Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / powerpc / kernel / process.c
CommitLineData
14cf11af 1/*
14cf11af
PM
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
14cf11af
PM
17#include <linux/errno.h>
18#include <linux/sched.h>
19#include <linux/kernel.h>
20#include <linux/mm.h>
21#include <linux/smp.h>
14cf11af
PM
22#include <linux/stddef.h>
23#include <linux/unistd.h>
24#include <linux/ptrace.h>
25#include <linux/slab.h>
26#include <linux/user.h>
27#include <linux/elf.h>
28#include <linux/init.h>
29#include <linux/prctl.h>
30#include <linux/init_task.h>
4b16f8e2 31#include <linux/export.h>
14cf11af
PM
32#include <linux/kallsyms.h>
33#include <linux/mqueue.h>
34#include <linux/hardirq.h>
06d67d54 35#include <linux/utsname.h>
6794c782 36#include <linux/ftrace.h>
79741dd3 37#include <linux/kernel_stat.h>
d839088c
AB
38#include <linux/personality.h>
39#include <linux/random.h>
5aae8a53 40#include <linux/hw_breakpoint.h>
14cf11af
PM
41
42#include <asm/pgtable.h>
43#include <asm/uaccess.h>
14cf11af
PM
44#include <asm/io.h>
45#include <asm/processor.h>
46#include <asm/mmu.h>
47#include <asm/prom.h>
76032de8 48#include <asm/machdep.h>
c6622f63 49#include <asm/time.h>
ae3a197e 50#include <asm/runlatch.h>
a7f31841 51#include <asm/syscalls.h>
ae3a197e 52#include <asm/switch_to.h>
fb09692e 53#include <asm/tm.h>
ae3a197e 54#include <asm/debug.h>
06d67d54
PM
55#ifdef CONFIG_PPC64
56#include <asm/firmware.h>
06d67d54 57#endif
d6a61bfc
LM
58#include <linux/kprobes.h>
59#include <linux/kdebug.h>
14cf11af 60
8b3c34cf
MN
61/* Transactional Memory debug */
62#ifdef TM_DEBUG_SW
63#define TM_DEBUG(x...) printk(KERN_INFO x)
64#else
65#define TM_DEBUG(x...) do { } while(0)
66#endif
67
14cf11af
PM
68extern unsigned long _get_SP(void);
69
70#ifndef CONFIG_SMP
71struct task_struct *last_task_used_math = NULL;
72struct task_struct *last_task_used_altivec = NULL;
ce48b210 73struct task_struct *last_task_used_vsx = NULL;
14cf11af
PM
74struct task_struct *last_task_used_spe = NULL;
75#endif
76
14cf11af
PM
77/*
78 * Make sure the floating-point register state in the
79 * the thread_struct is up to date for task tsk.
80 */
81void flush_fp_to_thread(struct task_struct *tsk)
82{
83 if (tsk->thread.regs) {
84 /*
85 * We need to disable preemption here because if we didn't,
86 * another process could get scheduled after the regs->msr
87 * test but before we have finished saving the FP registers
88 * to the thread_struct. That process could take over the
89 * FPU, and then when we get scheduled again we would store
90 * bogus values for the remaining FP registers.
91 */
92 preempt_disable();
93 if (tsk->thread.regs->msr & MSR_FP) {
94#ifdef CONFIG_SMP
95 /*
96 * This should only ever be called for current or
97 * for a stopped child process. Since we save away
98 * the FP register state on context switch on SMP,
99 * there is something wrong if a stopped child appears
100 * to still have its FP state in the CPU registers.
101 */
102 BUG_ON(tsk != current);
103#endif
0ee6c15e 104 giveup_fpu(tsk);
14cf11af
PM
105 }
106 preempt_enable();
107 }
108}
de56a948 109EXPORT_SYMBOL_GPL(flush_fp_to_thread);
14cf11af
PM
110
111void enable_kernel_fp(void)
112{
113 WARN_ON(preemptible());
114
115#ifdef CONFIG_SMP
116 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
117 giveup_fpu(current);
118 else
119 giveup_fpu(NULL); /* just enables FP for kernel */
120#else
121 giveup_fpu(last_task_used_math);
122#endif /* CONFIG_SMP */
123}
124EXPORT_SYMBOL(enable_kernel_fp);
125
14cf11af
PM
126#ifdef CONFIG_ALTIVEC
127void enable_kernel_altivec(void)
128{
129 WARN_ON(preemptible());
130
131#ifdef CONFIG_SMP
132 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
133 giveup_altivec(current);
134 else
35000870 135 giveup_altivec_notask();
14cf11af
PM
136#else
137 giveup_altivec(last_task_used_altivec);
138#endif /* CONFIG_SMP */
139}
140EXPORT_SYMBOL(enable_kernel_altivec);
141
142/*
143 * Make sure the VMX/Altivec register state in the
144 * the thread_struct is up to date for task tsk.
145 */
146void flush_altivec_to_thread(struct task_struct *tsk)
147{
148 if (tsk->thread.regs) {
149 preempt_disable();
150 if (tsk->thread.regs->msr & MSR_VEC) {
151#ifdef CONFIG_SMP
152 BUG_ON(tsk != current);
153#endif
0ee6c15e 154 giveup_altivec(tsk);
14cf11af
PM
155 }
156 preempt_enable();
157 }
158}
de56a948 159EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
14cf11af
PM
160#endif /* CONFIG_ALTIVEC */
161
ce48b210
MN
162#ifdef CONFIG_VSX
163#if 0
164/* not currently used, but some crazy RAID module might want to later */
165void enable_kernel_vsx(void)
166{
167 WARN_ON(preemptible());
168
169#ifdef CONFIG_SMP
170 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
171 giveup_vsx(current);
172 else
173 giveup_vsx(NULL); /* just enable vsx for kernel - force */
174#else
175 giveup_vsx(last_task_used_vsx);
176#endif /* CONFIG_SMP */
177}
178EXPORT_SYMBOL(enable_kernel_vsx);
179#endif
180
7c292170
MN
181void giveup_vsx(struct task_struct *tsk)
182{
183 giveup_fpu(tsk);
184 giveup_altivec(tsk);
185 __giveup_vsx(tsk);
186}
187
ce48b210
MN
188void flush_vsx_to_thread(struct task_struct *tsk)
189{
190 if (tsk->thread.regs) {
191 preempt_disable();
192 if (tsk->thread.regs->msr & MSR_VSX) {
193#ifdef CONFIG_SMP
194 BUG_ON(tsk != current);
195#endif
196 giveup_vsx(tsk);
197 }
198 preempt_enable();
199 }
200}
de56a948 201EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
ce48b210
MN
202#endif /* CONFIG_VSX */
203
14cf11af
PM
204#ifdef CONFIG_SPE
205
206void enable_kernel_spe(void)
207{
208 WARN_ON(preemptible());
209
210#ifdef CONFIG_SMP
211 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
212 giveup_spe(current);
213 else
214 giveup_spe(NULL); /* just enable SPE for kernel - force */
215#else
216 giveup_spe(last_task_used_spe);
217#endif /* __SMP __ */
218}
219EXPORT_SYMBOL(enable_kernel_spe);
220
221void flush_spe_to_thread(struct task_struct *tsk)
222{
223 if (tsk->thread.regs) {
224 preempt_disable();
225 if (tsk->thread.regs->msr & MSR_SPE) {
226#ifdef CONFIG_SMP
227 BUG_ON(tsk != current);
228#endif
685659ee 229 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
0ee6c15e 230 giveup_spe(tsk);
14cf11af
PM
231 }
232 preempt_enable();
233 }
234}
14cf11af
PM
235#endif /* CONFIG_SPE */
236
5388fb10 237#ifndef CONFIG_SMP
48abec07
PM
238/*
239 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
240 * and the current task has some state, discard it.
241 */
5388fb10 242void discard_lazy_cpu_state(void)
48abec07 243{
48abec07
PM
244 preempt_disable();
245 if (last_task_used_math == current)
246 last_task_used_math = NULL;
247#ifdef CONFIG_ALTIVEC
248 if (last_task_used_altivec == current)
249 last_task_used_altivec = NULL;
250#endif /* CONFIG_ALTIVEC */
ce48b210
MN
251#ifdef CONFIG_VSX
252 if (last_task_used_vsx == current)
253 last_task_used_vsx = NULL;
254#endif /* CONFIG_VSX */
48abec07
PM
255#ifdef CONFIG_SPE
256 if (last_task_used_spe == current)
257 last_task_used_spe = NULL;
258#endif
259 preempt_enable();
48abec07 260}
5388fb10 261#endif /* CONFIG_SMP */
48abec07 262
3bffb652
DK
263#ifdef CONFIG_PPC_ADV_DEBUG_REGS
264void do_send_trap(struct pt_regs *regs, unsigned long address,
265 unsigned long error_code, int signal_code, int breakpt)
266{
267 siginfo_t info;
268
41ab5266 269 current->thread.trap_nr = signal_code;
3bffb652
DK
270 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
271 11, SIGSEGV) == NOTIFY_STOP)
272 return;
273
274 /* Deliver the signal to userspace */
275 info.si_signo = SIGTRAP;
276 info.si_errno = breakpt; /* breakpoint or watchpoint id */
277 info.si_code = signal_code;
278 info.si_addr = (void __user *)address;
279 force_sig_info(SIGTRAP, &info, current);
280}
281#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
9422de3e 282void do_break (struct pt_regs *regs, unsigned long address,
d6a61bfc
LM
283 unsigned long error_code)
284{
285 siginfo_t info;
286
41ab5266 287 current->thread.trap_nr = TRAP_HWBKPT;
d6a61bfc
LM
288 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
289 11, SIGSEGV) == NOTIFY_STOP)
290 return;
291
9422de3e 292 if (debugger_break_match(regs))
d6a61bfc
LM
293 return;
294
9422de3e
MN
295 /* Clear the breakpoint */
296 hw_breakpoint_disable();
d6a61bfc
LM
297
298 /* Deliver the signal to userspace */
299 info.si_signo = SIGTRAP;
300 info.si_errno = 0;
301 info.si_code = TRAP_HWBKPT;
302 info.si_addr = (void __user *)address;
303 force_sig_info(SIGTRAP, &info, current);
304}
3bffb652 305#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
d6a61bfc 306
9422de3e 307static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
a2ceff5e 308
3bffb652
DK
309#ifdef CONFIG_PPC_ADV_DEBUG_REGS
310/*
311 * Set the debug registers back to their default "safe" values.
312 */
313static void set_debug_reg_defaults(struct thread_struct *thread)
314{
315 thread->iac1 = thread->iac2 = 0;
316#if CONFIG_PPC_ADV_DEBUG_IACS > 2
317 thread->iac3 = thread->iac4 = 0;
318#endif
319 thread->dac1 = thread->dac2 = 0;
320#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
321 thread->dvc1 = thread->dvc2 = 0;
322#endif
323 thread->dbcr0 = 0;
324#ifdef CONFIG_BOOKE
325 /*
326 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
327 */
328 thread->dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | \
329 DBCR1_IAC3US | DBCR1_IAC4US;
330 /*
331 * Force Data Address Compare User/Supervisor bits to be User-only
332 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
333 */
334 thread->dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
335#else
336 thread->dbcr1 = 0;
337#endif
338}
339
340static void prime_debug_regs(struct thread_struct *thread)
341{
342 mtspr(SPRN_IAC1, thread->iac1);
343 mtspr(SPRN_IAC2, thread->iac2);
344#if CONFIG_PPC_ADV_DEBUG_IACS > 2
345 mtspr(SPRN_IAC3, thread->iac3);
346 mtspr(SPRN_IAC4, thread->iac4);
347#endif
348 mtspr(SPRN_DAC1, thread->dac1);
349 mtspr(SPRN_DAC2, thread->dac2);
350#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
351 mtspr(SPRN_DVC1, thread->dvc1);
352 mtspr(SPRN_DVC2, thread->dvc2);
353#endif
354 mtspr(SPRN_DBCR0, thread->dbcr0);
355 mtspr(SPRN_DBCR1, thread->dbcr1);
356#ifdef CONFIG_BOOKE
357 mtspr(SPRN_DBCR2, thread->dbcr2);
358#endif
359}
360/*
361 * Unless neither the old or new thread are making use of the
362 * debug registers, set the debug registers from the values
363 * stored in the new thread.
364 */
365static void switch_booke_debug_regs(struct thread_struct *new_thread)
366{
367 if ((current->thread.dbcr0 & DBCR0_IDM)
368 || (new_thread->dbcr0 & DBCR0_IDM))
369 prime_debug_regs(new_thread);
370}
371#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
e0780b72 372#ifndef CONFIG_HAVE_HW_BREAKPOINT
3bffb652
DK
373static void set_debug_reg_defaults(struct thread_struct *thread)
374{
9422de3e
MN
375 thread->hw_brk.address = 0;
376 thread->hw_brk.type = 0;
b9818c33 377 set_breakpoint(&thread->hw_brk);
3bffb652 378}
e0780b72 379#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
3bffb652
DK
380#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
381
172ae2e7 382#ifdef CONFIG_PPC_ADV_DEBUG_REGS
9422de3e
MN
383static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
384{
d6a61bfc 385 mtspr(SPRN_DAC1, dabr);
221c185d
DK
386#ifdef CONFIG_PPC_47x
387 isync();
388#endif
9422de3e
MN
389 return 0;
390}
c6c9eace 391#elif defined(CONFIG_PPC_BOOK3S)
9422de3e
MN
392static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
393{
c6c9eace 394 mtspr(SPRN_DABR, dabr);
4474ef05 395 mtspr(SPRN_DABRX, dabrx);
cab0af98 396 return 0;
14cf11af 397}
9422de3e
MN
398#else
399static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
400{
401 return -EINVAL;
402}
403#endif
404
405static inline int set_dabr(struct arch_hw_breakpoint *brk)
406{
407 unsigned long dabr, dabrx;
408
409 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
410 dabrx = ((brk->type >> 3) & 0x7);
411
412 if (ppc_md.set_dabr)
413 return ppc_md.set_dabr(dabr, dabrx);
414
415 return __set_dabr(dabr, dabrx);
416}
417
bf99de36
MN
418static inline int set_dawr(struct arch_hw_breakpoint *brk)
419{
05d694ea 420 unsigned long dawr, dawrx, mrd;
bf99de36
MN
421
422 dawr = brk->address;
423
424 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
425 << (63 - 58); //* read/write bits */
426 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
427 << (63 - 59); //* translate */
428 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
429 >> 3; //* PRIM bits */
05d694ea
MN
430 /* dawr length is stored in field MDR bits 48:53. Matches range in
431 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
432 0b111111=64DW.
433 brk->len is in bytes.
434 This aligns up to double word size, shifts and does the bias.
435 */
436 mrd = ((brk->len + 7) >> 3) - 1;
437 dawrx |= (mrd & 0x3f) << (63 - 53);
bf99de36
MN
438
439 if (ppc_md.set_dawr)
440 return ppc_md.set_dawr(dawr, dawrx);
441 mtspr(SPRN_DAWR, dawr);
442 mtspr(SPRN_DAWRX, dawrx);
443 return 0;
444}
445
b9818c33 446int set_breakpoint(struct arch_hw_breakpoint *brk)
9422de3e
MN
447{
448 __get_cpu_var(current_brk) = *brk;
449
bf99de36
MN
450 if (cpu_has_feature(CPU_FTR_DAWR))
451 return set_dawr(brk);
452
9422de3e
MN
453 return set_dabr(brk);
454}
14cf11af 455
06d67d54
PM
456#ifdef CONFIG_PPC64
457DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
06d67d54 458#endif
14cf11af 459
9422de3e
MN
460static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
461 struct arch_hw_breakpoint *b)
462{
463 if (a->address != b->address)
464 return false;
465 if (a->type != b->type)
466 return false;
467 if (a->len != b->len)
468 return false;
469 return true;
470}
fb09692e
MN
471#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
472static inline void tm_reclaim_task(struct task_struct *tsk)
473{
474 /* We have to work out if we're switching from/to a task that's in the
475 * middle of a transaction.
476 *
477 * In switching we need to maintain a 2nd register state as
478 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
479 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
480 * (current) FPRs into oldtask->thread.transact_fpr[].
481 *
482 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
483 */
484 struct thread_struct *thr = &tsk->thread;
485
486 if (!thr->regs)
487 return;
488
489 if (!MSR_TM_ACTIVE(thr->regs->msr))
490 goto out_and_saveregs;
491
492 /* Stash the original thread MSR, as giveup_fpu et al will
493 * modify it. We hold onto it to see whether the task used
494 * FP & vector regs.
495 */
496 thr->tm_orig_msr = thr->regs->msr;
497
498 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
499 "ccr=%lx, msr=%lx, trap=%lx)\n",
500 tsk->pid, thr->regs->nip,
501 thr->regs->ccr, thr->regs->msr,
502 thr->regs->trap);
503
504 tm_reclaim(thr, thr->regs->msr, TM_CAUSE_RESCHED);
505
506 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
507 tsk->pid);
508
509out_and_saveregs:
510 /* Always save the regs here, even if a transaction's not active.
511 * This context-switches a thread's TM info SPRs. We do it here to
512 * be consistent with the restore path (in recheckpoint) which
513 * cannot happen later in _switch().
514 */
515 tm_save_sprs(thr);
516}
517
bc2a9408 518static inline void tm_recheckpoint_new_task(struct task_struct *new)
fb09692e
MN
519{
520 unsigned long msr;
521
522 if (!cpu_has_feature(CPU_FTR_TM))
523 return;
524
525 /* Recheckpoint the registers of the thread we're about to switch to.
526 *
527 * If the task was using FP, we non-lazily reload both the original and
528 * the speculative FP register states. This is because the kernel
529 * doesn't see if/when a TM rollback occurs, so if we take an FP
530 * unavoidable later, we are unable to determine which set of FP regs
531 * need to be restored.
532 */
533 if (!new->thread.regs)
534 return;
535
536 /* The TM SPRs are restored here, so that TEXASR.FS can be set
537 * before the trecheckpoint and no explosion occurs.
538 */
539 tm_restore_sprs(&new->thread);
540
541 if (!MSR_TM_ACTIVE(new->thread.regs->msr))
542 return;
543 msr = new->thread.tm_orig_msr;
544 /* Recheckpoint to restore original checkpointed register state. */
545 TM_DEBUG("*** tm_recheckpoint of pid %d "
546 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
547 new->pid, new->thread.regs->msr, msr);
548
549 /* This loads the checkpointed FP/VEC state, if used */
550 tm_recheckpoint(&new->thread, msr);
551
552 /* This loads the speculative FP/VEC state, if used */
553 if (msr & MSR_FP) {
554 do_load_up_transact_fpu(&new->thread);
555 new->thread.regs->msr |=
556 (MSR_FP | new->thread.fpexc_mode);
557 }
558 if (msr & MSR_VEC) {
559 do_load_up_transact_altivec(&new->thread);
560 new->thread.regs->msr |= MSR_VEC;
561 }
562 /* We may as well turn on VSX too since all the state is restored now */
563 if (msr & MSR_VSX)
564 new->thread.regs->msr |= MSR_VSX;
565
566 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
567 "(kernel msr 0x%lx)\n",
568 new->pid, mfmsr());
569}
570
571static inline void __switch_to_tm(struct task_struct *prev)
572{
573 if (cpu_has_feature(CPU_FTR_TM)) {
574 tm_enable();
575 tm_reclaim_task(prev);
576 }
577}
578#else
579#define tm_recheckpoint_new_task(new)
580#define __switch_to_tm(prev)
581#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
9422de3e 582
14cf11af
PM
583struct task_struct *__switch_to(struct task_struct *prev,
584 struct task_struct *new)
585{
586 struct thread_struct *new_thread, *old_thread;
587 unsigned long flags;
588 struct task_struct *last;
d6bf29b4
PZ
589#ifdef CONFIG_PPC_BOOK3S_64
590 struct ppc64_tlb_batch *batch;
591#endif
14cf11af 592
bc2a9408
MN
593 __switch_to_tm(prev);
594
14cf11af
PM
595#ifdef CONFIG_SMP
596 /* avoid complexity of lazy save/restore of fpu
597 * by just saving it every time we switch out if
598 * this task used the fpu during the last quantum.
599 *
600 * If it tries to use the fpu again, it'll trap and
601 * reload its fp regs. So we don't have to do a restore
602 * every switch, just a save.
603 * -- Cort
604 */
605 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
606 giveup_fpu(prev);
607#ifdef CONFIG_ALTIVEC
608 /*
609 * If the previous thread used altivec in the last quantum
610 * (thus changing altivec regs) then save them.
611 * We used to check the VRSAVE register but not all apps
612 * set it, so we don't rely on it now (and in fact we need
613 * to save & restore VSCR even if VRSAVE == 0). -- paulus
614 *
615 * On SMP we always save/restore altivec regs just to avoid the
616 * complexity of changing processors.
617 * -- Cort
618 */
619 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
620 giveup_altivec(prev);
14cf11af 621#endif /* CONFIG_ALTIVEC */
ce48b210
MN
622#ifdef CONFIG_VSX
623 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
7c292170
MN
624 /* VMX and FPU registers are already save here */
625 __giveup_vsx(prev);
ce48b210 626#endif /* CONFIG_VSX */
14cf11af
PM
627#ifdef CONFIG_SPE
628 /*
629 * If the previous thread used spe in the last quantum
630 * (thus changing spe regs) then save them.
631 *
632 * On SMP we always save/restore spe regs just to avoid the
633 * complexity of changing processors.
634 */
635 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
636 giveup_spe(prev);
c0c0d996
PM
637#endif /* CONFIG_SPE */
638
639#else /* CONFIG_SMP */
640#ifdef CONFIG_ALTIVEC
641 /* Avoid the trap. On smp this this never happens since
642 * we don't set last_task_used_altivec -- Cort
643 */
644 if (new->thread.regs && last_task_used_altivec == new)
645 new->thread.regs->msr |= MSR_VEC;
646#endif /* CONFIG_ALTIVEC */
ce48b210
MN
647#ifdef CONFIG_VSX
648 if (new->thread.regs && last_task_used_vsx == new)
649 new->thread.regs->msr |= MSR_VSX;
650#endif /* CONFIG_VSX */
c0c0d996 651#ifdef CONFIG_SPE
14cf11af
PM
652 /* Avoid the trap. On smp this this never happens since
653 * we don't set last_task_used_spe
654 */
655 if (new->thread.regs && last_task_used_spe == new)
656 new->thread.regs->msr |= MSR_SPE;
657#endif /* CONFIG_SPE */
c0c0d996 658
14cf11af
PM
659#endif /* CONFIG_SMP */
660
172ae2e7 661#ifdef CONFIG_PPC_ADV_DEBUG_REGS
3bffb652 662 switch_booke_debug_regs(&new->thread);
c6c9eace 663#else
5aae8a53
P
664/*
665 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
666 * schedule DABR
667 */
668#ifndef CONFIG_HAVE_HW_BREAKPOINT
9422de3e 669 if (unlikely(hw_brk_match(&__get_cpu_var(current_brk), &new->thread.hw_brk)))
b9818c33 670 set_breakpoint(&new->thread.hw_brk);
5aae8a53 671#endif /* CONFIG_HAVE_HW_BREAKPOINT */
d6a61bfc
LM
672#endif
673
c6c9eace 674
14cf11af
PM
675 new_thread = &new->thread;
676 old_thread = &current->thread;
06d67d54
PM
677
678#ifdef CONFIG_PPC64
679 /*
680 * Collect processor utilization data per process
681 */
682 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
683 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
684 long unsigned start_tb, current_tb;
685 start_tb = old_thread->start_tb;
686 cu->current_tb = current_tb = mfspr(SPRN_PURR);
687 old_thread->accum_tb += (current_tb - start_tb);
688 new_thread->start_tb = current_tb;
689 }
d6bf29b4
PZ
690#endif /* CONFIG_PPC64 */
691
692#ifdef CONFIG_PPC_BOOK3S_64
693 batch = &__get_cpu_var(ppc64_tlb_batch);
694 if (batch->active) {
695 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
696 if (batch->index)
697 __flush_tlb_pending(batch);
698 batch->active = 0;
699 }
700#endif /* CONFIG_PPC_BOOK3S_64 */
06d67d54 701
14cf11af 702 local_irq_save(flags);
c6622f63 703
44387e9f
AB
704 /*
705 * We can't take a PMU exception inside _switch() since there is a
706 * window where the kernel stack SLB and the kernel stack are out
707 * of sync. Hard disable here.
708 */
709 hard_irq_disable();
bc2a9408
MN
710
711 tm_recheckpoint_new_task(new);
712
14cf11af
PM
713 last = _switch(old_thread, new_thread);
714
d6bf29b4
PZ
715#ifdef CONFIG_PPC_BOOK3S_64
716 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
717 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
718 batch = &__get_cpu_var(ppc64_tlb_batch);
719 batch->active = 1;
720 }
721#endif /* CONFIG_PPC_BOOK3S_64 */
722
14cf11af
PM
723 local_irq_restore(flags);
724
725 return last;
726}
727
06d67d54
PM
728static int instructions_to_print = 16;
729
06d67d54
PM
730static void show_instructions(struct pt_regs *regs)
731{
732 int i;
733 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
734 sizeof(int));
735
736 printk("Instruction dump:");
737
738 for (i = 0; i < instructions_to_print; i++) {
739 int instr;
740
741 if (!(i % 8))
742 printk("\n");
743
0de2d820
SW
744#if !defined(CONFIG_BOOKE)
745 /* If executing with the IMMU off, adjust pc rather
746 * than print XXXXXXXX.
747 */
748 if (!(regs->msr & MSR_IR))
749 pc = (unsigned long)phys_to_virt(pc);
750#endif
751
af308377
SR
752 /* We use __get_user here *only* to avoid an OOPS on a
753 * bad address because the pc *should* only be a
754 * kernel address.
755 */
00ae36de
AB
756 if (!__kernel_text_address(pc) ||
757 __get_user(instr, (unsigned int __user *)pc)) {
40c8cefa 758 printk(KERN_CONT "XXXXXXXX ");
06d67d54
PM
759 } else {
760 if (regs->nip == pc)
40c8cefa 761 printk(KERN_CONT "<%08x> ", instr);
06d67d54 762 else
40c8cefa 763 printk(KERN_CONT "%08x ", instr);
06d67d54
PM
764 }
765
766 pc += sizeof(int);
767 }
768
769 printk("\n");
770}
771
772static struct regbit {
773 unsigned long bit;
774 const char *name;
775} msr_bits[] = {
3bfd0c9c
AB
776#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
777 {MSR_SF, "SF"},
778 {MSR_HV, "HV"},
779#endif
780 {MSR_VEC, "VEC"},
781 {MSR_VSX, "VSX"},
782#ifdef CONFIG_BOOKE
783 {MSR_CE, "CE"},
784#endif
06d67d54
PM
785 {MSR_EE, "EE"},
786 {MSR_PR, "PR"},
787 {MSR_FP, "FP"},
788 {MSR_ME, "ME"},
3bfd0c9c 789#ifdef CONFIG_BOOKE
1b98326b 790 {MSR_DE, "DE"},
3bfd0c9c
AB
791#else
792 {MSR_SE, "SE"},
793 {MSR_BE, "BE"},
794#endif
06d67d54
PM
795 {MSR_IR, "IR"},
796 {MSR_DR, "DR"},
3bfd0c9c
AB
797 {MSR_PMM, "PMM"},
798#ifndef CONFIG_BOOKE
799 {MSR_RI, "RI"},
800 {MSR_LE, "LE"},
801#endif
06d67d54
PM
802 {0, NULL}
803};
804
805static void printbits(unsigned long val, struct regbit *bits)
806{
807 const char *sep = "";
808
809 printk("<");
810 for (; bits->bit; ++bits)
811 if (val & bits->bit) {
812 printk("%s%s", sep, bits->name);
813 sep = ",";
814 }
815 printk(">");
816}
817
818#ifdef CONFIG_PPC64
f6f7dde3 819#define REG "%016lx"
06d67d54
PM
820#define REGS_PER_LINE 4
821#define LAST_VOLATILE 13
822#else
f6f7dde3 823#define REG "%08lx"
06d67d54
PM
824#define REGS_PER_LINE 8
825#define LAST_VOLATILE 12
826#endif
827
14cf11af
PM
828void show_regs(struct pt_regs * regs)
829{
830 int i, trap;
831
06d67d54
PM
832 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
833 regs->nip, regs->link, regs->ctr);
834 printk("REGS: %p TRAP: %04lx %s (%s)\n",
96b644bd 835 regs, regs->trap, print_tainted(), init_utsname()->release);
06d67d54
PM
836 printk("MSR: "REG" ", regs->msr);
837 printbits(regs->msr, msr_bits);
f6f7dde3 838 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
7230c564
BH
839#ifdef CONFIG_PPC64
840 printk("SOFTE: %ld\n", regs->softe);
841#endif
14cf11af 842 trap = TRAP(regs);
5115a026
MN
843 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
844 printk("CFAR: "REG"\n", regs->orig_gpr3);
14cf11af 845 if (trap == 0x300 || trap == 0x600)
ba28c9aa 846#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
14170789
KG
847 printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
848#else
7071854b 849 printk("DAR: "REG", DSISR: %08lx\n", regs->dar, regs->dsisr);
14170789 850#endif
06d67d54 851 printk("TASK = %p[%d] '%s' THREAD: %p",
19c5870c 852 current, task_pid_nr(current), current->comm, task_thread_info(current));
14cf11af
PM
853
854#ifdef CONFIG_SMP
79ccd1be 855 printk(" CPU: %d", raw_smp_processor_id());
14cf11af
PM
856#endif /* CONFIG_SMP */
857
858 for (i = 0; i < 32; i++) {
06d67d54 859 if ((i % REGS_PER_LINE) == 0)
a2367194 860 printk("\nGPR%02d: ", i);
06d67d54
PM
861 printk(REG " ", regs->gpr[i]);
862 if (i == LAST_VOLATILE && !FULL_REGS(regs))
14cf11af
PM
863 break;
864 }
865 printk("\n");
866#ifdef CONFIG_KALLSYMS
867 /*
868 * Lookup NIP late so we have the best change of getting the
869 * above info out without failing
870 */
058c78f4
BH
871 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
872 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
14cf11af 873#endif
afc07701
MN
874#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
875 printk("PACATMSCRATCH [%llx]\n", get_paca()->tm_scratch);
876#endif
14cf11af 877 show_stack(current, (unsigned long *) regs->gpr[1]);
06d67d54
PM
878 if (!user_mode(regs))
879 show_instructions(regs);
14cf11af
PM
880}
881
882void exit_thread(void)
883{
48abec07 884 discard_lazy_cpu_state();
14cf11af
PM
885}
886
887void flush_thread(void)
888{
48abec07 889 discard_lazy_cpu_state();
14cf11af 890
e0780b72 891#ifdef CONFIG_HAVE_HW_BREAKPOINT
5aae8a53 892 flush_ptrace_hw_breakpoint(current);
e0780b72 893#else /* CONFIG_HAVE_HW_BREAKPOINT */
3bffb652 894 set_debug_reg_defaults(&current->thread);
e0780b72 895#endif /* CONFIG_HAVE_HW_BREAKPOINT */
14cf11af
PM
896}
897
898void
899release_thread(struct task_struct *t)
900{
901}
902
903/*
55ccf3fe
SS
904 * this gets called so that we can store coprocessor state into memory and
905 * copy the current task into the new thread.
14cf11af 906 */
55ccf3fe 907int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
14cf11af 908{
55ccf3fe
SS
909 flush_fp_to_thread(src);
910 flush_altivec_to_thread(src);
911 flush_vsx_to_thread(src);
912 flush_spe_to_thread(src);
5aae8a53 913#ifdef CONFIG_HAVE_HW_BREAKPOINT
55ccf3fe 914 flush_ptrace_hw_breakpoint(src);
5aae8a53 915#endif /* CONFIG_HAVE_HW_BREAKPOINT */
55ccf3fe
SS
916
917 *dst = *src;
918 return 0;
14cf11af
PM
919}
920
921/*
922 * Copy a thread..
923 */
efcac658
AK
924extern unsigned long dscr_default; /* defined in arch/powerpc/kernel/sysfs.c */
925
6f2c55b8 926int copy_thread(unsigned long clone_flags, unsigned long usp,
afa86fc4 927 unsigned long arg, struct task_struct *p)
14cf11af
PM
928{
929 struct pt_regs *childregs, *kregs;
930 extern void ret_from_fork(void);
58254e10
AV
931 extern void ret_from_kernel_thread(void);
932 void (*f)(void);
0cec6fd1 933 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
14cf11af 934
14cf11af
PM
935 /* Copy registers */
936 sp -= sizeof(struct pt_regs);
937 childregs = (struct pt_regs *) sp;
ab75819d 938 if (unlikely(p->flags & PF_KTHREAD)) {
138d1ce8 939 struct thread_info *ti = (void *)task_stack_page(p);
58254e10 940 memset(childregs, 0, sizeof(struct pt_regs));
14cf11af 941 childregs->gpr[1] = sp + sizeof(struct pt_regs);
53b50f94 942 childregs->gpr[14] = usp; /* function */
58254e10 943#ifdef CONFIG_PPC64
b5e2fc1c 944 clear_tsk_thread_flag(p, TIF_32BIT);
138d1ce8 945 childregs->softe = 1;
06d67d54 946#endif
58254e10 947 childregs->gpr[15] = arg;
14cf11af 948 p->thread.regs = NULL; /* no user register state */
138d1ce8 949 ti->flags |= _TIF_RESTOREALL;
58254e10 950 f = ret_from_kernel_thread;
14cf11af 951 } else {
afa86fc4 952 struct pt_regs *regs = current_pt_regs();
58254e10
AV
953 CHECK_FULL_REGS(regs);
954 *childregs = *regs;
ea516b11
AV
955 if (usp)
956 childregs->gpr[1] = usp;
14cf11af 957 p->thread.regs = childregs;
58254e10 958 childregs->gpr[3] = 0; /* Result from fork() */
06d67d54
PM
959 if (clone_flags & CLONE_SETTLS) {
960#ifdef CONFIG_PPC64
9904b005 961 if (!is_32bit_task())
06d67d54
PM
962 childregs->gpr[13] = childregs->gpr[6];
963 else
964#endif
965 childregs->gpr[2] = childregs->gpr[6];
966 }
58254e10
AV
967
968 f = ret_from_fork;
14cf11af 969 }
14cf11af 970 sp -= STACK_FRAME_OVERHEAD;
14cf11af
PM
971
972 /*
973 * The way this works is that at some point in the future
974 * some task will call _switch to switch to the new task.
975 * That will pop off the stack frame created below and start
976 * the new task running at ret_from_fork. The new task will
977 * do some house keeping and then return from the fork or clone
978 * system call, using the stack frame created above.
979 */
980 sp -= sizeof(struct pt_regs);
981 kregs = (struct pt_regs *) sp;
982 sp -= STACK_FRAME_OVERHEAD;
983 p->thread.ksp = sp;
85218827
KG
984 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
985 _ALIGN_UP(sizeof(struct thread_info), 16);
14cf11af 986
94491685 987#ifdef CONFIG_PPC_STD_MMU_64
44ae3ab3 988 if (mmu_has_feature(MMU_FTR_SLB)) {
1189be65 989 unsigned long sp_vsid;
3c726f8d 990 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
06d67d54 991
44ae3ab3 992 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1189be65
PM
993 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
994 << SLB_VSID_SHIFT_1T;
995 else
996 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
997 << SLB_VSID_SHIFT;
3c726f8d 998 sp_vsid |= SLB_VSID_KERNEL | llp;
06d67d54
PM
999 p->thread.ksp_vsid = sp_vsid;
1000 }
747bea91 1001#endif /* CONFIG_PPC_STD_MMU_64 */
efcac658
AK
1002#ifdef CONFIG_PPC64
1003 if (cpu_has_feature(CPU_FTR_DSCR)) {
1021cb26
AB
1004 p->thread.dscr_inherit = current->thread.dscr_inherit;
1005 p->thread.dscr = current->thread.dscr;
efcac658 1006 }
92779245
HM
1007 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1008 p->thread.ppr = INIT_PPR;
efcac658 1009#endif
06d67d54
PM
1010 /*
1011 * The PPC64 ABI makes use of a TOC to contain function
1012 * pointers. The function (ret_from_except) is actually a pointer
1013 * to the TOC entry. The first entry is a pointer to the actual
1014 * function.
58254e10 1015 */
747bea91 1016#ifdef CONFIG_PPC64
58254e10 1017 kregs->nip = *((unsigned long *)f);
06d67d54 1018#else
58254e10 1019 kregs->nip = (unsigned long)f;
06d67d54 1020#endif
14cf11af
PM
1021 return 0;
1022}
1023
1024/*
1025 * Set up a thread for executing a new program
1026 */
06d67d54 1027void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
14cf11af 1028{
90eac727
ME
1029#ifdef CONFIG_PPC64
1030 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1031#endif
1032
06d67d54
PM
1033 /*
1034 * If we exec out of a kernel thread then thread.regs will not be
1035 * set. Do it now.
1036 */
1037 if (!current->thread.regs) {
0cec6fd1
AV
1038 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1039 current->thread.regs = regs - 1;
06d67d54
PM
1040 }
1041
14cf11af
PM
1042 memset(regs->gpr, 0, sizeof(regs->gpr));
1043 regs->ctr = 0;
1044 regs->link = 0;
1045 regs->xer = 0;
1046 regs->ccr = 0;
14cf11af 1047 regs->gpr[1] = sp;
06d67d54 1048
474f8196
RM
1049 /*
1050 * We have just cleared all the nonvolatile GPRs, so make
1051 * FULL_REGS(regs) return true. This is necessary to allow
1052 * ptrace to examine the thread immediately after exec.
1053 */
1054 regs->trap &= ~1UL;
1055
06d67d54
PM
1056#ifdef CONFIG_PPC32
1057 regs->mq = 0;
1058 regs->nip = start;
14cf11af 1059 regs->msr = MSR_USER;
06d67d54 1060#else
9904b005 1061 if (!is_32bit_task()) {
90eac727 1062 unsigned long entry, toc;
06d67d54
PM
1063
1064 /* start is a relocated pointer to the function descriptor for
1065 * the elf _start routine. The first entry in the function
1066 * descriptor is the entry address of _start and the second
1067 * entry is the TOC value we need to use.
1068 */
1069 __get_user(entry, (unsigned long __user *)start);
1070 __get_user(toc, (unsigned long __user *)start+1);
1071
1072 /* Check whether the e_entry function descriptor entries
1073 * need to be relocated before we can use them.
1074 */
1075 if (load_addr != 0) {
1076 entry += load_addr;
1077 toc += load_addr;
1078 }
1079 regs->nip = entry;
1080 regs->gpr[2] = toc;
1081 regs->msr = MSR_USER64;
d4bf9a78
SR
1082 } else {
1083 regs->nip = start;
1084 regs->gpr[2] = 0;
1085 regs->msr = MSR_USER32;
06d67d54
PM
1086 }
1087#endif
48abec07 1088 discard_lazy_cpu_state();
ce48b210
MN
1089#ifdef CONFIG_VSX
1090 current->thread.used_vsr = 0;
1091#endif
14cf11af 1092 memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
25c8a78b 1093 current->thread.fpscr.val = 0;
14cf11af
PM
1094#ifdef CONFIG_ALTIVEC
1095 memset(current->thread.vr, 0, sizeof(current->thread.vr));
1096 memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
06d67d54 1097 current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
14cf11af
PM
1098 current->thread.vrsave = 0;
1099 current->thread.used_vr = 0;
1100#endif /* CONFIG_ALTIVEC */
1101#ifdef CONFIG_SPE
1102 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1103 current->thread.acc = 0;
1104 current->thread.spefscr = 0;
1105 current->thread.used_spe = 0;
1106#endif /* CONFIG_SPE */
bc2a9408
MN
1107#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1108 if (cpu_has_feature(CPU_FTR_TM))
1109 regs->msr |= MSR_TM;
1110 current->thread.tm_tfhar = 0;
1111 current->thread.tm_texasr = 0;
1112 current->thread.tm_tfiar = 0;
1113#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
14cf11af
PM
1114}
1115
1116#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1117 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1118
1119int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1120{
1121 struct pt_regs *regs = tsk->thread.regs;
1122
1123 /* This is a bit hairy. If we are an SPE enabled processor
1124 * (have embedded fp) we store the IEEE exception enable flags in
1125 * fpexc_mode. fpexc_mode is also used for setting FP exception
1126 * mode (asyn, precise, disabled) for 'Classic' FP. */
1127 if (val & PR_FP_EXC_SW_ENABLE) {
1128#ifdef CONFIG_SPE
5e14d21e
KG
1129 if (cpu_has_feature(CPU_FTR_SPE)) {
1130 tsk->thread.fpexc_mode = val &
1131 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1132 return 0;
1133 } else {
1134 return -EINVAL;
1135 }
14cf11af
PM
1136#else
1137 return -EINVAL;
1138#endif
14cf11af 1139 }
06d67d54
PM
1140
1141 /* on a CONFIG_SPE this does not hurt us. The bits that
1142 * __pack_fe01 use do not overlap with bits used for
1143 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1144 * on CONFIG_SPE implementations are reserved so writing to
1145 * them does not change anything */
1146 if (val > PR_FP_EXC_PRECISE)
1147 return -EINVAL;
1148 tsk->thread.fpexc_mode = __pack_fe01(val);
1149 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1150 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1151 | tsk->thread.fpexc_mode;
14cf11af
PM
1152 return 0;
1153}
1154
1155int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1156{
1157 unsigned int val;
1158
1159 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1160#ifdef CONFIG_SPE
5e14d21e
KG
1161 if (cpu_has_feature(CPU_FTR_SPE))
1162 val = tsk->thread.fpexc_mode;
1163 else
1164 return -EINVAL;
14cf11af
PM
1165#else
1166 return -EINVAL;
1167#endif
1168 else
1169 val = __unpack_fe01(tsk->thread.fpexc_mode);
1170 return put_user(val, (unsigned int __user *) adr);
1171}
1172
fab5db97
PM
1173int set_endian(struct task_struct *tsk, unsigned int val)
1174{
1175 struct pt_regs *regs = tsk->thread.regs;
1176
1177 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1178 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1179 return -EINVAL;
1180
1181 if (regs == NULL)
1182 return -EINVAL;
1183
1184 if (val == PR_ENDIAN_BIG)
1185 regs->msr &= ~MSR_LE;
1186 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1187 regs->msr |= MSR_LE;
1188 else
1189 return -EINVAL;
1190
1191 return 0;
1192}
1193
1194int get_endian(struct task_struct *tsk, unsigned long adr)
1195{
1196 struct pt_regs *regs = tsk->thread.regs;
1197 unsigned int val;
1198
1199 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1200 !cpu_has_feature(CPU_FTR_REAL_LE))
1201 return -EINVAL;
1202
1203 if (regs == NULL)
1204 return -EINVAL;
1205
1206 if (regs->msr & MSR_LE) {
1207 if (cpu_has_feature(CPU_FTR_REAL_LE))
1208 val = PR_ENDIAN_LITTLE;
1209 else
1210 val = PR_ENDIAN_PPC_LITTLE;
1211 } else
1212 val = PR_ENDIAN_BIG;
1213
1214 return put_user(val, (unsigned int __user *)adr);
1215}
1216
e9370ae1
PM
1217int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1218{
1219 tsk->thread.align_ctl = val;
1220 return 0;
1221}
1222
1223int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1224{
1225 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1226}
1227
bb72c481
PM
1228static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1229 unsigned long nbytes)
1230{
1231 unsigned long stack_page;
1232 unsigned long cpu = task_cpu(p);
1233
1234 /*
1235 * Avoid crashing if the stack has overflowed and corrupted
1236 * task_cpu(p), which is in the thread_info struct.
1237 */
1238 if (cpu < NR_CPUS && cpu_possible(cpu)) {
1239 stack_page = (unsigned long) hardirq_ctx[cpu];
1240 if (sp >= stack_page + sizeof(struct thread_struct)
1241 && sp <= stack_page + THREAD_SIZE - nbytes)
1242 return 1;
1243
1244 stack_page = (unsigned long) softirq_ctx[cpu];
1245 if (sp >= stack_page + sizeof(struct thread_struct)
1246 && sp <= stack_page + THREAD_SIZE - nbytes)
1247 return 1;
1248 }
1249 return 0;
1250}
1251
2f25194d 1252int validate_sp(unsigned long sp, struct task_struct *p,
14cf11af
PM
1253 unsigned long nbytes)
1254{
0cec6fd1 1255 unsigned long stack_page = (unsigned long)task_stack_page(p);
14cf11af
PM
1256
1257 if (sp >= stack_page + sizeof(struct thread_struct)
1258 && sp <= stack_page + THREAD_SIZE - nbytes)
1259 return 1;
1260
bb72c481 1261 return valid_irq_stack(sp, p, nbytes);
14cf11af
PM
1262}
1263
2f25194d
AB
1264EXPORT_SYMBOL(validate_sp);
1265
14cf11af
PM
1266unsigned long get_wchan(struct task_struct *p)
1267{
1268 unsigned long ip, sp;
1269 int count = 0;
1270
1271 if (!p || p == current || p->state == TASK_RUNNING)
1272 return 0;
1273
1274 sp = p->thread.ksp;
ec2b36b9 1275 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
14cf11af
PM
1276 return 0;
1277
1278 do {
1279 sp = *(unsigned long *)sp;
ec2b36b9 1280 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
14cf11af
PM
1281 return 0;
1282 if (count > 0) {
ec2b36b9 1283 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
14cf11af
PM
1284 if (!in_sched_functions(ip))
1285 return ip;
1286 }
1287 } while (count++ < 16);
1288 return 0;
1289}
06d67d54 1290
c4d04be1 1291static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
06d67d54
PM
1292
1293void show_stack(struct task_struct *tsk, unsigned long *stack)
1294{
1295 unsigned long sp, ip, lr, newsp;
1296 int count = 0;
1297 int firstframe = 1;
6794c782
SR
1298#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1299 int curr_frame = current->curr_ret_stack;
1300 extern void return_to_handler(void);
9135c3cc
SR
1301 unsigned long rth = (unsigned long)return_to_handler;
1302 unsigned long mrth = -1;
6794c782 1303#ifdef CONFIG_PPC64
9135c3cc
SR
1304 extern void mod_return_to_handler(void);
1305 rth = *(unsigned long *)rth;
1306 mrth = (unsigned long)mod_return_to_handler;
1307 mrth = *(unsigned long *)mrth;
6794c782
SR
1308#endif
1309#endif
06d67d54
PM
1310
1311 sp = (unsigned long) stack;
1312 if (tsk == NULL)
1313 tsk = current;
1314 if (sp == 0) {
1315 if (tsk == current)
1316 asm("mr %0,1" : "=r" (sp));
1317 else
1318 sp = tsk->thread.ksp;
1319 }
1320
1321 lr = 0;
1322 printk("Call Trace:\n");
1323 do {
ec2b36b9 1324 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
06d67d54
PM
1325 return;
1326
1327 stack = (unsigned long *) sp;
1328 newsp = stack[0];
ec2b36b9 1329 ip = stack[STACK_FRAME_LR_SAVE];
06d67d54 1330 if (!firstframe || ip != lr) {
058c78f4 1331 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
6794c782 1332#ifdef CONFIG_FUNCTION_GRAPH_TRACER
9135c3cc 1333 if ((ip == rth || ip == mrth) && curr_frame >= 0) {
6794c782
SR
1334 printk(" (%pS)",
1335 (void *)current->ret_stack[curr_frame].ret);
1336 curr_frame--;
1337 }
1338#endif
06d67d54
PM
1339 if (firstframe)
1340 printk(" (unreliable)");
1341 printk("\n");
1342 }
1343 firstframe = 0;
1344
1345 /*
1346 * See if this is an exception frame.
1347 * We look for the "regshere" marker in the current frame.
1348 */
ec2b36b9
BH
1349 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1350 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
06d67d54
PM
1351 struct pt_regs *regs = (struct pt_regs *)
1352 (sp + STACK_FRAME_OVERHEAD);
06d67d54 1353 lr = regs->link;
058c78f4
BH
1354 printk("--- Exception: %lx at %pS\n LR = %pS\n",
1355 regs->trap, (void *)regs->nip, (void *)lr);
06d67d54
PM
1356 firstframe = 1;
1357 }
1358
1359 sp = newsp;
1360 } while (count++ < kstack_depth_to_print);
1361}
1362
1363void dump_stack(void)
1364{
1365 show_stack(current, NULL);
1366}
1367EXPORT_SYMBOL(dump_stack);
cb2c9b27
AB
1368
1369#ifdef CONFIG_PPC64
fe1952fc
BH
1370/* Called with hard IRQs off */
1371void __ppc64_runlatch_on(void)
cb2c9b27 1372{
fe1952fc 1373 struct thread_info *ti = current_thread_info();
cb2c9b27
AB
1374 unsigned long ctrl;
1375
fe1952fc
BH
1376 ctrl = mfspr(SPRN_CTRLF);
1377 ctrl |= CTRL_RUNLATCH;
1378 mtspr(SPRN_CTRLT, ctrl);
cb2c9b27 1379
fae2e0fb 1380 ti->local_flags |= _TLF_RUNLATCH;
cb2c9b27
AB
1381}
1382
fe1952fc 1383/* Called with hard IRQs off */
4138d653 1384void __ppc64_runlatch_off(void)
cb2c9b27 1385{
fe1952fc 1386 struct thread_info *ti = current_thread_info();
cb2c9b27
AB
1387 unsigned long ctrl;
1388
fae2e0fb 1389 ti->local_flags &= ~_TLF_RUNLATCH;
cb2c9b27 1390
4138d653
AB
1391 ctrl = mfspr(SPRN_CTRLF);
1392 ctrl &= ~CTRL_RUNLATCH;
1393 mtspr(SPRN_CTRLT, ctrl);
cb2c9b27 1394}
fe1952fc 1395#endif /* CONFIG_PPC64 */
f6a61680 1396
d839088c
AB
1397unsigned long arch_align_stack(unsigned long sp)
1398{
1399 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1400 sp -= get_random_int() & ~PAGE_MASK;
1401 return sp & ~0xf;
1402}
912f9ee2
AB
1403
1404static inline unsigned long brk_rnd(void)
1405{
1406 unsigned long rnd = 0;
1407
1408 /* 8MB for 32bit, 1GB for 64bit */
1409 if (is_32bit_task())
1410 rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1411 else
1412 rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1413
1414 return rnd << PAGE_SHIFT;
1415}
1416
1417unsigned long arch_randomize_brk(struct mm_struct *mm)
1418{
8bbde7a7
AB
1419 unsigned long base = mm->brk;
1420 unsigned long ret;
1421
ce7a35c7 1422#ifdef CONFIG_PPC_STD_MMU_64
8bbde7a7
AB
1423 /*
1424 * If we are using 1TB segments and we are allowed to randomise
1425 * the heap, we can put it above 1TB so it is backed by a 1TB
1426 * segment. Otherwise the heap will be in the bottom 1TB
1427 * which always uses 256MB segments and this may result in a
1428 * performance penalty.
1429 */
1430 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1431 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1432#endif
1433
1434 ret = PAGE_ALIGN(base + brk_rnd());
912f9ee2
AB
1435
1436 if (ret < mm->brk)
1437 return mm->brk;
1438
1439 return ret;
1440}
501cb16d
AB
1441
1442unsigned long randomize_et_dyn(unsigned long base)
1443{
1444 unsigned long ret = PAGE_ALIGN(base + brk_rnd());
1445
1446 if (ret < base)
1447 return base;
1448
1449 return ret;
1450}