sched: sched_clock_cpu() based cpu_clock(), lockdep fix
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
5517d86b 65#include <linux/reciprocal_div.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
434d53b0 70#include <linux/bootmem.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
1da177e4 73
5517d86b 74#include <asm/tlb.h>
838225b4 75#include <asm/irq_regs.h>
1da177e4 76
6e0534f2
GH
77#include "sched_cpupri.h"
78
1da177e4
LT
79/*
80 * Convert user-nice values [ -20 ... 0 ... 19 ]
81 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
82 * and back.
83 */
84#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
85#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
86#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
87
88/*
89 * 'User priority' is the nice value converted to something we
90 * can work with better when scaling various scheduler parameters,
91 * it's a [ 0 ... 39 ] range.
92 */
93#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
94#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
95#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
96
97/*
d7876a08 98 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 99 */
d6322faf 100#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 101
6aa645ea
IM
102#define NICE_0_LOAD SCHED_LOAD_SCALE
103#define NICE_0_SHIFT SCHED_LOAD_SHIFT
104
1da177e4
LT
105/*
106 * These are the 'tuning knobs' of the scheduler:
107 *
a4ec24b4 108 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
109 * Timeslices get refilled after they expire.
110 */
1da177e4 111#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 112
d0b27fa7
PZ
113/*
114 * single value that denotes runtime == period, ie unlimited time.
115 */
116#define RUNTIME_INF ((u64)~0ULL)
117
5517d86b
ED
118#ifdef CONFIG_SMP
119/*
120 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
121 * Since cpu_power is a 'constant', we can use a reciprocal divide.
122 */
123static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
124{
125 return reciprocal_divide(load, sg->reciprocal_cpu_power);
126}
127
128/*
129 * Each time a sched group cpu_power is changed,
130 * we must compute its reciprocal value
131 */
132static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
133{
134 sg->__cpu_power += val;
135 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
136}
137#endif
138
e05606d3
IM
139static inline int rt_policy(int policy)
140{
3f33a7ce 141 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
142 return 1;
143 return 0;
144}
145
146static inline int task_has_rt_policy(struct task_struct *p)
147{
148 return rt_policy(p->policy);
149}
150
1da177e4 151/*
6aa645ea 152 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 153 */
6aa645ea
IM
154struct rt_prio_array {
155 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
20b6331b 156 struct list_head queue[MAX_RT_PRIO];
6aa645ea
IM
157};
158
d0b27fa7 159struct rt_bandwidth {
ea736ed5
IM
160 /* nests inside the rq lock: */
161 spinlock_t rt_runtime_lock;
162 ktime_t rt_period;
163 u64 rt_runtime;
164 struct hrtimer rt_period_timer;
d0b27fa7
PZ
165};
166
167static struct rt_bandwidth def_rt_bandwidth;
168
169static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
170
171static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
172{
173 struct rt_bandwidth *rt_b =
174 container_of(timer, struct rt_bandwidth, rt_period_timer);
175 ktime_t now;
176 int overrun;
177 int idle = 0;
178
179 for (;;) {
180 now = hrtimer_cb_get_time(timer);
181 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
182
183 if (!overrun)
184 break;
185
186 idle = do_sched_rt_period_timer(rt_b, overrun);
187 }
188
189 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
190}
191
192static
193void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
194{
195 rt_b->rt_period = ns_to_ktime(period);
196 rt_b->rt_runtime = runtime;
197
ac086bc2
PZ
198 spin_lock_init(&rt_b->rt_runtime_lock);
199
d0b27fa7
PZ
200 hrtimer_init(&rt_b->rt_period_timer,
201 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
202 rt_b->rt_period_timer.function = sched_rt_period_timer;
203 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
204}
205
206static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
207{
208 ktime_t now;
209
210 if (rt_b->rt_runtime == RUNTIME_INF)
211 return;
212
213 if (hrtimer_active(&rt_b->rt_period_timer))
214 return;
215
216 spin_lock(&rt_b->rt_runtime_lock);
217 for (;;) {
218 if (hrtimer_active(&rt_b->rt_period_timer))
219 break;
220
221 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
222 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
223 hrtimer_start(&rt_b->rt_period_timer,
224 rt_b->rt_period_timer.expires,
225 HRTIMER_MODE_ABS);
226 }
227 spin_unlock(&rt_b->rt_runtime_lock);
228}
229
230#ifdef CONFIG_RT_GROUP_SCHED
231static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
232{
233 hrtimer_cancel(&rt_b->rt_period_timer);
234}
235#endif
236
712555ee
HC
237/*
238 * sched_domains_mutex serializes calls to arch_init_sched_domains,
239 * detach_destroy_domains and partition_sched_domains.
240 */
241static DEFINE_MUTEX(sched_domains_mutex);
242
052f1dc7 243#ifdef CONFIG_GROUP_SCHED
29f59db3 244
68318b8e
SV
245#include <linux/cgroup.h>
246
29f59db3
SV
247struct cfs_rq;
248
6f505b16
PZ
249static LIST_HEAD(task_groups);
250
29f59db3 251/* task group related information */
4cf86d77 252struct task_group {
052f1dc7 253#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
254 struct cgroup_subsys_state css;
255#endif
052f1dc7
PZ
256
257#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
258 /* schedulable entities of this group on each cpu */
259 struct sched_entity **se;
260 /* runqueue "owned" by this group on each cpu */
261 struct cfs_rq **cfs_rq;
262 unsigned long shares;
052f1dc7
PZ
263#endif
264
265#ifdef CONFIG_RT_GROUP_SCHED
266 struct sched_rt_entity **rt_se;
267 struct rt_rq **rt_rq;
268
d0b27fa7 269 struct rt_bandwidth rt_bandwidth;
052f1dc7 270#endif
6b2d7700 271
ae8393e5 272 struct rcu_head rcu;
6f505b16 273 struct list_head list;
f473aa5e
PZ
274
275 struct task_group *parent;
276 struct list_head siblings;
277 struct list_head children;
29f59db3
SV
278};
279
354d60c2 280#ifdef CONFIG_USER_SCHED
eff766a6
PZ
281
282/*
283 * Root task group.
284 * Every UID task group (including init_task_group aka UID-0) will
285 * be a child to this group.
286 */
287struct task_group root_task_group;
288
052f1dc7 289#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
290/* Default task group's sched entity on each cpu */
291static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
292/* Default task group's cfs_rq on each cpu */
293static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 294#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
295
296#ifdef CONFIG_RT_GROUP_SCHED
297static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
298static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad
DG
299#endif /* CONFIG_RT_GROUP_SCHED */
300#else /* !CONFIG_FAIR_GROUP_SCHED */
eff766a6 301#define root_task_group init_task_group
6d6bc0ad 302#endif /* CONFIG_FAIR_GROUP_SCHED */
6f505b16 303
8ed36996 304/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
305 * a task group's cpu shares.
306 */
8ed36996 307static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 308
052f1dc7 309#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
310#ifdef CONFIG_USER_SCHED
311# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 312#else /* !CONFIG_USER_SCHED */
052f1dc7 313# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 314#endif /* CONFIG_USER_SCHED */
052f1dc7 315
cb4ad1ff 316/*
2e084786
LJ
317 * A weight of 0 or 1 can cause arithmetics problems.
318 * A weight of a cfs_rq is the sum of weights of which entities
319 * are queued on this cfs_rq, so a weight of a entity should not be
320 * too large, so as the shares value of a task group.
cb4ad1ff
MX
321 * (The default weight is 1024 - so there's no practical
322 * limitation from this.)
323 */
18d95a28 324#define MIN_SHARES 2
2e084786 325#define MAX_SHARES (1UL << 18)
18d95a28 326
052f1dc7
PZ
327static int init_task_group_load = INIT_TASK_GROUP_LOAD;
328#endif
329
29f59db3 330/* Default task group.
3a252015 331 * Every task in system belong to this group at bootup.
29f59db3 332 */
434d53b0 333struct task_group init_task_group;
29f59db3
SV
334
335/* return group to which a task belongs */
4cf86d77 336static inline struct task_group *task_group(struct task_struct *p)
29f59db3 337{
4cf86d77 338 struct task_group *tg;
9b5b7751 339
052f1dc7 340#ifdef CONFIG_USER_SCHED
24e377a8 341 tg = p->user->tg;
052f1dc7 342#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
343 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
344 struct task_group, css);
24e377a8 345#else
41a2d6cf 346 tg = &init_task_group;
24e377a8 347#endif
9b5b7751 348 return tg;
29f59db3
SV
349}
350
351/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 352static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 353{
052f1dc7 354#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
355 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
356 p->se.parent = task_group(p)->se[cpu];
052f1dc7 357#endif
6f505b16 358
052f1dc7 359#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
360 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
361 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 362#endif
29f59db3
SV
363}
364
365#else
366
6f505b16 367static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
368static inline struct task_group *task_group(struct task_struct *p)
369{
370 return NULL;
371}
29f59db3 372
052f1dc7 373#endif /* CONFIG_GROUP_SCHED */
29f59db3 374
6aa645ea
IM
375/* CFS-related fields in a runqueue */
376struct cfs_rq {
377 struct load_weight load;
378 unsigned long nr_running;
379
6aa645ea 380 u64 exec_clock;
e9acbff6 381 u64 min_vruntime;
103638d9 382 u64 pair_start;
6aa645ea
IM
383
384 struct rb_root tasks_timeline;
385 struct rb_node *rb_leftmost;
4a55bd5e
PZ
386
387 struct list_head tasks;
388 struct list_head *balance_iterator;
389
390 /*
391 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
392 * It is set to NULL otherwise (i.e when none are currently running).
393 */
aa2ac252 394 struct sched_entity *curr, *next;
ddc97297
PZ
395
396 unsigned long nr_spread_over;
397
62160e3f 398#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
399 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
400
41a2d6cf
IM
401 /*
402 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
403 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
404 * (like users, containers etc.)
405 *
406 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
407 * list is used during load balance.
408 */
41a2d6cf
IM
409 struct list_head leaf_cfs_rq_list;
410 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
411
412#ifdef CONFIG_SMP
c09595f6 413 /*
c8cba857 414 * the part of load.weight contributed by tasks
c09595f6 415 */
c8cba857 416 unsigned long task_weight;
c09595f6 417
c8cba857
PZ
418 /*
419 * h_load = weight * f(tg)
420 *
421 * Where f(tg) is the recursive weight fraction assigned to
422 * this group.
423 */
424 unsigned long h_load;
c09595f6 425
c8cba857
PZ
426 /*
427 * this cpu's part of tg->shares
428 */
429 unsigned long shares;
f1d239f7
PZ
430
431 /*
432 * load.weight at the time we set shares
433 */
434 unsigned long rq_weight;
c09595f6 435#endif
6aa645ea
IM
436#endif
437};
1da177e4 438
6aa645ea
IM
439/* Real-Time classes' related field in a runqueue: */
440struct rt_rq {
441 struct rt_prio_array active;
63489e45 442 unsigned long rt_nr_running;
052f1dc7 443#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
444 int highest_prio; /* highest queued rt task prio */
445#endif
fa85ae24 446#ifdef CONFIG_SMP
73fe6aae 447 unsigned long rt_nr_migratory;
a22d7fc1 448 int overloaded;
fa85ae24 449#endif
6f505b16 450 int rt_throttled;
fa85ae24 451 u64 rt_time;
ac086bc2 452 u64 rt_runtime;
ea736ed5 453 /* Nests inside the rq lock: */
ac086bc2 454 spinlock_t rt_runtime_lock;
6f505b16 455
052f1dc7 456#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
457 unsigned long rt_nr_boosted;
458
6f505b16
PZ
459 struct rq *rq;
460 struct list_head leaf_rt_rq_list;
461 struct task_group *tg;
462 struct sched_rt_entity *rt_se;
463#endif
6aa645ea
IM
464};
465
57d885fe
GH
466#ifdef CONFIG_SMP
467
468/*
469 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
470 * variables. Each exclusive cpuset essentially defines an island domain by
471 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
472 * exclusive cpuset is created, we also create and attach a new root-domain
473 * object.
474 *
57d885fe
GH
475 */
476struct root_domain {
477 atomic_t refcount;
478 cpumask_t span;
479 cpumask_t online;
637f5085 480
0eab9146 481 /*
637f5085
GH
482 * The "RT overload" flag: it gets set if a CPU has more than
483 * one runnable RT task.
484 */
485 cpumask_t rto_mask;
0eab9146 486 atomic_t rto_count;
6e0534f2
GH
487#ifdef CONFIG_SMP
488 struct cpupri cpupri;
489#endif
57d885fe
GH
490};
491
dc938520
GH
492/*
493 * By default the system creates a single root-domain with all cpus as
494 * members (mimicking the global state we have today).
495 */
57d885fe
GH
496static struct root_domain def_root_domain;
497
498#endif
499
1da177e4
LT
500/*
501 * This is the main, per-CPU runqueue data structure.
502 *
503 * Locking rule: those places that want to lock multiple runqueues
504 * (such as the load balancing or the thread migration code), lock
505 * acquire operations must be ordered by ascending &runqueue.
506 */
70b97a7f 507struct rq {
d8016491
IM
508 /* runqueue lock: */
509 spinlock_t lock;
1da177e4
LT
510
511 /*
512 * nr_running and cpu_load should be in the same cacheline because
513 * remote CPUs use both these fields when doing load calculation.
514 */
515 unsigned long nr_running;
6aa645ea
IM
516 #define CPU_LOAD_IDX_MAX 5
517 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 518 unsigned char idle_at_tick;
46cb4b7c 519#ifdef CONFIG_NO_HZ
15934a37 520 unsigned long last_tick_seen;
46cb4b7c
SS
521 unsigned char in_nohz_recently;
522#endif
d8016491
IM
523 /* capture load from *all* tasks on this cpu: */
524 struct load_weight load;
6aa645ea
IM
525 unsigned long nr_load_updates;
526 u64 nr_switches;
527
528 struct cfs_rq cfs;
6f505b16 529 struct rt_rq rt;
6f505b16 530
6aa645ea 531#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
532 /* list of leaf cfs_rq on this cpu: */
533 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
534#endif
535#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 536 struct list_head leaf_rt_rq_list;
1da177e4 537#endif
1da177e4
LT
538
539 /*
540 * This is part of a global counter where only the total sum
541 * over all CPUs matters. A task can increase this counter on
542 * one CPU and if it got migrated afterwards it may decrease
543 * it on another CPU. Always updated under the runqueue lock:
544 */
545 unsigned long nr_uninterruptible;
546
36c8b586 547 struct task_struct *curr, *idle;
c9819f45 548 unsigned long next_balance;
1da177e4 549 struct mm_struct *prev_mm;
6aa645ea 550
3e51f33f 551 u64 clock;
6aa645ea 552
1da177e4
LT
553 atomic_t nr_iowait;
554
555#ifdef CONFIG_SMP
0eab9146 556 struct root_domain *rd;
1da177e4
LT
557 struct sched_domain *sd;
558
559 /* For active balancing */
560 int active_balance;
561 int push_cpu;
d8016491
IM
562 /* cpu of this runqueue: */
563 int cpu;
1f11eb6a 564 int online;
1da177e4 565
a8a51d5e
PZ
566 unsigned long avg_load_per_task;
567
36c8b586 568 struct task_struct *migration_thread;
1da177e4
LT
569 struct list_head migration_queue;
570#endif
571
8f4d37ec
PZ
572#ifdef CONFIG_SCHED_HRTICK
573 unsigned long hrtick_flags;
574 ktime_t hrtick_expire;
575 struct hrtimer hrtick_timer;
576#endif
577
1da177e4
LT
578#ifdef CONFIG_SCHEDSTATS
579 /* latency stats */
580 struct sched_info rq_sched_info;
581
582 /* sys_sched_yield() stats */
480b9434
KC
583 unsigned int yld_exp_empty;
584 unsigned int yld_act_empty;
585 unsigned int yld_both_empty;
586 unsigned int yld_count;
1da177e4
LT
587
588 /* schedule() stats */
480b9434
KC
589 unsigned int sched_switch;
590 unsigned int sched_count;
591 unsigned int sched_goidle;
1da177e4
LT
592
593 /* try_to_wake_up() stats */
480b9434
KC
594 unsigned int ttwu_count;
595 unsigned int ttwu_local;
b8efb561
IM
596
597 /* BKL stats */
480b9434 598 unsigned int bkl_count;
1da177e4 599#endif
fcb99371 600 struct lock_class_key rq_lock_key;
1da177e4
LT
601};
602
f34e3b61 603static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 604
dd41f596
IM
605static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
606{
607 rq->curr->sched_class->check_preempt_curr(rq, p);
608}
609
0a2966b4
CL
610static inline int cpu_of(struct rq *rq)
611{
612#ifdef CONFIG_SMP
613 return rq->cpu;
614#else
615 return 0;
616#endif
617}
618
674311d5
NP
619/*
620 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 621 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
622 *
623 * The domain tree of any CPU may only be accessed from within
624 * preempt-disabled sections.
625 */
48f24c4d
IM
626#define for_each_domain(cpu, __sd) \
627 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
628
629#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
630#define this_rq() (&__get_cpu_var(runqueues))
631#define task_rq(p) cpu_rq(task_cpu(p))
632#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
633
3e51f33f
PZ
634static inline void update_rq_clock(struct rq *rq)
635{
636 rq->clock = sched_clock_cpu(cpu_of(rq));
637}
638
bf5c91ba
IM
639/*
640 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
641 */
642#ifdef CONFIG_SCHED_DEBUG
643# define const_debug __read_mostly
644#else
645# define const_debug static const
646#endif
647
648/*
649 * Debugging: various feature bits
650 */
f00b45c1
PZ
651
652#define SCHED_FEAT(name, enabled) \
653 __SCHED_FEAT_##name ,
654
bf5c91ba 655enum {
f00b45c1 656#include "sched_features.h"
bf5c91ba
IM
657};
658
f00b45c1
PZ
659#undef SCHED_FEAT
660
661#define SCHED_FEAT(name, enabled) \
662 (1UL << __SCHED_FEAT_##name) * enabled |
663
bf5c91ba 664const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
665#include "sched_features.h"
666 0;
667
668#undef SCHED_FEAT
669
670#ifdef CONFIG_SCHED_DEBUG
671#define SCHED_FEAT(name, enabled) \
672 #name ,
673
983ed7a6 674static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
675#include "sched_features.h"
676 NULL
677};
678
679#undef SCHED_FEAT
680
983ed7a6 681static int sched_feat_open(struct inode *inode, struct file *filp)
f00b45c1
PZ
682{
683 filp->private_data = inode->i_private;
684 return 0;
685}
686
687static ssize_t
688sched_feat_read(struct file *filp, char __user *ubuf,
689 size_t cnt, loff_t *ppos)
690{
691 char *buf;
692 int r = 0;
693 int len = 0;
694 int i;
695
696 for (i = 0; sched_feat_names[i]; i++) {
697 len += strlen(sched_feat_names[i]);
698 len += 4;
699 }
700
701 buf = kmalloc(len + 2, GFP_KERNEL);
702 if (!buf)
703 return -ENOMEM;
704
705 for (i = 0; sched_feat_names[i]; i++) {
706 if (sysctl_sched_features & (1UL << i))
707 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
708 else
c24b7c52 709 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
f00b45c1
PZ
710 }
711
712 r += sprintf(buf + r, "\n");
713 WARN_ON(r >= len + 2);
714
715 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
716
717 kfree(buf);
718
719 return r;
720}
721
722static ssize_t
723sched_feat_write(struct file *filp, const char __user *ubuf,
724 size_t cnt, loff_t *ppos)
725{
726 char buf[64];
727 char *cmp = buf;
728 int neg = 0;
729 int i;
730
731 if (cnt > 63)
732 cnt = 63;
733
734 if (copy_from_user(&buf, ubuf, cnt))
735 return -EFAULT;
736
737 buf[cnt] = 0;
738
c24b7c52 739 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
740 neg = 1;
741 cmp += 3;
742 }
743
744 for (i = 0; sched_feat_names[i]; i++) {
745 int len = strlen(sched_feat_names[i]);
746
747 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
748 if (neg)
749 sysctl_sched_features &= ~(1UL << i);
750 else
751 sysctl_sched_features |= (1UL << i);
752 break;
753 }
754 }
755
756 if (!sched_feat_names[i])
757 return -EINVAL;
758
759 filp->f_pos += cnt;
760
761 return cnt;
762}
763
764static struct file_operations sched_feat_fops = {
765 .open = sched_feat_open,
766 .read = sched_feat_read,
767 .write = sched_feat_write,
768};
769
770static __init int sched_init_debug(void)
771{
f00b45c1
PZ
772 debugfs_create_file("sched_features", 0644, NULL, NULL,
773 &sched_feat_fops);
774
775 return 0;
776}
777late_initcall(sched_init_debug);
778
779#endif
780
781#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 782
b82d9fdd
PZ
783/*
784 * Number of tasks to iterate in a single balance run.
785 * Limited because this is done with IRQs disabled.
786 */
787const_debug unsigned int sysctl_sched_nr_migrate = 32;
788
2398f2c6
PZ
789/*
790 * ratelimit for updating the group shares.
791 * default: 0.5ms
792 */
793const_debug unsigned int sysctl_sched_shares_ratelimit = 500000;
794
fa85ae24 795/*
9f0c1e56 796 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
797 * default: 1s
798 */
9f0c1e56 799unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 800
6892b75e
IM
801static __read_mostly int scheduler_running;
802
9f0c1e56
PZ
803/*
804 * part of the period that we allow rt tasks to run in us.
805 * default: 0.95s
806 */
807int sysctl_sched_rt_runtime = 950000;
fa85ae24 808
d0b27fa7
PZ
809static inline u64 global_rt_period(void)
810{
811 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
812}
813
814static inline u64 global_rt_runtime(void)
815{
816 if (sysctl_sched_rt_period < 0)
817 return RUNTIME_INF;
818
819 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
820}
fa85ae24 821
1da177e4 822#ifndef prepare_arch_switch
4866cde0
NP
823# define prepare_arch_switch(next) do { } while (0)
824#endif
825#ifndef finish_arch_switch
826# define finish_arch_switch(prev) do { } while (0)
827#endif
828
051a1d1a
DA
829static inline int task_current(struct rq *rq, struct task_struct *p)
830{
831 return rq->curr == p;
832}
833
4866cde0 834#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 835static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 836{
051a1d1a 837 return task_current(rq, p);
4866cde0
NP
838}
839
70b97a7f 840static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
841{
842}
843
70b97a7f 844static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 845{
da04c035
IM
846#ifdef CONFIG_DEBUG_SPINLOCK
847 /* this is a valid case when another task releases the spinlock */
848 rq->lock.owner = current;
849#endif
8a25d5de
IM
850 /*
851 * If we are tracking spinlock dependencies then we have to
852 * fix up the runqueue lock - which gets 'carried over' from
853 * prev into current:
854 */
855 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
856
4866cde0
NP
857 spin_unlock_irq(&rq->lock);
858}
859
860#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 861static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
862{
863#ifdef CONFIG_SMP
864 return p->oncpu;
865#else
051a1d1a 866 return task_current(rq, p);
4866cde0
NP
867#endif
868}
869
70b97a7f 870static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
871{
872#ifdef CONFIG_SMP
873 /*
874 * We can optimise this out completely for !SMP, because the
875 * SMP rebalancing from interrupt is the only thing that cares
876 * here.
877 */
878 next->oncpu = 1;
879#endif
880#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
881 spin_unlock_irq(&rq->lock);
882#else
883 spin_unlock(&rq->lock);
884#endif
885}
886
70b97a7f 887static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
888{
889#ifdef CONFIG_SMP
890 /*
891 * After ->oncpu is cleared, the task can be moved to a different CPU.
892 * We must ensure this doesn't happen until the switch is completely
893 * finished.
894 */
895 smp_wmb();
896 prev->oncpu = 0;
897#endif
898#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
899 local_irq_enable();
1da177e4 900#endif
4866cde0
NP
901}
902#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 903
b29739f9
IM
904/*
905 * __task_rq_lock - lock the runqueue a given task resides on.
906 * Must be called interrupts disabled.
907 */
70b97a7f 908static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
909 __acquires(rq->lock)
910{
3a5c359a
AK
911 for (;;) {
912 struct rq *rq = task_rq(p);
913 spin_lock(&rq->lock);
914 if (likely(rq == task_rq(p)))
915 return rq;
b29739f9 916 spin_unlock(&rq->lock);
b29739f9 917 }
b29739f9
IM
918}
919
1da177e4
LT
920/*
921 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 922 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
923 * explicitly disabling preemption.
924 */
70b97a7f 925static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
926 __acquires(rq->lock)
927{
70b97a7f 928 struct rq *rq;
1da177e4 929
3a5c359a
AK
930 for (;;) {
931 local_irq_save(*flags);
932 rq = task_rq(p);
933 spin_lock(&rq->lock);
934 if (likely(rq == task_rq(p)))
935 return rq;
1da177e4 936 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 937 }
1da177e4
LT
938}
939
a9957449 940static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
941 __releases(rq->lock)
942{
943 spin_unlock(&rq->lock);
944}
945
70b97a7f 946static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
947 __releases(rq->lock)
948{
949 spin_unlock_irqrestore(&rq->lock, *flags);
950}
951
1da177e4 952/*
cc2a73b5 953 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 954 */
a9957449 955static struct rq *this_rq_lock(void)
1da177e4
LT
956 __acquires(rq->lock)
957{
70b97a7f 958 struct rq *rq;
1da177e4
LT
959
960 local_irq_disable();
961 rq = this_rq();
962 spin_lock(&rq->lock);
963
964 return rq;
965}
966
8f4d37ec
PZ
967static void __resched_task(struct task_struct *p, int tif_bit);
968
969static inline void resched_task(struct task_struct *p)
970{
971 __resched_task(p, TIF_NEED_RESCHED);
972}
973
974#ifdef CONFIG_SCHED_HRTICK
975/*
976 * Use HR-timers to deliver accurate preemption points.
977 *
978 * Its all a bit involved since we cannot program an hrt while holding the
979 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
980 * reschedule event.
981 *
982 * When we get rescheduled we reprogram the hrtick_timer outside of the
983 * rq->lock.
984 */
985static inline void resched_hrt(struct task_struct *p)
986{
987 __resched_task(p, TIF_HRTICK_RESCHED);
988}
989
990static inline void resched_rq(struct rq *rq)
991{
992 unsigned long flags;
993
994 spin_lock_irqsave(&rq->lock, flags);
995 resched_task(rq->curr);
996 spin_unlock_irqrestore(&rq->lock, flags);
997}
998
999enum {
1000 HRTICK_SET, /* re-programm hrtick_timer */
1001 HRTICK_RESET, /* not a new slice */
b328ca18 1002 HRTICK_BLOCK, /* stop hrtick operations */
8f4d37ec
PZ
1003};
1004
1005/*
1006 * Use hrtick when:
1007 * - enabled by features
1008 * - hrtimer is actually high res
1009 */
1010static inline int hrtick_enabled(struct rq *rq)
1011{
1012 if (!sched_feat(HRTICK))
1013 return 0;
b328ca18
PZ
1014 if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
1015 return 0;
8f4d37ec
PZ
1016 return hrtimer_is_hres_active(&rq->hrtick_timer);
1017}
1018
1019/*
1020 * Called to set the hrtick timer state.
1021 *
1022 * called with rq->lock held and irqs disabled
1023 */
1024static void hrtick_start(struct rq *rq, u64 delay, int reset)
1025{
1026 assert_spin_locked(&rq->lock);
1027
1028 /*
1029 * preempt at: now + delay
1030 */
1031 rq->hrtick_expire =
1032 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
1033 /*
1034 * indicate we need to program the timer
1035 */
1036 __set_bit(HRTICK_SET, &rq->hrtick_flags);
1037 if (reset)
1038 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
1039
1040 /*
1041 * New slices are called from the schedule path and don't need a
1042 * forced reschedule.
1043 */
1044 if (reset)
1045 resched_hrt(rq->curr);
1046}
1047
1048static void hrtick_clear(struct rq *rq)
1049{
1050 if (hrtimer_active(&rq->hrtick_timer))
1051 hrtimer_cancel(&rq->hrtick_timer);
1052}
1053
1054/*
1055 * Update the timer from the possible pending state.
1056 */
1057static void hrtick_set(struct rq *rq)
1058{
1059 ktime_t time;
1060 int set, reset;
1061 unsigned long flags;
1062
1063 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1064
1065 spin_lock_irqsave(&rq->lock, flags);
1066 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
1067 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
1068 time = rq->hrtick_expire;
1069 clear_thread_flag(TIF_HRTICK_RESCHED);
1070 spin_unlock_irqrestore(&rq->lock, flags);
1071
1072 if (set) {
1073 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
1074 if (reset && !hrtimer_active(&rq->hrtick_timer))
1075 resched_rq(rq);
1076 } else
1077 hrtick_clear(rq);
1078}
1079
1080/*
1081 * High-resolution timer tick.
1082 * Runs from hardirq context with interrupts disabled.
1083 */
1084static enum hrtimer_restart hrtick(struct hrtimer *timer)
1085{
1086 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1087
1088 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1089
1090 spin_lock(&rq->lock);
3e51f33f 1091 update_rq_clock(rq);
8f4d37ec
PZ
1092 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1093 spin_unlock(&rq->lock);
1094
1095 return HRTIMER_NORESTART;
1096}
1097
81d41d7e 1098#ifdef CONFIG_SMP
b328ca18
PZ
1099static void hotplug_hrtick_disable(int cpu)
1100{
1101 struct rq *rq = cpu_rq(cpu);
1102 unsigned long flags;
1103
1104 spin_lock_irqsave(&rq->lock, flags);
1105 rq->hrtick_flags = 0;
1106 __set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1107 spin_unlock_irqrestore(&rq->lock, flags);
1108
1109 hrtick_clear(rq);
1110}
1111
1112static void hotplug_hrtick_enable(int cpu)
1113{
1114 struct rq *rq = cpu_rq(cpu);
1115 unsigned long flags;
1116
1117 spin_lock_irqsave(&rq->lock, flags);
1118 __clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1119 spin_unlock_irqrestore(&rq->lock, flags);
1120}
1121
1122static int
1123hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1124{
1125 int cpu = (int)(long)hcpu;
1126
1127 switch (action) {
1128 case CPU_UP_CANCELED:
1129 case CPU_UP_CANCELED_FROZEN:
1130 case CPU_DOWN_PREPARE:
1131 case CPU_DOWN_PREPARE_FROZEN:
1132 case CPU_DEAD:
1133 case CPU_DEAD_FROZEN:
1134 hotplug_hrtick_disable(cpu);
1135 return NOTIFY_OK;
1136
1137 case CPU_UP_PREPARE:
1138 case CPU_UP_PREPARE_FROZEN:
1139 case CPU_DOWN_FAILED:
1140 case CPU_DOWN_FAILED_FROZEN:
1141 case CPU_ONLINE:
1142 case CPU_ONLINE_FROZEN:
1143 hotplug_hrtick_enable(cpu);
1144 return NOTIFY_OK;
1145 }
1146
1147 return NOTIFY_DONE;
1148}
1149
1150static void init_hrtick(void)
1151{
1152 hotcpu_notifier(hotplug_hrtick, 0);
1153}
81d41d7e 1154#endif /* CONFIG_SMP */
b328ca18
PZ
1155
1156static void init_rq_hrtick(struct rq *rq)
8f4d37ec
PZ
1157{
1158 rq->hrtick_flags = 0;
1159 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1160 rq->hrtick_timer.function = hrtick;
1161 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1162}
1163
1164void hrtick_resched(void)
1165{
1166 struct rq *rq;
1167 unsigned long flags;
1168
1169 if (!test_thread_flag(TIF_HRTICK_RESCHED))
1170 return;
1171
1172 local_irq_save(flags);
1173 rq = cpu_rq(smp_processor_id());
1174 hrtick_set(rq);
1175 local_irq_restore(flags);
1176}
1177#else
1178static inline void hrtick_clear(struct rq *rq)
1179{
1180}
1181
1182static inline void hrtick_set(struct rq *rq)
1183{
1184}
1185
1186static inline void init_rq_hrtick(struct rq *rq)
1187{
1188}
1189
1190void hrtick_resched(void)
1191{
1192}
b328ca18
PZ
1193
1194static inline void init_hrtick(void)
1195{
1196}
8f4d37ec
PZ
1197#endif
1198
c24d20db
IM
1199/*
1200 * resched_task - mark a task 'to be rescheduled now'.
1201 *
1202 * On UP this means the setting of the need_resched flag, on SMP it
1203 * might also involve a cross-CPU call to trigger the scheduler on
1204 * the target CPU.
1205 */
1206#ifdef CONFIG_SMP
1207
1208#ifndef tsk_is_polling
1209#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1210#endif
1211
8f4d37ec 1212static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1213{
1214 int cpu;
1215
1216 assert_spin_locked(&task_rq(p)->lock);
1217
8f4d37ec 1218 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
c24d20db
IM
1219 return;
1220
8f4d37ec 1221 set_tsk_thread_flag(p, tif_bit);
c24d20db
IM
1222
1223 cpu = task_cpu(p);
1224 if (cpu == smp_processor_id())
1225 return;
1226
1227 /* NEED_RESCHED must be visible before we test polling */
1228 smp_mb();
1229 if (!tsk_is_polling(p))
1230 smp_send_reschedule(cpu);
1231}
1232
1233static void resched_cpu(int cpu)
1234{
1235 struct rq *rq = cpu_rq(cpu);
1236 unsigned long flags;
1237
1238 if (!spin_trylock_irqsave(&rq->lock, flags))
1239 return;
1240 resched_task(cpu_curr(cpu));
1241 spin_unlock_irqrestore(&rq->lock, flags);
1242}
06d8308c
TG
1243
1244#ifdef CONFIG_NO_HZ
1245/*
1246 * When add_timer_on() enqueues a timer into the timer wheel of an
1247 * idle CPU then this timer might expire before the next timer event
1248 * which is scheduled to wake up that CPU. In case of a completely
1249 * idle system the next event might even be infinite time into the
1250 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1251 * leaves the inner idle loop so the newly added timer is taken into
1252 * account when the CPU goes back to idle and evaluates the timer
1253 * wheel for the next timer event.
1254 */
1255void wake_up_idle_cpu(int cpu)
1256{
1257 struct rq *rq = cpu_rq(cpu);
1258
1259 if (cpu == smp_processor_id())
1260 return;
1261
1262 /*
1263 * This is safe, as this function is called with the timer
1264 * wheel base lock of (cpu) held. When the CPU is on the way
1265 * to idle and has not yet set rq->curr to idle then it will
1266 * be serialized on the timer wheel base lock and take the new
1267 * timer into account automatically.
1268 */
1269 if (rq->curr != rq->idle)
1270 return;
1271
1272 /*
1273 * We can set TIF_RESCHED on the idle task of the other CPU
1274 * lockless. The worst case is that the other CPU runs the
1275 * idle task through an additional NOOP schedule()
1276 */
1277 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1278
1279 /* NEED_RESCHED must be visible before we test polling */
1280 smp_mb();
1281 if (!tsk_is_polling(rq->idle))
1282 smp_send_reschedule(cpu);
1283}
6d6bc0ad 1284#endif /* CONFIG_NO_HZ */
06d8308c 1285
6d6bc0ad 1286#else /* !CONFIG_SMP */
8f4d37ec 1287static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1288{
1289 assert_spin_locked(&task_rq(p)->lock);
8f4d37ec 1290 set_tsk_thread_flag(p, tif_bit);
c24d20db 1291}
6d6bc0ad 1292#endif /* CONFIG_SMP */
c24d20db 1293
45bf76df
IM
1294#if BITS_PER_LONG == 32
1295# define WMULT_CONST (~0UL)
1296#else
1297# define WMULT_CONST (1UL << 32)
1298#endif
1299
1300#define WMULT_SHIFT 32
1301
194081eb
IM
1302/*
1303 * Shift right and round:
1304 */
cf2ab469 1305#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1306
a7be37ac
PZ
1307/*
1308 * delta *= weight / lw
1309 */
cb1c4fc9 1310static unsigned long
45bf76df
IM
1311calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1312 struct load_weight *lw)
1313{
1314 u64 tmp;
1315
7a232e03
LJ
1316 if (!lw->inv_weight) {
1317 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1318 lw->inv_weight = 1;
1319 else
1320 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1321 / (lw->weight+1);
1322 }
45bf76df
IM
1323
1324 tmp = (u64)delta_exec * weight;
1325 /*
1326 * Check whether we'd overflow the 64-bit multiplication:
1327 */
194081eb 1328 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1329 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1330 WMULT_SHIFT/2);
1331 else
cf2ab469 1332 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1333
ecf691da 1334 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1335}
1336
1091985b 1337static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1338{
1339 lw->weight += inc;
e89996ae 1340 lw->inv_weight = 0;
45bf76df
IM
1341}
1342
1091985b 1343static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1344{
1345 lw->weight -= dec;
e89996ae 1346 lw->inv_weight = 0;
45bf76df
IM
1347}
1348
2dd73a4f
PW
1349/*
1350 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1351 * of tasks with abnormal "nice" values across CPUs the contribution that
1352 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1353 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1354 * scaled version of the new time slice allocation that they receive on time
1355 * slice expiry etc.
1356 */
1357
dd41f596
IM
1358#define WEIGHT_IDLEPRIO 2
1359#define WMULT_IDLEPRIO (1 << 31)
1360
1361/*
1362 * Nice levels are multiplicative, with a gentle 10% change for every
1363 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1364 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1365 * that remained on nice 0.
1366 *
1367 * The "10% effect" is relative and cumulative: from _any_ nice level,
1368 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1369 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1370 * If a task goes up by ~10% and another task goes down by ~10% then
1371 * the relative distance between them is ~25%.)
dd41f596
IM
1372 */
1373static const int prio_to_weight[40] = {
254753dc
IM
1374 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1375 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1376 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1377 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1378 /* 0 */ 1024, 820, 655, 526, 423,
1379 /* 5 */ 335, 272, 215, 172, 137,
1380 /* 10 */ 110, 87, 70, 56, 45,
1381 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1382};
1383
5714d2de
IM
1384/*
1385 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1386 *
1387 * In cases where the weight does not change often, we can use the
1388 * precalculated inverse to speed up arithmetics by turning divisions
1389 * into multiplications:
1390 */
dd41f596 1391static const u32 prio_to_wmult[40] = {
254753dc
IM
1392 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1393 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1394 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1395 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1396 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1397 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1398 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1399 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1400};
2dd73a4f 1401
dd41f596
IM
1402static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1403
1404/*
1405 * runqueue iterator, to support SMP load-balancing between different
1406 * scheduling classes, without having to expose their internal data
1407 * structures to the load-balancing proper:
1408 */
1409struct rq_iterator {
1410 void *arg;
1411 struct task_struct *(*start)(void *);
1412 struct task_struct *(*next)(void *);
1413};
1414
e1d1484f
PW
1415#ifdef CONFIG_SMP
1416static unsigned long
1417balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1418 unsigned long max_load_move, struct sched_domain *sd,
1419 enum cpu_idle_type idle, int *all_pinned,
1420 int *this_best_prio, struct rq_iterator *iterator);
1421
1422static int
1423iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1424 struct sched_domain *sd, enum cpu_idle_type idle,
1425 struct rq_iterator *iterator);
e1d1484f 1426#endif
dd41f596 1427
d842de87
SV
1428#ifdef CONFIG_CGROUP_CPUACCT
1429static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1430#else
1431static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1432#endif
1433
18d95a28
PZ
1434static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1435{
1436 update_load_add(&rq->load, load);
1437}
1438
1439static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1440{
1441 update_load_sub(&rq->load, load);
1442}
1443
e7693a36
GH
1444#ifdef CONFIG_SMP
1445static unsigned long source_load(int cpu, int type);
1446static unsigned long target_load(int cpu, int type);
e7693a36 1447static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
c09595f6 1448
a8a51d5e
PZ
1449static unsigned long cpu_avg_load_per_task(int cpu)
1450{
1451 struct rq *rq = cpu_rq(cpu);
1452
1453 if (rq->nr_running)
1454 rq->avg_load_per_task = rq->load.weight / rq->nr_running;
1455
1456 return rq->avg_load_per_task;
1457}
1458
c09595f6
PZ
1459#ifdef CONFIG_FAIR_GROUP_SCHED
1460
c8cba857 1461typedef void (*tg_visitor)(struct task_group *, int, struct sched_domain *);
c09595f6
PZ
1462
1463/*
1464 * Iterate the full tree, calling @down when first entering a node and @up when
1465 * leaving it for the final time.
1466 */
c8cba857
PZ
1467static void
1468walk_tg_tree(tg_visitor down, tg_visitor up, int cpu, struct sched_domain *sd)
c09595f6
PZ
1469{
1470 struct task_group *parent, *child;
1471
1472 rcu_read_lock();
1473 parent = &root_task_group;
1474down:
b6a86c74 1475 (*down)(parent, cpu, sd);
c09595f6
PZ
1476 list_for_each_entry_rcu(child, &parent->children, siblings) {
1477 parent = child;
1478 goto down;
1479
1480up:
1481 continue;
1482 }
b6a86c74 1483 (*up)(parent, cpu, sd);
c09595f6
PZ
1484
1485 child = parent;
1486 parent = parent->parent;
1487 if (parent)
1488 goto up;
1489 rcu_read_unlock();
1490}
1491
c09595f6
PZ
1492static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1493
1494/*
1495 * Calculate and set the cpu's group shares.
1496 */
1497static void
b6a86c74 1498__update_group_shares_cpu(struct task_group *tg, int cpu,
c8cba857 1499 unsigned long sd_shares, unsigned long sd_rq_weight)
c09595f6
PZ
1500{
1501 int boost = 0;
1502 unsigned long shares;
1503 unsigned long rq_weight;
1504
c8cba857 1505 if (!tg->se[cpu])
c09595f6
PZ
1506 return;
1507
c8cba857 1508 rq_weight = tg->cfs_rq[cpu]->load.weight;
c09595f6
PZ
1509
1510 /*
1511 * If there are currently no tasks on the cpu pretend there is one of
1512 * average load so that when a new task gets to run here it will not
1513 * get delayed by group starvation.
1514 */
1515 if (!rq_weight) {
1516 boost = 1;
1517 rq_weight = NICE_0_LOAD;
1518 }
1519
c8cba857
PZ
1520 if (unlikely(rq_weight > sd_rq_weight))
1521 rq_weight = sd_rq_weight;
1522
c09595f6
PZ
1523 /*
1524 * \Sum shares * rq_weight
1525 * shares = -----------------------
1526 * \Sum rq_weight
1527 *
1528 */
c8cba857 1529 shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
c09595f6
PZ
1530
1531 /*
1532 * record the actual number of shares, not the boosted amount.
1533 */
c8cba857 1534 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
f1d239f7 1535 tg->cfs_rq[cpu]->rq_weight = rq_weight;
c09595f6
PZ
1536
1537 if (shares < MIN_SHARES)
1538 shares = MIN_SHARES;
1539 else if (shares > MAX_SHARES)
1540 shares = MAX_SHARES;
1541
c8cba857 1542 __set_se_shares(tg->se[cpu], shares);
c09595f6
PZ
1543}
1544
1545/*
c8cba857
PZ
1546 * Re-compute the task group their per cpu shares over the given domain.
1547 * This needs to be done in a bottom-up fashion because the rq weight of a
1548 * parent group depends on the shares of its child groups.
c09595f6
PZ
1549 */
1550static void
c8cba857 1551tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
c09595f6 1552{
c8cba857
PZ
1553 unsigned long rq_weight = 0;
1554 unsigned long shares = 0;
1555 int i;
c09595f6 1556
c8cba857
PZ
1557 for_each_cpu_mask(i, sd->span) {
1558 rq_weight += tg->cfs_rq[i]->load.weight;
1559 shares += tg->cfs_rq[i]->shares;
c09595f6 1560 }
c09595f6 1561
c8cba857
PZ
1562 if ((!shares && rq_weight) || shares > tg->shares)
1563 shares = tg->shares;
1564
1565 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1566 shares = tg->shares;
c09595f6 1567
cd80917e
PZ
1568 if (!rq_weight)
1569 rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
1570
c09595f6
PZ
1571 for_each_cpu_mask(i, sd->span) {
1572 struct rq *rq = cpu_rq(i);
1573 unsigned long flags;
1574
1575 spin_lock_irqsave(&rq->lock, flags);
c8cba857 1576 __update_group_shares_cpu(tg, i, shares, rq_weight);
c09595f6
PZ
1577 spin_unlock_irqrestore(&rq->lock, flags);
1578 }
c09595f6
PZ
1579}
1580
1581/*
c8cba857
PZ
1582 * Compute the cpu's hierarchical load factor for each task group.
1583 * This needs to be done in a top-down fashion because the load of a child
1584 * group is a fraction of its parents load.
c09595f6 1585 */
b6a86c74 1586static void
c8cba857 1587tg_load_down(struct task_group *tg, int cpu, struct sched_domain *sd)
c09595f6 1588{
c8cba857 1589 unsigned long load;
c09595f6 1590
c8cba857
PZ
1591 if (!tg->parent) {
1592 load = cpu_rq(cpu)->load.weight;
1593 } else {
1594 load = tg->parent->cfs_rq[cpu]->h_load;
1595 load *= tg->cfs_rq[cpu]->shares;
1596 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1597 }
c09595f6 1598
c8cba857 1599 tg->cfs_rq[cpu]->h_load = load;
c09595f6
PZ
1600}
1601
c8cba857
PZ
1602static void
1603tg_nop(struct task_group *tg, int cpu, struct sched_domain *sd)
c09595f6 1604{
c09595f6
PZ
1605}
1606
c8cba857 1607static void update_shares(struct sched_domain *sd)
4d8d595d 1608{
2398f2c6
PZ
1609 u64 now = cpu_clock(raw_smp_processor_id());
1610 s64 elapsed = now - sd->last_update;
1611
1612 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1613 sd->last_update = now;
1614 walk_tg_tree(tg_nop, tg_shares_up, 0, sd);
1615 }
4d8d595d
PZ
1616}
1617
3e5459b4
PZ
1618static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1619{
1620 spin_unlock(&rq->lock);
1621 update_shares(sd);
1622 spin_lock(&rq->lock);
1623}
1624
c8cba857 1625static void update_h_load(int cpu)
c09595f6 1626{
c8cba857 1627 walk_tg_tree(tg_load_down, tg_nop, cpu, NULL);
c09595f6
PZ
1628}
1629
1630static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1631{
1632 cfs_rq->shares = shares;
1633}
1634
1635#else
1636
c8cba857 1637static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1638{
1639}
1640
3e5459b4
PZ
1641static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1642{
1643}
1644
c09595f6
PZ
1645#endif
1646
18d95a28
PZ
1647#endif
1648
dd41f596 1649#include "sched_stats.h"
dd41f596 1650#include "sched_idletask.c"
5522d5d5
IM
1651#include "sched_fair.c"
1652#include "sched_rt.c"
dd41f596
IM
1653#ifdef CONFIG_SCHED_DEBUG
1654# include "sched_debug.c"
1655#endif
1656
1657#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1658#define for_each_class(class) \
1659 for (class = sched_class_highest; class; class = class->next)
dd41f596 1660
c09595f6 1661static void inc_nr_running(struct rq *rq)
9c217245
IM
1662{
1663 rq->nr_running++;
9c217245
IM
1664}
1665
c09595f6 1666static void dec_nr_running(struct rq *rq)
9c217245
IM
1667{
1668 rq->nr_running--;
9c217245
IM
1669}
1670
45bf76df
IM
1671static void set_load_weight(struct task_struct *p)
1672{
1673 if (task_has_rt_policy(p)) {
dd41f596
IM
1674 p->se.load.weight = prio_to_weight[0] * 2;
1675 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1676 return;
1677 }
45bf76df 1678
dd41f596
IM
1679 /*
1680 * SCHED_IDLE tasks get minimal weight:
1681 */
1682 if (p->policy == SCHED_IDLE) {
1683 p->se.load.weight = WEIGHT_IDLEPRIO;
1684 p->se.load.inv_weight = WMULT_IDLEPRIO;
1685 return;
1686 }
71f8bd46 1687
dd41f596
IM
1688 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1689 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1690}
1691
8159f87e 1692static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1693{
dd41f596 1694 sched_info_queued(p);
fd390f6a 1695 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1696 p->se.on_rq = 1;
71f8bd46
IM
1697}
1698
69be72c1 1699static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1700{
f02231e5 1701 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1702 p->se.on_rq = 0;
71f8bd46
IM
1703}
1704
14531189 1705/*
dd41f596 1706 * __normal_prio - return the priority that is based on the static prio
14531189 1707 */
14531189
IM
1708static inline int __normal_prio(struct task_struct *p)
1709{
dd41f596 1710 return p->static_prio;
14531189
IM
1711}
1712
b29739f9
IM
1713/*
1714 * Calculate the expected normal priority: i.e. priority
1715 * without taking RT-inheritance into account. Might be
1716 * boosted by interactivity modifiers. Changes upon fork,
1717 * setprio syscalls, and whenever the interactivity
1718 * estimator recalculates.
1719 */
36c8b586 1720static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1721{
1722 int prio;
1723
e05606d3 1724 if (task_has_rt_policy(p))
b29739f9
IM
1725 prio = MAX_RT_PRIO-1 - p->rt_priority;
1726 else
1727 prio = __normal_prio(p);
1728 return prio;
1729}
1730
1731/*
1732 * Calculate the current priority, i.e. the priority
1733 * taken into account by the scheduler. This value might
1734 * be boosted by RT tasks, or might be boosted by
1735 * interactivity modifiers. Will be RT if the task got
1736 * RT-boosted. If not then it returns p->normal_prio.
1737 */
36c8b586 1738static int effective_prio(struct task_struct *p)
b29739f9
IM
1739{
1740 p->normal_prio = normal_prio(p);
1741 /*
1742 * If we are RT tasks or we were boosted to RT priority,
1743 * keep the priority unchanged. Otherwise, update priority
1744 * to the normal priority:
1745 */
1746 if (!rt_prio(p->prio))
1747 return p->normal_prio;
1748 return p->prio;
1749}
1750
1da177e4 1751/*
dd41f596 1752 * activate_task - move a task to the runqueue.
1da177e4 1753 */
dd41f596 1754static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1755{
d9514f6c 1756 if (task_contributes_to_load(p))
dd41f596 1757 rq->nr_uninterruptible--;
1da177e4 1758
8159f87e 1759 enqueue_task(rq, p, wakeup);
c09595f6 1760 inc_nr_running(rq);
1da177e4
LT
1761}
1762
1da177e4
LT
1763/*
1764 * deactivate_task - remove a task from the runqueue.
1765 */
2e1cb74a 1766static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1767{
d9514f6c 1768 if (task_contributes_to_load(p))
dd41f596
IM
1769 rq->nr_uninterruptible++;
1770
69be72c1 1771 dequeue_task(rq, p, sleep);
c09595f6 1772 dec_nr_running(rq);
1da177e4
LT
1773}
1774
1da177e4
LT
1775/**
1776 * task_curr - is this task currently executing on a CPU?
1777 * @p: the task in question.
1778 */
36c8b586 1779inline int task_curr(const struct task_struct *p)
1da177e4
LT
1780{
1781 return cpu_curr(task_cpu(p)) == p;
1782}
1783
dd41f596
IM
1784static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1785{
6f505b16 1786 set_task_rq(p, cpu);
dd41f596 1787#ifdef CONFIG_SMP
ce96b5ac
DA
1788 /*
1789 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1790 * successfuly executed on another CPU. We must ensure that updates of
1791 * per-task data have been completed by this moment.
1792 */
1793 smp_wmb();
dd41f596 1794 task_thread_info(p)->cpu = cpu;
dd41f596 1795#endif
2dd73a4f
PW
1796}
1797
cb469845
SR
1798static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1799 const struct sched_class *prev_class,
1800 int oldprio, int running)
1801{
1802 if (prev_class != p->sched_class) {
1803 if (prev_class->switched_from)
1804 prev_class->switched_from(rq, p, running);
1805 p->sched_class->switched_to(rq, p, running);
1806 } else
1807 p->sched_class->prio_changed(rq, p, oldprio, running);
1808}
1809
1da177e4 1810#ifdef CONFIG_SMP
c65cc870 1811
e958b360
TG
1812/* Used instead of source_load when we know the type == 0 */
1813static unsigned long weighted_cpuload(const int cpu)
1814{
1815 return cpu_rq(cpu)->load.weight;
1816}
1817
cc367732
IM
1818/*
1819 * Is this task likely cache-hot:
1820 */
e7693a36 1821static int
cc367732
IM
1822task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1823{
1824 s64 delta;
1825
f540a608
IM
1826 /*
1827 * Buddy candidates are cache hot:
1828 */
d25ce4cd 1829 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
f540a608
IM
1830 return 1;
1831
cc367732
IM
1832 if (p->sched_class != &fair_sched_class)
1833 return 0;
1834
6bc1665b
IM
1835 if (sysctl_sched_migration_cost == -1)
1836 return 1;
1837 if (sysctl_sched_migration_cost == 0)
1838 return 0;
1839
cc367732
IM
1840 delta = now - p->se.exec_start;
1841
1842 return delta < (s64)sysctl_sched_migration_cost;
1843}
1844
1845
dd41f596 1846void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1847{
dd41f596
IM
1848 int old_cpu = task_cpu(p);
1849 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1850 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1851 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1852 u64 clock_offset;
dd41f596
IM
1853
1854 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1855
1856#ifdef CONFIG_SCHEDSTATS
1857 if (p->se.wait_start)
1858 p->se.wait_start -= clock_offset;
dd41f596
IM
1859 if (p->se.sleep_start)
1860 p->se.sleep_start -= clock_offset;
1861 if (p->se.block_start)
1862 p->se.block_start -= clock_offset;
cc367732
IM
1863 if (old_cpu != new_cpu) {
1864 schedstat_inc(p, se.nr_migrations);
1865 if (task_hot(p, old_rq->clock, NULL))
1866 schedstat_inc(p, se.nr_forced2_migrations);
1867 }
6cfb0d5d 1868#endif
2830cf8c
SV
1869 p->se.vruntime -= old_cfsrq->min_vruntime -
1870 new_cfsrq->min_vruntime;
dd41f596
IM
1871
1872 __set_task_cpu(p, new_cpu);
c65cc870
IM
1873}
1874
70b97a7f 1875struct migration_req {
1da177e4 1876 struct list_head list;
1da177e4 1877
36c8b586 1878 struct task_struct *task;
1da177e4
LT
1879 int dest_cpu;
1880
1da177e4 1881 struct completion done;
70b97a7f 1882};
1da177e4
LT
1883
1884/*
1885 * The task's runqueue lock must be held.
1886 * Returns true if you have to wait for migration thread.
1887 */
36c8b586 1888static int
70b97a7f 1889migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1890{
70b97a7f 1891 struct rq *rq = task_rq(p);
1da177e4
LT
1892
1893 /*
1894 * If the task is not on a runqueue (and not running), then
1895 * it is sufficient to simply update the task's cpu field.
1896 */
dd41f596 1897 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1898 set_task_cpu(p, dest_cpu);
1899 return 0;
1900 }
1901
1902 init_completion(&req->done);
1da177e4
LT
1903 req->task = p;
1904 req->dest_cpu = dest_cpu;
1905 list_add(&req->list, &rq->migration_queue);
48f24c4d 1906
1da177e4
LT
1907 return 1;
1908}
1909
1910/*
1911 * wait_task_inactive - wait for a thread to unschedule.
1912 *
1913 * The caller must ensure that the task *will* unschedule sometime soon,
1914 * else this function might spin for a *long* time. This function can't
1915 * be called with interrupts off, or it may introduce deadlock with
1916 * smp_call_function() if an IPI is sent by the same process we are
1917 * waiting to become inactive.
1918 */
36c8b586 1919void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1920{
1921 unsigned long flags;
dd41f596 1922 int running, on_rq;
70b97a7f 1923 struct rq *rq;
1da177e4 1924
3a5c359a
AK
1925 for (;;) {
1926 /*
1927 * We do the initial early heuristics without holding
1928 * any task-queue locks at all. We'll only try to get
1929 * the runqueue lock when things look like they will
1930 * work out!
1931 */
1932 rq = task_rq(p);
fa490cfd 1933
3a5c359a
AK
1934 /*
1935 * If the task is actively running on another CPU
1936 * still, just relax and busy-wait without holding
1937 * any locks.
1938 *
1939 * NOTE! Since we don't hold any locks, it's not
1940 * even sure that "rq" stays as the right runqueue!
1941 * But we don't care, since "task_running()" will
1942 * return false if the runqueue has changed and p
1943 * is actually now running somewhere else!
1944 */
1945 while (task_running(rq, p))
1946 cpu_relax();
fa490cfd 1947
3a5c359a
AK
1948 /*
1949 * Ok, time to look more closely! We need the rq
1950 * lock now, to be *sure*. If we're wrong, we'll
1951 * just go back and repeat.
1952 */
1953 rq = task_rq_lock(p, &flags);
1954 running = task_running(rq, p);
1955 on_rq = p->se.on_rq;
1956 task_rq_unlock(rq, &flags);
fa490cfd 1957
3a5c359a
AK
1958 /*
1959 * Was it really running after all now that we
1960 * checked with the proper locks actually held?
1961 *
1962 * Oops. Go back and try again..
1963 */
1964 if (unlikely(running)) {
1965 cpu_relax();
1966 continue;
1967 }
fa490cfd 1968
3a5c359a
AK
1969 /*
1970 * It's not enough that it's not actively running,
1971 * it must be off the runqueue _entirely_, and not
1972 * preempted!
1973 *
1974 * So if it wa still runnable (but just not actively
1975 * running right now), it's preempted, and we should
1976 * yield - it could be a while.
1977 */
1978 if (unlikely(on_rq)) {
1979 schedule_timeout_uninterruptible(1);
1980 continue;
1981 }
fa490cfd 1982
3a5c359a
AK
1983 /*
1984 * Ahh, all good. It wasn't running, and it wasn't
1985 * runnable, which means that it will never become
1986 * running in the future either. We're all done!
1987 */
1988 break;
1989 }
1da177e4
LT
1990}
1991
1992/***
1993 * kick_process - kick a running thread to enter/exit the kernel
1994 * @p: the to-be-kicked thread
1995 *
1996 * Cause a process which is running on another CPU to enter
1997 * kernel-mode, without any delay. (to get signals handled.)
1998 *
1999 * NOTE: this function doesnt have to take the runqueue lock,
2000 * because all it wants to ensure is that the remote task enters
2001 * the kernel. If the IPI races and the task has been migrated
2002 * to another CPU then no harm is done and the purpose has been
2003 * achieved as well.
2004 */
36c8b586 2005void kick_process(struct task_struct *p)
1da177e4
LT
2006{
2007 int cpu;
2008
2009 preempt_disable();
2010 cpu = task_cpu(p);
2011 if ((cpu != smp_processor_id()) && task_curr(p))
2012 smp_send_reschedule(cpu);
2013 preempt_enable();
2014}
2015
2016/*
2dd73a4f
PW
2017 * Return a low guess at the load of a migration-source cpu weighted
2018 * according to the scheduling class and "nice" value.
1da177e4
LT
2019 *
2020 * We want to under-estimate the load of migration sources, to
2021 * balance conservatively.
2022 */
a9957449 2023static unsigned long source_load(int cpu, int type)
1da177e4 2024{
70b97a7f 2025 struct rq *rq = cpu_rq(cpu);
dd41f596 2026 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2027
93b75217 2028 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2029 return total;
b910472d 2030
dd41f596 2031 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2032}
2033
2034/*
2dd73a4f
PW
2035 * Return a high guess at the load of a migration-target cpu weighted
2036 * according to the scheduling class and "nice" value.
1da177e4 2037 */
a9957449 2038static unsigned long target_load(int cpu, int type)
1da177e4 2039{
70b97a7f 2040 struct rq *rq = cpu_rq(cpu);
dd41f596 2041 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2042
93b75217 2043 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2044 return total;
3b0bd9bc 2045
dd41f596 2046 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2047}
2048
147cbb4b
NP
2049/*
2050 * find_idlest_group finds and returns the least busy CPU group within the
2051 * domain.
2052 */
2053static struct sched_group *
2054find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2055{
2056 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2057 unsigned long min_load = ULONG_MAX, this_load = 0;
2058 int load_idx = sd->forkexec_idx;
2059 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2060
2061 do {
2062 unsigned long load, avg_load;
2063 int local_group;
2064 int i;
2065
da5a5522
BD
2066 /* Skip over this group if it has no CPUs allowed */
2067 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 2068 continue;
da5a5522 2069
147cbb4b 2070 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
2071
2072 /* Tally up the load of all CPUs in the group */
2073 avg_load = 0;
2074
2075 for_each_cpu_mask(i, group->cpumask) {
2076 /* Bias balancing toward cpus of our domain */
2077 if (local_group)
2078 load = source_load(i, load_idx);
2079 else
2080 load = target_load(i, load_idx);
2081
2082 avg_load += load;
2083 }
2084
2085 /* Adjust by relative CPU power of the group */
5517d86b
ED
2086 avg_load = sg_div_cpu_power(group,
2087 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2088
2089 if (local_group) {
2090 this_load = avg_load;
2091 this = group;
2092 } else if (avg_load < min_load) {
2093 min_load = avg_load;
2094 idlest = group;
2095 }
3a5c359a 2096 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2097
2098 if (!idlest || 100*this_load < imbalance*min_load)
2099 return NULL;
2100 return idlest;
2101}
2102
2103/*
0feaece9 2104 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2105 */
95cdf3b7 2106static int
7c16ec58
MT
2107find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2108 cpumask_t *tmp)
147cbb4b
NP
2109{
2110 unsigned long load, min_load = ULONG_MAX;
2111 int idlest = -1;
2112 int i;
2113
da5a5522 2114 /* Traverse only the allowed CPUs */
7c16ec58 2115 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
da5a5522 2116
7c16ec58 2117 for_each_cpu_mask(i, *tmp) {
2dd73a4f 2118 load = weighted_cpuload(i);
147cbb4b
NP
2119
2120 if (load < min_load || (load == min_load && i == this_cpu)) {
2121 min_load = load;
2122 idlest = i;
2123 }
2124 }
2125
2126 return idlest;
2127}
2128
476d139c
NP
2129/*
2130 * sched_balance_self: balance the current task (running on cpu) in domains
2131 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2132 * SD_BALANCE_EXEC.
2133 *
2134 * Balance, ie. select the least loaded group.
2135 *
2136 * Returns the target CPU number, or the same CPU if no balancing is needed.
2137 *
2138 * preempt must be disabled.
2139 */
2140static int sched_balance_self(int cpu, int flag)
2141{
2142 struct task_struct *t = current;
2143 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2144
c96d145e 2145 for_each_domain(cpu, tmp) {
9761eea8
IM
2146 /*
2147 * If power savings logic is enabled for a domain, stop there.
2148 */
5c45bf27
SS
2149 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2150 break;
476d139c
NP
2151 if (tmp->flags & flag)
2152 sd = tmp;
c96d145e 2153 }
476d139c 2154
039a1c41
PZ
2155 if (sd)
2156 update_shares(sd);
2157
476d139c 2158 while (sd) {
7c16ec58 2159 cpumask_t span, tmpmask;
476d139c 2160 struct sched_group *group;
1a848870
SS
2161 int new_cpu, weight;
2162
2163 if (!(sd->flags & flag)) {
2164 sd = sd->child;
2165 continue;
2166 }
476d139c
NP
2167
2168 span = sd->span;
2169 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2170 if (!group) {
2171 sd = sd->child;
2172 continue;
2173 }
476d139c 2174
7c16ec58 2175 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
1a848870
SS
2176 if (new_cpu == -1 || new_cpu == cpu) {
2177 /* Now try balancing at a lower domain level of cpu */
2178 sd = sd->child;
2179 continue;
2180 }
476d139c 2181
1a848870 2182 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2183 cpu = new_cpu;
476d139c
NP
2184 sd = NULL;
2185 weight = cpus_weight(span);
2186 for_each_domain(cpu, tmp) {
2187 if (weight <= cpus_weight(tmp->span))
2188 break;
2189 if (tmp->flags & flag)
2190 sd = tmp;
2191 }
2192 /* while loop will break here if sd == NULL */
2193 }
2194
2195 return cpu;
2196}
2197
2198#endif /* CONFIG_SMP */
1da177e4 2199
1da177e4
LT
2200/***
2201 * try_to_wake_up - wake up a thread
2202 * @p: the to-be-woken-up thread
2203 * @state: the mask of task states that can be woken
2204 * @sync: do a synchronous wakeup?
2205 *
2206 * Put it on the run-queue if it's not already there. The "current"
2207 * thread is always on the run-queue (except when the actual
2208 * re-schedule is in progress), and as such you're allowed to do
2209 * the simpler "current->state = TASK_RUNNING" to mark yourself
2210 * runnable without the overhead of this.
2211 *
2212 * returns failure only if the task is already active.
2213 */
36c8b586 2214static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2215{
cc367732 2216 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2217 unsigned long flags;
2218 long old_state;
70b97a7f 2219 struct rq *rq;
1da177e4 2220
b85d0667
IM
2221 if (!sched_feat(SYNC_WAKEUPS))
2222 sync = 0;
2223
2398f2c6
PZ
2224#ifdef CONFIG_SMP
2225 if (sched_feat(LB_WAKEUP_UPDATE)) {
2226 struct sched_domain *sd;
2227
2228 this_cpu = raw_smp_processor_id();
2229 cpu = task_cpu(p);
2230
2231 for_each_domain(this_cpu, sd) {
2232 if (cpu_isset(cpu, sd->span)) {
2233 update_shares(sd);
2234 break;
2235 }
2236 }
2237 }
2238#endif
2239
04e2f174 2240 smp_wmb();
1da177e4
LT
2241 rq = task_rq_lock(p, &flags);
2242 old_state = p->state;
2243 if (!(old_state & state))
2244 goto out;
2245
dd41f596 2246 if (p->se.on_rq)
1da177e4
LT
2247 goto out_running;
2248
2249 cpu = task_cpu(p);
cc367732 2250 orig_cpu = cpu;
1da177e4
LT
2251 this_cpu = smp_processor_id();
2252
2253#ifdef CONFIG_SMP
2254 if (unlikely(task_running(rq, p)))
2255 goto out_activate;
2256
5d2f5a61
DA
2257 cpu = p->sched_class->select_task_rq(p, sync);
2258 if (cpu != orig_cpu) {
2259 set_task_cpu(p, cpu);
1da177e4
LT
2260 task_rq_unlock(rq, &flags);
2261 /* might preempt at this point */
2262 rq = task_rq_lock(p, &flags);
2263 old_state = p->state;
2264 if (!(old_state & state))
2265 goto out;
dd41f596 2266 if (p->se.on_rq)
1da177e4
LT
2267 goto out_running;
2268
2269 this_cpu = smp_processor_id();
2270 cpu = task_cpu(p);
2271 }
2272
e7693a36
GH
2273#ifdef CONFIG_SCHEDSTATS
2274 schedstat_inc(rq, ttwu_count);
2275 if (cpu == this_cpu)
2276 schedstat_inc(rq, ttwu_local);
2277 else {
2278 struct sched_domain *sd;
2279 for_each_domain(this_cpu, sd) {
2280 if (cpu_isset(cpu, sd->span)) {
2281 schedstat_inc(sd, ttwu_wake_remote);
2282 break;
2283 }
2284 }
2285 }
6d6bc0ad 2286#endif /* CONFIG_SCHEDSTATS */
e7693a36 2287
1da177e4
LT
2288out_activate:
2289#endif /* CONFIG_SMP */
cc367732
IM
2290 schedstat_inc(p, se.nr_wakeups);
2291 if (sync)
2292 schedstat_inc(p, se.nr_wakeups_sync);
2293 if (orig_cpu != cpu)
2294 schedstat_inc(p, se.nr_wakeups_migrate);
2295 if (cpu == this_cpu)
2296 schedstat_inc(p, se.nr_wakeups_local);
2297 else
2298 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 2299 update_rq_clock(rq);
dd41f596 2300 activate_task(rq, p, 1);
1da177e4
LT
2301 success = 1;
2302
2303out_running:
4ae7d5ce
IM
2304 check_preempt_curr(rq, p);
2305
1da177e4 2306 p->state = TASK_RUNNING;
9a897c5a
SR
2307#ifdef CONFIG_SMP
2308 if (p->sched_class->task_wake_up)
2309 p->sched_class->task_wake_up(rq, p);
2310#endif
1da177e4
LT
2311out:
2312 task_rq_unlock(rq, &flags);
2313
2314 return success;
2315}
2316
7ad5b3a5 2317int wake_up_process(struct task_struct *p)
1da177e4 2318{
d9514f6c 2319 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2320}
1da177e4
LT
2321EXPORT_SYMBOL(wake_up_process);
2322
7ad5b3a5 2323int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2324{
2325 return try_to_wake_up(p, state, 0);
2326}
2327
1da177e4
LT
2328/*
2329 * Perform scheduler related setup for a newly forked process p.
2330 * p is forked by current.
dd41f596
IM
2331 *
2332 * __sched_fork() is basic setup used by init_idle() too:
2333 */
2334static void __sched_fork(struct task_struct *p)
2335{
dd41f596
IM
2336 p->se.exec_start = 0;
2337 p->se.sum_exec_runtime = 0;
f6cf891c 2338 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2339 p->se.last_wakeup = 0;
2340 p->se.avg_overlap = 0;
6cfb0d5d
IM
2341
2342#ifdef CONFIG_SCHEDSTATS
2343 p->se.wait_start = 0;
dd41f596
IM
2344 p->se.sum_sleep_runtime = 0;
2345 p->se.sleep_start = 0;
dd41f596
IM
2346 p->se.block_start = 0;
2347 p->se.sleep_max = 0;
2348 p->se.block_max = 0;
2349 p->se.exec_max = 0;
eba1ed4b 2350 p->se.slice_max = 0;
dd41f596 2351 p->se.wait_max = 0;
6cfb0d5d 2352#endif
476d139c 2353
fa717060 2354 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2355 p->se.on_rq = 0;
4a55bd5e 2356 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2357
e107be36
AK
2358#ifdef CONFIG_PREEMPT_NOTIFIERS
2359 INIT_HLIST_HEAD(&p->preempt_notifiers);
2360#endif
2361
1da177e4
LT
2362 /*
2363 * We mark the process as running here, but have not actually
2364 * inserted it onto the runqueue yet. This guarantees that
2365 * nobody will actually run it, and a signal or other external
2366 * event cannot wake it up and insert it on the runqueue either.
2367 */
2368 p->state = TASK_RUNNING;
dd41f596
IM
2369}
2370
2371/*
2372 * fork()/clone()-time setup:
2373 */
2374void sched_fork(struct task_struct *p, int clone_flags)
2375{
2376 int cpu = get_cpu();
2377
2378 __sched_fork(p);
2379
2380#ifdef CONFIG_SMP
2381 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2382#endif
02e4bac2 2383 set_task_cpu(p, cpu);
b29739f9
IM
2384
2385 /*
2386 * Make sure we do not leak PI boosting priority to the child:
2387 */
2388 p->prio = current->normal_prio;
2ddbf952
HS
2389 if (!rt_prio(p->prio))
2390 p->sched_class = &fair_sched_class;
b29739f9 2391
52f17b6c 2392#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2393 if (likely(sched_info_on()))
52f17b6c 2394 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2395#endif
d6077cb8 2396#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2397 p->oncpu = 0;
2398#endif
1da177e4 2399#ifdef CONFIG_PREEMPT
4866cde0 2400 /* Want to start with kernel preemption disabled. */
a1261f54 2401 task_thread_info(p)->preempt_count = 1;
1da177e4 2402#endif
476d139c 2403 put_cpu();
1da177e4
LT
2404}
2405
2406/*
2407 * wake_up_new_task - wake up a newly created task for the first time.
2408 *
2409 * This function will do some initial scheduler statistics housekeeping
2410 * that must be done for every newly created context, then puts the task
2411 * on the runqueue and wakes it.
2412 */
7ad5b3a5 2413void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2414{
2415 unsigned long flags;
dd41f596 2416 struct rq *rq;
1da177e4
LT
2417
2418 rq = task_rq_lock(p, &flags);
147cbb4b 2419 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2420 update_rq_clock(rq);
1da177e4
LT
2421
2422 p->prio = effective_prio(p);
2423
b9dca1e0 2424 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2425 activate_task(rq, p, 0);
1da177e4 2426 } else {
1da177e4 2427 /*
dd41f596
IM
2428 * Let the scheduling class do new task startup
2429 * management (if any):
1da177e4 2430 */
ee0827d8 2431 p->sched_class->task_new(rq, p);
c09595f6 2432 inc_nr_running(rq);
1da177e4 2433 }
dd41f596 2434 check_preempt_curr(rq, p);
9a897c5a
SR
2435#ifdef CONFIG_SMP
2436 if (p->sched_class->task_wake_up)
2437 p->sched_class->task_wake_up(rq, p);
2438#endif
dd41f596 2439 task_rq_unlock(rq, &flags);
1da177e4
LT
2440}
2441
e107be36
AK
2442#ifdef CONFIG_PREEMPT_NOTIFIERS
2443
2444/**
421cee29
RD
2445 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2446 * @notifier: notifier struct to register
e107be36
AK
2447 */
2448void preempt_notifier_register(struct preempt_notifier *notifier)
2449{
2450 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2451}
2452EXPORT_SYMBOL_GPL(preempt_notifier_register);
2453
2454/**
2455 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2456 * @notifier: notifier struct to unregister
e107be36
AK
2457 *
2458 * This is safe to call from within a preemption notifier.
2459 */
2460void preempt_notifier_unregister(struct preempt_notifier *notifier)
2461{
2462 hlist_del(&notifier->link);
2463}
2464EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2465
2466static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2467{
2468 struct preempt_notifier *notifier;
2469 struct hlist_node *node;
2470
2471 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2472 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2473}
2474
2475static void
2476fire_sched_out_preempt_notifiers(struct task_struct *curr,
2477 struct task_struct *next)
2478{
2479 struct preempt_notifier *notifier;
2480 struct hlist_node *node;
2481
2482 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2483 notifier->ops->sched_out(notifier, next);
2484}
2485
6d6bc0ad 2486#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2487
2488static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2489{
2490}
2491
2492static void
2493fire_sched_out_preempt_notifiers(struct task_struct *curr,
2494 struct task_struct *next)
2495{
2496}
2497
6d6bc0ad 2498#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2499
4866cde0
NP
2500/**
2501 * prepare_task_switch - prepare to switch tasks
2502 * @rq: the runqueue preparing to switch
421cee29 2503 * @prev: the current task that is being switched out
4866cde0
NP
2504 * @next: the task we are going to switch to.
2505 *
2506 * This is called with the rq lock held and interrupts off. It must
2507 * be paired with a subsequent finish_task_switch after the context
2508 * switch.
2509 *
2510 * prepare_task_switch sets up locking and calls architecture specific
2511 * hooks.
2512 */
e107be36
AK
2513static inline void
2514prepare_task_switch(struct rq *rq, struct task_struct *prev,
2515 struct task_struct *next)
4866cde0 2516{
e107be36 2517 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2518 prepare_lock_switch(rq, next);
2519 prepare_arch_switch(next);
2520}
2521
1da177e4
LT
2522/**
2523 * finish_task_switch - clean up after a task-switch
344babaa 2524 * @rq: runqueue associated with task-switch
1da177e4
LT
2525 * @prev: the thread we just switched away from.
2526 *
4866cde0
NP
2527 * finish_task_switch must be called after the context switch, paired
2528 * with a prepare_task_switch call before the context switch.
2529 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2530 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2531 *
2532 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2533 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2534 * with the lock held can cause deadlocks; see schedule() for
2535 * details.)
2536 */
a9957449 2537static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2538 __releases(rq->lock)
2539{
1da177e4 2540 struct mm_struct *mm = rq->prev_mm;
55a101f8 2541 long prev_state;
1da177e4
LT
2542
2543 rq->prev_mm = NULL;
2544
2545 /*
2546 * A task struct has one reference for the use as "current".
c394cc9f 2547 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2548 * schedule one last time. The schedule call will never return, and
2549 * the scheduled task must drop that reference.
c394cc9f 2550 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2551 * still held, otherwise prev could be scheduled on another cpu, die
2552 * there before we look at prev->state, and then the reference would
2553 * be dropped twice.
2554 * Manfred Spraul <manfred@colorfullife.com>
2555 */
55a101f8 2556 prev_state = prev->state;
4866cde0
NP
2557 finish_arch_switch(prev);
2558 finish_lock_switch(rq, prev);
9a897c5a
SR
2559#ifdef CONFIG_SMP
2560 if (current->sched_class->post_schedule)
2561 current->sched_class->post_schedule(rq);
2562#endif
e8fa1362 2563
e107be36 2564 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2565 if (mm)
2566 mmdrop(mm);
c394cc9f 2567 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2568 /*
2569 * Remove function-return probe instances associated with this
2570 * task and put them back on the free list.
9761eea8 2571 */
c6fd91f0 2572 kprobe_flush_task(prev);
1da177e4 2573 put_task_struct(prev);
c6fd91f0 2574 }
1da177e4
LT
2575}
2576
2577/**
2578 * schedule_tail - first thing a freshly forked thread must call.
2579 * @prev: the thread we just switched away from.
2580 */
36c8b586 2581asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2582 __releases(rq->lock)
2583{
70b97a7f
IM
2584 struct rq *rq = this_rq();
2585
4866cde0
NP
2586 finish_task_switch(rq, prev);
2587#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2588 /* In this case, finish_task_switch does not reenable preemption */
2589 preempt_enable();
2590#endif
1da177e4 2591 if (current->set_child_tid)
b488893a 2592 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2593}
2594
2595/*
2596 * context_switch - switch to the new MM and the new
2597 * thread's register state.
2598 */
dd41f596 2599static inline void
70b97a7f 2600context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2601 struct task_struct *next)
1da177e4 2602{
dd41f596 2603 struct mm_struct *mm, *oldmm;
1da177e4 2604
e107be36 2605 prepare_task_switch(rq, prev, next);
dd41f596
IM
2606 mm = next->mm;
2607 oldmm = prev->active_mm;
9226d125
ZA
2608 /*
2609 * For paravirt, this is coupled with an exit in switch_to to
2610 * combine the page table reload and the switch backend into
2611 * one hypercall.
2612 */
2613 arch_enter_lazy_cpu_mode();
2614
dd41f596 2615 if (unlikely(!mm)) {
1da177e4
LT
2616 next->active_mm = oldmm;
2617 atomic_inc(&oldmm->mm_count);
2618 enter_lazy_tlb(oldmm, next);
2619 } else
2620 switch_mm(oldmm, mm, next);
2621
dd41f596 2622 if (unlikely(!prev->mm)) {
1da177e4 2623 prev->active_mm = NULL;
1da177e4
LT
2624 rq->prev_mm = oldmm;
2625 }
3a5f5e48
IM
2626 /*
2627 * Since the runqueue lock will be released by the next
2628 * task (which is an invalid locking op but in the case
2629 * of the scheduler it's an obvious special-case), so we
2630 * do an early lockdep release here:
2631 */
2632#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2633 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2634#endif
1da177e4
LT
2635
2636 /* Here we just switch the register state and the stack. */
2637 switch_to(prev, next, prev);
2638
dd41f596
IM
2639 barrier();
2640 /*
2641 * this_rq must be evaluated again because prev may have moved
2642 * CPUs since it called schedule(), thus the 'rq' on its stack
2643 * frame will be invalid.
2644 */
2645 finish_task_switch(this_rq(), prev);
1da177e4
LT
2646}
2647
2648/*
2649 * nr_running, nr_uninterruptible and nr_context_switches:
2650 *
2651 * externally visible scheduler statistics: current number of runnable
2652 * threads, current number of uninterruptible-sleeping threads, total
2653 * number of context switches performed since bootup.
2654 */
2655unsigned long nr_running(void)
2656{
2657 unsigned long i, sum = 0;
2658
2659 for_each_online_cpu(i)
2660 sum += cpu_rq(i)->nr_running;
2661
2662 return sum;
2663}
2664
2665unsigned long nr_uninterruptible(void)
2666{
2667 unsigned long i, sum = 0;
2668
0a945022 2669 for_each_possible_cpu(i)
1da177e4
LT
2670 sum += cpu_rq(i)->nr_uninterruptible;
2671
2672 /*
2673 * Since we read the counters lockless, it might be slightly
2674 * inaccurate. Do not allow it to go below zero though:
2675 */
2676 if (unlikely((long)sum < 0))
2677 sum = 0;
2678
2679 return sum;
2680}
2681
2682unsigned long long nr_context_switches(void)
2683{
cc94abfc
SR
2684 int i;
2685 unsigned long long sum = 0;
1da177e4 2686
0a945022 2687 for_each_possible_cpu(i)
1da177e4
LT
2688 sum += cpu_rq(i)->nr_switches;
2689
2690 return sum;
2691}
2692
2693unsigned long nr_iowait(void)
2694{
2695 unsigned long i, sum = 0;
2696
0a945022 2697 for_each_possible_cpu(i)
1da177e4
LT
2698 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2699
2700 return sum;
2701}
2702
db1b1fef
JS
2703unsigned long nr_active(void)
2704{
2705 unsigned long i, running = 0, uninterruptible = 0;
2706
2707 for_each_online_cpu(i) {
2708 running += cpu_rq(i)->nr_running;
2709 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2710 }
2711
2712 if (unlikely((long)uninterruptible < 0))
2713 uninterruptible = 0;
2714
2715 return running + uninterruptible;
2716}
2717
48f24c4d 2718/*
dd41f596
IM
2719 * Update rq->cpu_load[] statistics. This function is usually called every
2720 * scheduler tick (TICK_NSEC).
48f24c4d 2721 */
dd41f596 2722static void update_cpu_load(struct rq *this_rq)
48f24c4d 2723{
495eca49 2724 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2725 int i, scale;
2726
2727 this_rq->nr_load_updates++;
dd41f596
IM
2728
2729 /* Update our load: */
2730 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2731 unsigned long old_load, new_load;
2732
2733 /* scale is effectively 1 << i now, and >> i divides by scale */
2734
2735 old_load = this_rq->cpu_load[i];
2736 new_load = this_load;
a25707f3
IM
2737 /*
2738 * Round up the averaging division if load is increasing. This
2739 * prevents us from getting stuck on 9 if the load is 10, for
2740 * example.
2741 */
2742 if (new_load > old_load)
2743 new_load += scale-1;
dd41f596
IM
2744 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2745 }
48f24c4d
IM
2746}
2747
dd41f596
IM
2748#ifdef CONFIG_SMP
2749
1da177e4
LT
2750/*
2751 * double_rq_lock - safely lock two runqueues
2752 *
2753 * Note this does not disable interrupts like task_rq_lock,
2754 * you need to do so manually before calling.
2755 */
70b97a7f 2756static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2757 __acquires(rq1->lock)
2758 __acquires(rq2->lock)
2759{
054b9108 2760 BUG_ON(!irqs_disabled());
1da177e4
LT
2761 if (rq1 == rq2) {
2762 spin_lock(&rq1->lock);
2763 __acquire(rq2->lock); /* Fake it out ;) */
2764 } else {
c96d145e 2765 if (rq1 < rq2) {
1da177e4
LT
2766 spin_lock(&rq1->lock);
2767 spin_lock(&rq2->lock);
2768 } else {
2769 spin_lock(&rq2->lock);
2770 spin_lock(&rq1->lock);
2771 }
2772 }
6e82a3be
IM
2773 update_rq_clock(rq1);
2774 update_rq_clock(rq2);
1da177e4
LT
2775}
2776
2777/*
2778 * double_rq_unlock - safely unlock two runqueues
2779 *
2780 * Note this does not restore interrupts like task_rq_unlock,
2781 * you need to do so manually after calling.
2782 */
70b97a7f 2783static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2784 __releases(rq1->lock)
2785 __releases(rq2->lock)
2786{
2787 spin_unlock(&rq1->lock);
2788 if (rq1 != rq2)
2789 spin_unlock(&rq2->lock);
2790 else
2791 __release(rq2->lock);
2792}
2793
2794/*
2795 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2796 */
e8fa1362 2797static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2798 __releases(this_rq->lock)
2799 __acquires(busiest->lock)
2800 __acquires(this_rq->lock)
2801{
e8fa1362
SR
2802 int ret = 0;
2803
054b9108
KK
2804 if (unlikely(!irqs_disabled())) {
2805 /* printk() doesn't work good under rq->lock */
2806 spin_unlock(&this_rq->lock);
2807 BUG_ON(1);
2808 }
1da177e4 2809 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2810 if (busiest < this_rq) {
1da177e4
LT
2811 spin_unlock(&this_rq->lock);
2812 spin_lock(&busiest->lock);
2813 spin_lock(&this_rq->lock);
e8fa1362 2814 ret = 1;
1da177e4
LT
2815 } else
2816 spin_lock(&busiest->lock);
2817 }
e8fa1362 2818 return ret;
1da177e4
LT
2819}
2820
1da177e4
LT
2821/*
2822 * If dest_cpu is allowed for this process, migrate the task to it.
2823 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2824 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2825 * the cpu_allowed mask is restored.
2826 */
36c8b586 2827static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2828{
70b97a7f 2829 struct migration_req req;
1da177e4 2830 unsigned long flags;
70b97a7f 2831 struct rq *rq;
1da177e4
LT
2832
2833 rq = task_rq_lock(p, &flags);
2834 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2835 || unlikely(cpu_is_offline(dest_cpu)))
2836 goto out;
2837
2838 /* force the process onto the specified CPU */
2839 if (migrate_task(p, dest_cpu, &req)) {
2840 /* Need to wait for migration thread (might exit: take ref). */
2841 struct task_struct *mt = rq->migration_thread;
36c8b586 2842
1da177e4
LT
2843 get_task_struct(mt);
2844 task_rq_unlock(rq, &flags);
2845 wake_up_process(mt);
2846 put_task_struct(mt);
2847 wait_for_completion(&req.done);
36c8b586 2848
1da177e4
LT
2849 return;
2850 }
2851out:
2852 task_rq_unlock(rq, &flags);
2853}
2854
2855/*
476d139c
NP
2856 * sched_exec - execve() is a valuable balancing opportunity, because at
2857 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2858 */
2859void sched_exec(void)
2860{
1da177e4 2861 int new_cpu, this_cpu = get_cpu();
476d139c 2862 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2863 put_cpu();
476d139c
NP
2864 if (new_cpu != this_cpu)
2865 sched_migrate_task(current, new_cpu);
1da177e4
LT
2866}
2867
2868/*
2869 * pull_task - move a task from a remote runqueue to the local runqueue.
2870 * Both runqueues must be locked.
2871 */
dd41f596
IM
2872static void pull_task(struct rq *src_rq, struct task_struct *p,
2873 struct rq *this_rq, int this_cpu)
1da177e4 2874{
2e1cb74a 2875 deactivate_task(src_rq, p, 0);
1da177e4 2876 set_task_cpu(p, this_cpu);
dd41f596 2877 activate_task(this_rq, p, 0);
1da177e4
LT
2878 /*
2879 * Note that idle threads have a prio of MAX_PRIO, for this test
2880 * to be always true for them.
2881 */
dd41f596 2882 check_preempt_curr(this_rq, p);
1da177e4
LT
2883}
2884
2885/*
2886 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2887 */
858119e1 2888static
70b97a7f 2889int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2890 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2891 int *all_pinned)
1da177e4
LT
2892{
2893 /*
2894 * We do not migrate tasks that are:
2895 * 1) running (obviously), or
2896 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2897 * 3) are cache-hot on their current CPU.
2898 */
cc367732
IM
2899 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2900 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2901 return 0;
cc367732 2902 }
81026794
NP
2903 *all_pinned = 0;
2904
cc367732
IM
2905 if (task_running(rq, p)) {
2906 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2907 return 0;
cc367732 2908 }
1da177e4 2909
da84d961
IM
2910 /*
2911 * Aggressive migration if:
2912 * 1) task is cache cold, or
2913 * 2) too many balance attempts have failed.
2914 */
2915
6bc1665b
IM
2916 if (!task_hot(p, rq->clock, sd) ||
2917 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2918#ifdef CONFIG_SCHEDSTATS
cc367732 2919 if (task_hot(p, rq->clock, sd)) {
da84d961 2920 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2921 schedstat_inc(p, se.nr_forced_migrations);
2922 }
da84d961
IM
2923#endif
2924 return 1;
2925 }
2926
cc367732
IM
2927 if (task_hot(p, rq->clock, sd)) {
2928 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2929 return 0;
cc367732 2930 }
1da177e4
LT
2931 return 1;
2932}
2933
e1d1484f
PW
2934static unsigned long
2935balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2936 unsigned long max_load_move, struct sched_domain *sd,
2937 enum cpu_idle_type idle, int *all_pinned,
2938 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2939{
051c6764 2940 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
2941 struct task_struct *p;
2942 long rem_load_move = max_load_move;
1da177e4 2943
e1d1484f 2944 if (max_load_move == 0)
1da177e4
LT
2945 goto out;
2946
81026794
NP
2947 pinned = 1;
2948
1da177e4 2949 /*
dd41f596 2950 * Start the load-balancing iterator:
1da177e4 2951 */
dd41f596
IM
2952 p = iterator->start(iterator->arg);
2953next:
b82d9fdd 2954 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2955 goto out;
051c6764
PZ
2956
2957 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 2958 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2959 p = iterator->next(iterator->arg);
2960 goto next;
1da177e4
LT
2961 }
2962
dd41f596 2963 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2964 pulled++;
dd41f596 2965 rem_load_move -= p->se.load.weight;
1da177e4 2966
2dd73a4f 2967 /*
b82d9fdd 2968 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 2969 */
e1d1484f 2970 if (rem_load_move > 0) {
a4ac01c3
PW
2971 if (p->prio < *this_best_prio)
2972 *this_best_prio = p->prio;
dd41f596
IM
2973 p = iterator->next(iterator->arg);
2974 goto next;
1da177e4
LT
2975 }
2976out:
2977 /*
e1d1484f 2978 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
2979 * so we can safely collect pull_task() stats here rather than
2980 * inside pull_task().
2981 */
2982 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2983
2984 if (all_pinned)
2985 *all_pinned = pinned;
e1d1484f
PW
2986
2987 return max_load_move - rem_load_move;
1da177e4
LT
2988}
2989
dd41f596 2990/*
43010659
PW
2991 * move_tasks tries to move up to max_load_move weighted load from busiest to
2992 * this_rq, as part of a balancing operation within domain "sd".
2993 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2994 *
2995 * Called with both runqueues locked.
2996 */
2997static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2998 unsigned long max_load_move,
dd41f596
IM
2999 struct sched_domain *sd, enum cpu_idle_type idle,
3000 int *all_pinned)
3001{
5522d5d5 3002 const struct sched_class *class = sched_class_highest;
43010659 3003 unsigned long total_load_moved = 0;
a4ac01c3 3004 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3005
3006 do {
43010659
PW
3007 total_load_moved +=
3008 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3009 max_load_move - total_load_moved,
a4ac01c3 3010 sd, idle, all_pinned, &this_best_prio);
dd41f596 3011 class = class->next;
43010659 3012 } while (class && max_load_move > total_load_moved);
dd41f596 3013
43010659
PW
3014 return total_load_moved > 0;
3015}
3016
e1d1484f
PW
3017static int
3018iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3019 struct sched_domain *sd, enum cpu_idle_type idle,
3020 struct rq_iterator *iterator)
3021{
3022 struct task_struct *p = iterator->start(iterator->arg);
3023 int pinned = 0;
3024
3025 while (p) {
3026 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3027 pull_task(busiest, p, this_rq, this_cpu);
3028 /*
3029 * Right now, this is only the second place pull_task()
3030 * is called, so we can safely collect pull_task()
3031 * stats here rather than inside pull_task().
3032 */
3033 schedstat_inc(sd, lb_gained[idle]);
3034
3035 return 1;
3036 }
3037 p = iterator->next(iterator->arg);
3038 }
3039
3040 return 0;
3041}
3042
43010659
PW
3043/*
3044 * move_one_task tries to move exactly one task from busiest to this_rq, as
3045 * part of active balancing operations within "domain".
3046 * Returns 1 if successful and 0 otherwise.
3047 *
3048 * Called with both runqueues locked.
3049 */
3050static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3051 struct sched_domain *sd, enum cpu_idle_type idle)
3052{
5522d5d5 3053 const struct sched_class *class;
43010659
PW
3054
3055 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3056 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3057 return 1;
3058
3059 return 0;
dd41f596
IM
3060}
3061
1da177e4
LT
3062/*
3063 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
3064 * domain. It calculates and returns the amount of weighted load which
3065 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
3066 */
3067static struct sched_group *
3068find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 3069 unsigned long *imbalance, enum cpu_idle_type idle,
7c16ec58 3070 int *sd_idle, const cpumask_t *cpus, int *balance)
1da177e4
LT
3071{
3072 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3073 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 3074 unsigned long max_pull;
2dd73a4f
PW
3075 unsigned long busiest_load_per_task, busiest_nr_running;
3076 unsigned long this_load_per_task, this_nr_running;
908a7c1b 3077 int load_idx, group_imb = 0;
5c45bf27
SS
3078#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3079 int power_savings_balance = 1;
3080 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3081 unsigned long min_nr_running = ULONG_MAX;
3082 struct sched_group *group_min = NULL, *group_leader = NULL;
3083#endif
1da177e4
LT
3084
3085 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
3086 busiest_load_per_task = busiest_nr_running = 0;
3087 this_load_per_task = this_nr_running = 0;
408ed066 3088
d15bcfdb 3089 if (idle == CPU_NOT_IDLE)
7897986b 3090 load_idx = sd->busy_idx;
d15bcfdb 3091 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
3092 load_idx = sd->newidle_idx;
3093 else
3094 load_idx = sd->idle_idx;
1da177e4
LT
3095
3096 do {
908a7c1b 3097 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
3098 int local_group;
3099 int i;
908a7c1b 3100 int __group_imb = 0;
783609c6 3101 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 3102 unsigned long sum_nr_running, sum_weighted_load;
408ed066
PZ
3103 unsigned long sum_avg_load_per_task;
3104 unsigned long avg_load_per_task;
1da177e4
LT
3105
3106 local_group = cpu_isset(this_cpu, group->cpumask);
3107
783609c6
SS
3108 if (local_group)
3109 balance_cpu = first_cpu(group->cpumask);
3110
1da177e4 3111 /* Tally up the load of all CPUs in the group */
2dd73a4f 3112 sum_weighted_load = sum_nr_running = avg_load = 0;
408ed066
PZ
3113 sum_avg_load_per_task = avg_load_per_task = 0;
3114
908a7c1b
KC
3115 max_cpu_load = 0;
3116 min_cpu_load = ~0UL;
1da177e4
LT
3117
3118 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
3119 struct rq *rq;
3120
3121 if (!cpu_isset(i, *cpus))
3122 continue;
3123
3124 rq = cpu_rq(i);
2dd73a4f 3125
9439aab8 3126 if (*sd_idle && rq->nr_running)
5969fe06
NP
3127 *sd_idle = 0;
3128
1da177e4 3129 /* Bias balancing toward cpus of our domain */
783609c6
SS
3130 if (local_group) {
3131 if (idle_cpu(i) && !first_idle_cpu) {
3132 first_idle_cpu = 1;
3133 balance_cpu = i;
3134 }
3135
a2000572 3136 load = target_load(i, load_idx);
908a7c1b 3137 } else {
a2000572 3138 load = source_load(i, load_idx);
908a7c1b
KC
3139 if (load > max_cpu_load)
3140 max_cpu_load = load;
3141 if (min_cpu_load > load)
3142 min_cpu_load = load;
3143 }
1da177e4
LT
3144
3145 avg_load += load;
2dd73a4f 3146 sum_nr_running += rq->nr_running;
dd41f596 3147 sum_weighted_load += weighted_cpuload(i);
408ed066
PZ
3148
3149 sum_avg_load_per_task += cpu_avg_load_per_task(i);
1da177e4
LT
3150 }
3151
783609c6
SS
3152 /*
3153 * First idle cpu or the first cpu(busiest) in this sched group
3154 * is eligible for doing load balancing at this and above
9439aab8
SS
3155 * domains. In the newly idle case, we will allow all the cpu's
3156 * to do the newly idle load balance.
783609c6 3157 */
9439aab8
SS
3158 if (idle != CPU_NEWLY_IDLE && local_group &&
3159 balance_cpu != this_cpu && balance) {
783609c6
SS
3160 *balance = 0;
3161 goto ret;
3162 }
3163
1da177e4 3164 total_load += avg_load;
5517d86b 3165 total_pwr += group->__cpu_power;
1da177e4
LT
3166
3167 /* Adjust by relative CPU power of the group */
5517d86b
ED
3168 avg_load = sg_div_cpu_power(group,
3169 avg_load * SCHED_LOAD_SCALE);
1da177e4 3170
408ed066
PZ
3171
3172 /*
3173 * Consider the group unbalanced when the imbalance is larger
3174 * than the average weight of two tasks.
3175 *
3176 * APZ: with cgroup the avg task weight can vary wildly and
3177 * might not be a suitable number - should we keep a
3178 * normalized nr_running number somewhere that negates
3179 * the hierarchy?
3180 */
3181 avg_load_per_task = sg_div_cpu_power(group,
3182 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3183
3184 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
908a7c1b
KC
3185 __group_imb = 1;
3186
5517d86b 3187 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 3188
1da177e4
LT
3189 if (local_group) {
3190 this_load = avg_load;
3191 this = group;
2dd73a4f
PW
3192 this_nr_running = sum_nr_running;
3193 this_load_per_task = sum_weighted_load;
3194 } else if (avg_load > max_load &&
908a7c1b 3195 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
3196 max_load = avg_load;
3197 busiest = group;
2dd73a4f
PW
3198 busiest_nr_running = sum_nr_running;
3199 busiest_load_per_task = sum_weighted_load;
908a7c1b 3200 group_imb = __group_imb;
1da177e4 3201 }
5c45bf27
SS
3202
3203#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3204 /*
3205 * Busy processors will not participate in power savings
3206 * balance.
3207 */
dd41f596
IM
3208 if (idle == CPU_NOT_IDLE ||
3209 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3210 goto group_next;
5c45bf27
SS
3211
3212 /*
3213 * If the local group is idle or completely loaded
3214 * no need to do power savings balance at this domain
3215 */
3216 if (local_group && (this_nr_running >= group_capacity ||
3217 !this_nr_running))
3218 power_savings_balance = 0;
3219
dd41f596 3220 /*
5c45bf27
SS
3221 * If a group is already running at full capacity or idle,
3222 * don't include that group in power savings calculations
dd41f596
IM
3223 */
3224 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 3225 || !sum_nr_running)
dd41f596 3226 goto group_next;
5c45bf27 3227
dd41f596 3228 /*
5c45bf27 3229 * Calculate the group which has the least non-idle load.
dd41f596
IM
3230 * This is the group from where we need to pick up the load
3231 * for saving power
3232 */
3233 if ((sum_nr_running < min_nr_running) ||
3234 (sum_nr_running == min_nr_running &&
5c45bf27
SS
3235 first_cpu(group->cpumask) <
3236 first_cpu(group_min->cpumask))) {
dd41f596
IM
3237 group_min = group;
3238 min_nr_running = sum_nr_running;
5c45bf27
SS
3239 min_load_per_task = sum_weighted_load /
3240 sum_nr_running;
dd41f596 3241 }
5c45bf27 3242
dd41f596 3243 /*
5c45bf27 3244 * Calculate the group which is almost near its
dd41f596
IM
3245 * capacity but still has some space to pick up some load
3246 * from other group and save more power
3247 */
3248 if (sum_nr_running <= group_capacity - 1) {
3249 if (sum_nr_running > leader_nr_running ||
3250 (sum_nr_running == leader_nr_running &&
3251 first_cpu(group->cpumask) >
3252 first_cpu(group_leader->cpumask))) {
3253 group_leader = group;
3254 leader_nr_running = sum_nr_running;
3255 }
48f24c4d 3256 }
5c45bf27
SS
3257group_next:
3258#endif
1da177e4
LT
3259 group = group->next;
3260 } while (group != sd->groups);
3261
2dd73a4f 3262 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3263 goto out_balanced;
3264
3265 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3266
3267 if (this_load >= avg_load ||
3268 100*max_load <= sd->imbalance_pct*this_load)
3269 goto out_balanced;
3270
2dd73a4f 3271 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3272 if (group_imb)
3273 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3274
1da177e4
LT
3275 /*
3276 * We're trying to get all the cpus to the average_load, so we don't
3277 * want to push ourselves above the average load, nor do we wish to
3278 * reduce the max loaded cpu below the average load, as either of these
3279 * actions would just result in more rebalancing later, and ping-pong
3280 * tasks around. Thus we look for the minimum possible imbalance.
3281 * Negative imbalances (*we* are more loaded than anyone else) will
3282 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3283 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3284 * appear as very large values with unsigned longs.
3285 */
2dd73a4f
PW
3286 if (max_load <= busiest_load_per_task)
3287 goto out_balanced;
3288
3289 /*
3290 * In the presence of smp nice balancing, certain scenarios can have
3291 * max load less than avg load(as we skip the groups at or below
3292 * its cpu_power, while calculating max_load..)
3293 */
3294 if (max_load < avg_load) {
3295 *imbalance = 0;
3296 goto small_imbalance;
3297 }
0c117f1b
SS
3298
3299 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3300 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3301
1da177e4 3302 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3303 *imbalance = min(max_pull * busiest->__cpu_power,
3304 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3305 / SCHED_LOAD_SCALE;
3306
2dd73a4f
PW
3307 /*
3308 * if *imbalance is less than the average load per runnable task
3309 * there is no gaurantee that any tasks will be moved so we'll have
3310 * a think about bumping its value to force at least one task to be
3311 * moved
3312 */
7fd0d2dd 3313 if (*imbalance < busiest_load_per_task) {
48f24c4d 3314 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3315 unsigned int imbn;
3316
3317small_imbalance:
3318 pwr_move = pwr_now = 0;
3319 imbn = 2;
3320 if (this_nr_running) {
3321 this_load_per_task /= this_nr_running;
3322 if (busiest_load_per_task > this_load_per_task)
3323 imbn = 1;
3324 } else
408ed066 3325 this_load_per_task = cpu_avg_load_per_task(this_cpu);
1da177e4 3326
408ed066 3327 if (max_load - this_load + 2*busiest_load_per_task >=
dd41f596 3328 busiest_load_per_task * imbn) {
2dd73a4f 3329 *imbalance = busiest_load_per_task;
1da177e4
LT
3330 return busiest;
3331 }
3332
3333 /*
3334 * OK, we don't have enough imbalance to justify moving tasks,
3335 * however we may be able to increase total CPU power used by
3336 * moving them.
3337 */
3338
5517d86b
ED
3339 pwr_now += busiest->__cpu_power *
3340 min(busiest_load_per_task, max_load);
3341 pwr_now += this->__cpu_power *
3342 min(this_load_per_task, this_load);
1da177e4
LT
3343 pwr_now /= SCHED_LOAD_SCALE;
3344
3345 /* Amount of load we'd subtract */
5517d86b
ED
3346 tmp = sg_div_cpu_power(busiest,
3347 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3348 if (max_load > tmp)
5517d86b 3349 pwr_move += busiest->__cpu_power *
2dd73a4f 3350 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3351
3352 /* Amount of load we'd add */
5517d86b 3353 if (max_load * busiest->__cpu_power <
33859f7f 3354 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3355 tmp = sg_div_cpu_power(this,
3356 max_load * busiest->__cpu_power);
1da177e4 3357 else
5517d86b
ED
3358 tmp = sg_div_cpu_power(this,
3359 busiest_load_per_task * SCHED_LOAD_SCALE);
3360 pwr_move += this->__cpu_power *
3361 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3362 pwr_move /= SCHED_LOAD_SCALE;
3363
3364 /* Move if we gain throughput */
7fd0d2dd
SS
3365 if (pwr_move > pwr_now)
3366 *imbalance = busiest_load_per_task;
1da177e4
LT
3367 }
3368
1da177e4
LT
3369 return busiest;
3370
3371out_balanced:
5c45bf27 3372#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3373 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3374 goto ret;
1da177e4 3375
5c45bf27
SS
3376 if (this == group_leader && group_leader != group_min) {
3377 *imbalance = min_load_per_task;
3378 return group_min;
3379 }
5c45bf27 3380#endif
783609c6 3381ret:
1da177e4
LT
3382 *imbalance = 0;
3383 return NULL;
3384}
3385
3386/*
3387 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3388 */
70b97a7f 3389static struct rq *
d15bcfdb 3390find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
7c16ec58 3391 unsigned long imbalance, const cpumask_t *cpus)
1da177e4 3392{
70b97a7f 3393 struct rq *busiest = NULL, *rq;
2dd73a4f 3394 unsigned long max_load = 0;
1da177e4
LT
3395 int i;
3396
3397 for_each_cpu_mask(i, group->cpumask) {
dd41f596 3398 unsigned long wl;
0a2966b4
CL
3399
3400 if (!cpu_isset(i, *cpus))
3401 continue;
3402
48f24c4d 3403 rq = cpu_rq(i);
dd41f596 3404 wl = weighted_cpuload(i);
2dd73a4f 3405
dd41f596 3406 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3407 continue;
1da177e4 3408
dd41f596
IM
3409 if (wl > max_load) {
3410 max_load = wl;
48f24c4d 3411 busiest = rq;
1da177e4
LT
3412 }
3413 }
3414
3415 return busiest;
3416}
3417
77391d71
NP
3418/*
3419 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3420 * so long as it is large enough.
3421 */
3422#define MAX_PINNED_INTERVAL 512
3423
1da177e4
LT
3424/*
3425 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3426 * tasks if there is an imbalance.
1da177e4 3427 */
70b97a7f 3428static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3429 struct sched_domain *sd, enum cpu_idle_type idle,
7c16ec58 3430 int *balance, cpumask_t *cpus)
1da177e4 3431{
43010659 3432 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3433 struct sched_group *group;
1da177e4 3434 unsigned long imbalance;
70b97a7f 3435 struct rq *busiest;
fe2eea3f 3436 unsigned long flags;
5969fe06 3437
7c16ec58
MT
3438 cpus_setall(*cpus);
3439
89c4710e
SS
3440 /*
3441 * When power savings policy is enabled for the parent domain, idle
3442 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3443 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3444 * portraying it as CPU_NOT_IDLE.
89c4710e 3445 */
d15bcfdb 3446 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3447 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3448 sd_idle = 1;
1da177e4 3449
2d72376b 3450 schedstat_inc(sd, lb_count[idle]);
1da177e4 3451
0a2966b4 3452redo:
c8cba857 3453 update_shares(sd);
0a2966b4 3454 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3455 cpus, balance);
783609c6 3456
06066714 3457 if (*balance == 0)
783609c6 3458 goto out_balanced;
783609c6 3459
1da177e4
LT
3460 if (!group) {
3461 schedstat_inc(sd, lb_nobusyg[idle]);
3462 goto out_balanced;
3463 }
3464
7c16ec58 3465 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3466 if (!busiest) {
3467 schedstat_inc(sd, lb_nobusyq[idle]);
3468 goto out_balanced;
3469 }
3470
db935dbd 3471 BUG_ON(busiest == this_rq);
1da177e4
LT
3472
3473 schedstat_add(sd, lb_imbalance[idle], imbalance);
3474
43010659 3475 ld_moved = 0;
1da177e4
LT
3476 if (busiest->nr_running > 1) {
3477 /*
3478 * Attempt to move tasks. If find_busiest_group has found
3479 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3480 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3481 * correctly treated as an imbalance.
3482 */
fe2eea3f 3483 local_irq_save(flags);
e17224bf 3484 double_rq_lock(this_rq, busiest);
43010659 3485 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3486 imbalance, sd, idle, &all_pinned);
e17224bf 3487 double_rq_unlock(this_rq, busiest);
fe2eea3f 3488 local_irq_restore(flags);
81026794 3489
46cb4b7c
SS
3490 /*
3491 * some other cpu did the load balance for us.
3492 */
43010659 3493 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3494 resched_cpu(this_cpu);
3495
81026794 3496 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3497 if (unlikely(all_pinned)) {
7c16ec58
MT
3498 cpu_clear(cpu_of(busiest), *cpus);
3499 if (!cpus_empty(*cpus))
0a2966b4 3500 goto redo;
81026794 3501 goto out_balanced;
0a2966b4 3502 }
1da177e4 3503 }
81026794 3504
43010659 3505 if (!ld_moved) {
1da177e4
LT
3506 schedstat_inc(sd, lb_failed[idle]);
3507 sd->nr_balance_failed++;
3508
3509 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3510
fe2eea3f 3511 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3512
3513 /* don't kick the migration_thread, if the curr
3514 * task on busiest cpu can't be moved to this_cpu
3515 */
3516 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 3517 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3518 all_pinned = 1;
3519 goto out_one_pinned;
3520 }
3521
1da177e4
LT
3522 if (!busiest->active_balance) {
3523 busiest->active_balance = 1;
3524 busiest->push_cpu = this_cpu;
81026794 3525 active_balance = 1;
1da177e4 3526 }
fe2eea3f 3527 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3528 if (active_balance)
1da177e4
LT
3529 wake_up_process(busiest->migration_thread);
3530
3531 /*
3532 * We've kicked active balancing, reset the failure
3533 * counter.
3534 */
39507451 3535 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3536 }
81026794 3537 } else
1da177e4
LT
3538 sd->nr_balance_failed = 0;
3539
81026794 3540 if (likely(!active_balance)) {
1da177e4
LT
3541 /* We were unbalanced, so reset the balancing interval */
3542 sd->balance_interval = sd->min_interval;
81026794
NP
3543 } else {
3544 /*
3545 * If we've begun active balancing, start to back off. This
3546 * case may not be covered by the all_pinned logic if there
3547 * is only 1 task on the busy runqueue (because we don't call
3548 * move_tasks).
3549 */
3550 if (sd->balance_interval < sd->max_interval)
3551 sd->balance_interval *= 2;
1da177e4
LT
3552 }
3553
43010659 3554 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3555 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3556 ld_moved = -1;
3557
3558 goto out;
1da177e4
LT
3559
3560out_balanced:
1da177e4
LT
3561 schedstat_inc(sd, lb_balanced[idle]);
3562
16cfb1c0 3563 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3564
3565out_one_pinned:
1da177e4 3566 /* tune up the balancing interval */
77391d71
NP
3567 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3568 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3569 sd->balance_interval *= 2;
3570
48f24c4d 3571 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3572 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3573 ld_moved = -1;
3574 else
3575 ld_moved = 0;
3576out:
c8cba857
PZ
3577 if (ld_moved)
3578 update_shares(sd);
c09595f6 3579 return ld_moved;
1da177e4
LT
3580}
3581
3582/*
3583 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3584 * tasks if there is an imbalance.
3585 *
d15bcfdb 3586 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3587 * this_rq is locked.
3588 */
48f24c4d 3589static int
7c16ec58
MT
3590load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3591 cpumask_t *cpus)
1da177e4
LT
3592{
3593 struct sched_group *group;
70b97a7f 3594 struct rq *busiest = NULL;
1da177e4 3595 unsigned long imbalance;
43010659 3596 int ld_moved = 0;
5969fe06 3597 int sd_idle = 0;
969bb4e4 3598 int all_pinned = 0;
7c16ec58
MT
3599
3600 cpus_setall(*cpus);
5969fe06 3601
89c4710e
SS
3602 /*
3603 * When power savings policy is enabled for the parent domain, idle
3604 * sibling can pick up load irrespective of busy siblings. In this case,
3605 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3606 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3607 */
3608 if (sd->flags & SD_SHARE_CPUPOWER &&
3609 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3610 sd_idle = 1;
1da177e4 3611
2d72376b 3612 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3613redo:
3e5459b4 3614 update_shares_locked(this_rq, sd);
d15bcfdb 3615 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3616 &sd_idle, cpus, NULL);
1da177e4 3617 if (!group) {
d15bcfdb 3618 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3619 goto out_balanced;
1da177e4
LT
3620 }
3621
7c16ec58 3622 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3623 if (!busiest) {
d15bcfdb 3624 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3625 goto out_balanced;
1da177e4
LT
3626 }
3627
db935dbd
NP
3628 BUG_ON(busiest == this_rq);
3629
d15bcfdb 3630 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3631
43010659 3632 ld_moved = 0;
d6d5cfaf
NP
3633 if (busiest->nr_running > 1) {
3634 /* Attempt to move tasks */
3635 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3636 /* this_rq->clock is already updated */
3637 update_rq_clock(busiest);
43010659 3638 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3639 imbalance, sd, CPU_NEWLY_IDLE,
3640 &all_pinned);
d6d5cfaf 3641 spin_unlock(&busiest->lock);
0a2966b4 3642
969bb4e4 3643 if (unlikely(all_pinned)) {
7c16ec58
MT
3644 cpu_clear(cpu_of(busiest), *cpus);
3645 if (!cpus_empty(*cpus))
0a2966b4
CL
3646 goto redo;
3647 }
d6d5cfaf
NP
3648 }
3649
43010659 3650 if (!ld_moved) {
d15bcfdb 3651 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3652 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3653 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
3654 return -1;
3655 } else
16cfb1c0 3656 sd->nr_balance_failed = 0;
1da177e4 3657
3e5459b4 3658 update_shares_locked(this_rq, sd);
43010659 3659 return ld_moved;
16cfb1c0
NP
3660
3661out_balanced:
d15bcfdb 3662 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3663 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3664 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3665 return -1;
16cfb1c0 3666 sd->nr_balance_failed = 0;
48f24c4d 3667
16cfb1c0 3668 return 0;
1da177e4
LT
3669}
3670
3671/*
3672 * idle_balance is called by schedule() if this_cpu is about to become
3673 * idle. Attempts to pull tasks from other CPUs.
3674 */
70b97a7f 3675static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3676{
3677 struct sched_domain *sd;
dd41f596
IM
3678 int pulled_task = -1;
3679 unsigned long next_balance = jiffies + HZ;
7c16ec58 3680 cpumask_t tmpmask;
1da177e4
LT
3681
3682 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3683 unsigned long interval;
3684
3685 if (!(sd->flags & SD_LOAD_BALANCE))
3686 continue;
3687
3688 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3689 /* If we've pulled tasks over stop searching: */
7c16ec58
MT
3690 pulled_task = load_balance_newidle(this_cpu, this_rq,
3691 sd, &tmpmask);
92c4ca5c
CL
3692
3693 interval = msecs_to_jiffies(sd->balance_interval);
3694 if (time_after(next_balance, sd->last_balance + interval))
3695 next_balance = sd->last_balance + interval;
3696 if (pulled_task)
3697 break;
1da177e4 3698 }
dd41f596 3699 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3700 /*
3701 * We are going idle. next_balance may be set based on
3702 * a busy processor. So reset next_balance.
3703 */
3704 this_rq->next_balance = next_balance;
dd41f596 3705 }
1da177e4
LT
3706}
3707
3708/*
3709 * active_load_balance is run by migration threads. It pushes running tasks
3710 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3711 * running on each physical CPU where possible, and avoids physical /
3712 * logical imbalances.
3713 *
3714 * Called with busiest_rq locked.
3715 */
70b97a7f 3716static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3717{
39507451 3718 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3719 struct sched_domain *sd;
3720 struct rq *target_rq;
39507451 3721
48f24c4d 3722 /* Is there any task to move? */
39507451 3723 if (busiest_rq->nr_running <= 1)
39507451
NP
3724 return;
3725
3726 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3727
3728 /*
39507451 3729 * This condition is "impossible", if it occurs
41a2d6cf 3730 * we need to fix it. Originally reported by
39507451 3731 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3732 */
39507451 3733 BUG_ON(busiest_rq == target_rq);
1da177e4 3734
39507451
NP
3735 /* move a task from busiest_rq to target_rq */
3736 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3737 update_rq_clock(busiest_rq);
3738 update_rq_clock(target_rq);
39507451
NP
3739
3740 /* Search for an sd spanning us and the target CPU. */
c96d145e 3741 for_each_domain(target_cpu, sd) {
39507451 3742 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3743 cpu_isset(busiest_cpu, sd->span))
39507451 3744 break;
c96d145e 3745 }
39507451 3746
48f24c4d 3747 if (likely(sd)) {
2d72376b 3748 schedstat_inc(sd, alb_count);
39507451 3749
43010659
PW
3750 if (move_one_task(target_rq, target_cpu, busiest_rq,
3751 sd, CPU_IDLE))
48f24c4d
IM
3752 schedstat_inc(sd, alb_pushed);
3753 else
3754 schedstat_inc(sd, alb_failed);
3755 }
39507451 3756 spin_unlock(&target_rq->lock);
1da177e4
LT
3757}
3758
46cb4b7c
SS
3759#ifdef CONFIG_NO_HZ
3760static struct {
3761 atomic_t load_balancer;
41a2d6cf 3762 cpumask_t cpu_mask;
46cb4b7c
SS
3763} nohz ____cacheline_aligned = {
3764 .load_balancer = ATOMIC_INIT(-1),
3765 .cpu_mask = CPU_MASK_NONE,
3766};
3767
7835b98b 3768/*
46cb4b7c
SS
3769 * This routine will try to nominate the ilb (idle load balancing)
3770 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3771 * load balancing on behalf of all those cpus. If all the cpus in the system
3772 * go into this tickless mode, then there will be no ilb owner (as there is
3773 * no need for one) and all the cpus will sleep till the next wakeup event
3774 * arrives...
3775 *
3776 * For the ilb owner, tick is not stopped. And this tick will be used
3777 * for idle load balancing. ilb owner will still be part of
3778 * nohz.cpu_mask..
7835b98b 3779 *
46cb4b7c
SS
3780 * While stopping the tick, this cpu will become the ilb owner if there
3781 * is no other owner. And will be the owner till that cpu becomes busy
3782 * or if all cpus in the system stop their ticks at which point
3783 * there is no need for ilb owner.
3784 *
3785 * When the ilb owner becomes busy, it nominates another owner, during the
3786 * next busy scheduler_tick()
3787 */
3788int select_nohz_load_balancer(int stop_tick)
3789{
3790 int cpu = smp_processor_id();
3791
3792 if (stop_tick) {
3793 cpu_set(cpu, nohz.cpu_mask);
3794 cpu_rq(cpu)->in_nohz_recently = 1;
3795
3796 /*
3797 * If we are going offline and still the leader, give up!
3798 */
3799 if (cpu_is_offline(cpu) &&
3800 atomic_read(&nohz.load_balancer) == cpu) {
3801 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3802 BUG();
3803 return 0;
3804 }
3805
3806 /* time for ilb owner also to sleep */
3807 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3808 if (atomic_read(&nohz.load_balancer) == cpu)
3809 atomic_set(&nohz.load_balancer, -1);
3810 return 0;
3811 }
3812
3813 if (atomic_read(&nohz.load_balancer) == -1) {
3814 /* make me the ilb owner */
3815 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3816 return 1;
3817 } else if (atomic_read(&nohz.load_balancer) == cpu)
3818 return 1;
3819 } else {
3820 if (!cpu_isset(cpu, nohz.cpu_mask))
3821 return 0;
3822
3823 cpu_clear(cpu, nohz.cpu_mask);
3824
3825 if (atomic_read(&nohz.load_balancer) == cpu)
3826 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3827 BUG();
3828 }
3829 return 0;
3830}
3831#endif
3832
3833static DEFINE_SPINLOCK(balancing);
3834
3835/*
7835b98b
CL
3836 * It checks each scheduling domain to see if it is due to be balanced,
3837 * and initiates a balancing operation if so.
3838 *
3839 * Balancing parameters are set up in arch_init_sched_domains.
3840 */
a9957449 3841static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3842{
46cb4b7c
SS
3843 int balance = 1;
3844 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3845 unsigned long interval;
3846 struct sched_domain *sd;
46cb4b7c 3847 /* Earliest time when we have to do rebalance again */
c9819f45 3848 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3849 int update_next_balance = 0;
d07355f5 3850 int need_serialize;
7c16ec58 3851 cpumask_t tmp;
1da177e4 3852
46cb4b7c 3853 for_each_domain(cpu, sd) {
1da177e4
LT
3854 if (!(sd->flags & SD_LOAD_BALANCE))
3855 continue;
3856
3857 interval = sd->balance_interval;
d15bcfdb 3858 if (idle != CPU_IDLE)
1da177e4
LT
3859 interval *= sd->busy_factor;
3860
3861 /* scale ms to jiffies */
3862 interval = msecs_to_jiffies(interval);
3863 if (unlikely(!interval))
3864 interval = 1;
dd41f596
IM
3865 if (interval > HZ*NR_CPUS/10)
3866 interval = HZ*NR_CPUS/10;
3867
d07355f5 3868 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 3869
d07355f5 3870 if (need_serialize) {
08c183f3
CL
3871 if (!spin_trylock(&balancing))
3872 goto out;
3873 }
3874
c9819f45 3875 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7c16ec58 3876 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
fa3b6ddc
SS
3877 /*
3878 * We've pulled tasks over so either we're no
5969fe06
NP
3879 * longer idle, or one of our SMT siblings is
3880 * not idle.
3881 */
d15bcfdb 3882 idle = CPU_NOT_IDLE;
1da177e4 3883 }
1bd77f2d 3884 sd->last_balance = jiffies;
1da177e4 3885 }
d07355f5 3886 if (need_serialize)
08c183f3
CL
3887 spin_unlock(&balancing);
3888out:
f549da84 3889 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3890 next_balance = sd->last_balance + interval;
f549da84
SS
3891 update_next_balance = 1;
3892 }
783609c6
SS
3893
3894 /*
3895 * Stop the load balance at this level. There is another
3896 * CPU in our sched group which is doing load balancing more
3897 * actively.
3898 */
3899 if (!balance)
3900 break;
1da177e4 3901 }
f549da84
SS
3902
3903 /*
3904 * next_balance will be updated only when there is a need.
3905 * When the cpu is attached to null domain for ex, it will not be
3906 * updated.
3907 */
3908 if (likely(update_next_balance))
3909 rq->next_balance = next_balance;
46cb4b7c
SS
3910}
3911
3912/*
3913 * run_rebalance_domains is triggered when needed from the scheduler tick.
3914 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3915 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3916 */
3917static void run_rebalance_domains(struct softirq_action *h)
3918{
dd41f596
IM
3919 int this_cpu = smp_processor_id();
3920 struct rq *this_rq = cpu_rq(this_cpu);
3921 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3922 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3923
dd41f596 3924 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3925
3926#ifdef CONFIG_NO_HZ
3927 /*
3928 * If this cpu is the owner for idle load balancing, then do the
3929 * balancing on behalf of the other idle cpus whose ticks are
3930 * stopped.
3931 */
dd41f596
IM
3932 if (this_rq->idle_at_tick &&
3933 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3934 cpumask_t cpus = nohz.cpu_mask;
3935 struct rq *rq;
3936 int balance_cpu;
3937
dd41f596 3938 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3939 for_each_cpu_mask(balance_cpu, cpus) {
3940 /*
3941 * If this cpu gets work to do, stop the load balancing
3942 * work being done for other cpus. Next load
3943 * balancing owner will pick it up.
3944 */
3945 if (need_resched())
3946 break;
3947
de0cf899 3948 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3949
3950 rq = cpu_rq(balance_cpu);
dd41f596
IM
3951 if (time_after(this_rq->next_balance, rq->next_balance))
3952 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3953 }
3954 }
3955#endif
3956}
3957
3958/*
3959 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3960 *
3961 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3962 * idle load balancing owner or decide to stop the periodic load balancing,
3963 * if the whole system is idle.
3964 */
dd41f596 3965static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3966{
46cb4b7c
SS
3967#ifdef CONFIG_NO_HZ
3968 /*
3969 * If we were in the nohz mode recently and busy at the current
3970 * scheduler tick, then check if we need to nominate new idle
3971 * load balancer.
3972 */
3973 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3974 rq->in_nohz_recently = 0;
3975
3976 if (atomic_read(&nohz.load_balancer) == cpu) {
3977 cpu_clear(cpu, nohz.cpu_mask);
3978 atomic_set(&nohz.load_balancer, -1);
3979 }
3980
3981 if (atomic_read(&nohz.load_balancer) == -1) {
3982 /*
3983 * simple selection for now: Nominate the
3984 * first cpu in the nohz list to be the next
3985 * ilb owner.
3986 *
3987 * TBD: Traverse the sched domains and nominate
3988 * the nearest cpu in the nohz.cpu_mask.
3989 */
3990 int ilb = first_cpu(nohz.cpu_mask);
3991
434d53b0 3992 if (ilb < nr_cpu_ids)
46cb4b7c
SS
3993 resched_cpu(ilb);
3994 }
3995 }
3996
3997 /*
3998 * If this cpu is idle and doing idle load balancing for all the
3999 * cpus with ticks stopped, is it time for that to stop?
4000 */
4001 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4002 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
4003 resched_cpu(cpu);
4004 return;
4005 }
4006
4007 /*
4008 * If this cpu is idle and the idle load balancing is done by
4009 * someone else, then no need raise the SCHED_SOFTIRQ
4010 */
4011 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4012 cpu_isset(cpu, nohz.cpu_mask))
4013 return;
4014#endif
4015 if (time_after_eq(jiffies, rq->next_balance))
4016 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4017}
dd41f596
IM
4018
4019#else /* CONFIG_SMP */
4020
1da177e4
LT
4021/*
4022 * on UP we do not need to balance between CPUs:
4023 */
70b97a7f 4024static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4025{
4026}
dd41f596 4027
1da177e4
LT
4028#endif
4029
1da177e4
LT
4030DEFINE_PER_CPU(struct kernel_stat, kstat);
4031
4032EXPORT_PER_CPU_SYMBOL(kstat);
4033
4034/*
41b86e9c
IM
4035 * Return p->sum_exec_runtime plus any more ns on the sched_clock
4036 * that have not yet been banked in case the task is currently running.
1da177e4 4037 */
41b86e9c 4038unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 4039{
1da177e4 4040 unsigned long flags;
41b86e9c
IM
4041 u64 ns, delta_exec;
4042 struct rq *rq;
48f24c4d 4043
41b86e9c
IM
4044 rq = task_rq_lock(p, &flags);
4045 ns = p->se.sum_exec_runtime;
051a1d1a 4046 if (task_current(rq, p)) {
a8e504d2
IM
4047 update_rq_clock(rq);
4048 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
4049 if ((s64)delta_exec > 0)
4050 ns += delta_exec;
4051 }
4052 task_rq_unlock(rq, &flags);
48f24c4d 4053
1da177e4
LT
4054 return ns;
4055}
4056
1da177e4
LT
4057/*
4058 * Account user cpu time to a process.
4059 * @p: the process that the cpu time gets accounted to
1da177e4
LT
4060 * @cputime: the cpu time spent in user space since the last update
4061 */
4062void account_user_time(struct task_struct *p, cputime_t cputime)
4063{
4064 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4065 cputime64_t tmp;
4066
4067 p->utime = cputime_add(p->utime, cputime);
4068
4069 /* Add user time to cpustat. */
4070 tmp = cputime_to_cputime64(cputime);
4071 if (TASK_NICE(p) > 0)
4072 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4073 else
4074 cpustat->user = cputime64_add(cpustat->user, tmp);
4075}
4076
94886b84
LV
4077/*
4078 * Account guest cpu time to a process.
4079 * @p: the process that the cpu time gets accounted to
4080 * @cputime: the cpu time spent in virtual machine since the last update
4081 */
f7402e03 4082static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
4083{
4084 cputime64_t tmp;
4085 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4086
4087 tmp = cputime_to_cputime64(cputime);
4088
4089 p->utime = cputime_add(p->utime, cputime);
4090 p->gtime = cputime_add(p->gtime, cputime);
4091
4092 cpustat->user = cputime64_add(cpustat->user, tmp);
4093 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4094}
4095
c66f08be
MN
4096/*
4097 * Account scaled user cpu time to a process.
4098 * @p: the process that the cpu time gets accounted to
4099 * @cputime: the cpu time spent in user space since the last update
4100 */
4101void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4102{
4103 p->utimescaled = cputime_add(p->utimescaled, cputime);
4104}
4105
1da177e4
LT
4106/*
4107 * Account system cpu time to a process.
4108 * @p: the process that the cpu time gets accounted to
4109 * @hardirq_offset: the offset to subtract from hardirq_count()
4110 * @cputime: the cpu time spent in kernel space since the last update
4111 */
4112void account_system_time(struct task_struct *p, int hardirq_offset,
4113 cputime_t cputime)
4114{
4115 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 4116 struct rq *rq = this_rq();
1da177e4
LT
4117 cputime64_t tmp;
4118
983ed7a6
HH
4119 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4120 account_guest_time(p, cputime);
4121 return;
4122 }
94886b84 4123
1da177e4
LT
4124 p->stime = cputime_add(p->stime, cputime);
4125
4126 /* Add system time to cpustat. */
4127 tmp = cputime_to_cputime64(cputime);
4128 if (hardirq_count() - hardirq_offset)
4129 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4130 else if (softirq_count())
4131 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 4132 else if (p != rq->idle)
1da177e4 4133 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 4134 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
4135 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4136 else
4137 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4138 /* Account for system time used */
4139 acct_update_integrals(p);
1da177e4
LT
4140}
4141
c66f08be
MN
4142/*
4143 * Account scaled system cpu time to a process.
4144 * @p: the process that the cpu time gets accounted to
4145 * @hardirq_offset: the offset to subtract from hardirq_count()
4146 * @cputime: the cpu time spent in kernel space since the last update
4147 */
4148void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4149{
4150 p->stimescaled = cputime_add(p->stimescaled, cputime);
4151}
4152
1da177e4
LT
4153/*
4154 * Account for involuntary wait time.
4155 * @p: the process from which the cpu time has been stolen
4156 * @steal: the cpu time spent in involuntary wait
4157 */
4158void account_steal_time(struct task_struct *p, cputime_t steal)
4159{
4160 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4161 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 4162 struct rq *rq = this_rq();
1da177e4
LT
4163
4164 if (p == rq->idle) {
4165 p->stime = cputime_add(p->stime, steal);
4166 if (atomic_read(&rq->nr_iowait) > 0)
4167 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4168 else
4169 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 4170 } else
1da177e4
LT
4171 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4172}
4173
7835b98b
CL
4174/*
4175 * This function gets called by the timer code, with HZ frequency.
4176 * We call it with interrupts disabled.
4177 *
4178 * It also gets called by the fork code, when changing the parent's
4179 * timeslices.
4180 */
4181void scheduler_tick(void)
4182{
7835b98b
CL
4183 int cpu = smp_processor_id();
4184 struct rq *rq = cpu_rq(cpu);
dd41f596 4185 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4186
4187 sched_clock_tick();
dd41f596
IM
4188
4189 spin_lock(&rq->lock);
3e51f33f 4190 update_rq_clock(rq);
f1a438d8 4191 update_cpu_load(rq);
fa85ae24 4192 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4193 spin_unlock(&rq->lock);
7835b98b 4194
e418e1c2 4195#ifdef CONFIG_SMP
dd41f596
IM
4196 rq->idle_at_tick = idle_cpu(cpu);
4197 trigger_load_balance(rq, cpu);
e418e1c2 4198#endif
1da177e4
LT
4199}
4200
1da177e4
LT
4201#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
4202
43627582 4203void __kprobes add_preempt_count(int val)
1da177e4
LT
4204{
4205 /*
4206 * Underflow?
4207 */
9a11b49a
IM
4208 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4209 return;
1da177e4
LT
4210 preempt_count() += val;
4211 /*
4212 * Spinlock count overflowing soon?
4213 */
33859f7f
MOS
4214 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4215 PREEMPT_MASK - 10);
1da177e4
LT
4216}
4217EXPORT_SYMBOL(add_preempt_count);
4218
43627582 4219void __kprobes sub_preempt_count(int val)
1da177e4
LT
4220{
4221 /*
4222 * Underflow?
4223 */
9a11b49a
IM
4224 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4225 return;
1da177e4
LT
4226 /*
4227 * Is the spinlock portion underflowing?
4228 */
9a11b49a
IM
4229 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4230 !(preempt_count() & PREEMPT_MASK)))
4231 return;
4232
1da177e4
LT
4233 preempt_count() -= val;
4234}
4235EXPORT_SYMBOL(sub_preempt_count);
4236
4237#endif
4238
4239/*
dd41f596 4240 * Print scheduling while atomic bug:
1da177e4 4241 */
dd41f596 4242static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4243{
838225b4
SS
4244 struct pt_regs *regs = get_irq_regs();
4245
4246 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4247 prev->comm, prev->pid, preempt_count());
4248
dd41f596 4249 debug_show_held_locks(prev);
e21f5b15 4250 print_modules();
dd41f596
IM
4251 if (irqs_disabled())
4252 print_irqtrace_events(prev);
838225b4
SS
4253
4254 if (regs)
4255 show_regs(regs);
4256 else
4257 dump_stack();
dd41f596 4258}
1da177e4 4259
dd41f596
IM
4260/*
4261 * Various schedule()-time debugging checks and statistics:
4262 */
4263static inline void schedule_debug(struct task_struct *prev)
4264{
1da177e4 4265 /*
41a2d6cf 4266 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4267 * schedule() atomically, we ignore that path for now.
4268 * Otherwise, whine if we are scheduling when we should not be.
4269 */
3f33a7ce 4270 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4271 __schedule_bug(prev);
4272
1da177e4
LT
4273 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4274
2d72376b 4275 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4276#ifdef CONFIG_SCHEDSTATS
4277 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4278 schedstat_inc(this_rq(), bkl_count);
4279 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4280 }
4281#endif
dd41f596
IM
4282}
4283
4284/*
4285 * Pick up the highest-prio task:
4286 */
4287static inline struct task_struct *
ff95f3df 4288pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 4289{
5522d5d5 4290 const struct sched_class *class;
dd41f596 4291 struct task_struct *p;
1da177e4
LT
4292
4293 /*
dd41f596
IM
4294 * Optimization: we know that if all tasks are in
4295 * the fair class we can call that function directly:
1da177e4 4296 */
dd41f596 4297 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4298 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4299 if (likely(p))
4300 return p;
1da177e4
LT
4301 }
4302
dd41f596
IM
4303 class = sched_class_highest;
4304 for ( ; ; ) {
fb8d4724 4305 p = class->pick_next_task(rq);
dd41f596
IM
4306 if (p)
4307 return p;
4308 /*
4309 * Will never be NULL as the idle class always
4310 * returns a non-NULL p:
4311 */
4312 class = class->next;
4313 }
4314}
1da177e4 4315
dd41f596
IM
4316/*
4317 * schedule() is the main scheduler function.
4318 */
4319asmlinkage void __sched schedule(void)
4320{
4321 struct task_struct *prev, *next;
67ca7bde 4322 unsigned long *switch_count;
dd41f596 4323 struct rq *rq;
f333fdc9 4324 int cpu, hrtick = sched_feat(HRTICK);
dd41f596
IM
4325
4326need_resched:
4327 preempt_disable();
4328 cpu = smp_processor_id();
4329 rq = cpu_rq(cpu);
4330 rcu_qsctr_inc(cpu);
4331 prev = rq->curr;
4332 switch_count = &prev->nivcsw;
4333
4334 release_kernel_lock(prev);
4335need_resched_nonpreemptible:
4336
4337 schedule_debug(prev);
1da177e4 4338
f333fdc9
MG
4339 if (hrtick)
4340 hrtick_clear(rq);
8f4d37ec 4341
1e819950
IM
4342 /*
4343 * Do the rq-clock update outside the rq lock:
4344 */
4345 local_irq_disable();
3e51f33f 4346 update_rq_clock(rq);
1e819950
IM
4347 spin_lock(&rq->lock);
4348 clear_tsk_need_resched(prev);
1da177e4 4349
1da177e4 4350 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 4351 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 4352 prev->state = TASK_RUNNING;
16882c1e 4353 else
2e1cb74a 4354 deactivate_task(rq, prev, 1);
dd41f596 4355 switch_count = &prev->nvcsw;
1da177e4
LT
4356 }
4357
9a897c5a
SR
4358#ifdef CONFIG_SMP
4359 if (prev->sched_class->pre_schedule)
4360 prev->sched_class->pre_schedule(rq, prev);
4361#endif
f65eda4f 4362
dd41f596 4363 if (unlikely(!rq->nr_running))
1da177e4 4364 idle_balance(cpu, rq);
1da177e4 4365
31ee529c 4366 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 4367 next = pick_next_task(rq, prev);
1da177e4 4368
1da177e4 4369 if (likely(prev != next)) {
673a90a1
DS
4370 sched_info_switch(prev, next);
4371
1da177e4
LT
4372 rq->nr_switches++;
4373 rq->curr = next;
4374 ++*switch_count;
4375
dd41f596 4376 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4377 /*
4378 * the context switch might have flipped the stack from under
4379 * us, hence refresh the local variables.
4380 */
4381 cpu = smp_processor_id();
4382 rq = cpu_rq(cpu);
1da177e4
LT
4383 } else
4384 spin_unlock_irq(&rq->lock);
4385
f333fdc9
MG
4386 if (hrtick)
4387 hrtick_set(rq);
8f4d37ec
PZ
4388
4389 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4390 goto need_resched_nonpreemptible;
8f4d37ec 4391
1da177e4
LT
4392 preempt_enable_no_resched();
4393 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4394 goto need_resched;
4395}
1da177e4
LT
4396EXPORT_SYMBOL(schedule);
4397
4398#ifdef CONFIG_PREEMPT
4399/*
2ed6e34f 4400 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4401 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4402 * occur there and call schedule directly.
4403 */
4404asmlinkage void __sched preempt_schedule(void)
4405{
4406 struct thread_info *ti = current_thread_info();
6478d880 4407
1da177e4
LT
4408 /*
4409 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4410 * we do not want to preempt the current task. Just return..
1da177e4 4411 */
beed33a8 4412 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4413 return;
4414
3a5c359a
AK
4415 do {
4416 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4417 schedule();
3a5c359a 4418 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4419
3a5c359a
AK
4420 /*
4421 * Check again in case we missed a preemption opportunity
4422 * between schedule and now.
4423 */
4424 barrier();
4425 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 4426}
1da177e4
LT
4427EXPORT_SYMBOL(preempt_schedule);
4428
4429/*
2ed6e34f 4430 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4431 * off of irq context.
4432 * Note, that this is called and return with irqs disabled. This will
4433 * protect us against recursive calling from irq.
4434 */
4435asmlinkage void __sched preempt_schedule_irq(void)
4436{
4437 struct thread_info *ti = current_thread_info();
6478d880 4438
2ed6e34f 4439 /* Catch callers which need to be fixed */
1da177e4
LT
4440 BUG_ON(ti->preempt_count || !irqs_disabled());
4441
3a5c359a
AK
4442 do {
4443 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4444 local_irq_enable();
4445 schedule();
4446 local_irq_disable();
3a5c359a 4447 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4448
3a5c359a
AK
4449 /*
4450 * Check again in case we missed a preemption opportunity
4451 * between schedule and now.
4452 */
4453 barrier();
4454 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4455}
4456
4457#endif /* CONFIG_PREEMPT */
4458
95cdf3b7
IM
4459int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4460 void *key)
1da177e4 4461{
48f24c4d 4462 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4463}
1da177e4
LT
4464EXPORT_SYMBOL(default_wake_function);
4465
4466/*
41a2d6cf
IM
4467 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4468 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4469 * number) then we wake all the non-exclusive tasks and one exclusive task.
4470 *
4471 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4472 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4473 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4474 */
4475static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4476 int nr_exclusive, int sync, void *key)
4477{
2e45874c 4478 wait_queue_t *curr, *next;
1da177e4 4479
2e45874c 4480 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4481 unsigned flags = curr->flags;
4482
1da177e4 4483 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4484 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4485 break;
4486 }
4487}
4488
4489/**
4490 * __wake_up - wake up threads blocked on a waitqueue.
4491 * @q: the waitqueue
4492 * @mode: which threads
4493 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4494 * @key: is directly passed to the wakeup function
1da177e4 4495 */
7ad5b3a5 4496void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4497 int nr_exclusive, void *key)
1da177e4
LT
4498{
4499 unsigned long flags;
4500
4501 spin_lock_irqsave(&q->lock, flags);
4502 __wake_up_common(q, mode, nr_exclusive, 0, key);
4503 spin_unlock_irqrestore(&q->lock, flags);
4504}
1da177e4
LT
4505EXPORT_SYMBOL(__wake_up);
4506
4507/*
4508 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4509 */
7ad5b3a5 4510void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4511{
4512 __wake_up_common(q, mode, 1, 0, NULL);
4513}
4514
4515/**
67be2dd1 4516 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4517 * @q: the waitqueue
4518 * @mode: which threads
4519 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4520 *
4521 * The sync wakeup differs that the waker knows that it will schedule
4522 * away soon, so while the target thread will be woken up, it will not
4523 * be migrated to another CPU - ie. the two threads are 'synchronized'
4524 * with each other. This can prevent needless bouncing between CPUs.
4525 *
4526 * On UP it can prevent extra preemption.
4527 */
7ad5b3a5 4528void
95cdf3b7 4529__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4530{
4531 unsigned long flags;
4532 int sync = 1;
4533
4534 if (unlikely(!q))
4535 return;
4536
4537 if (unlikely(!nr_exclusive))
4538 sync = 0;
4539
4540 spin_lock_irqsave(&q->lock, flags);
4541 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4542 spin_unlock_irqrestore(&q->lock, flags);
4543}
4544EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4545
b15136e9 4546void complete(struct completion *x)
1da177e4
LT
4547{
4548 unsigned long flags;
4549
4550 spin_lock_irqsave(&x->wait.lock, flags);
4551 x->done++;
d9514f6c 4552 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4553 spin_unlock_irqrestore(&x->wait.lock, flags);
4554}
4555EXPORT_SYMBOL(complete);
4556
b15136e9 4557void complete_all(struct completion *x)
1da177e4
LT
4558{
4559 unsigned long flags;
4560
4561 spin_lock_irqsave(&x->wait.lock, flags);
4562 x->done += UINT_MAX/2;
d9514f6c 4563 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4564 spin_unlock_irqrestore(&x->wait.lock, flags);
4565}
4566EXPORT_SYMBOL(complete_all);
4567
8cbbe86d
AK
4568static inline long __sched
4569do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4570{
1da177e4
LT
4571 if (!x->done) {
4572 DECLARE_WAITQUEUE(wait, current);
4573
4574 wait.flags |= WQ_FLAG_EXCLUSIVE;
4575 __add_wait_queue_tail(&x->wait, &wait);
4576 do {
009e577e
MW
4577 if ((state == TASK_INTERRUPTIBLE &&
4578 signal_pending(current)) ||
4579 (state == TASK_KILLABLE &&
4580 fatal_signal_pending(current))) {
ea71a546
ON
4581 timeout = -ERESTARTSYS;
4582 break;
8cbbe86d
AK
4583 }
4584 __set_current_state(state);
1da177e4
LT
4585 spin_unlock_irq(&x->wait.lock);
4586 timeout = schedule_timeout(timeout);
4587 spin_lock_irq(&x->wait.lock);
ea71a546 4588 } while (!x->done && timeout);
1da177e4 4589 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4590 if (!x->done)
4591 return timeout;
1da177e4
LT
4592 }
4593 x->done--;
ea71a546 4594 return timeout ?: 1;
1da177e4 4595}
1da177e4 4596
8cbbe86d
AK
4597static long __sched
4598wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4599{
1da177e4
LT
4600 might_sleep();
4601
4602 spin_lock_irq(&x->wait.lock);
8cbbe86d 4603 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4604 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4605 return timeout;
4606}
1da177e4 4607
b15136e9 4608void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4609{
4610 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4611}
8cbbe86d 4612EXPORT_SYMBOL(wait_for_completion);
1da177e4 4613
b15136e9 4614unsigned long __sched
8cbbe86d 4615wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4616{
8cbbe86d 4617 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4618}
8cbbe86d 4619EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4620
8cbbe86d 4621int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4622{
51e97990
AK
4623 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4624 if (t == -ERESTARTSYS)
4625 return t;
4626 return 0;
0fec171c 4627}
8cbbe86d 4628EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4629
b15136e9 4630unsigned long __sched
8cbbe86d
AK
4631wait_for_completion_interruptible_timeout(struct completion *x,
4632 unsigned long timeout)
0fec171c 4633{
8cbbe86d 4634 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4635}
8cbbe86d 4636EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4637
009e577e
MW
4638int __sched wait_for_completion_killable(struct completion *x)
4639{
4640 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4641 if (t == -ERESTARTSYS)
4642 return t;
4643 return 0;
4644}
4645EXPORT_SYMBOL(wait_for_completion_killable);
4646
8cbbe86d
AK
4647static long __sched
4648sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4649{
0fec171c
IM
4650 unsigned long flags;
4651 wait_queue_t wait;
4652
4653 init_waitqueue_entry(&wait, current);
1da177e4 4654
8cbbe86d 4655 __set_current_state(state);
1da177e4 4656
8cbbe86d
AK
4657 spin_lock_irqsave(&q->lock, flags);
4658 __add_wait_queue(q, &wait);
4659 spin_unlock(&q->lock);
4660 timeout = schedule_timeout(timeout);
4661 spin_lock_irq(&q->lock);
4662 __remove_wait_queue(q, &wait);
4663 spin_unlock_irqrestore(&q->lock, flags);
4664
4665 return timeout;
4666}
4667
4668void __sched interruptible_sleep_on(wait_queue_head_t *q)
4669{
4670 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4671}
1da177e4
LT
4672EXPORT_SYMBOL(interruptible_sleep_on);
4673
0fec171c 4674long __sched
95cdf3b7 4675interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4676{
8cbbe86d 4677 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4678}
1da177e4
LT
4679EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4680
0fec171c 4681void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4682{
8cbbe86d 4683 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4684}
1da177e4
LT
4685EXPORT_SYMBOL(sleep_on);
4686
0fec171c 4687long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4688{
8cbbe86d 4689 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4690}
1da177e4
LT
4691EXPORT_SYMBOL(sleep_on_timeout);
4692
b29739f9
IM
4693#ifdef CONFIG_RT_MUTEXES
4694
4695/*
4696 * rt_mutex_setprio - set the current priority of a task
4697 * @p: task
4698 * @prio: prio value (kernel-internal form)
4699 *
4700 * This function changes the 'effective' priority of a task. It does
4701 * not touch ->normal_prio like __setscheduler().
4702 *
4703 * Used by the rt_mutex code to implement priority inheritance logic.
4704 */
36c8b586 4705void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4706{
4707 unsigned long flags;
83b699ed 4708 int oldprio, on_rq, running;
70b97a7f 4709 struct rq *rq;
cb469845 4710 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
4711
4712 BUG_ON(prio < 0 || prio > MAX_PRIO);
4713
4714 rq = task_rq_lock(p, &flags);
a8e504d2 4715 update_rq_clock(rq);
b29739f9 4716
d5f9f942 4717 oldprio = p->prio;
dd41f596 4718 on_rq = p->se.on_rq;
051a1d1a 4719 running = task_current(rq, p);
0e1f3483 4720 if (on_rq)
69be72c1 4721 dequeue_task(rq, p, 0);
0e1f3483
HS
4722 if (running)
4723 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4724
4725 if (rt_prio(prio))
4726 p->sched_class = &rt_sched_class;
4727 else
4728 p->sched_class = &fair_sched_class;
4729
b29739f9
IM
4730 p->prio = prio;
4731
0e1f3483
HS
4732 if (running)
4733 p->sched_class->set_curr_task(rq);
dd41f596 4734 if (on_rq) {
8159f87e 4735 enqueue_task(rq, p, 0);
cb469845
SR
4736
4737 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4738 }
4739 task_rq_unlock(rq, &flags);
4740}
4741
4742#endif
4743
36c8b586 4744void set_user_nice(struct task_struct *p, long nice)
1da177e4 4745{
dd41f596 4746 int old_prio, delta, on_rq;
1da177e4 4747 unsigned long flags;
70b97a7f 4748 struct rq *rq;
1da177e4
LT
4749
4750 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4751 return;
4752 /*
4753 * We have to be careful, if called from sys_setpriority(),
4754 * the task might be in the middle of scheduling on another CPU.
4755 */
4756 rq = task_rq_lock(p, &flags);
a8e504d2 4757 update_rq_clock(rq);
1da177e4
LT
4758 /*
4759 * The RT priorities are set via sched_setscheduler(), but we still
4760 * allow the 'normal' nice value to be set - but as expected
4761 * it wont have any effect on scheduling until the task is
dd41f596 4762 * SCHED_FIFO/SCHED_RR:
1da177e4 4763 */
e05606d3 4764 if (task_has_rt_policy(p)) {
1da177e4
LT
4765 p->static_prio = NICE_TO_PRIO(nice);
4766 goto out_unlock;
4767 }
dd41f596 4768 on_rq = p->se.on_rq;
c09595f6 4769 if (on_rq)
69be72c1 4770 dequeue_task(rq, p, 0);
1da177e4 4771
1da177e4 4772 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4773 set_load_weight(p);
b29739f9
IM
4774 old_prio = p->prio;
4775 p->prio = effective_prio(p);
4776 delta = p->prio - old_prio;
1da177e4 4777
dd41f596 4778 if (on_rq) {
8159f87e 4779 enqueue_task(rq, p, 0);
1da177e4 4780 /*
d5f9f942
AM
4781 * If the task increased its priority or is running and
4782 * lowered its priority, then reschedule its CPU:
1da177e4 4783 */
d5f9f942 4784 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4785 resched_task(rq->curr);
4786 }
4787out_unlock:
4788 task_rq_unlock(rq, &flags);
4789}
1da177e4
LT
4790EXPORT_SYMBOL(set_user_nice);
4791
e43379f1
MM
4792/*
4793 * can_nice - check if a task can reduce its nice value
4794 * @p: task
4795 * @nice: nice value
4796 */
36c8b586 4797int can_nice(const struct task_struct *p, const int nice)
e43379f1 4798{
024f4747
MM
4799 /* convert nice value [19,-20] to rlimit style value [1,40] */
4800 int nice_rlim = 20 - nice;
48f24c4d 4801
e43379f1
MM
4802 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4803 capable(CAP_SYS_NICE));
4804}
4805
1da177e4
LT
4806#ifdef __ARCH_WANT_SYS_NICE
4807
4808/*
4809 * sys_nice - change the priority of the current process.
4810 * @increment: priority increment
4811 *
4812 * sys_setpriority is a more generic, but much slower function that
4813 * does similar things.
4814 */
4815asmlinkage long sys_nice(int increment)
4816{
48f24c4d 4817 long nice, retval;
1da177e4
LT
4818
4819 /*
4820 * Setpriority might change our priority at the same moment.
4821 * We don't have to worry. Conceptually one call occurs first
4822 * and we have a single winner.
4823 */
e43379f1
MM
4824 if (increment < -40)
4825 increment = -40;
1da177e4
LT
4826 if (increment > 40)
4827 increment = 40;
4828
4829 nice = PRIO_TO_NICE(current->static_prio) + increment;
4830 if (nice < -20)
4831 nice = -20;
4832 if (nice > 19)
4833 nice = 19;
4834
e43379f1
MM
4835 if (increment < 0 && !can_nice(current, nice))
4836 return -EPERM;
4837
1da177e4
LT
4838 retval = security_task_setnice(current, nice);
4839 if (retval)
4840 return retval;
4841
4842 set_user_nice(current, nice);
4843 return 0;
4844}
4845
4846#endif
4847
4848/**
4849 * task_prio - return the priority value of a given task.
4850 * @p: the task in question.
4851 *
4852 * This is the priority value as seen by users in /proc.
4853 * RT tasks are offset by -200. Normal tasks are centered
4854 * around 0, value goes from -16 to +15.
4855 */
36c8b586 4856int task_prio(const struct task_struct *p)
1da177e4
LT
4857{
4858 return p->prio - MAX_RT_PRIO;
4859}
4860
4861/**
4862 * task_nice - return the nice value of a given task.
4863 * @p: the task in question.
4864 */
36c8b586 4865int task_nice(const struct task_struct *p)
1da177e4
LT
4866{
4867 return TASK_NICE(p);
4868}
150d8bed 4869EXPORT_SYMBOL(task_nice);
1da177e4
LT
4870
4871/**
4872 * idle_cpu - is a given cpu idle currently?
4873 * @cpu: the processor in question.
4874 */
4875int idle_cpu(int cpu)
4876{
4877 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4878}
4879
1da177e4
LT
4880/**
4881 * idle_task - return the idle task for a given cpu.
4882 * @cpu: the processor in question.
4883 */
36c8b586 4884struct task_struct *idle_task(int cpu)
1da177e4
LT
4885{
4886 return cpu_rq(cpu)->idle;
4887}
4888
4889/**
4890 * find_process_by_pid - find a process with a matching PID value.
4891 * @pid: the pid in question.
4892 */
a9957449 4893static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4894{
228ebcbe 4895 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4896}
4897
4898/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4899static void
4900__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4901{
dd41f596 4902 BUG_ON(p->se.on_rq);
48f24c4d 4903
1da177e4 4904 p->policy = policy;
dd41f596
IM
4905 switch (p->policy) {
4906 case SCHED_NORMAL:
4907 case SCHED_BATCH:
4908 case SCHED_IDLE:
4909 p->sched_class = &fair_sched_class;
4910 break;
4911 case SCHED_FIFO:
4912 case SCHED_RR:
4913 p->sched_class = &rt_sched_class;
4914 break;
4915 }
4916
1da177e4 4917 p->rt_priority = prio;
b29739f9
IM
4918 p->normal_prio = normal_prio(p);
4919 /* we are holding p->pi_lock already */
4920 p->prio = rt_mutex_getprio(p);
2dd73a4f 4921 set_load_weight(p);
1da177e4
LT
4922}
4923
4924/**
72fd4a35 4925 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4926 * @p: the task in question.
4927 * @policy: new policy.
4928 * @param: structure containing the new RT priority.
5fe1d75f 4929 *
72fd4a35 4930 * NOTE that the task may be already dead.
1da177e4 4931 */
95cdf3b7
IM
4932int sched_setscheduler(struct task_struct *p, int policy,
4933 struct sched_param *param)
1da177e4 4934{
83b699ed 4935 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4936 unsigned long flags;
cb469845 4937 const struct sched_class *prev_class = p->sched_class;
70b97a7f 4938 struct rq *rq;
1da177e4 4939
66e5393a
SR
4940 /* may grab non-irq protected spin_locks */
4941 BUG_ON(in_interrupt());
1da177e4
LT
4942recheck:
4943 /* double check policy once rq lock held */
4944 if (policy < 0)
4945 policy = oldpolicy = p->policy;
4946 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4947 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4948 policy != SCHED_IDLE)
b0a9499c 4949 return -EINVAL;
1da177e4
LT
4950 /*
4951 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4952 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4953 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4954 */
4955 if (param->sched_priority < 0 ||
95cdf3b7 4956 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4957 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4958 return -EINVAL;
e05606d3 4959 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4960 return -EINVAL;
4961
37e4ab3f
OC
4962 /*
4963 * Allow unprivileged RT tasks to decrease priority:
4964 */
4965 if (!capable(CAP_SYS_NICE)) {
e05606d3 4966 if (rt_policy(policy)) {
8dc3e909 4967 unsigned long rlim_rtprio;
8dc3e909
ON
4968
4969 if (!lock_task_sighand(p, &flags))
4970 return -ESRCH;
4971 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4972 unlock_task_sighand(p, &flags);
4973
4974 /* can't set/change the rt policy */
4975 if (policy != p->policy && !rlim_rtprio)
4976 return -EPERM;
4977
4978 /* can't increase priority */
4979 if (param->sched_priority > p->rt_priority &&
4980 param->sched_priority > rlim_rtprio)
4981 return -EPERM;
4982 }
dd41f596
IM
4983 /*
4984 * Like positive nice levels, dont allow tasks to
4985 * move out of SCHED_IDLE either:
4986 */
4987 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4988 return -EPERM;
5fe1d75f 4989
37e4ab3f
OC
4990 /* can't change other user's priorities */
4991 if ((current->euid != p->euid) &&
4992 (current->euid != p->uid))
4993 return -EPERM;
4994 }
1da177e4 4995
b68aa230
PZ
4996#ifdef CONFIG_RT_GROUP_SCHED
4997 /*
4998 * Do not allow realtime tasks into groups that have no runtime
4999 * assigned.
5000 */
d0b27fa7 5001 if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
5002 return -EPERM;
5003#endif
5004
1da177e4
LT
5005 retval = security_task_setscheduler(p, policy, param);
5006 if (retval)
5007 return retval;
b29739f9
IM
5008 /*
5009 * make sure no PI-waiters arrive (or leave) while we are
5010 * changing the priority of the task:
5011 */
5012 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
5013 /*
5014 * To be able to change p->policy safely, the apropriate
5015 * runqueue lock must be held.
5016 */
b29739f9 5017 rq = __task_rq_lock(p);
1da177e4
LT
5018 /* recheck policy now with rq lock held */
5019 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5020 policy = oldpolicy = -1;
b29739f9
IM
5021 __task_rq_unlock(rq);
5022 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5023 goto recheck;
5024 }
2daa3577 5025 update_rq_clock(rq);
dd41f596 5026 on_rq = p->se.on_rq;
051a1d1a 5027 running = task_current(rq, p);
0e1f3483 5028 if (on_rq)
2e1cb74a 5029 deactivate_task(rq, p, 0);
0e1f3483
HS
5030 if (running)
5031 p->sched_class->put_prev_task(rq, p);
f6b53205 5032
1da177e4 5033 oldprio = p->prio;
dd41f596 5034 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5035
0e1f3483
HS
5036 if (running)
5037 p->sched_class->set_curr_task(rq);
dd41f596
IM
5038 if (on_rq) {
5039 activate_task(rq, p, 0);
cb469845
SR
5040
5041 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 5042 }
b29739f9
IM
5043 __task_rq_unlock(rq);
5044 spin_unlock_irqrestore(&p->pi_lock, flags);
5045
95e02ca9
TG
5046 rt_mutex_adjust_pi(p);
5047
1da177e4
LT
5048 return 0;
5049}
5050EXPORT_SYMBOL_GPL(sched_setscheduler);
5051
95cdf3b7
IM
5052static int
5053do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5054{
1da177e4
LT
5055 struct sched_param lparam;
5056 struct task_struct *p;
36c8b586 5057 int retval;
1da177e4
LT
5058
5059 if (!param || pid < 0)
5060 return -EINVAL;
5061 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5062 return -EFAULT;
5fe1d75f
ON
5063
5064 rcu_read_lock();
5065 retval = -ESRCH;
1da177e4 5066 p = find_process_by_pid(pid);
5fe1d75f
ON
5067 if (p != NULL)
5068 retval = sched_setscheduler(p, policy, &lparam);
5069 rcu_read_unlock();
36c8b586 5070
1da177e4
LT
5071 return retval;
5072}
5073
5074/**
5075 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5076 * @pid: the pid in question.
5077 * @policy: new policy.
5078 * @param: structure containing the new RT priority.
5079 */
41a2d6cf
IM
5080asmlinkage long
5081sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5082{
c21761f1
JB
5083 /* negative values for policy are not valid */
5084 if (policy < 0)
5085 return -EINVAL;
5086
1da177e4
LT
5087 return do_sched_setscheduler(pid, policy, param);
5088}
5089
5090/**
5091 * sys_sched_setparam - set/change the RT priority of a thread
5092 * @pid: the pid in question.
5093 * @param: structure containing the new RT priority.
5094 */
5095asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5096{
5097 return do_sched_setscheduler(pid, -1, param);
5098}
5099
5100/**
5101 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5102 * @pid: the pid in question.
5103 */
5104asmlinkage long sys_sched_getscheduler(pid_t pid)
5105{
36c8b586 5106 struct task_struct *p;
3a5c359a 5107 int retval;
1da177e4
LT
5108
5109 if (pid < 0)
3a5c359a 5110 return -EINVAL;
1da177e4
LT
5111
5112 retval = -ESRCH;
5113 read_lock(&tasklist_lock);
5114 p = find_process_by_pid(pid);
5115 if (p) {
5116 retval = security_task_getscheduler(p);
5117 if (!retval)
5118 retval = p->policy;
5119 }
5120 read_unlock(&tasklist_lock);
1da177e4
LT
5121 return retval;
5122}
5123
5124/**
5125 * sys_sched_getscheduler - get the RT priority of a thread
5126 * @pid: the pid in question.
5127 * @param: structure containing the RT priority.
5128 */
5129asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5130{
5131 struct sched_param lp;
36c8b586 5132 struct task_struct *p;
3a5c359a 5133 int retval;
1da177e4
LT
5134
5135 if (!param || pid < 0)
3a5c359a 5136 return -EINVAL;
1da177e4
LT
5137
5138 read_lock(&tasklist_lock);
5139 p = find_process_by_pid(pid);
5140 retval = -ESRCH;
5141 if (!p)
5142 goto out_unlock;
5143
5144 retval = security_task_getscheduler(p);
5145 if (retval)
5146 goto out_unlock;
5147
5148 lp.sched_priority = p->rt_priority;
5149 read_unlock(&tasklist_lock);
5150
5151 /*
5152 * This one might sleep, we cannot do it with a spinlock held ...
5153 */
5154 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5155
1da177e4
LT
5156 return retval;
5157
5158out_unlock:
5159 read_unlock(&tasklist_lock);
5160 return retval;
5161}
5162
b53e921b 5163long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
1da177e4 5164{
1da177e4 5165 cpumask_t cpus_allowed;
b53e921b 5166 cpumask_t new_mask = *in_mask;
36c8b586
IM
5167 struct task_struct *p;
5168 int retval;
1da177e4 5169
95402b38 5170 get_online_cpus();
1da177e4
LT
5171 read_lock(&tasklist_lock);
5172
5173 p = find_process_by_pid(pid);
5174 if (!p) {
5175 read_unlock(&tasklist_lock);
95402b38 5176 put_online_cpus();
1da177e4
LT
5177 return -ESRCH;
5178 }
5179
5180 /*
5181 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5182 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5183 * usage count and then drop tasklist_lock.
5184 */
5185 get_task_struct(p);
5186 read_unlock(&tasklist_lock);
5187
5188 retval = -EPERM;
5189 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5190 !capable(CAP_SYS_NICE))
5191 goto out_unlock;
5192
e7834f8f
DQ
5193 retval = security_task_setscheduler(p, 0, NULL);
5194 if (retval)
5195 goto out_unlock;
5196
f9a86fcb 5197 cpuset_cpus_allowed(p, &cpus_allowed);
1da177e4 5198 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 5199 again:
7c16ec58 5200 retval = set_cpus_allowed_ptr(p, &new_mask);
1da177e4 5201
8707d8b8 5202 if (!retval) {
f9a86fcb 5203 cpuset_cpus_allowed(p, &cpus_allowed);
8707d8b8
PM
5204 if (!cpus_subset(new_mask, cpus_allowed)) {
5205 /*
5206 * We must have raced with a concurrent cpuset
5207 * update. Just reset the cpus_allowed to the
5208 * cpuset's cpus_allowed
5209 */
5210 new_mask = cpus_allowed;
5211 goto again;
5212 }
5213 }
1da177e4
LT
5214out_unlock:
5215 put_task_struct(p);
95402b38 5216 put_online_cpus();
1da177e4
LT
5217 return retval;
5218}
5219
5220static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5221 cpumask_t *new_mask)
5222{
5223 if (len < sizeof(cpumask_t)) {
5224 memset(new_mask, 0, sizeof(cpumask_t));
5225 } else if (len > sizeof(cpumask_t)) {
5226 len = sizeof(cpumask_t);
5227 }
5228 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5229}
5230
5231/**
5232 * sys_sched_setaffinity - set the cpu affinity of a process
5233 * @pid: pid of the process
5234 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5235 * @user_mask_ptr: user-space pointer to the new cpu mask
5236 */
5237asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5238 unsigned long __user *user_mask_ptr)
5239{
5240 cpumask_t new_mask;
5241 int retval;
5242
5243 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5244 if (retval)
5245 return retval;
5246
b53e921b 5247 return sched_setaffinity(pid, &new_mask);
1da177e4
LT
5248}
5249
1da177e4
LT
5250long sched_getaffinity(pid_t pid, cpumask_t *mask)
5251{
36c8b586 5252 struct task_struct *p;
1da177e4 5253 int retval;
1da177e4 5254
95402b38 5255 get_online_cpus();
1da177e4
LT
5256 read_lock(&tasklist_lock);
5257
5258 retval = -ESRCH;
5259 p = find_process_by_pid(pid);
5260 if (!p)
5261 goto out_unlock;
5262
e7834f8f
DQ
5263 retval = security_task_getscheduler(p);
5264 if (retval)
5265 goto out_unlock;
5266
2f7016d9 5267 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
5268
5269out_unlock:
5270 read_unlock(&tasklist_lock);
95402b38 5271 put_online_cpus();
1da177e4 5272
9531b62f 5273 return retval;
1da177e4
LT
5274}
5275
5276/**
5277 * sys_sched_getaffinity - get the cpu affinity of a process
5278 * @pid: pid of the process
5279 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5280 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5281 */
5282asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5283 unsigned long __user *user_mask_ptr)
5284{
5285 int ret;
5286 cpumask_t mask;
5287
5288 if (len < sizeof(cpumask_t))
5289 return -EINVAL;
5290
5291 ret = sched_getaffinity(pid, &mask);
5292 if (ret < 0)
5293 return ret;
5294
5295 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5296 return -EFAULT;
5297
5298 return sizeof(cpumask_t);
5299}
5300
5301/**
5302 * sys_sched_yield - yield the current processor to other threads.
5303 *
dd41f596
IM
5304 * This function yields the current CPU to other tasks. If there are no
5305 * other threads running on this CPU then this function will return.
1da177e4
LT
5306 */
5307asmlinkage long sys_sched_yield(void)
5308{
70b97a7f 5309 struct rq *rq = this_rq_lock();
1da177e4 5310
2d72376b 5311 schedstat_inc(rq, yld_count);
4530d7ab 5312 current->sched_class->yield_task(rq);
1da177e4
LT
5313
5314 /*
5315 * Since we are going to call schedule() anyway, there's
5316 * no need to preempt or enable interrupts:
5317 */
5318 __release(rq->lock);
8a25d5de 5319 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5320 _raw_spin_unlock(&rq->lock);
5321 preempt_enable_no_resched();
5322
5323 schedule();
5324
5325 return 0;
5326}
5327
e7b38404 5328static void __cond_resched(void)
1da177e4 5329{
8e0a43d8
IM
5330#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5331 __might_sleep(__FILE__, __LINE__);
5332#endif
5bbcfd90
IM
5333 /*
5334 * The BKS might be reacquired before we have dropped
5335 * PREEMPT_ACTIVE, which could trigger a second
5336 * cond_resched() call.
5337 */
1da177e4
LT
5338 do {
5339 add_preempt_count(PREEMPT_ACTIVE);
5340 schedule();
5341 sub_preempt_count(PREEMPT_ACTIVE);
5342 } while (need_resched());
5343}
5344
02b67cc3 5345int __sched _cond_resched(void)
1da177e4 5346{
9414232f
IM
5347 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5348 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5349 __cond_resched();
5350 return 1;
5351 }
5352 return 0;
5353}
02b67cc3 5354EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5355
5356/*
5357 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5358 * call schedule, and on return reacquire the lock.
5359 *
41a2d6cf 5360 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5361 * operations here to prevent schedule() from being called twice (once via
5362 * spin_unlock(), once by hand).
5363 */
95cdf3b7 5364int cond_resched_lock(spinlock_t *lock)
1da177e4 5365{
95c354fe 5366 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5367 int ret = 0;
5368
95c354fe 5369 if (spin_needbreak(lock) || resched) {
1da177e4 5370 spin_unlock(lock);
95c354fe
NP
5371 if (resched && need_resched())
5372 __cond_resched();
5373 else
5374 cpu_relax();
6df3cecb 5375 ret = 1;
1da177e4 5376 spin_lock(lock);
1da177e4 5377 }
6df3cecb 5378 return ret;
1da177e4 5379}
1da177e4
LT
5380EXPORT_SYMBOL(cond_resched_lock);
5381
5382int __sched cond_resched_softirq(void)
5383{
5384 BUG_ON(!in_softirq());
5385
9414232f 5386 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5387 local_bh_enable();
1da177e4
LT
5388 __cond_resched();
5389 local_bh_disable();
5390 return 1;
5391 }
5392 return 0;
5393}
1da177e4
LT
5394EXPORT_SYMBOL(cond_resched_softirq);
5395
1da177e4
LT
5396/**
5397 * yield - yield the current processor to other threads.
5398 *
72fd4a35 5399 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5400 * thread runnable and calls sys_sched_yield().
5401 */
5402void __sched yield(void)
5403{
5404 set_current_state(TASK_RUNNING);
5405 sys_sched_yield();
5406}
1da177e4
LT
5407EXPORT_SYMBOL(yield);
5408
5409/*
41a2d6cf 5410 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5411 * that process accounting knows that this is a task in IO wait state.
5412 *
5413 * But don't do that if it is a deliberate, throttling IO wait (this task
5414 * has set its backing_dev_info: the queue against which it should throttle)
5415 */
5416void __sched io_schedule(void)
5417{
70b97a7f 5418 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5419
0ff92245 5420 delayacct_blkio_start();
1da177e4
LT
5421 atomic_inc(&rq->nr_iowait);
5422 schedule();
5423 atomic_dec(&rq->nr_iowait);
0ff92245 5424 delayacct_blkio_end();
1da177e4 5425}
1da177e4
LT
5426EXPORT_SYMBOL(io_schedule);
5427
5428long __sched io_schedule_timeout(long timeout)
5429{
70b97a7f 5430 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5431 long ret;
5432
0ff92245 5433 delayacct_blkio_start();
1da177e4
LT
5434 atomic_inc(&rq->nr_iowait);
5435 ret = schedule_timeout(timeout);
5436 atomic_dec(&rq->nr_iowait);
0ff92245 5437 delayacct_blkio_end();
1da177e4
LT
5438 return ret;
5439}
5440
5441/**
5442 * sys_sched_get_priority_max - return maximum RT priority.
5443 * @policy: scheduling class.
5444 *
5445 * this syscall returns the maximum rt_priority that can be used
5446 * by a given scheduling class.
5447 */
5448asmlinkage long sys_sched_get_priority_max(int policy)
5449{
5450 int ret = -EINVAL;
5451
5452 switch (policy) {
5453 case SCHED_FIFO:
5454 case SCHED_RR:
5455 ret = MAX_USER_RT_PRIO-1;
5456 break;
5457 case SCHED_NORMAL:
b0a9499c 5458 case SCHED_BATCH:
dd41f596 5459 case SCHED_IDLE:
1da177e4
LT
5460 ret = 0;
5461 break;
5462 }
5463 return ret;
5464}
5465
5466/**
5467 * sys_sched_get_priority_min - return minimum RT priority.
5468 * @policy: scheduling class.
5469 *
5470 * this syscall returns the minimum rt_priority that can be used
5471 * by a given scheduling class.
5472 */
5473asmlinkage long sys_sched_get_priority_min(int policy)
5474{
5475 int ret = -EINVAL;
5476
5477 switch (policy) {
5478 case SCHED_FIFO:
5479 case SCHED_RR:
5480 ret = 1;
5481 break;
5482 case SCHED_NORMAL:
b0a9499c 5483 case SCHED_BATCH:
dd41f596 5484 case SCHED_IDLE:
1da177e4
LT
5485 ret = 0;
5486 }
5487 return ret;
5488}
5489
5490/**
5491 * sys_sched_rr_get_interval - return the default timeslice of a process.
5492 * @pid: pid of the process.
5493 * @interval: userspace pointer to the timeslice value.
5494 *
5495 * this syscall writes the default timeslice value of a given process
5496 * into the user-space timespec buffer. A value of '0' means infinity.
5497 */
5498asmlinkage
5499long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5500{
36c8b586 5501 struct task_struct *p;
a4ec24b4 5502 unsigned int time_slice;
3a5c359a 5503 int retval;
1da177e4 5504 struct timespec t;
1da177e4
LT
5505
5506 if (pid < 0)
3a5c359a 5507 return -EINVAL;
1da177e4
LT
5508
5509 retval = -ESRCH;
5510 read_lock(&tasklist_lock);
5511 p = find_process_by_pid(pid);
5512 if (!p)
5513 goto out_unlock;
5514
5515 retval = security_task_getscheduler(p);
5516 if (retval)
5517 goto out_unlock;
5518
77034937
IM
5519 /*
5520 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5521 * tasks that are on an otherwise idle runqueue:
5522 */
5523 time_slice = 0;
5524 if (p->policy == SCHED_RR) {
a4ec24b4 5525 time_slice = DEF_TIMESLICE;
1868f958 5526 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5527 struct sched_entity *se = &p->se;
5528 unsigned long flags;
5529 struct rq *rq;
5530
5531 rq = task_rq_lock(p, &flags);
77034937
IM
5532 if (rq->cfs.load.weight)
5533 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5534 task_rq_unlock(rq, &flags);
5535 }
1da177e4 5536 read_unlock(&tasklist_lock);
a4ec24b4 5537 jiffies_to_timespec(time_slice, &t);
1da177e4 5538 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5539 return retval;
3a5c359a 5540
1da177e4
LT
5541out_unlock:
5542 read_unlock(&tasklist_lock);
5543 return retval;
5544}
5545
2ed6e34f 5546static const char stat_nam[] = "RSDTtZX";
36c8b586 5547
82a1fcb9 5548void sched_show_task(struct task_struct *p)
1da177e4 5549{
1da177e4 5550 unsigned long free = 0;
36c8b586 5551 unsigned state;
1da177e4 5552
1da177e4 5553 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5554 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5555 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5556#if BITS_PER_LONG == 32
1da177e4 5557 if (state == TASK_RUNNING)
cc4ea795 5558 printk(KERN_CONT " running ");
1da177e4 5559 else
cc4ea795 5560 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5561#else
5562 if (state == TASK_RUNNING)
cc4ea795 5563 printk(KERN_CONT " running task ");
1da177e4 5564 else
cc4ea795 5565 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5566#endif
5567#ifdef CONFIG_DEBUG_STACK_USAGE
5568 {
10ebffde 5569 unsigned long *n = end_of_stack(p);
1da177e4
LT
5570 while (!*n)
5571 n++;
10ebffde 5572 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
5573 }
5574#endif
ba25f9dc 5575 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 5576 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 5577
5fb5e6de 5578 show_stack(p, NULL);
1da177e4
LT
5579}
5580
e59e2ae2 5581void show_state_filter(unsigned long state_filter)
1da177e4 5582{
36c8b586 5583 struct task_struct *g, *p;
1da177e4 5584
4bd77321
IM
5585#if BITS_PER_LONG == 32
5586 printk(KERN_INFO
5587 " task PC stack pid father\n");
1da177e4 5588#else
4bd77321
IM
5589 printk(KERN_INFO
5590 " task PC stack pid father\n");
1da177e4
LT
5591#endif
5592 read_lock(&tasklist_lock);
5593 do_each_thread(g, p) {
5594 /*
5595 * reset the NMI-timeout, listing all files on a slow
5596 * console might take alot of time:
5597 */
5598 touch_nmi_watchdog();
39bc89fd 5599 if (!state_filter || (p->state & state_filter))
82a1fcb9 5600 sched_show_task(p);
1da177e4
LT
5601 } while_each_thread(g, p);
5602
04c9167f
JF
5603 touch_all_softlockup_watchdogs();
5604
dd41f596
IM
5605#ifdef CONFIG_SCHED_DEBUG
5606 sysrq_sched_debug_show();
5607#endif
1da177e4 5608 read_unlock(&tasklist_lock);
e59e2ae2
IM
5609 /*
5610 * Only show locks if all tasks are dumped:
5611 */
5612 if (state_filter == -1)
5613 debug_show_all_locks();
1da177e4
LT
5614}
5615
1df21055
IM
5616void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5617{
dd41f596 5618 idle->sched_class = &idle_sched_class;
1df21055
IM
5619}
5620
f340c0d1
IM
5621/**
5622 * init_idle - set up an idle thread for a given CPU
5623 * @idle: task in question
5624 * @cpu: cpu the idle task belongs to
5625 *
5626 * NOTE: this function does not set the idle thread's NEED_RESCHED
5627 * flag, to make booting more robust.
5628 */
5c1e1767 5629void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5630{
70b97a7f 5631 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5632 unsigned long flags;
5633
dd41f596
IM
5634 __sched_fork(idle);
5635 idle->se.exec_start = sched_clock();
5636
b29739f9 5637 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 5638 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 5639 __set_task_cpu(idle, cpu);
1da177e4
LT
5640
5641 spin_lock_irqsave(&rq->lock, flags);
5642 rq->curr = rq->idle = idle;
4866cde0
NP
5643#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5644 idle->oncpu = 1;
5645#endif
1da177e4
LT
5646 spin_unlock_irqrestore(&rq->lock, flags);
5647
5648 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5649#if defined(CONFIG_PREEMPT)
5650 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5651#else
a1261f54 5652 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5653#endif
dd41f596
IM
5654 /*
5655 * The idle tasks have their own, simple scheduling class:
5656 */
5657 idle->sched_class = &idle_sched_class;
1da177e4
LT
5658}
5659
5660/*
5661 * In a system that switches off the HZ timer nohz_cpu_mask
5662 * indicates which cpus entered this state. This is used
5663 * in the rcu update to wait only for active cpus. For system
5664 * which do not switch off the HZ timer nohz_cpu_mask should
5665 * always be CPU_MASK_NONE.
5666 */
5667cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5668
19978ca6
IM
5669/*
5670 * Increase the granularity value when there are more CPUs,
5671 * because with more CPUs the 'effective latency' as visible
5672 * to users decreases. But the relationship is not linear,
5673 * so pick a second-best guess by going with the log2 of the
5674 * number of CPUs.
5675 *
5676 * This idea comes from the SD scheduler of Con Kolivas:
5677 */
5678static inline void sched_init_granularity(void)
5679{
5680 unsigned int factor = 1 + ilog2(num_online_cpus());
5681 const unsigned long limit = 200000000;
5682
5683 sysctl_sched_min_granularity *= factor;
5684 if (sysctl_sched_min_granularity > limit)
5685 sysctl_sched_min_granularity = limit;
5686
5687 sysctl_sched_latency *= factor;
5688 if (sysctl_sched_latency > limit)
5689 sysctl_sched_latency = limit;
5690
5691 sysctl_sched_wakeup_granularity *= factor;
19978ca6
IM
5692}
5693
1da177e4
LT
5694#ifdef CONFIG_SMP
5695/*
5696 * This is how migration works:
5697 *
70b97a7f 5698 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5699 * runqueue and wake up that CPU's migration thread.
5700 * 2) we down() the locked semaphore => thread blocks.
5701 * 3) migration thread wakes up (implicitly it forces the migrated
5702 * thread off the CPU)
5703 * 4) it gets the migration request and checks whether the migrated
5704 * task is still in the wrong runqueue.
5705 * 5) if it's in the wrong runqueue then the migration thread removes
5706 * it and puts it into the right queue.
5707 * 6) migration thread up()s the semaphore.
5708 * 7) we wake up and the migration is done.
5709 */
5710
5711/*
5712 * Change a given task's CPU affinity. Migrate the thread to a
5713 * proper CPU and schedule it away if the CPU it's executing on
5714 * is removed from the allowed bitmask.
5715 *
5716 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5717 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5718 * call is not atomic; no spinlocks may be held.
5719 */
cd8ba7cd 5720int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
1da177e4 5721{
70b97a7f 5722 struct migration_req req;
1da177e4 5723 unsigned long flags;
70b97a7f 5724 struct rq *rq;
48f24c4d 5725 int ret = 0;
1da177e4
LT
5726
5727 rq = task_rq_lock(p, &flags);
cd8ba7cd 5728 if (!cpus_intersects(*new_mask, cpu_online_map)) {
1da177e4
LT
5729 ret = -EINVAL;
5730 goto out;
5731 }
5732
9985b0ba
DR
5733 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5734 !cpus_equal(p->cpus_allowed, *new_mask))) {
5735 ret = -EINVAL;
5736 goto out;
5737 }
5738
73fe6aae 5739 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5740 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5741 else {
cd8ba7cd
MT
5742 p->cpus_allowed = *new_mask;
5743 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
73fe6aae
GH
5744 }
5745
1da177e4 5746 /* Can the task run on the task's current CPU? If so, we're done */
cd8ba7cd 5747 if (cpu_isset(task_cpu(p), *new_mask))
1da177e4
LT
5748 goto out;
5749
cd8ba7cd 5750 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
1da177e4
LT
5751 /* Need help from migration thread: drop lock and wait. */
5752 task_rq_unlock(rq, &flags);
5753 wake_up_process(rq->migration_thread);
5754 wait_for_completion(&req.done);
5755 tlb_migrate_finish(p->mm);
5756 return 0;
5757 }
5758out:
5759 task_rq_unlock(rq, &flags);
48f24c4d 5760
1da177e4
LT
5761 return ret;
5762}
cd8ba7cd 5763EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5764
5765/*
41a2d6cf 5766 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5767 * this because either it can't run here any more (set_cpus_allowed()
5768 * away from this CPU, or CPU going down), or because we're
5769 * attempting to rebalance this task on exec (sched_exec).
5770 *
5771 * So we race with normal scheduler movements, but that's OK, as long
5772 * as the task is no longer on this CPU.
efc30814
KK
5773 *
5774 * Returns non-zero if task was successfully migrated.
1da177e4 5775 */
efc30814 5776static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5777{
70b97a7f 5778 struct rq *rq_dest, *rq_src;
dd41f596 5779 int ret = 0, on_rq;
1da177e4
LT
5780
5781 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 5782 return ret;
1da177e4
LT
5783
5784 rq_src = cpu_rq(src_cpu);
5785 rq_dest = cpu_rq(dest_cpu);
5786
5787 double_rq_lock(rq_src, rq_dest);
5788 /* Already moved. */
5789 if (task_cpu(p) != src_cpu)
5790 goto out;
5791 /* Affinity changed (again). */
5792 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5793 goto out;
5794
dd41f596 5795 on_rq = p->se.on_rq;
6e82a3be 5796 if (on_rq)
2e1cb74a 5797 deactivate_task(rq_src, p, 0);
6e82a3be 5798
1da177e4 5799 set_task_cpu(p, dest_cpu);
dd41f596
IM
5800 if (on_rq) {
5801 activate_task(rq_dest, p, 0);
5802 check_preempt_curr(rq_dest, p);
1da177e4 5803 }
efc30814 5804 ret = 1;
1da177e4
LT
5805out:
5806 double_rq_unlock(rq_src, rq_dest);
efc30814 5807 return ret;
1da177e4
LT
5808}
5809
5810/*
5811 * migration_thread - this is a highprio system thread that performs
5812 * thread migration by bumping thread off CPU then 'pushing' onto
5813 * another runqueue.
5814 */
95cdf3b7 5815static int migration_thread(void *data)
1da177e4 5816{
1da177e4 5817 int cpu = (long)data;
70b97a7f 5818 struct rq *rq;
1da177e4
LT
5819
5820 rq = cpu_rq(cpu);
5821 BUG_ON(rq->migration_thread != current);
5822
5823 set_current_state(TASK_INTERRUPTIBLE);
5824 while (!kthread_should_stop()) {
70b97a7f 5825 struct migration_req *req;
1da177e4 5826 struct list_head *head;
1da177e4 5827
1da177e4
LT
5828 spin_lock_irq(&rq->lock);
5829
5830 if (cpu_is_offline(cpu)) {
5831 spin_unlock_irq(&rq->lock);
5832 goto wait_to_die;
5833 }
5834
5835 if (rq->active_balance) {
5836 active_load_balance(rq, cpu);
5837 rq->active_balance = 0;
5838 }
5839
5840 head = &rq->migration_queue;
5841
5842 if (list_empty(head)) {
5843 spin_unlock_irq(&rq->lock);
5844 schedule();
5845 set_current_state(TASK_INTERRUPTIBLE);
5846 continue;
5847 }
70b97a7f 5848 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5849 list_del_init(head->next);
5850
674311d5
NP
5851 spin_unlock(&rq->lock);
5852 __migrate_task(req->task, cpu, req->dest_cpu);
5853 local_irq_enable();
1da177e4
LT
5854
5855 complete(&req->done);
5856 }
5857 __set_current_state(TASK_RUNNING);
5858 return 0;
5859
5860wait_to_die:
5861 /* Wait for kthread_stop */
5862 set_current_state(TASK_INTERRUPTIBLE);
5863 while (!kthread_should_stop()) {
5864 schedule();
5865 set_current_state(TASK_INTERRUPTIBLE);
5866 }
5867 __set_current_state(TASK_RUNNING);
5868 return 0;
5869}
5870
5871#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
5872
5873static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5874{
5875 int ret;
5876
5877 local_irq_disable();
5878 ret = __migrate_task(p, src_cpu, dest_cpu);
5879 local_irq_enable();
5880 return ret;
5881}
5882
054b9108 5883/*
3a4fa0a2 5884 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
5885 * NOTE: interrupts should be disabled by the caller
5886 */
48f24c4d 5887static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5888{
efc30814 5889 unsigned long flags;
1da177e4 5890 cpumask_t mask;
70b97a7f
IM
5891 struct rq *rq;
5892 int dest_cpu;
1da177e4 5893
3a5c359a
AK
5894 do {
5895 /* On same node? */
5896 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5897 cpus_and(mask, mask, p->cpus_allowed);
5898 dest_cpu = any_online_cpu(mask);
5899
5900 /* On any allowed CPU? */
434d53b0 5901 if (dest_cpu >= nr_cpu_ids)
3a5c359a
AK
5902 dest_cpu = any_online_cpu(p->cpus_allowed);
5903
5904 /* No more Mr. Nice Guy. */
434d53b0 5905 if (dest_cpu >= nr_cpu_ids) {
f9a86fcb
MT
5906 cpumask_t cpus_allowed;
5907
5908 cpuset_cpus_allowed_locked(p, &cpus_allowed);
470fd646
CW
5909 /*
5910 * Try to stay on the same cpuset, where the
5911 * current cpuset may be a subset of all cpus.
5912 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 5913 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
5914 * called within calls to cpuset_lock/cpuset_unlock.
5915 */
3a5c359a 5916 rq = task_rq_lock(p, &flags);
470fd646 5917 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
5918 dest_cpu = any_online_cpu(p->cpus_allowed);
5919 task_rq_unlock(rq, &flags);
1da177e4 5920
3a5c359a
AK
5921 /*
5922 * Don't tell them about moving exiting tasks or
5923 * kernel threads (both mm NULL), since they never
5924 * leave kernel.
5925 */
41a2d6cf 5926 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
5927 printk(KERN_INFO "process %d (%s) no "
5928 "longer affine to cpu%d\n",
41a2d6cf
IM
5929 task_pid_nr(p), p->comm, dead_cpu);
5930 }
3a5c359a 5931 }
f7b4cddc 5932 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
5933}
5934
5935/*
5936 * While a dead CPU has no uninterruptible tasks queued at this point,
5937 * it might still have a nonzero ->nr_uninterruptible counter, because
5938 * for performance reasons the counter is not stricly tracking tasks to
5939 * their home CPUs. So we just add the counter to another CPU's counter,
5940 * to keep the global sum constant after CPU-down:
5941 */
70b97a7f 5942static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5943{
7c16ec58 5944 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
1da177e4
LT
5945 unsigned long flags;
5946
5947 local_irq_save(flags);
5948 double_rq_lock(rq_src, rq_dest);
5949 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5950 rq_src->nr_uninterruptible = 0;
5951 double_rq_unlock(rq_src, rq_dest);
5952 local_irq_restore(flags);
5953}
5954
5955/* Run through task list and migrate tasks from the dead cpu. */
5956static void migrate_live_tasks(int src_cpu)
5957{
48f24c4d 5958 struct task_struct *p, *t;
1da177e4 5959
f7b4cddc 5960 read_lock(&tasklist_lock);
1da177e4 5961
48f24c4d
IM
5962 do_each_thread(t, p) {
5963 if (p == current)
1da177e4
LT
5964 continue;
5965
48f24c4d
IM
5966 if (task_cpu(p) == src_cpu)
5967 move_task_off_dead_cpu(src_cpu, p);
5968 } while_each_thread(t, p);
1da177e4 5969
f7b4cddc 5970 read_unlock(&tasklist_lock);
1da177e4
LT
5971}
5972
dd41f596
IM
5973/*
5974 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5975 * It does so by boosting its priority to highest possible.
5976 * Used by CPU offline code.
1da177e4
LT
5977 */
5978void sched_idle_next(void)
5979{
48f24c4d 5980 int this_cpu = smp_processor_id();
70b97a7f 5981 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5982 struct task_struct *p = rq->idle;
5983 unsigned long flags;
5984
5985 /* cpu has to be offline */
48f24c4d 5986 BUG_ON(cpu_online(this_cpu));
1da177e4 5987
48f24c4d
IM
5988 /*
5989 * Strictly not necessary since rest of the CPUs are stopped by now
5990 * and interrupts disabled on the current cpu.
1da177e4
LT
5991 */
5992 spin_lock_irqsave(&rq->lock, flags);
5993
dd41f596 5994 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5995
94bc9a7b
DA
5996 update_rq_clock(rq);
5997 activate_task(rq, p, 0);
1da177e4
LT
5998
5999 spin_unlock_irqrestore(&rq->lock, flags);
6000}
6001
48f24c4d
IM
6002/*
6003 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
6004 * offline.
6005 */
6006void idle_task_exit(void)
6007{
6008 struct mm_struct *mm = current->active_mm;
6009
6010 BUG_ON(cpu_online(smp_processor_id()));
6011
6012 if (mm != &init_mm)
6013 switch_mm(mm, &init_mm, current);
6014 mmdrop(mm);
6015}
6016
054b9108 6017/* called under rq->lock with disabled interrupts */
36c8b586 6018static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 6019{
70b97a7f 6020 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
6021
6022 /* Must be exiting, otherwise would be on tasklist. */
270f722d 6023 BUG_ON(!p->exit_state);
1da177e4
LT
6024
6025 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 6026 BUG_ON(p->state == TASK_DEAD);
1da177e4 6027
48f24c4d 6028 get_task_struct(p);
1da177e4
LT
6029
6030 /*
6031 * Drop lock around migration; if someone else moves it,
41a2d6cf 6032 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
6033 * fine.
6034 */
f7b4cddc 6035 spin_unlock_irq(&rq->lock);
48f24c4d 6036 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 6037 spin_lock_irq(&rq->lock);
1da177e4 6038
48f24c4d 6039 put_task_struct(p);
1da177e4
LT
6040}
6041
6042/* release_task() removes task from tasklist, so we won't find dead tasks. */
6043static void migrate_dead_tasks(unsigned int dead_cpu)
6044{
70b97a7f 6045 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 6046 struct task_struct *next;
48f24c4d 6047
dd41f596
IM
6048 for ( ; ; ) {
6049 if (!rq->nr_running)
6050 break;
a8e504d2 6051 update_rq_clock(rq);
ff95f3df 6052 next = pick_next_task(rq, rq->curr);
dd41f596
IM
6053 if (!next)
6054 break;
6055 migrate_dead(dead_cpu, next);
e692ab53 6056
1da177e4
LT
6057 }
6058}
6059#endif /* CONFIG_HOTPLUG_CPU */
6060
e692ab53
NP
6061#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6062
6063static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6064 {
6065 .procname = "sched_domain",
c57baf1e 6066 .mode = 0555,
e0361851 6067 },
38605cae 6068 {0, },
e692ab53
NP
6069};
6070
6071static struct ctl_table sd_ctl_root[] = {
e0361851 6072 {
c57baf1e 6073 .ctl_name = CTL_KERN,
e0361851 6074 .procname = "kernel",
c57baf1e 6075 .mode = 0555,
e0361851
AD
6076 .child = sd_ctl_dir,
6077 },
38605cae 6078 {0, },
e692ab53
NP
6079};
6080
6081static struct ctl_table *sd_alloc_ctl_entry(int n)
6082{
6083 struct ctl_table *entry =
5cf9f062 6084 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6085
e692ab53
NP
6086 return entry;
6087}
6088
6382bc90
MM
6089static void sd_free_ctl_entry(struct ctl_table **tablep)
6090{
cd790076 6091 struct ctl_table *entry;
6382bc90 6092
cd790076
MM
6093 /*
6094 * In the intermediate directories, both the child directory and
6095 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6096 * will always be set. In the lowest directory the names are
cd790076
MM
6097 * static strings and all have proc handlers.
6098 */
6099 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6100 if (entry->child)
6101 sd_free_ctl_entry(&entry->child);
cd790076
MM
6102 if (entry->proc_handler == NULL)
6103 kfree(entry->procname);
6104 }
6382bc90
MM
6105
6106 kfree(*tablep);
6107 *tablep = NULL;
6108}
6109
e692ab53 6110static void
e0361851 6111set_table_entry(struct ctl_table *entry,
e692ab53
NP
6112 const char *procname, void *data, int maxlen,
6113 mode_t mode, proc_handler *proc_handler)
6114{
e692ab53
NP
6115 entry->procname = procname;
6116 entry->data = data;
6117 entry->maxlen = maxlen;
6118 entry->mode = mode;
6119 entry->proc_handler = proc_handler;
6120}
6121
6122static struct ctl_table *
6123sd_alloc_ctl_domain_table(struct sched_domain *sd)
6124{
ace8b3d6 6125 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 6126
ad1cdc1d
MM
6127 if (table == NULL)
6128 return NULL;
6129
e0361851 6130 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6131 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6132 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6133 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6134 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6135 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6136 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6137 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6138 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6139 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6140 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6141 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6142 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6143 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6144 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6145 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6146 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6147 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6148 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6149 &sd->cache_nice_tries,
6150 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6151 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6152 sizeof(int), 0644, proc_dointvec_minmax);
6323469f 6153 /* &table[11] is terminator */
e692ab53
NP
6154
6155 return table;
6156}
6157
9a4e7159 6158static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6159{
6160 struct ctl_table *entry, *table;
6161 struct sched_domain *sd;
6162 int domain_num = 0, i;
6163 char buf[32];
6164
6165 for_each_domain(cpu, sd)
6166 domain_num++;
6167 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6168 if (table == NULL)
6169 return NULL;
e692ab53
NP
6170
6171 i = 0;
6172 for_each_domain(cpu, sd) {
6173 snprintf(buf, 32, "domain%d", i);
e692ab53 6174 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6175 entry->mode = 0555;
e692ab53
NP
6176 entry->child = sd_alloc_ctl_domain_table(sd);
6177 entry++;
6178 i++;
6179 }
6180 return table;
6181}
6182
6183static struct ctl_table_header *sd_sysctl_header;
6382bc90 6184static void register_sched_domain_sysctl(void)
e692ab53
NP
6185{
6186 int i, cpu_num = num_online_cpus();
6187 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6188 char buf[32];
6189
7378547f
MM
6190 WARN_ON(sd_ctl_dir[0].child);
6191 sd_ctl_dir[0].child = entry;
6192
ad1cdc1d
MM
6193 if (entry == NULL)
6194 return;
6195
97b6ea7b 6196 for_each_online_cpu(i) {
e692ab53 6197 snprintf(buf, 32, "cpu%d", i);
e692ab53 6198 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6199 entry->mode = 0555;
e692ab53 6200 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6201 entry++;
e692ab53 6202 }
7378547f
MM
6203
6204 WARN_ON(sd_sysctl_header);
e692ab53
NP
6205 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6206}
6382bc90 6207
7378547f 6208/* may be called multiple times per register */
6382bc90
MM
6209static void unregister_sched_domain_sysctl(void)
6210{
7378547f
MM
6211 if (sd_sysctl_header)
6212 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6213 sd_sysctl_header = NULL;
7378547f
MM
6214 if (sd_ctl_dir[0].child)
6215 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6216}
e692ab53 6217#else
6382bc90
MM
6218static void register_sched_domain_sysctl(void)
6219{
6220}
6221static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6222{
6223}
6224#endif
6225
1f11eb6a
GH
6226static void set_rq_online(struct rq *rq)
6227{
6228 if (!rq->online) {
6229 const struct sched_class *class;
6230
6231 cpu_set(rq->cpu, rq->rd->online);
6232 rq->online = 1;
6233
6234 for_each_class(class) {
6235 if (class->rq_online)
6236 class->rq_online(rq);
6237 }
6238 }
6239}
6240
6241static void set_rq_offline(struct rq *rq)
6242{
6243 if (rq->online) {
6244 const struct sched_class *class;
6245
6246 for_each_class(class) {
6247 if (class->rq_offline)
6248 class->rq_offline(rq);
6249 }
6250
6251 cpu_clear(rq->cpu, rq->rd->online);
6252 rq->online = 0;
6253 }
6254}
6255
1da177e4
LT
6256/*
6257 * migration_call - callback that gets triggered when a CPU is added.
6258 * Here we can start up the necessary migration thread for the new CPU.
6259 */
48f24c4d
IM
6260static int __cpuinit
6261migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6262{
1da177e4 6263 struct task_struct *p;
48f24c4d 6264 int cpu = (long)hcpu;
1da177e4 6265 unsigned long flags;
70b97a7f 6266 struct rq *rq;
1da177e4
LT
6267
6268 switch (action) {
5be9361c 6269
1da177e4 6270 case CPU_UP_PREPARE:
8bb78442 6271 case CPU_UP_PREPARE_FROZEN:
dd41f596 6272 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6273 if (IS_ERR(p))
6274 return NOTIFY_BAD;
1da177e4
LT
6275 kthread_bind(p, cpu);
6276 /* Must be high prio: stop_machine expects to yield to it. */
6277 rq = task_rq_lock(p, &flags);
dd41f596 6278 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6279 task_rq_unlock(rq, &flags);
6280 cpu_rq(cpu)->migration_thread = p;
6281 break;
48f24c4d 6282
1da177e4 6283 case CPU_ONLINE:
8bb78442 6284 case CPU_ONLINE_FROZEN:
3a4fa0a2 6285 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6286 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6287
6288 /* Update our root-domain */
6289 rq = cpu_rq(cpu);
6290 spin_lock_irqsave(&rq->lock, flags);
6291 if (rq->rd) {
6292 BUG_ON(!cpu_isset(cpu, rq->rd->span));
1f11eb6a
GH
6293
6294 set_rq_online(rq);
1f94ef59
GH
6295 }
6296 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6297 break;
48f24c4d 6298
1da177e4
LT
6299#ifdef CONFIG_HOTPLUG_CPU
6300 case CPU_UP_CANCELED:
8bb78442 6301 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6302 if (!cpu_rq(cpu)->migration_thread)
6303 break;
41a2d6cf 6304 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
6305 kthread_bind(cpu_rq(cpu)->migration_thread,
6306 any_online_cpu(cpu_online_map));
1da177e4
LT
6307 kthread_stop(cpu_rq(cpu)->migration_thread);
6308 cpu_rq(cpu)->migration_thread = NULL;
6309 break;
48f24c4d 6310
1da177e4 6311 case CPU_DEAD:
8bb78442 6312 case CPU_DEAD_FROZEN:
470fd646 6313 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6314 migrate_live_tasks(cpu);
6315 rq = cpu_rq(cpu);
6316 kthread_stop(rq->migration_thread);
6317 rq->migration_thread = NULL;
6318 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6319 spin_lock_irq(&rq->lock);
a8e504d2 6320 update_rq_clock(rq);
2e1cb74a 6321 deactivate_task(rq, rq->idle, 0);
1da177e4 6322 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6323 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6324 rq->idle->sched_class = &idle_sched_class;
1da177e4 6325 migrate_dead_tasks(cpu);
d2da272a 6326 spin_unlock_irq(&rq->lock);
470fd646 6327 cpuset_unlock();
1da177e4
LT
6328 migrate_nr_uninterruptible(rq);
6329 BUG_ON(rq->nr_running != 0);
6330
41a2d6cf
IM
6331 /*
6332 * No need to migrate the tasks: it was best-effort if
6333 * they didn't take sched_hotcpu_mutex. Just wake up
6334 * the requestors.
6335 */
1da177e4
LT
6336 spin_lock_irq(&rq->lock);
6337 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6338 struct migration_req *req;
6339
1da177e4 6340 req = list_entry(rq->migration_queue.next,
70b97a7f 6341 struct migration_req, list);
1da177e4
LT
6342 list_del_init(&req->list);
6343 complete(&req->done);
6344 }
6345 spin_unlock_irq(&rq->lock);
6346 break;
57d885fe 6347
08f503b0
GH
6348 case CPU_DYING:
6349 case CPU_DYING_FROZEN:
57d885fe
GH
6350 /* Update our root-domain */
6351 rq = cpu_rq(cpu);
6352 spin_lock_irqsave(&rq->lock, flags);
6353 if (rq->rd) {
6354 BUG_ON(!cpu_isset(cpu, rq->rd->span));
1f11eb6a 6355 set_rq_offline(rq);
57d885fe
GH
6356 }
6357 spin_unlock_irqrestore(&rq->lock, flags);
6358 break;
1da177e4
LT
6359#endif
6360 }
6361 return NOTIFY_OK;
6362}
6363
6364/* Register at highest priority so that task migration (migrate_all_tasks)
6365 * happens before everything else.
6366 */
26c2143b 6367static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6368 .notifier_call = migration_call,
6369 .priority = 10
6370};
6371
e6fe6649 6372void __init migration_init(void)
1da177e4
LT
6373{
6374 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6375 int err;
48f24c4d
IM
6376
6377 /* Start one for the boot CPU: */
07dccf33
AM
6378 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6379 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6380 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6381 register_cpu_notifier(&migration_notifier);
1da177e4
LT
6382}
6383#endif
6384
6385#ifdef CONFIG_SMP
476f3534 6386
3e9830dc 6387#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6388
099f98c8
GS
6389static inline const char *sd_level_to_string(enum sched_domain_level lvl)
6390{
6391 switch (lvl) {
6392 case SD_LV_NONE:
6393 return "NONE";
6394 case SD_LV_SIBLING:
6395 return "SIBLING";
6396 case SD_LV_MC:
6397 return "MC";
6398 case SD_LV_CPU:
6399 return "CPU";
6400 case SD_LV_NODE:
6401 return "NODE";
6402 case SD_LV_ALLNODES:
6403 return "ALLNODES";
6404 case SD_LV_MAX:
6405 return "MAX";
6406
6407 }
6408 return "MAX";
6409}
6410
7c16ec58
MT
6411static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6412 cpumask_t *groupmask)
1da177e4 6413{
4dcf6aff 6414 struct sched_group *group = sd->groups;
434d53b0 6415 char str[256];
1da177e4 6416
434d53b0 6417 cpulist_scnprintf(str, sizeof(str), sd->span);
7c16ec58 6418 cpus_clear(*groupmask);
4dcf6aff
IM
6419
6420 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6421
6422 if (!(sd->flags & SD_LOAD_BALANCE)) {
6423 printk("does not load-balance\n");
6424 if (sd->parent)
6425 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6426 " has parent");
6427 return -1;
41c7ce9a
NP
6428 }
6429
099f98c8
GS
6430 printk(KERN_CONT "span %s level %s\n",
6431 str, sd_level_to_string(sd->level));
4dcf6aff
IM
6432
6433 if (!cpu_isset(cpu, sd->span)) {
6434 printk(KERN_ERR "ERROR: domain->span does not contain "
6435 "CPU%d\n", cpu);
6436 }
6437 if (!cpu_isset(cpu, group->cpumask)) {
6438 printk(KERN_ERR "ERROR: domain->groups does not contain"
6439 " CPU%d\n", cpu);
6440 }
1da177e4 6441
4dcf6aff 6442 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6443 do {
4dcf6aff
IM
6444 if (!group) {
6445 printk("\n");
6446 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6447 break;
6448 }
6449
4dcf6aff
IM
6450 if (!group->__cpu_power) {
6451 printk(KERN_CONT "\n");
6452 printk(KERN_ERR "ERROR: domain->cpu_power not "
6453 "set\n");
6454 break;
6455 }
1da177e4 6456
4dcf6aff
IM
6457 if (!cpus_weight(group->cpumask)) {
6458 printk(KERN_CONT "\n");
6459 printk(KERN_ERR "ERROR: empty group\n");
6460 break;
6461 }
1da177e4 6462
7c16ec58 6463 if (cpus_intersects(*groupmask, group->cpumask)) {
4dcf6aff
IM
6464 printk(KERN_CONT "\n");
6465 printk(KERN_ERR "ERROR: repeated CPUs\n");
6466 break;
6467 }
1da177e4 6468
7c16ec58 6469 cpus_or(*groupmask, *groupmask, group->cpumask);
1da177e4 6470
434d53b0 6471 cpulist_scnprintf(str, sizeof(str), group->cpumask);
4dcf6aff 6472 printk(KERN_CONT " %s", str);
1da177e4 6473
4dcf6aff
IM
6474 group = group->next;
6475 } while (group != sd->groups);
6476 printk(KERN_CONT "\n");
1da177e4 6477
7c16ec58 6478 if (!cpus_equal(sd->span, *groupmask))
4dcf6aff 6479 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6480
7c16ec58 6481 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
4dcf6aff
IM
6482 printk(KERN_ERR "ERROR: parent span is not a superset "
6483 "of domain->span\n");
6484 return 0;
6485}
1da177e4 6486
4dcf6aff
IM
6487static void sched_domain_debug(struct sched_domain *sd, int cpu)
6488{
7c16ec58 6489 cpumask_t *groupmask;
4dcf6aff 6490 int level = 0;
1da177e4 6491
4dcf6aff
IM
6492 if (!sd) {
6493 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6494 return;
6495 }
1da177e4 6496
4dcf6aff
IM
6497 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6498
7c16ec58
MT
6499 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6500 if (!groupmask) {
6501 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6502 return;
6503 }
6504
4dcf6aff 6505 for (;;) {
7c16ec58 6506 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6507 break;
1da177e4
LT
6508 level++;
6509 sd = sd->parent;
33859f7f 6510 if (!sd)
4dcf6aff
IM
6511 break;
6512 }
7c16ec58 6513 kfree(groupmask);
1da177e4 6514}
6d6bc0ad 6515#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6516# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6517#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6518
1a20ff27 6519static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
6520{
6521 if (cpus_weight(sd->span) == 1)
6522 return 1;
6523
6524 /* Following flags need at least 2 groups */
6525 if (sd->flags & (SD_LOAD_BALANCE |
6526 SD_BALANCE_NEWIDLE |
6527 SD_BALANCE_FORK |
89c4710e
SS
6528 SD_BALANCE_EXEC |
6529 SD_SHARE_CPUPOWER |
6530 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6531 if (sd->groups != sd->groups->next)
6532 return 0;
6533 }
6534
6535 /* Following flags don't use groups */
6536 if (sd->flags & (SD_WAKE_IDLE |
6537 SD_WAKE_AFFINE |
6538 SD_WAKE_BALANCE))
6539 return 0;
6540
6541 return 1;
6542}
6543
48f24c4d
IM
6544static int
6545sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6546{
6547 unsigned long cflags = sd->flags, pflags = parent->flags;
6548
6549 if (sd_degenerate(parent))
6550 return 1;
6551
6552 if (!cpus_equal(sd->span, parent->span))
6553 return 0;
6554
6555 /* Does parent contain flags not in child? */
6556 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6557 if (cflags & SD_WAKE_AFFINE)
6558 pflags &= ~SD_WAKE_BALANCE;
6559 /* Flags needing groups don't count if only 1 group in parent */
6560 if (parent->groups == parent->groups->next) {
6561 pflags &= ~(SD_LOAD_BALANCE |
6562 SD_BALANCE_NEWIDLE |
6563 SD_BALANCE_FORK |
89c4710e
SS
6564 SD_BALANCE_EXEC |
6565 SD_SHARE_CPUPOWER |
6566 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
6567 }
6568 if (~cflags & pflags)
6569 return 0;
6570
6571 return 1;
6572}
6573
57d885fe
GH
6574static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6575{
6576 unsigned long flags;
57d885fe
GH
6577
6578 spin_lock_irqsave(&rq->lock, flags);
6579
6580 if (rq->rd) {
6581 struct root_domain *old_rd = rq->rd;
6582
1f11eb6a
GH
6583 if (cpu_isset(rq->cpu, old_rd->online))
6584 set_rq_offline(rq);
57d885fe 6585
dc938520 6586 cpu_clear(rq->cpu, old_rd->span);
dc938520 6587
57d885fe
GH
6588 if (atomic_dec_and_test(&old_rd->refcount))
6589 kfree(old_rd);
6590 }
6591
6592 atomic_inc(&rd->refcount);
6593 rq->rd = rd;
6594
dc938520 6595 cpu_set(rq->cpu, rd->span);
1f94ef59 6596 if (cpu_isset(rq->cpu, cpu_online_map))
1f11eb6a 6597 set_rq_online(rq);
57d885fe
GH
6598
6599 spin_unlock_irqrestore(&rq->lock, flags);
6600}
6601
dc938520 6602static void init_rootdomain(struct root_domain *rd)
57d885fe
GH
6603{
6604 memset(rd, 0, sizeof(*rd));
6605
dc938520
GH
6606 cpus_clear(rd->span);
6607 cpus_clear(rd->online);
6e0534f2
GH
6608
6609 cpupri_init(&rd->cpupri);
57d885fe
GH
6610}
6611
6612static void init_defrootdomain(void)
6613{
dc938520 6614 init_rootdomain(&def_root_domain);
57d885fe
GH
6615 atomic_set(&def_root_domain.refcount, 1);
6616}
6617
dc938520 6618static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6619{
6620 struct root_domain *rd;
6621
6622 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6623 if (!rd)
6624 return NULL;
6625
dc938520 6626 init_rootdomain(rd);
57d885fe
GH
6627
6628 return rd;
6629}
6630
1da177e4 6631/*
0eab9146 6632 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6633 * hold the hotplug lock.
6634 */
0eab9146
IM
6635static void
6636cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6637{
70b97a7f 6638 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6639 struct sched_domain *tmp;
6640
6641 /* Remove the sched domains which do not contribute to scheduling. */
6642 for (tmp = sd; tmp; tmp = tmp->parent) {
6643 struct sched_domain *parent = tmp->parent;
6644 if (!parent)
6645 break;
1a848870 6646 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6647 tmp->parent = parent->parent;
1a848870
SS
6648 if (parent->parent)
6649 parent->parent->child = tmp;
6650 }
245af2c7
SS
6651 }
6652
1a848870 6653 if (sd && sd_degenerate(sd)) {
245af2c7 6654 sd = sd->parent;
1a848870
SS
6655 if (sd)
6656 sd->child = NULL;
6657 }
1da177e4
LT
6658
6659 sched_domain_debug(sd, cpu);
6660
57d885fe 6661 rq_attach_root(rq, rd);
674311d5 6662 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6663}
6664
6665/* cpus with isolated domains */
67af63a6 6666static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
6667
6668/* Setup the mask of cpus configured for isolated domains */
6669static int __init isolated_cpu_setup(char *str)
6670{
6671 int ints[NR_CPUS], i;
6672
6673 str = get_options(str, ARRAY_SIZE(ints), ints);
6674 cpus_clear(cpu_isolated_map);
6675 for (i = 1; i <= ints[0]; i++)
6676 if (ints[i] < NR_CPUS)
6677 cpu_set(ints[i], cpu_isolated_map);
6678 return 1;
6679}
6680
8927f494 6681__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6682
6683/*
6711cab4
SS
6684 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6685 * to a function which identifies what group(along with sched group) a CPU
6686 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6687 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
6688 *
6689 * init_sched_build_groups will build a circular linked list of the groups
6690 * covered by the given span, and will set each group's ->cpumask correctly,
6691 * and ->cpu_power to 0.
6692 */
a616058b 6693static void
7c16ec58 6694init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6711cab4 6695 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
7c16ec58
MT
6696 struct sched_group **sg,
6697 cpumask_t *tmpmask),
6698 cpumask_t *covered, cpumask_t *tmpmask)
1da177e4
LT
6699{
6700 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6701 int i;
6702
7c16ec58
MT
6703 cpus_clear(*covered);
6704
6705 for_each_cpu_mask(i, *span) {
6711cab4 6706 struct sched_group *sg;
7c16ec58 6707 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6708 int j;
6709
7c16ec58 6710 if (cpu_isset(i, *covered))
1da177e4
LT
6711 continue;
6712
7c16ec58 6713 cpus_clear(sg->cpumask);
5517d86b 6714 sg->__cpu_power = 0;
1da177e4 6715
7c16ec58
MT
6716 for_each_cpu_mask(j, *span) {
6717 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6718 continue;
6719
7c16ec58 6720 cpu_set(j, *covered);
1da177e4
LT
6721 cpu_set(j, sg->cpumask);
6722 }
6723 if (!first)
6724 first = sg;
6725 if (last)
6726 last->next = sg;
6727 last = sg;
6728 }
6729 last->next = first;
6730}
6731
9c1cfda2 6732#define SD_NODES_PER_DOMAIN 16
1da177e4 6733
9c1cfda2 6734#ifdef CONFIG_NUMA
198e2f18 6735
9c1cfda2
JH
6736/**
6737 * find_next_best_node - find the next node to include in a sched_domain
6738 * @node: node whose sched_domain we're building
6739 * @used_nodes: nodes already in the sched_domain
6740 *
41a2d6cf 6741 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6742 * finds the closest node not already in the @used_nodes map.
6743 *
6744 * Should use nodemask_t.
6745 */
c5f59f08 6746static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6747{
6748 int i, n, val, min_val, best_node = 0;
6749
6750 min_val = INT_MAX;
6751
6752 for (i = 0; i < MAX_NUMNODES; i++) {
6753 /* Start at @node */
6754 n = (node + i) % MAX_NUMNODES;
6755
6756 if (!nr_cpus_node(n))
6757 continue;
6758
6759 /* Skip already used nodes */
c5f59f08 6760 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6761 continue;
6762
6763 /* Simple min distance search */
6764 val = node_distance(node, n);
6765
6766 if (val < min_val) {
6767 min_val = val;
6768 best_node = n;
6769 }
6770 }
6771
c5f59f08 6772 node_set(best_node, *used_nodes);
9c1cfda2
JH
6773 return best_node;
6774}
6775
6776/**
6777 * sched_domain_node_span - get a cpumask for a node's sched_domain
6778 * @node: node whose cpumask we're constructing
73486722 6779 * @span: resulting cpumask
9c1cfda2 6780 *
41a2d6cf 6781 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6782 * should be one that prevents unnecessary balancing, but also spreads tasks
6783 * out optimally.
6784 */
4bdbaad3 6785static void sched_domain_node_span(int node, cpumask_t *span)
9c1cfda2 6786{
c5f59f08 6787 nodemask_t used_nodes;
c5f59f08 6788 node_to_cpumask_ptr(nodemask, node);
48f24c4d 6789 int i;
9c1cfda2 6790
4bdbaad3 6791 cpus_clear(*span);
c5f59f08 6792 nodes_clear(used_nodes);
9c1cfda2 6793
4bdbaad3 6794 cpus_or(*span, *span, *nodemask);
c5f59f08 6795 node_set(node, used_nodes);
9c1cfda2
JH
6796
6797 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6798 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6799
c5f59f08 6800 node_to_cpumask_ptr_next(nodemask, next_node);
4bdbaad3 6801 cpus_or(*span, *span, *nodemask);
9c1cfda2 6802 }
9c1cfda2 6803}
6d6bc0ad 6804#endif /* CONFIG_NUMA */
9c1cfda2 6805
5c45bf27 6806int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6807
9c1cfda2 6808/*
48f24c4d 6809 * SMT sched-domains:
9c1cfda2 6810 */
1da177e4
LT
6811#ifdef CONFIG_SCHED_SMT
6812static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 6813static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 6814
41a2d6cf 6815static int
7c16ec58
MT
6816cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6817 cpumask_t *unused)
1da177e4 6818{
6711cab4
SS
6819 if (sg)
6820 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
6821 return cpu;
6822}
6d6bc0ad 6823#endif /* CONFIG_SCHED_SMT */
1da177e4 6824
48f24c4d
IM
6825/*
6826 * multi-core sched-domains:
6827 */
1e9f28fa
SS
6828#ifdef CONFIG_SCHED_MC
6829static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 6830static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6d6bc0ad 6831#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
6832
6833#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 6834static int
7c16ec58
MT
6835cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6836 cpumask_t *mask)
1e9f28fa 6837{
6711cab4 6838 int group;
7c16ec58
MT
6839
6840 *mask = per_cpu(cpu_sibling_map, cpu);
6841 cpus_and(*mask, *mask, *cpu_map);
6842 group = first_cpu(*mask);
6711cab4
SS
6843 if (sg)
6844 *sg = &per_cpu(sched_group_core, group);
6845 return group;
1e9f28fa
SS
6846}
6847#elif defined(CONFIG_SCHED_MC)
41a2d6cf 6848static int
7c16ec58
MT
6849cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6850 cpumask_t *unused)
1e9f28fa 6851{
6711cab4
SS
6852 if (sg)
6853 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
6854 return cpu;
6855}
6856#endif
6857
1da177e4 6858static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 6859static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 6860
41a2d6cf 6861static int
7c16ec58
MT
6862cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6863 cpumask_t *mask)
1da177e4 6864{
6711cab4 6865 int group;
48f24c4d 6866#ifdef CONFIG_SCHED_MC
7c16ec58
MT
6867 *mask = cpu_coregroup_map(cpu);
6868 cpus_and(*mask, *mask, *cpu_map);
6869 group = first_cpu(*mask);
1e9f28fa 6870#elif defined(CONFIG_SCHED_SMT)
7c16ec58
MT
6871 *mask = per_cpu(cpu_sibling_map, cpu);
6872 cpus_and(*mask, *mask, *cpu_map);
6873 group = first_cpu(*mask);
1da177e4 6874#else
6711cab4 6875 group = cpu;
1da177e4 6876#endif
6711cab4
SS
6877 if (sg)
6878 *sg = &per_cpu(sched_group_phys, group);
6879 return group;
1da177e4
LT
6880}
6881
6882#ifdef CONFIG_NUMA
1da177e4 6883/*
9c1cfda2
JH
6884 * The init_sched_build_groups can't handle what we want to do with node
6885 * groups, so roll our own. Now each node has its own list of groups which
6886 * gets dynamically allocated.
1da177e4 6887 */
9c1cfda2 6888static DEFINE_PER_CPU(struct sched_domain, node_domains);
434d53b0 6889static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6890
9c1cfda2 6891static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 6892static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 6893
6711cab4 6894static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7c16ec58 6895 struct sched_group **sg, cpumask_t *nodemask)
9c1cfda2 6896{
6711cab4
SS
6897 int group;
6898
7c16ec58
MT
6899 *nodemask = node_to_cpumask(cpu_to_node(cpu));
6900 cpus_and(*nodemask, *nodemask, *cpu_map);
6901 group = first_cpu(*nodemask);
6711cab4
SS
6902
6903 if (sg)
6904 *sg = &per_cpu(sched_group_allnodes, group);
6905 return group;
1da177e4 6906}
6711cab4 6907
08069033
SS
6908static void init_numa_sched_groups_power(struct sched_group *group_head)
6909{
6910 struct sched_group *sg = group_head;
6911 int j;
6912
6913 if (!sg)
6914 return;
3a5c359a
AK
6915 do {
6916 for_each_cpu_mask(j, sg->cpumask) {
6917 struct sched_domain *sd;
08069033 6918
3a5c359a
AK
6919 sd = &per_cpu(phys_domains, j);
6920 if (j != first_cpu(sd->groups->cpumask)) {
6921 /*
6922 * Only add "power" once for each
6923 * physical package.
6924 */
6925 continue;
6926 }
08069033 6927
3a5c359a
AK
6928 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6929 }
6930 sg = sg->next;
6931 } while (sg != group_head);
08069033 6932}
6d6bc0ad 6933#endif /* CONFIG_NUMA */
1da177e4 6934
a616058b 6935#ifdef CONFIG_NUMA
51888ca2 6936/* Free memory allocated for various sched_group structures */
7c16ec58 6937static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
51888ca2 6938{
a616058b 6939 int cpu, i;
51888ca2
SV
6940
6941 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
6942 struct sched_group **sched_group_nodes
6943 = sched_group_nodes_bycpu[cpu];
6944
51888ca2
SV
6945 if (!sched_group_nodes)
6946 continue;
6947
6948 for (i = 0; i < MAX_NUMNODES; i++) {
51888ca2
SV
6949 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6950
7c16ec58
MT
6951 *nodemask = node_to_cpumask(i);
6952 cpus_and(*nodemask, *nodemask, *cpu_map);
6953 if (cpus_empty(*nodemask))
51888ca2
SV
6954 continue;
6955
6956 if (sg == NULL)
6957 continue;
6958 sg = sg->next;
6959next_sg:
6960 oldsg = sg;
6961 sg = sg->next;
6962 kfree(oldsg);
6963 if (oldsg != sched_group_nodes[i])
6964 goto next_sg;
6965 }
6966 kfree(sched_group_nodes);
6967 sched_group_nodes_bycpu[cpu] = NULL;
6968 }
51888ca2 6969}
6d6bc0ad 6970#else /* !CONFIG_NUMA */
7c16ec58 6971static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
a616058b
SS
6972{
6973}
6d6bc0ad 6974#endif /* CONFIG_NUMA */
51888ca2 6975
89c4710e
SS
6976/*
6977 * Initialize sched groups cpu_power.
6978 *
6979 * cpu_power indicates the capacity of sched group, which is used while
6980 * distributing the load between different sched groups in a sched domain.
6981 * Typically cpu_power for all the groups in a sched domain will be same unless
6982 * there are asymmetries in the topology. If there are asymmetries, group
6983 * having more cpu_power will pickup more load compared to the group having
6984 * less cpu_power.
6985 *
6986 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6987 * the maximum number of tasks a group can handle in the presence of other idle
6988 * or lightly loaded groups in the same sched domain.
6989 */
6990static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6991{
6992 struct sched_domain *child;
6993 struct sched_group *group;
6994
6995 WARN_ON(!sd || !sd->groups);
6996
6997 if (cpu != first_cpu(sd->groups->cpumask))
6998 return;
6999
7000 child = sd->child;
7001
5517d86b
ED
7002 sd->groups->__cpu_power = 0;
7003
89c4710e
SS
7004 /*
7005 * For perf policy, if the groups in child domain share resources
7006 * (for example cores sharing some portions of the cache hierarchy
7007 * or SMT), then set this domain groups cpu_power such that each group
7008 * can handle only one task, when there are other idle groups in the
7009 * same sched domain.
7010 */
7011 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7012 (child->flags &
7013 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 7014 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
7015 return;
7016 }
7017
89c4710e
SS
7018 /*
7019 * add cpu_power of each child group to this groups cpu_power
7020 */
7021 group = child->groups;
7022 do {
5517d86b 7023 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
7024 group = group->next;
7025 } while (group != child->groups);
7026}
7027
7c16ec58
MT
7028/*
7029 * Initializers for schedule domains
7030 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7031 */
7032
7033#define SD_INIT(sd, type) sd_init_##type(sd)
7034#define SD_INIT_FUNC(type) \
7035static noinline void sd_init_##type(struct sched_domain *sd) \
7036{ \
7037 memset(sd, 0, sizeof(*sd)); \
7038 *sd = SD_##type##_INIT; \
1d3504fc 7039 sd->level = SD_LV_##type; \
7c16ec58
MT
7040}
7041
7042SD_INIT_FUNC(CPU)
7043#ifdef CONFIG_NUMA
7044 SD_INIT_FUNC(ALLNODES)
7045 SD_INIT_FUNC(NODE)
7046#endif
7047#ifdef CONFIG_SCHED_SMT
7048 SD_INIT_FUNC(SIBLING)
7049#endif
7050#ifdef CONFIG_SCHED_MC
7051 SD_INIT_FUNC(MC)
7052#endif
7053
7054/*
7055 * To minimize stack usage kmalloc room for cpumasks and share the
7056 * space as the usage in build_sched_domains() dictates. Used only
7057 * if the amount of space is significant.
7058 */
7059struct allmasks {
7060 cpumask_t tmpmask; /* make this one first */
7061 union {
7062 cpumask_t nodemask;
7063 cpumask_t this_sibling_map;
7064 cpumask_t this_core_map;
7065 };
7066 cpumask_t send_covered;
7067
7068#ifdef CONFIG_NUMA
7069 cpumask_t domainspan;
7070 cpumask_t covered;
7071 cpumask_t notcovered;
7072#endif
7073};
7074
7075#if NR_CPUS > 128
7076#define SCHED_CPUMASK_ALLOC 1
7077#define SCHED_CPUMASK_FREE(v) kfree(v)
7078#define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7079#else
7080#define SCHED_CPUMASK_ALLOC 0
7081#define SCHED_CPUMASK_FREE(v)
7082#define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7083#endif
7084
7085#define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7086 ((unsigned long)(a) + offsetof(struct allmasks, v))
7087
1d3504fc
HS
7088static int default_relax_domain_level = -1;
7089
7090static int __init setup_relax_domain_level(char *str)
7091{
30e0e178
LZ
7092 unsigned long val;
7093
7094 val = simple_strtoul(str, NULL, 0);
7095 if (val < SD_LV_MAX)
7096 default_relax_domain_level = val;
7097
1d3504fc
HS
7098 return 1;
7099}
7100__setup("relax_domain_level=", setup_relax_domain_level);
7101
7102static void set_domain_attribute(struct sched_domain *sd,
7103 struct sched_domain_attr *attr)
7104{
7105 int request;
7106
7107 if (!attr || attr->relax_domain_level < 0) {
7108 if (default_relax_domain_level < 0)
7109 return;
7110 else
7111 request = default_relax_domain_level;
7112 } else
7113 request = attr->relax_domain_level;
7114 if (request < sd->level) {
7115 /* turn off idle balance on this domain */
7116 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7117 } else {
7118 /* turn on idle balance on this domain */
7119 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7120 }
7121}
7122
1da177e4 7123/*
1a20ff27
DG
7124 * Build sched domains for a given set of cpus and attach the sched domains
7125 * to the individual cpus
1da177e4 7126 */
1d3504fc
HS
7127static int __build_sched_domains(const cpumask_t *cpu_map,
7128 struct sched_domain_attr *attr)
1da177e4
LT
7129{
7130 int i;
57d885fe 7131 struct root_domain *rd;
7c16ec58
MT
7132 SCHED_CPUMASK_DECLARE(allmasks);
7133 cpumask_t *tmpmask;
d1b55138
JH
7134#ifdef CONFIG_NUMA
7135 struct sched_group **sched_group_nodes = NULL;
6711cab4 7136 int sd_allnodes = 0;
d1b55138
JH
7137
7138 /*
7139 * Allocate the per-node list of sched groups
7140 */
5cf9f062 7141 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
41a2d6cf 7142 GFP_KERNEL);
d1b55138
JH
7143 if (!sched_group_nodes) {
7144 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 7145 return -ENOMEM;
d1b55138 7146 }
d1b55138 7147#endif
1da177e4 7148
dc938520 7149 rd = alloc_rootdomain();
57d885fe
GH
7150 if (!rd) {
7151 printk(KERN_WARNING "Cannot alloc root domain\n");
7c16ec58
MT
7152#ifdef CONFIG_NUMA
7153 kfree(sched_group_nodes);
7154#endif
57d885fe
GH
7155 return -ENOMEM;
7156 }
7157
7c16ec58
MT
7158#if SCHED_CPUMASK_ALLOC
7159 /* get space for all scratch cpumask variables */
7160 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
7161 if (!allmasks) {
7162 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7163 kfree(rd);
7164#ifdef CONFIG_NUMA
7165 kfree(sched_group_nodes);
7166#endif
7167 return -ENOMEM;
7168 }
7169#endif
7170 tmpmask = (cpumask_t *)allmasks;
7171
7172
7173#ifdef CONFIG_NUMA
7174 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7175#endif
7176
1da177e4 7177 /*
1a20ff27 7178 * Set up domains for cpus specified by the cpu_map.
1da177e4 7179 */
1a20ff27 7180 for_each_cpu_mask(i, *cpu_map) {
1da177e4 7181 struct sched_domain *sd = NULL, *p;
7c16ec58 7182 SCHED_CPUMASK_VAR(nodemask, allmasks);
1da177e4 7183
7c16ec58
MT
7184 *nodemask = node_to_cpumask(cpu_to_node(i));
7185 cpus_and(*nodemask, *nodemask, *cpu_map);
1da177e4
LT
7186
7187#ifdef CONFIG_NUMA
dd41f596 7188 if (cpus_weight(*cpu_map) >
7c16ec58 7189 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
9c1cfda2 7190 sd = &per_cpu(allnodes_domains, i);
7c16ec58 7191 SD_INIT(sd, ALLNODES);
1d3504fc 7192 set_domain_attribute(sd, attr);
9c1cfda2 7193 sd->span = *cpu_map;
7c16ec58 7194 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 7195 p = sd;
6711cab4 7196 sd_allnodes = 1;
9c1cfda2
JH
7197 } else
7198 p = NULL;
7199
1da177e4 7200 sd = &per_cpu(node_domains, i);
7c16ec58 7201 SD_INIT(sd, NODE);
1d3504fc 7202 set_domain_attribute(sd, attr);
4bdbaad3 7203 sched_domain_node_span(cpu_to_node(i), &sd->span);
9c1cfda2 7204 sd->parent = p;
1a848870
SS
7205 if (p)
7206 p->child = sd;
9c1cfda2 7207 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
7208#endif
7209
7210 p = sd;
7211 sd = &per_cpu(phys_domains, i);
7c16ec58 7212 SD_INIT(sd, CPU);
1d3504fc 7213 set_domain_attribute(sd, attr);
7c16ec58 7214 sd->span = *nodemask;
1da177e4 7215 sd->parent = p;
1a848870
SS
7216 if (p)
7217 p->child = sd;
7c16ec58 7218 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 7219
1e9f28fa
SS
7220#ifdef CONFIG_SCHED_MC
7221 p = sd;
7222 sd = &per_cpu(core_domains, i);
7c16ec58 7223 SD_INIT(sd, MC);
1d3504fc 7224 set_domain_attribute(sd, attr);
1e9f28fa
SS
7225 sd->span = cpu_coregroup_map(i);
7226 cpus_and(sd->span, sd->span, *cpu_map);
7227 sd->parent = p;
1a848870 7228 p->child = sd;
7c16ec58 7229 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7230#endif
7231
1da177e4
LT
7232#ifdef CONFIG_SCHED_SMT
7233 p = sd;
7234 sd = &per_cpu(cpu_domains, i);
7c16ec58 7235 SD_INIT(sd, SIBLING);
1d3504fc 7236 set_domain_attribute(sd, attr);
d5a7430d 7237 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 7238 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 7239 sd->parent = p;
1a848870 7240 p->child = sd;
7c16ec58 7241 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7242#endif
7243 }
7244
7245#ifdef CONFIG_SCHED_SMT
7246 /* Set up CPU (sibling) groups */
9c1cfda2 7247 for_each_cpu_mask(i, *cpu_map) {
7c16ec58
MT
7248 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7249 SCHED_CPUMASK_VAR(send_covered, allmasks);
7250
7251 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7252 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7253 if (i != first_cpu(*this_sibling_map))
1da177e4
LT
7254 continue;
7255
dd41f596 7256 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7257 &cpu_to_cpu_group,
7258 send_covered, tmpmask);
1da177e4
LT
7259 }
7260#endif
7261
1e9f28fa
SS
7262#ifdef CONFIG_SCHED_MC
7263 /* Set up multi-core groups */
7264 for_each_cpu_mask(i, *cpu_map) {
7c16ec58
MT
7265 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7266 SCHED_CPUMASK_VAR(send_covered, allmasks);
7267
7268 *this_core_map = cpu_coregroup_map(i);
7269 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7270 if (i != first_cpu(*this_core_map))
1e9f28fa 7271 continue;
7c16ec58 7272
dd41f596 7273 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7274 &cpu_to_core_group,
7275 send_covered, tmpmask);
1e9f28fa
SS
7276 }
7277#endif
7278
1da177e4
LT
7279 /* Set up physical groups */
7280 for (i = 0; i < MAX_NUMNODES; i++) {
7c16ec58
MT
7281 SCHED_CPUMASK_VAR(nodemask, allmasks);
7282 SCHED_CPUMASK_VAR(send_covered, allmasks);
1da177e4 7283
7c16ec58
MT
7284 *nodemask = node_to_cpumask(i);
7285 cpus_and(*nodemask, *nodemask, *cpu_map);
7286 if (cpus_empty(*nodemask))
1da177e4
LT
7287 continue;
7288
7c16ec58
MT
7289 init_sched_build_groups(nodemask, cpu_map,
7290 &cpu_to_phys_group,
7291 send_covered, tmpmask);
1da177e4
LT
7292 }
7293
7294#ifdef CONFIG_NUMA
7295 /* Set up node groups */
7c16ec58
MT
7296 if (sd_allnodes) {
7297 SCHED_CPUMASK_VAR(send_covered, allmasks);
7298
7299 init_sched_build_groups(cpu_map, cpu_map,
7300 &cpu_to_allnodes_group,
7301 send_covered, tmpmask);
7302 }
9c1cfda2
JH
7303
7304 for (i = 0; i < MAX_NUMNODES; i++) {
7305 /* Set up node groups */
7306 struct sched_group *sg, *prev;
7c16ec58
MT
7307 SCHED_CPUMASK_VAR(nodemask, allmasks);
7308 SCHED_CPUMASK_VAR(domainspan, allmasks);
7309 SCHED_CPUMASK_VAR(covered, allmasks);
9c1cfda2
JH
7310 int j;
7311
7c16ec58
MT
7312 *nodemask = node_to_cpumask(i);
7313 cpus_clear(*covered);
7314
7315 cpus_and(*nodemask, *nodemask, *cpu_map);
7316 if (cpus_empty(*nodemask)) {
d1b55138 7317 sched_group_nodes[i] = NULL;
9c1cfda2 7318 continue;
d1b55138 7319 }
9c1cfda2 7320
4bdbaad3 7321 sched_domain_node_span(i, domainspan);
7c16ec58 7322 cpus_and(*domainspan, *domainspan, *cpu_map);
9c1cfda2 7323
15f0b676 7324 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
7325 if (!sg) {
7326 printk(KERN_WARNING "Can not alloc domain group for "
7327 "node %d\n", i);
7328 goto error;
7329 }
9c1cfda2 7330 sched_group_nodes[i] = sg;
7c16ec58 7331 for_each_cpu_mask(j, *nodemask) {
9c1cfda2 7332 struct sched_domain *sd;
9761eea8 7333
9c1cfda2
JH
7334 sd = &per_cpu(node_domains, j);
7335 sd->groups = sg;
9c1cfda2 7336 }
5517d86b 7337 sg->__cpu_power = 0;
7c16ec58 7338 sg->cpumask = *nodemask;
51888ca2 7339 sg->next = sg;
7c16ec58 7340 cpus_or(*covered, *covered, *nodemask);
9c1cfda2
JH
7341 prev = sg;
7342
7343 for (j = 0; j < MAX_NUMNODES; j++) {
7c16ec58 7344 SCHED_CPUMASK_VAR(notcovered, allmasks);
9c1cfda2 7345 int n = (i + j) % MAX_NUMNODES;
c5f59f08 7346 node_to_cpumask_ptr(pnodemask, n);
9c1cfda2 7347
7c16ec58
MT
7348 cpus_complement(*notcovered, *covered);
7349 cpus_and(*tmpmask, *notcovered, *cpu_map);
7350 cpus_and(*tmpmask, *tmpmask, *domainspan);
7351 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7352 break;
7353
7c16ec58
MT
7354 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7355 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7356 continue;
7357
15f0b676
SV
7358 sg = kmalloc_node(sizeof(struct sched_group),
7359 GFP_KERNEL, i);
9c1cfda2
JH
7360 if (!sg) {
7361 printk(KERN_WARNING
7362 "Can not alloc domain group for node %d\n", j);
51888ca2 7363 goto error;
9c1cfda2 7364 }
5517d86b 7365 sg->__cpu_power = 0;
7c16ec58 7366 sg->cpumask = *tmpmask;
51888ca2 7367 sg->next = prev->next;
7c16ec58 7368 cpus_or(*covered, *covered, *tmpmask);
9c1cfda2
JH
7369 prev->next = sg;
7370 prev = sg;
7371 }
9c1cfda2 7372 }
1da177e4
LT
7373#endif
7374
7375 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7376#ifdef CONFIG_SCHED_SMT
1a20ff27 7377 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7378 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7379
89c4710e 7380 init_sched_groups_power(i, sd);
5c45bf27 7381 }
1da177e4 7382#endif
1e9f28fa 7383#ifdef CONFIG_SCHED_MC
5c45bf27 7384 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7385 struct sched_domain *sd = &per_cpu(core_domains, i);
7386
89c4710e 7387 init_sched_groups_power(i, sd);
5c45bf27
SS
7388 }
7389#endif
1e9f28fa 7390
5c45bf27 7391 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7392 struct sched_domain *sd = &per_cpu(phys_domains, i);
7393
89c4710e 7394 init_sched_groups_power(i, sd);
1da177e4
LT
7395 }
7396
9c1cfda2 7397#ifdef CONFIG_NUMA
08069033
SS
7398 for (i = 0; i < MAX_NUMNODES; i++)
7399 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7400
6711cab4
SS
7401 if (sd_allnodes) {
7402 struct sched_group *sg;
f712c0c7 7403
7c16ec58
MT
7404 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7405 tmpmask);
f712c0c7
SS
7406 init_numa_sched_groups_power(sg);
7407 }
9c1cfda2
JH
7408#endif
7409
1da177e4 7410 /* Attach the domains */
1a20ff27 7411 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
7412 struct sched_domain *sd;
7413#ifdef CONFIG_SCHED_SMT
7414 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
7415#elif defined(CONFIG_SCHED_MC)
7416 sd = &per_cpu(core_domains, i);
1da177e4
LT
7417#else
7418 sd = &per_cpu(phys_domains, i);
7419#endif
57d885fe 7420 cpu_attach_domain(sd, rd, i);
1da177e4 7421 }
51888ca2 7422
7c16ec58 7423 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2
SV
7424 return 0;
7425
a616058b 7426#ifdef CONFIG_NUMA
51888ca2 7427error:
7c16ec58
MT
7428 free_sched_groups(cpu_map, tmpmask);
7429 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2 7430 return -ENOMEM;
a616058b 7431#endif
1da177e4 7432}
029190c5 7433
1d3504fc
HS
7434static int build_sched_domains(const cpumask_t *cpu_map)
7435{
7436 return __build_sched_domains(cpu_map, NULL);
7437}
7438
029190c5
PJ
7439static cpumask_t *doms_cur; /* current sched domains */
7440static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7441static struct sched_domain_attr *dattr_cur;
7442 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7443
7444/*
7445 * Special case: If a kmalloc of a doms_cur partition (array of
7446 * cpumask_t) fails, then fallback to a single sched domain,
7447 * as determined by the single cpumask_t fallback_doms.
7448 */
7449static cpumask_t fallback_doms;
7450
22e52b07
HC
7451void __attribute__((weak)) arch_update_cpu_topology(void)
7452{
7453}
7454
5c8e1ed1
MK
7455/*
7456 * Free current domain masks.
7457 * Called after all cpus are attached to NULL domain.
7458 */
7459static void free_sched_domains(void)
7460{
7461 ndoms_cur = 0;
7462 if (doms_cur != &fallback_doms)
7463 kfree(doms_cur);
7464 doms_cur = &fallback_doms;
7465}
7466
1a20ff27 7467/*
41a2d6cf 7468 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7469 * For now this just excludes isolated cpus, but could be used to
7470 * exclude other special cases in the future.
1a20ff27 7471 */
51888ca2 7472static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 7473{
7378547f
MM
7474 int err;
7475
22e52b07 7476 arch_update_cpu_topology();
029190c5
PJ
7477 ndoms_cur = 1;
7478 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7479 if (!doms_cur)
7480 doms_cur = &fallback_doms;
7481 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
1d3504fc 7482 dattr_cur = NULL;
7378547f 7483 err = build_sched_domains(doms_cur);
6382bc90 7484 register_sched_domain_sysctl();
7378547f
MM
7485
7486 return err;
1a20ff27
DG
7487}
7488
7c16ec58
MT
7489static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7490 cpumask_t *tmpmask)
1da177e4 7491{
7c16ec58 7492 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7493}
1da177e4 7494
1a20ff27
DG
7495/*
7496 * Detach sched domains from a group of cpus specified in cpu_map
7497 * These cpus will now be attached to the NULL domain
7498 */
858119e1 7499static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27 7500{
7c16ec58 7501 cpumask_t tmpmask;
1a20ff27
DG
7502 int i;
7503
6382bc90
MM
7504 unregister_sched_domain_sysctl();
7505
1a20ff27 7506 for_each_cpu_mask(i, *cpu_map)
57d885fe 7507 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7508 synchronize_sched();
7c16ec58 7509 arch_destroy_sched_domains(cpu_map, &tmpmask);
1a20ff27
DG
7510}
7511
1d3504fc
HS
7512/* handle null as "default" */
7513static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7514 struct sched_domain_attr *new, int idx_new)
7515{
7516 struct sched_domain_attr tmp;
7517
7518 /* fast path */
7519 if (!new && !cur)
7520 return 1;
7521
7522 tmp = SD_ATTR_INIT;
7523 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7524 new ? (new + idx_new) : &tmp,
7525 sizeof(struct sched_domain_attr));
7526}
7527
029190c5
PJ
7528/*
7529 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7530 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7531 * doms_new[] to the current sched domain partitioning, doms_cur[].
7532 * It destroys each deleted domain and builds each new domain.
7533 *
7534 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
7535 * The masks don't intersect (don't overlap.) We should setup one
7536 * sched domain for each mask. CPUs not in any of the cpumasks will
7537 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7538 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7539 * it as it is.
7540 *
41a2d6cf
IM
7541 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7542 * ownership of it and will kfree it when done with it. If the caller
029190c5
PJ
7543 * failed the kmalloc call, then it can pass in doms_new == NULL,
7544 * and partition_sched_domains() will fallback to the single partition
7545 * 'fallback_doms'.
7546 *
7547 * Call with hotplug lock held
7548 */
1d3504fc
HS
7549void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7550 struct sched_domain_attr *dattr_new)
029190c5
PJ
7551{
7552 int i, j;
7553
712555ee 7554 mutex_lock(&sched_domains_mutex);
a1835615 7555
7378547f
MM
7556 /* always unregister in case we don't destroy any domains */
7557 unregister_sched_domain_sysctl();
7558
029190c5
PJ
7559 if (doms_new == NULL) {
7560 ndoms_new = 1;
7561 doms_new = &fallback_doms;
7562 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
1d3504fc 7563 dattr_new = NULL;
029190c5
PJ
7564 }
7565
7566 /* Destroy deleted domains */
7567 for (i = 0; i < ndoms_cur; i++) {
7568 for (j = 0; j < ndoms_new; j++) {
1d3504fc
HS
7569 if (cpus_equal(doms_cur[i], doms_new[j])
7570 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7571 goto match1;
7572 }
7573 /* no match - a current sched domain not in new doms_new[] */
7574 detach_destroy_domains(doms_cur + i);
7575match1:
7576 ;
7577 }
7578
7579 /* Build new domains */
7580 for (i = 0; i < ndoms_new; i++) {
7581 for (j = 0; j < ndoms_cur; j++) {
1d3504fc
HS
7582 if (cpus_equal(doms_new[i], doms_cur[j])
7583 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7584 goto match2;
7585 }
7586 /* no match - add a new doms_new */
1d3504fc
HS
7587 __build_sched_domains(doms_new + i,
7588 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7589match2:
7590 ;
7591 }
7592
7593 /* Remember the new sched domains */
7594 if (doms_cur != &fallback_doms)
7595 kfree(doms_cur);
1d3504fc 7596 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7597 doms_cur = doms_new;
1d3504fc 7598 dattr_cur = dattr_new;
029190c5 7599 ndoms_cur = ndoms_new;
7378547f
MM
7600
7601 register_sched_domain_sysctl();
a1835615 7602
712555ee 7603 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7604}
7605
5c45bf27 7606#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9aefd0ab 7607int arch_reinit_sched_domains(void)
5c45bf27
SS
7608{
7609 int err;
7610
95402b38 7611 get_online_cpus();
712555ee 7612 mutex_lock(&sched_domains_mutex);
5c45bf27 7613 detach_destroy_domains(&cpu_online_map);
5c8e1ed1 7614 free_sched_domains();
5c45bf27 7615 err = arch_init_sched_domains(&cpu_online_map);
712555ee 7616 mutex_unlock(&sched_domains_mutex);
95402b38 7617 put_online_cpus();
5c45bf27
SS
7618
7619 return err;
7620}
7621
7622static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7623{
7624 int ret;
7625
7626 if (buf[0] != '0' && buf[0] != '1')
7627 return -EINVAL;
7628
7629 if (smt)
7630 sched_smt_power_savings = (buf[0] == '1');
7631 else
7632 sched_mc_power_savings = (buf[0] == '1');
7633
7634 ret = arch_reinit_sched_domains();
7635
7636 return ret ? ret : count;
7637}
7638
5c45bf27
SS
7639#ifdef CONFIG_SCHED_MC
7640static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
7641{
7642 return sprintf(page, "%u\n", sched_mc_power_savings);
7643}
48f24c4d
IM
7644static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
7645 const char *buf, size_t count)
5c45bf27
SS
7646{
7647 return sched_power_savings_store(buf, count, 0);
7648}
6707de00
AB
7649static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
7650 sched_mc_power_savings_store);
5c45bf27
SS
7651#endif
7652
7653#ifdef CONFIG_SCHED_SMT
7654static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
7655{
7656 return sprintf(page, "%u\n", sched_smt_power_savings);
7657}
48f24c4d
IM
7658static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
7659 const char *buf, size_t count)
5c45bf27
SS
7660{
7661 return sched_power_savings_store(buf, count, 1);
7662}
6707de00
AB
7663static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
7664 sched_smt_power_savings_store);
7665#endif
7666
7667int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7668{
7669 int err = 0;
7670
7671#ifdef CONFIG_SCHED_SMT
7672 if (smt_capable())
7673 err = sysfs_create_file(&cls->kset.kobj,
7674 &attr_sched_smt_power_savings.attr);
7675#endif
7676#ifdef CONFIG_SCHED_MC
7677 if (!err && mc_capable())
7678 err = sysfs_create_file(&cls->kset.kobj,
7679 &attr_sched_mc_power_savings.attr);
7680#endif
7681 return err;
7682}
6d6bc0ad 7683#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7684
1da177e4 7685/*
41a2d6cf 7686 * Force a reinitialization of the sched domains hierarchy. The domains
1da177e4 7687 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 7688 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
7689 * which will prevent rebalancing while the sched domains are recalculated.
7690 */
7691static int update_sched_domains(struct notifier_block *nfb,
7692 unsigned long action, void *hcpu)
7693{
7def2be1
PZ
7694 int cpu = (int)(long)hcpu;
7695
1da177e4 7696 switch (action) {
1da177e4 7697 case CPU_DOWN_PREPARE:
8bb78442 7698 case CPU_DOWN_PREPARE_FROZEN:
7def2be1
PZ
7699 disable_runtime(cpu_rq(cpu));
7700 /* fall-through */
7701 case CPU_UP_PREPARE:
7702 case CPU_UP_PREPARE_FROZEN:
1a20ff27 7703 detach_destroy_domains(&cpu_online_map);
5c8e1ed1 7704 free_sched_domains();
1da177e4
LT
7705 return NOTIFY_OK;
7706
7def2be1 7707
1da177e4 7708 case CPU_DOWN_FAILED:
8bb78442 7709 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7710 case CPU_ONLINE:
8bb78442 7711 case CPU_ONLINE_FROZEN:
7def2be1
PZ
7712 enable_runtime(cpu_rq(cpu));
7713 /* fall-through */
7714 case CPU_UP_CANCELED:
7715 case CPU_UP_CANCELED_FROZEN:
1da177e4 7716 case CPU_DEAD:
8bb78442 7717 case CPU_DEAD_FROZEN:
1da177e4
LT
7718 /*
7719 * Fall through and re-initialise the domains.
7720 */
7721 break;
7722 default:
7723 return NOTIFY_DONE;
7724 }
7725
5c8e1ed1
MK
7726#ifndef CONFIG_CPUSETS
7727 /*
7728 * Create default domain partitioning if cpusets are disabled.
7729 * Otherwise we let cpusets rebuild the domains based on the
7730 * current setup.
7731 */
7732
1da177e4 7733 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 7734 arch_init_sched_domains(&cpu_online_map);
5c8e1ed1 7735#endif
1da177e4
LT
7736
7737 return NOTIFY_OK;
7738}
1da177e4
LT
7739
7740void __init sched_init_smp(void)
7741{
5c1e1767
NP
7742 cpumask_t non_isolated_cpus;
7743
434d53b0
MT
7744#if defined(CONFIG_NUMA)
7745 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7746 GFP_KERNEL);
7747 BUG_ON(sched_group_nodes_bycpu == NULL);
7748#endif
95402b38 7749 get_online_cpus();
712555ee 7750 mutex_lock(&sched_domains_mutex);
1a20ff27 7751 arch_init_sched_domains(&cpu_online_map);
e5e5673f 7752 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
7753 if (cpus_empty(non_isolated_cpus))
7754 cpu_set(smp_processor_id(), non_isolated_cpus);
712555ee 7755 mutex_unlock(&sched_domains_mutex);
95402b38 7756 put_online_cpus();
1da177e4
LT
7757 /* XXX: Theoretical race here - CPU may be hotplugged now */
7758 hotcpu_notifier(update_sched_domains, 0);
b328ca18 7759 init_hrtick();
5c1e1767
NP
7760
7761 /* Move init over to a non-isolated CPU */
7c16ec58 7762 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
5c1e1767 7763 BUG();
19978ca6 7764 sched_init_granularity();
1da177e4
LT
7765}
7766#else
7767void __init sched_init_smp(void)
7768{
19978ca6 7769 sched_init_granularity();
1da177e4
LT
7770}
7771#endif /* CONFIG_SMP */
7772
7773int in_sched_functions(unsigned long addr)
7774{
1da177e4
LT
7775 return in_lock_functions(addr) ||
7776 (addr >= (unsigned long)__sched_text_start
7777 && addr < (unsigned long)__sched_text_end);
7778}
7779
a9957449 7780static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7781{
7782 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7783 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7784#ifdef CONFIG_FAIR_GROUP_SCHED
7785 cfs_rq->rq = rq;
7786#endif
67e9fb2a 7787 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7788}
7789
fa85ae24
PZ
7790static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7791{
7792 struct rt_prio_array *array;
7793 int i;
7794
7795 array = &rt_rq->active;
7796 for (i = 0; i < MAX_RT_PRIO; i++) {
20b6331b 7797 INIT_LIST_HEAD(array->queue + i);
fa85ae24
PZ
7798 __clear_bit(i, array->bitmap);
7799 }
7800 /* delimiter for bitsearch: */
7801 __set_bit(MAX_RT_PRIO, array->bitmap);
7802
052f1dc7 7803#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
48d5e258
PZ
7804 rt_rq->highest_prio = MAX_RT_PRIO;
7805#endif
fa85ae24
PZ
7806#ifdef CONFIG_SMP
7807 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
7808 rt_rq->overloaded = 0;
7809#endif
7810
7811 rt_rq->rt_time = 0;
7812 rt_rq->rt_throttled = 0;
ac086bc2
PZ
7813 rt_rq->rt_runtime = 0;
7814 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7815
052f1dc7 7816#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7817 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7818 rt_rq->rq = rq;
7819#endif
fa85ae24
PZ
7820}
7821
6f505b16 7822#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7823static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7824 struct sched_entity *se, int cpu, int add,
7825 struct sched_entity *parent)
6f505b16 7826{
ec7dc8ac 7827 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7828 tg->cfs_rq[cpu] = cfs_rq;
7829 init_cfs_rq(cfs_rq, rq);
7830 cfs_rq->tg = tg;
7831 if (add)
7832 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7833
7834 tg->se[cpu] = se;
354d60c2
DG
7835 /* se could be NULL for init_task_group */
7836 if (!se)
7837 return;
7838
ec7dc8ac
DG
7839 if (!parent)
7840 se->cfs_rq = &rq->cfs;
7841 else
7842 se->cfs_rq = parent->my_q;
7843
6f505b16
PZ
7844 se->my_q = cfs_rq;
7845 se->load.weight = tg->shares;
e05510d0 7846 se->load.inv_weight = 0;
ec7dc8ac 7847 se->parent = parent;
6f505b16 7848}
052f1dc7 7849#endif
6f505b16 7850
052f1dc7 7851#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
7852static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7853 struct sched_rt_entity *rt_se, int cpu, int add,
7854 struct sched_rt_entity *parent)
6f505b16 7855{
ec7dc8ac
DG
7856 struct rq *rq = cpu_rq(cpu);
7857
6f505b16
PZ
7858 tg->rt_rq[cpu] = rt_rq;
7859 init_rt_rq(rt_rq, rq);
7860 rt_rq->tg = tg;
7861 rt_rq->rt_se = rt_se;
ac086bc2 7862 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7863 if (add)
7864 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7865
7866 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7867 if (!rt_se)
7868 return;
7869
ec7dc8ac
DG
7870 if (!parent)
7871 rt_se->rt_rq = &rq->rt;
7872 else
7873 rt_se->rt_rq = parent->my_q;
7874
6f505b16 7875 rt_se->my_q = rt_rq;
ec7dc8ac 7876 rt_se->parent = parent;
6f505b16
PZ
7877 INIT_LIST_HEAD(&rt_se->run_list);
7878}
7879#endif
7880
1da177e4
LT
7881void __init sched_init(void)
7882{
dd41f596 7883 int i, j;
434d53b0
MT
7884 unsigned long alloc_size = 0, ptr;
7885
7886#ifdef CONFIG_FAIR_GROUP_SCHED
7887 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7888#endif
7889#ifdef CONFIG_RT_GROUP_SCHED
7890 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
7891#endif
7892#ifdef CONFIG_USER_SCHED
7893 alloc_size *= 2;
434d53b0
MT
7894#endif
7895 /*
7896 * As sched_init() is called before page_alloc is setup,
7897 * we use alloc_bootmem().
7898 */
7899 if (alloc_size) {
5a9d3225 7900 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
7901
7902#ifdef CONFIG_FAIR_GROUP_SCHED
7903 init_task_group.se = (struct sched_entity **)ptr;
7904 ptr += nr_cpu_ids * sizeof(void **);
7905
7906 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7907 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
7908
7909#ifdef CONFIG_USER_SCHED
7910 root_task_group.se = (struct sched_entity **)ptr;
7911 ptr += nr_cpu_ids * sizeof(void **);
7912
7913 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7914 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
7915#endif /* CONFIG_USER_SCHED */
7916#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
7917#ifdef CONFIG_RT_GROUP_SCHED
7918 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7919 ptr += nr_cpu_ids * sizeof(void **);
7920
7921 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7922 ptr += nr_cpu_ids * sizeof(void **);
7923
7924#ifdef CONFIG_USER_SCHED
7925 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7926 ptr += nr_cpu_ids * sizeof(void **);
7927
7928 root_task_group.rt_rq = (struct rt_rq **)ptr;
7929 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
7930#endif /* CONFIG_USER_SCHED */
7931#endif /* CONFIG_RT_GROUP_SCHED */
434d53b0 7932 }
dd41f596 7933
57d885fe
GH
7934#ifdef CONFIG_SMP
7935 init_defrootdomain();
7936#endif
7937
d0b27fa7
PZ
7938 init_rt_bandwidth(&def_rt_bandwidth,
7939 global_rt_period(), global_rt_runtime());
7940
7941#ifdef CONFIG_RT_GROUP_SCHED
7942 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7943 global_rt_period(), global_rt_runtime());
eff766a6
PZ
7944#ifdef CONFIG_USER_SCHED
7945 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7946 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
7947#endif /* CONFIG_USER_SCHED */
7948#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7949
052f1dc7 7950#ifdef CONFIG_GROUP_SCHED
6f505b16 7951 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
7952 INIT_LIST_HEAD(&init_task_group.children);
7953
7954#ifdef CONFIG_USER_SCHED
7955 INIT_LIST_HEAD(&root_task_group.children);
7956 init_task_group.parent = &root_task_group;
7957 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
7958#endif /* CONFIG_USER_SCHED */
7959#endif /* CONFIG_GROUP_SCHED */
6f505b16 7960
0a945022 7961 for_each_possible_cpu(i) {
70b97a7f 7962 struct rq *rq;
1da177e4
LT
7963
7964 rq = cpu_rq(i);
7965 spin_lock_init(&rq->lock);
fcb99371 7966 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 7967 rq->nr_running = 0;
dd41f596 7968 init_cfs_rq(&rq->cfs, rq);
6f505b16 7969 init_rt_rq(&rq->rt, rq);
dd41f596 7970#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 7971 init_task_group.shares = init_task_group_load;
6f505b16 7972 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
7973#ifdef CONFIG_CGROUP_SCHED
7974 /*
7975 * How much cpu bandwidth does init_task_group get?
7976 *
7977 * In case of task-groups formed thr' the cgroup filesystem, it
7978 * gets 100% of the cpu resources in the system. This overall
7979 * system cpu resource is divided among the tasks of
7980 * init_task_group and its child task-groups in a fair manner,
7981 * based on each entity's (task or task-group's) weight
7982 * (se->load.weight).
7983 *
7984 * In other words, if init_task_group has 10 tasks of weight
7985 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7986 * then A0's share of the cpu resource is:
7987 *
7988 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7989 *
7990 * We achieve this by letting init_task_group's tasks sit
7991 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7992 */
ec7dc8ac 7993 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 7994#elif defined CONFIG_USER_SCHED
eff766a6
PZ
7995 root_task_group.shares = NICE_0_LOAD;
7996 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
7997 /*
7998 * In case of task-groups formed thr' the user id of tasks,
7999 * init_task_group represents tasks belonging to root user.
8000 * Hence it forms a sibling of all subsequent groups formed.
8001 * In this case, init_task_group gets only a fraction of overall
8002 * system cpu resource, based on the weight assigned to root
8003 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8004 * by letting tasks of init_task_group sit in a separate cfs_rq
8005 * (init_cfs_rq) and having one entity represent this group of
8006 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8007 */
ec7dc8ac 8008 init_tg_cfs_entry(&init_task_group,
6f505b16 8009 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
8010 &per_cpu(init_sched_entity, i), i, 1,
8011 root_task_group.se[i]);
6f505b16 8012
052f1dc7 8013#endif
354d60c2
DG
8014#endif /* CONFIG_FAIR_GROUP_SCHED */
8015
8016 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8017#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8018 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 8019#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 8020 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 8021#elif defined CONFIG_USER_SCHED
eff766a6 8022 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 8023 init_tg_rt_entry(&init_task_group,
6f505b16 8024 &per_cpu(init_rt_rq, i),
eff766a6
PZ
8025 &per_cpu(init_sched_rt_entity, i), i, 1,
8026 root_task_group.rt_se[i]);
354d60c2 8027#endif
dd41f596 8028#endif
1da177e4 8029
dd41f596
IM
8030 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8031 rq->cpu_load[j] = 0;
1da177e4 8032#ifdef CONFIG_SMP
41c7ce9a 8033 rq->sd = NULL;
57d885fe 8034 rq->rd = NULL;
1da177e4 8035 rq->active_balance = 0;
dd41f596 8036 rq->next_balance = jiffies;
1da177e4 8037 rq->push_cpu = 0;
0a2966b4 8038 rq->cpu = i;
1f11eb6a 8039 rq->online = 0;
1da177e4
LT
8040 rq->migration_thread = NULL;
8041 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 8042 rq_attach_root(rq, &def_root_domain);
1da177e4 8043#endif
8f4d37ec 8044 init_rq_hrtick(rq);
1da177e4 8045 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8046 }
8047
2dd73a4f 8048 set_load_weight(&init_task);
b50f60ce 8049
e107be36
AK
8050#ifdef CONFIG_PREEMPT_NOTIFIERS
8051 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8052#endif
8053
c9819f45
CL
8054#ifdef CONFIG_SMP
8055 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
8056#endif
8057
b50f60ce
HC
8058#ifdef CONFIG_RT_MUTEXES
8059 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8060#endif
8061
1da177e4
LT
8062 /*
8063 * The boot idle thread does lazy MMU switching as well:
8064 */
8065 atomic_inc(&init_mm.mm_count);
8066 enter_lazy_tlb(&init_mm, current);
8067
8068 /*
8069 * Make us the idle thread. Technically, schedule() should not be
8070 * called from this thread, however somewhere below it might be,
8071 * but because we are the idle thread, we just pick up running again
8072 * when this runqueue becomes "idle".
8073 */
8074 init_idle(current, smp_processor_id());
dd41f596
IM
8075 /*
8076 * During early bootup we pretend to be a normal task:
8077 */
8078 current->sched_class = &fair_sched_class;
6892b75e
IM
8079
8080 scheduler_running = 1;
1da177e4
LT
8081}
8082
8083#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8084void __might_sleep(char *file, int line)
8085{
48f24c4d 8086#ifdef in_atomic
1da177e4
LT
8087 static unsigned long prev_jiffy; /* ratelimiting */
8088
8089 if ((in_atomic() || irqs_disabled()) &&
8090 system_state == SYSTEM_RUNNING && !oops_in_progress) {
8091 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8092 return;
8093 prev_jiffy = jiffies;
91368d73 8094 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
8095 " context at %s:%d\n", file, line);
8096 printk("in_atomic():%d, irqs_disabled():%d\n",
8097 in_atomic(), irqs_disabled());
a4c410f0 8098 debug_show_held_locks(current);
3117df04
IM
8099 if (irqs_disabled())
8100 print_irqtrace_events(current);
1da177e4
LT
8101 dump_stack();
8102 }
8103#endif
8104}
8105EXPORT_SYMBOL(__might_sleep);
8106#endif
8107
8108#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8109static void normalize_task(struct rq *rq, struct task_struct *p)
8110{
8111 int on_rq;
3e51f33f 8112
3a5e4dc1
AK
8113 update_rq_clock(rq);
8114 on_rq = p->se.on_rq;
8115 if (on_rq)
8116 deactivate_task(rq, p, 0);
8117 __setscheduler(rq, p, SCHED_NORMAL, 0);
8118 if (on_rq) {
8119 activate_task(rq, p, 0);
8120 resched_task(rq->curr);
8121 }
8122}
8123
1da177e4
LT
8124void normalize_rt_tasks(void)
8125{
a0f98a1c 8126 struct task_struct *g, *p;
1da177e4 8127 unsigned long flags;
70b97a7f 8128 struct rq *rq;
1da177e4 8129
4cf5d77a 8130 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8131 do_each_thread(g, p) {
178be793
IM
8132 /*
8133 * Only normalize user tasks:
8134 */
8135 if (!p->mm)
8136 continue;
8137
6cfb0d5d 8138 p->se.exec_start = 0;
6cfb0d5d 8139#ifdef CONFIG_SCHEDSTATS
dd41f596 8140 p->se.wait_start = 0;
dd41f596 8141 p->se.sleep_start = 0;
dd41f596 8142 p->se.block_start = 0;
6cfb0d5d 8143#endif
dd41f596
IM
8144
8145 if (!rt_task(p)) {
8146 /*
8147 * Renice negative nice level userspace
8148 * tasks back to 0:
8149 */
8150 if (TASK_NICE(p) < 0 && p->mm)
8151 set_user_nice(p, 0);
1da177e4 8152 continue;
dd41f596 8153 }
1da177e4 8154
4cf5d77a 8155 spin_lock(&p->pi_lock);
b29739f9 8156 rq = __task_rq_lock(p);
1da177e4 8157
178be793 8158 normalize_task(rq, p);
3a5e4dc1 8159
b29739f9 8160 __task_rq_unlock(rq);
4cf5d77a 8161 spin_unlock(&p->pi_lock);
a0f98a1c
IM
8162 } while_each_thread(g, p);
8163
4cf5d77a 8164 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8165}
8166
8167#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
8168
8169#ifdef CONFIG_IA64
8170/*
8171 * These functions are only useful for the IA64 MCA handling.
8172 *
8173 * They can only be called when the whole system has been
8174 * stopped - every CPU needs to be quiescent, and no scheduling
8175 * activity can take place. Using them for anything else would
8176 * be a serious bug, and as a result, they aren't even visible
8177 * under any other configuration.
8178 */
8179
8180/**
8181 * curr_task - return the current task for a given cpu.
8182 * @cpu: the processor in question.
8183 *
8184 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8185 */
36c8b586 8186struct task_struct *curr_task(int cpu)
1df5c10a
LT
8187{
8188 return cpu_curr(cpu);
8189}
8190
8191/**
8192 * set_curr_task - set the current task for a given cpu.
8193 * @cpu: the processor in question.
8194 * @p: the task pointer to set.
8195 *
8196 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8197 * are serviced on a separate stack. It allows the architecture to switch the
8198 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8199 * must be called with all CPU's synchronized, and interrupts disabled, the
8200 * and caller must save the original value of the current task (see
8201 * curr_task() above) and restore that value before reenabling interrupts and
8202 * re-starting the system.
8203 *
8204 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8205 */
36c8b586 8206void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8207{
8208 cpu_curr(cpu) = p;
8209}
8210
8211#endif
29f59db3 8212
bccbe08a
PZ
8213#ifdef CONFIG_FAIR_GROUP_SCHED
8214static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8215{
8216 int i;
8217
8218 for_each_possible_cpu(i) {
8219 if (tg->cfs_rq)
8220 kfree(tg->cfs_rq[i]);
8221 if (tg->se)
8222 kfree(tg->se[i]);
6f505b16
PZ
8223 }
8224
8225 kfree(tg->cfs_rq);
8226 kfree(tg->se);
6f505b16
PZ
8227}
8228
ec7dc8ac
DG
8229static
8230int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8231{
29f59db3 8232 struct cfs_rq *cfs_rq;
ec7dc8ac 8233 struct sched_entity *se, *parent_se;
9b5b7751 8234 struct rq *rq;
29f59db3
SV
8235 int i;
8236
434d53b0 8237 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8238 if (!tg->cfs_rq)
8239 goto err;
434d53b0 8240 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8241 if (!tg->se)
8242 goto err;
052f1dc7
PZ
8243
8244 tg->shares = NICE_0_LOAD;
29f59db3
SV
8245
8246 for_each_possible_cpu(i) {
9b5b7751 8247 rq = cpu_rq(i);
29f59db3 8248
6f505b16
PZ
8249 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8250 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8251 if (!cfs_rq)
8252 goto err;
8253
6f505b16
PZ
8254 se = kmalloc_node(sizeof(struct sched_entity),
8255 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8256 if (!se)
8257 goto err;
8258
ec7dc8ac
DG
8259 parent_se = parent ? parent->se[i] : NULL;
8260 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
bccbe08a
PZ
8261 }
8262
8263 return 1;
8264
8265 err:
8266 return 0;
8267}
8268
8269static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8270{
8271 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8272 &cpu_rq(cpu)->leaf_cfs_rq_list);
8273}
8274
8275static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8276{
8277 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8278}
6d6bc0ad 8279#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8280static inline void free_fair_sched_group(struct task_group *tg)
8281{
8282}
8283
ec7dc8ac
DG
8284static inline
8285int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8286{
8287 return 1;
8288}
8289
8290static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8291{
8292}
8293
8294static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8295{
8296}
6d6bc0ad 8297#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8298
8299#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8300static void free_rt_sched_group(struct task_group *tg)
8301{
8302 int i;
8303
d0b27fa7
PZ
8304 destroy_rt_bandwidth(&tg->rt_bandwidth);
8305
bccbe08a
PZ
8306 for_each_possible_cpu(i) {
8307 if (tg->rt_rq)
8308 kfree(tg->rt_rq[i]);
8309 if (tg->rt_se)
8310 kfree(tg->rt_se[i]);
8311 }
8312
8313 kfree(tg->rt_rq);
8314 kfree(tg->rt_se);
8315}
8316
ec7dc8ac
DG
8317static
8318int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8319{
8320 struct rt_rq *rt_rq;
ec7dc8ac 8321 struct sched_rt_entity *rt_se, *parent_se;
bccbe08a
PZ
8322 struct rq *rq;
8323 int i;
8324
434d53b0 8325 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8326 if (!tg->rt_rq)
8327 goto err;
434d53b0 8328 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8329 if (!tg->rt_se)
8330 goto err;
8331
d0b27fa7
PZ
8332 init_rt_bandwidth(&tg->rt_bandwidth,
8333 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8334
8335 for_each_possible_cpu(i) {
8336 rq = cpu_rq(i);
8337
6f505b16
PZ
8338 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8339 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8340 if (!rt_rq)
8341 goto err;
29f59db3 8342
6f505b16
PZ
8343 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8344 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8345 if (!rt_se)
8346 goto err;
29f59db3 8347
ec7dc8ac
DG
8348 parent_se = parent ? parent->rt_se[i] : NULL;
8349 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
29f59db3
SV
8350 }
8351
bccbe08a
PZ
8352 return 1;
8353
8354 err:
8355 return 0;
8356}
8357
8358static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8359{
8360 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8361 &cpu_rq(cpu)->leaf_rt_rq_list);
8362}
8363
8364static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8365{
8366 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8367}
6d6bc0ad 8368#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8369static inline void free_rt_sched_group(struct task_group *tg)
8370{
8371}
8372
ec7dc8ac
DG
8373static inline
8374int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8375{
8376 return 1;
8377}
8378
8379static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8380{
8381}
8382
8383static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8384{
8385}
6d6bc0ad 8386#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8387
d0b27fa7 8388#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8389static void free_sched_group(struct task_group *tg)
8390{
8391 free_fair_sched_group(tg);
8392 free_rt_sched_group(tg);
8393 kfree(tg);
8394}
8395
8396/* allocate runqueue etc for a new task group */
ec7dc8ac 8397struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8398{
8399 struct task_group *tg;
8400 unsigned long flags;
8401 int i;
8402
8403 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8404 if (!tg)
8405 return ERR_PTR(-ENOMEM);
8406
ec7dc8ac 8407 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8408 goto err;
8409
ec7dc8ac 8410 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8411 goto err;
8412
8ed36996 8413 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8414 for_each_possible_cpu(i) {
bccbe08a
PZ
8415 register_fair_sched_group(tg, i);
8416 register_rt_sched_group(tg, i);
9b5b7751 8417 }
6f505b16 8418 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8419
8420 WARN_ON(!parent); /* root should already exist */
8421
8422 tg->parent = parent;
8423 list_add_rcu(&tg->siblings, &parent->children);
8424 INIT_LIST_HEAD(&tg->children);
8ed36996 8425 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8426
9b5b7751 8427 return tg;
29f59db3
SV
8428
8429err:
6f505b16 8430 free_sched_group(tg);
29f59db3
SV
8431 return ERR_PTR(-ENOMEM);
8432}
8433
9b5b7751 8434/* rcu callback to free various structures associated with a task group */
6f505b16 8435static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8436{
29f59db3 8437 /* now it should be safe to free those cfs_rqs */
6f505b16 8438 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8439}
8440
9b5b7751 8441/* Destroy runqueue etc associated with a task group */
4cf86d77 8442void sched_destroy_group(struct task_group *tg)
29f59db3 8443{
8ed36996 8444 unsigned long flags;
9b5b7751 8445 int i;
29f59db3 8446
8ed36996 8447 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8448 for_each_possible_cpu(i) {
bccbe08a
PZ
8449 unregister_fair_sched_group(tg, i);
8450 unregister_rt_sched_group(tg, i);
9b5b7751 8451 }
6f505b16 8452 list_del_rcu(&tg->list);
f473aa5e 8453 list_del_rcu(&tg->siblings);
8ed36996 8454 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8455
9b5b7751 8456 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8457 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8458}
8459
9b5b7751 8460/* change task's runqueue when it moves between groups.
3a252015
IM
8461 * The caller of this function should have put the task in its new group
8462 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8463 * reflect its new group.
9b5b7751
SV
8464 */
8465void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8466{
8467 int on_rq, running;
8468 unsigned long flags;
8469 struct rq *rq;
8470
8471 rq = task_rq_lock(tsk, &flags);
8472
29f59db3
SV
8473 update_rq_clock(rq);
8474
051a1d1a 8475 running = task_current(rq, tsk);
29f59db3
SV
8476 on_rq = tsk->se.on_rq;
8477
0e1f3483 8478 if (on_rq)
29f59db3 8479 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8480 if (unlikely(running))
8481 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8482
6f505b16 8483 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8484
810b3817
PZ
8485#ifdef CONFIG_FAIR_GROUP_SCHED
8486 if (tsk->sched_class->moved_group)
8487 tsk->sched_class->moved_group(tsk);
8488#endif
8489
0e1f3483
HS
8490 if (unlikely(running))
8491 tsk->sched_class->set_curr_task(rq);
8492 if (on_rq)
7074badb 8493 enqueue_task(rq, tsk, 0);
29f59db3 8494
29f59db3
SV
8495 task_rq_unlock(rq, &flags);
8496}
6d6bc0ad 8497#endif /* CONFIG_GROUP_SCHED */
29f59db3 8498
052f1dc7 8499#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8500static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8501{
8502 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8503 int on_rq;
8504
29f59db3 8505 on_rq = se->on_rq;
62fb1851 8506 if (on_rq)
29f59db3
SV
8507 dequeue_entity(cfs_rq, se, 0);
8508
8509 se->load.weight = shares;
e05510d0 8510 se->load.inv_weight = 0;
29f59db3 8511
62fb1851 8512 if (on_rq)
29f59db3 8513 enqueue_entity(cfs_rq, se, 0);
c09595f6 8514}
62fb1851 8515
c09595f6
PZ
8516static void set_se_shares(struct sched_entity *se, unsigned long shares)
8517{
8518 struct cfs_rq *cfs_rq = se->cfs_rq;
8519 struct rq *rq = cfs_rq->rq;
8520 unsigned long flags;
8521
8522 spin_lock_irqsave(&rq->lock, flags);
8523 __set_se_shares(se, shares);
8524 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8525}
8526
8ed36996
PZ
8527static DEFINE_MUTEX(shares_mutex);
8528
4cf86d77 8529int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8530{
8531 int i;
8ed36996 8532 unsigned long flags;
c61935fd 8533
ec7dc8ac
DG
8534 /*
8535 * We can't change the weight of the root cgroup.
8536 */
8537 if (!tg->se[0])
8538 return -EINVAL;
8539
18d95a28
PZ
8540 if (shares < MIN_SHARES)
8541 shares = MIN_SHARES;
cb4ad1ff
MX
8542 else if (shares > MAX_SHARES)
8543 shares = MAX_SHARES;
62fb1851 8544
8ed36996 8545 mutex_lock(&shares_mutex);
9b5b7751 8546 if (tg->shares == shares)
5cb350ba 8547 goto done;
29f59db3 8548
8ed36996 8549 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8550 for_each_possible_cpu(i)
8551 unregister_fair_sched_group(tg, i);
f473aa5e 8552 list_del_rcu(&tg->siblings);
8ed36996 8553 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8554
8555 /* wait for any ongoing reference to this group to finish */
8556 synchronize_sched();
8557
8558 /*
8559 * Now we are free to modify the group's share on each cpu
8560 * w/o tripping rebalance_share or load_balance_fair.
8561 */
9b5b7751 8562 tg->shares = shares;
c09595f6
PZ
8563 for_each_possible_cpu(i) {
8564 /*
8565 * force a rebalance
8566 */
8567 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8568 set_se_shares(tg->se[i], shares);
c09595f6 8569 }
29f59db3 8570
6b2d7700
SV
8571 /*
8572 * Enable load balance activity on this group, by inserting it back on
8573 * each cpu's rq->leaf_cfs_rq_list.
8574 */
8ed36996 8575 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8576 for_each_possible_cpu(i)
8577 register_fair_sched_group(tg, i);
f473aa5e 8578 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8579 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8580done:
8ed36996 8581 mutex_unlock(&shares_mutex);
9b5b7751 8582 return 0;
29f59db3
SV
8583}
8584
5cb350ba
DG
8585unsigned long sched_group_shares(struct task_group *tg)
8586{
8587 return tg->shares;
8588}
052f1dc7 8589#endif
5cb350ba 8590
052f1dc7 8591#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8592/*
9f0c1e56 8593 * Ensure that the real time constraints are schedulable.
6f505b16 8594 */
9f0c1e56
PZ
8595static DEFINE_MUTEX(rt_constraints_mutex);
8596
8597static unsigned long to_ratio(u64 period, u64 runtime)
8598{
8599 if (runtime == RUNTIME_INF)
8600 return 1ULL << 16;
8601
6f6d6a1a 8602 return div64_u64(runtime << 16, period);
9f0c1e56
PZ
8603}
8604
b40b2e8e
PZ
8605#ifdef CONFIG_CGROUP_SCHED
8606static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8607{
10b612f4 8608 struct task_group *tgi, *parent = tg->parent;
b40b2e8e
PZ
8609 unsigned long total = 0;
8610
8611 if (!parent) {
8612 if (global_rt_period() < period)
8613 return 0;
8614
8615 return to_ratio(period, runtime) <
8616 to_ratio(global_rt_period(), global_rt_runtime());
8617 }
8618
8619 if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
8620 return 0;
8621
8622 rcu_read_lock();
8623 list_for_each_entry_rcu(tgi, &parent->children, siblings) {
8624 if (tgi == tg)
8625 continue;
8626
8627 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8628 tgi->rt_bandwidth.rt_runtime);
8629 }
8630 rcu_read_unlock();
8631
10b612f4 8632 return total + to_ratio(period, runtime) <=
b40b2e8e
PZ
8633 to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
8634 parent->rt_bandwidth.rt_runtime);
8635}
8636#elif defined CONFIG_USER_SCHED
9f0c1e56 8637static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6f505b16
PZ
8638{
8639 struct task_group *tgi;
8640 unsigned long total = 0;
9f0c1e56 8641 unsigned long global_ratio =
d0b27fa7 8642 to_ratio(global_rt_period(), global_rt_runtime());
6f505b16
PZ
8643
8644 rcu_read_lock();
9f0c1e56
PZ
8645 list_for_each_entry_rcu(tgi, &task_groups, list) {
8646 if (tgi == tg)
8647 continue;
6f505b16 8648
d0b27fa7
PZ
8649 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8650 tgi->rt_bandwidth.rt_runtime);
9f0c1e56
PZ
8651 }
8652 rcu_read_unlock();
6f505b16 8653
9f0c1e56 8654 return total + to_ratio(period, runtime) < global_ratio;
6f505b16 8655}
b40b2e8e 8656#endif
6f505b16 8657
521f1a24
DG
8658/* Must be called with tasklist_lock held */
8659static inline int tg_has_rt_tasks(struct task_group *tg)
8660{
8661 struct task_struct *g, *p;
8662 do_each_thread(g, p) {
8663 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8664 return 1;
8665 } while_each_thread(g, p);
8666 return 0;
8667}
8668
d0b27fa7
PZ
8669static int tg_set_bandwidth(struct task_group *tg,
8670 u64 rt_period, u64 rt_runtime)
6f505b16 8671{
ac086bc2 8672 int i, err = 0;
9f0c1e56 8673
9f0c1e56 8674 mutex_lock(&rt_constraints_mutex);
521f1a24 8675 read_lock(&tasklist_lock);
ac086bc2 8676 if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
521f1a24
DG
8677 err = -EBUSY;
8678 goto unlock;
8679 }
9f0c1e56
PZ
8680 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
8681 err = -EINVAL;
8682 goto unlock;
8683 }
ac086bc2
PZ
8684
8685 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8686 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8687 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8688
8689 for_each_possible_cpu(i) {
8690 struct rt_rq *rt_rq = tg->rt_rq[i];
8691
8692 spin_lock(&rt_rq->rt_runtime_lock);
8693 rt_rq->rt_runtime = rt_runtime;
8694 spin_unlock(&rt_rq->rt_runtime_lock);
8695 }
8696 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8697 unlock:
521f1a24 8698 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8699 mutex_unlock(&rt_constraints_mutex);
8700
8701 return err;
6f505b16
PZ
8702}
8703
d0b27fa7
PZ
8704int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8705{
8706 u64 rt_runtime, rt_period;
8707
8708 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8709 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8710 if (rt_runtime_us < 0)
8711 rt_runtime = RUNTIME_INF;
8712
8713 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8714}
8715
9f0c1e56
PZ
8716long sched_group_rt_runtime(struct task_group *tg)
8717{
8718 u64 rt_runtime_us;
8719
d0b27fa7 8720 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8721 return -1;
8722
d0b27fa7 8723 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8724 do_div(rt_runtime_us, NSEC_PER_USEC);
8725 return rt_runtime_us;
8726}
d0b27fa7
PZ
8727
8728int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8729{
8730 u64 rt_runtime, rt_period;
8731
8732 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8733 rt_runtime = tg->rt_bandwidth.rt_runtime;
8734
8735 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8736}
8737
8738long sched_group_rt_period(struct task_group *tg)
8739{
8740 u64 rt_period_us;
8741
8742 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8743 do_div(rt_period_us, NSEC_PER_USEC);
8744 return rt_period_us;
8745}
8746
8747static int sched_rt_global_constraints(void)
8748{
10b612f4
PZ
8749 struct task_group *tg = &root_task_group;
8750 u64 rt_runtime, rt_period;
d0b27fa7
PZ
8751 int ret = 0;
8752
10b612f4
PZ
8753 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8754 rt_runtime = tg->rt_bandwidth.rt_runtime;
8755
d0b27fa7 8756 mutex_lock(&rt_constraints_mutex);
10b612f4 8757 if (!__rt_schedulable(tg, rt_period, rt_runtime))
d0b27fa7
PZ
8758 ret = -EINVAL;
8759 mutex_unlock(&rt_constraints_mutex);
8760
8761 return ret;
8762}
6d6bc0ad 8763#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8764static int sched_rt_global_constraints(void)
8765{
ac086bc2
PZ
8766 unsigned long flags;
8767 int i;
8768
8769 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8770 for_each_possible_cpu(i) {
8771 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8772
8773 spin_lock(&rt_rq->rt_runtime_lock);
8774 rt_rq->rt_runtime = global_rt_runtime();
8775 spin_unlock(&rt_rq->rt_runtime_lock);
8776 }
8777 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8778
d0b27fa7
PZ
8779 return 0;
8780}
6d6bc0ad 8781#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8782
8783int sched_rt_handler(struct ctl_table *table, int write,
8784 struct file *filp, void __user *buffer, size_t *lenp,
8785 loff_t *ppos)
8786{
8787 int ret;
8788 int old_period, old_runtime;
8789 static DEFINE_MUTEX(mutex);
8790
8791 mutex_lock(&mutex);
8792 old_period = sysctl_sched_rt_period;
8793 old_runtime = sysctl_sched_rt_runtime;
8794
8795 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
8796
8797 if (!ret && write) {
8798 ret = sched_rt_global_constraints();
8799 if (ret) {
8800 sysctl_sched_rt_period = old_period;
8801 sysctl_sched_rt_runtime = old_runtime;
8802 } else {
8803 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8804 def_rt_bandwidth.rt_period =
8805 ns_to_ktime(global_rt_period());
8806 }
8807 }
8808 mutex_unlock(&mutex);
8809
8810 return ret;
8811}
68318b8e 8812
052f1dc7 8813#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8814
8815/* return corresponding task_group object of a cgroup */
2b01dfe3 8816static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8817{
2b01dfe3
PM
8818 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8819 struct task_group, css);
68318b8e
SV
8820}
8821
8822static struct cgroup_subsys_state *
2b01dfe3 8823cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8824{
ec7dc8ac 8825 struct task_group *tg, *parent;
68318b8e 8826
2b01dfe3 8827 if (!cgrp->parent) {
68318b8e 8828 /* This is early initialization for the top cgroup */
2b01dfe3 8829 init_task_group.css.cgroup = cgrp;
68318b8e
SV
8830 return &init_task_group.css;
8831 }
8832
ec7dc8ac
DG
8833 parent = cgroup_tg(cgrp->parent);
8834 tg = sched_create_group(parent);
68318b8e
SV
8835 if (IS_ERR(tg))
8836 return ERR_PTR(-ENOMEM);
8837
8838 /* Bind the cgroup to task_group object we just created */
2b01dfe3 8839 tg->css.cgroup = cgrp;
68318b8e
SV
8840
8841 return &tg->css;
8842}
8843
41a2d6cf
IM
8844static void
8845cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8846{
2b01dfe3 8847 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8848
8849 sched_destroy_group(tg);
8850}
8851
41a2d6cf
IM
8852static int
8853cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8854 struct task_struct *tsk)
68318b8e 8855{
b68aa230
PZ
8856#ifdef CONFIG_RT_GROUP_SCHED
8857 /* Don't accept realtime tasks when there is no way for them to run */
d0b27fa7 8858 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
8859 return -EINVAL;
8860#else
68318b8e
SV
8861 /* We don't support RT-tasks being in separate groups */
8862 if (tsk->sched_class != &fair_sched_class)
8863 return -EINVAL;
b68aa230 8864#endif
68318b8e
SV
8865
8866 return 0;
8867}
8868
8869static void
2b01dfe3 8870cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
8871 struct cgroup *old_cont, struct task_struct *tsk)
8872{
8873 sched_move_task(tsk);
8874}
8875
052f1dc7 8876#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8877static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8878 u64 shareval)
68318b8e 8879{
2b01dfe3 8880 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8881}
8882
f4c753b7 8883static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8884{
2b01dfe3 8885 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8886
8887 return (u64) tg->shares;
8888}
6d6bc0ad 8889#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8890
052f1dc7 8891#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8892static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8893 s64 val)
6f505b16 8894{
06ecb27c 8895 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8896}
8897
06ecb27c 8898static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8899{
06ecb27c 8900 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8901}
d0b27fa7
PZ
8902
8903static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8904 u64 rt_period_us)
8905{
8906 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8907}
8908
8909static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8910{
8911 return sched_group_rt_period(cgroup_tg(cgrp));
8912}
6d6bc0ad 8913#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8914
fe5c7cc2 8915static struct cftype cpu_files[] = {
052f1dc7 8916#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8917 {
8918 .name = "shares",
f4c753b7
PM
8919 .read_u64 = cpu_shares_read_u64,
8920 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8921 },
052f1dc7
PZ
8922#endif
8923#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8924 {
9f0c1e56 8925 .name = "rt_runtime_us",
06ecb27c
PM
8926 .read_s64 = cpu_rt_runtime_read,
8927 .write_s64 = cpu_rt_runtime_write,
6f505b16 8928 },
d0b27fa7
PZ
8929 {
8930 .name = "rt_period_us",
f4c753b7
PM
8931 .read_u64 = cpu_rt_period_read_uint,
8932 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8933 },
052f1dc7 8934#endif
68318b8e
SV
8935};
8936
8937static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8938{
fe5c7cc2 8939 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8940}
8941
8942struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8943 .name = "cpu",
8944 .create = cpu_cgroup_create,
8945 .destroy = cpu_cgroup_destroy,
8946 .can_attach = cpu_cgroup_can_attach,
8947 .attach = cpu_cgroup_attach,
8948 .populate = cpu_cgroup_populate,
8949 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8950 .early_init = 1,
8951};
8952
052f1dc7 8953#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8954
8955#ifdef CONFIG_CGROUP_CPUACCT
8956
8957/*
8958 * CPU accounting code for task groups.
8959 *
8960 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8961 * (balbir@in.ibm.com).
8962 */
8963
8964/* track cpu usage of a group of tasks */
8965struct cpuacct {
8966 struct cgroup_subsys_state css;
8967 /* cpuusage holds pointer to a u64-type object on every cpu */
8968 u64 *cpuusage;
8969};
8970
8971struct cgroup_subsys cpuacct_subsys;
8972
8973/* return cpu accounting group corresponding to this container */
32cd756a 8974static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8975{
32cd756a 8976 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8977 struct cpuacct, css);
8978}
8979
8980/* return cpu accounting group to which this task belongs */
8981static inline struct cpuacct *task_ca(struct task_struct *tsk)
8982{
8983 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8984 struct cpuacct, css);
8985}
8986
8987/* create a new cpu accounting group */
8988static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8989 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
8990{
8991 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8992
8993 if (!ca)
8994 return ERR_PTR(-ENOMEM);
8995
8996 ca->cpuusage = alloc_percpu(u64);
8997 if (!ca->cpuusage) {
8998 kfree(ca);
8999 return ERR_PTR(-ENOMEM);
9000 }
9001
9002 return &ca->css;
9003}
9004
9005/* destroy an existing cpu accounting group */
41a2d6cf 9006static void
32cd756a 9007cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9008{
32cd756a 9009 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9010
9011 free_percpu(ca->cpuusage);
9012 kfree(ca);
9013}
9014
9015/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9016static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9017{
32cd756a 9018 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9019 u64 totalcpuusage = 0;
9020 int i;
9021
9022 for_each_possible_cpu(i) {
9023 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9024
9025 /*
9026 * Take rq->lock to make 64-bit addition safe on 32-bit
9027 * platforms.
9028 */
9029 spin_lock_irq(&cpu_rq(i)->lock);
9030 totalcpuusage += *cpuusage;
9031 spin_unlock_irq(&cpu_rq(i)->lock);
9032 }
9033
9034 return totalcpuusage;
9035}
9036
0297b803
DG
9037static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9038 u64 reset)
9039{
9040 struct cpuacct *ca = cgroup_ca(cgrp);
9041 int err = 0;
9042 int i;
9043
9044 if (reset) {
9045 err = -EINVAL;
9046 goto out;
9047 }
9048
9049 for_each_possible_cpu(i) {
9050 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9051
9052 spin_lock_irq(&cpu_rq(i)->lock);
9053 *cpuusage = 0;
9054 spin_unlock_irq(&cpu_rq(i)->lock);
9055 }
9056out:
9057 return err;
9058}
9059
d842de87
SV
9060static struct cftype files[] = {
9061 {
9062 .name = "usage",
f4c753b7
PM
9063 .read_u64 = cpuusage_read,
9064 .write_u64 = cpuusage_write,
d842de87
SV
9065 },
9066};
9067
32cd756a 9068static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9069{
32cd756a 9070 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9071}
9072
9073/*
9074 * charge this task's execution time to its accounting group.
9075 *
9076 * called with rq->lock held.
9077 */
9078static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9079{
9080 struct cpuacct *ca;
9081
9082 if (!cpuacct_subsys.active)
9083 return;
9084
9085 ca = task_ca(tsk);
9086 if (ca) {
9087 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
9088
9089 *cpuusage += cputime;
9090 }
9091}
9092
9093struct cgroup_subsys cpuacct_subsys = {
9094 .name = "cpuacct",
9095 .create = cpuacct_create,
9096 .destroy = cpuacct_destroy,
9097 .populate = cpuacct_populate,
9098 .subsys_id = cpuacct_subsys_id,
9099};
9100#endif /* CONFIG_CGROUP_CPUACCT */