powerpc: Hardware breakpoints rewrite to handle non DABR breakpoint registers
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / powerpc / kernel / process.c
CommitLineData
14cf11af 1/*
14cf11af
PM
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
14cf11af
PM
17#include <linux/errno.h>
18#include <linux/sched.h>
19#include <linux/kernel.h>
20#include <linux/mm.h>
21#include <linux/smp.h>
14cf11af
PM
22#include <linux/stddef.h>
23#include <linux/unistd.h>
24#include <linux/ptrace.h>
25#include <linux/slab.h>
26#include <linux/user.h>
27#include <linux/elf.h>
28#include <linux/init.h>
29#include <linux/prctl.h>
30#include <linux/init_task.h>
4b16f8e2 31#include <linux/export.h>
14cf11af
PM
32#include <linux/kallsyms.h>
33#include <linux/mqueue.h>
34#include <linux/hardirq.h>
06d67d54 35#include <linux/utsname.h>
6794c782 36#include <linux/ftrace.h>
79741dd3 37#include <linux/kernel_stat.h>
d839088c
AB
38#include <linux/personality.h>
39#include <linux/random.h>
5aae8a53 40#include <linux/hw_breakpoint.h>
14cf11af
PM
41
42#include <asm/pgtable.h>
43#include <asm/uaccess.h>
14cf11af
PM
44#include <asm/io.h>
45#include <asm/processor.h>
46#include <asm/mmu.h>
47#include <asm/prom.h>
76032de8 48#include <asm/machdep.h>
c6622f63 49#include <asm/time.h>
ae3a197e 50#include <asm/runlatch.h>
a7f31841 51#include <asm/syscalls.h>
ae3a197e
DH
52#include <asm/switch_to.h>
53#include <asm/debug.h>
06d67d54
PM
54#ifdef CONFIG_PPC64
55#include <asm/firmware.h>
06d67d54 56#endif
d6a61bfc
LM
57#include <linux/kprobes.h>
58#include <linux/kdebug.h>
14cf11af
PM
59
60extern unsigned long _get_SP(void);
61
62#ifndef CONFIG_SMP
63struct task_struct *last_task_used_math = NULL;
64struct task_struct *last_task_used_altivec = NULL;
ce48b210 65struct task_struct *last_task_used_vsx = NULL;
14cf11af
PM
66struct task_struct *last_task_used_spe = NULL;
67#endif
68
14cf11af
PM
69/*
70 * Make sure the floating-point register state in the
71 * the thread_struct is up to date for task tsk.
72 */
73void flush_fp_to_thread(struct task_struct *tsk)
74{
75 if (tsk->thread.regs) {
76 /*
77 * We need to disable preemption here because if we didn't,
78 * another process could get scheduled after the regs->msr
79 * test but before we have finished saving the FP registers
80 * to the thread_struct. That process could take over the
81 * FPU, and then when we get scheduled again we would store
82 * bogus values for the remaining FP registers.
83 */
84 preempt_disable();
85 if (tsk->thread.regs->msr & MSR_FP) {
86#ifdef CONFIG_SMP
87 /*
88 * This should only ever be called for current or
89 * for a stopped child process. Since we save away
90 * the FP register state on context switch on SMP,
91 * there is something wrong if a stopped child appears
92 * to still have its FP state in the CPU registers.
93 */
94 BUG_ON(tsk != current);
95#endif
0ee6c15e 96 giveup_fpu(tsk);
14cf11af
PM
97 }
98 preempt_enable();
99 }
100}
de56a948 101EXPORT_SYMBOL_GPL(flush_fp_to_thread);
14cf11af
PM
102
103void enable_kernel_fp(void)
104{
105 WARN_ON(preemptible());
106
107#ifdef CONFIG_SMP
108 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
109 giveup_fpu(current);
110 else
111 giveup_fpu(NULL); /* just enables FP for kernel */
112#else
113 giveup_fpu(last_task_used_math);
114#endif /* CONFIG_SMP */
115}
116EXPORT_SYMBOL(enable_kernel_fp);
117
14cf11af
PM
118#ifdef CONFIG_ALTIVEC
119void enable_kernel_altivec(void)
120{
121 WARN_ON(preemptible());
122
123#ifdef CONFIG_SMP
124 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
125 giveup_altivec(current);
126 else
35000870 127 giveup_altivec_notask();
14cf11af
PM
128#else
129 giveup_altivec(last_task_used_altivec);
130#endif /* CONFIG_SMP */
131}
132EXPORT_SYMBOL(enable_kernel_altivec);
133
134/*
135 * Make sure the VMX/Altivec register state in the
136 * the thread_struct is up to date for task tsk.
137 */
138void flush_altivec_to_thread(struct task_struct *tsk)
139{
140 if (tsk->thread.regs) {
141 preempt_disable();
142 if (tsk->thread.regs->msr & MSR_VEC) {
143#ifdef CONFIG_SMP
144 BUG_ON(tsk != current);
145#endif
0ee6c15e 146 giveup_altivec(tsk);
14cf11af
PM
147 }
148 preempt_enable();
149 }
150}
de56a948 151EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
14cf11af
PM
152#endif /* CONFIG_ALTIVEC */
153
ce48b210
MN
154#ifdef CONFIG_VSX
155#if 0
156/* not currently used, but some crazy RAID module might want to later */
157void enable_kernel_vsx(void)
158{
159 WARN_ON(preemptible());
160
161#ifdef CONFIG_SMP
162 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
163 giveup_vsx(current);
164 else
165 giveup_vsx(NULL); /* just enable vsx for kernel - force */
166#else
167 giveup_vsx(last_task_used_vsx);
168#endif /* CONFIG_SMP */
169}
170EXPORT_SYMBOL(enable_kernel_vsx);
171#endif
172
7c292170
MN
173void giveup_vsx(struct task_struct *tsk)
174{
175 giveup_fpu(tsk);
176 giveup_altivec(tsk);
177 __giveup_vsx(tsk);
178}
179
ce48b210
MN
180void flush_vsx_to_thread(struct task_struct *tsk)
181{
182 if (tsk->thread.regs) {
183 preempt_disable();
184 if (tsk->thread.regs->msr & MSR_VSX) {
185#ifdef CONFIG_SMP
186 BUG_ON(tsk != current);
187#endif
188 giveup_vsx(tsk);
189 }
190 preempt_enable();
191 }
192}
de56a948 193EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
ce48b210
MN
194#endif /* CONFIG_VSX */
195
14cf11af
PM
196#ifdef CONFIG_SPE
197
198void enable_kernel_spe(void)
199{
200 WARN_ON(preemptible());
201
202#ifdef CONFIG_SMP
203 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
204 giveup_spe(current);
205 else
206 giveup_spe(NULL); /* just enable SPE for kernel - force */
207#else
208 giveup_spe(last_task_used_spe);
209#endif /* __SMP __ */
210}
211EXPORT_SYMBOL(enable_kernel_spe);
212
213void flush_spe_to_thread(struct task_struct *tsk)
214{
215 if (tsk->thread.regs) {
216 preempt_disable();
217 if (tsk->thread.regs->msr & MSR_SPE) {
218#ifdef CONFIG_SMP
219 BUG_ON(tsk != current);
220#endif
685659ee 221 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
0ee6c15e 222 giveup_spe(tsk);
14cf11af
PM
223 }
224 preempt_enable();
225 }
226}
14cf11af
PM
227#endif /* CONFIG_SPE */
228
5388fb10 229#ifndef CONFIG_SMP
48abec07
PM
230/*
231 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
232 * and the current task has some state, discard it.
233 */
5388fb10 234void discard_lazy_cpu_state(void)
48abec07 235{
48abec07
PM
236 preempt_disable();
237 if (last_task_used_math == current)
238 last_task_used_math = NULL;
239#ifdef CONFIG_ALTIVEC
240 if (last_task_used_altivec == current)
241 last_task_used_altivec = NULL;
242#endif /* CONFIG_ALTIVEC */
ce48b210
MN
243#ifdef CONFIG_VSX
244 if (last_task_used_vsx == current)
245 last_task_used_vsx = NULL;
246#endif /* CONFIG_VSX */
48abec07
PM
247#ifdef CONFIG_SPE
248 if (last_task_used_spe == current)
249 last_task_used_spe = NULL;
250#endif
251 preempt_enable();
48abec07 252}
5388fb10 253#endif /* CONFIG_SMP */
48abec07 254
3bffb652
DK
255#ifdef CONFIG_PPC_ADV_DEBUG_REGS
256void do_send_trap(struct pt_regs *regs, unsigned long address,
257 unsigned long error_code, int signal_code, int breakpt)
258{
259 siginfo_t info;
260
41ab5266 261 current->thread.trap_nr = signal_code;
3bffb652
DK
262 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
263 11, SIGSEGV) == NOTIFY_STOP)
264 return;
265
266 /* Deliver the signal to userspace */
267 info.si_signo = SIGTRAP;
268 info.si_errno = breakpt; /* breakpoint or watchpoint id */
269 info.si_code = signal_code;
270 info.si_addr = (void __user *)address;
271 force_sig_info(SIGTRAP, &info, current);
272}
273#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
9422de3e 274void do_break (struct pt_regs *regs, unsigned long address,
d6a61bfc
LM
275 unsigned long error_code)
276{
277 siginfo_t info;
278
41ab5266 279 current->thread.trap_nr = TRAP_HWBKPT;
d6a61bfc
LM
280 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
281 11, SIGSEGV) == NOTIFY_STOP)
282 return;
283
9422de3e 284 if (debugger_break_match(regs))
d6a61bfc
LM
285 return;
286
9422de3e
MN
287 /* Clear the breakpoint */
288 hw_breakpoint_disable();
d6a61bfc
LM
289
290 /* Deliver the signal to userspace */
291 info.si_signo = SIGTRAP;
292 info.si_errno = 0;
293 info.si_code = TRAP_HWBKPT;
294 info.si_addr = (void __user *)address;
295 force_sig_info(SIGTRAP, &info, current);
296}
3bffb652 297#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
d6a61bfc 298
9422de3e 299static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
a2ceff5e 300
3bffb652
DK
301#ifdef CONFIG_PPC_ADV_DEBUG_REGS
302/*
303 * Set the debug registers back to their default "safe" values.
304 */
305static void set_debug_reg_defaults(struct thread_struct *thread)
306{
307 thread->iac1 = thread->iac2 = 0;
308#if CONFIG_PPC_ADV_DEBUG_IACS > 2
309 thread->iac3 = thread->iac4 = 0;
310#endif
311 thread->dac1 = thread->dac2 = 0;
312#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
313 thread->dvc1 = thread->dvc2 = 0;
314#endif
315 thread->dbcr0 = 0;
316#ifdef CONFIG_BOOKE
317 /*
318 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
319 */
320 thread->dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | \
321 DBCR1_IAC3US | DBCR1_IAC4US;
322 /*
323 * Force Data Address Compare User/Supervisor bits to be User-only
324 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
325 */
326 thread->dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
327#else
328 thread->dbcr1 = 0;
329#endif
330}
331
332static void prime_debug_regs(struct thread_struct *thread)
333{
334 mtspr(SPRN_IAC1, thread->iac1);
335 mtspr(SPRN_IAC2, thread->iac2);
336#if CONFIG_PPC_ADV_DEBUG_IACS > 2
337 mtspr(SPRN_IAC3, thread->iac3);
338 mtspr(SPRN_IAC4, thread->iac4);
339#endif
340 mtspr(SPRN_DAC1, thread->dac1);
341 mtspr(SPRN_DAC2, thread->dac2);
342#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
343 mtspr(SPRN_DVC1, thread->dvc1);
344 mtspr(SPRN_DVC2, thread->dvc2);
345#endif
346 mtspr(SPRN_DBCR0, thread->dbcr0);
347 mtspr(SPRN_DBCR1, thread->dbcr1);
348#ifdef CONFIG_BOOKE
349 mtspr(SPRN_DBCR2, thread->dbcr2);
350#endif
351}
352/*
353 * Unless neither the old or new thread are making use of the
354 * debug registers, set the debug registers from the values
355 * stored in the new thread.
356 */
357static void switch_booke_debug_regs(struct thread_struct *new_thread)
358{
359 if ((current->thread.dbcr0 & DBCR0_IDM)
360 || (new_thread->dbcr0 & DBCR0_IDM))
361 prime_debug_regs(new_thread);
362}
363#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
e0780b72 364#ifndef CONFIG_HAVE_HW_BREAKPOINT
3bffb652
DK
365static void set_debug_reg_defaults(struct thread_struct *thread)
366{
9422de3e
MN
367 thread->hw_brk.address = 0;
368 thread->hw_brk.type = 0;
369 set_break(&thread->hw_brk);
3bffb652 370}
e0780b72 371#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
3bffb652
DK
372#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
373
172ae2e7 374#ifdef CONFIG_PPC_ADV_DEBUG_REGS
9422de3e
MN
375static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
376{
d6a61bfc 377 mtspr(SPRN_DAC1, dabr);
221c185d
DK
378#ifdef CONFIG_PPC_47x
379 isync();
380#endif
9422de3e
MN
381 return 0;
382}
c6c9eace 383#elif defined(CONFIG_PPC_BOOK3S)
9422de3e
MN
384static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
385{
c6c9eace 386 mtspr(SPRN_DABR, dabr);
4474ef05 387 mtspr(SPRN_DABRX, dabrx);
cab0af98 388 return 0;
14cf11af 389}
9422de3e
MN
390#else
391static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
392{
393 return -EINVAL;
394}
395#endif
396
397static inline int set_dabr(struct arch_hw_breakpoint *brk)
398{
399 unsigned long dabr, dabrx;
400
401 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
402 dabrx = ((brk->type >> 3) & 0x7);
403
404 if (ppc_md.set_dabr)
405 return ppc_md.set_dabr(dabr, dabrx);
406
407 return __set_dabr(dabr, dabrx);
408}
409
410int set_break(struct arch_hw_breakpoint *brk)
411{
412 __get_cpu_var(current_brk) = *brk;
413
414 return set_dabr(brk);
415}
14cf11af 416
06d67d54
PM
417#ifdef CONFIG_PPC64
418DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
06d67d54 419#endif
14cf11af 420
9422de3e
MN
421static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
422 struct arch_hw_breakpoint *b)
423{
424 if (a->address != b->address)
425 return false;
426 if (a->type != b->type)
427 return false;
428 if (a->len != b->len)
429 return false;
430 return true;
431}
432
14cf11af
PM
433struct task_struct *__switch_to(struct task_struct *prev,
434 struct task_struct *new)
435{
436 struct thread_struct *new_thread, *old_thread;
437 unsigned long flags;
438 struct task_struct *last;
d6bf29b4
PZ
439#ifdef CONFIG_PPC_BOOK3S_64
440 struct ppc64_tlb_batch *batch;
441#endif
14cf11af
PM
442
443#ifdef CONFIG_SMP
444 /* avoid complexity of lazy save/restore of fpu
445 * by just saving it every time we switch out if
446 * this task used the fpu during the last quantum.
447 *
448 * If it tries to use the fpu again, it'll trap and
449 * reload its fp regs. So we don't have to do a restore
450 * every switch, just a save.
451 * -- Cort
452 */
453 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
454 giveup_fpu(prev);
455#ifdef CONFIG_ALTIVEC
456 /*
457 * If the previous thread used altivec in the last quantum
458 * (thus changing altivec regs) then save them.
459 * We used to check the VRSAVE register but not all apps
460 * set it, so we don't rely on it now (and in fact we need
461 * to save & restore VSCR even if VRSAVE == 0). -- paulus
462 *
463 * On SMP we always save/restore altivec regs just to avoid the
464 * complexity of changing processors.
465 * -- Cort
466 */
467 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
468 giveup_altivec(prev);
14cf11af 469#endif /* CONFIG_ALTIVEC */
ce48b210
MN
470#ifdef CONFIG_VSX
471 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
7c292170
MN
472 /* VMX and FPU registers are already save here */
473 __giveup_vsx(prev);
ce48b210 474#endif /* CONFIG_VSX */
14cf11af
PM
475#ifdef CONFIG_SPE
476 /*
477 * If the previous thread used spe in the last quantum
478 * (thus changing spe regs) then save them.
479 *
480 * On SMP we always save/restore spe regs just to avoid the
481 * complexity of changing processors.
482 */
483 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
484 giveup_spe(prev);
c0c0d996
PM
485#endif /* CONFIG_SPE */
486
487#else /* CONFIG_SMP */
488#ifdef CONFIG_ALTIVEC
489 /* Avoid the trap. On smp this this never happens since
490 * we don't set last_task_used_altivec -- Cort
491 */
492 if (new->thread.regs && last_task_used_altivec == new)
493 new->thread.regs->msr |= MSR_VEC;
494#endif /* CONFIG_ALTIVEC */
ce48b210
MN
495#ifdef CONFIG_VSX
496 if (new->thread.regs && last_task_used_vsx == new)
497 new->thread.regs->msr |= MSR_VSX;
498#endif /* CONFIG_VSX */
c0c0d996 499#ifdef CONFIG_SPE
14cf11af
PM
500 /* Avoid the trap. On smp this this never happens since
501 * we don't set last_task_used_spe
502 */
503 if (new->thread.regs && last_task_used_spe == new)
504 new->thread.regs->msr |= MSR_SPE;
505#endif /* CONFIG_SPE */
c0c0d996 506
14cf11af
PM
507#endif /* CONFIG_SMP */
508
172ae2e7 509#ifdef CONFIG_PPC_ADV_DEBUG_REGS
3bffb652 510 switch_booke_debug_regs(&new->thread);
c6c9eace 511#else
5aae8a53
P
512/*
513 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
514 * schedule DABR
515 */
516#ifndef CONFIG_HAVE_HW_BREAKPOINT
9422de3e
MN
517 if (unlikely(hw_brk_match(&__get_cpu_var(current_brk), &new->thread.hw_brk)))
518 set_break(&new->thread.hw_brk);
5aae8a53 519#endif /* CONFIG_HAVE_HW_BREAKPOINT */
d6a61bfc
LM
520#endif
521
c6c9eace 522
14cf11af
PM
523 new_thread = &new->thread;
524 old_thread = &current->thread;
06d67d54
PM
525
526#ifdef CONFIG_PPC64
527 /*
528 * Collect processor utilization data per process
529 */
530 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
531 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
532 long unsigned start_tb, current_tb;
533 start_tb = old_thread->start_tb;
534 cu->current_tb = current_tb = mfspr(SPRN_PURR);
535 old_thread->accum_tb += (current_tb - start_tb);
536 new_thread->start_tb = current_tb;
537 }
d6bf29b4
PZ
538#endif /* CONFIG_PPC64 */
539
540#ifdef CONFIG_PPC_BOOK3S_64
541 batch = &__get_cpu_var(ppc64_tlb_batch);
542 if (batch->active) {
543 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
544 if (batch->index)
545 __flush_tlb_pending(batch);
546 batch->active = 0;
547 }
548#endif /* CONFIG_PPC_BOOK3S_64 */
06d67d54 549
14cf11af 550 local_irq_save(flags);
c6622f63 551
44387e9f
AB
552 /*
553 * We can't take a PMU exception inside _switch() since there is a
554 * window where the kernel stack SLB and the kernel stack are out
555 * of sync. Hard disable here.
556 */
557 hard_irq_disable();
14cf11af
PM
558 last = _switch(old_thread, new_thread);
559
d6bf29b4
PZ
560#ifdef CONFIG_PPC_BOOK3S_64
561 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
562 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
563 batch = &__get_cpu_var(ppc64_tlb_batch);
564 batch->active = 1;
565 }
566#endif /* CONFIG_PPC_BOOK3S_64 */
567
14cf11af
PM
568 local_irq_restore(flags);
569
570 return last;
571}
572
06d67d54
PM
573static int instructions_to_print = 16;
574
06d67d54
PM
575static void show_instructions(struct pt_regs *regs)
576{
577 int i;
578 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
579 sizeof(int));
580
581 printk("Instruction dump:");
582
583 for (i = 0; i < instructions_to_print; i++) {
584 int instr;
585
586 if (!(i % 8))
587 printk("\n");
588
0de2d820
SW
589#if !defined(CONFIG_BOOKE)
590 /* If executing with the IMMU off, adjust pc rather
591 * than print XXXXXXXX.
592 */
593 if (!(regs->msr & MSR_IR))
594 pc = (unsigned long)phys_to_virt(pc);
595#endif
596
af308377
SR
597 /* We use __get_user here *only* to avoid an OOPS on a
598 * bad address because the pc *should* only be a
599 * kernel address.
600 */
00ae36de
AB
601 if (!__kernel_text_address(pc) ||
602 __get_user(instr, (unsigned int __user *)pc)) {
40c8cefa 603 printk(KERN_CONT "XXXXXXXX ");
06d67d54
PM
604 } else {
605 if (regs->nip == pc)
40c8cefa 606 printk(KERN_CONT "<%08x> ", instr);
06d67d54 607 else
40c8cefa 608 printk(KERN_CONT "%08x ", instr);
06d67d54
PM
609 }
610
611 pc += sizeof(int);
612 }
613
614 printk("\n");
615}
616
617static struct regbit {
618 unsigned long bit;
619 const char *name;
620} msr_bits[] = {
3bfd0c9c
AB
621#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
622 {MSR_SF, "SF"},
623 {MSR_HV, "HV"},
624#endif
625 {MSR_VEC, "VEC"},
626 {MSR_VSX, "VSX"},
627#ifdef CONFIG_BOOKE
628 {MSR_CE, "CE"},
629#endif
06d67d54
PM
630 {MSR_EE, "EE"},
631 {MSR_PR, "PR"},
632 {MSR_FP, "FP"},
633 {MSR_ME, "ME"},
3bfd0c9c 634#ifdef CONFIG_BOOKE
1b98326b 635 {MSR_DE, "DE"},
3bfd0c9c
AB
636#else
637 {MSR_SE, "SE"},
638 {MSR_BE, "BE"},
639#endif
06d67d54
PM
640 {MSR_IR, "IR"},
641 {MSR_DR, "DR"},
3bfd0c9c
AB
642 {MSR_PMM, "PMM"},
643#ifndef CONFIG_BOOKE
644 {MSR_RI, "RI"},
645 {MSR_LE, "LE"},
646#endif
06d67d54
PM
647 {0, NULL}
648};
649
650static void printbits(unsigned long val, struct regbit *bits)
651{
652 const char *sep = "";
653
654 printk("<");
655 for (; bits->bit; ++bits)
656 if (val & bits->bit) {
657 printk("%s%s", sep, bits->name);
658 sep = ",";
659 }
660 printk(">");
661}
662
663#ifdef CONFIG_PPC64
f6f7dde3 664#define REG "%016lx"
06d67d54
PM
665#define REGS_PER_LINE 4
666#define LAST_VOLATILE 13
667#else
f6f7dde3 668#define REG "%08lx"
06d67d54
PM
669#define REGS_PER_LINE 8
670#define LAST_VOLATILE 12
671#endif
672
14cf11af
PM
673void show_regs(struct pt_regs * regs)
674{
675 int i, trap;
676
06d67d54
PM
677 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
678 regs->nip, regs->link, regs->ctr);
679 printk("REGS: %p TRAP: %04lx %s (%s)\n",
96b644bd 680 regs, regs->trap, print_tainted(), init_utsname()->release);
06d67d54
PM
681 printk("MSR: "REG" ", regs->msr);
682 printbits(regs->msr, msr_bits);
f6f7dde3 683 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
7230c564
BH
684#ifdef CONFIG_PPC64
685 printk("SOFTE: %ld\n", regs->softe);
686#endif
14cf11af 687 trap = TRAP(regs);
5115a026
MN
688 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
689 printk("CFAR: "REG"\n", regs->orig_gpr3);
14cf11af 690 if (trap == 0x300 || trap == 0x600)
ba28c9aa 691#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
14170789
KG
692 printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
693#else
7071854b 694 printk("DAR: "REG", DSISR: %08lx\n", regs->dar, regs->dsisr);
14170789 695#endif
06d67d54 696 printk("TASK = %p[%d] '%s' THREAD: %p",
19c5870c 697 current, task_pid_nr(current), current->comm, task_thread_info(current));
14cf11af
PM
698
699#ifdef CONFIG_SMP
79ccd1be 700 printk(" CPU: %d", raw_smp_processor_id());
14cf11af
PM
701#endif /* CONFIG_SMP */
702
703 for (i = 0; i < 32; i++) {
06d67d54 704 if ((i % REGS_PER_LINE) == 0)
a2367194 705 printk("\nGPR%02d: ", i);
06d67d54
PM
706 printk(REG " ", regs->gpr[i]);
707 if (i == LAST_VOLATILE && !FULL_REGS(regs))
14cf11af
PM
708 break;
709 }
710 printk("\n");
711#ifdef CONFIG_KALLSYMS
712 /*
713 * Lookup NIP late so we have the best change of getting the
714 * above info out without failing
715 */
058c78f4
BH
716 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
717 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
14cf11af
PM
718#endif
719 show_stack(current, (unsigned long *) regs->gpr[1]);
06d67d54
PM
720 if (!user_mode(regs))
721 show_instructions(regs);
14cf11af
PM
722}
723
724void exit_thread(void)
725{
48abec07 726 discard_lazy_cpu_state();
14cf11af
PM
727}
728
729void flush_thread(void)
730{
48abec07 731 discard_lazy_cpu_state();
14cf11af 732
e0780b72 733#ifdef CONFIG_HAVE_HW_BREAKPOINT
5aae8a53 734 flush_ptrace_hw_breakpoint(current);
e0780b72 735#else /* CONFIG_HAVE_HW_BREAKPOINT */
3bffb652 736 set_debug_reg_defaults(&current->thread);
e0780b72 737#endif /* CONFIG_HAVE_HW_BREAKPOINT */
14cf11af
PM
738}
739
740void
741release_thread(struct task_struct *t)
742{
743}
744
745/*
55ccf3fe
SS
746 * this gets called so that we can store coprocessor state into memory and
747 * copy the current task into the new thread.
14cf11af 748 */
55ccf3fe 749int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
14cf11af 750{
55ccf3fe
SS
751 flush_fp_to_thread(src);
752 flush_altivec_to_thread(src);
753 flush_vsx_to_thread(src);
754 flush_spe_to_thread(src);
5aae8a53 755#ifdef CONFIG_HAVE_HW_BREAKPOINT
55ccf3fe 756 flush_ptrace_hw_breakpoint(src);
5aae8a53 757#endif /* CONFIG_HAVE_HW_BREAKPOINT */
55ccf3fe
SS
758
759 *dst = *src;
760 return 0;
14cf11af
PM
761}
762
763/*
764 * Copy a thread..
765 */
efcac658
AK
766extern unsigned long dscr_default; /* defined in arch/powerpc/kernel/sysfs.c */
767
6f2c55b8 768int copy_thread(unsigned long clone_flags, unsigned long usp,
afa86fc4 769 unsigned long arg, struct task_struct *p)
14cf11af
PM
770{
771 struct pt_regs *childregs, *kregs;
772 extern void ret_from_fork(void);
58254e10
AV
773 extern void ret_from_kernel_thread(void);
774 void (*f)(void);
0cec6fd1 775 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
14cf11af 776
14cf11af
PM
777 /* Copy registers */
778 sp -= sizeof(struct pt_regs);
779 childregs = (struct pt_regs *) sp;
ab75819d 780 if (unlikely(p->flags & PF_KTHREAD)) {
138d1ce8 781 struct thread_info *ti = (void *)task_stack_page(p);
58254e10 782 memset(childregs, 0, sizeof(struct pt_regs));
14cf11af 783 childregs->gpr[1] = sp + sizeof(struct pt_regs);
53b50f94 784 childregs->gpr[14] = usp; /* function */
58254e10 785#ifdef CONFIG_PPC64
b5e2fc1c 786 clear_tsk_thread_flag(p, TIF_32BIT);
138d1ce8 787 childregs->softe = 1;
06d67d54 788#endif
58254e10 789 childregs->gpr[15] = arg;
14cf11af 790 p->thread.regs = NULL; /* no user register state */
138d1ce8 791 ti->flags |= _TIF_RESTOREALL;
58254e10 792 f = ret_from_kernel_thread;
14cf11af 793 } else {
afa86fc4 794 struct pt_regs *regs = current_pt_regs();
58254e10
AV
795 CHECK_FULL_REGS(regs);
796 *childregs = *regs;
ea516b11
AV
797 if (usp)
798 childregs->gpr[1] = usp;
14cf11af 799 p->thread.regs = childregs;
58254e10 800 childregs->gpr[3] = 0; /* Result from fork() */
06d67d54
PM
801 if (clone_flags & CLONE_SETTLS) {
802#ifdef CONFIG_PPC64
9904b005 803 if (!is_32bit_task())
06d67d54
PM
804 childregs->gpr[13] = childregs->gpr[6];
805 else
806#endif
807 childregs->gpr[2] = childregs->gpr[6];
808 }
58254e10
AV
809
810 f = ret_from_fork;
14cf11af 811 }
14cf11af 812 sp -= STACK_FRAME_OVERHEAD;
14cf11af
PM
813
814 /*
815 * The way this works is that at some point in the future
816 * some task will call _switch to switch to the new task.
817 * That will pop off the stack frame created below and start
818 * the new task running at ret_from_fork. The new task will
819 * do some house keeping and then return from the fork or clone
820 * system call, using the stack frame created above.
821 */
822 sp -= sizeof(struct pt_regs);
823 kregs = (struct pt_regs *) sp;
824 sp -= STACK_FRAME_OVERHEAD;
825 p->thread.ksp = sp;
85218827
KG
826 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
827 _ALIGN_UP(sizeof(struct thread_info), 16);
14cf11af 828
94491685 829#ifdef CONFIG_PPC_STD_MMU_64
44ae3ab3 830 if (mmu_has_feature(MMU_FTR_SLB)) {
1189be65 831 unsigned long sp_vsid;
3c726f8d 832 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
06d67d54 833
44ae3ab3 834 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1189be65
PM
835 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
836 << SLB_VSID_SHIFT_1T;
837 else
838 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
839 << SLB_VSID_SHIFT;
3c726f8d 840 sp_vsid |= SLB_VSID_KERNEL | llp;
06d67d54
PM
841 p->thread.ksp_vsid = sp_vsid;
842 }
747bea91 843#endif /* CONFIG_PPC_STD_MMU_64 */
efcac658
AK
844#ifdef CONFIG_PPC64
845 if (cpu_has_feature(CPU_FTR_DSCR)) {
1021cb26
AB
846 p->thread.dscr_inherit = current->thread.dscr_inherit;
847 p->thread.dscr = current->thread.dscr;
efcac658 848 }
92779245
HM
849 if (cpu_has_feature(CPU_FTR_HAS_PPR))
850 p->thread.ppr = INIT_PPR;
efcac658 851#endif
06d67d54
PM
852 /*
853 * The PPC64 ABI makes use of a TOC to contain function
854 * pointers. The function (ret_from_except) is actually a pointer
855 * to the TOC entry. The first entry is a pointer to the actual
856 * function.
58254e10 857 */
747bea91 858#ifdef CONFIG_PPC64
58254e10 859 kregs->nip = *((unsigned long *)f);
06d67d54 860#else
58254e10 861 kregs->nip = (unsigned long)f;
06d67d54 862#endif
14cf11af
PM
863 return 0;
864}
865
866/*
867 * Set up a thread for executing a new program
868 */
06d67d54 869void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
14cf11af 870{
90eac727
ME
871#ifdef CONFIG_PPC64
872 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
873#endif
874
06d67d54
PM
875 /*
876 * If we exec out of a kernel thread then thread.regs will not be
877 * set. Do it now.
878 */
879 if (!current->thread.regs) {
0cec6fd1
AV
880 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
881 current->thread.regs = regs - 1;
06d67d54
PM
882 }
883
14cf11af
PM
884 memset(regs->gpr, 0, sizeof(regs->gpr));
885 regs->ctr = 0;
886 regs->link = 0;
887 regs->xer = 0;
888 regs->ccr = 0;
14cf11af 889 regs->gpr[1] = sp;
06d67d54 890
474f8196
RM
891 /*
892 * We have just cleared all the nonvolatile GPRs, so make
893 * FULL_REGS(regs) return true. This is necessary to allow
894 * ptrace to examine the thread immediately after exec.
895 */
896 regs->trap &= ~1UL;
897
06d67d54
PM
898#ifdef CONFIG_PPC32
899 regs->mq = 0;
900 regs->nip = start;
14cf11af 901 regs->msr = MSR_USER;
06d67d54 902#else
9904b005 903 if (!is_32bit_task()) {
90eac727 904 unsigned long entry, toc;
06d67d54
PM
905
906 /* start is a relocated pointer to the function descriptor for
907 * the elf _start routine. The first entry in the function
908 * descriptor is the entry address of _start and the second
909 * entry is the TOC value we need to use.
910 */
911 __get_user(entry, (unsigned long __user *)start);
912 __get_user(toc, (unsigned long __user *)start+1);
913
914 /* Check whether the e_entry function descriptor entries
915 * need to be relocated before we can use them.
916 */
917 if (load_addr != 0) {
918 entry += load_addr;
919 toc += load_addr;
920 }
921 regs->nip = entry;
922 regs->gpr[2] = toc;
923 regs->msr = MSR_USER64;
d4bf9a78
SR
924 } else {
925 regs->nip = start;
926 regs->gpr[2] = 0;
927 regs->msr = MSR_USER32;
06d67d54
PM
928 }
929#endif
930
48abec07 931 discard_lazy_cpu_state();
ce48b210
MN
932#ifdef CONFIG_VSX
933 current->thread.used_vsr = 0;
934#endif
14cf11af 935 memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
25c8a78b 936 current->thread.fpscr.val = 0;
14cf11af
PM
937#ifdef CONFIG_ALTIVEC
938 memset(current->thread.vr, 0, sizeof(current->thread.vr));
939 memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
06d67d54 940 current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
14cf11af
PM
941 current->thread.vrsave = 0;
942 current->thread.used_vr = 0;
943#endif /* CONFIG_ALTIVEC */
944#ifdef CONFIG_SPE
945 memset(current->thread.evr, 0, sizeof(current->thread.evr));
946 current->thread.acc = 0;
947 current->thread.spefscr = 0;
948 current->thread.used_spe = 0;
949#endif /* CONFIG_SPE */
950}
951
952#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
953 | PR_FP_EXC_RES | PR_FP_EXC_INV)
954
955int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
956{
957 struct pt_regs *regs = tsk->thread.regs;
958
959 /* This is a bit hairy. If we are an SPE enabled processor
960 * (have embedded fp) we store the IEEE exception enable flags in
961 * fpexc_mode. fpexc_mode is also used for setting FP exception
962 * mode (asyn, precise, disabled) for 'Classic' FP. */
963 if (val & PR_FP_EXC_SW_ENABLE) {
964#ifdef CONFIG_SPE
5e14d21e
KG
965 if (cpu_has_feature(CPU_FTR_SPE)) {
966 tsk->thread.fpexc_mode = val &
967 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
968 return 0;
969 } else {
970 return -EINVAL;
971 }
14cf11af
PM
972#else
973 return -EINVAL;
974#endif
14cf11af 975 }
06d67d54
PM
976
977 /* on a CONFIG_SPE this does not hurt us. The bits that
978 * __pack_fe01 use do not overlap with bits used for
979 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
980 * on CONFIG_SPE implementations are reserved so writing to
981 * them does not change anything */
982 if (val > PR_FP_EXC_PRECISE)
983 return -EINVAL;
984 tsk->thread.fpexc_mode = __pack_fe01(val);
985 if (regs != NULL && (regs->msr & MSR_FP) != 0)
986 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
987 | tsk->thread.fpexc_mode;
14cf11af
PM
988 return 0;
989}
990
991int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
992{
993 unsigned int val;
994
995 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
996#ifdef CONFIG_SPE
5e14d21e
KG
997 if (cpu_has_feature(CPU_FTR_SPE))
998 val = tsk->thread.fpexc_mode;
999 else
1000 return -EINVAL;
14cf11af
PM
1001#else
1002 return -EINVAL;
1003#endif
1004 else
1005 val = __unpack_fe01(tsk->thread.fpexc_mode);
1006 return put_user(val, (unsigned int __user *) adr);
1007}
1008
fab5db97
PM
1009int set_endian(struct task_struct *tsk, unsigned int val)
1010{
1011 struct pt_regs *regs = tsk->thread.regs;
1012
1013 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1014 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1015 return -EINVAL;
1016
1017 if (regs == NULL)
1018 return -EINVAL;
1019
1020 if (val == PR_ENDIAN_BIG)
1021 regs->msr &= ~MSR_LE;
1022 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1023 regs->msr |= MSR_LE;
1024 else
1025 return -EINVAL;
1026
1027 return 0;
1028}
1029
1030int get_endian(struct task_struct *tsk, unsigned long adr)
1031{
1032 struct pt_regs *regs = tsk->thread.regs;
1033 unsigned int val;
1034
1035 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1036 !cpu_has_feature(CPU_FTR_REAL_LE))
1037 return -EINVAL;
1038
1039 if (regs == NULL)
1040 return -EINVAL;
1041
1042 if (regs->msr & MSR_LE) {
1043 if (cpu_has_feature(CPU_FTR_REAL_LE))
1044 val = PR_ENDIAN_LITTLE;
1045 else
1046 val = PR_ENDIAN_PPC_LITTLE;
1047 } else
1048 val = PR_ENDIAN_BIG;
1049
1050 return put_user(val, (unsigned int __user *)adr);
1051}
1052
e9370ae1
PM
1053int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1054{
1055 tsk->thread.align_ctl = val;
1056 return 0;
1057}
1058
1059int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1060{
1061 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1062}
1063
bb72c481
PM
1064static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1065 unsigned long nbytes)
1066{
1067 unsigned long stack_page;
1068 unsigned long cpu = task_cpu(p);
1069
1070 /*
1071 * Avoid crashing if the stack has overflowed and corrupted
1072 * task_cpu(p), which is in the thread_info struct.
1073 */
1074 if (cpu < NR_CPUS && cpu_possible(cpu)) {
1075 stack_page = (unsigned long) hardirq_ctx[cpu];
1076 if (sp >= stack_page + sizeof(struct thread_struct)
1077 && sp <= stack_page + THREAD_SIZE - nbytes)
1078 return 1;
1079
1080 stack_page = (unsigned long) softirq_ctx[cpu];
1081 if (sp >= stack_page + sizeof(struct thread_struct)
1082 && sp <= stack_page + THREAD_SIZE - nbytes)
1083 return 1;
1084 }
1085 return 0;
1086}
1087
2f25194d 1088int validate_sp(unsigned long sp, struct task_struct *p,
14cf11af
PM
1089 unsigned long nbytes)
1090{
0cec6fd1 1091 unsigned long stack_page = (unsigned long)task_stack_page(p);
14cf11af
PM
1092
1093 if (sp >= stack_page + sizeof(struct thread_struct)
1094 && sp <= stack_page + THREAD_SIZE - nbytes)
1095 return 1;
1096
bb72c481 1097 return valid_irq_stack(sp, p, nbytes);
14cf11af
PM
1098}
1099
2f25194d
AB
1100EXPORT_SYMBOL(validate_sp);
1101
14cf11af
PM
1102unsigned long get_wchan(struct task_struct *p)
1103{
1104 unsigned long ip, sp;
1105 int count = 0;
1106
1107 if (!p || p == current || p->state == TASK_RUNNING)
1108 return 0;
1109
1110 sp = p->thread.ksp;
ec2b36b9 1111 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
14cf11af
PM
1112 return 0;
1113
1114 do {
1115 sp = *(unsigned long *)sp;
ec2b36b9 1116 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
14cf11af
PM
1117 return 0;
1118 if (count > 0) {
ec2b36b9 1119 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
14cf11af
PM
1120 if (!in_sched_functions(ip))
1121 return ip;
1122 }
1123 } while (count++ < 16);
1124 return 0;
1125}
06d67d54 1126
c4d04be1 1127static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
06d67d54
PM
1128
1129void show_stack(struct task_struct *tsk, unsigned long *stack)
1130{
1131 unsigned long sp, ip, lr, newsp;
1132 int count = 0;
1133 int firstframe = 1;
6794c782
SR
1134#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1135 int curr_frame = current->curr_ret_stack;
1136 extern void return_to_handler(void);
9135c3cc
SR
1137 unsigned long rth = (unsigned long)return_to_handler;
1138 unsigned long mrth = -1;
6794c782 1139#ifdef CONFIG_PPC64
9135c3cc
SR
1140 extern void mod_return_to_handler(void);
1141 rth = *(unsigned long *)rth;
1142 mrth = (unsigned long)mod_return_to_handler;
1143 mrth = *(unsigned long *)mrth;
6794c782
SR
1144#endif
1145#endif
06d67d54
PM
1146
1147 sp = (unsigned long) stack;
1148 if (tsk == NULL)
1149 tsk = current;
1150 if (sp == 0) {
1151 if (tsk == current)
1152 asm("mr %0,1" : "=r" (sp));
1153 else
1154 sp = tsk->thread.ksp;
1155 }
1156
1157 lr = 0;
1158 printk("Call Trace:\n");
1159 do {
ec2b36b9 1160 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
06d67d54
PM
1161 return;
1162
1163 stack = (unsigned long *) sp;
1164 newsp = stack[0];
ec2b36b9 1165 ip = stack[STACK_FRAME_LR_SAVE];
06d67d54 1166 if (!firstframe || ip != lr) {
058c78f4 1167 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
6794c782 1168#ifdef CONFIG_FUNCTION_GRAPH_TRACER
9135c3cc 1169 if ((ip == rth || ip == mrth) && curr_frame >= 0) {
6794c782
SR
1170 printk(" (%pS)",
1171 (void *)current->ret_stack[curr_frame].ret);
1172 curr_frame--;
1173 }
1174#endif
06d67d54
PM
1175 if (firstframe)
1176 printk(" (unreliable)");
1177 printk("\n");
1178 }
1179 firstframe = 0;
1180
1181 /*
1182 * See if this is an exception frame.
1183 * We look for the "regshere" marker in the current frame.
1184 */
ec2b36b9
BH
1185 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1186 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
06d67d54
PM
1187 struct pt_regs *regs = (struct pt_regs *)
1188 (sp + STACK_FRAME_OVERHEAD);
06d67d54 1189 lr = regs->link;
058c78f4
BH
1190 printk("--- Exception: %lx at %pS\n LR = %pS\n",
1191 regs->trap, (void *)regs->nip, (void *)lr);
06d67d54
PM
1192 firstframe = 1;
1193 }
1194
1195 sp = newsp;
1196 } while (count++ < kstack_depth_to_print);
1197}
1198
1199void dump_stack(void)
1200{
1201 show_stack(current, NULL);
1202}
1203EXPORT_SYMBOL(dump_stack);
cb2c9b27
AB
1204
1205#ifdef CONFIG_PPC64
fe1952fc
BH
1206/* Called with hard IRQs off */
1207void __ppc64_runlatch_on(void)
cb2c9b27 1208{
fe1952fc 1209 struct thread_info *ti = current_thread_info();
cb2c9b27
AB
1210 unsigned long ctrl;
1211
fe1952fc
BH
1212 ctrl = mfspr(SPRN_CTRLF);
1213 ctrl |= CTRL_RUNLATCH;
1214 mtspr(SPRN_CTRLT, ctrl);
cb2c9b27 1215
fae2e0fb 1216 ti->local_flags |= _TLF_RUNLATCH;
cb2c9b27
AB
1217}
1218
fe1952fc 1219/* Called with hard IRQs off */
4138d653 1220void __ppc64_runlatch_off(void)
cb2c9b27 1221{
fe1952fc 1222 struct thread_info *ti = current_thread_info();
cb2c9b27
AB
1223 unsigned long ctrl;
1224
fae2e0fb 1225 ti->local_flags &= ~_TLF_RUNLATCH;
cb2c9b27 1226
4138d653
AB
1227 ctrl = mfspr(SPRN_CTRLF);
1228 ctrl &= ~CTRL_RUNLATCH;
1229 mtspr(SPRN_CTRLT, ctrl);
cb2c9b27 1230}
fe1952fc 1231#endif /* CONFIG_PPC64 */
f6a61680 1232
d839088c
AB
1233unsigned long arch_align_stack(unsigned long sp)
1234{
1235 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1236 sp -= get_random_int() & ~PAGE_MASK;
1237 return sp & ~0xf;
1238}
912f9ee2
AB
1239
1240static inline unsigned long brk_rnd(void)
1241{
1242 unsigned long rnd = 0;
1243
1244 /* 8MB for 32bit, 1GB for 64bit */
1245 if (is_32bit_task())
1246 rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1247 else
1248 rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1249
1250 return rnd << PAGE_SHIFT;
1251}
1252
1253unsigned long arch_randomize_brk(struct mm_struct *mm)
1254{
8bbde7a7
AB
1255 unsigned long base = mm->brk;
1256 unsigned long ret;
1257
ce7a35c7 1258#ifdef CONFIG_PPC_STD_MMU_64
8bbde7a7
AB
1259 /*
1260 * If we are using 1TB segments and we are allowed to randomise
1261 * the heap, we can put it above 1TB so it is backed by a 1TB
1262 * segment. Otherwise the heap will be in the bottom 1TB
1263 * which always uses 256MB segments and this may result in a
1264 * performance penalty.
1265 */
1266 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1267 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1268#endif
1269
1270 ret = PAGE_ALIGN(base + brk_rnd());
912f9ee2
AB
1271
1272 if (ret < mm->brk)
1273 return mm->brk;
1274
1275 return ret;
1276}
501cb16d
AB
1277
1278unsigned long randomize_et_dyn(unsigned long base)
1279{
1280 unsigned long ret = PAGE_ALIGN(base + brk_rnd());
1281
1282 if (ret < base)
1283 return base;
1284
1285 return ret;
1286}