powerpc: Routines for FP/VSX/VMX unavailable during a transaction
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / powerpc / kernel / process.c
CommitLineData
14cf11af 1/*
14cf11af
PM
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
14cf11af
PM
17#include <linux/errno.h>
18#include <linux/sched.h>
19#include <linux/kernel.h>
20#include <linux/mm.h>
21#include <linux/smp.h>
14cf11af
PM
22#include <linux/stddef.h>
23#include <linux/unistd.h>
24#include <linux/ptrace.h>
25#include <linux/slab.h>
26#include <linux/user.h>
27#include <linux/elf.h>
28#include <linux/init.h>
29#include <linux/prctl.h>
30#include <linux/init_task.h>
4b16f8e2 31#include <linux/export.h>
14cf11af
PM
32#include <linux/kallsyms.h>
33#include <linux/mqueue.h>
34#include <linux/hardirq.h>
06d67d54 35#include <linux/utsname.h>
6794c782 36#include <linux/ftrace.h>
79741dd3 37#include <linux/kernel_stat.h>
d839088c
AB
38#include <linux/personality.h>
39#include <linux/random.h>
5aae8a53 40#include <linux/hw_breakpoint.h>
14cf11af
PM
41
42#include <asm/pgtable.h>
43#include <asm/uaccess.h>
14cf11af
PM
44#include <asm/io.h>
45#include <asm/processor.h>
46#include <asm/mmu.h>
47#include <asm/prom.h>
76032de8 48#include <asm/machdep.h>
c6622f63 49#include <asm/time.h>
ae3a197e 50#include <asm/runlatch.h>
a7f31841 51#include <asm/syscalls.h>
ae3a197e 52#include <asm/switch_to.h>
fb09692e 53#include <asm/tm.h>
ae3a197e 54#include <asm/debug.h>
06d67d54
PM
55#ifdef CONFIG_PPC64
56#include <asm/firmware.h>
06d67d54 57#endif
d6a61bfc
LM
58#include <linux/kprobes.h>
59#include <linux/kdebug.h>
14cf11af 60
8b3c34cf
MN
61/* Transactional Memory debug */
62#ifdef TM_DEBUG_SW
63#define TM_DEBUG(x...) printk(KERN_INFO x)
64#else
65#define TM_DEBUG(x...) do { } while(0)
66#endif
67
14cf11af
PM
68extern unsigned long _get_SP(void);
69
70#ifndef CONFIG_SMP
71struct task_struct *last_task_used_math = NULL;
72struct task_struct *last_task_used_altivec = NULL;
ce48b210 73struct task_struct *last_task_used_vsx = NULL;
14cf11af
PM
74struct task_struct *last_task_used_spe = NULL;
75#endif
76
14cf11af
PM
77/*
78 * Make sure the floating-point register state in the
79 * the thread_struct is up to date for task tsk.
80 */
81void flush_fp_to_thread(struct task_struct *tsk)
82{
83 if (tsk->thread.regs) {
84 /*
85 * We need to disable preemption here because if we didn't,
86 * another process could get scheduled after the regs->msr
87 * test but before we have finished saving the FP registers
88 * to the thread_struct. That process could take over the
89 * FPU, and then when we get scheduled again we would store
90 * bogus values for the remaining FP registers.
91 */
92 preempt_disable();
93 if (tsk->thread.regs->msr & MSR_FP) {
94#ifdef CONFIG_SMP
95 /*
96 * This should only ever be called for current or
97 * for a stopped child process. Since we save away
98 * the FP register state on context switch on SMP,
99 * there is something wrong if a stopped child appears
100 * to still have its FP state in the CPU registers.
101 */
102 BUG_ON(tsk != current);
103#endif
0ee6c15e 104 giveup_fpu(tsk);
14cf11af
PM
105 }
106 preempt_enable();
107 }
108}
de56a948 109EXPORT_SYMBOL_GPL(flush_fp_to_thread);
14cf11af
PM
110
111void enable_kernel_fp(void)
112{
113 WARN_ON(preemptible());
114
115#ifdef CONFIG_SMP
116 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
117 giveup_fpu(current);
118 else
119 giveup_fpu(NULL); /* just enables FP for kernel */
120#else
121 giveup_fpu(last_task_used_math);
122#endif /* CONFIG_SMP */
123}
124EXPORT_SYMBOL(enable_kernel_fp);
125
14cf11af
PM
126#ifdef CONFIG_ALTIVEC
127void enable_kernel_altivec(void)
128{
129 WARN_ON(preemptible());
130
131#ifdef CONFIG_SMP
132 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
133 giveup_altivec(current);
134 else
35000870 135 giveup_altivec_notask();
14cf11af
PM
136#else
137 giveup_altivec(last_task_used_altivec);
138#endif /* CONFIG_SMP */
139}
140EXPORT_SYMBOL(enable_kernel_altivec);
141
142/*
143 * Make sure the VMX/Altivec register state in the
144 * the thread_struct is up to date for task tsk.
145 */
146void flush_altivec_to_thread(struct task_struct *tsk)
147{
148 if (tsk->thread.regs) {
149 preempt_disable();
150 if (tsk->thread.regs->msr & MSR_VEC) {
151#ifdef CONFIG_SMP
152 BUG_ON(tsk != current);
153#endif
0ee6c15e 154 giveup_altivec(tsk);
14cf11af
PM
155 }
156 preempt_enable();
157 }
158}
de56a948 159EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
14cf11af
PM
160#endif /* CONFIG_ALTIVEC */
161
ce48b210
MN
162#ifdef CONFIG_VSX
163#if 0
164/* not currently used, but some crazy RAID module might want to later */
165void enable_kernel_vsx(void)
166{
167 WARN_ON(preemptible());
168
169#ifdef CONFIG_SMP
170 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
171 giveup_vsx(current);
172 else
173 giveup_vsx(NULL); /* just enable vsx for kernel - force */
174#else
175 giveup_vsx(last_task_used_vsx);
176#endif /* CONFIG_SMP */
177}
178EXPORT_SYMBOL(enable_kernel_vsx);
179#endif
180
7c292170
MN
181void giveup_vsx(struct task_struct *tsk)
182{
183 giveup_fpu(tsk);
184 giveup_altivec(tsk);
185 __giveup_vsx(tsk);
186}
187
ce48b210
MN
188void flush_vsx_to_thread(struct task_struct *tsk)
189{
190 if (tsk->thread.regs) {
191 preempt_disable();
192 if (tsk->thread.regs->msr & MSR_VSX) {
193#ifdef CONFIG_SMP
194 BUG_ON(tsk != current);
195#endif
196 giveup_vsx(tsk);
197 }
198 preempt_enable();
199 }
200}
de56a948 201EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
ce48b210
MN
202#endif /* CONFIG_VSX */
203
14cf11af
PM
204#ifdef CONFIG_SPE
205
206void enable_kernel_spe(void)
207{
208 WARN_ON(preemptible());
209
210#ifdef CONFIG_SMP
211 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
212 giveup_spe(current);
213 else
214 giveup_spe(NULL); /* just enable SPE for kernel - force */
215#else
216 giveup_spe(last_task_used_spe);
217#endif /* __SMP __ */
218}
219EXPORT_SYMBOL(enable_kernel_spe);
220
221void flush_spe_to_thread(struct task_struct *tsk)
222{
223 if (tsk->thread.regs) {
224 preempt_disable();
225 if (tsk->thread.regs->msr & MSR_SPE) {
226#ifdef CONFIG_SMP
227 BUG_ON(tsk != current);
228#endif
685659ee 229 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
0ee6c15e 230 giveup_spe(tsk);
14cf11af
PM
231 }
232 preempt_enable();
233 }
234}
14cf11af
PM
235#endif /* CONFIG_SPE */
236
5388fb10 237#ifndef CONFIG_SMP
48abec07
PM
238/*
239 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
240 * and the current task has some state, discard it.
241 */
5388fb10 242void discard_lazy_cpu_state(void)
48abec07 243{
48abec07
PM
244 preempt_disable();
245 if (last_task_used_math == current)
246 last_task_used_math = NULL;
247#ifdef CONFIG_ALTIVEC
248 if (last_task_used_altivec == current)
249 last_task_used_altivec = NULL;
250#endif /* CONFIG_ALTIVEC */
ce48b210
MN
251#ifdef CONFIG_VSX
252 if (last_task_used_vsx == current)
253 last_task_used_vsx = NULL;
254#endif /* CONFIG_VSX */
48abec07
PM
255#ifdef CONFIG_SPE
256 if (last_task_used_spe == current)
257 last_task_used_spe = NULL;
258#endif
259 preempt_enable();
48abec07 260}
5388fb10 261#endif /* CONFIG_SMP */
48abec07 262
3bffb652
DK
263#ifdef CONFIG_PPC_ADV_DEBUG_REGS
264void do_send_trap(struct pt_regs *regs, unsigned long address,
265 unsigned long error_code, int signal_code, int breakpt)
266{
267 siginfo_t info;
268
41ab5266 269 current->thread.trap_nr = signal_code;
3bffb652
DK
270 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
271 11, SIGSEGV) == NOTIFY_STOP)
272 return;
273
274 /* Deliver the signal to userspace */
275 info.si_signo = SIGTRAP;
276 info.si_errno = breakpt; /* breakpoint or watchpoint id */
277 info.si_code = signal_code;
278 info.si_addr = (void __user *)address;
279 force_sig_info(SIGTRAP, &info, current);
280}
281#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
9422de3e 282void do_break (struct pt_regs *regs, unsigned long address,
d6a61bfc
LM
283 unsigned long error_code)
284{
285 siginfo_t info;
286
41ab5266 287 current->thread.trap_nr = TRAP_HWBKPT;
d6a61bfc
LM
288 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
289 11, SIGSEGV) == NOTIFY_STOP)
290 return;
291
9422de3e 292 if (debugger_break_match(regs))
d6a61bfc
LM
293 return;
294
9422de3e
MN
295 /* Clear the breakpoint */
296 hw_breakpoint_disable();
d6a61bfc
LM
297
298 /* Deliver the signal to userspace */
299 info.si_signo = SIGTRAP;
300 info.si_errno = 0;
301 info.si_code = TRAP_HWBKPT;
302 info.si_addr = (void __user *)address;
303 force_sig_info(SIGTRAP, &info, current);
304}
3bffb652 305#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
d6a61bfc 306
9422de3e 307static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
a2ceff5e 308
3bffb652
DK
309#ifdef CONFIG_PPC_ADV_DEBUG_REGS
310/*
311 * Set the debug registers back to their default "safe" values.
312 */
313static void set_debug_reg_defaults(struct thread_struct *thread)
314{
315 thread->iac1 = thread->iac2 = 0;
316#if CONFIG_PPC_ADV_DEBUG_IACS > 2
317 thread->iac3 = thread->iac4 = 0;
318#endif
319 thread->dac1 = thread->dac2 = 0;
320#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
321 thread->dvc1 = thread->dvc2 = 0;
322#endif
323 thread->dbcr0 = 0;
324#ifdef CONFIG_BOOKE
325 /*
326 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
327 */
328 thread->dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | \
329 DBCR1_IAC3US | DBCR1_IAC4US;
330 /*
331 * Force Data Address Compare User/Supervisor bits to be User-only
332 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
333 */
334 thread->dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
335#else
336 thread->dbcr1 = 0;
337#endif
338}
339
340static void prime_debug_regs(struct thread_struct *thread)
341{
342 mtspr(SPRN_IAC1, thread->iac1);
343 mtspr(SPRN_IAC2, thread->iac2);
344#if CONFIG_PPC_ADV_DEBUG_IACS > 2
345 mtspr(SPRN_IAC3, thread->iac3);
346 mtspr(SPRN_IAC4, thread->iac4);
347#endif
348 mtspr(SPRN_DAC1, thread->dac1);
349 mtspr(SPRN_DAC2, thread->dac2);
350#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
351 mtspr(SPRN_DVC1, thread->dvc1);
352 mtspr(SPRN_DVC2, thread->dvc2);
353#endif
354 mtspr(SPRN_DBCR0, thread->dbcr0);
355 mtspr(SPRN_DBCR1, thread->dbcr1);
356#ifdef CONFIG_BOOKE
357 mtspr(SPRN_DBCR2, thread->dbcr2);
358#endif
359}
360/*
361 * Unless neither the old or new thread are making use of the
362 * debug registers, set the debug registers from the values
363 * stored in the new thread.
364 */
365static void switch_booke_debug_regs(struct thread_struct *new_thread)
366{
367 if ((current->thread.dbcr0 & DBCR0_IDM)
368 || (new_thread->dbcr0 & DBCR0_IDM))
369 prime_debug_regs(new_thread);
370}
371#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
e0780b72 372#ifndef CONFIG_HAVE_HW_BREAKPOINT
3bffb652
DK
373static void set_debug_reg_defaults(struct thread_struct *thread)
374{
9422de3e
MN
375 thread->hw_brk.address = 0;
376 thread->hw_brk.type = 0;
b9818c33 377 set_breakpoint(&thread->hw_brk);
3bffb652 378}
e0780b72 379#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
3bffb652
DK
380#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
381
172ae2e7 382#ifdef CONFIG_PPC_ADV_DEBUG_REGS
9422de3e
MN
383static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
384{
d6a61bfc 385 mtspr(SPRN_DAC1, dabr);
221c185d
DK
386#ifdef CONFIG_PPC_47x
387 isync();
388#endif
9422de3e
MN
389 return 0;
390}
c6c9eace 391#elif defined(CONFIG_PPC_BOOK3S)
9422de3e
MN
392static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
393{
c6c9eace 394 mtspr(SPRN_DABR, dabr);
4474ef05 395 mtspr(SPRN_DABRX, dabrx);
cab0af98 396 return 0;
14cf11af 397}
9422de3e
MN
398#else
399static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
400{
401 return -EINVAL;
402}
403#endif
404
405static inline int set_dabr(struct arch_hw_breakpoint *brk)
406{
407 unsigned long dabr, dabrx;
408
409 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
410 dabrx = ((brk->type >> 3) & 0x7);
411
412 if (ppc_md.set_dabr)
413 return ppc_md.set_dabr(dabr, dabrx);
414
415 return __set_dabr(dabr, dabrx);
416}
417
bf99de36
MN
418static inline int set_dawr(struct arch_hw_breakpoint *brk)
419{
05d694ea 420 unsigned long dawr, dawrx, mrd;
bf99de36
MN
421
422 dawr = brk->address;
423
424 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
425 << (63 - 58); //* read/write bits */
426 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
427 << (63 - 59); //* translate */
428 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
429 >> 3; //* PRIM bits */
05d694ea
MN
430 /* dawr length is stored in field MDR bits 48:53. Matches range in
431 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
432 0b111111=64DW.
433 brk->len is in bytes.
434 This aligns up to double word size, shifts and does the bias.
435 */
436 mrd = ((brk->len + 7) >> 3) - 1;
437 dawrx |= (mrd & 0x3f) << (63 - 53);
bf99de36
MN
438
439 if (ppc_md.set_dawr)
440 return ppc_md.set_dawr(dawr, dawrx);
441 mtspr(SPRN_DAWR, dawr);
442 mtspr(SPRN_DAWRX, dawrx);
443 return 0;
444}
445
b9818c33 446int set_breakpoint(struct arch_hw_breakpoint *brk)
9422de3e
MN
447{
448 __get_cpu_var(current_brk) = *brk;
449
bf99de36
MN
450 if (cpu_has_feature(CPU_FTR_DAWR))
451 return set_dawr(brk);
452
9422de3e
MN
453 return set_dabr(brk);
454}
14cf11af 455
06d67d54
PM
456#ifdef CONFIG_PPC64
457DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
06d67d54 458#endif
14cf11af 459
9422de3e
MN
460static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
461 struct arch_hw_breakpoint *b)
462{
463 if (a->address != b->address)
464 return false;
465 if (a->type != b->type)
466 return false;
467 if (a->len != b->len)
468 return false;
469 return true;
470}
fb09692e
MN
471#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
472static inline void tm_reclaim_task(struct task_struct *tsk)
473{
474 /* We have to work out if we're switching from/to a task that's in the
475 * middle of a transaction.
476 *
477 * In switching we need to maintain a 2nd register state as
478 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
479 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
480 * (current) FPRs into oldtask->thread.transact_fpr[].
481 *
482 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
483 */
484 struct thread_struct *thr = &tsk->thread;
485
486 if (!thr->regs)
487 return;
488
489 if (!MSR_TM_ACTIVE(thr->regs->msr))
490 goto out_and_saveregs;
491
492 /* Stash the original thread MSR, as giveup_fpu et al will
493 * modify it. We hold onto it to see whether the task used
494 * FP & vector regs.
495 */
496 thr->tm_orig_msr = thr->regs->msr;
497
498 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
499 "ccr=%lx, msr=%lx, trap=%lx)\n",
500 tsk->pid, thr->regs->nip,
501 thr->regs->ccr, thr->regs->msr,
502 thr->regs->trap);
503
504 tm_reclaim(thr, thr->regs->msr, TM_CAUSE_RESCHED);
505
506 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
507 tsk->pid);
508
509out_and_saveregs:
510 /* Always save the regs here, even if a transaction's not active.
511 * This context-switches a thread's TM info SPRs. We do it here to
512 * be consistent with the restore path (in recheckpoint) which
513 * cannot happen later in _switch().
514 */
515 tm_save_sprs(thr);
516}
517
518static inline void __maybe_unused tm_recheckpoint_new_task(struct task_struct *new)
519{
520 unsigned long msr;
521
522 if (!cpu_has_feature(CPU_FTR_TM))
523 return;
524
525 /* Recheckpoint the registers of the thread we're about to switch to.
526 *
527 * If the task was using FP, we non-lazily reload both the original and
528 * the speculative FP register states. This is because the kernel
529 * doesn't see if/when a TM rollback occurs, so if we take an FP
530 * unavoidable later, we are unable to determine which set of FP regs
531 * need to be restored.
532 */
533 if (!new->thread.regs)
534 return;
535
536 /* The TM SPRs are restored here, so that TEXASR.FS can be set
537 * before the trecheckpoint and no explosion occurs.
538 */
539 tm_restore_sprs(&new->thread);
540
541 if (!MSR_TM_ACTIVE(new->thread.regs->msr))
542 return;
543 msr = new->thread.tm_orig_msr;
544 /* Recheckpoint to restore original checkpointed register state. */
545 TM_DEBUG("*** tm_recheckpoint of pid %d "
546 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
547 new->pid, new->thread.regs->msr, msr);
548
549 /* This loads the checkpointed FP/VEC state, if used */
550 tm_recheckpoint(&new->thread, msr);
551
552 /* This loads the speculative FP/VEC state, if used */
553 if (msr & MSR_FP) {
554 do_load_up_transact_fpu(&new->thread);
555 new->thread.regs->msr |=
556 (MSR_FP | new->thread.fpexc_mode);
557 }
558 if (msr & MSR_VEC) {
559 do_load_up_transact_altivec(&new->thread);
560 new->thread.regs->msr |= MSR_VEC;
561 }
562 /* We may as well turn on VSX too since all the state is restored now */
563 if (msr & MSR_VSX)
564 new->thread.regs->msr |= MSR_VSX;
565
566 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
567 "(kernel msr 0x%lx)\n",
568 new->pid, mfmsr());
569}
570
571static inline void __switch_to_tm(struct task_struct *prev)
572{
573 if (cpu_has_feature(CPU_FTR_TM)) {
574 tm_enable();
575 tm_reclaim_task(prev);
576 }
577}
578#else
579#define tm_recheckpoint_new_task(new)
580#define __switch_to_tm(prev)
581#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
9422de3e 582
14cf11af
PM
583struct task_struct *__switch_to(struct task_struct *prev,
584 struct task_struct *new)
585{
586 struct thread_struct *new_thread, *old_thread;
587 unsigned long flags;
588 struct task_struct *last;
d6bf29b4
PZ
589#ifdef CONFIG_PPC_BOOK3S_64
590 struct ppc64_tlb_batch *batch;
591#endif
14cf11af
PM
592
593#ifdef CONFIG_SMP
594 /* avoid complexity of lazy save/restore of fpu
595 * by just saving it every time we switch out if
596 * this task used the fpu during the last quantum.
597 *
598 * If it tries to use the fpu again, it'll trap and
599 * reload its fp regs. So we don't have to do a restore
600 * every switch, just a save.
601 * -- Cort
602 */
603 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
604 giveup_fpu(prev);
605#ifdef CONFIG_ALTIVEC
606 /*
607 * If the previous thread used altivec in the last quantum
608 * (thus changing altivec regs) then save them.
609 * We used to check the VRSAVE register but not all apps
610 * set it, so we don't rely on it now (and in fact we need
611 * to save & restore VSCR even if VRSAVE == 0). -- paulus
612 *
613 * On SMP we always save/restore altivec regs just to avoid the
614 * complexity of changing processors.
615 * -- Cort
616 */
617 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
618 giveup_altivec(prev);
14cf11af 619#endif /* CONFIG_ALTIVEC */
ce48b210
MN
620#ifdef CONFIG_VSX
621 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
7c292170
MN
622 /* VMX and FPU registers are already save here */
623 __giveup_vsx(prev);
ce48b210 624#endif /* CONFIG_VSX */
14cf11af
PM
625#ifdef CONFIG_SPE
626 /*
627 * If the previous thread used spe in the last quantum
628 * (thus changing spe regs) then save them.
629 *
630 * On SMP we always save/restore spe regs just to avoid the
631 * complexity of changing processors.
632 */
633 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
634 giveup_spe(prev);
c0c0d996
PM
635#endif /* CONFIG_SPE */
636
637#else /* CONFIG_SMP */
638#ifdef CONFIG_ALTIVEC
639 /* Avoid the trap. On smp this this never happens since
640 * we don't set last_task_used_altivec -- Cort
641 */
642 if (new->thread.regs && last_task_used_altivec == new)
643 new->thread.regs->msr |= MSR_VEC;
644#endif /* CONFIG_ALTIVEC */
ce48b210
MN
645#ifdef CONFIG_VSX
646 if (new->thread.regs && last_task_used_vsx == new)
647 new->thread.regs->msr |= MSR_VSX;
648#endif /* CONFIG_VSX */
c0c0d996 649#ifdef CONFIG_SPE
14cf11af
PM
650 /* Avoid the trap. On smp this this never happens since
651 * we don't set last_task_used_spe
652 */
653 if (new->thread.regs && last_task_used_spe == new)
654 new->thread.regs->msr |= MSR_SPE;
655#endif /* CONFIG_SPE */
c0c0d996 656
14cf11af
PM
657#endif /* CONFIG_SMP */
658
172ae2e7 659#ifdef CONFIG_PPC_ADV_DEBUG_REGS
3bffb652 660 switch_booke_debug_regs(&new->thread);
c6c9eace 661#else
5aae8a53
P
662/*
663 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
664 * schedule DABR
665 */
666#ifndef CONFIG_HAVE_HW_BREAKPOINT
9422de3e 667 if (unlikely(hw_brk_match(&__get_cpu_var(current_brk), &new->thread.hw_brk)))
b9818c33 668 set_breakpoint(&new->thread.hw_brk);
5aae8a53 669#endif /* CONFIG_HAVE_HW_BREAKPOINT */
d6a61bfc
LM
670#endif
671
c6c9eace 672
14cf11af
PM
673 new_thread = &new->thread;
674 old_thread = &current->thread;
06d67d54
PM
675
676#ifdef CONFIG_PPC64
677 /*
678 * Collect processor utilization data per process
679 */
680 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
681 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
682 long unsigned start_tb, current_tb;
683 start_tb = old_thread->start_tb;
684 cu->current_tb = current_tb = mfspr(SPRN_PURR);
685 old_thread->accum_tb += (current_tb - start_tb);
686 new_thread->start_tb = current_tb;
687 }
d6bf29b4
PZ
688#endif /* CONFIG_PPC64 */
689
690#ifdef CONFIG_PPC_BOOK3S_64
691 batch = &__get_cpu_var(ppc64_tlb_batch);
692 if (batch->active) {
693 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
694 if (batch->index)
695 __flush_tlb_pending(batch);
696 batch->active = 0;
697 }
698#endif /* CONFIG_PPC_BOOK3S_64 */
06d67d54 699
14cf11af 700 local_irq_save(flags);
c6622f63 701
44387e9f
AB
702 /*
703 * We can't take a PMU exception inside _switch() since there is a
704 * window where the kernel stack SLB and the kernel stack are out
705 * of sync. Hard disable here.
706 */
707 hard_irq_disable();
14cf11af
PM
708 last = _switch(old_thread, new_thread);
709
d6bf29b4
PZ
710#ifdef CONFIG_PPC_BOOK3S_64
711 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
712 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
713 batch = &__get_cpu_var(ppc64_tlb_batch);
714 batch->active = 1;
715 }
716#endif /* CONFIG_PPC_BOOK3S_64 */
717
14cf11af
PM
718 local_irq_restore(flags);
719
720 return last;
721}
722
06d67d54
PM
723static int instructions_to_print = 16;
724
06d67d54
PM
725static void show_instructions(struct pt_regs *regs)
726{
727 int i;
728 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
729 sizeof(int));
730
731 printk("Instruction dump:");
732
733 for (i = 0; i < instructions_to_print; i++) {
734 int instr;
735
736 if (!(i % 8))
737 printk("\n");
738
0de2d820
SW
739#if !defined(CONFIG_BOOKE)
740 /* If executing with the IMMU off, adjust pc rather
741 * than print XXXXXXXX.
742 */
743 if (!(regs->msr & MSR_IR))
744 pc = (unsigned long)phys_to_virt(pc);
745#endif
746
af308377
SR
747 /* We use __get_user here *only* to avoid an OOPS on a
748 * bad address because the pc *should* only be a
749 * kernel address.
750 */
00ae36de
AB
751 if (!__kernel_text_address(pc) ||
752 __get_user(instr, (unsigned int __user *)pc)) {
40c8cefa 753 printk(KERN_CONT "XXXXXXXX ");
06d67d54
PM
754 } else {
755 if (regs->nip == pc)
40c8cefa 756 printk(KERN_CONT "<%08x> ", instr);
06d67d54 757 else
40c8cefa 758 printk(KERN_CONT "%08x ", instr);
06d67d54
PM
759 }
760
761 pc += sizeof(int);
762 }
763
764 printk("\n");
765}
766
767static struct regbit {
768 unsigned long bit;
769 const char *name;
770} msr_bits[] = {
3bfd0c9c
AB
771#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
772 {MSR_SF, "SF"},
773 {MSR_HV, "HV"},
774#endif
775 {MSR_VEC, "VEC"},
776 {MSR_VSX, "VSX"},
777#ifdef CONFIG_BOOKE
778 {MSR_CE, "CE"},
779#endif
06d67d54
PM
780 {MSR_EE, "EE"},
781 {MSR_PR, "PR"},
782 {MSR_FP, "FP"},
783 {MSR_ME, "ME"},
3bfd0c9c 784#ifdef CONFIG_BOOKE
1b98326b 785 {MSR_DE, "DE"},
3bfd0c9c
AB
786#else
787 {MSR_SE, "SE"},
788 {MSR_BE, "BE"},
789#endif
06d67d54
PM
790 {MSR_IR, "IR"},
791 {MSR_DR, "DR"},
3bfd0c9c
AB
792 {MSR_PMM, "PMM"},
793#ifndef CONFIG_BOOKE
794 {MSR_RI, "RI"},
795 {MSR_LE, "LE"},
796#endif
06d67d54
PM
797 {0, NULL}
798};
799
800static void printbits(unsigned long val, struct regbit *bits)
801{
802 const char *sep = "";
803
804 printk("<");
805 for (; bits->bit; ++bits)
806 if (val & bits->bit) {
807 printk("%s%s", sep, bits->name);
808 sep = ",";
809 }
810 printk(">");
811}
812
813#ifdef CONFIG_PPC64
f6f7dde3 814#define REG "%016lx"
06d67d54
PM
815#define REGS_PER_LINE 4
816#define LAST_VOLATILE 13
817#else
f6f7dde3 818#define REG "%08lx"
06d67d54
PM
819#define REGS_PER_LINE 8
820#define LAST_VOLATILE 12
821#endif
822
14cf11af
PM
823void show_regs(struct pt_regs * regs)
824{
825 int i, trap;
826
06d67d54
PM
827 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
828 regs->nip, regs->link, regs->ctr);
829 printk("REGS: %p TRAP: %04lx %s (%s)\n",
96b644bd 830 regs, regs->trap, print_tainted(), init_utsname()->release);
06d67d54
PM
831 printk("MSR: "REG" ", regs->msr);
832 printbits(regs->msr, msr_bits);
f6f7dde3 833 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
7230c564
BH
834#ifdef CONFIG_PPC64
835 printk("SOFTE: %ld\n", regs->softe);
836#endif
14cf11af 837 trap = TRAP(regs);
5115a026
MN
838 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
839 printk("CFAR: "REG"\n", regs->orig_gpr3);
14cf11af 840 if (trap == 0x300 || trap == 0x600)
ba28c9aa 841#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
14170789
KG
842 printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
843#else
7071854b 844 printk("DAR: "REG", DSISR: %08lx\n", regs->dar, regs->dsisr);
14170789 845#endif
06d67d54 846 printk("TASK = %p[%d] '%s' THREAD: %p",
19c5870c 847 current, task_pid_nr(current), current->comm, task_thread_info(current));
14cf11af
PM
848
849#ifdef CONFIG_SMP
79ccd1be 850 printk(" CPU: %d", raw_smp_processor_id());
14cf11af
PM
851#endif /* CONFIG_SMP */
852
853 for (i = 0; i < 32; i++) {
06d67d54 854 if ((i % REGS_PER_LINE) == 0)
a2367194 855 printk("\nGPR%02d: ", i);
06d67d54
PM
856 printk(REG " ", regs->gpr[i]);
857 if (i == LAST_VOLATILE && !FULL_REGS(regs))
14cf11af
PM
858 break;
859 }
860 printk("\n");
861#ifdef CONFIG_KALLSYMS
862 /*
863 * Lookup NIP late so we have the best change of getting the
864 * above info out without failing
865 */
058c78f4
BH
866 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
867 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
14cf11af 868#endif
afc07701
MN
869#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
870 printk("PACATMSCRATCH [%llx]\n", get_paca()->tm_scratch);
871#endif
14cf11af 872 show_stack(current, (unsigned long *) regs->gpr[1]);
06d67d54
PM
873 if (!user_mode(regs))
874 show_instructions(regs);
14cf11af
PM
875}
876
877void exit_thread(void)
878{
48abec07 879 discard_lazy_cpu_state();
14cf11af
PM
880}
881
882void flush_thread(void)
883{
48abec07 884 discard_lazy_cpu_state();
14cf11af 885
e0780b72 886#ifdef CONFIG_HAVE_HW_BREAKPOINT
5aae8a53 887 flush_ptrace_hw_breakpoint(current);
e0780b72 888#else /* CONFIG_HAVE_HW_BREAKPOINT */
3bffb652 889 set_debug_reg_defaults(&current->thread);
e0780b72 890#endif /* CONFIG_HAVE_HW_BREAKPOINT */
14cf11af
PM
891}
892
893void
894release_thread(struct task_struct *t)
895{
896}
897
898/*
55ccf3fe
SS
899 * this gets called so that we can store coprocessor state into memory and
900 * copy the current task into the new thread.
14cf11af 901 */
55ccf3fe 902int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
14cf11af 903{
55ccf3fe
SS
904 flush_fp_to_thread(src);
905 flush_altivec_to_thread(src);
906 flush_vsx_to_thread(src);
907 flush_spe_to_thread(src);
5aae8a53 908#ifdef CONFIG_HAVE_HW_BREAKPOINT
55ccf3fe 909 flush_ptrace_hw_breakpoint(src);
5aae8a53 910#endif /* CONFIG_HAVE_HW_BREAKPOINT */
55ccf3fe
SS
911
912 *dst = *src;
913 return 0;
14cf11af
PM
914}
915
916/*
917 * Copy a thread..
918 */
efcac658
AK
919extern unsigned long dscr_default; /* defined in arch/powerpc/kernel/sysfs.c */
920
6f2c55b8 921int copy_thread(unsigned long clone_flags, unsigned long usp,
afa86fc4 922 unsigned long arg, struct task_struct *p)
14cf11af
PM
923{
924 struct pt_regs *childregs, *kregs;
925 extern void ret_from_fork(void);
58254e10
AV
926 extern void ret_from_kernel_thread(void);
927 void (*f)(void);
0cec6fd1 928 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
14cf11af 929
14cf11af
PM
930 /* Copy registers */
931 sp -= sizeof(struct pt_regs);
932 childregs = (struct pt_regs *) sp;
ab75819d 933 if (unlikely(p->flags & PF_KTHREAD)) {
138d1ce8 934 struct thread_info *ti = (void *)task_stack_page(p);
58254e10 935 memset(childregs, 0, sizeof(struct pt_regs));
14cf11af 936 childregs->gpr[1] = sp + sizeof(struct pt_regs);
53b50f94 937 childregs->gpr[14] = usp; /* function */
58254e10 938#ifdef CONFIG_PPC64
b5e2fc1c 939 clear_tsk_thread_flag(p, TIF_32BIT);
138d1ce8 940 childregs->softe = 1;
06d67d54 941#endif
58254e10 942 childregs->gpr[15] = arg;
14cf11af 943 p->thread.regs = NULL; /* no user register state */
138d1ce8 944 ti->flags |= _TIF_RESTOREALL;
58254e10 945 f = ret_from_kernel_thread;
14cf11af 946 } else {
afa86fc4 947 struct pt_regs *regs = current_pt_regs();
58254e10
AV
948 CHECK_FULL_REGS(regs);
949 *childregs = *regs;
ea516b11
AV
950 if (usp)
951 childregs->gpr[1] = usp;
14cf11af 952 p->thread.regs = childregs;
58254e10 953 childregs->gpr[3] = 0; /* Result from fork() */
06d67d54
PM
954 if (clone_flags & CLONE_SETTLS) {
955#ifdef CONFIG_PPC64
9904b005 956 if (!is_32bit_task())
06d67d54
PM
957 childregs->gpr[13] = childregs->gpr[6];
958 else
959#endif
960 childregs->gpr[2] = childregs->gpr[6];
961 }
58254e10
AV
962
963 f = ret_from_fork;
14cf11af 964 }
14cf11af 965 sp -= STACK_FRAME_OVERHEAD;
14cf11af
PM
966
967 /*
968 * The way this works is that at some point in the future
969 * some task will call _switch to switch to the new task.
970 * That will pop off the stack frame created below and start
971 * the new task running at ret_from_fork. The new task will
972 * do some house keeping and then return from the fork or clone
973 * system call, using the stack frame created above.
974 */
975 sp -= sizeof(struct pt_regs);
976 kregs = (struct pt_regs *) sp;
977 sp -= STACK_FRAME_OVERHEAD;
978 p->thread.ksp = sp;
85218827
KG
979 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
980 _ALIGN_UP(sizeof(struct thread_info), 16);
14cf11af 981
94491685 982#ifdef CONFIG_PPC_STD_MMU_64
44ae3ab3 983 if (mmu_has_feature(MMU_FTR_SLB)) {
1189be65 984 unsigned long sp_vsid;
3c726f8d 985 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
06d67d54 986
44ae3ab3 987 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1189be65
PM
988 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
989 << SLB_VSID_SHIFT_1T;
990 else
991 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
992 << SLB_VSID_SHIFT;
3c726f8d 993 sp_vsid |= SLB_VSID_KERNEL | llp;
06d67d54
PM
994 p->thread.ksp_vsid = sp_vsid;
995 }
747bea91 996#endif /* CONFIG_PPC_STD_MMU_64 */
efcac658
AK
997#ifdef CONFIG_PPC64
998 if (cpu_has_feature(CPU_FTR_DSCR)) {
1021cb26
AB
999 p->thread.dscr_inherit = current->thread.dscr_inherit;
1000 p->thread.dscr = current->thread.dscr;
efcac658 1001 }
92779245
HM
1002 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1003 p->thread.ppr = INIT_PPR;
efcac658 1004#endif
06d67d54
PM
1005 /*
1006 * The PPC64 ABI makes use of a TOC to contain function
1007 * pointers. The function (ret_from_except) is actually a pointer
1008 * to the TOC entry. The first entry is a pointer to the actual
1009 * function.
58254e10 1010 */
747bea91 1011#ifdef CONFIG_PPC64
58254e10 1012 kregs->nip = *((unsigned long *)f);
06d67d54 1013#else
58254e10 1014 kregs->nip = (unsigned long)f;
06d67d54 1015#endif
14cf11af
PM
1016 return 0;
1017}
1018
1019/*
1020 * Set up a thread for executing a new program
1021 */
06d67d54 1022void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
14cf11af 1023{
90eac727
ME
1024#ifdef CONFIG_PPC64
1025 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1026#endif
1027
06d67d54
PM
1028 /*
1029 * If we exec out of a kernel thread then thread.regs will not be
1030 * set. Do it now.
1031 */
1032 if (!current->thread.regs) {
0cec6fd1
AV
1033 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1034 current->thread.regs = regs - 1;
06d67d54
PM
1035 }
1036
14cf11af
PM
1037 memset(regs->gpr, 0, sizeof(regs->gpr));
1038 regs->ctr = 0;
1039 regs->link = 0;
1040 regs->xer = 0;
1041 regs->ccr = 0;
14cf11af 1042 regs->gpr[1] = sp;
06d67d54 1043
474f8196
RM
1044 /*
1045 * We have just cleared all the nonvolatile GPRs, so make
1046 * FULL_REGS(regs) return true. This is necessary to allow
1047 * ptrace to examine the thread immediately after exec.
1048 */
1049 regs->trap &= ~1UL;
1050
06d67d54
PM
1051#ifdef CONFIG_PPC32
1052 regs->mq = 0;
1053 regs->nip = start;
14cf11af 1054 regs->msr = MSR_USER;
06d67d54 1055#else
9904b005 1056 if (!is_32bit_task()) {
90eac727 1057 unsigned long entry, toc;
06d67d54
PM
1058
1059 /* start is a relocated pointer to the function descriptor for
1060 * the elf _start routine. The first entry in the function
1061 * descriptor is the entry address of _start and the second
1062 * entry is the TOC value we need to use.
1063 */
1064 __get_user(entry, (unsigned long __user *)start);
1065 __get_user(toc, (unsigned long __user *)start+1);
1066
1067 /* Check whether the e_entry function descriptor entries
1068 * need to be relocated before we can use them.
1069 */
1070 if (load_addr != 0) {
1071 entry += load_addr;
1072 toc += load_addr;
1073 }
1074 regs->nip = entry;
1075 regs->gpr[2] = toc;
1076 regs->msr = MSR_USER64;
d4bf9a78
SR
1077 } else {
1078 regs->nip = start;
1079 regs->gpr[2] = 0;
1080 regs->msr = MSR_USER32;
06d67d54
PM
1081 }
1082#endif
1083
48abec07 1084 discard_lazy_cpu_state();
ce48b210
MN
1085#ifdef CONFIG_VSX
1086 current->thread.used_vsr = 0;
1087#endif
14cf11af 1088 memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
25c8a78b 1089 current->thread.fpscr.val = 0;
14cf11af
PM
1090#ifdef CONFIG_ALTIVEC
1091 memset(current->thread.vr, 0, sizeof(current->thread.vr));
1092 memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
06d67d54 1093 current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
14cf11af
PM
1094 current->thread.vrsave = 0;
1095 current->thread.used_vr = 0;
1096#endif /* CONFIG_ALTIVEC */
1097#ifdef CONFIG_SPE
1098 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1099 current->thread.acc = 0;
1100 current->thread.spefscr = 0;
1101 current->thread.used_spe = 0;
1102#endif /* CONFIG_SPE */
1103}
1104
1105#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1106 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1107
1108int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1109{
1110 struct pt_regs *regs = tsk->thread.regs;
1111
1112 /* This is a bit hairy. If we are an SPE enabled processor
1113 * (have embedded fp) we store the IEEE exception enable flags in
1114 * fpexc_mode. fpexc_mode is also used for setting FP exception
1115 * mode (asyn, precise, disabled) for 'Classic' FP. */
1116 if (val & PR_FP_EXC_SW_ENABLE) {
1117#ifdef CONFIG_SPE
5e14d21e
KG
1118 if (cpu_has_feature(CPU_FTR_SPE)) {
1119 tsk->thread.fpexc_mode = val &
1120 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1121 return 0;
1122 } else {
1123 return -EINVAL;
1124 }
14cf11af
PM
1125#else
1126 return -EINVAL;
1127#endif
14cf11af 1128 }
06d67d54
PM
1129
1130 /* on a CONFIG_SPE this does not hurt us. The bits that
1131 * __pack_fe01 use do not overlap with bits used for
1132 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1133 * on CONFIG_SPE implementations are reserved so writing to
1134 * them does not change anything */
1135 if (val > PR_FP_EXC_PRECISE)
1136 return -EINVAL;
1137 tsk->thread.fpexc_mode = __pack_fe01(val);
1138 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1139 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1140 | tsk->thread.fpexc_mode;
14cf11af
PM
1141 return 0;
1142}
1143
1144int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1145{
1146 unsigned int val;
1147
1148 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1149#ifdef CONFIG_SPE
5e14d21e
KG
1150 if (cpu_has_feature(CPU_FTR_SPE))
1151 val = tsk->thread.fpexc_mode;
1152 else
1153 return -EINVAL;
14cf11af
PM
1154#else
1155 return -EINVAL;
1156#endif
1157 else
1158 val = __unpack_fe01(tsk->thread.fpexc_mode);
1159 return put_user(val, (unsigned int __user *) adr);
1160}
1161
fab5db97
PM
1162int set_endian(struct task_struct *tsk, unsigned int val)
1163{
1164 struct pt_regs *regs = tsk->thread.regs;
1165
1166 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1167 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1168 return -EINVAL;
1169
1170 if (regs == NULL)
1171 return -EINVAL;
1172
1173 if (val == PR_ENDIAN_BIG)
1174 regs->msr &= ~MSR_LE;
1175 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1176 regs->msr |= MSR_LE;
1177 else
1178 return -EINVAL;
1179
1180 return 0;
1181}
1182
1183int get_endian(struct task_struct *tsk, unsigned long adr)
1184{
1185 struct pt_regs *regs = tsk->thread.regs;
1186 unsigned int val;
1187
1188 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1189 !cpu_has_feature(CPU_FTR_REAL_LE))
1190 return -EINVAL;
1191
1192 if (regs == NULL)
1193 return -EINVAL;
1194
1195 if (regs->msr & MSR_LE) {
1196 if (cpu_has_feature(CPU_FTR_REAL_LE))
1197 val = PR_ENDIAN_LITTLE;
1198 else
1199 val = PR_ENDIAN_PPC_LITTLE;
1200 } else
1201 val = PR_ENDIAN_BIG;
1202
1203 return put_user(val, (unsigned int __user *)adr);
1204}
1205
e9370ae1
PM
1206int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1207{
1208 tsk->thread.align_ctl = val;
1209 return 0;
1210}
1211
1212int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1213{
1214 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1215}
1216
bb72c481
PM
1217static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1218 unsigned long nbytes)
1219{
1220 unsigned long stack_page;
1221 unsigned long cpu = task_cpu(p);
1222
1223 /*
1224 * Avoid crashing if the stack has overflowed and corrupted
1225 * task_cpu(p), which is in the thread_info struct.
1226 */
1227 if (cpu < NR_CPUS && cpu_possible(cpu)) {
1228 stack_page = (unsigned long) hardirq_ctx[cpu];
1229 if (sp >= stack_page + sizeof(struct thread_struct)
1230 && sp <= stack_page + THREAD_SIZE - nbytes)
1231 return 1;
1232
1233 stack_page = (unsigned long) softirq_ctx[cpu];
1234 if (sp >= stack_page + sizeof(struct thread_struct)
1235 && sp <= stack_page + THREAD_SIZE - nbytes)
1236 return 1;
1237 }
1238 return 0;
1239}
1240
2f25194d 1241int validate_sp(unsigned long sp, struct task_struct *p,
14cf11af
PM
1242 unsigned long nbytes)
1243{
0cec6fd1 1244 unsigned long stack_page = (unsigned long)task_stack_page(p);
14cf11af
PM
1245
1246 if (sp >= stack_page + sizeof(struct thread_struct)
1247 && sp <= stack_page + THREAD_SIZE - nbytes)
1248 return 1;
1249
bb72c481 1250 return valid_irq_stack(sp, p, nbytes);
14cf11af
PM
1251}
1252
2f25194d
AB
1253EXPORT_SYMBOL(validate_sp);
1254
14cf11af
PM
1255unsigned long get_wchan(struct task_struct *p)
1256{
1257 unsigned long ip, sp;
1258 int count = 0;
1259
1260 if (!p || p == current || p->state == TASK_RUNNING)
1261 return 0;
1262
1263 sp = p->thread.ksp;
ec2b36b9 1264 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
14cf11af
PM
1265 return 0;
1266
1267 do {
1268 sp = *(unsigned long *)sp;
ec2b36b9 1269 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
14cf11af
PM
1270 return 0;
1271 if (count > 0) {
ec2b36b9 1272 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
14cf11af
PM
1273 if (!in_sched_functions(ip))
1274 return ip;
1275 }
1276 } while (count++ < 16);
1277 return 0;
1278}
06d67d54 1279
c4d04be1 1280static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
06d67d54
PM
1281
1282void show_stack(struct task_struct *tsk, unsigned long *stack)
1283{
1284 unsigned long sp, ip, lr, newsp;
1285 int count = 0;
1286 int firstframe = 1;
6794c782
SR
1287#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1288 int curr_frame = current->curr_ret_stack;
1289 extern void return_to_handler(void);
9135c3cc
SR
1290 unsigned long rth = (unsigned long)return_to_handler;
1291 unsigned long mrth = -1;
6794c782 1292#ifdef CONFIG_PPC64
9135c3cc
SR
1293 extern void mod_return_to_handler(void);
1294 rth = *(unsigned long *)rth;
1295 mrth = (unsigned long)mod_return_to_handler;
1296 mrth = *(unsigned long *)mrth;
6794c782
SR
1297#endif
1298#endif
06d67d54
PM
1299
1300 sp = (unsigned long) stack;
1301 if (tsk == NULL)
1302 tsk = current;
1303 if (sp == 0) {
1304 if (tsk == current)
1305 asm("mr %0,1" : "=r" (sp));
1306 else
1307 sp = tsk->thread.ksp;
1308 }
1309
1310 lr = 0;
1311 printk("Call Trace:\n");
1312 do {
ec2b36b9 1313 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
06d67d54
PM
1314 return;
1315
1316 stack = (unsigned long *) sp;
1317 newsp = stack[0];
ec2b36b9 1318 ip = stack[STACK_FRAME_LR_SAVE];
06d67d54 1319 if (!firstframe || ip != lr) {
058c78f4 1320 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
6794c782 1321#ifdef CONFIG_FUNCTION_GRAPH_TRACER
9135c3cc 1322 if ((ip == rth || ip == mrth) && curr_frame >= 0) {
6794c782
SR
1323 printk(" (%pS)",
1324 (void *)current->ret_stack[curr_frame].ret);
1325 curr_frame--;
1326 }
1327#endif
06d67d54
PM
1328 if (firstframe)
1329 printk(" (unreliable)");
1330 printk("\n");
1331 }
1332 firstframe = 0;
1333
1334 /*
1335 * See if this is an exception frame.
1336 * We look for the "regshere" marker in the current frame.
1337 */
ec2b36b9
BH
1338 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1339 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
06d67d54
PM
1340 struct pt_regs *regs = (struct pt_regs *)
1341 (sp + STACK_FRAME_OVERHEAD);
06d67d54 1342 lr = regs->link;
058c78f4
BH
1343 printk("--- Exception: %lx at %pS\n LR = %pS\n",
1344 regs->trap, (void *)regs->nip, (void *)lr);
06d67d54
PM
1345 firstframe = 1;
1346 }
1347
1348 sp = newsp;
1349 } while (count++ < kstack_depth_to_print);
1350}
1351
1352void dump_stack(void)
1353{
1354 show_stack(current, NULL);
1355}
1356EXPORT_SYMBOL(dump_stack);
cb2c9b27
AB
1357
1358#ifdef CONFIG_PPC64
fe1952fc
BH
1359/* Called with hard IRQs off */
1360void __ppc64_runlatch_on(void)
cb2c9b27 1361{
fe1952fc 1362 struct thread_info *ti = current_thread_info();
cb2c9b27
AB
1363 unsigned long ctrl;
1364
fe1952fc
BH
1365 ctrl = mfspr(SPRN_CTRLF);
1366 ctrl |= CTRL_RUNLATCH;
1367 mtspr(SPRN_CTRLT, ctrl);
cb2c9b27 1368
fae2e0fb 1369 ti->local_flags |= _TLF_RUNLATCH;
cb2c9b27
AB
1370}
1371
fe1952fc 1372/* Called with hard IRQs off */
4138d653 1373void __ppc64_runlatch_off(void)
cb2c9b27 1374{
fe1952fc 1375 struct thread_info *ti = current_thread_info();
cb2c9b27
AB
1376 unsigned long ctrl;
1377
fae2e0fb 1378 ti->local_flags &= ~_TLF_RUNLATCH;
cb2c9b27 1379
4138d653
AB
1380 ctrl = mfspr(SPRN_CTRLF);
1381 ctrl &= ~CTRL_RUNLATCH;
1382 mtspr(SPRN_CTRLT, ctrl);
cb2c9b27 1383}
fe1952fc 1384#endif /* CONFIG_PPC64 */
f6a61680 1385
d839088c
AB
1386unsigned long arch_align_stack(unsigned long sp)
1387{
1388 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1389 sp -= get_random_int() & ~PAGE_MASK;
1390 return sp & ~0xf;
1391}
912f9ee2
AB
1392
1393static inline unsigned long brk_rnd(void)
1394{
1395 unsigned long rnd = 0;
1396
1397 /* 8MB for 32bit, 1GB for 64bit */
1398 if (is_32bit_task())
1399 rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1400 else
1401 rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1402
1403 return rnd << PAGE_SHIFT;
1404}
1405
1406unsigned long arch_randomize_brk(struct mm_struct *mm)
1407{
8bbde7a7
AB
1408 unsigned long base = mm->brk;
1409 unsigned long ret;
1410
ce7a35c7 1411#ifdef CONFIG_PPC_STD_MMU_64
8bbde7a7
AB
1412 /*
1413 * If we are using 1TB segments and we are allowed to randomise
1414 * the heap, we can put it above 1TB so it is backed by a 1TB
1415 * segment. Otherwise the heap will be in the bottom 1TB
1416 * which always uses 256MB segments and this may result in a
1417 * performance penalty.
1418 */
1419 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1420 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1421#endif
1422
1423 ret = PAGE_ALIGN(base + brk_rnd());
912f9ee2
AB
1424
1425 if (ret < mm->brk)
1426 return mm->brk;
1427
1428 return ret;
1429}
501cb16d
AB
1430
1431unsigned long randomize_et_dyn(unsigned long base)
1432{
1433 unsigned long ret = PAGE_ALIGN(base + brk_rnd());
1434
1435 if (ret < base)
1436 return base;
1437
1438 return ret;
1439}