KVM: PPC: Split host-state fields out of kvmppc_book3s_shadow_vcpu
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / powerpc / kernel / process.c
CommitLineData
14cf11af 1/*
14cf11af
PM
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
14cf11af
PM
17#include <linux/errno.h>
18#include <linux/sched.h>
19#include <linux/kernel.h>
20#include <linux/mm.h>
21#include <linux/smp.h>
14cf11af
PM
22#include <linux/stddef.h>
23#include <linux/unistd.h>
24#include <linux/ptrace.h>
25#include <linux/slab.h>
26#include <linux/user.h>
27#include <linux/elf.h>
28#include <linux/init.h>
29#include <linux/prctl.h>
30#include <linux/init_task.h>
31#include <linux/module.h>
32#include <linux/kallsyms.h>
33#include <linux/mqueue.h>
34#include <linux/hardirq.h>
06d67d54 35#include <linux/utsname.h>
6794c782 36#include <linux/ftrace.h>
79741dd3 37#include <linux/kernel_stat.h>
d839088c
AB
38#include <linux/personality.h>
39#include <linux/random.h>
5aae8a53 40#include <linux/hw_breakpoint.h>
14cf11af
PM
41
42#include <asm/pgtable.h>
43#include <asm/uaccess.h>
44#include <asm/system.h>
45#include <asm/io.h>
46#include <asm/processor.h>
47#include <asm/mmu.h>
48#include <asm/prom.h>
76032de8 49#include <asm/machdep.h>
c6622f63 50#include <asm/time.h>
a7f31841 51#include <asm/syscalls.h>
06d67d54
PM
52#ifdef CONFIG_PPC64
53#include <asm/firmware.h>
06d67d54 54#endif
d6a61bfc
LM
55#include <linux/kprobes.h>
56#include <linux/kdebug.h>
14cf11af
PM
57
58extern unsigned long _get_SP(void);
59
60#ifndef CONFIG_SMP
61struct task_struct *last_task_used_math = NULL;
62struct task_struct *last_task_used_altivec = NULL;
ce48b210 63struct task_struct *last_task_used_vsx = NULL;
14cf11af
PM
64struct task_struct *last_task_used_spe = NULL;
65#endif
66
14cf11af
PM
67/*
68 * Make sure the floating-point register state in the
69 * the thread_struct is up to date for task tsk.
70 */
71void flush_fp_to_thread(struct task_struct *tsk)
72{
73 if (tsk->thread.regs) {
74 /*
75 * We need to disable preemption here because if we didn't,
76 * another process could get scheduled after the regs->msr
77 * test but before we have finished saving the FP registers
78 * to the thread_struct. That process could take over the
79 * FPU, and then when we get scheduled again we would store
80 * bogus values for the remaining FP registers.
81 */
82 preempt_disable();
83 if (tsk->thread.regs->msr & MSR_FP) {
84#ifdef CONFIG_SMP
85 /*
86 * This should only ever be called for current or
87 * for a stopped child process. Since we save away
88 * the FP register state on context switch on SMP,
89 * there is something wrong if a stopped child appears
90 * to still have its FP state in the CPU registers.
91 */
92 BUG_ON(tsk != current);
93#endif
0ee6c15e 94 giveup_fpu(tsk);
14cf11af
PM
95 }
96 preempt_enable();
97 }
98}
99
100void enable_kernel_fp(void)
101{
102 WARN_ON(preemptible());
103
104#ifdef CONFIG_SMP
105 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
106 giveup_fpu(current);
107 else
108 giveup_fpu(NULL); /* just enables FP for kernel */
109#else
110 giveup_fpu(last_task_used_math);
111#endif /* CONFIG_SMP */
112}
113EXPORT_SYMBOL(enable_kernel_fp);
114
14cf11af
PM
115#ifdef CONFIG_ALTIVEC
116void enable_kernel_altivec(void)
117{
118 WARN_ON(preemptible());
119
120#ifdef CONFIG_SMP
121 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
122 giveup_altivec(current);
123 else
124 giveup_altivec(NULL); /* just enable AltiVec for kernel - force */
125#else
126 giveup_altivec(last_task_used_altivec);
127#endif /* CONFIG_SMP */
128}
129EXPORT_SYMBOL(enable_kernel_altivec);
130
131/*
132 * Make sure the VMX/Altivec register state in the
133 * the thread_struct is up to date for task tsk.
134 */
135void flush_altivec_to_thread(struct task_struct *tsk)
136{
137 if (tsk->thread.regs) {
138 preempt_disable();
139 if (tsk->thread.regs->msr & MSR_VEC) {
140#ifdef CONFIG_SMP
141 BUG_ON(tsk != current);
142#endif
0ee6c15e 143 giveup_altivec(tsk);
14cf11af
PM
144 }
145 preempt_enable();
146 }
147}
14cf11af
PM
148#endif /* CONFIG_ALTIVEC */
149
ce48b210
MN
150#ifdef CONFIG_VSX
151#if 0
152/* not currently used, but some crazy RAID module might want to later */
153void enable_kernel_vsx(void)
154{
155 WARN_ON(preemptible());
156
157#ifdef CONFIG_SMP
158 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
159 giveup_vsx(current);
160 else
161 giveup_vsx(NULL); /* just enable vsx for kernel - force */
162#else
163 giveup_vsx(last_task_used_vsx);
164#endif /* CONFIG_SMP */
165}
166EXPORT_SYMBOL(enable_kernel_vsx);
167#endif
168
7c292170
MN
169void giveup_vsx(struct task_struct *tsk)
170{
171 giveup_fpu(tsk);
172 giveup_altivec(tsk);
173 __giveup_vsx(tsk);
174}
175
ce48b210
MN
176void flush_vsx_to_thread(struct task_struct *tsk)
177{
178 if (tsk->thread.regs) {
179 preempt_disable();
180 if (tsk->thread.regs->msr & MSR_VSX) {
181#ifdef CONFIG_SMP
182 BUG_ON(tsk != current);
183#endif
184 giveup_vsx(tsk);
185 }
186 preempt_enable();
187 }
188}
ce48b210
MN
189#endif /* CONFIG_VSX */
190
14cf11af
PM
191#ifdef CONFIG_SPE
192
193void enable_kernel_spe(void)
194{
195 WARN_ON(preemptible());
196
197#ifdef CONFIG_SMP
198 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
199 giveup_spe(current);
200 else
201 giveup_spe(NULL); /* just enable SPE for kernel - force */
202#else
203 giveup_spe(last_task_used_spe);
204#endif /* __SMP __ */
205}
206EXPORT_SYMBOL(enable_kernel_spe);
207
208void flush_spe_to_thread(struct task_struct *tsk)
209{
210 if (tsk->thread.regs) {
211 preempt_disable();
212 if (tsk->thread.regs->msr & MSR_SPE) {
213#ifdef CONFIG_SMP
214 BUG_ON(tsk != current);
215#endif
685659ee 216 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
0ee6c15e 217 giveup_spe(tsk);
14cf11af
PM
218 }
219 preempt_enable();
220 }
221}
14cf11af
PM
222#endif /* CONFIG_SPE */
223
5388fb10 224#ifndef CONFIG_SMP
48abec07
PM
225/*
226 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
227 * and the current task has some state, discard it.
228 */
5388fb10 229void discard_lazy_cpu_state(void)
48abec07 230{
48abec07
PM
231 preempt_disable();
232 if (last_task_used_math == current)
233 last_task_used_math = NULL;
234#ifdef CONFIG_ALTIVEC
235 if (last_task_used_altivec == current)
236 last_task_used_altivec = NULL;
237#endif /* CONFIG_ALTIVEC */
ce48b210
MN
238#ifdef CONFIG_VSX
239 if (last_task_used_vsx == current)
240 last_task_used_vsx = NULL;
241#endif /* CONFIG_VSX */
48abec07
PM
242#ifdef CONFIG_SPE
243 if (last_task_used_spe == current)
244 last_task_used_spe = NULL;
245#endif
246 preempt_enable();
48abec07 247}
5388fb10 248#endif /* CONFIG_SMP */
48abec07 249
3bffb652
DK
250#ifdef CONFIG_PPC_ADV_DEBUG_REGS
251void do_send_trap(struct pt_regs *regs, unsigned long address,
252 unsigned long error_code, int signal_code, int breakpt)
253{
254 siginfo_t info;
255
256 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
257 11, SIGSEGV) == NOTIFY_STOP)
258 return;
259
260 /* Deliver the signal to userspace */
261 info.si_signo = SIGTRAP;
262 info.si_errno = breakpt; /* breakpoint or watchpoint id */
263 info.si_code = signal_code;
264 info.si_addr = (void __user *)address;
265 force_sig_info(SIGTRAP, &info, current);
266}
267#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
d6a61bfc
LM
268void do_dabr(struct pt_regs *regs, unsigned long address,
269 unsigned long error_code)
270{
271 siginfo_t info;
272
273 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
274 11, SIGSEGV) == NOTIFY_STOP)
275 return;
276
277 if (debugger_dabr_match(regs))
278 return;
279
d6a61bfc
LM
280 /* Clear the DABR */
281 set_dabr(0);
282
283 /* Deliver the signal to userspace */
284 info.si_signo = SIGTRAP;
285 info.si_errno = 0;
286 info.si_code = TRAP_HWBKPT;
287 info.si_addr = (void __user *)address;
288 force_sig_info(SIGTRAP, &info, current);
289}
3bffb652 290#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
d6a61bfc 291
a2ceff5e
ME
292static DEFINE_PER_CPU(unsigned long, current_dabr);
293
3bffb652
DK
294#ifdef CONFIG_PPC_ADV_DEBUG_REGS
295/*
296 * Set the debug registers back to their default "safe" values.
297 */
298static void set_debug_reg_defaults(struct thread_struct *thread)
299{
300 thread->iac1 = thread->iac2 = 0;
301#if CONFIG_PPC_ADV_DEBUG_IACS > 2
302 thread->iac3 = thread->iac4 = 0;
303#endif
304 thread->dac1 = thread->dac2 = 0;
305#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
306 thread->dvc1 = thread->dvc2 = 0;
307#endif
308 thread->dbcr0 = 0;
309#ifdef CONFIG_BOOKE
310 /*
311 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
312 */
313 thread->dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | \
314 DBCR1_IAC3US | DBCR1_IAC4US;
315 /*
316 * Force Data Address Compare User/Supervisor bits to be User-only
317 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
318 */
319 thread->dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
320#else
321 thread->dbcr1 = 0;
322#endif
323}
324
325static void prime_debug_regs(struct thread_struct *thread)
326{
327 mtspr(SPRN_IAC1, thread->iac1);
328 mtspr(SPRN_IAC2, thread->iac2);
329#if CONFIG_PPC_ADV_DEBUG_IACS > 2
330 mtspr(SPRN_IAC3, thread->iac3);
331 mtspr(SPRN_IAC4, thread->iac4);
332#endif
333 mtspr(SPRN_DAC1, thread->dac1);
334 mtspr(SPRN_DAC2, thread->dac2);
335#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
336 mtspr(SPRN_DVC1, thread->dvc1);
337 mtspr(SPRN_DVC2, thread->dvc2);
338#endif
339 mtspr(SPRN_DBCR0, thread->dbcr0);
340 mtspr(SPRN_DBCR1, thread->dbcr1);
341#ifdef CONFIG_BOOKE
342 mtspr(SPRN_DBCR2, thread->dbcr2);
343#endif
344}
345/*
346 * Unless neither the old or new thread are making use of the
347 * debug registers, set the debug registers from the values
348 * stored in the new thread.
349 */
350static void switch_booke_debug_regs(struct thread_struct *new_thread)
351{
352 if ((current->thread.dbcr0 & DBCR0_IDM)
353 || (new_thread->dbcr0 & DBCR0_IDM))
354 prime_debug_regs(new_thread);
355}
356#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
e0780b72 357#ifndef CONFIG_HAVE_HW_BREAKPOINT
3bffb652
DK
358static void set_debug_reg_defaults(struct thread_struct *thread)
359{
360 if (thread->dabr) {
361 thread->dabr = 0;
362 set_dabr(0);
363 }
364}
e0780b72 365#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
3bffb652
DK
366#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
367
14cf11af
PM
368int set_dabr(unsigned long dabr)
369{
a2ceff5e
ME
370 __get_cpu_var(current_dabr) = dabr;
371
cab0af98
ME
372 if (ppc_md.set_dabr)
373 return ppc_md.set_dabr(dabr);
14cf11af 374
791cc501 375 /* XXX should we have a CPU_FTR_HAS_DABR ? */
172ae2e7 376#ifdef CONFIG_PPC_ADV_DEBUG_REGS
d6a61bfc 377 mtspr(SPRN_DAC1, dabr);
221c185d
DK
378#ifdef CONFIG_PPC_47x
379 isync();
380#endif
c6c9eace
BH
381#elif defined(CONFIG_PPC_BOOK3S)
382 mtspr(SPRN_DABR, dabr);
d6a61bfc
LM
383#endif
384
c6c9eace 385
cab0af98 386 return 0;
14cf11af
PM
387}
388
06d67d54
PM
389#ifdef CONFIG_PPC64
390DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
06d67d54 391#endif
14cf11af
PM
392
393struct task_struct *__switch_to(struct task_struct *prev,
394 struct task_struct *new)
395{
396 struct thread_struct *new_thread, *old_thread;
397 unsigned long flags;
398 struct task_struct *last;
d6bf29b4
PZ
399#ifdef CONFIG_PPC_BOOK3S_64
400 struct ppc64_tlb_batch *batch;
401#endif
14cf11af
PM
402
403#ifdef CONFIG_SMP
404 /* avoid complexity of lazy save/restore of fpu
405 * by just saving it every time we switch out if
406 * this task used the fpu during the last quantum.
407 *
408 * If it tries to use the fpu again, it'll trap and
409 * reload its fp regs. So we don't have to do a restore
410 * every switch, just a save.
411 * -- Cort
412 */
413 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
414 giveup_fpu(prev);
415#ifdef CONFIG_ALTIVEC
416 /*
417 * If the previous thread used altivec in the last quantum
418 * (thus changing altivec regs) then save them.
419 * We used to check the VRSAVE register but not all apps
420 * set it, so we don't rely on it now (and in fact we need
421 * to save & restore VSCR even if VRSAVE == 0). -- paulus
422 *
423 * On SMP we always save/restore altivec regs just to avoid the
424 * complexity of changing processors.
425 * -- Cort
426 */
427 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
428 giveup_altivec(prev);
14cf11af 429#endif /* CONFIG_ALTIVEC */
ce48b210
MN
430#ifdef CONFIG_VSX
431 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
7c292170
MN
432 /* VMX and FPU registers are already save here */
433 __giveup_vsx(prev);
ce48b210 434#endif /* CONFIG_VSX */
14cf11af
PM
435#ifdef CONFIG_SPE
436 /*
437 * If the previous thread used spe in the last quantum
438 * (thus changing spe regs) then save them.
439 *
440 * On SMP we always save/restore spe regs just to avoid the
441 * complexity of changing processors.
442 */
443 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
444 giveup_spe(prev);
c0c0d996
PM
445#endif /* CONFIG_SPE */
446
447#else /* CONFIG_SMP */
448#ifdef CONFIG_ALTIVEC
449 /* Avoid the trap. On smp this this never happens since
450 * we don't set last_task_used_altivec -- Cort
451 */
452 if (new->thread.regs && last_task_used_altivec == new)
453 new->thread.regs->msr |= MSR_VEC;
454#endif /* CONFIG_ALTIVEC */
ce48b210
MN
455#ifdef CONFIG_VSX
456 if (new->thread.regs && last_task_used_vsx == new)
457 new->thread.regs->msr |= MSR_VSX;
458#endif /* CONFIG_VSX */
c0c0d996 459#ifdef CONFIG_SPE
14cf11af
PM
460 /* Avoid the trap. On smp this this never happens since
461 * we don't set last_task_used_spe
462 */
463 if (new->thread.regs && last_task_used_spe == new)
464 new->thread.regs->msr |= MSR_SPE;
465#endif /* CONFIG_SPE */
c0c0d996 466
14cf11af
PM
467#endif /* CONFIG_SMP */
468
172ae2e7 469#ifdef CONFIG_PPC_ADV_DEBUG_REGS
3bffb652 470 switch_booke_debug_regs(&new->thread);
c6c9eace 471#else
5aae8a53
P
472/*
473 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
474 * schedule DABR
475 */
476#ifndef CONFIG_HAVE_HW_BREAKPOINT
c6c9eace
BH
477 if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr))
478 set_dabr(new->thread.dabr);
5aae8a53 479#endif /* CONFIG_HAVE_HW_BREAKPOINT */
d6a61bfc
LM
480#endif
481
c6c9eace 482
14cf11af
PM
483 new_thread = &new->thread;
484 old_thread = &current->thread;
06d67d54 485
a2e19811
BH
486#if defined(CONFIG_PPC_BOOK3E_64)
487 /* XXX Current Book3E code doesn't deal with kernel side DBCR0,
488 * we always hold the user values, so we set it now.
489 *
490 * However, we ensure the kernel MSR:DE is appropriately cleared too
491 * to avoid spurrious single step exceptions in the kernel.
492 *
493 * This will have to change to merge with the ppc32 code at some point,
494 * but I don't like much what ppc32 is doing today so there's some
495 * thinking needed there
496 */
497 if ((new_thread->dbcr0 | old_thread->dbcr0) & DBCR0_IDM) {
498 u32 dbcr0;
499
500 mtmsr(mfmsr() & ~MSR_DE);
501 isync();
502 dbcr0 = mfspr(SPRN_DBCR0);
503 dbcr0 = (dbcr0 & DBCR0_EDM) | new_thread->dbcr0;
504 mtspr(SPRN_DBCR0, dbcr0);
505 }
506#endif /* CONFIG_PPC64_BOOK3E */
507
06d67d54
PM
508#ifdef CONFIG_PPC64
509 /*
510 * Collect processor utilization data per process
511 */
512 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
513 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
514 long unsigned start_tb, current_tb;
515 start_tb = old_thread->start_tb;
516 cu->current_tb = current_tb = mfspr(SPRN_PURR);
517 old_thread->accum_tb += (current_tb - start_tb);
518 new_thread->start_tb = current_tb;
519 }
d6bf29b4
PZ
520#endif /* CONFIG_PPC64 */
521
522#ifdef CONFIG_PPC_BOOK3S_64
523 batch = &__get_cpu_var(ppc64_tlb_batch);
524 if (batch->active) {
525 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
526 if (batch->index)
527 __flush_tlb_pending(batch);
528 batch->active = 0;
529 }
530#endif /* CONFIG_PPC_BOOK3S_64 */
06d67d54 531
14cf11af 532 local_irq_save(flags);
c6622f63
PM
533
534 account_system_vtime(current);
81a3843f 535 account_process_vtime(current);
c6622f63 536
44387e9f
AB
537 /*
538 * We can't take a PMU exception inside _switch() since there is a
539 * window where the kernel stack SLB and the kernel stack are out
540 * of sync. Hard disable here.
541 */
542 hard_irq_disable();
14cf11af
PM
543 last = _switch(old_thread, new_thread);
544
d6bf29b4
PZ
545#ifdef CONFIG_PPC_BOOK3S_64
546 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
547 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
548 batch = &__get_cpu_var(ppc64_tlb_batch);
549 batch->active = 1;
550 }
551#endif /* CONFIG_PPC_BOOK3S_64 */
552
14cf11af
PM
553 local_irq_restore(flags);
554
555 return last;
556}
557
06d67d54
PM
558static int instructions_to_print = 16;
559
06d67d54
PM
560static void show_instructions(struct pt_regs *regs)
561{
562 int i;
563 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
564 sizeof(int));
565
566 printk("Instruction dump:");
567
568 for (i = 0; i < instructions_to_print; i++) {
569 int instr;
570
571 if (!(i % 8))
572 printk("\n");
573
0de2d820
SW
574#if !defined(CONFIG_BOOKE)
575 /* If executing with the IMMU off, adjust pc rather
576 * than print XXXXXXXX.
577 */
578 if (!(regs->msr & MSR_IR))
579 pc = (unsigned long)phys_to_virt(pc);
580#endif
581
af308377
SR
582 /* We use __get_user here *only* to avoid an OOPS on a
583 * bad address because the pc *should* only be a
584 * kernel address.
585 */
00ae36de
AB
586 if (!__kernel_text_address(pc) ||
587 __get_user(instr, (unsigned int __user *)pc)) {
06d67d54
PM
588 printk("XXXXXXXX ");
589 } else {
590 if (regs->nip == pc)
591 printk("<%08x> ", instr);
592 else
593 printk("%08x ", instr);
594 }
595
596 pc += sizeof(int);
597 }
598
599 printk("\n");
600}
601
602static struct regbit {
603 unsigned long bit;
604 const char *name;
605} msr_bits[] = {
606 {MSR_EE, "EE"},
607 {MSR_PR, "PR"},
608 {MSR_FP, "FP"},
ce48b210
MN
609 {MSR_VEC, "VEC"},
610 {MSR_VSX, "VSX"},
06d67d54 611 {MSR_ME, "ME"},
1b98326b
KG
612 {MSR_CE, "CE"},
613 {MSR_DE, "DE"},
06d67d54
PM
614 {MSR_IR, "IR"},
615 {MSR_DR, "DR"},
616 {0, NULL}
617};
618
619static void printbits(unsigned long val, struct regbit *bits)
620{
621 const char *sep = "";
622
623 printk("<");
624 for (; bits->bit; ++bits)
625 if (val & bits->bit) {
626 printk("%s%s", sep, bits->name);
627 sep = ",";
628 }
629 printk(">");
630}
631
632#ifdef CONFIG_PPC64
f6f7dde3 633#define REG "%016lx"
06d67d54
PM
634#define REGS_PER_LINE 4
635#define LAST_VOLATILE 13
636#else
f6f7dde3 637#define REG "%08lx"
06d67d54
PM
638#define REGS_PER_LINE 8
639#define LAST_VOLATILE 12
640#endif
641
14cf11af
PM
642void show_regs(struct pt_regs * regs)
643{
644 int i, trap;
645
06d67d54
PM
646 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
647 regs->nip, regs->link, regs->ctr);
648 printk("REGS: %p TRAP: %04lx %s (%s)\n",
96b644bd 649 regs, regs->trap, print_tainted(), init_utsname()->release);
06d67d54
PM
650 printk("MSR: "REG" ", regs->msr);
651 printbits(regs->msr, msr_bits);
f6f7dde3 652 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
14cf11af
PM
653 trap = TRAP(regs);
654 if (trap == 0x300 || trap == 0x600)
172ae2e7 655#ifdef CONFIG_PPC_ADV_DEBUG_REGS
14170789
KG
656 printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
657#else
7071854b 658 printk("DAR: "REG", DSISR: %08lx\n", regs->dar, regs->dsisr);
14170789 659#endif
06d67d54 660 printk("TASK = %p[%d] '%s' THREAD: %p",
19c5870c 661 current, task_pid_nr(current), current->comm, task_thread_info(current));
14cf11af
PM
662
663#ifdef CONFIG_SMP
79ccd1be 664 printk(" CPU: %d", raw_smp_processor_id());
14cf11af
PM
665#endif /* CONFIG_SMP */
666
667 for (i = 0; i < 32; i++) {
06d67d54 668 if ((i % REGS_PER_LINE) == 0)
a2367194 669 printk("\nGPR%02d: ", i);
06d67d54
PM
670 printk(REG " ", regs->gpr[i]);
671 if (i == LAST_VOLATILE && !FULL_REGS(regs))
14cf11af
PM
672 break;
673 }
674 printk("\n");
675#ifdef CONFIG_KALLSYMS
676 /*
677 * Lookup NIP late so we have the best change of getting the
678 * above info out without failing
679 */
058c78f4
BH
680 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
681 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
14cf11af
PM
682#endif
683 show_stack(current, (unsigned long *) regs->gpr[1]);
06d67d54
PM
684 if (!user_mode(regs))
685 show_instructions(regs);
14cf11af
PM
686}
687
688void exit_thread(void)
689{
48abec07 690 discard_lazy_cpu_state();
14cf11af
PM
691}
692
693void flush_thread(void)
694{
48abec07 695 discard_lazy_cpu_state();
14cf11af 696
e0780b72 697#ifdef CONFIG_HAVE_HW_BREAKPOINT
5aae8a53 698 flush_ptrace_hw_breakpoint(current);
e0780b72 699#else /* CONFIG_HAVE_HW_BREAKPOINT */
3bffb652 700 set_debug_reg_defaults(&current->thread);
e0780b72 701#endif /* CONFIG_HAVE_HW_BREAKPOINT */
14cf11af
PM
702}
703
704void
705release_thread(struct task_struct *t)
706{
707}
708
709/*
710 * This gets called before we allocate a new thread and copy
711 * the current task into it.
712 */
713void prepare_to_copy(struct task_struct *tsk)
714{
715 flush_fp_to_thread(current);
716 flush_altivec_to_thread(current);
ce48b210 717 flush_vsx_to_thread(current);
14cf11af 718 flush_spe_to_thread(current);
5aae8a53
P
719#ifdef CONFIG_HAVE_HW_BREAKPOINT
720 flush_ptrace_hw_breakpoint(tsk);
721#endif /* CONFIG_HAVE_HW_BREAKPOINT */
14cf11af
PM
722}
723
724/*
725 * Copy a thread..
726 */
efcac658
AK
727extern unsigned long dscr_default; /* defined in arch/powerpc/kernel/sysfs.c */
728
6f2c55b8 729int copy_thread(unsigned long clone_flags, unsigned long usp,
06d67d54
PM
730 unsigned long unused, struct task_struct *p,
731 struct pt_regs *regs)
14cf11af
PM
732{
733 struct pt_regs *childregs, *kregs;
734 extern void ret_from_fork(void);
0cec6fd1 735 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
14cf11af
PM
736
737 CHECK_FULL_REGS(regs);
738 /* Copy registers */
739 sp -= sizeof(struct pt_regs);
740 childregs = (struct pt_regs *) sp;
741 *childregs = *regs;
742 if ((childregs->msr & MSR_PR) == 0) {
743 /* for kernel thread, set `current' and stackptr in new task */
744 childregs->gpr[1] = sp + sizeof(struct pt_regs);
06d67d54 745#ifdef CONFIG_PPC32
14cf11af 746 childregs->gpr[2] = (unsigned long) p;
06d67d54 747#else
b5e2fc1c 748 clear_tsk_thread_flag(p, TIF_32BIT);
06d67d54 749#endif
14cf11af
PM
750 p->thread.regs = NULL; /* no user register state */
751 } else {
752 childregs->gpr[1] = usp;
753 p->thread.regs = childregs;
06d67d54
PM
754 if (clone_flags & CLONE_SETTLS) {
755#ifdef CONFIG_PPC64
9904b005 756 if (!is_32bit_task())
06d67d54
PM
757 childregs->gpr[13] = childregs->gpr[6];
758 else
759#endif
760 childregs->gpr[2] = childregs->gpr[6];
761 }
14cf11af
PM
762 }
763 childregs->gpr[3] = 0; /* Result from fork() */
764 sp -= STACK_FRAME_OVERHEAD;
14cf11af
PM
765
766 /*
767 * The way this works is that at some point in the future
768 * some task will call _switch to switch to the new task.
769 * That will pop off the stack frame created below and start
770 * the new task running at ret_from_fork. The new task will
771 * do some house keeping and then return from the fork or clone
772 * system call, using the stack frame created above.
773 */
774 sp -= sizeof(struct pt_regs);
775 kregs = (struct pt_regs *) sp;
776 sp -= STACK_FRAME_OVERHEAD;
777 p->thread.ksp = sp;
85218827
KG
778 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
779 _ALIGN_UP(sizeof(struct thread_info), 16);
14cf11af 780
94491685 781#ifdef CONFIG_PPC_STD_MMU_64
44ae3ab3 782 if (mmu_has_feature(MMU_FTR_SLB)) {
1189be65 783 unsigned long sp_vsid;
3c726f8d 784 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
06d67d54 785
44ae3ab3 786 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1189be65
PM
787 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
788 << SLB_VSID_SHIFT_1T;
789 else
790 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
791 << SLB_VSID_SHIFT;
3c726f8d 792 sp_vsid |= SLB_VSID_KERNEL | llp;
06d67d54
PM
793 p->thread.ksp_vsid = sp_vsid;
794 }
747bea91 795#endif /* CONFIG_PPC_STD_MMU_64 */
efcac658
AK
796#ifdef CONFIG_PPC64
797 if (cpu_has_feature(CPU_FTR_DSCR)) {
798 if (current->thread.dscr_inherit) {
799 p->thread.dscr_inherit = 1;
800 p->thread.dscr = current->thread.dscr;
801 } else if (0 != dscr_default) {
802 p->thread.dscr_inherit = 1;
803 p->thread.dscr = dscr_default;
804 } else {
805 p->thread.dscr_inherit = 0;
806 p->thread.dscr = 0;
807 }
808 }
809#endif
06d67d54
PM
810
811 /*
812 * The PPC64 ABI makes use of a TOC to contain function
813 * pointers. The function (ret_from_except) is actually a pointer
814 * to the TOC entry. The first entry is a pointer to the actual
815 * function.
816 */
747bea91 817#ifdef CONFIG_PPC64
06d67d54
PM
818 kregs->nip = *((unsigned long *)ret_from_fork);
819#else
820 kregs->nip = (unsigned long)ret_from_fork;
06d67d54 821#endif
14cf11af
PM
822
823 return 0;
824}
825
826/*
827 * Set up a thread for executing a new program
828 */
06d67d54 829void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
14cf11af 830{
90eac727
ME
831#ifdef CONFIG_PPC64
832 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
833#endif
834
14cf11af 835 set_fs(USER_DS);
06d67d54
PM
836
837 /*
838 * If we exec out of a kernel thread then thread.regs will not be
839 * set. Do it now.
840 */
841 if (!current->thread.regs) {
0cec6fd1
AV
842 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
843 current->thread.regs = regs - 1;
06d67d54
PM
844 }
845
14cf11af
PM
846 memset(regs->gpr, 0, sizeof(regs->gpr));
847 regs->ctr = 0;
848 regs->link = 0;
849 regs->xer = 0;
850 regs->ccr = 0;
14cf11af 851 regs->gpr[1] = sp;
06d67d54 852
474f8196
RM
853 /*
854 * We have just cleared all the nonvolatile GPRs, so make
855 * FULL_REGS(regs) return true. This is necessary to allow
856 * ptrace to examine the thread immediately after exec.
857 */
858 regs->trap &= ~1UL;
859
06d67d54
PM
860#ifdef CONFIG_PPC32
861 regs->mq = 0;
862 regs->nip = start;
14cf11af 863 regs->msr = MSR_USER;
06d67d54 864#else
9904b005 865 if (!is_32bit_task()) {
90eac727 866 unsigned long entry, toc;
06d67d54
PM
867
868 /* start is a relocated pointer to the function descriptor for
869 * the elf _start routine. The first entry in the function
870 * descriptor is the entry address of _start and the second
871 * entry is the TOC value we need to use.
872 */
873 __get_user(entry, (unsigned long __user *)start);
874 __get_user(toc, (unsigned long __user *)start+1);
875
876 /* Check whether the e_entry function descriptor entries
877 * need to be relocated before we can use them.
878 */
879 if (load_addr != 0) {
880 entry += load_addr;
881 toc += load_addr;
882 }
883 regs->nip = entry;
884 regs->gpr[2] = toc;
885 regs->msr = MSR_USER64;
d4bf9a78
SR
886 } else {
887 regs->nip = start;
888 regs->gpr[2] = 0;
889 regs->msr = MSR_USER32;
06d67d54
PM
890 }
891#endif
892
48abec07 893 discard_lazy_cpu_state();
ce48b210
MN
894#ifdef CONFIG_VSX
895 current->thread.used_vsr = 0;
896#endif
14cf11af 897 memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
25c8a78b 898 current->thread.fpscr.val = 0;
14cf11af
PM
899#ifdef CONFIG_ALTIVEC
900 memset(current->thread.vr, 0, sizeof(current->thread.vr));
901 memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
06d67d54 902 current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
14cf11af
PM
903 current->thread.vrsave = 0;
904 current->thread.used_vr = 0;
905#endif /* CONFIG_ALTIVEC */
906#ifdef CONFIG_SPE
907 memset(current->thread.evr, 0, sizeof(current->thread.evr));
908 current->thread.acc = 0;
909 current->thread.spefscr = 0;
910 current->thread.used_spe = 0;
911#endif /* CONFIG_SPE */
912}
913
914#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
915 | PR_FP_EXC_RES | PR_FP_EXC_INV)
916
917int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
918{
919 struct pt_regs *regs = tsk->thread.regs;
920
921 /* This is a bit hairy. If we are an SPE enabled processor
922 * (have embedded fp) we store the IEEE exception enable flags in
923 * fpexc_mode. fpexc_mode is also used for setting FP exception
924 * mode (asyn, precise, disabled) for 'Classic' FP. */
925 if (val & PR_FP_EXC_SW_ENABLE) {
926#ifdef CONFIG_SPE
5e14d21e
KG
927 if (cpu_has_feature(CPU_FTR_SPE)) {
928 tsk->thread.fpexc_mode = val &
929 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
930 return 0;
931 } else {
932 return -EINVAL;
933 }
14cf11af
PM
934#else
935 return -EINVAL;
936#endif
14cf11af 937 }
06d67d54
PM
938
939 /* on a CONFIG_SPE this does not hurt us. The bits that
940 * __pack_fe01 use do not overlap with bits used for
941 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
942 * on CONFIG_SPE implementations are reserved so writing to
943 * them does not change anything */
944 if (val > PR_FP_EXC_PRECISE)
945 return -EINVAL;
946 tsk->thread.fpexc_mode = __pack_fe01(val);
947 if (regs != NULL && (regs->msr & MSR_FP) != 0)
948 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
949 | tsk->thread.fpexc_mode;
14cf11af
PM
950 return 0;
951}
952
953int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
954{
955 unsigned int val;
956
957 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
958#ifdef CONFIG_SPE
5e14d21e
KG
959 if (cpu_has_feature(CPU_FTR_SPE))
960 val = tsk->thread.fpexc_mode;
961 else
962 return -EINVAL;
14cf11af
PM
963#else
964 return -EINVAL;
965#endif
966 else
967 val = __unpack_fe01(tsk->thread.fpexc_mode);
968 return put_user(val, (unsigned int __user *) adr);
969}
970
fab5db97
PM
971int set_endian(struct task_struct *tsk, unsigned int val)
972{
973 struct pt_regs *regs = tsk->thread.regs;
974
975 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
976 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
977 return -EINVAL;
978
979 if (regs == NULL)
980 return -EINVAL;
981
982 if (val == PR_ENDIAN_BIG)
983 regs->msr &= ~MSR_LE;
984 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
985 regs->msr |= MSR_LE;
986 else
987 return -EINVAL;
988
989 return 0;
990}
991
992int get_endian(struct task_struct *tsk, unsigned long adr)
993{
994 struct pt_regs *regs = tsk->thread.regs;
995 unsigned int val;
996
997 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
998 !cpu_has_feature(CPU_FTR_REAL_LE))
999 return -EINVAL;
1000
1001 if (regs == NULL)
1002 return -EINVAL;
1003
1004 if (regs->msr & MSR_LE) {
1005 if (cpu_has_feature(CPU_FTR_REAL_LE))
1006 val = PR_ENDIAN_LITTLE;
1007 else
1008 val = PR_ENDIAN_PPC_LITTLE;
1009 } else
1010 val = PR_ENDIAN_BIG;
1011
1012 return put_user(val, (unsigned int __user *)adr);
1013}
1014
e9370ae1
PM
1015int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1016{
1017 tsk->thread.align_ctl = val;
1018 return 0;
1019}
1020
1021int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1022{
1023 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1024}
1025
06d67d54
PM
1026#define TRUNC_PTR(x) ((typeof(x))(((unsigned long)(x)) & 0xffffffff))
1027
14cf11af
PM
1028int sys_clone(unsigned long clone_flags, unsigned long usp,
1029 int __user *parent_tidp, void __user *child_threadptr,
1030 int __user *child_tidp, int p6,
1031 struct pt_regs *regs)
1032{
1033 CHECK_FULL_REGS(regs);
1034 if (usp == 0)
1035 usp = regs->gpr[1]; /* stack pointer for child */
06d67d54 1036#ifdef CONFIG_PPC64
9904b005 1037 if (is_32bit_task()) {
06d67d54
PM
1038 parent_tidp = TRUNC_PTR(parent_tidp);
1039 child_tidp = TRUNC_PTR(child_tidp);
1040 }
1041#endif
14cf11af
PM
1042 return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
1043}
1044
1045int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
1046 unsigned long p4, unsigned long p5, unsigned long p6,
1047 struct pt_regs *regs)
1048{
1049 CHECK_FULL_REGS(regs);
1050 return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
1051}
1052
1053int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
1054 unsigned long p4, unsigned long p5, unsigned long p6,
1055 struct pt_regs *regs)
1056{
1057 CHECK_FULL_REGS(regs);
1058 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
1059 regs, 0, NULL, NULL);
1060}
1061
1062int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
1063 unsigned long a3, unsigned long a4, unsigned long a5,
1064 struct pt_regs *regs)
1065{
1066 int error;
06d67d54 1067 char *filename;
14cf11af 1068
c7887325 1069 filename = getname((const char __user *) a0);
14cf11af
PM
1070 error = PTR_ERR(filename);
1071 if (IS_ERR(filename))
1072 goto out;
1073 flush_fp_to_thread(current);
1074 flush_altivec_to_thread(current);
1075 flush_spe_to_thread(current);
d7627467
DH
1076 error = do_execve(filename,
1077 (const char __user *const __user *) a1,
1078 (const char __user *const __user *) a2, regs);
14cf11af
PM
1079 putname(filename);
1080out:
1081 return error;
1082}
1083
bb72c481
PM
1084static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1085 unsigned long nbytes)
1086{
1087 unsigned long stack_page;
1088 unsigned long cpu = task_cpu(p);
1089
1090 /*
1091 * Avoid crashing if the stack has overflowed and corrupted
1092 * task_cpu(p), which is in the thread_info struct.
1093 */
1094 if (cpu < NR_CPUS && cpu_possible(cpu)) {
1095 stack_page = (unsigned long) hardirq_ctx[cpu];
1096 if (sp >= stack_page + sizeof(struct thread_struct)
1097 && sp <= stack_page + THREAD_SIZE - nbytes)
1098 return 1;
1099
1100 stack_page = (unsigned long) softirq_ctx[cpu];
1101 if (sp >= stack_page + sizeof(struct thread_struct)
1102 && sp <= stack_page + THREAD_SIZE - nbytes)
1103 return 1;
1104 }
1105 return 0;
1106}
1107
2f25194d 1108int validate_sp(unsigned long sp, struct task_struct *p,
14cf11af
PM
1109 unsigned long nbytes)
1110{
0cec6fd1 1111 unsigned long stack_page = (unsigned long)task_stack_page(p);
14cf11af
PM
1112
1113 if (sp >= stack_page + sizeof(struct thread_struct)
1114 && sp <= stack_page + THREAD_SIZE - nbytes)
1115 return 1;
1116
bb72c481 1117 return valid_irq_stack(sp, p, nbytes);
14cf11af
PM
1118}
1119
2f25194d
AB
1120EXPORT_SYMBOL(validate_sp);
1121
14cf11af
PM
1122unsigned long get_wchan(struct task_struct *p)
1123{
1124 unsigned long ip, sp;
1125 int count = 0;
1126
1127 if (!p || p == current || p->state == TASK_RUNNING)
1128 return 0;
1129
1130 sp = p->thread.ksp;
ec2b36b9 1131 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
14cf11af
PM
1132 return 0;
1133
1134 do {
1135 sp = *(unsigned long *)sp;
ec2b36b9 1136 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
14cf11af
PM
1137 return 0;
1138 if (count > 0) {
ec2b36b9 1139 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
14cf11af
PM
1140 if (!in_sched_functions(ip))
1141 return ip;
1142 }
1143 } while (count++ < 16);
1144 return 0;
1145}
06d67d54 1146
c4d04be1 1147static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
06d67d54
PM
1148
1149void show_stack(struct task_struct *tsk, unsigned long *stack)
1150{
1151 unsigned long sp, ip, lr, newsp;
1152 int count = 0;
1153 int firstframe = 1;
6794c782
SR
1154#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1155 int curr_frame = current->curr_ret_stack;
1156 extern void return_to_handler(void);
9135c3cc
SR
1157 unsigned long rth = (unsigned long)return_to_handler;
1158 unsigned long mrth = -1;
6794c782 1159#ifdef CONFIG_PPC64
9135c3cc
SR
1160 extern void mod_return_to_handler(void);
1161 rth = *(unsigned long *)rth;
1162 mrth = (unsigned long)mod_return_to_handler;
1163 mrth = *(unsigned long *)mrth;
6794c782
SR
1164#endif
1165#endif
06d67d54
PM
1166
1167 sp = (unsigned long) stack;
1168 if (tsk == NULL)
1169 tsk = current;
1170 if (sp == 0) {
1171 if (tsk == current)
1172 asm("mr %0,1" : "=r" (sp));
1173 else
1174 sp = tsk->thread.ksp;
1175 }
1176
1177 lr = 0;
1178 printk("Call Trace:\n");
1179 do {
ec2b36b9 1180 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
06d67d54
PM
1181 return;
1182
1183 stack = (unsigned long *) sp;
1184 newsp = stack[0];
ec2b36b9 1185 ip = stack[STACK_FRAME_LR_SAVE];
06d67d54 1186 if (!firstframe || ip != lr) {
058c78f4 1187 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
6794c782 1188#ifdef CONFIG_FUNCTION_GRAPH_TRACER
9135c3cc 1189 if ((ip == rth || ip == mrth) && curr_frame >= 0) {
6794c782
SR
1190 printk(" (%pS)",
1191 (void *)current->ret_stack[curr_frame].ret);
1192 curr_frame--;
1193 }
1194#endif
06d67d54
PM
1195 if (firstframe)
1196 printk(" (unreliable)");
1197 printk("\n");
1198 }
1199 firstframe = 0;
1200
1201 /*
1202 * See if this is an exception frame.
1203 * We look for the "regshere" marker in the current frame.
1204 */
ec2b36b9
BH
1205 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1206 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
06d67d54
PM
1207 struct pt_regs *regs = (struct pt_regs *)
1208 (sp + STACK_FRAME_OVERHEAD);
06d67d54 1209 lr = regs->link;
058c78f4
BH
1210 printk("--- Exception: %lx at %pS\n LR = %pS\n",
1211 regs->trap, (void *)regs->nip, (void *)lr);
06d67d54
PM
1212 firstframe = 1;
1213 }
1214
1215 sp = newsp;
1216 } while (count++ < kstack_depth_to_print);
1217}
1218
1219void dump_stack(void)
1220{
1221 show_stack(current, NULL);
1222}
1223EXPORT_SYMBOL(dump_stack);
cb2c9b27
AB
1224
1225#ifdef CONFIG_PPC64
1226void ppc64_runlatch_on(void)
1227{
1228 unsigned long ctrl;
1229
1230 if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) {
1231 HMT_medium();
1232
1233 ctrl = mfspr(SPRN_CTRLF);
1234 ctrl |= CTRL_RUNLATCH;
1235 mtspr(SPRN_CTRLT, ctrl);
1236
1237 set_thread_flag(TIF_RUNLATCH);
1238 }
1239}
1240
4138d653 1241void __ppc64_runlatch_off(void)
cb2c9b27
AB
1242{
1243 unsigned long ctrl;
1244
4138d653 1245 HMT_medium();
cb2c9b27 1246
4138d653 1247 clear_thread_flag(TIF_RUNLATCH);
cb2c9b27 1248
4138d653
AB
1249 ctrl = mfspr(SPRN_CTRLF);
1250 ctrl &= ~CTRL_RUNLATCH;
1251 mtspr(SPRN_CTRLT, ctrl);
cb2c9b27
AB
1252}
1253#endif
f6a61680
BH
1254
1255#if THREAD_SHIFT < PAGE_SHIFT
1256
1257static struct kmem_cache *thread_info_cache;
1258
b6a84016 1259struct thread_info *alloc_thread_info_node(struct task_struct *tsk, int node)
f6a61680
BH
1260{
1261 struct thread_info *ti;
1262
b6a84016 1263 ti = kmem_cache_alloc_node(thread_info_cache, GFP_KERNEL, node);
f6a61680
BH
1264 if (unlikely(ti == NULL))
1265 return NULL;
1266#ifdef CONFIG_DEBUG_STACK_USAGE
1267 memset(ti, 0, THREAD_SIZE);
1268#endif
1269 return ti;
1270}
1271
1272void free_thread_info(struct thread_info *ti)
1273{
1274 kmem_cache_free(thread_info_cache, ti);
1275}
1276
1277void thread_info_cache_init(void)
1278{
1279 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
1280 THREAD_SIZE, 0, NULL);
1281 BUG_ON(thread_info_cache == NULL);
1282}
1283
1284#endif /* THREAD_SHIFT < PAGE_SHIFT */
d839088c
AB
1285
1286unsigned long arch_align_stack(unsigned long sp)
1287{
1288 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1289 sp -= get_random_int() & ~PAGE_MASK;
1290 return sp & ~0xf;
1291}
912f9ee2
AB
1292
1293static inline unsigned long brk_rnd(void)
1294{
1295 unsigned long rnd = 0;
1296
1297 /* 8MB for 32bit, 1GB for 64bit */
1298 if (is_32bit_task())
1299 rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1300 else
1301 rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1302
1303 return rnd << PAGE_SHIFT;
1304}
1305
1306unsigned long arch_randomize_brk(struct mm_struct *mm)
1307{
8bbde7a7
AB
1308 unsigned long base = mm->brk;
1309 unsigned long ret;
1310
ce7a35c7 1311#ifdef CONFIG_PPC_STD_MMU_64
8bbde7a7
AB
1312 /*
1313 * If we are using 1TB segments and we are allowed to randomise
1314 * the heap, we can put it above 1TB so it is backed by a 1TB
1315 * segment. Otherwise the heap will be in the bottom 1TB
1316 * which always uses 256MB segments and this may result in a
1317 * performance penalty.
1318 */
1319 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1320 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1321#endif
1322
1323 ret = PAGE_ALIGN(base + brk_rnd());
912f9ee2
AB
1324
1325 if (ret < mm->brk)
1326 return mm->brk;
1327
1328 return ret;
1329}
501cb16d
AB
1330
1331unsigned long randomize_et_dyn(unsigned long base)
1332{
1333 unsigned long ret = PAGE_ALIGN(base + brk_rnd());
1334
1335 if (ret < base)
1336 return base;
1337
1338 return ret;
1339}