powerpc: Use arch/powerpc/mm and arch/powerpc/lib for 64-bit
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / powerpc / kernel / process.c
CommitLineData
14cf11af
PM
1/*
2 * arch/ppc/kernel/process.c
3 *
4 * Derived from "arch/i386/kernel/process.c"
5 * Copyright (C) 1995 Linus Torvalds
6 *
7 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
8 * Paul Mackerras (paulus@cs.anu.edu.au)
9 *
10 * PowerPC version
11 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
12 *
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * as published by the Free Software Foundation; either version
16 * 2 of the License, or (at your option) any later version.
17 */
18
19#include <linux/config.h>
20#include <linux/errno.h>
21#include <linux/sched.h>
22#include <linux/kernel.h>
23#include <linux/mm.h>
24#include <linux/smp.h>
25#include <linux/smp_lock.h>
26#include <linux/stddef.h>
27#include <linux/unistd.h>
28#include <linux/ptrace.h>
29#include <linux/slab.h>
30#include <linux/user.h>
31#include <linux/elf.h>
32#include <linux/init.h>
33#include <linux/prctl.h>
34#include <linux/init_task.h>
35#include <linux/module.h>
36#include <linux/kallsyms.h>
37#include <linux/mqueue.h>
38#include <linux/hardirq.h>
39
40#include <asm/pgtable.h>
41#include <asm/uaccess.h>
42#include <asm/system.h>
43#include <asm/io.h>
44#include <asm/processor.h>
45#include <asm/mmu.h>
46#include <asm/prom.h>
47
48extern unsigned long _get_SP(void);
49
50#ifndef CONFIG_SMP
51struct task_struct *last_task_used_math = NULL;
52struct task_struct *last_task_used_altivec = NULL;
53struct task_struct *last_task_used_spe = NULL;
54#endif
55
56static struct fs_struct init_fs = INIT_FS;
57static struct files_struct init_files = INIT_FILES;
58static struct signal_struct init_signals = INIT_SIGNALS(init_signals);
59static struct sighand_struct init_sighand = INIT_SIGHAND(init_sighand);
60struct mm_struct init_mm = INIT_MM(init_mm);
61EXPORT_SYMBOL(init_mm);
62
63/* this is 8kB-aligned so we can get to the thread_info struct
64 at the base of it from the stack pointer with 1 integer instruction. */
65union thread_union init_thread_union
66 __attribute__((__section__(".data.init_task"))) =
67{ INIT_THREAD_INFO(init_task) };
68
69/* initial task structure */
70struct task_struct init_task = INIT_TASK(init_task);
71EXPORT_SYMBOL(init_task);
72
73/* only used to get secondary processor up */
74struct task_struct *current_set[NR_CPUS] = {&init_task, };
75
76/*
77 * Make sure the floating-point register state in the
78 * the thread_struct is up to date for task tsk.
79 */
80void flush_fp_to_thread(struct task_struct *tsk)
81{
82 if (tsk->thread.regs) {
83 /*
84 * We need to disable preemption here because if we didn't,
85 * another process could get scheduled after the regs->msr
86 * test but before we have finished saving the FP registers
87 * to the thread_struct. That process could take over the
88 * FPU, and then when we get scheduled again we would store
89 * bogus values for the remaining FP registers.
90 */
91 preempt_disable();
92 if (tsk->thread.regs->msr & MSR_FP) {
93#ifdef CONFIG_SMP
94 /*
95 * This should only ever be called for current or
96 * for a stopped child process. Since we save away
97 * the FP register state on context switch on SMP,
98 * there is something wrong if a stopped child appears
99 * to still have its FP state in the CPU registers.
100 */
101 BUG_ON(tsk != current);
102#endif
103 giveup_fpu(current);
104 }
105 preempt_enable();
106 }
107}
108
109void enable_kernel_fp(void)
110{
111 WARN_ON(preemptible());
112
113#ifdef CONFIG_SMP
114 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
115 giveup_fpu(current);
116 else
117 giveup_fpu(NULL); /* just enables FP for kernel */
118#else
119 giveup_fpu(last_task_used_math);
120#endif /* CONFIG_SMP */
121}
122EXPORT_SYMBOL(enable_kernel_fp);
123
124int dump_task_fpu(struct task_struct *tsk, elf_fpregset_t *fpregs)
125{
126 if (!tsk->thread.regs)
127 return 0;
128 flush_fp_to_thread(current);
129
130 memcpy(fpregs, &tsk->thread.fpr[0], sizeof(*fpregs));
131
132 return 1;
133}
134
135#ifdef CONFIG_ALTIVEC
136void enable_kernel_altivec(void)
137{
138 WARN_ON(preemptible());
139
140#ifdef CONFIG_SMP
141 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
142 giveup_altivec(current);
143 else
144 giveup_altivec(NULL); /* just enable AltiVec for kernel - force */
145#else
146 giveup_altivec(last_task_used_altivec);
147#endif /* CONFIG_SMP */
148}
149EXPORT_SYMBOL(enable_kernel_altivec);
150
151/*
152 * Make sure the VMX/Altivec register state in the
153 * the thread_struct is up to date for task tsk.
154 */
155void flush_altivec_to_thread(struct task_struct *tsk)
156{
157 if (tsk->thread.regs) {
158 preempt_disable();
159 if (tsk->thread.regs->msr & MSR_VEC) {
160#ifdef CONFIG_SMP
161 BUG_ON(tsk != current);
162#endif
163 giveup_altivec(current);
164 }
165 preempt_enable();
166 }
167}
168
169int dump_task_altivec(struct pt_regs *regs, elf_vrregset_t *vrregs)
170{
171 flush_altivec_to_thread(current);
172 memcpy(vrregs, &current->thread.vr[0], sizeof(*vrregs));
173 return 1;
174}
175#endif /* CONFIG_ALTIVEC */
176
177#ifdef CONFIG_SPE
178
179void enable_kernel_spe(void)
180{
181 WARN_ON(preemptible());
182
183#ifdef CONFIG_SMP
184 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
185 giveup_spe(current);
186 else
187 giveup_spe(NULL); /* just enable SPE for kernel - force */
188#else
189 giveup_spe(last_task_used_spe);
190#endif /* __SMP __ */
191}
192EXPORT_SYMBOL(enable_kernel_spe);
193
194void flush_spe_to_thread(struct task_struct *tsk)
195{
196 if (tsk->thread.regs) {
197 preempt_disable();
198 if (tsk->thread.regs->msr & MSR_SPE) {
199#ifdef CONFIG_SMP
200 BUG_ON(tsk != current);
201#endif
202 giveup_spe(current);
203 }
204 preempt_enable();
205 }
206}
207
208int dump_spe(struct pt_regs *regs, elf_vrregset_t *evrregs)
209{
210 flush_spe_to_thread(current);
211 /* We copy u32 evr[32] + u64 acc + u32 spefscr -> 35 */
212 memcpy(evrregs, &current->thread.evr[0], sizeof(u32) * 35);
213 return 1;
214}
215#endif /* CONFIG_SPE */
216
217static void set_dabr_spr(unsigned long val)
218{
219 mtspr(SPRN_DABR, val);
220}
221
222int set_dabr(unsigned long dabr)
223{
224 int ret = 0;
225
226#ifdef CONFIG_PPC64
227 if (firmware_has_feature(FW_FEATURE_XDABR)) {
228 /* We want to catch accesses from kernel and userspace */
229 unsigned long flags = H_DABRX_KERNEL|H_DABRX_USER;
230 ret = plpar_set_xdabr(dabr, flags);
231 } else if (firmware_has_feature(FW_FEATURE_DABR)) {
232 ret = plpar_set_dabr(dabr);
233 } else
234#endif
235 set_dabr_spr(dabr);
236
237 return ret;
238}
239
240static DEFINE_PER_CPU(unsigned long, current_dabr);
241
242struct task_struct *__switch_to(struct task_struct *prev,
243 struct task_struct *new)
244{
245 struct thread_struct *new_thread, *old_thread;
246 unsigned long flags;
247 struct task_struct *last;
248
249#ifdef CONFIG_SMP
250 /* avoid complexity of lazy save/restore of fpu
251 * by just saving it every time we switch out if
252 * this task used the fpu during the last quantum.
253 *
254 * If it tries to use the fpu again, it'll trap and
255 * reload its fp regs. So we don't have to do a restore
256 * every switch, just a save.
257 * -- Cort
258 */
259 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
260 giveup_fpu(prev);
261#ifdef CONFIG_ALTIVEC
262 /*
263 * If the previous thread used altivec in the last quantum
264 * (thus changing altivec regs) then save them.
265 * We used to check the VRSAVE register but not all apps
266 * set it, so we don't rely on it now (and in fact we need
267 * to save & restore VSCR even if VRSAVE == 0). -- paulus
268 *
269 * On SMP we always save/restore altivec regs just to avoid the
270 * complexity of changing processors.
271 * -- Cort
272 */
273 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
274 giveup_altivec(prev);
14cf11af
PM
275#endif /* CONFIG_ALTIVEC */
276#ifdef CONFIG_SPE
277 /*
278 * If the previous thread used spe in the last quantum
279 * (thus changing spe regs) then save them.
280 *
281 * On SMP we always save/restore spe regs just to avoid the
282 * complexity of changing processors.
283 */
284 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
285 giveup_spe(prev);
c0c0d996
PM
286#endif /* CONFIG_SPE */
287
288#else /* CONFIG_SMP */
289#ifdef CONFIG_ALTIVEC
290 /* Avoid the trap. On smp this this never happens since
291 * we don't set last_task_used_altivec -- Cort
292 */
293 if (new->thread.regs && last_task_used_altivec == new)
294 new->thread.regs->msr |= MSR_VEC;
295#endif /* CONFIG_ALTIVEC */
296#ifdef CONFIG_SPE
14cf11af
PM
297 /* Avoid the trap. On smp this this never happens since
298 * we don't set last_task_used_spe
299 */
300 if (new->thread.regs && last_task_used_spe == new)
301 new->thread.regs->msr |= MSR_SPE;
302#endif /* CONFIG_SPE */
c0c0d996 303
14cf11af
PM
304#endif /* CONFIG_SMP */
305
306#ifdef CONFIG_PPC64 /* for now */
307 if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr)) {
308 set_dabr(new->thread.dabr);
309 __get_cpu_var(current_dabr) = new->thread.dabr;
310 }
311#endif
312
313 new_thread = &new->thread;
314 old_thread = &current->thread;
315 local_irq_save(flags);
316 last = _switch(old_thread, new_thread);
317
318 local_irq_restore(flags);
319
320 return last;
321}
322
323void show_regs(struct pt_regs * regs)
324{
325 int i, trap;
326
327 printk("NIP: %08lX LR: %08lX SP: %08lX REGS: %p TRAP: %04lx %s\n",
328 regs->nip, regs->link, regs->gpr[1], regs, regs->trap,
329 print_tainted());
330 printk("MSR: %08lx EE: %01x PR: %01x FP: %01x ME: %01x IR/DR: %01x%01x\n",
331 regs->msr, regs->msr&MSR_EE ? 1 : 0, regs->msr&MSR_PR ? 1 : 0,
332 regs->msr & MSR_FP ? 1 : 0,regs->msr&MSR_ME ? 1 : 0,
333 regs->msr&MSR_IR ? 1 : 0,
334 regs->msr&MSR_DR ? 1 : 0);
335 trap = TRAP(regs);
336 if (trap == 0x300 || trap == 0x600)
337 printk("DAR: %08lX, DSISR: %08lX\n", regs->dar, regs->dsisr);
338 printk("TASK = %p[%d] '%s' THREAD: %p\n",
339 current, current->pid, current->comm, current->thread_info);
340 printk("Last syscall: %ld ", current->thread.last_syscall);
341
342#ifdef CONFIG_SMP
343 printk(" CPU: %d", smp_processor_id());
344#endif /* CONFIG_SMP */
345
346 for (i = 0; i < 32; i++) {
347 long r;
348 if ((i % 8) == 0)
349 printk("\n" KERN_INFO "GPR%02d: ", i);
350 if (__get_user(r, &regs->gpr[i]))
351 break;
352 printk("%08lX ", r);
353 if (i == 12 && !FULL_REGS(regs))
354 break;
355 }
356 printk("\n");
357#ifdef CONFIG_KALLSYMS
358 /*
359 * Lookup NIP late so we have the best change of getting the
360 * above info out without failing
361 */
362 printk("NIP [%08lx] ", regs->nip);
363 print_symbol("%s\n", regs->nip);
364 printk("LR [%08lx] ", regs->link);
365 print_symbol("%s\n", regs->link);
366#endif
367 show_stack(current, (unsigned long *) regs->gpr[1]);
368}
369
370void exit_thread(void)
371{
372#ifndef CONFIG_SMP
373 if (last_task_used_math == current)
374 last_task_used_math = NULL;
375#ifdef CONFIG_ALTIVEC
376 if (last_task_used_altivec == current)
377 last_task_used_altivec = NULL;
378#endif /* CONFIG_ALTIVEC */
379#ifdef CONFIG_SPE
380 if (last_task_used_spe == current)
381 last_task_used_spe = NULL;
382#endif
383#endif /* CONFIG_SMP */
384}
385
386void flush_thread(void)
387{
388#ifndef CONFIG_SMP
389 if (last_task_used_math == current)
390 last_task_used_math = NULL;
391#ifdef CONFIG_ALTIVEC
392 if (last_task_used_altivec == current)
393 last_task_used_altivec = NULL;
394#endif /* CONFIG_ALTIVEC */
395#ifdef CONFIG_SPE
396 if (last_task_used_spe == current)
397 last_task_used_spe = NULL;
398#endif
399#endif /* CONFIG_SMP */
400
401#ifdef CONFIG_PPC64 /* for now */
402 if (current->thread.dabr) {
403 current->thread.dabr = 0;
404 set_dabr(0);
405 }
406#endif
407}
408
409void
410release_thread(struct task_struct *t)
411{
412}
413
414/*
415 * This gets called before we allocate a new thread and copy
416 * the current task into it.
417 */
418void prepare_to_copy(struct task_struct *tsk)
419{
420 flush_fp_to_thread(current);
421 flush_altivec_to_thread(current);
422 flush_spe_to_thread(current);
423}
424
425/*
426 * Copy a thread..
427 */
428int
429copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
430 unsigned long unused,
431 struct task_struct *p, struct pt_regs *regs)
432{
433 struct pt_regs *childregs, *kregs;
434 extern void ret_from_fork(void);
435 unsigned long sp = (unsigned long)p->thread_info + THREAD_SIZE;
436 unsigned long childframe;
437
438 CHECK_FULL_REGS(regs);
439 /* Copy registers */
440 sp -= sizeof(struct pt_regs);
441 childregs = (struct pt_regs *) sp;
442 *childregs = *regs;
443 if ((childregs->msr & MSR_PR) == 0) {
444 /* for kernel thread, set `current' and stackptr in new task */
445 childregs->gpr[1] = sp + sizeof(struct pt_regs);
446 childregs->gpr[2] = (unsigned long) p;
447 p->thread.regs = NULL; /* no user register state */
448 } else {
449 childregs->gpr[1] = usp;
450 p->thread.regs = childregs;
451 if (clone_flags & CLONE_SETTLS)
452 childregs->gpr[2] = childregs->gpr[6];
453 }
454 childregs->gpr[3] = 0; /* Result from fork() */
455 sp -= STACK_FRAME_OVERHEAD;
456 childframe = sp;
457
458 /*
459 * The way this works is that at some point in the future
460 * some task will call _switch to switch to the new task.
461 * That will pop off the stack frame created below and start
462 * the new task running at ret_from_fork. The new task will
463 * do some house keeping and then return from the fork or clone
464 * system call, using the stack frame created above.
465 */
466 sp -= sizeof(struct pt_regs);
467 kregs = (struct pt_regs *) sp;
468 sp -= STACK_FRAME_OVERHEAD;
469 p->thread.ksp = sp;
470 kregs->nip = (unsigned long)ret_from_fork;
471
472 p->thread.last_syscall = -1;
473
474 return 0;
475}
476
477/*
478 * Set up a thread for executing a new program
479 */
480void start_thread(struct pt_regs *regs, unsigned long nip, unsigned long sp)
481{
482 set_fs(USER_DS);
483 memset(regs->gpr, 0, sizeof(regs->gpr));
484 regs->ctr = 0;
485 regs->link = 0;
486 regs->xer = 0;
487 regs->ccr = 0;
488 regs->mq = 0;
489 regs->nip = nip;
490 regs->gpr[1] = sp;
491 regs->msr = MSR_USER;
492#ifndef CONFIG_SMP
493 if (last_task_used_math == current)
494 last_task_used_math = NULL;
495#ifdef CONFIG_ALTIVEC
496 if (last_task_used_altivec == current)
497 last_task_used_altivec = NULL;
498#endif
499#ifdef CONFIG_SPE
500 if (last_task_used_spe == current)
501 last_task_used_spe = NULL;
502#endif
503#endif /* CONFIG_SMP */
504 memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
505 current->thread.fpscr = 0;
506#ifdef CONFIG_ALTIVEC
507 memset(current->thread.vr, 0, sizeof(current->thread.vr));
508 memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
509 current->thread.vrsave = 0;
510 current->thread.used_vr = 0;
511#endif /* CONFIG_ALTIVEC */
512#ifdef CONFIG_SPE
513 memset(current->thread.evr, 0, sizeof(current->thread.evr));
514 current->thread.acc = 0;
515 current->thread.spefscr = 0;
516 current->thread.used_spe = 0;
517#endif /* CONFIG_SPE */
518}
519
520#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
521 | PR_FP_EXC_RES | PR_FP_EXC_INV)
522
523int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
524{
525 struct pt_regs *regs = tsk->thread.regs;
526
527 /* This is a bit hairy. If we are an SPE enabled processor
528 * (have embedded fp) we store the IEEE exception enable flags in
529 * fpexc_mode. fpexc_mode is also used for setting FP exception
530 * mode (asyn, precise, disabled) for 'Classic' FP. */
531 if (val & PR_FP_EXC_SW_ENABLE) {
532#ifdef CONFIG_SPE
533 tsk->thread.fpexc_mode = val &
534 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
535#else
536 return -EINVAL;
537#endif
538 } else {
539 /* on a CONFIG_SPE this does not hurt us. The bits that
540 * __pack_fe01 use do not overlap with bits used for
541 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
542 * on CONFIG_SPE implementations are reserved so writing to
543 * them does not change anything */
544 if (val > PR_FP_EXC_PRECISE)
545 return -EINVAL;
546 tsk->thread.fpexc_mode = __pack_fe01(val);
547 if (regs != NULL && (regs->msr & MSR_FP) != 0)
548 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
549 | tsk->thread.fpexc_mode;
550 }
551 return 0;
552}
553
554int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
555{
556 unsigned int val;
557
558 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
559#ifdef CONFIG_SPE
560 val = tsk->thread.fpexc_mode;
561#else
562 return -EINVAL;
563#endif
564 else
565 val = __unpack_fe01(tsk->thread.fpexc_mode);
566 return put_user(val, (unsigned int __user *) adr);
567}
568
569int sys_clone(unsigned long clone_flags, unsigned long usp,
570 int __user *parent_tidp, void __user *child_threadptr,
571 int __user *child_tidp, int p6,
572 struct pt_regs *regs)
573{
574 CHECK_FULL_REGS(regs);
575 if (usp == 0)
576 usp = regs->gpr[1]; /* stack pointer for child */
577 return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
578}
579
580int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
581 unsigned long p4, unsigned long p5, unsigned long p6,
582 struct pt_regs *regs)
583{
584 CHECK_FULL_REGS(regs);
585 return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
586}
587
588int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
589 unsigned long p4, unsigned long p5, unsigned long p6,
590 struct pt_regs *regs)
591{
592 CHECK_FULL_REGS(regs);
593 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
594 regs, 0, NULL, NULL);
595}
596
597int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
598 unsigned long a3, unsigned long a4, unsigned long a5,
599 struct pt_regs *regs)
600{
601 int error;
602 char * filename;
603
604 filename = getname((char __user *) a0);
605 error = PTR_ERR(filename);
606 if (IS_ERR(filename))
607 goto out;
608 flush_fp_to_thread(current);
609 flush_altivec_to_thread(current);
610 flush_spe_to_thread(current);
20c8c210
PM
611 error = do_execve(filename, (char __user * __user *) a1,
612 (char __user * __user *) a2, regs);
14cf11af
PM
613 if (error == 0) {
614 task_lock(current);
615 current->ptrace &= ~PT_DTRACE;
616 task_unlock(current);
617 }
618 putname(filename);
619out:
620 return error;
621}
622
623static int validate_sp(unsigned long sp, struct task_struct *p,
624 unsigned long nbytes)
625{
626 unsigned long stack_page = (unsigned long)p->thread_info;
627
628 if (sp >= stack_page + sizeof(struct thread_struct)
629 && sp <= stack_page + THREAD_SIZE - nbytes)
630 return 1;
631
632#ifdef CONFIG_IRQSTACKS
633 stack_page = (unsigned long) hardirq_ctx[task_cpu(p)];
634 if (sp >= stack_page + sizeof(struct thread_struct)
635 && sp <= stack_page + THREAD_SIZE - nbytes)
636 return 1;
637
638 stack_page = (unsigned long) softirq_ctx[task_cpu(p)];
639 if (sp >= stack_page + sizeof(struct thread_struct)
640 && sp <= stack_page + THREAD_SIZE - nbytes)
641 return 1;
642#endif
643
644 return 0;
645}
646
647void dump_stack(void)
648{
649 show_stack(current, NULL);
650}
651
652EXPORT_SYMBOL(dump_stack);
653
654void show_stack(struct task_struct *tsk, unsigned long *stack)
655{
656 unsigned long sp, stack_top, prev_sp, ret;
657 int count = 0;
658 unsigned long next_exc = 0;
659 struct pt_regs *regs;
660 extern char ret_from_except, ret_from_except_full, ret_from_syscall;
661
662 sp = (unsigned long) stack;
663 if (tsk == NULL)
664 tsk = current;
665 if (sp == 0) {
666 if (tsk == current)
667 asm("mr %0,1" : "=r" (sp));
668 else
669 sp = tsk->thread.ksp;
670 }
671
672 prev_sp = (unsigned long) (tsk->thread_info + 1);
673 stack_top = (unsigned long) tsk->thread_info + THREAD_SIZE;
674 while (count < 16 && sp > prev_sp && sp < stack_top && (sp & 3) == 0) {
675 if (count == 0) {
676 printk("Call trace:");
677#ifdef CONFIG_KALLSYMS
678 printk("\n");
679#endif
680 } else {
681 if (next_exc) {
682 ret = next_exc;
683 next_exc = 0;
684 } else
685 ret = *(unsigned long *)(sp + 4);
686 printk(" [%08lx] ", ret);
687#ifdef CONFIG_KALLSYMS
688 print_symbol("%s", ret);
689 printk("\n");
690#endif
691 if (ret == (unsigned long) &ret_from_except
692 || ret == (unsigned long) &ret_from_except_full
693 || ret == (unsigned long) &ret_from_syscall) {
694 /* sp + 16 points to an exception frame */
695 regs = (struct pt_regs *) (sp + 16);
696 if (sp + 16 + sizeof(*regs) <= stack_top)
697 next_exc = regs->nip;
698 }
699 }
700 ++count;
701 sp = *(unsigned long *)sp;
702 }
703#ifndef CONFIG_KALLSYMS
704 if (count > 0)
705 printk("\n");
706#endif
707}
708
709unsigned long get_wchan(struct task_struct *p)
710{
711 unsigned long ip, sp;
712 int count = 0;
713
714 if (!p || p == current || p->state == TASK_RUNNING)
715 return 0;
716
717 sp = p->thread.ksp;
718 if (!validate_sp(sp, p, 16))
719 return 0;
720
721 do {
722 sp = *(unsigned long *)sp;
723 if (!validate_sp(sp, p, 16))
724 return 0;
725 if (count > 0) {
726 ip = *(unsigned long *)(sp + 4);
727 if (!in_sched_functions(ip))
728 return ip;
729 }
730 } while (count++ < 16);
731 return 0;
732}
733EXPORT_SYMBOL(get_wchan);