = *(unsigned long *)mrth;
6794c782
SR
1142#endif
1143#endif
06d67d54
PM
1144
1145 sp = (unsigned long) stack;
1146 if (tsk == NULL)
1147 tsk = current;
1148 if (sp == 0) {
1149 if (tsk == current)
1150 asm("mr %0,1" : "=r" (sp));
1151 else
1152 sp = tsk->thread.ksp;
1153 }
1154
1155 lr = 0;
1156 printk("Call Trace:\n");
1157 do {
ec2b36b9 1158 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
06d67d54
PM
1159 return;
1160
1161 stack = (unsigned long *) sp;
1162 newsp = stack[0];
ec2b36b9 1163 ip = stack[STACK_FRAME_LR_SAVE];
06d67d54 1164 if (!firstframe || ip != lr) {
058c78f4 1165 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
6794c782 1166#ifdef CONFIG_FUNCTION_GRAPH_TRACER
9135c3cc 1167 if ((ip == rth || ip == mrth) && curr_frame >= 0) {
6794c782
SR
1168 printk(" (%pS)",
1169 (void *)current->ret_stack[curr_frame].ret);
1170 curr_frame--;
1171 }
1172#endif
06d67d54
PM
1173 if (firstframe)
1174 printk(" (unreliable)");
1175 printk("\n");
1176 }
1177 firstframe = 0;
1178
1179 /*
1180 * See if this is an exception frame.
1181 * We look for the "regshere" marker in the current frame.
1182 */
ec2b36b9
BH
1183 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1184 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
06d67d54
PM
1185 struct pt_regs *regs = (struct pt_regs *)
1186 (sp + STACK_FRAME_OVERHEAD);
06d67d54 1187 lr = regs->link;
058c78f4
BH
1188 printk("--- Exception: %lx at %pS\n LR = %pS\n",
1189 regs->trap, (void *)regs->nip, (void *)lr);
06d67d54
PM
1190 firstframe = 1;
1191 }
1192
1193 sp = newsp;
1194 } while (count++ < kstack_depth_to_print);
1195}
1196
1197void dump_stack(void)
1198{
1199 show_stack(current, NULL);
1200}
1201EXPORT_SYMBOL(dump_stack);
cb2c9b27
AB
1202
1203#ifdef CONFIG_PPC64
1204void ppc64_runlatch_on(void)
1205{
1206 unsigned long ctrl;
1207
1208 if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) {
1209 HMT_medium();
1210
1211 ctrl = mfspr(SPRN_CTRLF);
1212 ctrl |= CTRL_RUNLATCH;
1213 mtspr(SPRN_CTRLT, ctrl);
1214
1215 set_thread_flag(TIF_RUNLATCH);
1216 }
1217}
1218
4138d653 1219void __ppc64_runlatch_off(void)
cb2c9b27
AB
1220{
1221 unsigned long ctrl;
1222
4138d653 1223 HMT_medium();
cb2c9b27 1224
4138d653 1225 clear_thread_flag(TIF_RUNLATCH);
cb2c9b27 1226
4138d653
AB
1227 ctrl = mfspr(SPRN_CTRLF);
1228 ctrl &= ~CTRL_RUNLATCH;
1229 mtspr(SPRN_CTRLT, ctrl);
cb2c9b27
AB
1230}
1231#endif
f6a61680
BH
1232
1233#if THREAD_SHIFT < PAGE_SHIFT
1234
1235static struct kmem_cache *thread_info_cache;
1236
b6a84016 1237struct thread_info *alloc_thread_info_node(struct task_struct *tsk, int node)
f6a61680
BH
1238{
1239 struct thread_info *ti;
1240
b6a84016 1241 ti = kmem_cache_alloc_node(thread_info_cache, GFP_KERNEL, node);
f6a61680
BH
1242 if (unlikely(ti == NULL))
1243 return NULL;
1244#ifdef CONFIG_DEBUG_STACK_USAGE
1245 memset(ti, 0, THREAD_SIZE);
1246#endif
1247 return ti;
1248}
1249
1250void free_thread_info(struct thread_info *ti)
1251{
1252 kmem_cache_free(thread_info_cache, ti);
1253}
1254
1255void thread_info_cache_init(void)
1256{
1257 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
1258 THREAD_SIZE, 0, NULL);
1259 BUG_ON(thread_info_cache == NULL);
1260}
1261
1262#endif /* THREAD_SHIFT < PAGE_SHIFT */
d839088c
AB
1263
1264unsigned long arch_align_stack(unsigned long sp)
1265{
1266 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1267 sp -= get_random_int() & ~PAGE_MASK;
1268 return sp & ~0xf;
1269}
912f9ee2
AB
1270
1271static inline unsigned long brk_rnd(void)
1272{
1273 unsigned long rnd = 0;
1274
1275 /* 8MB for 32bit, 1GB for 64bit */
1276 if (is_32bit_task())
1277 rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1278 else
1279 rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1280
1281 return rnd << PAGE_SHIFT;
1282}
1283
1284unsigned long arch_randomize_brk(struct mm_struct *mm)
1285{
8bbde7a7
AB
1286 unsigned long base = mm->brk;
1287 unsigned long ret;
1288
ce7a35c7 1289#ifdef CONFIG_PPC_STD_MMU_64
8bbde7a7
AB
1290 /*
1291 * If we are using 1TB segments and we are allowed to randomise
1292 * the heap, we can put it above 1TB so it is backed by a 1TB
1293 * segment. Otherwise the heap will be in the bottom 1TB
1294 * which always uses 256MB segments and this may result in a
1295 * performance penalty.
1296 */
1297 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1298 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1299#endif
1300
1301 ret = PAGE_ALIGN(base + brk_rnd());
912f9ee2
AB
1302
1303 if (ret < mm->brk)
1304 return mm->brk;
1305
1306 return ret;
1307}
501cb16d
AB
1308
1309unsigned long randomize_et_dyn(unsigned long base)
1310{
1311 unsigned long ret = PAGE_ALIGN(base + brk_rnd());
1312
1313 if (ret < base)
1314 return base;
1315
1316 return ret;
1317}