[POWERPC] Fix compile error in prom.h
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / powerpc / kernel / process.c
CommitLineData
14cf11af 1/*
14cf11af
PM
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
14cf11af
PM
17#include <linux/errno.h>
18#include <linux/sched.h>
19#include <linux/kernel.h>
20#include <linux/mm.h>
21#include <linux/smp.h>
22#include <linux/smp_lock.h>
23#include <linux/stddef.h>
24#include <linux/unistd.h>
25#include <linux/ptrace.h>
26#include <linux/slab.h>
27#include <linux/user.h>
28#include <linux/elf.h>
29#include <linux/init.h>
30#include <linux/prctl.h>
31#include <linux/init_task.h>
32#include <linux/module.h>
33#include <linux/kallsyms.h>
34#include <linux/mqueue.h>
35#include <linux/hardirq.h>
06d67d54 36#include <linux/utsname.h>
14cf11af
PM
37
38#include <asm/pgtable.h>
39#include <asm/uaccess.h>
40#include <asm/system.h>
41#include <asm/io.h>
42#include <asm/processor.h>
43#include <asm/mmu.h>
44#include <asm/prom.h>
76032de8 45#include <asm/machdep.h>
c6622f63 46#include <asm/time.h>
a7f31841 47#include <asm/syscalls.h>
06d67d54
PM
48#ifdef CONFIG_PPC64
49#include <asm/firmware.h>
06d67d54 50#endif
14cf11af
PM
51
52extern unsigned long _get_SP(void);
53
54#ifndef CONFIG_SMP
55struct task_struct *last_task_used_math = NULL;
56struct task_struct *last_task_used_altivec = NULL;
57struct task_struct *last_task_used_spe = NULL;
58#endif
59
14cf11af
PM
60/*
61 * Make sure the floating-point register state in the
62 * the thread_struct is up to date for task tsk.
63 */
64void flush_fp_to_thread(struct task_struct *tsk)
65{
66 if (tsk->thread.regs) {
67 /*
68 * We need to disable preemption here because if we didn't,
69 * another process could get scheduled after the regs->msr
70 * test but before we have finished saving the FP registers
71 * to the thread_struct. That process could take over the
72 * FPU, and then when we get scheduled again we would store
73 * bogus values for the remaining FP registers.
74 */
75 preempt_disable();
76 if (tsk->thread.regs->msr & MSR_FP) {
77#ifdef CONFIG_SMP
78 /*
79 * This should only ever be called for current or
80 * for a stopped child process. Since we save away
81 * the FP register state on context switch on SMP,
82 * there is something wrong if a stopped child appears
83 * to still have its FP state in the CPU registers.
84 */
85 BUG_ON(tsk != current);
86#endif
87 giveup_fpu(current);
88 }
89 preempt_enable();
90 }
91}
92
93void enable_kernel_fp(void)
94{
95 WARN_ON(preemptible());
96
97#ifdef CONFIG_SMP
98 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
99 giveup_fpu(current);
100 else
101 giveup_fpu(NULL); /* just enables FP for kernel */
102#else
103 giveup_fpu(last_task_used_math);
104#endif /* CONFIG_SMP */
105}
106EXPORT_SYMBOL(enable_kernel_fp);
107
108int dump_task_fpu(struct task_struct *tsk, elf_fpregset_t *fpregs)
109{
110 if (!tsk->thread.regs)
111 return 0;
112 flush_fp_to_thread(current);
113
114 memcpy(fpregs, &tsk->thread.fpr[0], sizeof(*fpregs));
115
116 return 1;
117}
118
119#ifdef CONFIG_ALTIVEC
120void enable_kernel_altivec(void)
121{
122 WARN_ON(preemptible());
123
124#ifdef CONFIG_SMP
125 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
126 giveup_altivec(current);
127 else
128 giveup_altivec(NULL); /* just enable AltiVec for kernel - force */
129#else
130 giveup_altivec(last_task_used_altivec);
131#endif /* CONFIG_SMP */
132}
133EXPORT_SYMBOL(enable_kernel_altivec);
134
135/*
136 * Make sure the VMX/Altivec register state in the
137 * the thread_struct is up to date for task tsk.
138 */
139void flush_altivec_to_thread(struct task_struct *tsk)
140{
141 if (tsk->thread.regs) {
142 preempt_disable();
143 if (tsk->thread.regs->msr & MSR_VEC) {
144#ifdef CONFIG_SMP
145 BUG_ON(tsk != current);
146#endif
147 giveup_altivec(current);
148 }
149 preempt_enable();
150 }
151}
152
153int dump_task_altivec(struct pt_regs *regs, elf_vrregset_t *vrregs)
154{
155 flush_altivec_to_thread(current);
156 memcpy(vrregs, &current->thread.vr[0], sizeof(*vrregs));
157 return 1;
158}
159#endif /* CONFIG_ALTIVEC */
160
161#ifdef CONFIG_SPE
162
163void enable_kernel_spe(void)
164{
165 WARN_ON(preemptible());
166
167#ifdef CONFIG_SMP
168 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
169 giveup_spe(current);
170 else
171 giveup_spe(NULL); /* just enable SPE for kernel - force */
172#else
173 giveup_spe(last_task_used_spe);
174#endif /* __SMP __ */
175}
176EXPORT_SYMBOL(enable_kernel_spe);
177
178void flush_spe_to_thread(struct task_struct *tsk)
179{
180 if (tsk->thread.regs) {
181 preempt_disable();
182 if (tsk->thread.regs->msr & MSR_SPE) {
183#ifdef CONFIG_SMP
184 BUG_ON(tsk != current);
185#endif
186 giveup_spe(current);
187 }
188 preempt_enable();
189 }
190}
191
192int dump_spe(struct pt_regs *regs, elf_vrregset_t *evrregs)
193{
194 flush_spe_to_thread(current);
195 /* We copy u32 evr[32] + u64 acc + u32 spefscr -> 35 */
196 memcpy(evrregs, &current->thread.evr[0], sizeof(u32) * 35);
197 return 1;
198}
199#endif /* CONFIG_SPE */
200
5388fb10 201#ifndef CONFIG_SMP
48abec07
PM
202/*
203 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
204 * and the current task has some state, discard it.
205 */
5388fb10 206void discard_lazy_cpu_state(void)
48abec07 207{
48abec07
PM
208 preempt_disable();
209 if (last_task_used_math == current)
210 last_task_used_math = NULL;
211#ifdef CONFIG_ALTIVEC
212 if (last_task_used_altivec == current)
213 last_task_used_altivec = NULL;
214#endif /* CONFIG_ALTIVEC */
215#ifdef CONFIG_SPE
216 if (last_task_used_spe == current)
217 last_task_used_spe = NULL;
218#endif
219 preempt_enable();
48abec07 220}
5388fb10 221#endif /* CONFIG_SMP */
48abec07 222
624cee31 223#ifdef CONFIG_PPC_MERGE /* XXX for now */
14cf11af
PM
224int set_dabr(unsigned long dabr)
225{
cab0af98
ME
226 if (ppc_md.set_dabr)
227 return ppc_md.set_dabr(dabr);
14cf11af 228
cab0af98
ME
229 mtspr(SPRN_DABR, dabr);
230 return 0;
14cf11af 231}
624cee31 232#endif
14cf11af 233
06d67d54
PM
234#ifdef CONFIG_PPC64
235DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
14cf11af 236static DEFINE_PER_CPU(unsigned long, current_dabr);
06d67d54 237#endif
14cf11af
PM
238
239struct task_struct *__switch_to(struct task_struct *prev,
240 struct task_struct *new)
241{
242 struct thread_struct *new_thread, *old_thread;
243 unsigned long flags;
244 struct task_struct *last;
245
246#ifdef CONFIG_SMP
247 /* avoid complexity of lazy save/restore of fpu
248 * by just saving it every time we switch out if
249 * this task used the fpu during the last quantum.
250 *
251 * If it tries to use the fpu again, it'll trap and
252 * reload its fp regs. So we don't have to do a restore
253 * every switch, just a save.
254 * -- Cort
255 */
256 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
257 giveup_fpu(prev);
258#ifdef CONFIG_ALTIVEC
259 /*
260 * If the previous thread used altivec in the last quantum
261 * (thus changing altivec regs) then save them.
262 * We used to check the VRSAVE register but not all apps
263 * set it, so we don't rely on it now (and in fact we need
264 * to save & restore VSCR even if VRSAVE == 0). -- paulus
265 *
266 * On SMP we always save/restore altivec regs just to avoid the
267 * complexity of changing processors.
268 * -- Cort
269 */
270 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
271 giveup_altivec(prev);
14cf11af
PM
272#endif /* CONFIG_ALTIVEC */
273#ifdef CONFIG_SPE
274 /*
275 * If the previous thread used spe in the last quantum
276 * (thus changing spe regs) then save them.
277 *
278 * On SMP we always save/restore spe regs just to avoid the
279 * complexity of changing processors.
280 */
281 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
282 giveup_spe(prev);
c0c0d996
PM
283#endif /* CONFIG_SPE */
284
285#else /* CONFIG_SMP */
286#ifdef CONFIG_ALTIVEC
287 /* Avoid the trap. On smp this this never happens since
288 * we don't set last_task_used_altivec -- Cort
289 */
290 if (new->thread.regs && last_task_used_altivec == new)
291 new->thread.regs->msr |= MSR_VEC;
292#endif /* CONFIG_ALTIVEC */
293#ifdef CONFIG_SPE
14cf11af
PM
294 /* Avoid the trap. On smp this this never happens since
295 * we don't set last_task_used_spe
296 */
297 if (new->thread.regs && last_task_used_spe == new)
298 new->thread.regs->msr |= MSR_SPE;
299#endif /* CONFIG_SPE */
c0c0d996 300
14cf11af
PM
301#endif /* CONFIG_SMP */
302
303#ifdef CONFIG_PPC64 /* for now */
304 if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr)) {
305 set_dabr(new->thread.dabr);
306 __get_cpu_var(current_dabr) = new->thread.dabr;
307 }
06d67d54
PM
308
309 flush_tlb_pending();
14cf11af
PM
310#endif
311
312 new_thread = &new->thread;
313 old_thread = &current->thread;
06d67d54
PM
314
315#ifdef CONFIG_PPC64
316 /*
317 * Collect processor utilization data per process
318 */
319 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
320 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
321 long unsigned start_tb, current_tb;
322 start_tb = old_thread->start_tb;
323 cu->current_tb = current_tb = mfspr(SPRN_PURR);
324 old_thread->accum_tb += (current_tb - start_tb);
325 new_thread->start_tb = current_tb;
326 }
327#endif
328
14cf11af 329 local_irq_save(flags);
c6622f63
PM
330
331 account_system_vtime(current);
332 account_process_vtime(current);
333 calculate_steal_time();
334
14cf11af
PM
335 last = _switch(old_thread, new_thread);
336
337 local_irq_restore(flags);
338
339 return last;
340}
341
06d67d54
PM
342static int instructions_to_print = 16;
343
06d67d54
PM
344static void show_instructions(struct pt_regs *regs)
345{
346 int i;
347 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
348 sizeof(int));
349
350 printk("Instruction dump:");
351
352 for (i = 0; i < instructions_to_print; i++) {
353 int instr;
354
355 if (!(i % 8))
356 printk("\n");
357
af308377
SR
358 /* We use __get_user here *only* to avoid an OOPS on a
359 * bad address because the pc *should* only be a
360 * kernel address.
361 */
00ae36de
AB
362 if (!__kernel_text_address(pc) ||
363 __get_user(instr, (unsigned int __user *)pc)) {
06d67d54
PM
364 printk("XXXXXXXX ");
365 } else {
366 if (regs->nip == pc)
367 printk("<%08x> ", instr);
368 else
369 printk("%08x ", instr);
370 }
371
372 pc += sizeof(int);
373 }
374
375 printk("\n");
376}
377
378static struct regbit {
379 unsigned long bit;
380 const char *name;
381} msr_bits[] = {
382 {MSR_EE, "EE"},
383 {MSR_PR, "PR"},
384 {MSR_FP, "FP"},
385 {MSR_ME, "ME"},
386 {MSR_IR, "IR"},
387 {MSR_DR, "DR"},
388 {0, NULL}
389};
390
391static void printbits(unsigned long val, struct regbit *bits)
392{
393 const char *sep = "";
394
395 printk("<");
396 for (; bits->bit; ++bits)
397 if (val & bits->bit) {
398 printk("%s%s", sep, bits->name);
399 sep = ",";
400 }
401 printk(">");
402}
403
404#ifdef CONFIG_PPC64
405#define REG "%016lX"
406#define REGS_PER_LINE 4
407#define LAST_VOLATILE 13
408#else
409#define REG "%08lX"
410#define REGS_PER_LINE 8
411#define LAST_VOLATILE 12
412#endif
413
14cf11af
PM
414void show_regs(struct pt_regs * regs)
415{
416 int i, trap;
417
06d67d54
PM
418 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
419 regs->nip, regs->link, regs->ctr);
420 printk("REGS: %p TRAP: %04lx %s (%s)\n",
96b644bd 421 regs, regs->trap, print_tainted(), init_utsname()->release);
06d67d54
PM
422 printk("MSR: "REG" ", regs->msr);
423 printbits(regs->msr, msr_bits);
424 printk(" CR: %08lX XER: %08lX\n", regs->ccr, regs->xer);
14cf11af
PM
425 trap = TRAP(regs);
426 if (trap == 0x300 || trap == 0x600)
06d67d54
PM
427 printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr);
428 printk("TASK = %p[%d] '%s' THREAD: %p",
b5e2fc1c 429 current, current->pid, current->comm, task_thread_info(current));
14cf11af
PM
430
431#ifdef CONFIG_SMP
432 printk(" CPU: %d", smp_processor_id());
433#endif /* CONFIG_SMP */
434
435 for (i = 0; i < 32; i++) {
06d67d54 436 if ((i % REGS_PER_LINE) == 0)
14cf11af 437 printk("\n" KERN_INFO "GPR%02d: ", i);
06d67d54
PM
438 printk(REG " ", regs->gpr[i]);
439 if (i == LAST_VOLATILE && !FULL_REGS(regs))
14cf11af
PM
440 break;
441 }
442 printk("\n");
443#ifdef CONFIG_KALLSYMS
444 /*
445 * Lookup NIP late so we have the best change of getting the
446 * above info out without failing
447 */
06d67d54 448 printk("NIP ["REG"] ", regs->nip);
14cf11af 449 print_symbol("%s\n", regs->nip);
06d67d54 450 printk("LR ["REG"] ", regs->link);
14cf11af
PM
451 print_symbol("%s\n", regs->link);
452#endif
453 show_stack(current, (unsigned long *) regs->gpr[1]);
06d67d54
PM
454 if (!user_mode(regs))
455 show_instructions(regs);
14cf11af
PM
456}
457
458void exit_thread(void)
459{
48abec07 460 discard_lazy_cpu_state();
14cf11af
PM
461}
462
463void flush_thread(void)
464{
06d67d54
PM
465#ifdef CONFIG_PPC64
466 struct thread_info *t = current_thread_info();
467
468 if (t->flags & _TIF_ABI_PENDING)
469 t->flags ^= (_TIF_ABI_PENDING | _TIF_32BIT);
470#endif
06d67d54 471
48abec07 472 discard_lazy_cpu_state();
14cf11af
PM
473
474#ifdef CONFIG_PPC64 /* for now */
475 if (current->thread.dabr) {
476 current->thread.dabr = 0;
477 set_dabr(0);
478 }
479#endif
480}
481
482void
483release_thread(struct task_struct *t)
484{
485}
486
487/*
488 * This gets called before we allocate a new thread and copy
489 * the current task into it.
490 */
491void prepare_to_copy(struct task_struct *tsk)
492{
493 flush_fp_to_thread(current);
494 flush_altivec_to_thread(current);
495 flush_spe_to_thread(current);
496}
497
498/*
499 * Copy a thread..
500 */
06d67d54
PM
501int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
502 unsigned long unused, struct task_struct *p,
503 struct pt_regs *regs)
14cf11af
PM
504{
505 struct pt_regs *childregs, *kregs;
506 extern void ret_from_fork(void);
0cec6fd1 507 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
14cf11af
PM
508
509 CHECK_FULL_REGS(regs);
510 /* Copy registers */
511 sp -= sizeof(struct pt_regs);
512 childregs = (struct pt_regs *) sp;
513 *childregs = *regs;
514 if ((childregs->msr & MSR_PR) == 0) {
515 /* for kernel thread, set `current' and stackptr in new task */
516 childregs->gpr[1] = sp + sizeof(struct pt_regs);
06d67d54 517#ifdef CONFIG_PPC32
14cf11af 518 childregs->gpr[2] = (unsigned long) p;
06d67d54 519#else
b5e2fc1c 520 clear_tsk_thread_flag(p, TIF_32BIT);
06d67d54 521#endif
14cf11af
PM
522 p->thread.regs = NULL; /* no user register state */
523 } else {
524 childregs->gpr[1] = usp;
525 p->thread.regs = childregs;
06d67d54
PM
526 if (clone_flags & CLONE_SETTLS) {
527#ifdef CONFIG_PPC64
528 if (!test_thread_flag(TIF_32BIT))
529 childregs->gpr[13] = childregs->gpr[6];
530 else
531#endif
532 childregs->gpr[2] = childregs->gpr[6];
533 }
14cf11af
PM
534 }
535 childregs->gpr[3] = 0; /* Result from fork() */
536 sp -= STACK_FRAME_OVERHEAD;
14cf11af
PM
537
538 /*
539 * The way this works is that at some point in the future
540 * some task will call _switch to switch to the new task.
541 * That will pop off the stack frame created below and start
542 * the new task running at ret_from_fork. The new task will
543 * do some house keeping and then return from the fork or clone
544 * system call, using the stack frame created above.
545 */
546 sp -= sizeof(struct pt_regs);
547 kregs = (struct pt_regs *) sp;
548 sp -= STACK_FRAME_OVERHEAD;
549 p->thread.ksp = sp;
14cf11af 550
06d67d54
PM
551#ifdef CONFIG_PPC64
552 if (cpu_has_feature(CPU_FTR_SLB)) {
553 unsigned long sp_vsid = get_kernel_vsid(sp);
3c726f8d 554 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
06d67d54
PM
555
556 sp_vsid <<= SLB_VSID_SHIFT;
3c726f8d 557 sp_vsid |= SLB_VSID_KERNEL | llp;
06d67d54
PM
558 p->thread.ksp_vsid = sp_vsid;
559 }
560
561 /*
562 * The PPC64 ABI makes use of a TOC to contain function
563 * pointers. The function (ret_from_except) is actually a pointer
564 * to the TOC entry. The first entry is a pointer to the actual
565 * function.
566 */
567 kregs->nip = *((unsigned long *)ret_from_fork);
568#else
569 kregs->nip = (unsigned long)ret_from_fork;
14cf11af 570 p->thread.last_syscall = -1;
06d67d54 571#endif
14cf11af
PM
572
573 return 0;
574}
575
576/*
577 * Set up a thread for executing a new program
578 */
06d67d54 579void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
14cf11af 580{
90eac727
ME
581#ifdef CONFIG_PPC64
582 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
583#endif
584
14cf11af 585 set_fs(USER_DS);
06d67d54
PM
586
587 /*
588 * If we exec out of a kernel thread then thread.regs will not be
589 * set. Do it now.
590 */
591 if (!current->thread.regs) {
0cec6fd1
AV
592 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
593 current->thread.regs = regs - 1;
06d67d54
PM
594 }
595
14cf11af
PM
596 memset(regs->gpr, 0, sizeof(regs->gpr));
597 regs->ctr = 0;
598 regs->link = 0;
599 regs->xer = 0;
600 regs->ccr = 0;
14cf11af 601 regs->gpr[1] = sp;
06d67d54
PM
602
603#ifdef CONFIG_PPC32
604 regs->mq = 0;
605 regs->nip = start;
14cf11af 606 regs->msr = MSR_USER;
06d67d54 607#else
d4bf9a78 608 if (!test_thread_flag(TIF_32BIT)) {
90eac727 609 unsigned long entry, toc;
06d67d54
PM
610
611 /* start is a relocated pointer to the function descriptor for
612 * the elf _start routine. The first entry in the function
613 * descriptor is the entry address of _start and the second
614 * entry is the TOC value we need to use.
615 */
616 __get_user(entry, (unsigned long __user *)start);
617 __get_user(toc, (unsigned long __user *)start+1);
618
619 /* Check whether the e_entry function descriptor entries
620 * need to be relocated before we can use them.
621 */
622 if (load_addr != 0) {
623 entry += load_addr;
624 toc += load_addr;
625 }
626 regs->nip = entry;
627 regs->gpr[2] = toc;
628 regs->msr = MSR_USER64;
d4bf9a78
SR
629 } else {
630 regs->nip = start;
631 regs->gpr[2] = 0;
632 regs->msr = MSR_USER32;
06d67d54
PM
633 }
634#endif
635
48abec07 636 discard_lazy_cpu_state();
14cf11af 637 memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
25c8a78b 638 current->thread.fpscr.val = 0;
14cf11af
PM
639#ifdef CONFIG_ALTIVEC
640 memset(current->thread.vr, 0, sizeof(current->thread.vr));
641 memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
06d67d54 642 current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
14cf11af
PM
643 current->thread.vrsave = 0;
644 current->thread.used_vr = 0;
645#endif /* CONFIG_ALTIVEC */
646#ifdef CONFIG_SPE
647 memset(current->thread.evr, 0, sizeof(current->thread.evr));
648 current->thread.acc = 0;
649 current->thread.spefscr = 0;
650 current->thread.used_spe = 0;
651#endif /* CONFIG_SPE */
652}
653
654#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
655 | PR_FP_EXC_RES | PR_FP_EXC_INV)
656
657int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
658{
659 struct pt_regs *regs = tsk->thread.regs;
660
661 /* This is a bit hairy. If we are an SPE enabled processor
662 * (have embedded fp) we store the IEEE exception enable flags in
663 * fpexc_mode. fpexc_mode is also used for setting FP exception
664 * mode (asyn, precise, disabled) for 'Classic' FP. */
665 if (val & PR_FP_EXC_SW_ENABLE) {
666#ifdef CONFIG_SPE
667 tsk->thread.fpexc_mode = val &
668 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
06d67d54 669 return 0;
14cf11af
PM
670#else
671 return -EINVAL;
672#endif
14cf11af 673 }
06d67d54
PM
674
675 /* on a CONFIG_SPE this does not hurt us. The bits that
676 * __pack_fe01 use do not overlap with bits used for
677 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
678 * on CONFIG_SPE implementations are reserved so writing to
679 * them does not change anything */
680 if (val > PR_FP_EXC_PRECISE)
681 return -EINVAL;
682 tsk->thread.fpexc_mode = __pack_fe01(val);
683 if (regs != NULL && (regs->msr & MSR_FP) != 0)
684 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
685 | tsk->thread.fpexc_mode;
14cf11af
PM
686 return 0;
687}
688
689int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
690{
691 unsigned int val;
692
693 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
694#ifdef CONFIG_SPE
695 val = tsk->thread.fpexc_mode;
696#else
697 return -EINVAL;
698#endif
699 else
700 val = __unpack_fe01(tsk->thread.fpexc_mode);
701 return put_user(val, (unsigned int __user *) adr);
702}
703
fab5db97
PM
704int set_endian(struct task_struct *tsk, unsigned int val)
705{
706 struct pt_regs *regs = tsk->thread.regs;
707
708 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
709 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
710 return -EINVAL;
711
712 if (regs == NULL)
713 return -EINVAL;
714
715 if (val == PR_ENDIAN_BIG)
716 regs->msr &= ~MSR_LE;
717 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
718 regs->msr |= MSR_LE;
719 else
720 return -EINVAL;
721
722 return 0;
723}
724
725int get_endian(struct task_struct *tsk, unsigned long adr)
726{
727 struct pt_regs *regs = tsk->thread.regs;
728 unsigned int val;
729
730 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
731 !cpu_has_feature(CPU_FTR_REAL_LE))
732 return -EINVAL;
733
734 if (regs == NULL)
735 return -EINVAL;
736
737 if (regs->msr & MSR_LE) {
738 if (cpu_has_feature(CPU_FTR_REAL_LE))
739 val = PR_ENDIAN_LITTLE;
740 else
741 val = PR_ENDIAN_PPC_LITTLE;
742 } else
743 val = PR_ENDIAN_BIG;
744
745 return put_user(val, (unsigned int __user *)adr);
746}
747
e9370ae1
PM
748int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
749{
750 tsk->thread.align_ctl = val;
751 return 0;
752}
753
754int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
755{
756 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
757}
758
06d67d54
PM
759#define TRUNC_PTR(x) ((typeof(x))(((unsigned long)(x)) & 0xffffffff))
760
14cf11af
PM
761int sys_clone(unsigned long clone_flags, unsigned long usp,
762 int __user *parent_tidp, void __user *child_threadptr,
763 int __user *child_tidp, int p6,
764 struct pt_regs *regs)
765{
766 CHECK_FULL_REGS(regs);
767 if (usp == 0)
768 usp = regs->gpr[1]; /* stack pointer for child */
06d67d54
PM
769#ifdef CONFIG_PPC64
770 if (test_thread_flag(TIF_32BIT)) {
771 parent_tidp = TRUNC_PTR(parent_tidp);
772 child_tidp = TRUNC_PTR(child_tidp);
773 }
774#endif
14cf11af
PM
775 return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
776}
777
778int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
779 unsigned long p4, unsigned long p5, unsigned long p6,
780 struct pt_regs *regs)
781{
782 CHECK_FULL_REGS(regs);
783 return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
784}
785
786int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
787 unsigned long p4, unsigned long p5, unsigned long p6,
788 struct pt_regs *regs)
789{
790 CHECK_FULL_REGS(regs);
791 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
792 regs, 0, NULL, NULL);
793}
794
795int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
796 unsigned long a3, unsigned long a4, unsigned long a5,
797 struct pt_regs *regs)
798{
799 int error;
06d67d54 800 char *filename;
14cf11af
PM
801
802 filename = getname((char __user *) a0);
803 error = PTR_ERR(filename);
804 if (IS_ERR(filename))
805 goto out;
806 flush_fp_to_thread(current);
807 flush_altivec_to_thread(current);
808 flush_spe_to_thread(current);
20c8c210
PM
809 error = do_execve(filename, (char __user * __user *) a1,
810 (char __user * __user *) a2, regs);
14cf11af
PM
811 if (error == 0) {
812 task_lock(current);
813 current->ptrace &= ~PT_DTRACE;
814 task_unlock(current);
815 }
816 putname(filename);
817out:
818 return error;
819}
820
2f25194d 821int validate_sp(unsigned long sp, struct task_struct *p,
14cf11af
PM
822 unsigned long nbytes)
823{
0cec6fd1 824 unsigned long stack_page = (unsigned long)task_stack_page(p);
14cf11af
PM
825
826 if (sp >= stack_page + sizeof(struct thread_struct)
827 && sp <= stack_page + THREAD_SIZE - nbytes)
828 return 1;
829
830#ifdef CONFIG_IRQSTACKS
831 stack_page = (unsigned long) hardirq_ctx[task_cpu(p)];
832 if (sp >= stack_page + sizeof(struct thread_struct)
833 && sp <= stack_page + THREAD_SIZE - nbytes)
834 return 1;
835
836 stack_page = (unsigned long) softirq_ctx[task_cpu(p)];
837 if (sp >= stack_page + sizeof(struct thread_struct)
838 && sp <= stack_page + THREAD_SIZE - nbytes)
839 return 1;
840#endif
841
842 return 0;
843}
844
06d67d54
PM
845#ifdef CONFIG_PPC64
846#define MIN_STACK_FRAME 112 /* same as STACK_FRAME_OVERHEAD, in fact */
847#define FRAME_LR_SAVE 2
848#define INT_FRAME_SIZE (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD + 288)
849#define REGS_MARKER 0x7265677368657265ul
850#define FRAME_MARKER 12
851#else
852#define MIN_STACK_FRAME 16
853#define FRAME_LR_SAVE 1
854#define INT_FRAME_SIZE (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD)
855#define REGS_MARKER 0x72656773ul
856#define FRAME_MARKER 2
14cf11af 857#endif
14cf11af 858
2f25194d
AB
859EXPORT_SYMBOL(validate_sp);
860
14cf11af
PM
861unsigned long get_wchan(struct task_struct *p)
862{
863 unsigned long ip, sp;
864 int count = 0;
865
866 if (!p || p == current || p->state == TASK_RUNNING)
867 return 0;
868
869 sp = p->thread.ksp;
06d67d54 870 if (!validate_sp(sp, p, MIN_STACK_FRAME))
14cf11af
PM
871 return 0;
872
873 do {
874 sp = *(unsigned long *)sp;
06d67d54 875 if (!validate_sp(sp, p, MIN_STACK_FRAME))
14cf11af
PM
876 return 0;
877 if (count > 0) {
06d67d54 878 ip = ((unsigned long *)sp)[FRAME_LR_SAVE];
14cf11af
PM
879 if (!in_sched_functions(ip))
880 return ip;
881 }
882 } while (count++ < 16);
883 return 0;
884}
06d67d54
PM
885
886static int kstack_depth_to_print = 64;
887
888void show_stack(struct task_struct *tsk, unsigned long *stack)
889{
890 unsigned long sp, ip, lr, newsp;
891 int count = 0;
892 int firstframe = 1;
893
894 sp = (unsigned long) stack;
895 if (tsk == NULL)
896 tsk = current;
897 if (sp == 0) {
898 if (tsk == current)
899 asm("mr %0,1" : "=r" (sp));
900 else
901 sp = tsk->thread.ksp;
902 }
903
904 lr = 0;
905 printk("Call Trace:\n");
906 do {
907 if (!validate_sp(sp, tsk, MIN_STACK_FRAME))
908 return;
909
910 stack = (unsigned long *) sp;
911 newsp = stack[0];
912 ip = stack[FRAME_LR_SAVE];
913 if (!firstframe || ip != lr) {
914 printk("["REG"] ["REG"] ", sp, ip);
915 print_symbol("%s", ip);
916 if (firstframe)
917 printk(" (unreliable)");
918 printk("\n");
919 }
920 firstframe = 0;
921
922 /*
923 * See if this is an exception frame.
924 * We look for the "regshere" marker in the current frame.
925 */
926 if (validate_sp(sp, tsk, INT_FRAME_SIZE)
927 && stack[FRAME_MARKER] == REGS_MARKER) {
928 struct pt_regs *regs = (struct pt_regs *)
929 (sp + STACK_FRAME_OVERHEAD);
930 printk("--- Exception: %lx", regs->trap);
931 print_symbol(" at %s\n", regs->nip);
932 lr = regs->link;
933 print_symbol(" LR = %s\n", lr);
934 firstframe = 1;
935 }
936
937 sp = newsp;
938 } while (count++ < kstack_depth_to_print);
939}
940
941void dump_stack(void)
942{
943 show_stack(current, NULL);
944}
945EXPORT_SYMBOL(dump_stack);
cb2c9b27
AB
946
947#ifdef CONFIG_PPC64
948void ppc64_runlatch_on(void)
949{
950 unsigned long ctrl;
951
952 if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) {
953 HMT_medium();
954
955 ctrl = mfspr(SPRN_CTRLF);
956 ctrl |= CTRL_RUNLATCH;
957 mtspr(SPRN_CTRLT, ctrl);
958
959 set_thread_flag(TIF_RUNLATCH);
960 }
961}
962
963void ppc64_runlatch_off(void)
964{
965 unsigned long ctrl;
966
967 if (cpu_has_feature(CPU_FTR_CTRL) && test_thread_flag(TIF_RUNLATCH)) {
968 HMT_medium();
969
970 clear_thread_flag(TIF_RUNLATCH);
971
972 ctrl = mfspr(SPRN_CTRLF);
973 ctrl &= ~CTRL_RUNLATCH;
974 mtspr(SPRN_CTRLT, ctrl);
975 }
976}
977#endif