[POWERPC] XilinxFB: Allow fixed framebuffer base address
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / powerpc / kernel / process.c
CommitLineData
14cf11af 1/*
14cf11af
PM
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
14cf11af
PM
17#include <linux/errno.h>
18#include <linux/sched.h>
19#include <linux/kernel.h>
20#include <linux/mm.h>
21#include <linux/smp.h>
14cf11af
PM
22#include <linux/stddef.h>
23#include <linux/unistd.h>
24#include <linux/ptrace.h>
25#include <linux/slab.h>
26#include <linux/user.h>
27#include <linux/elf.h>
28#include <linux/init.h>
29#include <linux/prctl.h>
30#include <linux/init_task.h>
31#include <linux/module.h>
32#include <linux/kallsyms.h>
33#include <linux/mqueue.h>
34#include <linux/hardirq.h>
06d67d54 35#include <linux/utsname.h>
14cf11af
PM
36
37#include <asm/pgtable.h>
38#include <asm/uaccess.h>
39#include <asm/system.h>
40#include <asm/io.h>
41#include <asm/processor.h>
42#include <asm/mmu.h>
43#include <asm/prom.h>
76032de8 44#include <asm/machdep.h>
c6622f63 45#include <asm/time.h>
a7f31841 46#include <asm/syscalls.h>
06d67d54
PM
47#ifdef CONFIG_PPC64
48#include <asm/firmware.h>
06d67d54 49#endif
14cf11af
PM
50
51extern unsigned long _get_SP(void);
52
53#ifndef CONFIG_SMP
54struct task_struct *last_task_used_math = NULL;
55struct task_struct *last_task_used_altivec = NULL;
56struct task_struct *last_task_used_spe = NULL;
57#endif
58
14cf11af
PM
59/*
60 * Make sure the floating-point register state in the
61 * the thread_struct is up to date for task tsk.
62 */
63void flush_fp_to_thread(struct task_struct *tsk)
64{
65 if (tsk->thread.regs) {
66 /*
67 * We need to disable preemption here because if we didn't,
68 * another process could get scheduled after the regs->msr
69 * test but before we have finished saving the FP registers
70 * to the thread_struct. That process could take over the
71 * FPU, and then when we get scheduled again we would store
72 * bogus values for the remaining FP registers.
73 */
74 preempt_disable();
75 if (tsk->thread.regs->msr & MSR_FP) {
76#ifdef CONFIG_SMP
77 /*
78 * This should only ever be called for current or
79 * for a stopped child process. Since we save away
80 * the FP register state on context switch on SMP,
81 * there is something wrong if a stopped child appears
82 * to still have its FP state in the CPU registers.
83 */
84 BUG_ON(tsk != current);
85#endif
0ee6c15e 86 giveup_fpu(tsk);
14cf11af
PM
87 }
88 preempt_enable();
89 }
90}
91
92void enable_kernel_fp(void)
93{
94 WARN_ON(preemptible());
95
96#ifdef CONFIG_SMP
97 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
98 giveup_fpu(current);
99 else
100 giveup_fpu(NULL); /* just enables FP for kernel */
101#else
102 giveup_fpu(last_task_used_math);
103#endif /* CONFIG_SMP */
104}
105EXPORT_SYMBOL(enable_kernel_fp);
106
107int dump_task_fpu(struct task_struct *tsk, elf_fpregset_t *fpregs)
108{
109 if (!tsk->thread.regs)
110 return 0;
111 flush_fp_to_thread(current);
112
113 memcpy(fpregs, &tsk->thread.fpr[0], sizeof(*fpregs));
114
115 return 1;
116}
117
118#ifdef CONFIG_ALTIVEC
119void enable_kernel_altivec(void)
120{
121 WARN_ON(preemptible());
122
123#ifdef CONFIG_SMP
124 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
125 giveup_altivec(current);
126 else
127 giveup_altivec(NULL); /* just enable AltiVec for kernel - force */
128#else
129 giveup_altivec(last_task_used_altivec);
130#endif /* CONFIG_SMP */
131}
132EXPORT_SYMBOL(enable_kernel_altivec);
133
134/*
135 * Make sure the VMX/Altivec register state in the
136 * the thread_struct is up to date for task tsk.
137 */
138void flush_altivec_to_thread(struct task_struct *tsk)
139{
140 if (tsk->thread.regs) {
141 preempt_disable();
142 if (tsk->thread.regs->msr & MSR_VEC) {
143#ifdef CONFIG_SMP
144 BUG_ON(tsk != current);
145#endif
0ee6c15e 146 giveup_altivec(tsk);
14cf11af
PM
147 }
148 preempt_enable();
149 }
150}
151
152int dump_task_altivec(struct pt_regs *regs, elf_vrregset_t *vrregs)
153{
154 flush_altivec_to_thread(current);
155 memcpy(vrregs, &current->thread.vr[0], sizeof(*vrregs));
156 return 1;
157}
158#endif /* CONFIG_ALTIVEC */
159
160#ifdef CONFIG_SPE
161
162void enable_kernel_spe(void)
163{
164 WARN_ON(preemptible());
165
166#ifdef CONFIG_SMP
167 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
168 giveup_spe(current);
169 else
170 giveup_spe(NULL); /* just enable SPE for kernel - force */
171#else
172 giveup_spe(last_task_used_spe);
173#endif /* __SMP __ */
174}
175EXPORT_SYMBOL(enable_kernel_spe);
176
177void flush_spe_to_thread(struct task_struct *tsk)
178{
179 if (tsk->thread.regs) {
180 preempt_disable();
181 if (tsk->thread.regs->msr & MSR_SPE) {
182#ifdef CONFIG_SMP
183 BUG_ON(tsk != current);
184#endif
0ee6c15e 185 giveup_spe(tsk);
14cf11af
PM
186 }
187 preempt_enable();
188 }
189}
190
191int dump_spe(struct pt_regs *regs, elf_vrregset_t *evrregs)
192{
193 flush_spe_to_thread(current);
194 /* We copy u32 evr[32] + u64 acc + u32 spefscr -> 35 */
195 memcpy(evrregs, &current->thread.evr[0], sizeof(u32) * 35);
196 return 1;
197}
198#endif /* CONFIG_SPE */
199
5388fb10 200#ifndef CONFIG_SMP
48abec07
PM
201/*
202 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
203 * and the current task has some state, discard it.
204 */
5388fb10 205void discard_lazy_cpu_state(void)
48abec07 206{
48abec07
PM
207 preempt_disable();
208 if (last_task_used_math == current)
209 last_task_used_math = NULL;
210#ifdef CONFIG_ALTIVEC
211 if (last_task_used_altivec == current)
212 last_task_used_altivec = NULL;
213#endif /* CONFIG_ALTIVEC */
214#ifdef CONFIG_SPE
215 if (last_task_used_spe == current)
216 last_task_used_spe = NULL;
217#endif
218 preempt_enable();
48abec07 219}
5388fb10 220#endif /* CONFIG_SMP */
48abec07 221
14cf11af
PM
222int set_dabr(unsigned long dabr)
223{
791cc501 224#ifdef CONFIG_PPC_MERGE /* XXX for now */
cab0af98
ME
225 if (ppc_md.set_dabr)
226 return ppc_md.set_dabr(dabr);
791cc501 227#endif
14cf11af 228
791cc501
BH
229 /* XXX should we have a CPU_FTR_HAS_DABR ? */
230#if defined(CONFIG_PPC64) || defined(CONFIG_6xx)
cab0af98 231 mtspr(SPRN_DABR, dabr);
791cc501 232#endif
cab0af98 233 return 0;
14cf11af
PM
234}
235
06d67d54
PM
236#ifdef CONFIG_PPC64
237DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
06d67d54 238#endif
14cf11af 239
791cc501
BH
240static DEFINE_PER_CPU(unsigned long, current_dabr);
241
14cf11af
PM
242struct task_struct *__switch_to(struct task_struct *prev,
243 struct task_struct *new)
244{
245 struct thread_struct *new_thread, *old_thread;
246 unsigned long flags;
247 struct task_struct *last;
248
249#ifdef CONFIG_SMP
250 /* avoid complexity of lazy save/restore of fpu
251 * by just saving it every time we switch out if
252 * this task used the fpu during the last quantum.
253 *
254 * If it tries to use the fpu again, it'll trap and
255 * reload its fp regs. So we don't have to do a restore
256 * every switch, just a save.
257 * -- Cort
258 */
259 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
260 giveup_fpu(prev);
261#ifdef CONFIG_ALTIVEC
262 /*
263 * If the previous thread used altivec in the last quantum
264 * (thus changing altivec regs) then save them.
265 * We used to check the VRSAVE register but not all apps
266 * set it, so we don't rely on it now (and in fact we need
267 * to save & restore VSCR even if VRSAVE == 0). -- paulus
268 *
269 * On SMP we always save/restore altivec regs just to avoid the
270 * complexity of changing processors.
271 * -- Cort
272 */
273 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
274 giveup_altivec(prev);
14cf11af
PM
275#endif /* CONFIG_ALTIVEC */
276#ifdef CONFIG_SPE
277 /*
278 * If the previous thread used spe in the last quantum
279 * (thus changing spe regs) then save them.
280 *
281 * On SMP we always save/restore spe regs just to avoid the
282 * complexity of changing processors.
283 */
284 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
285 giveup_spe(prev);
c0c0d996
PM
286#endif /* CONFIG_SPE */
287
288#else /* CONFIG_SMP */
289#ifdef CONFIG_ALTIVEC
290 /* Avoid the trap. On smp this this never happens since
291 * we don't set last_task_used_altivec -- Cort
292 */
293 if (new->thread.regs && last_task_used_altivec == new)
294 new->thread.regs->msr |= MSR_VEC;
295#endif /* CONFIG_ALTIVEC */
296#ifdef CONFIG_SPE
14cf11af
PM
297 /* Avoid the trap. On smp this this never happens since
298 * we don't set last_task_used_spe
299 */
300 if (new->thread.regs && last_task_used_spe == new)
301 new->thread.regs->msr |= MSR_SPE;
302#endif /* CONFIG_SPE */
c0c0d996 303
14cf11af
PM
304#endif /* CONFIG_SMP */
305
14cf11af
PM
306 if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr)) {
307 set_dabr(new->thread.dabr);
308 __get_cpu_var(current_dabr) = new->thread.dabr;
309 }
14cf11af
PM
310
311 new_thread = &new->thread;
312 old_thread = &current->thread;
06d67d54
PM
313
314#ifdef CONFIG_PPC64
315 /*
316 * Collect processor utilization data per process
317 */
318 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
319 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
320 long unsigned start_tb, current_tb;
321 start_tb = old_thread->start_tb;
322 cu->current_tb = current_tb = mfspr(SPRN_PURR);
323 old_thread->accum_tb += (current_tb - start_tb);
324 new_thread->start_tb = current_tb;
325 }
326#endif
327
14cf11af 328 local_irq_save(flags);
c6622f63
PM
329
330 account_system_vtime(current);
331 account_process_vtime(current);
332 calculate_steal_time();
333
14cf11af
PM
334 last = _switch(old_thread, new_thread);
335
336 local_irq_restore(flags);
337
338 return last;
339}
340
06d67d54
PM
341static int instructions_to_print = 16;
342
06d67d54
PM
343static void show_instructions(struct pt_regs *regs)
344{
345 int i;
346 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
347 sizeof(int));
348
349 printk("Instruction dump:");
350
351 for (i = 0; i < instructions_to_print; i++) {
352 int instr;
353
354 if (!(i % 8))
355 printk("\n");
356
0de2d820
SW
357#if !defined(CONFIG_BOOKE)
358 /* If executing with the IMMU off, adjust pc rather
359 * than print XXXXXXXX.
360 */
361 if (!(regs->msr & MSR_IR))
362 pc = (unsigned long)phys_to_virt(pc);
363#endif
364
af308377
SR
365 /* We use __get_user here *only* to avoid an OOPS on a
366 * bad address because the pc *should* only be a
367 * kernel address.
368 */
00ae36de
AB
369 if (!__kernel_text_address(pc) ||
370 __get_user(instr, (unsigned int __user *)pc)) {
06d67d54
PM
371 printk("XXXXXXXX ");
372 } else {
373 if (regs->nip == pc)
374 printk("<%08x> ", instr);
375 else
376 printk("%08x ", instr);
377 }
378
379 pc += sizeof(int);
380 }
381
382 printk("\n");
383}
384
385static struct regbit {
386 unsigned long bit;
387 const char *name;
388} msr_bits[] = {
389 {MSR_EE, "EE"},
390 {MSR_PR, "PR"},
391 {MSR_FP, "FP"},
392 {MSR_ME, "ME"},
393 {MSR_IR, "IR"},
394 {MSR_DR, "DR"},
395 {0, NULL}
396};
397
398static void printbits(unsigned long val, struct regbit *bits)
399{
400 const char *sep = "";
401
402 printk("<");
403 for (; bits->bit; ++bits)
404 if (val & bits->bit) {
405 printk("%s%s", sep, bits->name);
406 sep = ",";
407 }
408 printk(">");
409}
410
411#ifdef CONFIG_PPC64
f6f7dde3 412#define REG "%016lx"
06d67d54
PM
413#define REGS_PER_LINE 4
414#define LAST_VOLATILE 13
415#else
f6f7dde3 416#define REG "%08lx"
06d67d54
PM
417#define REGS_PER_LINE 8
418#define LAST_VOLATILE 12
419#endif
420
14cf11af
PM
421void show_regs(struct pt_regs * regs)
422{
423 int i, trap;
424
06d67d54
PM
425 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
426 regs->nip, regs->link, regs->ctr);
427 printk("REGS: %p TRAP: %04lx %s (%s)\n",
96b644bd 428 regs, regs->trap, print_tainted(), init_utsname()->release);
06d67d54
PM
429 printk("MSR: "REG" ", regs->msr);
430 printbits(regs->msr, msr_bits);
f6f7dde3 431 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
14cf11af
PM
432 trap = TRAP(regs);
433 if (trap == 0x300 || trap == 0x600)
14170789
KG
434#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
435 printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
436#else
06d67d54 437 printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr);
14170789 438#endif
06d67d54 439 printk("TASK = %p[%d] '%s' THREAD: %p",
b5e2fc1c 440 current, current->pid, current->comm, task_thread_info(current));
14cf11af
PM
441
442#ifdef CONFIG_SMP
443 printk(" CPU: %d", smp_processor_id());
444#endif /* CONFIG_SMP */
445
446 for (i = 0; i < 32; i++) {
06d67d54 447 if ((i % REGS_PER_LINE) == 0)
14cf11af 448 printk("\n" KERN_INFO "GPR%02d: ", i);
06d67d54
PM
449 printk(REG " ", regs->gpr[i]);
450 if (i == LAST_VOLATILE && !FULL_REGS(regs))
14cf11af
PM
451 break;
452 }
453 printk("\n");
454#ifdef CONFIG_KALLSYMS
455 /*
456 * Lookup NIP late so we have the best change of getting the
457 * above info out without failing
458 */
06d67d54 459 printk("NIP ["REG"] ", regs->nip);
14cf11af 460 print_symbol("%s\n", regs->nip);
06d67d54 461 printk("LR ["REG"] ", regs->link);
14cf11af
PM
462 print_symbol("%s\n", regs->link);
463#endif
464 show_stack(current, (unsigned long *) regs->gpr[1]);
06d67d54
PM
465 if (!user_mode(regs))
466 show_instructions(regs);
14cf11af
PM
467}
468
469void exit_thread(void)
470{
48abec07 471 discard_lazy_cpu_state();
14cf11af
PM
472}
473
474void flush_thread(void)
475{
06d67d54
PM
476#ifdef CONFIG_PPC64
477 struct thread_info *t = current_thread_info();
478
f144e7c7
MD
479 if (test_ti_thread_flag(t, TIF_ABI_PENDING)) {
480 clear_ti_thread_flag(t, TIF_ABI_PENDING);
481 if (test_ti_thread_flag(t, TIF_32BIT))
482 clear_ti_thread_flag(t, TIF_32BIT);
483 else
484 set_ti_thread_flag(t, TIF_32BIT);
485 }
06d67d54 486#endif
06d67d54 487
48abec07 488 discard_lazy_cpu_state();
14cf11af 489
14cf11af
PM
490 if (current->thread.dabr) {
491 current->thread.dabr = 0;
492 set_dabr(0);
493 }
14cf11af
PM
494}
495
496void
497release_thread(struct task_struct *t)
498{
499}
500
501/*
502 * This gets called before we allocate a new thread and copy
503 * the current task into it.
504 */
505void prepare_to_copy(struct task_struct *tsk)
506{
507 flush_fp_to_thread(current);
508 flush_altivec_to_thread(current);
509 flush_spe_to_thread(current);
510}
511
512/*
513 * Copy a thread..
514 */
06d67d54
PM
515int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
516 unsigned long unused, struct task_struct *p,
517 struct pt_regs *regs)
14cf11af
PM
518{
519 struct pt_regs *childregs, *kregs;
520 extern void ret_from_fork(void);
0cec6fd1 521 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
14cf11af
PM
522
523 CHECK_FULL_REGS(regs);
524 /* Copy registers */
525 sp -= sizeof(struct pt_regs);
526 childregs = (struct pt_regs *) sp;
527 *childregs = *regs;
528 if ((childregs->msr & MSR_PR) == 0) {
529 /* for kernel thread, set `current' and stackptr in new task */
530 childregs->gpr[1] = sp + sizeof(struct pt_regs);
06d67d54 531#ifdef CONFIG_PPC32
14cf11af 532 childregs->gpr[2] = (unsigned long) p;
06d67d54 533#else
b5e2fc1c 534 clear_tsk_thread_flag(p, TIF_32BIT);
06d67d54 535#endif
14cf11af
PM
536 p->thread.regs = NULL; /* no user register state */
537 } else {
538 childregs->gpr[1] = usp;
539 p->thread.regs = childregs;
06d67d54
PM
540 if (clone_flags & CLONE_SETTLS) {
541#ifdef CONFIG_PPC64
542 if (!test_thread_flag(TIF_32BIT))
543 childregs->gpr[13] = childregs->gpr[6];
544 else
545#endif
546 childregs->gpr[2] = childregs->gpr[6];
547 }
14cf11af
PM
548 }
549 childregs->gpr[3] = 0; /* Result from fork() */
550 sp -= STACK_FRAME_OVERHEAD;
14cf11af
PM
551
552 /*
553 * The way this works is that at some point in the future
554 * some task will call _switch to switch to the new task.
555 * That will pop off the stack frame created below and start
556 * the new task running at ret_from_fork. The new task will
557 * do some house keeping and then return from the fork or clone
558 * system call, using the stack frame created above.
559 */
560 sp -= sizeof(struct pt_regs);
561 kregs = (struct pt_regs *) sp;
562 sp -= STACK_FRAME_OVERHEAD;
563 p->thread.ksp = sp;
14cf11af 564
06d67d54
PM
565#ifdef CONFIG_PPC64
566 if (cpu_has_feature(CPU_FTR_SLB)) {
567 unsigned long sp_vsid = get_kernel_vsid(sp);
3c726f8d 568 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
06d67d54
PM
569
570 sp_vsid <<= SLB_VSID_SHIFT;
3c726f8d 571 sp_vsid |= SLB_VSID_KERNEL | llp;
06d67d54
PM
572 p->thread.ksp_vsid = sp_vsid;
573 }
574
575 /*
576 * The PPC64 ABI makes use of a TOC to contain function
577 * pointers. The function (ret_from_except) is actually a pointer
578 * to the TOC entry. The first entry is a pointer to the actual
579 * function.
580 */
581 kregs->nip = *((unsigned long *)ret_from_fork);
582#else
583 kregs->nip = (unsigned long)ret_from_fork;
06d67d54 584#endif
14cf11af
PM
585
586 return 0;
587}
588
589/*
590 * Set up a thread for executing a new program
591 */
06d67d54 592void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
14cf11af 593{
90eac727
ME
594#ifdef CONFIG_PPC64
595 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
596#endif
597
14cf11af 598 set_fs(USER_DS);
06d67d54
PM
599
600 /*
601 * If we exec out of a kernel thread then thread.regs will not be
602 * set. Do it now.
603 */
604 if (!current->thread.regs) {
0cec6fd1
AV
605 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
606 current->thread.regs = regs - 1;
06d67d54
PM
607 }
608
14cf11af
PM
609 memset(regs->gpr, 0, sizeof(regs->gpr));
610 regs->ctr = 0;
611 regs->link = 0;
612 regs->xer = 0;
613 regs->ccr = 0;
14cf11af 614 regs->gpr[1] = sp;
06d67d54 615
474f8196
RM
616 /*
617 * We have just cleared all the nonvolatile GPRs, so make
618 * FULL_REGS(regs) return true. This is necessary to allow
619 * ptrace to examine the thread immediately after exec.
620 */
621 regs->trap &= ~1UL;
622
06d67d54
PM
623#ifdef CONFIG_PPC32
624 regs->mq = 0;
625 regs->nip = start;
14cf11af 626 regs->msr = MSR_USER;
06d67d54 627#else
d4bf9a78 628 if (!test_thread_flag(TIF_32BIT)) {
90eac727 629 unsigned long entry, toc;
06d67d54
PM
630
631 /* start is a relocated pointer to the function descriptor for
632 * the elf _start routine. The first entry in the function
633 * descriptor is the entry address of _start and the second
634 * entry is the TOC value we need to use.
635 */
636 __get_user(entry, (unsigned long __user *)start);
637 __get_user(toc, (unsigned long __user *)start+1);
638
639 /* Check whether the e_entry function descriptor entries
640 * need to be relocated before we can use them.
641 */
642 if (load_addr != 0) {
643 entry += load_addr;
644 toc += load_addr;
645 }
646 regs->nip = entry;
647 regs->gpr[2] = toc;
648 regs->msr = MSR_USER64;
d4bf9a78
SR
649 } else {
650 regs->nip = start;
651 regs->gpr[2] = 0;
652 regs->msr = MSR_USER32;
06d67d54
PM
653 }
654#endif
655
48abec07 656 discard_lazy_cpu_state();
14cf11af 657 memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
25c8a78b 658 current->thread.fpscr.val = 0;
14cf11af
PM
659#ifdef CONFIG_ALTIVEC
660 memset(current->thread.vr, 0, sizeof(current->thread.vr));
661 memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
06d67d54 662 current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
14cf11af
PM
663 current->thread.vrsave = 0;
664 current->thread.used_vr = 0;
665#endif /* CONFIG_ALTIVEC */
666#ifdef CONFIG_SPE
667 memset(current->thread.evr, 0, sizeof(current->thread.evr));
668 current->thread.acc = 0;
669 current->thread.spefscr = 0;
670 current->thread.used_spe = 0;
671#endif /* CONFIG_SPE */
672}
673
674#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
675 | PR_FP_EXC_RES | PR_FP_EXC_INV)
676
677int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
678{
679 struct pt_regs *regs = tsk->thread.regs;
680
681 /* This is a bit hairy. If we are an SPE enabled processor
682 * (have embedded fp) we store the IEEE exception enable flags in
683 * fpexc_mode. fpexc_mode is also used for setting FP exception
684 * mode (asyn, precise, disabled) for 'Classic' FP. */
685 if (val & PR_FP_EXC_SW_ENABLE) {
686#ifdef CONFIG_SPE
5e14d21e
KG
687 if (cpu_has_feature(CPU_FTR_SPE)) {
688 tsk->thread.fpexc_mode = val &
689 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
690 return 0;
691 } else {
692 return -EINVAL;
693 }
14cf11af
PM
694#else
695 return -EINVAL;
696#endif
14cf11af 697 }
06d67d54
PM
698
699 /* on a CONFIG_SPE this does not hurt us. The bits that
700 * __pack_fe01 use do not overlap with bits used for
701 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
702 * on CONFIG_SPE implementations are reserved so writing to
703 * them does not change anything */
704 if (val > PR_FP_EXC_PRECISE)
705 return -EINVAL;
706 tsk->thread.fpexc_mode = __pack_fe01(val);
707 if (regs != NULL && (regs->msr & MSR_FP) != 0)
708 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
709 | tsk->thread.fpexc_mode;
14cf11af
PM
710 return 0;
711}
712
713int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
714{
715 unsigned int val;
716
717 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
718#ifdef CONFIG_SPE
5e14d21e
KG
719 if (cpu_has_feature(CPU_FTR_SPE))
720 val = tsk->thread.fpexc_mode;
721 else
722 return -EINVAL;
14cf11af
PM
723#else
724 return -EINVAL;
725#endif
726 else
727 val = __unpack_fe01(tsk->thread.fpexc_mode);
728 return put_user(val, (unsigned int __user *) adr);
729}
730
fab5db97
PM
731int set_endian(struct task_struct *tsk, unsigned int val)
732{
733 struct pt_regs *regs = tsk->thread.regs;
734
735 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
736 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
737 return -EINVAL;
738
739 if (regs == NULL)
740 return -EINVAL;
741
742 if (val == PR_ENDIAN_BIG)
743 regs->msr &= ~MSR_LE;
744 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
745 regs->msr |= MSR_LE;
746 else
747 return -EINVAL;
748
749 return 0;
750}
751
752int get_endian(struct task_struct *tsk, unsigned long adr)
753{
754 struct pt_regs *regs = tsk->thread.regs;
755 unsigned int val;
756
757 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
758 !cpu_has_feature(CPU_FTR_REAL_LE))
759 return -EINVAL;
760
761 if (regs == NULL)
762 return -EINVAL;
763
764 if (regs->msr & MSR_LE) {
765 if (cpu_has_feature(CPU_FTR_REAL_LE))
766 val = PR_ENDIAN_LITTLE;
767 else
768 val = PR_ENDIAN_PPC_LITTLE;
769 } else
770 val = PR_ENDIAN_BIG;
771
772 return put_user(val, (unsigned int __user *)adr);
773}
774
e9370ae1
PM
775int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
776{
777 tsk->thread.align_ctl = val;
778 return 0;
779}
780
781int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
782{
783 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
784}
785
06d67d54
PM
786#define TRUNC_PTR(x) ((typeof(x))(((unsigned long)(x)) & 0xffffffff))
787
14cf11af
PM
788int sys_clone(unsigned long clone_flags, unsigned long usp,
789 int __user *parent_tidp, void __user *child_threadptr,
790 int __user *child_tidp, int p6,
791 struct pt_regs *regs)
792{
793 CHECK_FULL_REGS(regs);
794 if (usp == 0)
795 usp = regs->gpr[1]; /* stack pointer for child */
06d67d54
PM
796#ifdef CONFIG_PPC64
797 if (test_thread_flag(TIF_32BIT)) {
798 parent_tidp = TRUNC_PTR(parent_tidp);
799 child_tidp = TRUNC_PTR(child_tidp);
800 }
801#endif
14cf11af
PM
802 return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
803}
804
805int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
806 unsigned long p4, unsigned long p5, unsigned long p6,
807 struct pt_regs *regs)
808{
809 CHECK_FULL_REGS(regs);
810 return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
811}
812
813int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
814 unsigned long p4, unsigned long p5, unsigned long p6,
815 struct pt_regs *regs)
816{
817 CHECK_FULL_REGS(regs);
818 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
819 regs, 0, NULL, NULL);
820}
821
822int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
823 unsigned long a3, unsigned long a4, unsigned long a5,
824 struct pt_regs *regs)
825{
826 int error;
06d67d54 827 char *filename;
14cf11af
PM
828
829 filename = getname((char __user *) a0);
830 error = PTR_ERR(filename);
831 if (IS_ERR(filename))
832 goto out;
833 flush_fp_to_thread(current);
834 flush_altivec_to_thread(current);
835 flush_spe_to_thread(current);
20c8c210
PM
836 error = do_execve(filename, (char __user * __user *) a1,
837 (char __user * __user *) a2, regs);
14cf11af
PM
838 if (error == 0) {
839 task_lock(current);
840 current->ptrace &= ~PT_DTRACE;
841 task_unlock(current);
842 }
843 putname(filename);
844out:
845 return error;
846}
847
bb72c481
PM
848#ifdef CONFIG_IRQSTACKS
849static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
850 unsigned long nbytes)
851{
852 unsigned long stack_page;
853 unsigned long cpu = task_cpu(p);
854
855 /*
856 * Avoid crashing if the stack has overflowed and corrupted
857 * task_cpu(p), which is in the thread_info struct.
858 */
859 if (cpu < NR_CPUS && cpu_possible(cpu)) {
860 stack_page = (unsigned long) hardirq_ctx[cpu];
861 if (sp >= stack_page + sizeof(struct thread_struct)
862 && sp <= stack_page + THREAD_SIZE - nbytes)
863 return 1;
864
865 stack_page = (unsigned long) softirq_ctx[cpu];
866 if (sp >= stack_page + sizeof(struct thread_struct)
867 && sp <= stack_page + THREAD_SIZE - nbytes)
868 return 1;
869 }
870 return 0;
871}
872
873#else
874#define valid_irq_stack(sp, p, nb) 0
875#endif /* CONFIG_IRQSTACKS */
876
2f25194d 877int validate_sp(unsigned long sp, struct task_struct *p,
14cf11af
PM
878 unsigned long nbytes)
879{
0cec6fd1 880 unsigned long stack_page = (unsigned long)task_stack_page(p);
14cf11af
PM
881
882 if (sp >= stack_page + sizeof(struct thread_struct)
883 && sp <= stack_page + THREAD_SIZE - nbytes)
884 return 1;
885
bb72c481 886 return valid_irq_stack(sp, p, nbytes);
14cf11af
PM
887}
888
06d67d54
PM
889#ifdef CONFIG_PPC64
890#define MIN_STACK_FRAME 112 /* same as STACK_FRAME_OVERHEAD, in fact */
891#define FRAME_LR_SAVE 2
892#define INT_FRAME_SIZE (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD + 288)
893#define REGS_MARKER 0x7265677368657265ul
894#define FRAME_MARKER 12
895#else
896#define MIN_STACK_FRAME 16
897#define FRAME_LR_SAVE 1
898#define INT_FRAME_SIZE (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD)
899#define REGS_MARKER 0x72656773ul
900#define FRAME_MARKER 2
14cf11af 901#endif
14cf11af 902
2f25194d
AB
903EXPORT_SYMBOL(validate_sp);
904
14cf11af
PM
905unsigned long get_wchan(struct task_struct *p)
906{
907 unsigned long ip, sp;
908 int count = 0;
909
910 if (!p || p == current || p->state == TASK_RUNNING)
911 return 0;
912
913 sp = p->thread.ksp;
06d67d54 914 if (!validate_sp(sp, p, MIN_STACK_FRAME))
14cf11af
PM
915 return 0;
916
917 do {
918 sp = *(unsigned long *)sp;
06d67d54 919 if (!validate_sp(sp, p, MIN_STACK_FRAME))
14cf11af
PM
920 return 0;
921 if (count > 0) {
06d67d54 922 ip = ((unsigned long *)sp)[FRAME_LR_SAVE];
14cf11af
PM
923 if (!in_sched_functions(ip))
924 return ip;
925 }
926 } while (count++ < 16);
927 return 0;
928}
06d67d54
PM
929
930static int kstack_depth_to_print = 64;
931
932void show_stack(struct task_struct *tsk, unsigned long *stack)
933{
934 unsigned long sp, ip, lr, newsp;
935 int count = 0;
936 int firstframe = 1;
937
938 sp = (unsigned long) stack;
939 if (tsk == NULL)
940 tsk = current;
941 if (sp == 0) {
942 if (tsk == current)
943 asm("mr %0,1" : "=r" (sp));
944 else
945 sp = tsk->thread.ksp;
946 }
947
948 lr = 0;
949 printk("Call Trace:\n");
950 do {
951 if (!validate_sp(sp, tsk, MIN_STACK_FRAME))
952 return;
953
954 stack = (unsigned long *) sp;
955 newsp = stack[0];
956 ip = stack[FRAME_LR_SAVE];
957 if (!firstframe || ip != lr) {
958 printk("["REG"] ["REG"] ", sp, ip);
959 print_symbol("%s", ip);
960 if (firstframe)
961 printk(" (unreliable)");
962 printk("\n");
963 }
964 firstframe = 0;
965
966 /*
967 * See if this is an exception frame.
968 * We look for the "regshere" marker in the current frame.
969 */
970 if (validate_sp(sp, tsk, INT_FRAME_SIZE)
971 && stack[FRAME_MARKER] == REGS_MARKER) {
972 struct pt_regs *regs = (struct pt_regs *)
973 (sp + STACK_FRAME_OVERHEAD);
974 printk("--- Exception: %lx", regs->trap);
975 print_symbol(" at %s\n", regs->nip);
976 lr = regs->link;
977 print_symbol(" LR = %s\n", lr);
978 firstframe = 1;
979 }
980
981 sp = newsp;
982 } while (count++ < kstack_depth_to_print);
983}
984
985void dump_stack(void)
986{
987 show_stack(current, NULL);
988}
989EXPORT_SYMBOL(dump_stack);
cb2c9b27
AB
990
991#ifdef CONFIG_PPC64
992void ppc64_runlatch_on(void)
993{
994 unsigned long ctrl;
995
996 if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) {
997 HMT_medium();
998
999 ctrl = mfspr(SPRN_CTRLF);
1000 ctrl |= CTRL_RUNLATCH;
1001 mtspr(SPRN_CTRLT, ctrl);
1002
1003 set_thread_flag(TIF_RUNLATCH);
1004 }
1005}
1006
1007void ppc64_runlatch_off(void)
1008{
1009 unsigned long ctrl;
1010
1011 if (cpu_has_feature(CPU_FTR_CTRL) && test_thread_flag(TIF_RUNLATCH)) {
1012 HMT_medium();
1013
1014 clear_thread_flag(TIF_RUNLATCH);
1015
1016 ctrl = mfspr(SPRN_CTRLF);
1017 ctrl &= ~CTRL_RUNLATCH;
1018 mtspr(SPRN_CTRLT, ctrl);
1019 }
1020}
1021#endif