[POWERPC] user_regset PTRACE_SETREGS regression fix
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / powerpc / kernel / process.c
CommitLineData
14cf11af 1/*
14cf11af
PM
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
14cf11af
PM
17#include <linux/errno.h>
18#include <linux/sched.h>
19#include <linux/kernel.h>
20#include <linux/mm.h>
21#include <linux/smp.h>
14cf11af
PM
22#include <linux/stddef.h>
23#include <linux/unistd.h>
24#include <linux/ptrace.h>
25#include <linux/slab.h>
26#include <linux/user.h>
27#include <linux/elf.h>
28#include <linux/init.h>
29#include <linux/prctl.h>
30#include <linux/init_task.h>
31#include <linux/module.h>
32#include <linux/kallsyms.h>
33#include <linux/mqueue.h>
34#include <linux/hardirq.h>
06d67d54 35#include <linux/utsname.h>
14cf11af
PM
36
37#include <asm/pgtable.h>
38#include <asm/uaccess.h>
39#include <asm/system.h>
40#include <asm/io.h>
41#include <asm/processor.h>
42#include <asm/mmu.h>
43#include <asm/prom.h>
76032de8 44#include <asm/machdep.h>
c6622f63 45#include <asm/time.h>
a7f31841 46#include <asm/syscalls.h>
06d67d54
PM
47#ifdef CONFIG_PPC64
48#include <asm/firmware.h>
06d67d54 49#endif
14cf11af
PM
50
51extern unsigned long _get_SP(void);
52
53#ifndef CONFIG_SMP
54struct task_struct *last_task_used_math = NULL;
55struct task_struct *last_task_used_altivec = NULL;
56struct task_struct *last_task_used_spe = NULL;
57#endif
58
14cf11af
PM
59/*
60 * Make sure the floating-point register state in the
61 * the thread_struct is up to date for task tsk.
62 */
63void flush_fp_to_thread(struct task_struct *tsk)
64{
65 if (tsk->thread.regs) {
66 /*
67 * We need to disable preemption here because if we didn't,
68 * another process could get scheduled after the regs->msr
69 * test but before we have finished saving the FP registers
70 * to the thread_struct. That process could take over the
71 * FPU, and then when we get scheduled again we would store
72 * bogus values for the remaining FP registers.
73 */
74 preempt_disable();
75 if (tsk->thread.regs->msr & MSR_FP) {
76#ifdef CONFIG_SMP
77 /*
78 * This should only ever be called for current or
79 * for a stopped child process. Since we save away
80 * the FP register state on context switch on SMP,
81 * there is something wrong if a stopped child appears
82 * to still have its FP state in the CPU registers.
83 */
84 BUG_ON(tsk != current);
85#endif
0ee6c15e 86 giveup_fpu(tsk);
14cf11af
PM
87 }
88 preempt_enable();
89 }
90}
91
92void enable_kernel_fp(void)
93{
94 WARN_ON(preemptible());
95
96#ifdef CONFIG_SMP
97 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
98 giveup_fpu(current);
99 else
100 giveup_fpu(NULL); /* just enables FP for kernel */
101#else
102 giveup_fpu(last_task_used_math);
103#endif /* CONFIG_SMP */
104}
105EXPORT_SYMBOL(enable_kernel_fp);
106
107int dump_task_fpu(struct task_struct *tsk, elf_fpregset_t *fpregs)
108{
109 if (!tsk->thread.regs)
110 return 0;
111 flush_fp_to_thread(current);
112
113 memcpy(fpregs, &tsk->thread.fpr[0], sizeof(*fpregs));
114
115 return 1;
116}
117
118#ifdef CONFIG_ALTIVEC
119void enable_kernel_altivec(void)
120{
121 WARN_ON(preemptible());
122
123#ifdef CONFIG_SMP
124 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
125 giveup_altivec(current);
126 else
127 giveup_altivec(NULL); /* just enable AltiVec for kernel - force */
128#else
129 giveup_altivec(last_task_used_altivec);
130#endif /* CONFIG_SMP */
131}
132EXPORT_SYMBOL(enable_kernel_altivec);
133
134/*
135 * Make sure the VMX/Altivec register state in the
136 * the thread_struct is up to date for task tsk.
137 */
138void flush_altivec_to_thread(struct task_struct *tsk)
139{
140 if (tsk->thread.regs) {
141 preempt_disable();
142 if (tsk->thread.regs->msr & MSR_VEC) {
143#ifdef CONFIG_SMP
144 BUG_ON(tsk != current);
145#endif
0ee6c15e 146 giveup_altivec(tsk);
14cf11af
PM
147 }
148 preempt_enable();
149 }
150}
151
1f7d6668 152int dump_task_altivec(struct task_struct *tsk, elf_vrregset_t *vrregs)
14cf11af 153{
1f7d6668
MN
154 /* ELF_NVRREG includes the VSCR and VRSAVE which we need to save
155 * separately, see below */
156 const int nregs = ELF_NVRREG - 2;
157 elf_vrreg_t *reg;
158 u32 *dest;
159
160 if (tsk == current)
161 flush_altivec_to_thread(tsk);
162
163 reg = (elf_vrreg_t *)vrregs;
164
165 /* copy the 32 vr registers */
166 memcpy(reg, &tsk->thread.vr[0], nregs * sizeof(*reg));
167 reg += nregs;
168
169 /* copy the vscr */
170 memcpy(reg, &tsk->thread.vscr, sizeof(*reg));
171 reg++;
172
173 /* vrsave is stored in the high 32bit slot of the final 128bits */
174 memset(reg, 0, sizeof(*reg));
175 dest = (u32 *)reg;
176 *dest = tsk->thread.vrsave;
177
14cf11af
PM
178 return 1;
179}
180#endif /* CONFIG_ALTIVEC */
181
182#ifdef CONFIG_SPE
183
184void enable_kernel_spe(void)
185{
186 WARN_ON(preemptible());
187
188#ifdef CONFIG_SMP
189 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
190 giveup_spe(current);
191 else
192 giveup_spe(NULL); /* just enable SPE for kernel - force */
193#else
194 giveup_spe(last_task_used_spe);
195#endif /* __SMP __ */
196}
197EXPORT_SYMBOL(enable_kernel_spe);
198
199void flush_spe_to_thread(struct task_struct *tsk)
200{
201 if (tsk->thread.regs) {
202 preempt_disable();
203 if (tsk->thread.regs->msr & MSR_SPE) {
204#ifdef CONFIG_SMP
205 BUG_ON(tsk != current);
206#endif
0ee6c15e 207 giveup_spe(tsk);
14cf11af
PM
208 }
209 preempt_enable();
210 }
211}
212
213int dump_spe(struct pt_regs *regs, elf_vrregset_t *evrregs)
214{
215 flush_spe_to_thread(current);
216 /* We copy u32 evr[32] + u64 acc + u32 spefscr -> 35 */
217 memcpy(evrregs, &current->thread.evr[0], sizeof(u32) * 35);
218 return 1;
219}
220#endif /* CONFIG_SPE */
221
5388fb10 222#ifndef CONFIG_SMP
48abec07
PM
223/*
224 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
225 * and the current task has some state, discard it.
226 */
5388fb10 227void discard_lazy_cpu_state(void)
48abec07 228{
48abec07
PM
229 preempt_disable();
230 if (last_task_used_math == current)
231 last_task_used_math = NULL;
232#ifdef CONFIG_ALTIVEC
233 if (last_task_used_altivec == current)
234 last_task_used_altivec = NULL;
235#endif /* CONFIG_ALTIVEC */
236#ifdef CONFIG_SPE
237 if (last_task_used_spe == current)
238 last_task_used_spe = NULL;
239#endif
240 preempt_enable();
48abec07 241}
5388fb10 242#endif /* CONFIG_SMP */
48abec07 243
14cf11af
PM
244int set_dabr(unsigned long dabr)
245{
791cc501 246#ifdef CONFIG_PPC_MERGE /* XXX for now */
cab0af98
ME
247 if (ppc_md.set_dabr)
248 return ppc_md.set_dabr(dabr);
791cc501 249#endif
14cf11af 250
791cc501
BH
251 /* XXX should we have a CPU_FTR_HAS_DABR ? */
252#if defined(CONFIG_PPC64) || defined(CONFIG_6xx)
cab0af98 253 mtspr(SPRN_DABR, dabr);
791cc501 254#endif
cab0af98 255 return 0;
14cf11af
PM
256}
257
06d67d54
PM
258#ifdef CONFIG_PPC64
259DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
06d67d54 260#endif
14cf11af 261
791cc501
BH
262static DEFINE_PER_CPU(unsigned long, current_dabr);
263
14cf11af
PM
264struct task_struct *__switch_to(struct task_struct *prev,
265 struct task_struct *new)
266{
267 struct thread_struct *new_thread, *old_thread;
268 unsigned long flags;
269 struct task_struct *last;
270
271#ifdef CONFIG_SMP
272 /* avoid complexity of lazy save/restore of fpu
273 * by just saving it every time we switch out if
274 * this task used the fpu during the last quantum.
275 *
276 * If it tries to use the fpu again, it'll trap and
277 * reload its fp regs. So we don't have to do a restore
278 * every switch, just a save.
279 * -- Cort
280 */
281 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
282 giveup_fpu(prev);
283#ifdef CONFIG_ALTIVEC
284 /*
285 * If the previous thread used altivec in the last quantum
286 * (thus changing altivec regs) then save them.
287 * We used to check the VRSAVE register but not all apps
288 * set it, so we don't rely on it now (and in fact we need
289 * to save & restore VSCR even if VRSAVE == 0). -- paulus
290 *
291 * On SMP we always save/restore altivec regs just to avoid the
292 * complexity of changing processors.
293 * -- Cort
294 */
295 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
296 giveup_altivec(prev);
14cf11af
PM
297#endif /* CONFIG_ALTIVEC */
298#ifdef CONFIG_SPE
299 /*
300 * If the previous thread used spe in the last quantum
301 * (thus changing spe regs) then save them.
302 *
303 * On SMP we always save/restore spe regs just to avoid the
304 * complexity of changing processors.
305 */
306 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
307 giveup_spe(prev);
c0c0d996
PM
308#endif /* CONFIG_SPE */
309
310#else /* CONFIG_SMP */
311#ifdef CONFIG_ALTIVEC
312 /* Avoid the trap. On smp this this never happens since
313 * we don't set last_task_used_altivec -- Cort
314 */
315 if (new->thread.regs && last_task_used_altivec == new)
316 new->thread.regs->msr |= MSR_VEC;
317#endif /* CONFIG_ALTIVEC */
318#ifdef CONFIG_SPE
14cf11af
PM
319 /* Avoid the trap. On smp this this never happens since
320 * we don't set last_task_used_spe
321 */
322 if (new->thread.regs && last_task_used_spe == new)
323 new->thread.regs->msr |= MSR_SPE;
324#endif /* CONFIG_SPE */
c0c0d996 325
14cf11af
PM
326#endif /* CONFIG_SMP */
327
14cf11af
PM
328 if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr)) {
329 set_dabr(new->thread.dabr);
330 __get_cpu_var(current_dabr) = new->thread.dabr;
331 }
14cf11af
PM
332
333 new_thread = &new->thread;
334 old_thread = &current->thread;
06d67d54
PM
335
336#ifdef CONFIG_PPC64
337 /*
338 * Collect processor utilization data per process
339 */
340 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
341 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
342 long unsigned start_tb, current_tb;
343 start_tb = old_thread->start_tb;
344 cu->current_tb = current_tb = mfspr(SPRN_PURR);
345 old_thread->accum_tb += (current_tb - start_tb);
346 new_thread->start_tb = current_tb;
347 }
348#endif
349
14cf11af 350 local_irq_save(flags);
c6622f63
PM
351
352 account_system_vtime(current);
81a3843f 353 account_process_vtime(current);
c6622f63
PM
354 calculate_steal_time();
355
14cf11af
PM
356 last = _switch(old_thread, new_thread);
357
358 local_irq_restore(flags);
359
360 return last;
361}
362
06d67d54
PM
363static int instructions_to_print = 16;
364
06d67d54
PM
365static void show_instructions(struct pt_regs *regs)
366{
367 int i;
368 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
369 sizeof(int));
370
371 printk("Instruction dump:");
372
373 for (i = 0; i < instructions_to_print; i++) {
374 int instr;
375
376 if (!(i % 8))
377 printk("\n");
378
0de2d820
SW
379#if !defined(CONFIG_BOOKE)
380 /* If executing with the IMMU off, adjust pc rather
381 * than print XXXXXXXX.
382 */
383 if (!(regs->msr & MSR_IR))
384 pc = (unsigned long)phys_to_virt(pc);
385#endif
386
af308377
SR
387 /* We use __get_user here *only* to avoid an OOPS on a
388 * bad address because the pc *should* only be a
389 * kernel address.
390 */
00ae36de
AB
391 if (!__kernel_text_address(pc) ||
392 __get_user(instr, (unsigned int __user *)pc)) {
06d67d54
PM
393 printk("XXXXXXXX ");
394 } else {
395 if (regs->nip == pc)
396 printk("<%08x> ", instr);
397 else
398 printk("%08x ", instr);
399 }
400
401 pc += sizeof(int);
402 }
403
404 printk("\n");
405}
406
407static struct regbit {
408 unsigned long bit;
409 const char *name;
410} msr_bits[] = {
411 {MSR_EE, "EE"},
412 {MSR_PR, "PR"},
413 {MSR_FP, "FP"},
414 {MSR_ME, "ME"},
415 {MSR_IR, "IR"},
416 {MSR_DR, "DR"},
417 {0, NULL}
418};
419
420static void printbits(unsigned long val, struct regbit *bits)
421{
422 const char *sep = "";
423
424 printk("<");
425 for (; bits->bit; ++bits)
426 if (val & bits->bit) {
427 printk("%s%s", sep, bits->name);
428 sep = ",";
429 }
430 printk(">");
431}
432
433#ifdef CONFIG_PPC64
f6f7dde3 434#define REG "%016lx"
06d67d54
PM
435#define REGS_PER_LINE 4
436#define LAST_VOLATILE 13
437#else
f6f7dde3 438#define REG "%08lx"
06d67d54
PM
439#define REGS_PER_LINE 8
440#define LAST_VOLATILE 12
441#endif
442
14cf11af
PM
443void show_regs(struct pt_regs * regs)
444{
445 int i, trap;
446
06d67d54
PM
447 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
448 regs->nip, regs->link, regs->ctr);
449 printk("REGS: %p TRAP: %04lx %s (%s)\n",
96b644bd 450 regs, regs->trap, print_tainted(), init_utsname()->release);
06d67d54
PM
451 printk("MSR: "REG" ", regs->msr);
452 printbits(regs->msr, msr_bits);
f6f7dde3 453 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
14cf11af
PM
454 trap = TRAP(regs);
455 if (trap == 0x300 || trap == 0x600)
14170789
KG
456#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
457 printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
458#else
06d67d54 459 printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr);
14170789 460#endif
06d67d54 461 printk("TASK = %p[%d] '%s' THREAD: %p",
19c5870c 462 current, task_pid_nr(current), current->comm, task_thread_info(current));
14cf11af
PM
463
464#ifdef CONFIG_SMP
79ccd1be 465 printk(" CPU: %d", raw_smp_processor_id());
14cf11af
PM
466#endif /* CONFIG_SMP */
467
468 for (i = 0; i < 32; i++) {
06d67d54 469 if ((i % REGS_PER_LINE) == 0)
14cf11af 470 printk("\n" KERN_INFO "GPR%02d: ", i);
06d67d54
PM
471 printk(REG " ", regs->gpr[i]);
472 if (i == LAST_VOLATILE && !FULL_REGS(regs))
14cf11af
PM
473 break;
474 }
475 printk("\n");
476#ifdef CONFIG_KALLSYMS
477 /*
478 * Lookup NIP late so we have the best change of getting the
479 * above info out without failing
480 */
06d67d54 481 printk("NIP ["REG"] ", regs->nip);
14cf11af 482 print_symbol("%s\n", regs->nip);
06d67d54 483 printk("LR ["REG"] ", regs->link);
14cf11af
PM
484 print_symbol("%s\n", regs->link);
485#endif
486 show_stack(current, (unsigned long *) regs->gpr[1]);
06d67d54
PM
487 if (!user_mode(regs))
488 show_instructions(regs);
14cf11af
PM
489}
490
491void exit_thread(void)
492{
48abec07 493 discard_lazy_cpu_state();
14cf11af
PM
494}
495
496void flush_thread(void)
497{
06d67d54
PM
498#ifdef CONFIG_PPC64
499 struct thread_info *t = current_thread_info();
500
f144e7c7
MD
501 if (test_ti_thread_flag(t, TIF_ABI_PENDING)) {
502 clear_ti_thread_flag(t, TIF_ABI_PENDING);
503 if (test_ti_thread_flag(t, TIF_32BIT))
504 clear_ti_thread_flag(t, TIF_32BIT);
505 else
506 set_ti_thread_flag(t, TIF_32BIT);
507 }
06d67d54 508#endif
06d67d54 509
48abec07 510 discard_lazy_cpu_state();
14cf11af 511
14cf11af
PM
512 if (current->thread.dabr) {
513 current->thread.dabr = 0;
514 set_dabr(0);
515 }
14cf11af
PM
516}
517
518void
519release_thread(struct task_struct *t)
520{
521}
522
523/*
524 * This gets called before we allocate a new thread and copy
525 * the current task into it.
526 */
527void prepare_to_copy(struct task_struct *tsk)
528{
529 flush_fp_to_thread(current);
530 flush_altivec_to_thread(current);
531 flush_spe_to_thread(current);
532}
533
534/*
535 * Copy a thread..
536 */
06d67d54
PM
537int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
538 unsigned long unused, struct task_struct *p,
539 struct pt_regs *regs)
14cf11af
PM
540{
541 struct pt_regs *childregs, *kregs;
542 extern void ret_from_fork(void);
0cec6fd1 543 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
14cf11af
PM
544
545 CHECK_FULL_REGS(regs);
546 /* Copy registers */
547 sp -= sizeof(struct pt_regs);
548 childregs = (struct pt_regs *) sp;
549 *childregs = *regs;
550 if ((childregs->msr & MSR_PR) == 0) {
551 /* for kernel thread, set `current' and stackptr in new task */
552 childregs->gpr[1] = sp + sizeof(struct pt_regs);
06d67d54 553#ifdef CONFIG_PPC32
14cf11af 554 childregs->gpr[2] = (unsigned long) p;
06d67d54 555#else
b5e2fc1c 556 clear_tsk_thread_flag(p, TIF_32BIT);
06d67d54 557#endif
14cf11af
PM
558 p->thread.regs = NULL; /* no user register state */
559 } else {
560 childregs->gpr[1] = usp;
561 p->thread.regs = childregs;
06d67d54
PM
562 if (clone_flags & CLONE_SETTLS) {
563#ifdef CONFIG_PPC64
564 if (!test_thread_flag(TIF_32BIT))
565 childregs->gpr[13] = childregs->gpr[6];
566 else
567#endif
568 childregs->gpr[2] = childregs->gpr[6];
569 }
14cf11af
PM
570 }
571 childregs->gpr[3] = 0; /* Result from fork() */
572 sp -= STACK_FRAME_OVERHEAD;
14cf11af
PM
573
574 /*
575 * The way this works is that at some point in the future
576 * some task will call _switch to switch to the new task.
577 * That will pop off the stack frame created below and start
578 * the new task running at ret_from_fork. The new task will
579 * do some house keeping and then return from the fork or clone
580 * system call, using the stack frame created above.
581 */
582 sp -= sizeof(struct pt_regs);
583 kregs = (struct pt_regs *) sp;
584 sp -= STACK_FRAME_OVERHEAD;
585 p->thread.ksp = sp;
14cf11af 586
06d67d54
PM
587#ifdef CONFIG_PPC64
588 if (cpu_has_feature(CPU_FTR_SLB)) {
1189be65 589 unsigned long sp_vsid;
3c726f8d 590 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
06d67d54 591
1189be65
PM
592 if (cpu_has_feature(CPU_FTR_1T_SEGMENT))
593 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
594 << SLB_VSID_SHIFT_1T;
595 else
596 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
597 << SLB_VSID_SHIFT;
3c726f8d 598 sp_vsid |= SLB_VSID_KERNEL | llp;
06d67d54
PM
599 p->thread.ksp_vsid = sp_vsid;
600 }
601
602 /*
603 * The PPC64 ABI makes use of a TOC to contain function
604 * pointers. The function (ret_from_except) is actually a pointer
605 * to the TOC entry. The first entry is a pointer to the actual
606 * function.
607 */
608 kregs->nip = *((unsigned long *)ret_from_fork);
609#else
610 kregs->nip = (unsigned long)ret_from_fork;
06d67d54 611#endif
14cf11af
PM
612
613 return 0;
614}
615
616/*
617 * Set up a thread for executing a new program
618 */
06d67d54 619void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
14cf11af 620{
90eac727
ME
621#ifdef CONFIG_PPC64
622 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
623#endif
624
14cf11af 625 set_fs(USER_DS);
06d67d54
PM
626
627 /*
628 * If we exec out of a kernel thread then thread.regs will not be
629 * set. Do it now.
630 */
631 if (!current->thread.regs) {
0cec6fd1
AV
632 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
633 current->thread.regs = regs - 1;
06d67d54
PM
634 }
635
14cf11af
PM
636 memset(regs->gpr, 0, sizeof(regs->gpr));
637 regs->ctr = 0;
638 regs->link = 0;
639 regs->xer = 0;
640 regs->ccr = 0;
14cf11af 641 regs->gpr[1] = sp;
06d67d54 642
474f8196
RM
643 /*
644 * We have just cleared all the nonvolatile GPRs, so make
645 * FULL_REGS(regs) return true. This is necessary to allow
646 * ptrace to examine the thread immediately after exec.
647 */
648 regs->trap &= ~1UL;
649
06d67d54
PM
650#ifdef CONFIG_PPC32
651 regs->mq = 0;
652 regs->nip = start;
14cf11af 653 regs->msr = MSR_USER;
06d67d54 654#else
d4bf9a78 655 if (!test_thread_flag(TIF_32BIT)) {
90eac727 656 unsigned long entry, toc;
06d67d54
PM
657
658 /* start is a relocated pointer to the function descriptor for
659 * the elf _start routine. The first entry in the function
660 * descriptor is the entry address of _start and the second
661 * entry is the TOC value we need to use.
662 */
663 __get_user(entry, (unsigned long __user *)start);
664 __get_user(toc, (unsigned long __user *)start+1);
665
666 /* Check whether the e_entry function descriptor entries
667 * need to be relocated before we can use them.
668 */
669 if (load_addr != 0) {
670 entry += load_addr;
671 toc += load_addr;
672 }
673 regs->nip = entry;
674 regs->gpr[2] = toc;
675 regs->msr = MSR_USER64;
d4bf9a78
SR
676 } else {
677 regs->nip = start;
678 regs->gpr[2] = 0;
679 regs->msr = MSR_USER32;
06d67d54
PM
680 }
681#endif
682
48abec07 683 discard_lazy_cpu_state();
14cf11af 684 memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
25c8a78b 685 current->thread.fpscr.val = 0;
14cf11af
PM
686#ifdef CONFIG_ALTIVEC
687 memset(current->thread.vr, 0, sizeof(current->thread.vr));
688 memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
06d67d54 689 current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
14cf11af
PM
690 current->thread.vrsave = 0;
691 current->thread.used_vr = 0;
692#endif /* CONFIG_ALTIVEC */
693#ifdef CONFIG_SPE
694 memset(current->thread.evr, 0, sizeof(current->thread.evr));
695 current->thread.acc = 0;
696 current->thread.spefscr = 0;
697 current->thread.used_spe = 0;
698#endif /* CONFIG_SPE */
699}
700
701#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
702 | PR_FP_EXC_RES | PR_FP_EXC_INV)
703
704int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
705{
706 struct pt_regs *regs = tsk->thread.regs;
707
708 /* This is a bit hairy. If we are an SPE enabled processor
709 * (have embedded fp) we store the IEEE exception enable flags in
710 * fpexc_mode. fpexc_mode is also used for setting FP exception
711 * mode (asyn, precise, disabled) for 'Classic' FP. */
712 if (val & PR_FP_EXC_SW_ENABLE) {
713#ifdef CONFIG_SPE
5e14d21e
KG
714 if (cpu_has_feature(CPU_FTR_SPE)) {
715 tsk->thread.fpexc_mode = val &
716 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
717 return 0;
718 } else {
719 return -EINVAL;
720 }
14cf11af
PM
721#else
722 return -EINVAL;
723#endif
14cf11af 724 }
06d67d54
PM
725
726 /* on a CONFIG_SPE this does not hurt us. The bits that
727 * __pack_fe01 use do not overlap with bits used for
728 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
729 * on CONFIG_SPE implementations are reserved so writing to
730 * them does not change anything */
731 if (val > PR_FP_EXC_PRECISE)
732 return -EINVAL;
733 tsk->thread.fpexc_mode = __pack_fe01(val);
734 if (regs != NULL && (regs->msr & MSR_FP) != 0)
735 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
736 | tsk->thread.fpexc_mode;
14cf11af
PM
737 return 0;
738}
739
740int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
741{
742 unsigned int val;
743
744 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
745#ifdef CONFIG_SPE
5e14d21e
KG
746 if (cpu_has_feature(CPU_FTR_SPE))
747 val = tsk->thread.fpexc_mode;
748 else
749 return -EINVAL;
14cf11af
PM
750#else
751 return -EINVAL;
752#endif
753 else
754 val = __unpack_fe01(tsk->thread.fpexc_mode);
755 return put_user(val, (unsigned int __user *) adr);
756}
757
fab5db97
PM
758int set_endian(struct task_struct *tsk, unsigned int val)
759{
760 struct pt_regs *regs = tsk->thread.regs;
761
762 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
763 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
764 return -EINVAL;
765
766 if (regs == NULL)
767 return -EINVAL;
768
769 if (val == PR_ENDIAN_BIG)
770 regs->msr &= ~MSR_LE;
771 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
772 regs->msr |= MSR_LE;
773 else
774 return -EINVAL;
775
776 return 0;
777}
778
779int get_endian(struct task_struct *tsk, unsigned long adr)
780{
781 struct pt_regs *regs = tsk->thread.regs;
782 unsigned int val;
783
784 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
785 !cpu_has_feature(CPU_FTR_REAL_LE))
786 return -EINVAL;
787
788 if (regs == NULL)
789 return -EINVAL;
790
791 if (regs->msr & MSR_LE) {
792 if (cpu_has_feature(CPU_FTR_REAL_LE))
793 val = PR_ENDIAN_LITTLE;
794 else
795 val = PR_ENDIAN_PPC_LITTLE;
796 } else
797 val = PR_ENDIAN_BIG;
798
799 return put_user(val, (unsigned int __user *)adr);
800}
801
e9370ae1
PM
802int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
803{
804 tsk->thread.align_ctl = val;
805 return 0;
806}
807
808int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
809{
810 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
811}
812
06d67d54
PM
813#define TRUNC_PTR(x) ((typeof(x))(((unsigned long)(x)) & 0xffffffff))
814
14cf11af
PM
815int sys_clone(unsigned long clone_flags, unsigned long usp,
816 int __user *parent_tidp, void __user *child_threadptr,
817 int __user *child_tidp, int p6,
818 struct pt_regs *regs)
819{
820 CHECK_FULL_REGS(regs);
821 if (usp == 0)
822 usp = regs->gpr[1]; /* stack pointer for child */
06d67d54
PM
823#ifdef CONFIG_PPC64
824 if (test_thread_flag(TIF_32BIT)) {
825 parent_tidp = TRUNC_PTR(parent_tidp);
826 child_tidp = TRUNC_PTR(child_tidp);
827 }
828#endif
14cf11af
PM
829 return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
830}
831
832int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
833 unsigned long p4, unsigned long p5, unsigned long p6,
834 struct pt_regs *regs)
835{
836 CHECK_FULL_REGS(regs);
837 return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
838}
839
840int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
841 unsigned long p4, unsigned long p5, unsigned long p6,
842 struct pt_regs *regs)
843{
844 CHECK_FULL_REGS(regs);
845 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
846 regs, 0, NULL, NULL);
847}
848
849int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
850 unsigned long a3, unsigned long a4, unsigned long a5,
851 struct pt_regs *regs)
852{
853 int error;
06d67d54 854 char *filename;
14cf11af
PM
855
856 filename = getname((char __user *) a0);
857 error = PTR_ERR(filename);
858 if (IS_ERR(filename))
859 goto out;
860 flush_fp_to_thread(current);
861 flush_altivec_to_thread(current);
862 flush_spe_to_thread(current);
20c8c210
PM
863 error = do_execve(filename, (char __user * __user *) a1,
864 (char __user * __user *) a2, regs);
14cf11af
PM
865 if (error == 0) {
866 task_lock(current);
867 current->ptrace &= ~PT_DTRACE;
868 task_unlock(current);
869 }
870 putname(filename);
871out:
872 return error;
873}
874
bb72c481
PM
875#ifdef CONFIG_IRQSTACKS
876static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
877 unsigned long nbytes)
878{
879 unsigned long stack_page;
880 unsigned long cpu = task_cpu(p);
881
882 /*
883 * Avoid crashing if the stack has overflowed and corrupted
884 * task_cpu(p), which is in the thread_info struct.
885 */
886 if (cpu < NR_CPUS && cpu_possible(cpu)) {
887 stack_page = (unsigned long) hardirq_ctx[cpu];
888 if (sp >= stack_page + sizeof(struct thread_struct)
889 && sp <= stack_page + THREAD_SIZE - nbytes)
890 return 1;
891
892 stack_page = (unsigned long) softirq_ctx[cpu];
893 if (sp >= stack_page + sizeof(struct thread_struct)
894 && sp <= stack_page + THREAD_SIZE - nbytes)
895 return 1;
896 }
897 return 0;
898}
899
900#else
901#define valid_irq_stack(sp, p, nb) 0
902#endif /* CONFIG_IRQSTACKS */
903
2f25194d 904int validate_sp(unsigned long sp, struct task_struct *p,
14cf11af
PM
905 unsigned long nbytes)
906{
0cec6fd1 907 unsigned long stack_page = (unsigned long)task_stack_page(p);
14cf11af
PM
908
909 if (sp >= stack_page + sizeof(struct thread_struct)
910 && sp <= stack_page + THREAD_SIZE - nbytes)
911 return 1;
912
bb72c481 913 return valid_irq_stack(sp, p, nbytes);
14cf11af
PM
914}
915
06d67d54
PM
916#ifdef CONFIG_PPC64
917#define MIN_STACK_FRAME 112 /* same as STACK_FRAME_OVERHEAD, in fact */
918#define FRAME_LR_SAVE 2
919#define INT_FRAME_SIZE (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD + 288)
920#define REGS_MARKER 0x7265677368657265ul
921#define FRAME_MARKER 12
922#else
923#define MIN_STACK_FRAME 16
924#define FRAME_LR_SAVE 1
925#define INT_FRAME_SIZE (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD)
926#define REGS_MARKER 0x72656773ul
927#define FRAME_MARKER 2
14cf11af 928#endif
14cf11af 929
2f25194d
AB
930EXPORT_SYMBOL(validate_sp);
931
14cf11af
PM
932unsigned long get_wchan(struct task_struct *p)
933{
934 unsigned long ip, sp;
935 int count = 0;
936
937 if (!p || p == current || p->state == TASK_RUNNING)
938 return 0;
939
940 sp = p->thread.ksp;
06d67d54 941 if (!validate_sp(sp, p, MIN_STACK_FRAME))
14cf11af
PM
942 return 0;
943
944 do {
945 sp = *(unsigned long *)sp;
06d67d54 946 if (!validate_sp(sp, p, MIN_STACK_FRAME))
14cf11af
PM
947 return 0;
948 if (count > 0) {
06d67d54 949 ip = ((unsigned long *)sp)[FRAME_LR_SAVE];
14cf11af
PM
950 if (!in_sched_functions(ip))
951 return ip;
952 }
953 } while (count++ < 16);
954 return 0;
955}
06d67d54
PM
956
957static int kstack_depth_to_print = 64;
958
959void show_stack(struct task_struct *tsk, unsigned long *stack)
960{
961 unsigned long sp, ip, lr, newsp;
962 int count = 0;
963 int firstframe = 1;
964
965 sp = (unsigned long) stack;
966 if (tsk == NULL)
967 tsk = current;
968 if (sp == 0) {
969 if (tsk == current)
970 asm("mr %0,1" : "=r" (sp));
971 else
972 sp = tsk->thread.ksp;
973 }
974
975 lr = 0;
976 printk("Call Trace:\n");
977 do {
978 if (!validate_sp(sp, tsk, MIN_STACK_FRAME))
979 return;
980
981 stack = (unsigned long *) sp;
982 newsp = stack[0];
983 ip = stack[FRAME_LR_SAVE];
984 if (!firstframe || ip != lr) {
985 printk("["REG"] ["REG"] ", sp, ip);
986 print_symbol("%s", ip);
987 if (firstframe)
988 printk(" (unreliable)");
989 printk("\n");
990 }
991 firstframe = 0;
992
993 /*
994 * See if this is an exception frame.
995 * We look for the "regshere" marker in the current frame.
996 */
997 if (validate_sp(sp, tsk, INT_FRAME_SIZE)
998 && stack[FRAME_MARKER] == REGS_MARKER) {
999 struct pt_regs *regs = (struct pt_regs *)
1000 (sp + STACK_FRAME_OVERHEAD);
1001 printk("--- Exception: %lx", regs->trap);
1002 print_symbol(" at %s\n", regs->nip);
1003 lr = regs->link;
1004 print_symbol(" LR = %s\n", lr);
1005 firstframe = 1;
1006 }
1007
1008 sp = newsp;
1009 } while (count++ < kstack_depth_to_print);
1010}
1011
1012void dump_stack(void)
1013{
1014 show_stack(current, NULL);
1015}
1016EXPORT_SYMBOL(dump_stack);
cb2c9b27
AB
1017
1018#ifdef CONFIG_PPC64
1019void ppc64_runlatch_on(void)
1020{
1021 unsigned long ctrl;
1022
1023 if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) {
1024 HMT_medium();
1025
1026 ctrl = mfspr(SPRN_CTRLF);
1027 ctrl |= CTRL_RUNLATCH;
1028 mtspr(SPRN_CTRLT, ctrl);
1029
1030 set_thread_flag(TIF_RUNLATCH);
1031 }
1032}
1033
1034void ppc64_runlatch_off(void)
1035{
1036 unsigned long ctrl;
1037
1038 if (cpu_has_feature(CPU_FTR_CTRL) && test_thread_flag(TIF_RUNLATCH)) {
1039 HMT_medium();
1040
1041 clear_thread_flag(TIF_RUNLATCH);
1042
1043 ctrl = mfspr(SPRN_CTRLF);
1044 ctrl &= ~CTRL_RUNLATCH;
1045 mtspr(SPRN_CTRLT, ctrl);
1046 }
1047}
1048#endif