[PATCH] V4L: 926: Saa7134 alsa can only be autoloaded after saa7134 is active
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 */
20
21#include <linux/mm.h>
22#include <linux/module.h>
23#include <linux/nmi.h>
24#include <linux/init.h>
25#include <asm/uaccess.h>
26#include <linux/highmem.h>
27#include <linux/smp_lock.h>
28#include <asm/mmu_context.h>
29#include <linux/interrupt.h>
30#include <linux/completion.h>
31#include <linux/kernel_stat.h>
32#include <linux/security.h>
33#include <linux/notifier.h>
34#include <linux/profile.h>
35#include <linux/suspend.h>
36#include <linux/blkdev.h>
37#include <linux/delay.h>
38#include <linux/smp.h>
39#include <linux/threads.h>
40#include <linux/timer.h>
41#include <linux/rcupdate.h>
42#include <linux/cpu.h>
43#include <linux/cpuset.h>
44#include <linux/percpu.h>
45#include <linux/kthread.h>
46#include <linux/seq_file.h>
47#include <linux/syscalls.h>
48#include <linux/times.h>
49#include <linux/acct.h>
50#include <asm/tlb.h>
51
52#include <asm/unistd.h>
53
54/*
55 * Convert user-nice values [ -20 ... 0 ... 19 ]
56 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
57 * and back.
58 */
59#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
60#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
61#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
62
63/*
64 * 'User priority' is the nice value converted to something we
65 * can work with better when scaling various scheduler parameters,
66 * it's a [ 0 ... 39 ] range.
67 */
68#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
69#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
70#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
71
72/*
73 * Some helpers for converting nanosecond timing to jiffy resolution
74 */
75#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
76#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
77
78/*
79 * These are the 'tuning knobs' of the scheduler:
80 *
81 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
82 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
83 * Timeslices get refilled after they expire.
84 */
85#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
86#define DEF_TIMESLICE (100 * HZ / 1000)
87#define ON_RUNQUEUE_WEIGHT 30
88#define CHILD_PENALTY 95
89#define PARENT_PENALTY 100
90#define EXIT_WEIGHT 3
91#define PRIO_BONUS_RATIO 25
92#define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
93#define INTERACTIVE_DELTA 2
94#define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
95#define STARVATION_LIMIT (MAX_SLEEP_AVG)
96#define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
97
98/*
99 * If a task is 'interactive' then we reinsert it in the active
100 * array after it has expired its current timeslice. (it will not
101 * continue to run immediately, it will still roundrobin with
102 * other interactive tasks.)
103 *
104 * This part scales the interactivity limit depending on niceness.
105 *
106 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
107 * Here are a few examples of different nice levels:
108 *
109 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
110 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
111 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
112 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
113 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
114 *
115 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
116 * priority range a task can explore, a value of '1' means the
117 * task is rated interactive.)
118 *
119 * Ie. nice +19 tasks can never get 'interactive' enough to be
120 * reinserted into the active array. And only heavily CPU-hog nice -20
121 * tasks will be expired. Default nice 0 tasks are somewhere between,
122 * it takes some effort for them to get interactive, but it's not
123 * too hard.
124 */
125
126#define CURRENT_BONUS(p) \
127 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
128 MAX_SLEEP_AVG)
129
130#define GRANULARITY (10 * HZ / 1000 ? : 1)
131
132#ifdef CONFIG_SMP
133#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
134 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
135 num_online_cpus())
136#else
137#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
138 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
139#endif
140
141#define SCALE(v1,v1_max,v2_max) \
142 (v1) * (v2_max) / (v1_max)
143
144#define DELTA(p) \
145 (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
146
147#define TASK_INTERACTIVE(p) \
148 ((p)->prio <= (p)->static_prio - DELTA(p))
149
150#define INTERACTIVE_SLEEP(p) \
151 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
152 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
153
154#define TASK_PREEMPTS_CURR(p, rq) \
155 ((p)->prio < (rq)->curr->prio)
156
157/*
158 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
159 * to time slice values: [800ms ... 100ms ... 5ms]
160 *
161 * The higher a thread's priority, the bigger timeslices
162 * it gets during one round of execution. But even the lowest
163 * priority thread gets MIN_TIMESLICE worth of execution time.
164 */
165
166#define SCALE_PRIO(x, prio) \
167 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
168
48c08d3f 169static unsigned int task_timeslice(task_t *p)
1da177e4
LT
170{
171 if (p->static_prio < NICE_TO_PRIO(0))
172 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
173 else
174 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
175}
176#define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
177 < (long long) (sd)->cache_hot_time)
178
179/*
180 * These are the runqueue data structures:
181 */
182
183#define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
184
185typedef struct runqueue runqueue_t;
186
187struct prio_array {
188 unsigned int nr_active;
189 unsigned long bitmap[BITMAP_SIZE];
190 struct list_head queue[MAX_PRIO];
191};
192
193/*
194 * This is the main, per-CPU runqueue data structure.
195 *
196 * Locking rule: those places that want to lock multiple runqueues
197 * (such as the load balancing or the thread migration code), lock
198 * acquire operations must be ordered by ascending &runqueue.
199 */
200struct runqueue {
201 spinlock_t lock;
202
203 /*
204 * nr_running and cpu_load should be in the same cacheline because
205 * remote CPUs use both these fields when doing load calculation.
206 */
207 unsigned long nr_running;
208#ifdef CONFIG_SMP
7897986b 209 unsigned long cpu_load[3];
1da177e4
LT
210#endif
211 unsigned long long nr_switches;
212
213 /*
214 * This is part of a global counter where only the total sum
215 * over all CPUs matters. A task can increase this counter on
216 * one CPU and if it got migrated afterwards it may decrease
217 * it on another CPU. Always updated under the runqueue lock:
218 */
219 unsigned long nr_uninterruptible;
220
221 unsigned long expired_timestamp;
222 unsigned long long timestamp_last_tick;
223 task_t *curr, *idle;
224 struct mm_struct *prev_mm;
225 prio_array_t *active, *expired, arrays[2];
226 int best_expired_prio;
227 atomic_t nr_iowait;
228
229#ifdef CONFIG_SMP
230 struct sched_domain *sd;
231
232 /* For active balancing */
233 int active_balance;
234 int push_cpu;
235
236 task_t *migration_thread;
237 struct list_head migration_queue;
238#endif
239
240#ifdef CONFIG_SCHEDSTATS
241 /* latency stats */
242 struct sched_info rq_sched_info;
243
244 /* sys_sched_yield() stats */
245 unsigned long yld_exp_empty;
246 unsigned long yld_act_empty;
247 unsigned long yld_both_empty;
248 unsigned long yld_cnt;
249
250 /* schedule() stats */
251 unsigned long sched_switch;
252 unsigned long sched_cnt;
253 unsigned long sched_goidle;
254
255 /* try_to_wake_up() stats */
256 unsigned long ttwu_cnt;
257 unsigned long ttwu_local;
258#endif
259};
260
261static DEFINE_PER_CPU(struct runqueue, runqueues);
262
674311d5
NP
263/*
264 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 265 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
266 *
267 * The domain tree of any CPU may only be accessed from within
268 * preempt-disabled sections.
269 */
1da177e4 270#define for_each_domain(cpu, domain) \
674311d5 271for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
1da177e4
LT
272
273#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
274#define this_rq() (&__get_cpu_var(runqueues))
275#define task_rq(p) cpu_rq(task_cpu(p))
276#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
277
1da177e4 278#ifndef prepare_arch_switch
4866cde0
NP
279# define prepare_arch_switch(next) do { } while (0)
280#endif
281#ifndef finish_arch_switch
282# define finish_arch_switch(prev) do { } while (0)
283#endif
284
285#ifndef __ARCH_WANT_UNLOCKED_CTXSW
286static inline int task_running(runqueue_t *rq, task_t *p)
287{
288 return rq->curr == p;
289}
290
291static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
292{
293}
294
295static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
296{
da04c035
IM
297#ifdef CONFIG_DEBUG_SPINLOCK
298 /* this is a valid case when another task releases the spinlock */
299 rq->lock.owner = current;
300#endif
4866cde0
NP
301 spin_unlock_irq(&rq->lock);
302}
303
304#else /* __ARCH_WANT_UNLOCKED_CTXSW */
305static inline int task_running(runqueue_t *rq, task_t *p)
306{
307#ifdef CONFIG_SMP
308 return p->oncpu;
309#else
310 return rq->curr == p;
311#endif
312}
313
314static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
315{
316#ifdef CONFIG_SMP
317 /*
318 * We can optimise this out completely for !SMP, because the
319 * SMP rebalancing from interrupt is the only thing that cares
320 * here.
321 */
322 next->oncpu = 1;
323#endif
324#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
325 spin_unlock_irq(&rq->lock);
326#else
327 spin_unlock(&rq->lock);
328#endif
329}
330
331static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
332{
333#ifdef CONFIG_SMP
334 /*
335 * After ->oncpu is cleared, the task can be moved to a different CPU.
336 * We must ensure this doesn't happen until the switch is completely
337 * finished.
338 */
339 smp_wmb();
340 prev->oncpu = 0;
341#endif
342#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
343 local_irq_enable();
1da177e4 344#endif
4866cde0
NP
345}
346#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4
LT
347
348/*
349 * task_rq_lock - lock the runqueue a given task resides on and disable
350 * interrupts. Note the ordering: we can safely lookup the task_rq without
351 * explicitly disabling preemption.
352 */
353static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
354 __acquires(rq->lock)
355{
356 struct runqueue *rq;
357
358repeat_lock_task:
359 local_irq_save(*flags);
360 rq = task_rq(p);
361 spin_lock(&rq->lock);
362 if (unlikely(rq != task_rq(p))) {
363 spin_unlock_irqrestore(&rq->lock, *flags);
364 goto repeat_lock_task;
365 }
366 return rq;
367}
368
369static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
370 __releases(rq->lock)
371{
372 spin_unlock_irqrestore(&rq->lock, *flags);
373}
374
375#ifdef CONFIG_SCHEDSTATS
376/*
377 * bump this up when changing the output format or the meaning of an existing
378 * format, so that tools can adapt (or abort)
379 */
68767a0a 380#define SCHEDSTAT_VERSION 12
1da177e4
LT
381
382static int show_schedstat(struct seq_file *seq, void *v)
383{
384 int cpu;
385
386 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
387 seq_printf(seq, "timestamp %lu\n", jiffies);
388 for_each_online_cpu(cpu) {
389 runqueue_t *rq = cpu_rq(cpu);
390#ifdef CONFIG_SMP
391 struct sched_domain *sd;
392 int dcnt = 0;
393#endif
394
395 /* runqueue-specific stats */
396 seq_printf(seq,
397 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
398 cpu, rq->yld_both_empty,
399 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
400 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
401 rq->ttwu_cnt, rq->ttwu_local,
402 rq->rq_sched_info.cpu_time,
403 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
404
405 seq_printf(seq, "\n");
406
407#ifdef CONFIG_SMP
408 /* domain-specific stats */
674311d5 409 preempt_disable();
1da177e4
LT
410 for_each_domain(cpu, sd) {
411 enum idle_type itype;
412 char mask_str[NR_CPUS];
413
414 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
415 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
416 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
417 itype++) {
418 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
419 sd->lb_cnt[itype],
420 sd->lb_balanced[itype],
421 sd->lb_failed[itype],
422 sd->lb_imbalance[itype],
423 sd->lb_gained[itype],
424 sd->lb_hot_gained[itype],
425 sd->lb_nobusyq[itype],
426 sd->lb_nobusyg[itype]);
427 }
68767a0a 428 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
1da177e4 429 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
68767a0a
NP
430 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
431 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
1da177e4
LT
432 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
433 }
674311d5 434 preempt_enable();
1da177e4
LT
435#endif
436 }
437 return 0;
438}
439
440static int schedstat_open(struct inode *inode, struct file *file)
441{
442 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
443 char *buf = kmalloc(size, GFP_KERNEL);
444 struct seq_file *m;
445 int res;
446
447 if (!buf)
448 return -ENOMEM;
449 res = single_open(file, show_schedstat, NULL);
450 if (!res) {
451 m = file->private_data;
452 m->buf = buf;
453 m->size = size;
454 } else
455 kfree(buf);
456 return res;
457}
458
459struct file_operations proc_schedstat_operations = {
460 .open = schedstat_open,
461 .read = seq_read,
462 .llseek = seq_lseek,
463 .release = single_release,
464};
465
466# define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
467# define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
468#else /* !CONFIG_SCHEDSTATS */
469# define schedstat_inc(rq, field) do { } while (0)
470# define schedstat_add(rq, field, amt) do { } while (0)
471#endif
472
473/*
474 * rq_lock - lock a given runqueue and disable interrupts.
475 */
476static inline runqueue_t *this_rq_lock(void)
477 __acquires(rq->lock)
478{
479 runqueue_t *rq;
480
481 local_irq_disable();
482 rq = this_rq();
483 spin_lock(&rq->lock);
484
485 return rq;
486}
487
1da177e4
LT
488#ifdef CONFIG_SCHEDSTATS
489/*
490 * Called when a process is dequeued from the active array and given
491 * the cpu. We should note that with the exception of interactive
492 * tasks, the expired queue will become the active queue after the active
493 * queue is empty, without explicitly dequeuing and requeuing tasks in the
494 * expired queue. (Interactive tasks may be requeued directly to the
495 * active queue, thus delaying tasks in the expired queue from running;
496 * see scheduler_tick()).
497 *
498 * This function is only called from sched_info_arrive(), rather than
499 * dequeue_task(). Even though a task may be queued and dequeued multiple
500 * times as it is shuffled about, we're really interested in knowing how
501 * long it was from the *first* time it was queued to the time that it
502 * finally hit a cpu.
503 */
504static inline void sched_info_dequeued(task_t *t)
505{
506 t->sched_info.last_queued = 0;
507}
508
509/*
510 * Called when a task finally hits the cpu. We can now calculate how
511 * long it was waiting to run. We also note when it began so that we
512 * can keep stats on how long its timeslice is.
513 */
514static inline void sched_info_arrive(task_t *t)
515{
516 unsigned long now = jiffies, diff = 0;
517 struct runqueue *rq = task_rq(t);
518
519 if (t->sched_info.last_queued)
520 diff = now - t->sched_info.last_queued;
521 sched_info_dequeued(t);
522 t->sched_info.run_delay += diff;
523 t->sched_info.last_arrival = now;
524 t->sched_info.pcnt++;
525
526 if (!rq)
527 return;
528
529 rq->rq_sched_info.run_delay += diff;
530 rq->rq_sched_info.pcnt++;
531}
532
533/*
534 * Called when a process is queued into either the active or expired
535 * array. The time is noted and later used to determine how long we
536 * had to wait for us to reach the cpu. Since the expired queue will
537 * become the active queue after active queue is empty, without dequeuing
538 * and requeuing any tasks, we are interested in queuing to either. It
539 * is unusual but not impossible for tasks to be dequeued and immediately
540 * requeued in the same or another array: this can happen in sched_yield(),
541 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
542 * to runqueue.
543 *
544 * This function is only called from enqueue_task(), but also only updates
545 * the timestamp if it is already not set. It's assumed that
546 * sched_info_dequeued() will clear that stamp when appropriate.
547 */
548static inline void sched_info_queued(task_t *t)
549{
550 if (!t->sched_info.last_queued)
551 t->sched_info.last_queued = jiffies;
552}
553
554/*
555 * Called when a process ceases being the active-running process, either
556 * voluntarily or involuntarily. Now we can calculate how long we ran.
557 */
558static inline void sched_info_depart(task_t *t)
559{
560 struct runqueue *rq = task_rq(t);
561 unsigned long diff = jiffies - t->sched_info.last_arrival;
562
563 t->sched_info.cpu_time += diff;
564
565 if (rq)
566 rq->rq_sched_info.cpu_time += diff;
567}
568
569/*
570 * Called when tasks are switched involuntarily due, typically, to expiring
571 * their time slice. (This may also be called when switching to or from
572 * the idle task.) We are only called when prev != next.
573 */
574static inline void sched_info_switch(task_t *prev, task_t *next)
575{
576 struct runqueue *rq = task_rq(prev);
577
578 /*
579 * prev now departs the cpu. It's not interesting to record
580 * stats about how efficient we were at scheduling the idle
581 * process, however.
582 */
583 if (prev != rq->idle)
584 sched_info_depart(prev);
585
586 if (next != rq->idle)
587 sched_info_arrive(next);
588}
589#else
590#define sched_info_queued(t) do { } while (0)
591#define sched_info_switch(t, next) do { } while (0)
592#endif /* CONFIG_SCHEDSTATS */
593
594/*
595 * Adding/removing a task to/from a priority array:
596 */
597static void dequeue_task(struct task_struct *p, prio_array_t *array)
598{
599 array->nr_active--;
600 list_del(&p->run_list);
601 if (list_empty(array->queue + p->prio))
602 __clear_bit(p->prio, array->bitmap);
603}
604
605static void enqueue_task(struct task_struct *p, prio_array_t *array)
606{
607 sched_info_queued(p);
608 list_add_tail(&p->run_list, array->queue + p->prio);
609 __set_bit(p->prio, array->bitmap);
610 array->nr_active++;
611 p->array = array;
612}
613
614/*
615 * Put task to the end of the run list without the overhead of dequeue
616 * followed by enqueue.
617 */
618static void requeue_task(struct task_struct *p, prio_array_t *array)
619{
620 list_move_tail(&p->run_list, array->queue + p->prio);
621}
622
623static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
624{
625 list_add(&p->run_list, array->queue + p->prio);
626 __set_bit(p->prio, array->bitmap);
627 array->nr_active++;
628 p->array = array;
629}
630
631/*
632 * effective_prio - return the priority that is based on the static
633 * priority but is modified by bonuses/penalties.
634 *
635 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
636 * into the -5 ... 0 ... +5 bonus/penalty range.
637 *
638 * We use 25% of the full 0...39 priority range so that:
639 *
640 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
641 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
642 *
643 * Both properties are important to certain workloads.
644 */
645static int effective_prio(task_t *p)
646{
647 int bonus, prio;
648
649 if (rt_task(p))
650 return p->prio;
651
652 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
653
654 prio = p->static_prio - bonus;
655 if (prio < MAX_RT_PRIO)
656 prio = MAX_RT_PRIO;
657 if (prio > MAX_PRIO-1)
658 prio = MAX_PRIO-1;
659 return prio;
660}
661
662/*
663 * __activate_task - move a task to the runqueue.
664 */
665static inline void __activate_task(task_t *p, runqueue_t *rq)
666{
667 enqueue_task(p, rq->active);
668 rq->nr_running++;
669}
670
671/*
672 * __activate_idle_task - move idle task to the _front_ of runqueue.
673 */
674static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
675{
676 enqueue_task_head(p, rq->active);
677 rq->nr_running++;
678}
679
a3464a10 680static int recalc_task_prio(task_t *p, unsigned long long now)
1da177e4
LT
681{
682 /* Caller must always ensure 'now >= p->timestamp' */
683 unsigned long long __sleep_time = now - p->timestamp;
684 unsigned long sleep_time;
685
686 if (__sleep_time > NS_MAX_SLEEP_AVG)
687 sleep_time = NS_MAX_SLEEP_AVG;
688 else
689 sleep_time = (unsigned long)__sleep_time;
690
691 if (likely(sleep_time > 0)) {
692 /*
693 * User tasks that sleep a long time are categorised as
694 * idle and will get just interactive status to stay active &
695 * prevent them suddenly becoming cpu hogs and starving
696 * other processes.
697 */
698 if (p->mm && p->activated != -1 &&
699 sleep_time > INTERACTIVE_SLEEP(p)) {
700 p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
701 DEF_TIMESLICE);
702 } else {
703 /*
704 * The lower the sleep avg a task has the more
705 * rapidly it will rise with sleep time.
706 */
707 sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1;
708
709 /*
710 * Tasks waking from uninterruptible sleep are
711 * limited in their sleep_avg rise as they
712 * are likely to be waiting on I/O
713 */
714 if (p->activated == -1 && p->mm) {
715 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
716 sleep_time = 0;
717 else if (p->sleep_avg + sleep_time >=
718 INTERACTIVE_SLEEP(p)) {
719 p->sleep_avg = INTERACTIVE_SLEEP(p);
720 sleep_time = 0;
721 }
722 }
723
724 /*
725 * This code gives a bonus to interactive tasks.
726 *
727 * The boost works by updating the 'average sleep time'
728 * value here, based on ->timestamp. The more time a
729 * task spends sleeping, the higher the average gets -
730 * and the higher the priority boost gets as well.
731 */
732 p->sleep_avg += sleep_time;
733
734 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
735 p->sleep_avg = NS_MAX_SLEEP_AVG;
736 }
737 }
738
a3464a10 739 return effective_prio(p);
1da177e4
LT
740}
741
742/*
743 * activate_task - move a task to the runqueue and do priority recalculation
744 *
745 * Update all the scheduling statistics stuff. (sleep average
746 * calculation, priority modifiers, etc.)
747 */
748static void activate_task(task_t *p, runqueue_t *rq, int local)
749{
750 unsigned long long now;
751
752 now = sched_clock();
753#ifdef CONFIG_SMP
754 if (!local) {
755 /* Compensate for drifting sched_clock */
756 runqueue_t *this_rq = this_rq();
757 now = (now - this_rq->timestamp_last_tick)
758 + rq->timestamp_last_tick;
759 }
760#endif
761
a3464a10 762 p->prio = recalc_task_prio(p, now);
1da177e4
LT
763
764 /*
765 * This checks to make sure it's not an uninterruptible task
766 * that is now waking up.
767 */
768 if (!p->activated) {
769 /*
770 * Tasks which were woken up by interrupts (ie. hw events)
771 * are most likely of interactive nature. So we give them
772 * the credit of extending their sleep time to the period
773 * of time they spend on the runqueue, waiting for execution
774 * on a CPU, first time around:
775 */
776 if (in_interrupt())
777 p->activated = 2;
778 else {
779 /*
780 * Normal first-time wakeups get a credit too for
781 * on-runqueue time, but it will be weighted down:
782 */
783 p->activated = 1;
784 }
785 }
786 p->timestamp = now;
787
788 __activate_task(p, rq);
789}
790
791/*
792 * deactivate_task - remove a task from the runqueue.
793 */
794static void deactivate_task(struct task_struct *p, runqueue_t *rq)
795{
796 rq->nr_running--;
797 dequeue_task(p, p->array);
798 p->array = NULL;
799}
800
801/*
802 * resched_task - mark a task 'to be rescheduled now'.
803 *
804 * On UP this means the setting of the need_resched flag, on SMP it
805 * might also involve a cross-CPU call to trigger the scheduler on
806 * the target CPU.
807 */
808#ifdef CONFIG_SMP
809static void resched_task(task_t *p)
810{
811 int need_resched, nrpolling;
812
813 assert_spin_locked(&task_rq(p)->lock);
814
815 /* minimise the chance of sending an interrupt to poll_idle() */
816 nrpolling = test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
817 need_resched = test_and_set_tsk_thread_flag(p,TIF_NEED_RESCHED);
818 nrpolling |= test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
819
820 if (!need_resched && !nrpolling && (task_cpu(p) != smp_processor_id()))
821 smp_send_reschedule(task_cpu(p));
822}
823#else
824static inline void resched_task(task_t *p)
825{
826 set_tsk_need_resched(p);
827}
828#endif
829
830/**
831 * task_curr - is this task currently executing on a CPU?
832 * @p: the task in question.
833 */
834inline int task_curr(const task_t *p)
835{
836 return cpu_curr(task_cpu(p)) == p;
837}
838
839#ifdef CONFIG_SMP
1da177e4
LT
840typedef struct {
841 struct list_head list;
1da177e4 842
1da177e4
LT
843 task_t *task;
844 int dest_cpu;
845
1da177e4
LT
846 struct completion done;
847} migration_req_t;
848
849/*
850 * The task's runqueue lock must be held.
851 * Returns true if you have to wait for migration thread.
852 */
853static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
854{
855 runqueue_t *rq = task_rq(p);
856
857 /*
858 * If the task is not on a runqueue (and not running), then
859 * it is sufficient to simply update the task's cpu field.
860 */
861 if (!p->array && !task_running(rq, p)) {
862 set_task_cpu(p, dest_cpu);
863 return 0;
864 }
865
866 init_completion(&req->done);
1da177e4
LT
867 req->task = p;
868 req->dest_cpu = dest_cpu;
869 list_add(&req->list, &rq->migration_queue);
870 return 1;
871}
872
873/*
874 * wait_task_inactive - wait for a thread to unschedule.
875 *
876 * The caller must ensure that the task *will* unschedule sometime soon,
877 * else this function might spin for a *long* time. This function can't
878 * be called with interrupts off, or it may introduce deadlock with
879 * smp_call_function() if an IPI is sent by the same process we are
880 * waiting to become inactive.
881 */
95cdf3b7 882void wait_task_inactive(task_t *p)
1da177e4
LT
883{
884 unsigned long flags;
885 runqueue_t *rq;
886 int preempted;
887
888repeat:
889 rq = task_rq_lock(p, &flags);
890 /* Must be off runqueue entirely, not preempted. */
891 if (unlikely(p->array || task_running(rq, p))) {
892 /* If it's preempted, we yield. It could be a while. */
893 preempted = !task_running(rq, p);
894 task_rq_unlock(rq, &flags);
895 cpu_relax();
896 if (preempted)
897 yield();
898 goto repeat;
899 }
900 task_rq_unlock(rq, &flags);
901}
902
903/***
904 * kick_process - kick a running thread to enter/exit the kernel
905 * @p: the to-be-kicked thread
906 *
907 * Cause a process which is running on another CPU to enter
908 * kernel-mode, without any delay. (to get signals handled.)
909 *
910 * NOTE: this function doesnt have to take the runqueue lock,
911 * because all it wants to ensure is that the remote task enters
912 * the kernel. If the IPI races and the task has been migrated
913 * to another CPU then no harm is done and the purpose has been
914 * achieved as well.
915 */
916void kick_process(task_t *p)
917{
918 int cpu;
919
920 preempt_disable();
921 cpu = task_cpu(p);
922 if ((cpu != smp_processor_id()) && task_curr(p))
923 smp_send_reschedule(cpu);
924 preempt_enable();
925}
926
927/*
928 * Return a low guess at the load of a migration-source cpu.
929 *
930 * We want to under-estimate the load of migration sources, to
931 * balance conservatively.
932 */
7897986b 933static inline unsigned long source_load(int cpu, int type)
1da177e4
LT
934{
935 runqueue_t *rq = cpu_rq(cpu);
936 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
7897986b
NP
937 if (type == 0)
938 return load_now;
1da177e4 939
7897986b 940 return min(rq->cpu_load[type-1], load_now);
1da177e4
LT
941}
942
943/*
944 * Return a high guess at the load of a migration-target cpu
945 */
7897986b 946static inline unsigned long target_load(int cpu, int type)
1da177e4
LT
947{
948 runqueue_t *rq = cpu_rq(cpu);
949 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
7897986b
NP
950 if (type == 0)
951 return load_now;
1da177e4 952
7897986b 953 return max(rq->cpu_load[type-1], load_now);
1da177e4
LT
954}
955
147cbb4b
NP
956/*
957 * find_idlest_group finds and returns the least busy CPU group within the
958 * domain.
959 */
960static struct sched_group *
961find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
962{
963 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
964 unsigned long min_load = ULONG_MAX, this_load = 0;
965 int load_idx = sd->forkexec_idx;
966 int imbalance = 100 + (sd->imbalance_pct-100)/2;
967
968 do {
969 unsigned long load, avg_load;
970 int local_group;
971 int i;
972
da5a5522
BD
973 /* Skip over this group if it has no CPUs allowed */
974 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
975 goto nextgroup;
976
147cbb4b 977 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
978
979 /* Tally up the load of all CPUs in the group */
980 avg_load = 0;
981
982 for_each_cpu_mask(i, group->cpumask) {
983 /* Bias balancing toward cpus of our domain */
984 if (local_group)
985 load = source_load(i, load_idx);
986 else
987 load = target_load(i, load_idx);
988
989 avg_load += load;
990 }
991
992 /* Adjust by relative CPU power of the group */
993 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
994
995 if (local_group) {
996 this_load = avg_load;
997 this = group;
998 } else if (avg_load < min_load) {
999 min_load = avg_load;
1000 idlest = group;
1001 }
da5a5522 1002nextgroup:
147cbb4b
NP
1003 group = group->next;
1004 } while (group != sd->groups);
1005
1006 if (!idlest || 100*this_load < imbalance*min_load)
1007 return NULL;
1008 return idlest;
1009}
1010
1011/*
1012 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1013 */
95cdf3b7
IM
1014static int
1015find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1016{
da5a5522 1017 cpumask_t tmp;
147cbb4b
NP
1018 unsigned long load, min_load = ULONG_MAX;
1019 int idlest = -1;
1020 int i;
1021
da5a5522
BD
1022 /* Traverse only the allowed CPUs */
1023 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1024
1025 for_each_cpu_mask(i, tmp) {
147cbb4b
NP
1026 load = source_load(i, 0);
1027
1028 if (load < min_load || (load == min_load && i == this_cpu)) {
1029 min_load = load;
1030 idlest = i;
1031 }
1032 }
1033
1034 return idlest;
1035}
1036
476d139c
NP
1037/*
1038 * sched_balance_self: balance the current task (running on cpu) in domains
1039 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1040 * SD_BALANCE_EXEC.
1041 *
1042 * Balance, ie. select the least loaded group.
1043 *
1044 * Returns the target CPU number, or the same CPU if no balancing is needed.
1045 *
1046 * preempt must be disabled.
1047 */
1048static int sched_balance_self(int cpu, int flag)
1049{
1050 struct task_struct *t = current;
1051 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1052
476d139c
NP
1053 for_each_domain(cpu, tmp)
1054 if (tmp->flags & flag)
1055 sd = tmp;
1056
1057 while (sd) {
1058 cpumask_t span;
1059 struct sched_group *group;
1060 int new_cpu;
1061 int weight;
1062
1063 span = sd->span;
1064 group = find_idlest_group(sd, t, cpu);
1065 if (!group)
1066 goto nextlevel;
1067
da5a5522 1068 new_cpu = find_idlest_cpu(group, t, cpu);
476d139c
NP
1069 if (new_cpu == -1 || new_cpu == cpu)
1070 goto nextlevel;
1071
1072 /* Now try balancing at a lower domain level */
1073 cpu = new_cpu;
1074nextlevel:
1075 sd = NULL;
1076 weight = cpus_weight(span);
1077 for_each_domain(cpu, tmp) {
1078 if (weight <= cpus_weight(tmp->span))
1079 break;
1080 if (tmp->flags & flag)
1081 sd = tmp;
1082 }
1083 /* while loop will break here if sd == NULL */
1084 }
1085
1086 return cpu;
1087}
1088
1089#endif /* CONFIG_SMP */
1da177e4
LT
1090
1091/*
1092 * wake_idle() will wake a task on an idle cpu if task->cpu is
1093 * not idle and an idle cpu is available. The span of cpus to
1094 * search starts with cpus closest then further out as needed,
1095 * so we always favor a closer, idle cpu.
1096 *
1097 * Returns the CPU we should wake onto.
1098 */
1099#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1100static int wake_idle(int cpu, task_t *p)
1101{
1102 cpumask_t tmp;
1103 struct sched_domain *sd;
1104 int i;
1105
1106 if (idle_cpu(cpu))
1107 return cpu;
1108
1109 for_each_domain(cpu, sd) {
1110 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 1111 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4
LT
1112 for_each_cpu_mask(i, tmp) {
1113 if (idle_cpu(i))
1114 return i;
1115 }
1116 }
e0f364f4
NP
1117 else
1118 break;
1da177e4
LT
1119 }
1120 return cpu;
1121}
1122#else
1123static inline int wake_idle(int cpu, task_t *p)
1124{
1125 return cpu;
1126}
1127#endif
1128
1129/***
1130 * try_to_wake_up - wake up a thread
1131 * @p: the to-be-woken-up thread
1132 * @state: the mask of task states that can be woken
1133 * @sync: do a synchronous wakeup?
1134 *
1135 * Put it on the run-queue if it's not already there. The "current"
1136 * thread is always on the run-queue (except when the actual
1137 * re-schedule is in progress), and as such you're allowed to do
1138 * the simpler "current->state = TASK_RUNNING" to mark yourself
1139 * runnable without the overhead of this.
1140 *
1141 * returns failure only if the task is already active.
1142 */
95cdf3b7 1143static int try_to_wake_up(task_t *p, unsigned int state, int sync)
1da177e4
LT
1144{
1145 int cpu, this_cpu, success = 0;
1146 unsigned long flags;
1147 long old_state;
1148 runqueue_t *rq;
1149#ifdef CONFIG_SMP
1150 unsigned long load, this_load;
7897986b 1151 struct sched_domain *sd, *this_sd = NULL;
1da177e4
LT
1152 int new_cpu;
1153#endif
1154
1155 rq = task_rq_lock(p, &flags);
1156 old_state = p->state;
1157 if (!(old_state & state))
1158 goto out;
1159
1160 if (p->array)
1161 goto out_running;
1162
1163 cpu = task_cpu(p);
1164 this_cpu = smp_processor_id();
1165
1166#ifdef CONFIG_SMP
1167 if (unlikely(task_running(rq, p)))
1168 goto out_activate;
1169
7897986b
NP
1170 new_cpu = cpu;
1171
1da177e4
LT
1172 schedstat_inc(rq, ttwu_cnt);
1173 if (cpu == this_cpu) {
1174 schedstat_inc(rq, ttwu_local);
7897986b
NP
1175 goto out_set_cpu;
1176 }
1177
1178 for_each_domain(this_cpu, sd) {
1179 if (cpu_isset(cpu, sd->span)) {
1180 schedstat_inc(sd, ttwu_wake_remote);
1181 this_sd = sd;
1182 break;
1da177e4
LT
1183 }
1184 }
1da177e4 1185
7897986b 1186 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1187 goto out_set_cpu;
1188
1da177e4 1189 /*
7897986b 1190 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1191 */
7897986b
NP
1192 if (this_sd) {
1193 int idx = this_sd->wake_idx;
1194 unsigned int imbalance;
1da177e4 1195
a3f21bce
NP
1196 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1197
7897986b
NP
1198 load = source_load(cpu, idx);
1199 this_load = target_load(this_cpu, idx);
1da177e4 1200
7897986b
NP
1201 new_cpu = this_cpu; /* Wake to this CPU if we can */
1202
a3f21bce
NP
1203 if (this_sd->flags & SD_WAKE_AFFINE) {
1204 unsigned long tl = this_load;
1da177e4 1205 /*
a3f21bce
NP
1206 * If sync wakeup then subtract the (maximum possible)
1207 * effect of the currently running task from the load
1208 * of the current CPU:
1da177e4 1209 */
a3f21bce
NP
1210 if (sync)
1211 tl -= SCHED_LOAD_SCALE;
1212
1213 if ((tl <= load &&
1214 tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
1215 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
1216 /*
1217 * This domain has SD_WAKE_AFFINE and
1218 * p is cache cold in this domain, and
1219 * there is no bad imbalance.
1220 */
1221 schedstat_inc(this_sd, ttwu_move_affine);
1222 goto out_set_cpu;
1223 }
1224 }
1225
1226 /*
1227 * Start passive balancing when half the imbalance_pct
1228 * limit is reached.
1229 */
1230 if (this_sd->flags & SD_WAKE_BALANCE) {
1231 if (imbalance*this_load <= 100*load) {
1232 schedstat_inc(this_sd, ttwu_move_balance);
1233 goto out_set_cpu;
1234 }
1da177e4
LT
1235 }
1236 }
1237
1238 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1239out_set_cpu:
1240 new_cpu = wake_idle(new_cpu, p);
1241 if (new_cpu != cpu) {
1242 set_task_cpu(p, new_cpu);
1243 task_rq_unlock(rq, &flags);
1244 /* might preempt at this point */
1245 rq = task_rq_lock(p, &flags);
1246 old_state = p->state;
1247 if (!(old_state & state))
1248 goto out;
1249 if (p->array)
1250 goto out_running;
1251
1252 this_cpu = smp_processor_id();
1253 cpu = task_cpu(p);
1254 }
1255
1256out_activate:
1257#endif /* CONFIG_SMP */
1258 if (old_state == TASK_UNINTERRUPTIBLE) {
1259 rq->nr_uninterruptible--;
1260 /*
1261 * Tasks on involuntary sleep don't earn
1262 * sleep_avg beyond just interactive state.
1263 */
1264 p->activated = -1;
1265 }
1266
d79fc0fc
IM
1267 /*
1268 * Tasks that have marked their sleep as noninteractive get
1269 * woken up without updating their sleep average. (i.e. their
1270 * sleep is handled in a priority-neutral manner, no priority
1271 * boost and no penalty.)
1272 */
1273 if (old_state & TASK_NONINTERACTIVE)
1274 __activate_task(p, rq);
1275 else
1276 activate_task(p, rq, cpu == this_cpu);
1da177e4
LT
1277 /*
1278 * Sync wakeups (i.e. those types of wakeups where the waker
1279 * has indicated that it will leave the CPU in short order)
1280 * don't trigger a preemption, if the woken up task will run on
1281 * this cpu. (in this case the 'I will reschedule' promise of
1282 * the waker guarantees that the freshly woken up task is going
1283 * to be considered on this CPU.)
1284 */
1da177e4
LT
1285 if (!sync || cpu != this_cpu) {
1286 if (TASK_PREEMPTS_CURR(p, rq))
1287 resched_task(rq->curr);
1288 }
1289 success = 1;
1290
1291out_running:
1292 p->state = TASK_RUNNING;
1293out:
1294 task_rq_unlock(rq, &flags);
1295
1296 return success;
1297}
1298
95cdf3b7 1299int fastcall wake_up_process(task_t *p)
1da177e4
LT
1300{
1301 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1302 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1303}
1304
1305EXPORT_SYMBOL(wake_up_process);
1306
1307int fastcall wake_up_state(task_t *p, unsigned int state)
1308{
1309 return try_to_wake_up(p, state, 0);
1310}
1311
1da177e4
LT
1312/*
1313 * Perform scheduler related setup for a newly forked process p.
1314 * p is forked by current.
1315 */
476d139c 1316void fastcall sched_fork(task_t *p, int clone_flags)
1da177e4 1317{
476d139c
NP
1318 int cpu = get_cpu();
1319
1320#ifdef CONFIG_SMP
1321 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1322#endif
1323 set_task_cpu(p, cpu);
1324
1da177e4
LT
1325 /*
1326 * We mark the process as running here, but have not actually
1327 * inserted it onto the runqueue yet. This guarantees that
1328 * nobody will actually run it, and a signal or other external
1329 * event cannot wake it up and insert it on the runqueue either.
1330 */
1331 p->state = TASK_RUNNING;
1332 INIT_LIST_HEAD(&p->run_list);
1333 p->array = NULL;
1da177e4
LT
1334#ifdef CONFIG_SCHEDSTATS
1335 memset(&p->sched_info, 0, sizeof(p->sched_info));
1336#endif
4866cde0
NP
1337#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1338 p->oncpu = 0;
1339#endif
1da177e4 1340#ifdef CONFIG_PREEMPT
4866cde0 1341 /* Want to start with kernel preemption disabled. */
1da177e4
LT
1342 p->thread_info->preempt_count = 1;
1343#endif
1344 /*
1345 * Share the timeslice between parent and child, thus the
1346 * total amount of pending timeslices in the system doesn't change,
1347 * resulting in more scheduling fairness.
1348 */
1349 local_irq_disable();
1350 p->time_slice = (current->time_slice + 1) >> 1;
1351 /*
1352 * The remainder of the first timeslice might be recovered by
1353 * the parent if the child exits early enough.
1354 */
1355 p->first_time_slice = 1;
1356 current->time_slice >>= 1;
1357 p->timestamp = sched_clock();
1358 if (unlikely(!current->time_slice)) {
1359 /*
1360 * This case is rare, it happens when the parent has only
1361 * a single jiffy left from its timeslice. Taking the
1362 * runqueue lock is not a problem.
1363 */
1364 current->time_slice = 1;
1da177e4 1365 scheduler_tick();
476d139c
NP
1366 }
1367 local_irq_enable();
1368 put_cpu();
1da177e4
LT
1369}
1370
1371/*
1372 * wake_up_new_task - wake up a newly created task for the first time.
1373 *
1374 * This function will do some initial scheduler statistics housekeeping
1375 * that must be done for every newly created context, then puts the task
1376 * on the runqueue and wakes it.
1377 */
95cdf3b7 1378void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
1da177e4
LT
1379{
1380 unsigned long flags;
1381 int this_cpu, cpu;
1382 runqueue_t *rq, *this_rq;
1383
1384 rq = task_rq_lock(p, &flags);
147cbb4b 1385 BUG_ON(p->state != TASK_RUNNING);
1da177e4 1386 this_cpu = smp_processor_id();
147cbb4b 1387 cpu = task_cpu(p);
1da177e4 1388
1da177e4
LT
1389 /*
1390 * We decrease the sleep average of forking parents
1391 * and children as well, to keep max-interactive tasks
1392 * from forking tasks that are max-interactive. The parent
1393 * (current) is done further down, under its lock.
1394 */
1395 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1396 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1397
1398 p->prio = effective_prio(p);
1399
1400 if (likely(cpu == this_cpu)) {
1401 if (!(clone_flags & CLONE_VM)) {
1402 /*
1403 * The VM isn't cloned, so we're in a good position to
1404 * do child-runs-first in anticipation of an exec. This
1405 * usually avoids a lot of COW overhead.
1406 */
1407 if (unlikely(!current->array))
1408 __activate_task(p, rq);
1409 else {
1410 p->prio = current->prio;
1411 list_add_tail(&p->run_list, &current->run_list);
1412 p->array = current->array;
1413 p->array->nr_active++;
1414 rq->nr_running++;
1415 }
1416 set_need_resched();
1417 } else
1418 /* Run child last */
1419 __activate_task(p, rq);
1420 /*
1421 * We skip the following code due to cpu == this_cpu
1422 *
1423 * task_rq_unlock(rq, &flags);
1424 * this_rq = task_rq_lock(current, &flags);
1425 */
1426 this_rq = rq;
1427 } else {
1428 this_rq = cpu_rq(this_cpu);
1429
1430 /*
1431 * Not the local CPU - must adjust timestamp. This should
1432 * get optimised away in the !CONFIG_SMP case.
1433 */
1434 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1435 + rq->timestamp_last_tick;
1436 __activate_task(p, rq);
1437 if (TASK_PREEMPTS_CURR(p, rq))
1438 resched_task(rq->curr);
1439
1440 /*
1441 * Parent and child are on different CPUs, now get the
1442 * parent runqueue to update the parent's ->sleep_avg:
1443 */
1444 task_rq_unlock(rq, &flags);
1445 this_rq = task_rq_lock(current, &flags);
1446 }
1447 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1448 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1449 task_rq_unlock(this_rq, &flags);
1450}
1451
1452/*
1453 * Potentially available exiting-child timeslices are
1454 * retrieved here - this way the parent does not get
1455 * penalized for creating too many threads.
1456 *
1457 * (this cannot be used to 'generate' timeslices
1458 * artificially, because any timeslice recovered here
1459 * was given away by the parent in the first place.)
1460 */
95cdf3b7 1461void fastcall sched_exit(task_t *p)
1da177e4
LT
1462{
1463 unsigned long flags;
1464 runqueue_t *rq;
1465
1466 /*
1467 * If the child was a (relative-) CPU hog then decrease
1468 * the sleep_avg of the parent as well.
1469 */
1470 rq = task_rq_lock(p->parent, &flags);
889dfafe 1471 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1da177e4
LT
1472 p->parent->time_slice += p->time_slice;
1473 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1474 p->parent->time_slice = task_timeslice(p);
1475 }
1476 if (p->sleep_avg < p->parent->sleep_avg)
1477 p->parent->sleep_avg = p->parent->sleep_avg /
1478 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1479 (EXIT_WEIGHT + 1);
1480 task_rq_unlock(rq, &flags);
1481}
1482
4866cde0
NP
1483/**
1484 * prepare_task_switch - prepare to switch tasks
1485 * @rq: the runqueue preparing to switch
1486 * @next: the task we are going to switch to.
1487 *
1488 * This is called with the rq lock held and interrupts off. It must
1489 * be paired with a subsequent finish_task_switch after the context
1490 * switch.
1491 *
1492 * prepare_task_switch sets up locking and calls architecture specific
1493 * hooks.
1494 */
1495static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1496{
1497 prepare_lock_switch(rq, next);
1498 prepare_arch_switch(next);
1499}
1500
1da177e4
LT
1501/**
1502 * finish_task_switch - clean up after a task-switch
344babaa 1503 * @rq: runqueue associated with task-switch
1da177e4
LT
1504 * @prev: the thread we just switched away from.
1505 *
4866cde0
NP
1506 * finish_task_switch must be called after the context switch, paired
1507 * with a prepare_task_switch call before the context switch.
1508 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1509 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1510 *
1511 * Note that we may have delayed dropping an mm in context_switch(). If
1512 * so, we finish that here outside of the runqueue lock. (Doing it
1513 * with the lock held can cause deadlocks; see schedule() for
1514 * details.)
1515 */
4866cde0 1516static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1da177e4
LT
1517 __releases(rq->lock)
1518{
1da177e4
LT
1519 struct mm_struct *mm = rq->prev_mm;
1520 unsigned long prev_task_flags;
1521
1522 rq->prev_mm = NULL;
1523
1524 /*
1525 * A task struct has one reference for the use as "current".
1526 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1527 * calls schedule one last time. The schedule call will never return,
1528 * and the scheduled task must drop that reference.
1529 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1530 * still held, otherwise prev could be scheduled on another cpu, die
1531 * there before we look at prev->state, and then the reference would
1532 * be dropped twice.
1533 * Manfred Spraul <manfred@colorfullife.com>
1534 */
1535 prev_task_flags = prev->flags;
4866cde0
NP
1536 finish_arch_switch(prev);
1537 finish_lock_switch(rq, prev);
1da177e4
LT
1538 if (mm)
1539 mmdrop(mm);
1540 if (unlikely(prev_task_flags & PF_DEAD))
1541 put_task_struct(prev);
1542}
1543
1544/**
1545 * schedule_tail - first thing a freshly forked thread must call.
1546 * @prev: the thread we just switched away from.
1547 */
1548asmlinkage void schedule_tail(task_t *prev)
1549 __releases(rq->lock)
1550{
4866cde0
NP
1551 runqueue_t *rq = this_rq();
1552 finish_task_switch(rq, prev);
1553#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1554 /* In this case, finish_task_switch does not reenable preemption */
1555 preempt_enable();
1556#endif
1da177e4
LT
1557 if (current->set_child_tid)
1558 put_user(current->pid, current->set_child_tid);
1559}
1560
1561/*
1562 * context_switch - switch to the new MM and the new
1563 * thread's register state.
1564 */
1565static inline
1566task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1567{
1568 struct mm_struct *mm = next->mm;
1569 struct mm_struct *oldmm = prev->active_mm;
1570
1571 if (unlikely(!mm)) {
1572 next->active_mm = oldmm;
1573 atomic_inc(&oldmm->mm_count);
1574 enter_lazy_tlb(oldmm, next);
1575 } else
1576 switch_mm(oldmm, mm, next);
1577
1578 if (unlikely(!prev->mm)) {
1579 prev->active_mm = NULL;
1580 WARN_ON(rq->prev_mm);
1581 rq->prev_mm = oldmm;
1582 }
1583
1584 /* Here we just switch the register state and the stack. */
1585 switch_to(prev, next, prev);
1586
1587 return prev;
1588}
1589
1590/*
1591 * nr_running, nr_uninterruptible and nr_context_switches:
1592 *
1593 * externally visible scheduler statistics: current number of runnable
1594 * threads, current number of uninterruptible-sleeping threads, total
1595 * number of context switches performed since bootup.
1596 */
1597unsigned long nr_running(void)
1598{
1599 unsigned long i, sum = 0;
1600
1601 for_each_online_cpu(i)
1602 sum += cpu_rq(i)->nr_running;
1603
1604 return sum;
1605}
1606
1607unsigned long nr_uninterruptible(void)
1608{
1609 unsigned long i, sum = 0;
1610
1611 for_each_cpu(i)
1612 sum += cpu_rq(i)->nr_uninterruptible;
1613
1614 /*
1615 * Since we read the counters lockless, it might be slightly
1616 * inaccurate. Do not allow it to go below zero though:
1617 */
1618 if (unlikely((long)sum < 0))
1619 sum = 0;
1620
1621 return sum;
1622}
1623
1624unsigned long long nr_context_switches(void)
1625{
1626 unsigned long long i, sum = 0;
1627
1628 for_each_cpu(i)
1629 sum += cpu_rq(i)->nr_switches;
1630
1631 return sum;
1632}
1633
1634unsigned long nr_iowait(void)
1635{
1636 unsigned long i, sum = 0;
1637
1638 for_each_cpu(i)
1639 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1640
1641 return sum;
1642}
1643
1644#ifdef CONFIG_SMP
1645
1646/*
1647 * double_rq_lock - safely lock two runqueues
1648 *
1649 * Note this does not disable interrupts like task_rq_lock,
1650 * you need to do so manually before calling.
1651 */
1652static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1653 __acquires(rq1->lock)
1654 __acquires(rq2->lock)
1655{
1656 if (rq1 == rq2) {
1657 spin_lock(&rq1->lock);
1658 __acquire(rq2->lock); /* Fake it out ;) */
1659 } else {
1660 if (rq1 < rq2) {
1661 spin_lock(&rq1->lock);
1662 spin_lock(&rq2->lock);
1663 } else {
1664 spin_lock(&rq2->lock);
1665 spin_lock(&rq1->lock);
1666 }
1667 }
1668}
1669
1670/*
1671 * double_rq_unlock - safely unlock two runqueues
1672 *
1673 * Note this does not restore interrupts like task_rq_unlock,
1674 * you need to do so manually after calling.
1675 */
1676static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1677 __releases(rq1->lock)
1678 __releases(rq2->lock)
1679{
1680 spin_unlock(&rq1->lock);
1681 if (rq1 != rq2)
1682 spin_unlock(&rq2->lock);
1683 else
1684 __release(rq2->lock);
1685}
1686
1687/*
1688 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1689 */
1690static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1691 __releases(this_rq->lock)
1692 __acquires(busiest->lock)
1693 __acquires(this_rq->lock)
1694{
1695 if (unlikely(!spin_trylock(&busiest->lock))) {
1696 if (busiest < this_rq) {
1697 spin_unlock(&this_rq->lock);
1698 spin_lock(&busiest->lock);
1699 spin_lock(&this_rq->lock);
1700 } else
1701 spin_lock(&busiest->lock);
1702 }
1703}
1704
1da177e4
LT
1705/*
1706 * If dest_cpu is allowed for this process, migrate the task to it.
1707 * This is accomplished by forcing the cpu_allowed mask to only
1708 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1709 * the cpu_allowed mask is restored.
1710 */
1711static void sched_migrate_task(task_t *p, int dest_cpu)
1712{
1713 migration_req_t req;
1714 runqueue_t *rq;
1715 unsigned long flags;
1716
1717 rq = task_rq_lock(p, &flags);
1718 if (!cpu_isset(dest_cpu, p->cpus_allowed)
1719 || unlikely(cpu_is_offline(dest_cpu)))
1720 goto out;
1721
1722 /* force the process onto the specified CPU */
1723 if (migrate_task(p, dest_cpu, &req)) {
1724 /* Need to wait for migration thread (might exit: take ref). */
1725 struct task_struct *mt = rq->migration_thread;
1726 get_task_struct(mt);
1727 task_rq_unlock(rq, &flags);
1728 wake_up_process(mt);
1729 put_task_struct(mt);
1730 wait_for_completion(&req.done);
1731 return;
1732 }
1733out:
1734 task_rq_unlock(rq, &flags);
1735}
1736
1737/*
476d139c
NP
1738 * sched_exec - execve() is a valuable balancing opportunity, because at
1739 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
1740 */
1741void sched_exec(void)
1742{
1da177e4 1743 int new_cpu, this_cpu = get_cpu();
476d139c 1744 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 1745 put_cpu();
476d139c
NP
1746 if (new_cpu != this_cpu)
1747 sched_migrate_task(current, new_cpu);
1da177e4
LT
1748}
1749
1750/*
1751 * pull_task - move a task from a remote runqueue to the local runqueue.
1752 * Both runqueues must be locked.
1753 */
1754static inline
1755void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1756 runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1757{
1758 dequeue_task(p, src_array);
1759 src_rq->nr_running--;
1760 set_task_cpu(p, this_cpu);
1761 this_rq->nr_running++;
1762 enqueue_task(p, this_array);
1763 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1764 + this_rq->timestamp_last_tick;
1765 /*
1766 * Note that idle threads have a prio of MAX_PRIO, for this test
1767 * to be always true for them.
1768 */
1769 if (TASK_PREEMPTS_CURR(p, this_rq))
1770 resched_task(this_rq->curr);
1771}
1772
1773/*
1774 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1775 */
1776static inline
1777int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
95cdf3b7
IM
1778 struct sched_domain *sd, enum idle_type idle,
1779 int *all_pinned)
1da177e4
LT
1780{
1781 /*
1782 * We do not migrate tasks that are:
1783 * 1) running (obviously), or
1784 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1785 * 3) are cache-hot on their current CPU.
1786 */
1da177e4
LT
1787 if (!cpu_isset(this_cpu, p->cpus_allowed))
1788 return 0;
81026794
NP
1789 *all_pinned = 0;
1790
1791 if (task_running(rq, p))
1792 return 0;
1da177e4
LT
1793
1794 /*
1795 * Aggressive migration if:
cafb20c1 1796 * 1) task is cache cold, or
1da177e4
LT
1797 * 2) too many balance attempts have failed.
1798 */
1799
cafb20c1 1800 if (sd->nr_balance_failed > sd->cache_nice_tries)
1da177e4
LT
1801 return 1;
1802
1803 if (task_hot(p, rq->timestamp_last_tick, sd))
81026794 1804 return 0;
1da177e4
LT
1805 return 1;
1806}
1807
1808/*
1809 * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1810 * as part of a balancing operation within "domain". Returns the number of
1811 * tasks moved.
1812 *
1813 * Called with both runqueues locked.
1814 */
1815static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1816 unsigned long max_nr_move, struct sched_domain *sd,
81026794 1817 enum idle_type idle, int *all_pinned)
1da177e4
LT
1818{
1819 prio_array_t *array, *dst_array;
1820 struct list_head *head, *curr;
81026794 1821 int idx, pulled = 0, pinned = 0;
1da177e4
LT
1822 task_t *tmp;
1823
81026794 1824 if (max_nr_move == 0)
1da177e4
LT
1825 goto out;
1826
81026794
NP
1827 pinned = 1;
1828
1da177e4
LT
1829 /*
1830 * We first consider expired tasks. Those will likely not be
1831 * executed in the near future, and they are most likely to
1832 * be cache-cold, thus switching CPUs has the least effect
1833 * on them.
1834 */
1835 if (busiest->expired->nr_active) {
1836 array = busiest->expired;
1837 dst_array = this_rq->expired;
1838 } else {
1839 array = busiest->active;
1840 dst_array = this_rq->active;
1841 }
1842
1843new_array:
1844 /* Start searching at priority 0: */
1845 idx = 0;
1846skip_bitmap:
1847 if (!idx)
1848 idx = sched_find_first_bit(array->bitmap);
1849 else
1850 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1851 if (idx >= MAX_PRIO) {
1852 if (array == busiest->expired && busiest->active->nr_active) {
1853 array = busiest->active;
1854 dst_array = this_rq->active;
1855 goto new_array;
1856 }
1857 goto out;
1858 }
1859
1860 head = array->queue + idx;
1861 curr = head->prev;
1862skip_queue:
1863 tmp = list_entry(curr, task_t, run_list);
1864
1865 curr = curr->prev;
1866
81026794 1867 if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
1da177e4
LT
1868 if (curr != head)
1869 goto skip_queue;
1870 idx++;
1871 goto skip_bitmap;
1872 }
1873
1874#ifdef CONFIG_SCHEDSTATS
1875 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1876 schedstat_inc(sd, lb_hot_gained[idle]);
1877#endif
1878
1879 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1880 pulled++;
1881
1882 /* We only want to steal up to the prescribed number of tasks. */
1883 if (pulled < max_nr_move) {
1884 if (curr != head)
1885 goto skip_queue;
1886 idx++;
1887 goto skip_bitmap;
1888 }
1889out:
1890 /*
1891 * Right now, this is the only place pull_task() is called,
1892 * so we can safely collect pull_task() stats here rather than
1893 * inside pull_task().
1894 */
1895 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
1896
1897 if (all_pinned)
1898 *all_pinned = pinned;
1da177e4
LT
1899 return pulled;
1900}
1901
1902/*
1903 * find_busiest_group finds and returns the busiest CPU group within the
1904 * domain. It calculates and returns the number of tasks which should be
1905 * moved to restore balance via the imbalance parameter.
1906 */
1907static struct sched_group *
1908find_busiest_group(struct sched_domain *sd, int this_cpu,
5969fe06 1909 unsigned long *imbalance, enum idle_type idle, int *sd_idle)
1da177e4
LT
1910{
1911 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
1912 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 1913 unsigned long max_pull;
7897986b 1914 int load_idx;
1da177e4
LT
1915
1916 max_load = this_load = total_load = total_pwr = 0;
7897986b
NP
1917 if (idle == NOT_IDLE)
1918 load_idx = sd->busy_idx;
1919 else if (idle == NEWLY_IDLE)
1920 load_idx = sd->newidle_idx;
1921 else
1922 load_idx = sd->idle_idx;
1da177e4
LT
1923
1924 do {
1925 unsigned long load;
1926 int local_group;
1927 int i;
1928
1929 local_group = cpu_isset(this_cpu, group->cpumask);
1930
1931 /* Tally up the load of all CPUs in the group */
1932 avg_load = 0;
1933
1934 for_each_cpu_mask(i, group->cpumask) {
5969fe06
NP
1935 if (*sd_idle && !idle_cpu(i))
1936 *sd_idle = 0;
1937
1da177e4
LT
1938 /* Bias balancing toward cpus of our domain */
1939 if (local_group)
7897986b 1940 load = target_load(i, load_idx);
1da177e4 1941 else
7897986b 1942 load = source_load(i, load_idx);
1da177e4
LT
1943
1944 avg_load += load;
1945 }
1946
1947 total_load += avg_load;
1948 total_pwr += group->cpu_power;
1949
1950 /* Adjust by relative CPU power of the group */
1951 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1952
1953 if (local_group) {
1954 this_load = avg_load;
1955 this = group;
1da177e4
LT
1956 } else if (avg_load > max_load) {
1957 max_load = avg_load;
1958 busiest = group;
1959 }
1da177e4
LT
1960 group = group->next;
1961 } while (group != sd->groups);
1962
0c117f1b 1963 if (!busiest || this_load >= max_load || max_load <= SCHED_LOAD_SCALE)
1da177e4
LT
1964 goto out_balanced;
1965
1966 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
1967
1968 if (this_load >= avg_load ||
1969 100*max_load <= sd->imbalance_pct*this_load)
1970 goto out_balanced;
1971
1972 /*
1973 * We're trying to get all the cpus to the average_load, so we don't
1974 * want to push ourselves above the average load, nor do we wish to
1975 * reduce the max loaded cpu below the average load, as either of these
1976 * actions would just result in more rebalancing later, and ping-pong
1977 * tasks around. Thus we look for the minimum possible imbalance.
1978 * Negative imbalances (*we* are more loaded than anyone else) will
1979 * be counted as no imbalance for these purposes -- we can't fix that
1980 * by pulling tasks to us. Be careful of negative numbers as they'll
1981 * appear as very large values with unsigned longs.
1982 */
0c117f1b
SS
1983
1984 /* Don't want to pull so many tasks that a group would go idle */
1985 max_pull = min(max_load - avg_load, max_load - SCHED_LOAD_SCALE);
1986
1da177e4 1987 /* How much load to actually move to equalise the imbalance */
0c117f1b 1988 *imbalance = min(max_pull * busiest->cpu_power,
1da177e4
LT
1989 (avg_load - this_load) * this->cpu_power)
1990 / SCHED_LOAD_SCALE;
1991
1992 if (*imbalance < SCHED_LOAD_SCALE) {
1993 unsigned long pwr_now = 0, pwr_move = 0;
1994 unsigned long tmp;
1995
1996 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
1997 *imbalance = 1;
1998 return busiest;
1999 }
2000
2001 /*
2002 * OK, we don't have enough imbalance to justify moving tasks,
2003 * however we may be able to increase total CPU power used by
2004 * moving them.
2005 */
2006
2007 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
2008 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
2009 pwr_now /= SCHED_LOAD_SCALE;
2010
2011 /* Amount of load we'd subtract */
2012 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
2013 if (max_load > tmp)
2014 pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
2015 max_load - tmp);
2016
2017 /* Amount of load we'd add */
2018 if (max_load*busiest->cpu_power <
2019 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
2020 tmp = max_load*busiest->cpu_power/this->cpu_power;
2021 else
2022 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
2023 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
2024 pwr_move /= SCHED_LOAD_SCALE;
2025
2026 /* Move if we gain throughput */
2027 if (pwr_move <= pwr_now)
2028 goto out_balanced;
2029
2030 *imbalance = 1;
2031 return busiest;
2032 }
2033
2034 /* Get rid of the scaling factor, rounding down as we divide */
2035 *imbalance = *imbalance / SCHED_LOAD_SCALE;
1da177e4
LT
2036 return busiest;
2037
2038out_balanced:
1da177e4
LT
2039
2040 *imbalance = 0;
2041 return NULL;
2042}
2043
2044/*
2045 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2046 */
2047static runqueue_t *find_busiest_queue(struct sched_group *group)
2048{
2049 unsigned long load, max_load = 0;
2050 runqueue_t *busiest = NULL;
2051 int i;
2052
2053 for_each_cpu_mask(i, group->cpumask) {
7897986b 2054 load = source_load(i, 0);
1da177e4
LT
2055
2056 if (load > max_load) {
2057 max_load = load;
2058 busiest = cpu_rq(i);
2059 }
2060 }
2061
2062 return busiest;
2063}
2064
77391d71
NP
2065/*
2066 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2067 * so long as it is large enough.
2068 */
2069#define MAX_PINNED_INTERVAL 512
2070
1da177e4
LT
2071/*
2072 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2073 * tasks if there is an imbalance.
2074 *
2075 * Called with this_rq unlocked.
2076 */
2077static int load_balance(int this_cpu, runqueue_t *this_rq,
2078 struct sched_domain *sd, enum idle_type idle)
2079{
2080 struct sched_group *group;
2081 runqueue_t *busiest;
2082 unsigned long imbalance;
77391d71 2083 int nr_moved, all_pinned = 0;
81026794 2084 int active_balance = 0;
5969fe06
NP
2085 int sd_idle = 0;
2086
2087 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER)
2088 sd_idle = 1;
1da177e4 2089
1da177e4
LT
2090 schedstat_inc(sd, lb_cnt[idle]);
2091
5969fe06 2092 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle);
1da177e4
LT
2093 if (!group) {
2094 schedstat_inc(sd, lb_nobusyg[idle]);
2095 goto out_balanced;
2096 }
2097
2098 busiest = find_busiest_queue(group);
2099 if (!busiest) {
2100 schedstat_inc(sd, lb_nobusyq[idle]);
2101 goto out_balanced;
2102 }
2103
db935dbd 2104 BUG_ON(busiest == this_rq);
1da177e4
LT
2105
2106 schedstat_add(sd, lb_imbalance[idle], imbalance);
2107
2108 nr_moved = 0;
2109 if (busiest->nr_running > 1) {
2110 /*
2111 * Attempt to move tasks. If find_busiest_group has found
2112 * an imbalance but busiest->nr_running <= 1, the group is
2113 * still unbalanced. nr_moved simply stays zero, so it is
2114 * correctly treated as an imbalance.
2115 */
e17224bf 2116 double_rq_lock(this_rq, busiest);
1da177e4 2117 nr_moved = move_tasks(this_rq, this_cpu, busiest,
d6d5cfaf 2118 imbalance, sd, idle, &all_pinned);
e17224bf 2119 double_rq_unlock(this_rq, busiest);
81026794
NP
2120
2121 /* All tasks on this runqueue were pinned by CPU affinity */
2122 if (unlikely(all_pinned))
2123 goto out_balanced;
1da177e4 2124 }
81026794 2125
1da177e4
LT
2126 if (!nr_moved) {
2127 schedstat_inc(sd, lb_failed[idle]);
2128 sd->nr_balance_failed++;
2129
2130 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4
LT
2131
2132 spin_lock(&busiest->lock);
fa3b6ddc
SS
2133
2134 /* don't kick the migration_thread, if the curr
2135 * task on busiest cpu can't be moved to this_cpu
2136 */
2137 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2138 spin_unlock(&busiest->lock);
2139 all_pinned = 1;
2140 goto out_one_pinned;
2141 }
2142
1da177e4
LT
2143 if (!busiest->active_balance) {
2144 busiest->active_balance = 1;
2145 busiest->push_cpu = this_cpu;
81026794 2146 active_balance = 1;
1da177e4
LT
2147 }
2148 spin_unlock(&busiest->lock);
81026794 2149 if (active_balance)
1da177e4
LT
2150 wake_up_process(busiest->migration_thread);
2151
2152 /*
2153 * We've kicked active balancing, reset the failure
2154 * counter.
2155 */
39507451 2156 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2157 }
81026794 2158 } else
1da177e4
LT
2159 sd->nr_balance_failed = 0;
2160
81026794 2161 if (likely(!active_balance)) {
1da177e4
LT
2162 /* We were unbalanced, so reset the balancing interval */
2163 sd->balance_interval = sd->min_interval;
81026794
NP
2164 } else {
2165 /*
2166 * If we've begun active balancing, start to back off. This
2167 * case may not be covered by the all_pinned logic if there
2168 * is only 1 task on the busy runqueue (because we don't call
2169 * move_tasks).
2170 */
2171 if (sd->balance_interval < sd->max_interval)
2172 sd->balance_interval *= 2;
1da177e4
LT
2173 }
2174
5969fe06
NP
2175 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2176 return -1;
1da177e4
LT
2177 return nr_moved;
2178
2179out_balanced:
1da177e4
LT
2180 schedstat_inc(sd, lb_balanced[idle]);
2181
16cfb1c0 2182 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2183
2184out_one_pinned:
1da177e4 2185 /* tune up the balancing interval */
77391d71
NP
2186 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2187 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2188 sd->balance_interval *= 2;
2189
5969fe06
NP
2190 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2191 return -1;
1da177e4
LT
2192 return 0;
2193}
2194
2195/*
2196 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2197 * tasks if there is an imbalance.
2198 *
2199 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2200 * this_rq is locked.
2201 */
2202static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2203 struct sched_domain *sd)
2204{
2205 struct sched_group *group;
2206 runqueue_t *busiest = NULL;
2207 unsigned long imbalance;
2208 int nr_moved = 0;
5969fe06
NP
2209 int sd_idle = 0;
2210
2211 if (sd->flags & SD_SHARE_CPUPOWER)
2212 sd_idle = 1;
1da177e4
LT
2213
2214 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
5969fe06 2215 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle);
1da177e4 2216 if (!group) {
1da177e4 2217 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
16cfb1c0 2218 goto out_balanced;
1da177e4
LT
2219 }
2220
2221 busiest = find_busiest_queue(group);
db935dbd 2222 if (!busiest) {
1da177e4 2223 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
16cfb1c0 2224 goto out_balanced;
1da177e4
LT
2225 }
2226
db935dbd
NP
2227 BUG_ON(busiest == this_rq);
2228
1da177e4 2229 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
d6d5cfaf
NP
2230
2231 nr_moved = 0;
2232 if (busiest->nr_running > 1) {
2233 /* Attempt to move tasks */
2234 double_lock_balance(this_rq, busiest);
2235 nr_moved = move_tasks(this_rq, this_cpu, busiest,
81026794 2236 imbalance, sd, NEWLY_IDLE, NULL);
d6d5cfaf
NP
2237 spin_unlock(&busiest->lock);
2238 }
2239
5969fe06 2240 if (!nr_moved) {
1da177e4 2241 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
5969fe06
NP
2242 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2243 return -1;
2244 } else
16cfb1c0 2245 sd->nr_balance_failed = 0;
1da177e4 2246
1da177e4 2247 return nr_moved;
16cfb1c0
NP
2248
2249out_balanced:
2250 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
5969fe06
NP
2251 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2252 return -1;
16cfb1c0
NP
2253 sd->nr_balance_failed = 0;
2254 return 0;
1da177e4
LT
2255}
2256
2257/*
2258 * idle_balance is called by schedule() if this_cpu is about to become
2259 * idle. Attempts to pull tasks from other CPUs.
2260 */
2261static inline void idle_balance(int this_cpu, runqueue_t *this_rq)
2262{
2263 struct sched_domain *sd;
2264
2265 for_each_domain(this_cpu, sd) {
2266 if (sd->flags & SD_BALANCE_NEWIDLE) {
2267 if (load_balance_newidle(this_cpu, this_rq, sd)) {
2268 /* We've pulled tasks over so stop searching */
2269 break;
2270 }
2271 }
2272 }
2273}
2274
2275/*
2276 * active_load_balance is run by migration threads. It pushes running tasks
2277 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2278 * running on each physical CPU where possible, and avoids physical /
2279 * logical imbalances.
2280 *
2281 * Called with busiest_rq locked.
2282 */
2283static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2284{
2285 struct sched_domain *sd;
1da177e4 2286 runqueue_t *target_rq;
39507451
NP
2287 int target_cpu = busiest_rq->push_cpu;
2288
2289 if (busiest_rq->nr_running <= 1)
2290 /* no task to move */
2291 return;
2292
2293 target_rq = cpu_rq(target_cpu);
1da177e4
LT
2294
2295 /*
39507451
NP
2296 * This condition is "impossible", if it occurs
2297 * we need to fix it. Originally reported by
2298 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 2299 */
39507451 2300 BUG_ON(busiest_rq == target_rq);
1da177e4 2301
39507451
NP
2302 /* move a task from busiest_rq to target_rq */
2303 double_lock_balance(busiest_rq, target_rq);
2304
2305 /* Search for an sd spanning us and the target CPU. */
2306 for_each_domain(target_cpu, sd)
2307 if ((sd->flags & SD_LOAD_BALANCE) &&
2308 cpu_isset(busiest_cpu, sd->span))
2309 break;
2310
2311 if (unlikely(sd == NULL))
2312 goto out;
2313
2314 schedstat_inc(sd, alb_cnt);
2315
2316 if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
2317 schedstat_inc(sd, alb_pushed);
2318 else
2319 schedstat_inc(sd, alb_failed);
2320out:
2321 spin_unlock(&target_rq->lock);
1da177e4
LT
2322}
2323
2324/*
2325 * rebalance_tick will get called every timer tick, on every CPU.
2326 *
2327 * It checks each scheduling domain to see if it is due to be balanced,
2328 * and initiates a balancing operation if so.
2329 *
2330 * Balancing parameters are set up in arch_init_sched_domains.
2331 */
2332
2333/* Don't have all balancing operations going off at once */
2334#define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2335
2336static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2337 enum idle_type idle)
2338{
2339 unsigned long old_load, this_load;
2340 unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2341 struct sched_domain *sd;
7897986b 2342 int i;
1da177e4 2343
1da177e4 2344 this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
7897986b
NP
2345 /* Update our load */
2346 for (i = 0; i < 3; i++) {
2347 unsigned long new_load = this_load;
2348 int scale = 1 << i;
2349 old_load = this_rq->cpu_load[i];
2350 /*
2351 * Round up the averaging division if load is increasing. This
2352 * prevents us from getting stuck on 9 if the load is 10, for
2353 * example.
2354 */
2355 if (new_load > old_load)
2356 new_load += scale-1;
2357 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2358 }
1da177e4
LT
2359
2360 for_each_domain(this_cpu, sd) {
2361 unsigned long interval;
2362
2363 if (!(sd->flags & SD_LOAD_BALANCE))
2364 continue;
2365
2366 interval = sd->balance_interval;
2367 if (idle != SCHED_IDLE)
2368 interval *= sd->busy_factor;
2369
2370 /* scale ms to jiffies */
2371 interval = msecs_to_jiffies(interval);
2372 if (unlikely(!interval))
2373 interval = 1;
2374
2375 if (j - sd->last_balance >= interval) {
2376 if (load_balance(this_cpu, this_rq, sd, idle)) {
fa3b6ddc
SS
2377 /*
2378 * We've pulled tasks over so either we're no
5969fe06
NP
2379 * longer idle, or one of our SMT siblings is
2380 * not idle.
2381 */
1da177e4
LT
2382 idle = NOT_IDLE;
2383 }
2384 sd->last_balance += interval;
2385 }
2386 }
2387}
2388#else
2389/*
2390 * on UP we do not need to balance between CPUs:
2391 */
2392static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2393{
2394}
2395static inline void idle_balance(int cpu, runqueue_t *rq)
2396{
2397}
2398#endif
2399
2400static inline int wake_priority_sleeper(runqueue_t *rq)
2401{
2402 int ret = 0;
2403#ifdef CONFIG_SCHED_SMT
2404 spin_lock(&rq->lock);
2405 /*
2406 * If an SMT sibling task has been put to sleep for priority
2407 * reasons reschedule the idle task to see if it can now run.
2408 */
2409 if (rq->nr_running) {
2410 resched_task(rq->idle);
2411 ret = 1;
2412 }
2413 spin_unlock(&rq->lock);
2414#endif
2415 return ret;
2416}
2417
2418DEFINE_PER_CPU(struct kernel_stat, kstat);
2419
2420EXPORT_PER_CPU_SYMBOL(kstat);
2421
2422/*
2423 * This is called on clock ticks and on context switches.
2424 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2425 */
2426static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2427 unsigned long long now)
2428{
2429 unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2430 p->sched_time += now - last;
2431}
2432
2433/*
2434 * Return current->sched_time plus any more ns on the sched_clock
2435 * that have not yet been banked.
2436 */
2437unsigned long long current_sched_time(const task_t *tsk)
2438{
2439 unsigned long long ns;
2440 unsigned long flags;
2441 local_irq_save(flags);
2442 ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2443 ns = tsk->sched_time + (sched_clock() - ns);
2444 local_irq_restore(flags);
2445 return ns;
2446}
2447
2448/*
2449 * We place interactive tasks back into the active array, if possible.
2450 *
2451 * To guarantee that this does not starve expired tasks we ignore the
2452 * interactivity of a task if the first expired task had to wait more
2453 * than a 'reasonable' amount of time. This deadline timeout is
2454 * load-dependent, as the frequency of array switched decreases with
2455 * increasing number of running tasks. We also ignore the interactivity
2456 * if a better static_prio task has expired:
2457 */
2458#define EXPIRED_STARVING(rq) \
2459 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2460 (jiffies - (rq)->expired_timestamp >= \
2461 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2462 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2463
2464/*
2465 * Account user cpu time to a process.
2466 * @p: the process that the cpu time gets accounted to
2467 * @hardirq_offset: the offset to subtract from hardirq_count()
2468 * @cputime: the cpu time spent in user space since the last update
2469 */
2470void account_user_time(struct task_struct *p, cputime_t cputime)
2471{
2472 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2473 cputime64_t tmp;
2474
2475 p->utime = cputime_add(p->utime, cputime);
2476
2477 /* Add user time to cpustat. */
2478 tmp = cputime_to_cputime64(cputime);
2479 if (TASK_NICE(p) > 0)
2480 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2481 else
2482 cpustat->user = cputime64_add(cpustat->user, tmp);
2483}
2484
2485/*
2486 * Account system cpu time to a process.
2487 * @p: the process that the cpu time gets accounted to
2488 * @hardirq_offset: the offset to subtract from hardirq_count()
2489 * @cputime: the cpu time spent in kernel space since the last update
2490 */
2491void account_system_time(struct task_struct *p, int hardirq_offset,
2492 cputime_t cputime)
2493{
2494 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2495 runqueue_t *rq = this_rq();
2496 cputime64_t tmp;
2497
2498 p->stime = cputime_add(p->stime, cputime);
2499
2500 /* Add system time to cpustat. */
2501 tmp = cputime_to_cputime64(cputime);
2502 if (hardirq_count() - hardirq_offset)
2503 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2504 else if (softirq_count())
2505 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2506 else if (p != rq->idle)
2507 cpustat->system = cputime64_add(cpustat->system, tmp);
2508 else if (atomic_read(&rq->nr_iowait) > 0)
2509 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2510 else
2511 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2512 /* Account for system time used */
2513 acct_update_integrals(p);
1da177e4
LT
2514}
2515
2516/*
2517 * Account for involuntary wait time.
2518 * @p: the process from which the cpu time has been stolen
2519 * @steal: the cpu time spent in involuntary wait
2520 */
2521void account_steal_time(struct task_struct *p, cputime_t steal)
2522{
2523 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2524 cputime64_t tmp = cputime_to_cputime64(steal);
2525 runqueue_t *rq = this_rq();
2526
2527 if (p == rq->idle) {
2528 p->stime = cputime_add(p->stime, steal);
2529 if (atomic_read(&rq->nr_iowait) > 0)
2530 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2531 else
2532 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2533 } else
2534 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2535}
2536
2537/*
2538 * This function gets called by the timer code, with HZ frequency.
2539 * We call it with interrupts disabled.
2540 *
2541 * It also gets called by the fork code, when changing the parent's
2542 * timeslices.
2543 */
2544void scheduler_tick(void)
2545{
2546 int cpu = smp_processor_id();
2547 runqueue_t *rq = this_rq();
2548 task_t *p = current;
2549 unsigned long long now = sched_clock();
2550
2551 update_cpu_clock(p, rq, now);
2552
2553 rq->timestamp_last_tick = now;
2554
2555 if (p == rq->idle) {
2556 if (wake_priority_sleeper(rq))
2557 goto out;
2558 rebalance_tick(cpu, rq, SCHED_IDLE);
2559 return;
2560 }
2561
2562 /* Task might have expired already, but not scheduled off yet */
2563 if (p->array != rq->active) {
2564 set_tsk_need_resched(p);
2565 goto out;
2566 }
2567 spin_lock(&rq->lock);
2568 /*
2569 * The task was running during this tick - update the
2570 * time slice counter. Note: we do not update a thread's
2571 * priority until it either goes to sleep or uses up its
2572 * timeslice. This makes it possible for interactive tasks
2573 * to use up their timeslices at their highest priority levels.
2574 */
2575 if (rt_task(p)) {
2576 /*
2577 * RR tasks need a special form of timeslice management.
2578 * FIFO tasks have no timeslices.
2579 */
2580 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2581 p->time_slice = task_timeslice(p);
2582 p->first_time_slice = 0;
2583 set_tsk_need_resched(p);
2584
2585 /* put it at the end of the queue: */
2586 requeue_task(p, rq->active);
2587 }
2588 goto out_unlock;
2589 }
2590 if (!--p->time_slice) {
2591 dequeue_task(p, rq->active);
2592 set_tsk_need_resched(p);
2593 p->prio = effective_prio(p);
2594 p->time_slice = task_timeslice(p);
2595 p->first_time_slice = 0;
2596
2597 if (!rq->expired_timestamp)
2598 rq->expired_timestamp = jiffies;
2599 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2600 enqueue_task(p, rq->expired);
2601 if (p->static_prio < rq->best_expired_prio)
2602 rq->best_expired_prio = p->static_prio;
2603 } else
2604 enqueue_task(p, rq->active);
2605 } else {
2606 /*
2607 * Prevent a too long timeslice allowing a task to monopolize
2608 * the CPU. We do this by splitting up the timeslice into
2609 * smaller pieces.
2610 *
2611 * Note: this does not mean the task's timeslices expire or
2612 * get lost in any way, they just might be preempted by
2613 * another task of equal priority. (one with higher
2614 * priority would have preempted this task already.) We
2615 * requeue this task to the end of the list on this priority
2616 * level, which is in essence a round-robin of tasks with
2617 * equal priority.
2618 *
2619 * This only applies to tasks in the interactive
2620 * delta range with at least TIMESLICE_GRANULARITY to requeue.
2621 */
2622 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2623 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2624 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2625 (p->array == rq->active)) {
2626
2627 requeue_task(p, rq->active);
2628 set_tsk_need_resched(p);
2629 }
2630 }
2631out_unlock:
2632 spin_unlock(&rq->lock);
2633out:
2634 rebalance_tick(cpu, rq, NOT_IDLE);
2635}
2636
2637#ifdef CONFIG_SCHED_SMT
fc38ed75
CK
2638static inline void wakeup_busy_runqueue(runqueue_t *rq)
2639{
2640 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
2641 if (rq->curr == rq->idle && rq->nr_running)
2642 resched_task(rq->idle);
2643}
2644
1da177e4
LT
2645static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2646{
41c7ce9a 2647 struct sched_domain *tmp, *sd = NULL;
1da177e4
LT
2648 cpumask_t sibling_map;
2649 int i;
2650
41c7ce9a
NP
2651 for_each_domain(this_cpu, tmp)
2652 if (tmp->flags & SD_SHARE_CPUPOWER)
2653 sd = tmp;
2654
2655 if (!sd)
1da177e4
LT
2656 return;
2657
2658 /*
2659 * Unlock the current runqueue because we have to lock in
2660 * CPU order to avoid deadlocks. Caller knows that we might
2661 * unlock. We keep IRQs disabled.
2662 */
2663 spin_unlock(&this_rq->lock);
2664
2665 sibling_map = sd->span;
2666
2667 for_each_cpu_mask(i, sibling_map)
2668 spin_lock(&cpu_rq(i)->lock);
2669 /*
2670 * We clear this CPU from the mask. This both simplifies the
2671 * inner loop and keps this_rq locked when we exit:
2672 */
2673 cpu_clear(this_cpu, sibling_map);
2674
2675 for_each_cpu_mask(i, sibling_map) {
2676 runqueue_t *smt_rq = cpu_rq(i);
2677
fc38ed75 2678 wakeup_busy_runqueue(smt_rq);
1da177e4
LT
2679 }
2680
2681 for_each_cpu_mask(i, sibling_map)
2682 spin_unlock(&cpu_rq(i)->lock);
2683 /*
2684 * We exit with this_cpu's rq still held and IRQs
2685 * still disabled:
2686 */
2687}
2688
67f9a619
IM
2689/*
2690 * number of 'lost' timeslices this task wont be able to fully
2691 * utilize, if another task runs on a sibling. This models the
2692 * slowdown effect of other tasks running on siblings:
2693 */
2694static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)
2695{
2696 return p->time_slice * (100 - sd->per_cpu_gain) / 100;
2697}
2698
1da177e4
LT
2699static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2700{
41c7ce9a 2701 struct sched_domain *tmp, *sd = NULL;
1da177e4
LT
2702 cpumask_t sibling_map;
2703 prio_array_t *array;
2704 int ret = 0, i;
2705 task_t *p;
2706
41c7ce9a
NP
2707 for_each_domain(this_cpu, tmp)
2708 if (tmp->flags & SD_SHARE_CPUPOWER)
2709 sd = tmp;
2710
2711 if (!sd)
1da177e4
LT
2712 return 0;
2713
2714 /*
2715 * The same locking rules and details apply as for
2716 * wake_sleeping_dependent():
2717 */
2718 spin_unlock(&this_rq->lock);
2719 sibling_map = sd->span;
2720 for_each_cpu_mask(i, sibling_map)
2721 spin_lock(&cpu_rq(i)->lock);
2722 cpu_clear(this_cpu, sibling_map);
2723
2724 /*
2725 * Establish next task to be run - it might have gone away because
2726 * we released the runqueue lock above:
2727 */
2728 if (!this_rq->nr_running)
2729 goto out_unlock;
2730 array = this_rq->active;
2731 if (!array->nr_active)
2732 array = this_rq->expired;
2733 BUG_ON(!array->nr_active);
2734
2735 p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
2736 task_t, run_list);
2737
2738 for_each_cpu_mask(i, sibling_map) {
2739 runqueue_t *smt_rq = cpu_rq(i);
2740 task_t *smt_curr = smt_rq->curr;
2741
fc38ed75
CK
2742 /* Kernel threads do not participate in dependent sleeping */
2743 if (!p->mm || !smt_curr->mm || rt_task(p))
2744 goto check_smt_task;
2745
1da177e4
LT
2746 /*
2747 * If a user task with lower static priority than the
2748 * running task on the SMT sibling is trying to schedule,
2749 * delay it till there is proportionately less timeslice
2750 * left of the sibling task to prevent a lower priority
2751 * task from using an unfair proportion of the
2752 * physical cpu's resources. -ck
2753 */
fc38ed75
CK
2754 if (rt_task(smt_curr)) {
2755 /*
2756 * With real time tasks we run non-rt tasks only
2757 * per_cpu_gain% of the time.
2758 */
2759 if ((jiffies % DEF_TIMESLICE) >
2760 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2761 ret = 1;
2762 } else
67f9a619
IM
2763 if (smt_curr->static_prio < p->static_prio &&
2764 !TASK_PREEMPTS_CURR(p, smt_rq) &&
2765 smt_slice(smt_curr, sd) > task_timeslice(p))
fc38ed75
CK
2766 ret = 1;
2767
2768check_smt_task:
2769 if ((!smt_curr->mm && smt_curr != smt_rq->idle) ||
2770 rt_task(smt_curr))
2771 continue;
2772 if (!p->mm) {
2773 wakeup_busy_runqueue(smt_rq);
2774 continue;
2775 }
1da177e4
LT
2776
2777 /*
fc38ed75
CK
2778 * Reschedule a lower priority task on the SMT sibling for
2779 * it to be put to sleep, or wake it up if it has been put to
2780 * sleep for priority reasons to see if it should run now.
1da177e4 2781 */
fc38ed75
CK
2782 if (rt_task(p)) {
2783 if ((jiffies % DEF_TIMESLICE) >
2784 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2785 resched_task(smt_curr);
2786 } else {
67f9a619
IM
2787 if (TASK_PREEMPTS_CURR(p, smt_rq) &&
2788 smt_slice(p, sd) > task_timeslice(smt_curr))
fc38ed75
CK
2789 resched_task(smt_curr);
2790 else
2791 wakeup_busy_runqueue(smt_rq);
2792 }
1da177e4
LT
2793 }
2794out_unlock:
2795 for_each_cpu_mask(i, sibling_map)
2796 spin_unlock(&cpu_rq(i)->lock);
2797 return ret;
2798}
2799#else
2800static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2801{
2802}
2803
2804static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2805{
2806 return 0;
2807}
2808#endif
2809
2810#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2811
2812void fastcall add_preempt_count(int val)
2813{
2814 /*
2815 * Underflow?
2816 */
be5b4fbd 2817 BUG_ON((preempt_count() < 0));
1da177e4
LT
2818 preempt_count() += val;
2819 /*
2820 * Spinlock count overflowing soon?
2821 */
2822 BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2823}
2824EXPORT_SYMBOL(add_preempt_count);
2825
2826void fastcall sub_preempt_count(int val)
2827{
2828 /*
2829 * Underflow?
2830 */
2831 BUG_ON(val > preempt_count());
2832 /*
2833 * Is the spinlock portion underflowing?
2834 */
2835 BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2836 preempt_count() -= val;
2837}
2838EXPORT_SYMBOL(sub_preempt_count);
2839
2840#endif
2841
2842/*
2843 * schedule() is the main scheduler function.
2844 */
2845asmlinkage void __sched schedule(void)
2846{
2847 long *switch_count;
2848 task_t *prev, *next;
2849 runqueue_t *rq;
2850 prio_array_t *array;
2851 struct list_head *queue;
2852 unsigned long long now;
2853 unsigned long run_time;
a3464a10 2854 int cpu, idx, new_prio;
1da177e4
LT
2855
2856 /*
2857 * Test if we are atomic. Since do_exit() needs to call into
2858 * schedule() atomically, we ignore that path for now.
2859 * Otherwise, whine if we are scheduling when we should not be.
2860 */
2861 if (likely(!current->exit_state)) {
2862 if (unlikely(in_atomic())) {
2863 printk(KERN_ERR "scheduling while atomic: "
2864 "%s/0x%08x/%d\n",
2865 current->comm, preempt_count(), current->pid);
2866 dump_stack();
2867 }
2868 }
2869 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2870
2871need_resched:
2872 preempt_disable();
2873 prev = current;
2874 release_kernel_lock(prev);
2875need_resched_nonpreemptible:
2876 rq = this_rq();
2877
2878 /*
2879 * The idle thread is not allowed to schedule!
2880 * Remove this check after it has been exercised a bit.
2881 */
2882 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2883 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2884 dump_stack();
2885 }
2886
2887 schedstat_inc(rq, sched_cnt);
2888 now = sched_clock();
238628ed 2889 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
1da177e4 2890 run_time = now - prev->timestamp;
238628ed 2891 if (unlikely((long long)(now - prev->timestamp) < 0))
1da177e4
LT
2892 run_time = 0;
2893 } else
2894 run_time = NS_MAX_SLEEP_AVG;
2895
2896 /*
2897 * Tasks charged proportionately less run_time at high sleep_avg to
2898 * delay them losing their interactive status
2899 */
2900 run_time /= (CURRENT_BONUS(prev) ? : 1);
2901
2902 spin_lock_irq(&rq->lock);
2903
2904 if (unlikely(prev->flags & PF_DEAD))
2905 prev->state = EXIT_DEAD;
2906
2907 switch_count = &prev->nivcsw;
2908 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2909 switch_count = &prev->nvcsw;
2910 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
2911 unlikely(signal_pending(prev))))
2912 prev->state = TASK_RUNNING;
2913 else {
2914 if (prev->state == TASK_UNINTERRUPTIBLE)
2915 rq->nr_uninterruptible++;
2916 deactivate_task(prev, rq);
2917 }
2918 }
2919
2920 cpu = smp_processor_id();
2921 if (unlikely(!rq->nr_running)) {
2922go_idle:
2923 idle_balance(cpu, rq);
2924 if (!rq->nr_running) {
2925 next = rq->idle;
2926 rq->expired_timestamp = 0;
2927 wake_sleeping_dependent(cpu, rq);
2928 /*
2929 * wake_sleeping_dependent() might have released
2930 * the runqueue, so break out if we got new
2931 * tasks meanwhile:
2932 */
2933 if (!rq->nr_running)
2934 goto switch_tasks;
2935 }
2936 } else {
2937 if (dependent_sleeper(cpu, rq)) {
2938 next = rq->idle;
2939 goto switch_tasks;
2940 }
2941 /*
2942 * dependent_sleeper() releases and reacquires the runqueue
2943 * lock, hence go into the idle loop if the rq went
2944 * empty meanwhile:
2945 */
2946 if (unlikely(!rq->nr_running))
2947 goto go_idle;
2948 }
2949
2950 array = rq->active;
2951 if (unlikely(!array->nr_active)) {
2952 /*
2953 * Switch the active and expired arrays.
2954 */
2955 schedstat_inc(rq, sched_switch);
2956 rq->active = rq->expired;
2957 rq->expired = array;
2958 array = rq->active;
2959 rq->expired_timestamp = 0;
2960 rq->best_expired_prio = MAX_PRIO;
2961 }
2962
2963 idx = sched_find_first_bit(array->bitmap);
2964 queue = array->queue + idx;
2965 next = list_entry(queue->next, task_t, run_list);
2966
2967 if (!rt_task(next) && next->activated > 0) {
2968 unsigned long long delta = now - next->timestamp;
238628ed 2969 if (unlikely((long long)(now - next->timestamp) < 0))
1da177e4
LT
2970 delta = 0;
2971
2972 if (next->activated == 1)
2973 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
2974
2975 array = next->array;
a3464a10
CS
2976 new_prio = recalc_task_prio(next, next->timestamp + delta);
2977
2978 if (unlikely(next->prio != new_prio)) {
2979 dequeue_task(next, array);
2980 next->prio = new_prio;
2981 enqueue_task(next, array);
2982 } else
2983 requeue_task(next, array);
1da177e4
LT
2984 }
2985 next->activated = 0;
2986switch_tasks:
2987 if (next == rq->idle)
2988 schedstat_inc(rq, sched_goidle);
2989 prefetch(next);
383f2835 2990 prefetch_stack(next);
1da177e4
LT
2991 clear_tsk_need_resched(prev);
2992 rcu_qsctr_inc(task_cpu(prev));
2993
2994 update_cpu_clock(prev, rq, now);
2995
2996 prev->sleep_avg -= run_time;
2997 if ((long)prev->sleep_avg <= 0)
2998 prev->sleep_avg = 0;
2999 prev->timestamp = prev->last_ran = now;
3000
3001 sched_info_switch(prev, next);
3002 if (likely(prev != next)) {
3003 next->timestamp = now;
3004 rq->nr_switches++;
3005 rq->curr = next;
3006 ++*switch_count;
3007
4866cde0 3008 prepare_task_switch(rq, next);
1da177e4
LT
3009 prev = context_switch(rq, prev, next);
3010 barrier();
4866cde0
NP
3011 /*
3012 * this_rq must be evaluated again because prev may have moved
3013 * CPUs since it called schedule(), thus the 'rq' on its stack
3014 * frame will be invalid.
3015 */
3016 finish_task_switch(this_rq(), prev);
1da177e4
LT
3017 } else
3018 spin_unlock_irq(&rq->lock);
3019
3020 prev = current;
3021 if (unlikely(reacquire_kernel_lock(prev) < 0))
3022 goto need_resched_nonpreemptible;
3023 preempt_enable_no_resched();
3024 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3025 goto need_resched;
3026}
3027
3028EXPORT_SYMBOL(schedule);
3029
3030#ifdef CONFIG_PREEMPT
3031/*
3032 * this is is the entry point to schedule() from in-kernel preemption
3033 * off of preempt_enable. Kernel preemptions off return from interrupt
3034 * occur there and call schedule directly.
3035 */
3036asmlinkage void __sched preempt_schedule(void)
3037{
3038 struct thread_info *ti = current_thread_info();
3039#ifdef CONFIG_PREEMPT_BKL
3040 struct task_struct *task = current;
3041 int saved_lock_depth;
3042#endif
3043 /*
3044 * If there is a non-zero preempt_count or interrupts are disabled,
3045 * we do not want to preempt the current task. Just return..
3046 */
3047 if (unlikely(ti->preempt_count || irqs_disabled()))
3048 return;
3049
3050need_resched:
3051 add_preempt_count(PREEMPT_ACTIVE);
3052 /*
3053 * We keep the big kernel semaphore locked, but we
3054 * clear ->lock_depth so that schedule() doesnt
3055 * auto-release the semaphore:
3056 */
3057#ifdef CONFIG_PREEMPT_BKL
3058 saved_lock_depth = task->lock_depth;
3059 task->lock_depth = -1;
3060#endif
3061 schedule();
3062#ifdef CONFIG_PREEMPT_BKL
3063 task->lock_depth = saved_lock_depth;
3064#endif
3065 sub_preempt_count(PREEMPT_ACTIVE);
3066
3067 /* we could miss a preemption opportunity between schedule and now */
3068 barrier();
3069 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3070 goto need_resched;
3071}
3072
3073EXPORT_SYMBOL(preempt_schedule);
3074
3075/*
3076 * this is is the entry point to schedule() from kernel preemption
3077 * off of irq context.
3078 * Note, that this is called and return with irqs disabled. This will
3079 * protect us against recursive calling from irq.
3080 */
3081asmlinkage void __sched preempt_schedule_irq(void)
3082{
3083 struct thread_info *ti = current_thread_info();
3084#ifdef CONFIG_PREEMPT_BKL
3085 struct task_struct *task = current;
3086 int saved_lock_depth;
3087#endif
3088 /* Catch callers which need to be fixed*/
3089 BUG_ON(ti->preempt_count || !irqs_disabled());
3090
3091need_resched:
3092 add_preempt_count(PREEMPT_ACTIVE);
3093 /*
3094 * We keep the big kernel semaphore locked, but we
3095 * clear ->lock_depth so that schedule() doesnt
3096 * auto-release the semaphore:
3097 */
3098#ifdef CONFIG_PREEMPT_BKL
3099 saved_lock_depth = task->lock_depth;
3100 task->lock_depth = -1;
3101#endif
3102 local_irq_enable();
3103 schedule();
3104 local_irq_disable();
3105#ifdef CONFIG_PREEMPT_BKL
3106 task->lock_depth = saved_lock_depth;
3107#endif
3108 sub_preempt_count(PREEMPT_ACTIVE);
3109
3110 /* we could miss a preemption opportunity between schedule and now */
3111 barrier();
3112 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3113 goto need_resched;
3114}
3115
3116#endif /* CONFIG_PREEMPT */
3117
95cdf3b7
IM
3118int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3119 void *key)
1da177e4 3120{
c43dc2fd 3121 task_t *p = curr->private;
1da177e4
LT
3122 return try_to_wake_up(p, mode, sync);
3123}
3124
3125EXPORT_SYMBOL(default_wake_function);
3126
3127/*
3128 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3129 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3130 * number) then we wake all the non-exclusive tasks and one exclusive task.
3131 *
3132 * There are circumstances in which we can try to wake a task which has already
3133 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3134 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3135 */
3136static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3137 int nr_exclusive, int sync, void *key)
3138{
3139 struct list_head *tmp, *next;
3140
3141 list_for_each_safe(tmp, next, &q->task_list) {
3142 wait_queue_t *curr;
3143 unsigned flags;
3144 curr = list_entry(tmp, wait_queue_t, task_list);
3145 flags = curr->flags;
3146 if (curr->func(curr, mode, sync, key) &&
3147 (flags & WQ_FLAG_EXCLUSIVE) &&
3148 !--nr_exclusive)
3149 break;
3150 }
3151}
3152
3153/**
3154 * __wake_up - wake up threads blocked on a waitqueue.
3155 * @q: the waitqueue
3156 * @mode: which threads
3157 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3158 * @key: is directly passed to the wakeup function
1da177e4
LT
3159 */
3160void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3161 int nr_exclusive, void *key)
1da177e4
LT
3162{
3163 unsigned long flags;
3164
3165 spin_lock_irqsave(&q->lock, flags);
3166 __wake_up_common(q, mode, nr_exclusive, 0, key);
3167 spin_unlock_irqrestore(&q->lock, flags);
3168}
3169
3170EXPORT_SYMBOL(__wake_up);
3171
3172/*
3173 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3174 */
3175void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3176{
3177 __wake_up_common(q, mode, 1, 0, NULL);
3178}
3179
3180/**
67be2dd1 3181 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3182 * @q: the waitqueue
3183 * @mode: which threads
3184 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3185 *
3186 * The sync wakeup differs that the waker knows that it will schedule
3187 * away soon, so while the target thread will be woken up, it will not
3188 * be migrated to another CPU - ie. the two threads are 'synchronized'
3189 * with each other. This can prevent needless bouncing between CPUs.
3190 *
3191 * On UP it can prevent extra preemption.
3192 */
95cdf3b7
IM
3193void fastcall
3194__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3195{
3196 unsigned long flags;
3197 int sync = 1;
3198
3199 if (unlikely(!q))
3200 return;
3201
3202 if (unlikely(!nr_exclusive))
3203 sync = 0;
3204
3205 spin_lock_irqsave(&q->lock, flags);
3206 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3207 spin_unlock_irqrestore(&q->lock, flags);
3208}
3209EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3210
3211void fastcall complete(struct completion *x)
3212{
3213 unsigned long flags;
3214
3215 spin_lock_irqsave(&x->wait.lock, flags);
3216 x->done++;
3217 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3218 1, 0, NULL);
3219 spin_unlock_irqrestore(&x->wait.lock, flags);
3220}
3221EXPORT_SYMBOL(complete);
3222
3223void fastcall complete_all(struct completion *x)
3224{
3225 unsigned long flags;
3226
3227 spin_lock_irqsave(&x->wait.lock, flags);
3228 x->done += UINT_MAX/2;
3229 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3230 0, 0, NULL);
3231 spin_unlock_irqrestore(&x->wait.lock, flags);
3232}
3233EXPORT_SYMBOL(complete_all);
3234
3235void fastcall __sched wait_for_completion(struct completion *x)
3236{
3237 might_sleep();
3238 spin_lock_irq(&x->wait.lock);
3239 if (!x->done) {
3240 DECLARE_WAITQUEUE(wait, current);
3241
3242 wait.flags |= WQ_FLAG_EXCLUSIVE;
3243 __add_wait_queue_tail(&x->wait, &wait);
3244 do {
3245 __set_current_state(TASK_UNINTERRUPTIBLE);
3246 spin_unlock_irq(&x->wait.lock);
3247 schedule();
3248 spin_lock_irq(&x->wait.lock);
3249 } while (!x->done);
3250 __remove_wait_queue(&x->wait, &wait);
3251 }
3252 x->done--;
3253 spin_unlock_irq(&x->wait.lock);
3254}
3255EXPORT_SYMBOL(wait_for_completion);
3256
3257unsigned long fastcall __sched
3258wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3259{
3260 might_sleep();
3261
3262 spin_lock_irq(&x->wait.lock);
3263 if (!x->done) {
3264 DECLARE_WAITQUEUE(wait, current);
3265
3266 wait.flags |= WQ_FLAG_EXCLUSIVE;
3267 __add_wait_queue_tail(&x->wait, &wait);
3268 do {
3269 __set_current_state(TASK_UNINTERRUPTIBLE);
3270 spin_unlock_irq(&x->wait.lock);
3271 timeout = schedule_timeout(timeout);
3272 spin_lock_irq(&x->wait.lock);
3273 if (!timeout) {
3274 __remove_wait_queue(&x->wait, &wait);
3275 goto out;
3276 }
3277 } while (!x->done);
3278 __remove_wait_queue(&x->wait, &wait);
3279 }
3280 x->done--;
3281out:
3282 spin_unlock_irq(&x->wait.lock);
3283 return timeout;
3284}
3285EXPORT_SYMBOL(wait_for_completion_timeout);
3286
3287int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3288{
3289 int ret = 0;
3290
3291 might_sleep();
3292
3293 spin_lock_irq(&x->wait.lock);
3294 if (!x->done) {
3295 DECLARE_WAITQUEUE(wait, current);
3296
3297 wait.flags |= WQ_FLAG_EXCLUSIVE;
3298 __add_wait_queue_tail(&x->wait, &wait);
3299 do {
3300 if (signal_pending(current)) {
3301 ret = -ERESTARTSYS;
3302 __remove_wait_queue(&x->wait, &wait);
3303 goto out;
3304 }
3305 __set_current_state(TASK_INTERRUPTIBLE);
3306 spin_unlock_irq(&x->wait.lock);
3307 schedule();
3308 spin_lock_irq(&x->wait.lock);
3309 } while (!x->done);
3310 __remove_wait_queue(&x->wait, &wait);
3311 }
3312 x->done--;
3313out:
3314 spin_unlock_irq(&x->wait.lock);
3315
3316 return ret;
3317}
3318EXPORT_SYMBOL(wait_for_completion_interruptible);
3319
3320unsigned long fastcall __sched
3321wait_for_completion_interruptible_timeout(struct completion *x,
3322 unsigned long timeout)
3323{
3324 might_sleep();
3325
3326 spin_lock_irq(&x->wait.lock);
3327 if (!x->done) {
3328 DECLARE_WAITQUEUE(wait, current);
3329
3330 wait.flags |= WQ_FLAG_EXCLUSIVE;
3331 __add_wait_queue_tail(&x->wait, &wait);
3332 do {
3333 if (signal_pending(current)) {
3334 timeout = -ERESTARTSYS;
3335 __remove_wait_queue(&x->wait, &wait);
3336 goto out;
3337 }
3338 __set_current_state(TASK_INTERRUPTIBLE);
3339 spin_unlock_irq(&x->wait.lock);
3340 timeout = schedule_timeout(timeout);
3341 spin_lock_irq(&x->wait.lock);
3342 if (!timeout) {
3343 __remove_wait_queue(&x->wait, &wait);
3344 goto out;
3345 }
3346 } while (!x->done);
3347 __remove_wait_queue(&x->wait, &wait);
3348 }
3349 x->done--;
3350out:
3351 spin_unlock_irq(&x->wait.lock);
3352 return timeout;
3353}
3354EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3355
3356
3357#define SLEEP_ON_VAR \
3358 unsigned long flags; \
3359 wait_queue_t wait; \
3360 init_waitqueue_entry(&wait, current);
3361
3362#define SLEEP_ON_HEAD \
3363 spin_lock_irqsave(&q->lock,flags); \
3364 __add_wait_queue(q, &wait); \
3365 spin_unlock(&q->lock);
3366
3367#define SLEEP_ON_TAIL \
3368 spin_lock_irq(&q->lock); \
3369 __remove_wait_queue(q, &wait); \
3370 spin_unlock_irqrestore(&q->lock, flags);
3371
3372void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3373{
3374 SLEEP_ON_VAR
3375
3376 current->state = TASK_INTERRUPTIBLE;
3377
3378 SLEEP_ON_HEAD
3379 schedule();
3380 SLEEP_ON_TAIL
3381}
3382
3383EXPORT_SYMBOL(interruptible_sleep_on);
3384
95cdf3b7
IM
3385long fastcall __sched
3386interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4
LT
3387{
3388 SLEEP_ON_VAR
3389
3390 current->state = TASK_INTERRUPTIBLE;
3391
3392 SLEEP_ON_HEAD
3393 timeout = schedule_timeout(timeout);
3394 SLEEP_ON_TAIL
3395
3396 return timeout;
3397}
3398
3399EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3400
3401void fastcall __sched sleep_on(wait_queue_head_t *q)
3402{
3403 SLEEP_ON_VAR
3404
3405 current->state = TASK_UNINTERRUPTIBLE;
3406
3407 SLEEP_ON_HEAD
3408 schedule();
3409 SLEEP_ON_TAIL
3410}
3411
3412EXPORT_SYMBOL(sleep_on);
3413
3414long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3415{
3416 SLEEP_ON_VAR
3417
3418 current->state = TASK_UNINTERRUPTIBLE;
3419
3420 SLEEP_ON_HEAD
3421 timeout = schedule_timeout(timeout);
3422 SLEEP_ON_TAIL
3423
3424 return timeout;
3425}
3426
3427EXPORT_SYMBOL(sleep_on_timeout);
3428
3429void set_user_nice(task_t *p, long nice)
3430{
3431 unsigned long flags;
3432 prio_array_t *array;
3433 runqueue_t *rq;
3434 int old_prio, new_prio, delta;
3435
3436 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3437 return;
3438 /*
3439 * We have to be careful, if called from sys_setpriority(),
3440 * the task might be in the middle of scheduling on another CPU.
3441 */
3442 rq = task_rq_lock(p, &flags);
3443 /*
3444 * The RT priorities are set via sched_setscheduler(), but we still
3445 * allow the 'normal' nice value to be set - but as expected
3446 * it wont have any effect on scheduling until the task is
3447 * not SCHED_NORMAL:
3448 */
3449 if (rt_task(p)) {
3450 p->static_prio = NICE_TO_PRIO(nice);
3451 goto out_unlock;
3452 }
3453 array = p->array;
3454 if (array)
3455 dequeue_task(p, array);
3456
3457 old_prio = p->prio;
3458 new_prio = NICE_TO_PRIO(nice);
3459 delta = new_prio - old_prio;
3460 p->static_prio = NICE_TO_PRIO(nice);
3461 p->prio += delta;
3462
3463 if (array) {
3464 enqueue_task(p, array);
3465 /*
3466 * If the task increased its priority or is running and
3467 * lowered its priority, then reschedule its CPU:
3468 */
3469 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3470 resched_task(rq->curr);
3471 }
3472out_unlock:
3473 task_rq_unlock(rq, &flags);
3474}
3475
3476EXPORT_SYMBOL(set_user_nice);
3477
e43379f1
MM
3478/*
3479 * can_nice - check if a task can reduce its nice value
3480 * @p: task
3481 * @nice: nice value
3482 */
3483int can_nice(const task_t *p, const int nice)
3484{
024f4747
MM
3485 /* convert nice value [19,-20] to rlimit style value [1,40] */
3486 int nice_rlim = 20 - nice;
e43379f1
MM
3487 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3488 capable(CAP_SYS_NICE));
3489}
3490
1da177e4
LT
3491#ifdef __ARCH_WANT_SYS_NICE
3492
3493/*
3494 * sys_nice - change the priority of the current process.
3495 * @increment: priority increment
3496 *
3497 * sys_setpriority is a more generic, but much slower function that
3498 * does similar things.
3499 */
3500asmlinkage long sys_nice(int increment)
3501{
3502 int retval;
3503 long nice;
3504
3505 /*
3506 * Setpriority might change our priority at the same moment.
3507 * We don't have to worry. Conceptually one call occurs first
3508 * and we have a single winner.
3509 */
e43379f1
MM
3510 if (increment < -40)
3511 increment = -40;
1da177e4
LT
3512 if (increment > 40)
3513 increment = 40;
3514
3515 nice = PRIO_TO_NICE(current->static_prio) + increment;
3516 if (nice < -20)
3517 nice = -20;
3518 if (nice > 19)
3519 nice = 19;
3520
e43379f1
MM
3521 if (increment < 0 && !can_nice(current, nice))
3522 return -EPERM;
3523
1da177e4
LT
3524 retval = security_task_setnice(current, nice);
3525 if (retval)
3526 return retval;
3527
3528 set_user_nice(current, nice);
3529 return 0;
3530}
3531
3532#endif
3533
3534/**
3535 * task_prio - return the priority value of a given task.
3536 * @p: the task in question.
3537 *
3538 * This is the priority value as seen by users in /proc.
3539 * RT tasks are offset by -200. Normal tasks are centered
3540 * around 0, value goes from -16 to +15.
3541 */
3542int task_prio(const task_t *p)
3543{
3544 return p->prio - MAX_RT_PRIO;
3545}
3546
3547/**
3548 * task_nice - return the nice value of a given task.
3549 * @p: the task in question.
3550 */
3551int task_nice(const task_t *p)
3552{
3553 return TASK_NICE(p);
3554}
1da177e4 3555EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
3556
3557/**
3558 * idle_cpu - is a given cpu idle currently?
3559 * @cpu: the processor in question.
3560 */
3561int idle_cpu(int cpu)
3562{
3563 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3564}
3565
1da177e4
LT
3566/**
3567 * idle_task - return the idle task for a given cpu.
3568 * @cpu: the processor in question.
3569 */
3570task_t *idle_task(int cpu)
3571{
3572 return cpu_rq(cpu)->idle;
3573}
3574
3575/**
3576 * find_process_by_pid - find a process with a matching PID value.
3577 * @pid: the pid in question.
3578 */
3579static inline task_t *find_process_by_pid(pid_t pid)
3580{
3581 return pid ? find_task_by_pid(pid) : current;
3582}
3583
3584/* Actually do priority change: must hold rq lock. */
3585static void __setscheduler(struct task_struct *p, int policy, int prio)
3586{
3587 BUG_ON(p->array);
3588 p->policy = policy;
3589 p->rt_priority = prio;
3590 if (policy != SCHED_NORMAL)
d46523ea 3591 p->prio = MAX_RT_PRIO-1 - p->rt_priority;
1da177e4
LT
3592 else
3593 p->prio = p->static_prio;
3594}
3595
3596/**
3597 * sched_setscheduler - change the scheduling policy and/or RT priority of
3598 * a thread.
3599 * @p: the task in question.
3600 * @policy: new policy.
3601 * @param: structure containing the new RT priority.
3602 */
95cdf3b7
IM
3603int sched_setscheduler(struct task_struct *p, int policy,
3604 struct sched_param *param)
1da177e4
LT
3605{
3606 int retval;
3607 int oldprio, oldpolicy = -1;
3608 prio_array_t *array;
3609 unsigned long flags;
3610 runqueue_t *rq;
3611
3612recheck:
3613 /* double check policy once rq lock held */
3614 if (policy < 0)
3615 policy = oldpolicy = p->policy;
3616 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
3617 policy != SCHED_NORMAL)
3618 return -EINVAL;
3619 /*
3620 * Valid priorities for SCHED_FIFO and SCHED_RR are
3621 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0.
3622 */
3623 if (param->sched_priority < 0 ||
95cdf3b7 3624 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 3625 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4
LT
3626 return -EINVAL;
3627 if ((policy == SCHED_NORMAL) != (param->sched_priority == 0))
3628 return -EINVAL;
3629
37e4ab3f
OC
3630 /*
3631 * Allow unprivileged RT tasks to decrease priority:
3632 */
3633 if (!capable(CAP_SYS_NICE)) {
3634 /* can't change policy */
18586e72
AS
3635 if (policy != p->policy &&
3636 !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
37e4ab3f
OC
3637 return -EPERM;
3638 /* can't increase priority */
3639 if (policy != SCHED_NORMAL &&
3640 param->sched_priority > p->rt_priority &&
3641 param->sched_priority >
3642 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3643 return -EPERM;
3644 /* can't change other user's priorities */
3645 if ((current->euid != p->euid) &&
3646 (current->euid != p->uid))
3647 return -EPERM;
3648 }
1da177e4
LT
3649
3650 retval = security_task_setscheduler(p, policy, param);
3651 if (retval)
3652 return retval;
3653 /*
3654 * To be able to change p->policy safely, the apropriate
3655 * runqueue lock must be held.
3656 */
3657 rq = task_rq_lock(p, &flags);
3658 /* recheck policy now with rq lock held */
3659 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3660 policy = oldpolicy = -1;
3661 task_rq_unlock(rq, &flags);
3662 goto recheck;
3663 }
3664 array = p->array;
3665 if (array)
3666 deactivate_task(p, rq);
3667 oldprio = p->prio;
3668 __setscheduler(p, policy, param->sched_priority);
3669 if (array) {
3670 __activate_task(p, rq);
3671 /*
3672 * Reschedule if we are currently running on this runqueue and
3673 * our priority decreased, or if we are not currently running on
3674 * this runqueue and our priority is higher than the current's
3675 */
3676 if (task_running(rq, p)) {
3677 if (p->prio > oldprio)
3678 resched_task(rq->curr);
3679 } else if (TASK_PREEMPTS_CURR(p, rq))
3680 resched_task(rq->curr);
3681 }
3682 task_rq_unlock(rq, &flags);
3683 return 0;
3684}
3685EXPORT_SYMBOL_GPL(sched_setscheduler);
3686
95cdf3b7
IM
3687static int
3688do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4
LT
3689{
3690 int retval;
3691 struct sched_param lparam;
3692 struct task_struct *p;
3693
3694 if (!param || pid < 0)
3695 return -EINVAL;
3696 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3697 return -EFAULT;
3698 read_lock_irq(&tasklist_lock);
3699 p = find_process_by_pid(pid);
3700 if (!p) {
3701 read_unlock_irq(&tasklist_lock);
3702 return -ESRCH;
3703 }
3704 retval = sched_setscheduler(p, policy, &lparam);
3705 read_unlock_irq(&tasklist_lock);
3706 return retval;
3707}
3708
3709/**
3710 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3711 * @pid: the pid in question.
3712 * @policy: new policy.
3713 * @param: structure containing the new RT priority.
3714 */
3715asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3716 struct sched_param __user *param)
3717{
3718 return do_sched_setscheduler(pid, policy, param);
3719}
3720
3721/**
3722 * sys_sched_setparam - set/change the RT priority of a thread
3723 * @pid: the pid in question.
3724 * @param: structure containing the new RT priority.
3725 */
3726asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3727{
3728 return do_sched_setscheduler(pid, -1, param);
3729}
3730
3731/**
3732 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3733 * @pid: the pid in question.
3734 */
3735asmlinkage long sys_sched_getscheduler(pid_t pid)
3736{
3737 int retval = -EINVAL;
3738 task_t *p;
3739
3740 if (pid < 0)
3741 goto out_nounlock;
3742
3743 retval = -ESRCH;
3744 read_lock(&tasklist_lock);
3745 p = find_process_by_pid(pid);
3746 if (p) {
3747 retval = security_task_getscheduler(p);
3748 if (!retval)
3749 retval = p->policy;
3750 }
3751 read_unlock(&tasklist_lock);
3752
3753out_nounlock:
3754 return retval;
3755}
3756
3757/**
3758 * sys_sched_getscheduler - get the RT priority of a thread
3759 * @pid: the pid in question.
3760 * @param: structure containing the RT priority.
3761 */
3762asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3763{
3764 struct sched_param lp;
3765 int retval = -EINVAL;
3766 task_t *p;
3767
3768 if (!param || pid < 0)
3769 goto out_nounlock;
3770
3771 read_lock(&tasklist_lock);
3772 p = find_process_by_pid(pid);
3773 retval = -ESRCH;
3774 if (!p)
3775 goto out_unlock;
3776
3777 retval = security_task_getscheduler(p);
3778 if (retval)
3779 goto out_unlock;
3780
3781 lp.sched_priority = p->rt_priority;
3782 read_unlock(&tasklist_lock);
3783
3784 /*
3785 * This one might sleep, we cannot do it with a spinlock held ...
3786 */
3787 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3788
3789out_nounlock:
3790 return retval;
3791
3792out_unlock:
3793 read_unlock(&tasklist_lock);
3794 return retval;
3795}
3796
3797long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3798{
3799 task_t *p;
3800 int retval;
3801 cpumask_t cpus_allowed;
3802
3803 lock_cpu_hotplug();
3804 read_lock(&tasklist_lock);
3805
3806 p = find_process_by_pid(pid);
3807 if (!p) {
3808 read_unlock(&tasklist_lock);
3809 unlock_cpu_hotplug();
3810 return -ESRCH;
3811 }
3812
3813 /*
3814 * It is not safe to call set_cpus_allowed with the
3815 * tasklist_lock held. We will bump the task_struct's
3816 * usage count and then drop tasklist_lock.
3817 */
3818 get_task_struct(p);
3819 read_unlock(&tasklist_lock);
3820
3821 retval = -EPERM;
3822 if ((current->euid != p->euid) && (current->euid != p->uid) &&
3823 !capable(CAP_SYS_NICE))
3824 goto out_unlock;
3825
3826 cpus_allowed = cpuset_cpus_allowed(p);
3827 cpus_and(new_mask, new_mask, cpus_allowed);
3828 retval = set_cpus_allowed(p, new_mask);
3829
3830out_unlock:
3831 put_task_struct(p);
3832 unlock_cpu_hotplug();
3833 return retval;
3834}
3835
3836static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3837 cpumask_t *new_mask)
3838{
3839 if (len < sizeof(cpumask_t)) {
3840 memset(new_mask, 0, sizeof(cpumask_t));
3841 } else if (len > sizeof(cpumask_t)) {
3842 len = sizeof(cpumask_t);
3843 }
3844 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3845}
3846
3847/**
3848 * sys_sched_setaffinity - set the cpu affinity of a process
3849 * @pid: pid of the process
3850 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3851 * @user_mask_ptr: user-space pointer to the new cpu mask
3852 */
3853asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3854 unsigned long __user *user_mask_ptr)
3855{
3856 cpumask_t new_mask;
3857 int retval;
3858
3859 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3860 if (retval)
3861 return retval;
3862
3863 return sched_setaffinity(pid, new_mask);
3864}
3865
3866/*
3867 * Represents all cpu's present in the system
3868 * In systems capable of hotplug, this map could dynamically grow
3869 * as new cpu's are detected in the system via any platform specific
3870 * method, such as ACPI for e.g.
3871 */
3872
3873cpumask_t cpu_present_map;
3874EXPORT_SYMBOL(cpu_present_map);
3875
3876#ifndef CONFIG_SMP
3877cpumask_t cpu_online_map = CPU_MASK_ALL;
3878cpumask_t cpu_possible_map = CPU_MASK_ALL;
3879#endif
3880
3881long sched_getaffinity(pid_t pid, cpumask_t *mask)
3882{
3883 int retval;
3884 task_t *p;
3885
3886 lock_cpu_hotplug();
3887 read_lock(&tasklist_lock);
3888
3889 retval = -ESRCH;
3890 p = find_process_by_pid(pid);
3891 if (!p)
3892 goto out_unlock;
3893
3894 retval = 0;
3895 cpus_and(*mask, p->cpus_allowed, cpu_possible_map);
3896
3897out_unlock:
3898 read_unlock(&tasklist_lock);
3899 unlock_cpu_hotplug();
3900 if (retval)
3901 return retval;
3902
3903 return 0;
3904}
3905
3906/**
3907 * sys_sched_getaffinity - get the cpu affinity of a process
3908 * @pid: pid of the process
3909 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3910 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3911 */
3912asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
3913 unsigned long __user *user_mask_ptr)
3914{
3915 int ret;
3916 cpumask_t mask;
3917
3918 if (len < sizeof(cpumask_t))
3919 return -EINVAL;
3920
3921 ret = sched_getaffinity(pid, &mask);
3922 if (ret < 0)
3923 return ret;
3924
3925 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
3926 return -EFAULT;
3927
3928 return sizeof(cpumask_t);
3929}
3930
3931/**
3932 * sys_sched_yield - yield the current processor to other threads.
3933 *
3934 * this function yields the current CPU by moving the calling thread
3935 * to the expired array. If there are no other threads running on this
3936 * CPU then this function will return.
3937 */
3938asmlinkage long sys_sched_yield(void)
3939{
3940 runqueue_t *rq = this_rq_lock();
3941 prio_array_t *array = current->array;
3942 prio_array_t *target = rq->expired;
3943
3944 schedstat_inc(rq, yld_cnt);
3945 /*
3946 * We implement yielding by moving the task into the expired
3947 * queue.
3948 *
3949 * (special rule: RT tasks will just roundrobin in the active
3950 * array.)
3951 */
3952 if (rt_task(current))
3953 target = rq->active;
3954
5927ad78 3955 if (array->nr_active == 1) {
1da177e4
LT
3956 schedstat_inc(rq, yld_act_empty);
3957 if (!rq->expired->nr_active)
3958 schedstat_inc(rq, yld_both_empty);
3959 } else if (!rq->expired->nr_active)
3960 schedstat_inc(rq, yld_exp_empty);
3961
3962 if (array != target) {
3963 dequeue_task(current, array);
3964 enqueue_task(current, target);
3965 } else
3966 /*
3967 * requeue_task is cheaper so perform that if possible.
3968 */
3969 requeue_task(current, array);
3970
3971 /*
3972 * Since we are going to call schedule() anyway, there's
3973 * no need to preempt or enable interrupts:
3974 */
3975 __release(rq->lock);
3976 _raw_spin_unlock(&rq->lock);
3977 preempt_enable_no_resched();
3978
3979 schedule();
3980
3981 return 0;
3982}
3983
3984static inline void __cond_resched(void)
3985{
5bbcfd90
IM
3986 /*
3987 * The BKS might be reacquired before we have dropped
3988 * PREEMPT_ACTIVE, which could trigger a second
3989 * cond_resched() call.
3990 */
3991 if (unlikely(preempt_count()))
3992 return;
1da177e4
LT
3993 do {
3994 add_preempt_count(PREEMPT_ACTIVE);
3995 schedule();
3996 sub_preempt_count(PREEMPT_ACTIVE);
3997 } while (need_resched());
3998}
3999
4000int __sched cond_resched(void)
4001{
4002 if (need_resched()) {
4003 __cond_resched();
4004 return 1;
4005 }
4006 return 0;
4007}
4008
4009EXPORT_SYMBOL(cond_resched);
4010
4011/*
4012 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4013 * call schedule, and on return reacquire the lock.
4014 *
4015 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4016 * operations here to prevent schedule() from being called twice (once via
4017 * spin_unlock(), once by hand).
4018 */
95cdf3b7 4019int cond_resched_lock(spinlock_t *lock)
1da177e4 4020{
6df3cecb
JK
4021 int ret = 0;
4022
1da177e4
LT
4023 if (need_lockbreak(lock)) {
4024 spin_unlock(lock);
4025 cpu_relax();
6df3cecb 4026 ret = 1;
1da177e4
LT
4027 spin_lock(lock);
4028 }
4029 if (need_resched()) {
4030 _raw_spin_unlock(lock);
4031 preempt_enable_no_resched();
4032 __cond_resched();
6df3cecb 4033 ret = 1;
1da177e4 4034 spin_lock(lock);
1da177e4 4035 }
6df3cecb 4036 return ret;
1da177e4
LT
4037}
4038
4039EXPORT_SYMBOL(cond_resched_lock);
4040
4041int __sched cond_resched_softirq(void)
4042{
4043 BUG_ON(!in_softirq());
4044
4045 if (need_resched()) {
4046 __local_bh_enable();
4047 __cond_resched();
4048 local_bh_disable();
4049 return 1;
4050 }
4051 return 0;
4052}
4053
4054EXPORT_SYMBOL(cond_resched_softirq);
4055
4056
4057/**
4058 * yield - yield the current processor to other threads.
4059 *
4060 * this is a shortcut for kernel-space yielding - it marks the
4061 * thread runnable and calls sys_sched_yield().
4062 */
4063void __sched yield(void)
4064{
4065 set_current_state(TASK_RUNNING);
4066 sys_sched_yield();
4067}
4068
4069EXPORT_SYMBOL(yield);
4070
4071/*
4072 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4073 * that process accounting knows that this is a task in IO wait state.
4074 *
4075 * But don't do that if it is a deliberate, throttling IO wait (this task
4076 * has set its backing_dev_info: the queue against which it should throttle)
4077 */
4078void __sched io_schedule(void)
4079{
39c715b7 4080 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
1da177e4
LT
4081
4082 atomic_inc(&rq->nr_iowait);
4083 schedule();
4084 atomic_dec(&rq->nr_iowait);
4085}
4086
4087EXPORT_SYMBOL(io_schedule);
4088
4089long __sched io_schedule_timeout(long timeout)
4090{
39c715b7 4091 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
1da177e4
LT
4092 long ret;
4093
4094 atomic_inc(&rq->nr_iowait);
4095 ret = schedule_timeout(timeout);
4096 atomic_dec(&rq->nr_iowait);
4097 return ret;
4098}
4099
4100/**
4101 * sys_sched_get_priority_max - return maximum RT priority.
4102 * @policy: scheduling class.
4103 *
4104 * this syscall returns the maximum rt_priority that can be used
4105 * by a given scheduling class.
4106 */
4107asmlinkage long sys_sched_get_priority_max(int policy)
4108{
4109 int ret = -EINVAL;
4110
4111 switch (policy) {
4112 case SCHED_FIFO:
4113 case SCHED_RR:
4114 ret = MAX_USER_RT_PRIO-1;
4115 break;
4116 case SCHED_NORMAL:
4117 ret = 0;
4118 break;
4119 }
4120 return ret;
4121}
4122
4123/**
4124 * sys_sched_get_priority_min - return minimum RT priority.
4125 * @policy: scheduling class.
4126 *
4127 * this syscall returns the minimum rt_priority that can be used
4128 * by a given scheduling class.
4129 */
4130asmlinkage long sys_sched_get_priority_min(int policy)
4131{
4132 int ret = -EINVAL;
4133
4134 switch (policy) {
4135 case SCHED_FIFO:
4136 case SCHED_RR:
4137 ret = 1;
4138 break;
4139 case SCHED_NORMAL:
4140 ret = 0;
4141 }
4142 return ret;
4143}
4144
4145/**
4146 * sys_sched_rr_get_interval - return the default timeslice of a process.
4147 * @pid: pid of the process.
4148 * @interval: userspace pointer to the timeslice value.
4149 *
4150 * this syscall writes the default timeslice value of a given process
4151 * into the user-space timespec buffer. A value of '0' means infinity.
4152 */
4153asmlinkage
4154long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4155{
4156 int retval = -EINVAL;
4157 struct timespec t;
4158 task_t *p;
4159
4160 if (pid < 0)
4161 goto out_nounlock;
4162
4163 retval = -ESRCH;
4164 read_lock(&tasklist_lock);
4165 p = find_process_by_pid(pid);
4166 if (!p)
4167 goto out_unlock;
4168
4169 retval = security_task_getscheduler(p);
4170 if (retval)
4171 goto out_unlock;
4172
4173 jiffies_to_timespec(p->policy & SCHED_FIFO ?
4174 0 : task_timeslice(p), &t);
4175 read_unlock(&tasklist_lock);
4176 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4177out_nounlock:
4178 return retval;
4179out_unlock:
4180 read_unlock(&tasklist_lock);
4181 return retval;
4182}
4183
4184static inline struct task_struct *eldest_child(struct task_struct *p)
4185{
4186 if (list_empty(&p->children)) return NULL;
4187 return list_entry(p->children.next,struct task_struct,sibling);
4188}
4189
4190static inline struct task_struct *older_sibling(struct task_struct *p)
4191{
4192 if (p->sibling.prev==&p->parent->children) return NULL;
4193 return list_entry(p->sibling.prev,struct task_struct,sibling);
4194}
4195
4196static inline struct task_struct *younger_sibling(struct task_struct *p)
4197{
4198 if (p->sibling.next==&p->parent->children) return NULL;
4199 return list_entry(p->sibling.next,struct task_struct,sibling);
4200}
4201
95cdf3b7 4202static void show_task(task_t *p)
1da177e4
LT
4203{
4204 task_t *relative;
4205 unsigned state;
4206 unsigned long free = 0;
4207 static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4208
4209 printk("%-13.13s ", p->comm);
4210 state = p->state ? __ffs(p->state) + 1 : 0;
4211 if (state < ARRAY_SIZE(stat_nam))
4212 printk(stat_nam[state]);
4213 else
4214 printk("?");
4215#if (BITS_PER_LONG == 32)
4216 if (state == TASK_RUNNING)
4217 printk(" running ");
4218 else
4219 printk(" %08lX ", thread_saved_pc(p));
4220#else
4221 if (state == TASK_RUNNING)
4222 printk(" running task ");
4223 else
4224 printk(" %016lx ", thread_saved_pc(p));
4225#endif
4226#ifdef CONFIG_DEBUG_STACK_USAGE
4227 {
95cdf3b7 4228 unsigned long *n = (unsigned long *) (p->thread_info+1);
1da177e4
LT
4229 while (!*n)
4230 n++;
4231 free = (unsigned long) n - (unsigned long)(p->thread_info+1);
4232 }
4233#endif
4234 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4235 if ((relative = eldest_child(p)))
4236 printk("%5d ", relative->pid);
4237 else
4238 printk(" ");
4239 if ((relative = younger_sibling(p)))
4240 printk("%7d", relative->pid);
4241 else
4242 printk(" ");
4243 if ((relative = older_sibling(p)))
4244 printk(" %5d", relative->pid);
4245 else
4246 printk(" ");
4247 if (!p->mm)
4248 printk(" (L-TLB)\n");
4249 else
4250 printk(" (NOTLB)\n");
4251
4252 if (state != TASK_RUNNING)
4253 show_stack(p, NULL);
4254}
4255
4256void show_state(void)
4257{
4258 task_t *g, *p;
4259
4260#if (BITS_PER_LONG == 32)
4261 printk("\n"
4262 " sibling\n");
4263 printk(" task PC pid father child younger older\n");
4264#else
4265 printk("\n"
4266 " sibling\n");
4267 printk(" task PC pid father child younger older\n");
4268#endif
4269 read_lock(&tasklist_lock);
4270 do_each_thread(g, p) {
4271 /*
4272 * reset the NMI-timeout, listing all files on a slow
4273 * console might take alot of time:
4274 */
4275 touch_nmi_watchdog();
4276 show_task(p);
4277 } while_each_thread(g, p);
4278
4279 read_unlock(&tasklist_lock);
4280}
4281
f340c0d1
IM
4282/**
4283 * init_idle - set up an idle thread for a given CPU
4284 * @idle: task in question
4285 * @cpu: cpu the idle task belongs to
4286 *
4287 * NOTE: this function does not set the idle thread's NEED_RESCHED
4288 * flag, to make booting more robust.
4289 */
1da177e4
LT
4290void __devinit init_idle(task_t *idle, int cpu)
4291{
4292 runqueue_t *rq = cpu_rq(cpu);
4293 unsigned long flags;
4294
4295 idle->sleep_avg = 0;
4296 idle->array = NULL;
4297 idle->prio = MAX_PRIO;
4298 idle->state = TASK_RUNNING;
4299 idle->cpus_allowed = cpumask_of_cpu(cpu);
4300 set_task_cpu(idle, cpu);
4301
4302 spin_lock_irqsave(&rq->lock, flags);
4303 rq->curr = rq->idle = idle;
4866cde0
NP
4304#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4305 idle->oncpu = 1;
4306#endif
1da177e4
LT
4307 spin_unlock_irqrestore(&rq->lock, flags);
4308
4309 /* Set the preempt count _outside_ the spinlocks! */
4310#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4311 idle->thread_info->preempt_count = (idle->lock_depth >= 0);
4312#else
4313 idle->thread_info->preempt_count = 0;
4314#endif
4315}
4316
4317/*
4318 * In a system that switches off the HZ timer nohz_cpu_mask
4319 * indicates which cpus entered this state. This is used
4320 * in the rcu update to wait only for active cpus. For system
4321 * which do not switch off the HZ timer nohz_cpu_mask should
4322 * always be CPU_MASK_NONE.
4323 */
4324cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4325
4326#ifdef CONFIG_SMP
4327/*
4328 * This is how migration works:
4329 *
4330 * 1) we queue a migration_req_t structure in the source CPU's
4331 * runqueue and wake up that CPU's migration thread.
4332 * 2) we down() the locked semaphore => thread blocks.
4333 * 3) migration thread wakes up (implicitly it forces the migrated
4334 * thread off the CPU)
4335 * 4) it gets the migration request and checks whether the migrated
4336 * task is still in the wrong runqueue.
4337 * 5) if it's in the wrong runqueue then the migration thread removes
4338 * it and puts it into the right queue.
4339 * 6) migration thread up()s the semaphore.
4340 * 7) we wake up and the migration is done.
4341 */
4342
4343/*
4344 * Change a given task's CPU affinity. Migrate the thread to a
4345 * proper CPU and schedule it away if the CPU it's executing on
4346 * is removed from the allowed bitmask.
4347 *
4348 * NOTE: the caller must have a valid reference to the task, the
4349 * task must not exit() & deallocate itself prematurely. The
4350 * call is not atomic; no spinlocks may be held.
4351 */
4352int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4353{
4354 unsigned long flags;
4355 int ret = 0;
4356 migration_req_t req;
4357 runqueue_t *rq;
4358
4359 rq = task_rq_lock(p, &flags);
4360 if (!cpus_intersects(new_mask, cpu_online_map)) {
4361 ret = -EINVAL;
4362 goto out;
4363 }
4364
4365 p->cpus_allowed = new_mask;
4366 /* Can the task run on the task's current CPU? If so, we're done */
4367 if (cpu_isset(task_cpu(p), new_mask))
4368 goto out;
4369
4370 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4371 /* Need help from migration thread: drop lock and wait. */
4372 task_rq_unlock(rq, &flags);
4373 wake_up_process(rq->migration_thread);
4374 wait_for_completion(&req.done);
4375 tlb_migrate_finish(p->mm);
4376 return 0;
4377 }
4378out:
4379 task_rq_unlock(rq, &flags);
4380 return ret;
4381}
4382
4383EXPORT_SYMBOL_GPL(set_cpus_allowed);
4384
4385/*
4386 * Move (not current) task off this cpu, onto dest cpu. We're doing
4387 * this because either it can't run here any more (set_cpus_allowed()
4388 * away from this CPU, or CPU going down), or because we're
4389 * attempting to rebalance this task on exec (sched_exec).
4390 *
4391 * So we race with normal scheduler movements, but that's OK, as long
4392 * as the task is no longer on this CPU.
4393 */
4394static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4395{
4396 runqueue_t *rq_dest, *rq_src;
4397
4398 if (unlikely(cpu_is_offline(dest_cpu)))
4399 return;
4400
4401 rq_src = cpu_rq(src_cpu);
4402 rq_dest = cpu_rq(dest_cpu);
4403
4404 double_rq_lock(rq_src, rq_dest);
4405 /* Already moved. */
4406 if (task_cpu(p) != src_cpu)
4407 goto out;
4408 /* Affinity changed (again). */
4409 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4410 goto out;
4411
4412 set_task_cpu(p, dest_cpu);
4413 if (p->array) {
4414 /*
4415 * Sync timestamp with rq_dest's before activating.
4416 * The same thing could be achieved by doing this step
4417 * afterwards, and pretending it was a local activate.
4418 * This way is cleaner and logically correct.
4419 */
4420 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4421 + rq_dest->timestamp_last_tick;
4422 deactivate_task(p, rq_src);
4423 activate_task(p, rq_dest, 0);
4424 if (TASK_PREEMPTS_CURR(p, rq_dest))
4425 resched_task(rq_dest->curr);
4426 }
4427
4428out:
4429 double_rq_unlock(rq_src, rq_dest);
4430}
4431
4432/*
4433 * migration_thread - this is a highprio system thread that performs
4434 * thread migration by bumping thread off CPU then 'pushing' onto
4435 * another runqueue.
4436 */
95cdf3b7 4437static int migration_thread(void *data)
1da177e4
LT
4438{
4439 runqueue_t *rq;
4440 int cpu = (long)data;
4441
4442 rq = cpu_rq(cpu);
4443 BUG_ON(rq->migration_thread != current);
4444
4445 set_current_state(TASK_INTERRUPTIBLE);
4446 while (!kthread_should_stop()) {
4447 struct list_head *head;
4448 migration_req_t *req;
4449
3e1d1d28 4450 try_to_freeze();
1da177e4
LT
4451
4452 spin_lock_irq(&rq->lock);
4453
4454 if (cpu_is_offline(cpu)) {
4455 spin_unlock_irq(&rq->lock);
4456 goto wait_to_die;
4457 }
4458
4459 if (rq->active_balance) {
4460 active_load_balance(rq, cpu);
4461 rq->active_balance = 0;
4462 }
4463
4464 head = &rq->migration_queue;
4465
4466 if (list_empty(head)) {
4467 spin_unlock_irq(&rq->lock);
4468 schedule();
4469 set_current_state(TASK_INTERRUPTIBLE);
4470 continue;
4471 }
4472 req = list_entry(head->next, migration_req_t, list);
4473 list_del_init(head->next);
4474
674311d5
NP
4475 spin_unlock(&rq->lock);
4476 __migrate_task(req->task, cpu, req->dest_cpu);
4477 local_irq_enable();
1da177e4
LT
4478
4479 complete(&req->done);
4480 }
4481 __set_current_state(TASK_RUNNING);
4482 return 0;
4483
4484wait_to_die:
4485 /* Wait for kthread_stop */
4486 set_current_state(TASK_INTERRUPTIBLE);
4487 while (!kthread_should_stop()) {
4488 schedule();
4489 set_current_state(TASK_INTERRUPTIBLE);
4490 }
4491 __set_current_state(TASK_RUNNING);
4492 return 0;
4493}
4494
4495#ifdef CONFIG_HOTPLUG_CPU
4496/* Figure out where task on dead CPU should go, use force if neccessary. */
4497static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4498{
4499 int dest_cpu;
4500 cpumask_t mask;
4501
4502 /* On same node? */
4503 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4504 cpus_and(mask, mask, tsk->cpus_allowed);
4505 dest_cpu = any_online_cpu(mask);
4506
4507 /* On any allowed CPU? */
4508 if (dest_cpu == NR_CPUS)
4509 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4510
4511 /* No more Mr. Nice Guy. */
4512 if (dest_cpu == NR_CPUS) {
b39c4fab 4513 cpus_setall(tsk->cpus_allowed);
1da177e4
LT
4514 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4515
4516 /*
4517 * Don't tell them about moving exiting tasks or
4518 * kernel threads (both mm NULL), since they never
4519 * leave kernel.
4520 */
4521 if (tsk->mm && printk_ratelimit())
4522 printk(KERN_INFO "process %d (%s) no "
4523 "longer affine to cpu%d\n",
4524 tsk->pid, tsk->comm, dead_cpu);
4525 }
4526 __migrate_task(tsk, dead_cpu, dest_cpu);
4527}
4528
4529/*
4530 * While a dead CPU has no uninterruptible tasks queued at this point,
4531 * it might still have a nonzero ->nr_uninterruptible counter, because
4532 * for performance reasons the counter is not stricly tracking tasks to
4533 * their home CPUs. So we just add the counter to another CPU's counter,
4534 * to keep the global sum constant after CPU-down:
4535 */
4536static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4537{
4538 runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4539 unsigned long flags;
4540
4541 local_irq_save(flags);
4542 double_rq_lock(rq_src, rq_dest);
4543 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4544 rq_src->nr_uninterruptible = 0;
4545 double_rq_unlock(rq_src, rq_dest);
4546 local_irq_restore(flags);
4547}
4548
4549/* Run through task list and migrate tasks from the dead cpu. */
4550static void migrate_live_tasks(int src_cpu)
4551{
4552 struct task_struct *tsk, *t;
4553
4554 write_lock_irq(&tasklist_lock);
4555
4556 do_each_thread(t, tsk) {
4557 if (tsk == current)
4558 continue;
4559
4560 if (task_cpu(tsk) == src_cpu)
4561 move_task_off_dead_cpu(src_cpu, tsk);
4562 } while_each_thread(t, tsk);
4563
4564 write_unlock_irq(&tasklist_lock);
4565}
4566
4567/* Schedules idle task to be the next runnable task on current CPU.
4568 * It does so by boosting its priority to highest possible and adding it to
4569 * the _front_ of runqueue. Used by CPU offline code.
4570 */
4571void sched_idle_next(void)
4572{
4573 int cpu = smp_processor_id();
4574 runqueue_t *rq = this_rq();
4575 struct task_struct *p = rq->idle;
4576 unsigned long flags;
4577
4578 /* cpu has to be offline */
4579 BUG_ON(cpu_online(cpu));
4580
4581 /* Strictly not necessary since rest of the CPUs are stopped by now
4582 * and interrupts disabled on current cpu.
4583 */
4584 spin_lock_irqsave(&rq->lock, flags);
4585
4586 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4587 /* Add idle task to _front_ of it's priority queue */
4588 __activate_idle_task(p, rq);
4589
4590 spin_unlock_irqrestore(&rq->lock, flags);
4591}
4592
4593/* Ensures that the idle task is using init_mm right before its cpu goes
4594 * offline.
4595 */
4596void idle_task_exit(void)
4597{
4598 struct mm_struct *mm = current->active_mm;
4599
4600 BUG_ON(cpu_online(smp_processor_id()));
4601
4602 if (mm != &init_mm)
4603 switch_mm(mm, &init_mm, current);
4604 mmdrop(mm);
4605}
4606
4607static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4608{
4609 struct runqueue *rq = cpu_rq(dead_cpu);
4610
4611 /* Must be exiting, otherwise would be on tasklist. */
4612 BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4613
4614 /* Cannot have done final schedule yet: would have vanished. */
4615 BUG_ON(tsk->flags & PF_DEAD);
4616
4617 get_task_struct(tsk);
4618
4619 /*
4620 * Drop lock around migration; if someone else moves it,
4621 * that's OK. No task can be added to this CPU, so iteration is
4622 * fine.
4623 */
4624 spin_unlock_irq(&rq->lock);
4625 move_task_off_dead_cpu(dead_cpu, tsk);
4626 spin_lock_irq(&rq->lock);
4627
4628 put_task_struct(tsk);
4629}
4630
4631/* release_task() removes task from tasklist, so we won't find dead tasks. */
4632static void migrate_dead_tasks(unsigned int dead_cpu)
4633{
4634 unsigned arr, i;
4635 struct runqueue *rq = cpu_rq(dead_cpu);
4636
4637 for (arr = 0; arr < 2; arr++) {
4638 for (i = 0; i < MAX_PRIO; i++) {
4639 struct list_head *list = &rq->arrays[arr].queue[i];
4640 while (!list_empty(list))
4641 migrate_dead(dead_cpu,
4642 list_entry(list->next, task_t,
4643 run_list));
4644 }
4645 }
4646}
4647#endif /* CONFIG_HOTPLUG_CPU */
4648
4649/*
4650 * migration_call - callback that gets triggered when a CPU is added.
4651 * Here we can start up the necessary migration thread for the new CPU.
4652 */
4653static int migration_call(struct notifier_block *nfb, unsigned long action,
4654 void *hcpu)
4655{
4656 int cpu = (long)hcpu;
4657 struct task_struct *p;
4658 struct runqueue *rq;
4659 unsigned long flags;
4660
4661 switch (action) {
4662 case CPU_UP_PREPARE:
4663 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4664 if (IS_ERR(p))
4665 return NOTIFY_BAD;
4666 p->flags |= PF_NOFREEZE;
4667 kthread_bind(p, cpu);
4668 /* Must be high prio: stop_machine expects to yield to it. */
4669 rq = task_rq_lock(p, &flags);
4670 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4671 task_rq_unlock(rq, &flags);
4672 cpu_rq(cpu)->migration_thread = p;
4673 break;
4674 case CPU_ONLINE:
4675 /* Strictly unneccessary, as first user will wake it. */
4676 wake_up_process(cpu_rq(cpu)->migration_thread);
4677 break;
4678#ifdef CONFIG_HOTPLUG_CPU
4679 case CPU_UP_CANCELED:
4680 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
4681 kthread_bind(cpu_rq(cpu)->migration_thread,
4682 any_online_cpu(cpu_online_map));
1da177e4
LT
4683 kthread_stop(cpu_rq(cpu)->migration_thread);
4684 cpu_rq(cpu)->migration_thread = NULL;
4685 break;
4686 case CPU_DEAD:
4687 migrate_live_tasks(cpu);
4688 rq = cpu_rq(cpu);
4689 kthread_stop(rq->migration_thread);
4690 rq->migration_thread = NULL;
4691 /* Idle task back to normal (off runqueue, low prio) */
4692 rq = task_rq_lock(rq->idle, &flags);
4693 deactivate_task(rq->idle, rq);
4694 rq->idle->static_prio = MAX_PRIO;
4695 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4696 migrate_dead_tasks(cpu);
4697 task_rq_unlock(rq, &flags);
4698 migrate_nr_uninterruptible(rq);
4699 BUG_ON(rq->nr_running != 0);
4700
4701 /* No need to migrate the tasks: it was best-effort if
4702 * they didn't do lock_cpu_hotplug(). Just wake up
4703 * the requestors. */
4704 spin_lock_irq(&rq->lock);
4705 while (!list_empty(&rq->migration_queue)) {
4706 migration_req_t *req;
4707 req = list_entry(rq->migration_queue.next,
4708 migration_req_t, list);
1da177e4
LT
4709 list_del_init(&req->list);
4710 complete(&req->done);
4711 }
4712 spin_unlock_irq(&rq->lock);
4713 break;
4714#endif
4715 }
4716 return NOTIFY_OK;
4717}
4718
4719/* Register at highest priority so that task migration (migrate_all_tasks)
4720 * happens before everything else.
4721 */
4722static struct notifier_block __devinitdata migration_notifier = {
4723 .notifier_call = migration_call,
4724 .priority = 10
4725};
4726
4727int __init migration_init(void)
4728{
4729 void *cpu = (void *)(long)smp_processor_id();
4730 /* Start one for boot CPU. */
4731 migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4732 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4733 register_cpu_notifier(&migration_notifier);
4734 return 0;
4735}
4736#endif
4737
4738#ifdef CONFIG_SMP
1a20ff27 4739#undef SCHED_DOMAIN_DEBUG
1da177e4
LT
4740#ifdef SCHED_DOMAIN_DEBUG
4741static void sched_domain_debug(struct sched_domain *sd, int cpu)
4742{
4743 int level = 0;
4744
41c7ce9a
NP
4745 if (!sd) {
4746 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4747 return;
4748 }
4749
1da177e4
LT
4750 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4751
4752 do {
4753 int i;
4754 char str[NR_CPUS];
4755 struct sched_group *group = sd->groups;
4756 cpumask_t groupmask;
4757
4758 cpumask_scnprintf(str, NR_CPUS, sd->span);
4759 cpus_clear(groupmask);
4760
4761 printk(KERN_DEBUG);
4762 for (i = 0; i < level + 1; i++)
4763 printk(" ");
4764 printk("domain %d: ", level);
4765
4766 if (!(sd->flags & SD_LOAD_BALANCE)) {
4767 printk("does not load-balance\n");
4768 if (sd->parent)
4769 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4770 break;
4771 }
4772
4773 printk("span %s\n", str);
4774
4775 if (!cpu_isset(cpu, sd->span))
4776 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4777 if (!cpu_isset(cpu, group->cpumask))
4778 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4779
4780 printk(KERN_DEBUG);
4781 for (i = 0; i < level + 2; i++)
4782 printk(" ");
4783 printk("groups:");
4784 do {
4785 if (!group) {
4786 printk("\n");
4787 printk(KERN_ERR "ERROR: group is NULL\n");
4788 break;
4789 }
4790
4791 if (!group->cpu_power) {
4792 printk("\n");
4793 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4794 }
4795
4796 if (!cpus_weight(group->cpumask)) {
4797 printk("\n");
4798 printk(KERN_ERR "ERROR: empty group\n");
4799 }
4800
4801 if (cpus_intersects(groupmask, group->cpumask)) {
4802 printk("\n");
4803 printk(KERN_ERR "ERROR: repeated CPUs\n");
4804 }
4805
4806 cpus_or(groupmask, groupmask, group->cpumask);
4807
4808 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4809 printk(" %s", str);
4810
4811 group = group->next;
4812 } while (group != sd->groups);
4813 printk("\n");
4814
4815 if (!cpus_equal(sd->span, groupmask))
4816 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4817
4818 level++;
4819 sd = sd->parent;
4820
4821 if (sd) {
4822 if (!cpus_subset(groupmask, sd->span))
4823 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4824 }
4825
4826 } while (sd);
4827}
4828#else
4829#define sched_domain_debug(sd, cpu) {}
4830#endif
4831
1a20ff27 4832static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
4833{
4834 if (cpus_weight(sd->span) == 1)
4835 return 1;
4836
4837 /* Following flags need at least 2 groups */
4838 if (sd->flags & (SD_LOAD_BALANCE |
4839 SD_BALANCE_NEWIDLE |
4840 SD_BALANCE_FORK |
4841 SD_BALANCE_EXEC)) {
4842 if (sd->groups != sd->groups->next)
4843 return 0;
4844 }
4845
4846 /* Following flags don't use groups */
4847 if (sd->flags & (SD_WAKE_IDLE |
4848 SD_WAKE_AFFINE |
4849 SD_WAKE_BALANCE))
4850 return 0;
4851
4852 return 1;
4853}
4854
1a20ff27 4855static int sd_parent_degenerate(struct sched_domain *sd,
245af2c7
SS
4856 struct sched_domain *parent)
4857{
4858 unsigned long cflags = sd->flags, pflags = parent->flags;
4859
4860 if (sd_degenerate(parent))
4861 return 1;
4862
4863 if (!cpus_equal(sd->span, parent->span))
4864 return 0;
4865
4866 /* Does parent contain flags not in child? */
4867 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4868 if (cflags & SD_WAKE_AFFINE)
4869 pflags &= ~SD_WAKE_BALANCE;
4870 /* Flags needing groups don't count if only 1 group in parent */
4871 if (parent->groups == parent->groups->next) {
4872 pflags &= ~(SD_LOAD_BALANCE |
4873 SD_BALANCE_NEWIDLE |
4874 SD_BALANCE_FORK |
4875 SD_BALANCE_EXEC);
4876 }
4877 if (~cflags & pflags)
4878 return 0;
4879
4880 return 1;
4881}
4882
1da177e4
LT
4883/*
4884 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
4885 * hold the hotplug lock.
4886 */
9c1cfda2 4887static void cpu_attach_domain(struct sched_domain *sd, int cpu)
1da177e4 4888{
1da177e4 4889 runqueue_t *rq = cpu_rq(cpu);
245af2c7
SS
4890 struct sched_domain *tmp;
4891
4892 /* Remove the sched domains which do not contribute to scheduling. */
4893 for (tmp = sd; tmp; tmp = tmp->parent) {
4894 struct sched_domain *parent = tmp->parent;
4895 if (!parent)
4896 break;
4897 if (sd_parent_degenerate(tmp, parent))
4898 tmp->parent = parent->parent;
4899 }
4900
4901 if (sd && sd_degenerate(sd))
4902 sd = sd->parent;
1da177e4
LT
4903
4904 sched_domain_debug(sd, cpu);
4905
674311d5 4906 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
4907}
4908
4909/* cpus with isolated domains */
9c1cfda2 4910static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
4911
4912/* Setup the mask of cpus configured for isolated domains */
4913static int __init isolated_cpu_setup(char *str)
4914{
4915 int ints[NR_CPUS], i;
4916
4917 str = get_options(str, ARRAY_SIZE(ints), ints);
4918 cpus_clear(cpu_isolated_map);
4919 for (i = 1; i <= ints[0]; i++)
4920 if (ints[i] < NR_CPUS)
4921 cpu_set(ints[i], cpu_isolated_map);
4922 return 1;
4923}
4924
4925__setup ("isolcpus=", isolated_cpu_setup);
4926
4927/*
4928 * init_sched_build_groups takes an array of groups, the cpumask we wish
4929 * to span, and a pointer to a function which identifies what group a CPU
4930 * belongs to. The return value of group_fn must be a valid index into the
4931 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
4932 * keep track of groups covered with a cpumask_t).
4933 *
4934 * init_sched_build_groups will build a circular linked list of the groups
4935 * covered by the given span, and will set each group's ->cpumask correctly,
4936 * and ->cpu_power to 0.
4937 */
9c1cfda2
JH
4938static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
4939 int (*group_fn)(int cpu))
1da177e4
LT
4940{
4941 struct sched_group *first = NULL, *last = NULL;
4942 cpumask_t covered = CPU_MASK_NONE;
4943 int i;
4944
4945 for_each_cpu_mask(i, span) {
4946 int group = group_fn(i);
4947 struct sched_group *sg = &groups[group];
4948 int j;
4949
4950 if (cpu_isset(i, covered))
4951 continue;
4952
4953 sg->cpumask = CPU_MASK_NONE;
4954 sg->cpu_power = 0;
4955
4956 for_each_cpu_mask(j, span) {
4957 if (group_fn(j) != group)
4958 continue;
4959
4960 cpu_set(j, covered);
4961 cpu_set(j, sg->cpumask);
4962 }
4963 if (!first)
4964 first = sg;
4965 if (last)
4966 last->next = sg;
4967 last = sg;
4968 }
4969 last->next = first;
4970}
4971
9c1cfda2 4972#define SD_NODES_PER_DOMAIN 16
1da177e4 4973
9c1cfda2
JH
4974#ifdef CONFIG_NUMA
4975/**
4976 * find_next_best_node - find the next node to include in a sched_domain
4977 * @node: node whose sched_domain we're building
4978 * @used_nodes: nodes already in the sched_domain
4979 *
4980 * Find the next node to include in a given scheduling domain. Simply
4981 * finds the closest node not already in the @used_nodes map.
4982 *
4983 * Should use nodemask_t.
4984 */
4985static int find_next_best_node(int node, unsigned long *used_nodes)
4986{
4987 int i, n, val, min_val, best_node = 0;
4988
4989 min_val = INT_MAX;
4990
4991 for (i = 0; i < MAX_NUMNODES; i++) {
4992 /* Start at @node */
4993 n = (node + i) % MAX_NUMNODES;
4994
4995 if (!nr_cpus_node(n))
4996 continue;
4997
4998 /* Skip already used nodes */
4999 if (test_bit(n, used_nodes))
5000 continue;
5001
5002 /* Simple min distance search */
5003 val = node_distance(node, n);
5004
5005 if (val < min_val) {
5006 min_val = val;
5007 best_node = n;
5008 }
5009 }
5010
5011 set_bit(best_node, used_nodes);
5012 return best_node;
5013}
5014
5015/**
5016 * sched_domain_node_span - get a cpumask for a node's sched_domain
5017 * @node: node whose cpumask we're constructing
5018 * @size: number of nodes to include in this span
5019 *
5020 * Given a node, construct a good cpumask for its sched_domain to span. It
5021 * should be one that prevents unnecessary balancing, but also spreads tasks
5022 * out optimally.
5023 */
5024static cpumask_t sched_domain_node_span(int node)
5025{
5026 int i;
5027 cpumask_t span, nodemask;
5028 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5029
5030 cpus_clear(span);
5031 bitmap_zero(used_nodes, MAX_NUMNODES);
5032
5033 nodemask = node_to_cpumask(node);
5034 cpus_or(span, span, nodemask);
5035 set_bit(node, used_nodes);
5036
5037 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5038 int next_node = find_next_best_node(node, used_nodes);
5039 nodemask = node_to_cpumask(next_node);
5040 cpus_or(span, span, nodemask);
5041 }
5042
5043 return span;
5044}
5045#endif
5046
5047/*
5048 * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
5049 * can switch it on easily if needed.
5050 */
1da177e4
LT
5051#ifdef CONFIG_SCHED_SMT
5052static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5053static struct sched_group sched_group_cpus[NR_CPUS];
1a20ff27 5054static int cpu_to_cpu_group(int cpu)
1da177e4
LT
5055{
5056 return cpu;
5057}
5058#endif
5059
5060static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5061static struct sched_group sched_group_phys[NR_CPUS];
1a20ff27 5062static int cpu_to_phys_group(int cpu)
1da177e4
LT
5063{
5064#ifdef CONFIG_SCHED_SMT
5065 return first_cpu(cpu_sibling_map[cpu]);
5066#else
5067 return cpu;
5068#endif
5069}
5070
5071#ifdef CONFIG_NUMA
1da177e4 5072/*
9c1cfda2
JH
5073 * The init_sched_build_groups can't handle what we want to do with node
5074 * groups, so roll our own. Now each node has its own list of groups which
5075 * gets dynamically allocated.
1da177e4 5076 */
9c1cfda2 5077static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 5078static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 5079
9c1cfda2 5080static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
d1b55138 5081static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
9c1cfda2
JH
5082
5083static int cpu_to_allnodes_group(int cpu)
5084{
5085 return cpu_to_node(cpu);
1da177e4
LT
5086}
5087#endif
5088
5089/*
1a20ff27
DG
5090 * Build sched domains for a given set of cpus and attach the sched domains
5091 * to the individual cpus
1da177e4 5092 */
9c1cfda2 5093void build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
5094{
5095 int i;
d1b55138
JH
5096#ifdef CONFIG_NUMA
5097 struct sched_group **sched_group_nodes = NULL;
5098 struct sched_group *sched_group_allnodes = NULL;
5099
5100 /*
5101 * Allocate the per-node list of sched groups
5102 */
5103 sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
5104 GFP_ATOMIC);
5105 if (!sched_group_nodes) {
5106 printk(KERN_WARNING "Can not alloc sched group node list\n");
5107 return;
5108 }
5109 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5110#endif
1da177e4
LT
5111
5112 /*
1a20ff27 5113 * Set up domains for cpus specified by the cpu_map.
1da177e4 5114 */
1a20ff27 5115 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
5116 int group;
5117 struct sched_domain *sd = NULL, *p;
5118 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5119
1a20ff27 5120 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
5121
5122#ifdef CONFIG_NUMA
d1b55138 5123 if (cpus_weight(*cpu_map)
9c1cfda2 5124 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
d1b55138
JH
5125 if (!sched_group_allnodes) {
5126 sched_group_allnodes
5127 = kmalloc(sizeof(struct sched_group)
5128 * MAX_NUMNODES,
5129 GFP_KERNEL);
5130 if (!sched_group_allnodes) {
5131 printk(KERN_WARNING
5132 "Can not alloc allnodes sched group\n");
5133 break;
5134 }
5135 sched_group_allnodes_bycpu[i]
5136 = sched_group_allnodes;
5137 }
9c1cfda2
JH
5138 sd = &per_cpu(allnodes_domains, i);
5139 *sd = SD_ALLNODES_INIT;
5140 sd->span = *cpu_map;
5141 group = cpu_to_allnodes_group(i);
5142 sd->groups = &sched_group_allnodes[group];
5143 p = sd;
5144 } else
5145 p = NULL;
5146
1da177e4 5147 sd = &per_cpu(node_domains, i);
1da177e4 5148 *sd = SD_NODE_INIT;
9c1cfda2
JH
5149 sd->span = sched_domain_node_span(cpu_to_node(i));
5150 sd->parent = p;
5151 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
5152#endif
5153
5154 p = sd;
5155 sd = &per_cpu(phys_domains, i);
5156 group = cpu_to_phys_group(i);
5157 *sd = SD_CPU_INIT;
5158 sd->span = nodemask;
5159 sd->parent = p;
5160 sd->groups = &sched_group_phys[group];
5161
5162#ifdef CONFIG_SCHED_SMT
5163 p = sd;
5164 sd = &per_cpu(cpu_domains, i);
5165 group = cpu_to_cpu_group(i);
5166 *sd = SD_SIBLING_INIT;
5167 sd->span = cpu_sibling_map[i];
1a20ff27 5168 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
5169 sd->parent = p;
5170 sd->groups = &sched_group_cpus[group];
5171#endif
5172 }
5173
5174#ifdef CONFIG_SCHED_SMT
5175 /* Set up CPU (sibling) groups */
9c1cfda2 5176 for_each_cpu_mask(i, *cpu_map) {
1da177e4 5177 cpumask_t this_sibling_map = cpu_sibling_map[i];
1a20ff27 5178 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
5179 if (i != first_cpu(this_sibling_map))
5180 continue;
5181
5182 init_sched_build_groups(sched_group_cpus, this_sibling_map,
5183 &cpu_to_cpu_group);
5184 }
5185#endif
5186
5187 /* Set up physical groups */
5188 for (i = 0; i < MAX_NUMNODES; i++) {
5189 cpumask_t nodemask = node_to_cpumask(i);
5190
1a20ff27 5191 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
5192 if (cpus_empty(nodemask))
5193 continue;
5194
5195 init_sched_build_groups(sched_group_phys, nodemask,
5196 &cpu_to_phys_group);
5197 }
5198
5199#ifdef CONFIG_NUMA
5200 /* Set up node groups */
d1b55138
JH
5201 if (sched_group_allnodes)
5202 init_sched_build_groups(sched_group_allnodes, *cpu_map,
5203 &cpu_to_allnodes_group);
9c1cfda2
JH
5204
5205 for (i = 0; i < MAX_NUMNODES; i++) {
5206 /* Set up node groups */
5207 struct sched_group *sg, *prev;
5208 cpumask_t nodemask = node_to_cpumask(i);
5209 cpumask_t domainspan;
5210 cpumask_t covered = CPU_MASK_NONE;
5211 int j;
5212
5213 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
5214 if (cpus_empty(nodemask)) {
5215 sched_group_nodes[i] = NULL;
9c1cfda2 5216 continue;
d1b55138 5217 }
9c1cfda2
JH
5218
5219 domainspan = sched_domain_node_span(i);
5220 cpus_and(domainspan, domainspan, *cpu_map);
5221
5222 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5223 sched_group_nodes[i] = sg;
5224 for_each_cpu_mask(j, nodemask) {
5225 struct sched_domain *sd;
5226 sd = &per_cpu(node_domains, j);
5227 sd->groups = sg;
5228 if (sd->groups == NULL) {
5229 /* Turn off balancing if we have no groups */
5230 sd->flags = 0;
5231 }
5232 }
5233 if (!sg) {
5234 printk(KERN_WARNING
5235 "Can not alloc domain group for node %d\n", i);
5236 continue;
5237 }
5238 sg->cpu_power = 0;
5239 sg->cpumask = nodemask;
5240 cpus_or(covered, covered, nodemask);
5241 prev = sg;
5242
5243 for (j = 0; j < MAX_NUMNODES; j++) {
5244 cpumask_t tmp, notcovered;
5245 int n = (i + j) % MAX_NUMNODES;
5246
5247 cpus_complement(notcovered, covered);
5248 cpus_and(tmp, notcovered, *cpu_map);
5249 cpus_and(tmp, tmp, domainspan);
5250 if (cpus_empty(tmp))
5251 break;
5252
5253 nodemask = node_to_cpumask(n);
5254 cpus_and(tmp, tmp, nodemask);
5255 if (cpus_empty(tmp))
5256 continue;
5257
5258 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5259 if (!sg) {
5260 printk(KERN_WARNING
5261 "Can not alloc domain group for node %d\n", j);
5262 break;
5263 }
5264 sg->cpu_power = 0;
5265 sg->cpumask = tmp;
5266 cpus_or(covered, covered, tmp);
5267 prev->next = sg;
5268 prev = sg;
5269 }
5270 prev->next = sched_group_nodes[i];
5271 }
1da177e4
LT
5272#endif
5273
5274 /* Calculate CPU power for physical packages and nodes */
1a20ff27 5275 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
5276 int power;
5277 struct sched_domain *sd;
5278#ifdef CONFIG_SCHED_SMT
5279 sd = &per_cpu(cpu_domains, i);
5280 power = SCHED_LOAD_SCALE;
5281 sd->groups->cpu_power = power;
5282#endif
5283
5284 sd = &per_cpu(phys_domains, i);
5285 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5286 (cpus_weight(sd->groups->cpumask)-1) / 10;
5287 sd->groups->cpu_power = power;
5288
5289#ifdef CONFIG_NUMA
9c1cfda2
JH
5290 sd = &per_cpu(allnodes_domains, i);
5291 if (sd->groups) {
5292 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5293 (cpus_weight(sd->groups->cpumask)-1) / 10;
5294 sd->groups->cpu_power = power;
1da177e4
LT
5295 }
5296#endif
5297 }
5298
9c1cfda2
JH
5299#ifdef CONFIG_NUMA
5300 for (i = 0; i < MAX_NUMNODES; i++) {
5301 struct sched_group *sg = sched_group_nodes[i];
5302 int j;
5303
5304 if (sg == NULL)
5305 continue;
5306next_sg:
5307 for_each_cpu_mask(j, sg->cpumask) {
5308 struct sched_domain *sd;
5309 int power;
5310
5311 sd = &per_cpu(phys_domains, j);
5312 if (j != first_cpu(sd->groups->cpumask)) {
5313 /*
5314 * Only add "power" once for each
5315 * physical package.
5316 */
5317 continue;
5318 }
5319 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5320 (cpus_weight(sd->groups->cpumask)-1) / 10;
5321
5322 sg->cpu_power += power;
5323 }
5324 sg = sg->next;
5325 if (sg != sched_group_nodes[i])
5326 goto next_sg;
5327 }
5328#endif
5329
1da177e4 5330 /* Attach the domains */
1a20ff27 5331 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
5332 struct sched_domain *sd;
5333#ifdef CONFIG_SCHED_SMT
5334 sd = &per_cpu(cpu_domains, i);
5335#else
5336 sd = &per_cpu(phys_domains, i);
5337#endif
5338 cpu_attach_domain(sd, i);
5339 }
5340}
1a20ff27
DG
5341/*
5342 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
5343 */
9c1cfda2 5344static void arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27
DG
5345{
5346 cpumask_t cpu_default_map;
1da177e4 5347
1a20ff27
DG
5348 /*
5349 * Setup mask for cpus without special case scheduling requirements.
5350 * For now this just excludes isolated cpus, but could be used to
5351 * exclude other special cases in the future.
5352 */
5353 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
5354
5355 build_sched_domains(&cpu_default_map);
5356}
5357
5358static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 5359{
9c1cfda2
JH
5360#ifdef CONFIG_NUMA
5361 int i;
d1b55138 5362 int cpu;
1da177e4 5363
d1b55138
JH
5364 for_each_cpu_mask(cpu, *cpu_map) {
5365 struct sched_group *sched_group_allnodes
5366 = sched_group_allnodes_bycpu[cpu];
5367 struct sched_group **sched_group_nodes
5368 = sched_group_nodes_bycpu[cpu];
9c1cfda2 5369
d1b55138
JH
5370 if (sched_group_allnodes) {
5371 kfree(sched_group_allnodes);
5372 sched_group_allnodes_bycpu[cpu] = NULL;
5373 }
5374
5375 if (!sched_group_nodes)
9c1cfda2 5376 continue;
d1b55138
JH
5377
5378 for (i = 0; i < MAX_NUMNODES; i++) {
5379 cpumask_t nodemask = node_to_cpumask(i);
5380 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5381
5382 cpus_and(nodemask, nodemask, *cpu_map);
5383 if (cpus_empty(nodemask))
5384 continue;
5385
5386 if (sg == NULL)
5387 continue;
5388 sg = sg->next;
9c1cfda2 5389next_sg:
d1b55138
JH
5390 oldsg = sg;
5391 sg = sg->next;
5392 kfree(oldsg);
5393 if (oldsg != sched_group_nodes[i])
5394 goto next_sg;
5395 }
5396 kfree(sched_group_nodes);
5397 sched_group_nodes_bycpu[cpu] = NULL;
9c1cfda2
JH
5398 }
5399#endif
5400}
1da177e4 5401
1a20ff27
DG
5402/*
5403 * Detach sched domains from a group of cpus specified in cpu_map
5404 * These cpus will now be attached to the NULL domain
5405 */
5406static inline void detach_destroy_domains(const cpumask_t *cpu_map)
5407{
5408 int i;
5409
5410 for_each_cpu_mask(i, *cpu_map)
5411 cpu_attach_domain(NULL, i);
5412 synchronize_sched();
5413 arch_destroy_sched_domains(cpu_map);
5414}
5415
5416/*
5417 * Partition sched domains as specified by the cpumasks below.
5418 * This attaches all cpus from the cpumasks to the NULL domain,
5419 * waits for a RCU quiescent period, recalculates sched
5420 * domain information and then attaches them back to the
5421 * correct sched domains
5422 * Call with hotplug lock held
5423 */
5424void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
5425{
5426 cpumask_t change_map;
5427
5428 cpus_and(*partition1, *partition1, cpu_online_map);
5429 cpus_and(*partition2, *partition2, cpu_online_map);
5430 cpus_or(change_map, *partition1, *partition2);
5431
5432 /* Detach sched domains from all of the affected cpus */
5433 detach_destroy_domains(&change_map);
5434 if (!cpus_empty(*partition1))
5435 build_sched_domains(partition1);
5436 if (!cpus_empty(*partition2))
5437 build_sched_domains(partition2);
5438}
5439
1da177e4
LT
5440#ifdef CONFIG_HOTPLUG_CPU
5441/*
5442 * Force a reinitialization of the sched domains hierarchy. The domains
5443 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 5444 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
5445 * which will prevent rebalancing while the sched domains are recalculated.
5446 */
5447static int update_sched_domains(struct notifier_block *nfb,
5448 unsigned long action, void *hcpu)
5449{
1da177e4
LT
5450 switch (action) {
5451 case CPU_UP_PREPARE:
5452 case CPU_DOWN_PREPARE:
1a20ff27 5453 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
5454 return NOTIFY_OK;
5455
5456 case CPU_UP_CANCELED:
5457 case CPU_DOWN_FAILED:
5458 case CPU_ONLINE:
5459 case CPU_DEAD:
5460 /*
5461 * Fall through and re-initialise the domains.
5462 */
5463 break;
5464 default:
5465 return NOTIFY_DONE;
5466 }
5467
5468 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 5469 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
5470
5471 return NOTIFY_OK;
5472}
5473#endif
5474
5475void __init sched_init_smp(void)
5476{
5477 lock_cpu_hotplug();
1a20ff27 5478 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
5479 unlock_cpu_hotplug();
5480 /* XXX: Theoretical race here - CPU may be hotplugged now */
5481 hotcpu_notifier(update_sched_domains, 0);
5482}
5483#else
5484void __init sched_init_smp(void)
5485{
5486}
5487#endif /* CONFIG_SMP */
5488
5489int in_sched_functions(unsigned long addr)
5490{
5491 /* Linker adds these: start and end of __sched functions */
5492 extern char __sched_text_start[], __sched_text_end[];
5493 return in_lock_functions(addr) ||
5494 (addr >= (unsigned long)__sched_text_start
5495 && addr < (unsigned long)__sched_text_end);
5496}
5497
5498void __init sched_init(void)
5499{
5500 runqueue_t *rq;
5501 int i, j, k;
5502
5503 for (i = 0; i < NR_CPUS; i++) {
5504 prio_array_t *array;
5505
5506 rq = cpu_rq(i);
5507 spin_lock_init(&rq->lock);
7897986b 5508 rq->nr_running = 0;
1da177e4
LT
5509 rq->active = rq->arrays;
5510 rq->expired = rq->arrays + 1;
5511 rq->best_expired_prio = MAX_PRIO;
5512
5513#ifdef CONFIG_SMP
41c7ce9a 5514 rq->sd = NULL;
7897986b
NP
5515 for (j = 1; j < 3; j++)
5516 rq->cpu_load[j] = 0;
1da177e4
LT
5517 rq->active_balance = 0;
5518 rq->push_cpu = 0;
5519 rq->migration_thread = NULL;
5520 INIT_LIST_HEAD(&rq->migration_queue);
5521#endif
5522 atomic_set(&rq->nr_iowait, 0);
5523
5524 for (j = 0; j < 2; j++) {
5525 array = rq->arrays + j;
5526 for (k = 0; k < MAX_PRIO; k++) {
5527 INIT_LIST_HEAD(array->queue + k);
5528 __clear_bit(k, array->bitmap);
5529 }
5530 // delimiter for bitsearch
5531 __set_bit(MAX_PRIO, array->bitmap);
5532 }
5533 }
5534
5535 /*
5536 * The boot idle thread does lazy MMU switching as well:
5537 */
5538 atomic_inc(&init_mm.mm_count);
5539 enter_lazy_tlb(&init_mm, current);
5540
5541 /*
5542 * Make us the idle thread. Technically, schedule() should not be
5543 * called from this thread, however somewhere below it might be,
5544 * but because we are the idle thread, we just pick up running again
5545 * when this runqueue becomes "idle".
5546 */
5547 init_idle(current, smp_processor_id());
5548}
5549
5550#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5551void __might_sleep(char *file, int line)
5552{
5553#if defined(in_atomic)
5554 static unsigned long prev_jiffy; /* ratelimiting */
5555
5556 if ((in_atomic() || irqs_disabled()) &&
5557 system_state == SYSTEM_RUNNING && !oops_in_progress) {
5558 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
5559 return;
5560 prev_jiffy = jiffies;
5561 printk(KERN_ERR "Debug: sleeping function called from invalid"
5562 " context at %s:%d\n", file, line);
5563 printk("in_atomic():%d, irqs_disabled():%d\n",
5564 in_atomic(), irqs_disabled());
5565 dump_stack();
5566 }
5567#endif
5568}
5569EXPORT_SYMBOL(__might_sleep);
5570#endif
5571
5572#ifdef CONFIG_MAGIC_SYSRQ
5573void normalize_rt_tasks(void)
5574{
5575 struct task_struct *p;
5576 prio_array_t *array;
5577 unsigned long flags;
5578 runqueue_t *rq;
5579
5580 read_lock_irq(&tasklist_lock);
5581 for_each_process (p) {
5582 if (!rt_task(p))
5583 continue;
5584
5585 rq = task_rq_lock(p, &flags);
5586
5587 array = p->array;
5588 if (array)
5589 deactivate_task(p, task_rq(p));
5590 __setscheduler(p, SCHED_NORMAL, 0);
5591 if (array) {
5592 __activate_task(p, task_rq(p));
5593 resched_task(rq->curr);
5594 }
5595
5596 task_rq_unlock(rq, &flags);
5597 }
5598 read_unlock_irq(&tasklist_lock);
5599}
5600
5601#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
5602
5603#ifdef CONFIG_IA64
5604/*
5605 * These functions are only useful for the IA64 MCA handling.
5606 *
5607 * They can only be called when the whole system has been
5608 * stopped - every CPU needs to be quiescent, and no scheduling
5609 * activity can take place. Using them for anything else would
5610 * be a serious bug, and as a result, they aren't even visible
5611 * under any other configuration.
5612 */
5613
5614/**
5615 * curr_task - return the current task for a given cpu.
5616 * @cpu: the processor in question.
5617 *
5618 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
5619 */
5620task_t *curr_task(int cpu)
5621{
5622 return cpu_curr(cpu);
5623}
5624
5625/**
5626 * set_curr_task - set the current task for a given cpu.
5627 * @cpu: the processor in question.
5628 * @p: the task pointer to set.
5629 *
5630 * Description: This function must only be used when non-maskable interrupts
5631 * are serviced on a separate stack. It allows the architecture to switch the
5632 * notion of the current task on a cpu in a non-blocking manner. This function
5633 * must be called with all CPU's synchronized, and interrupts disabled, the
5634 * and caller must save the original value of the current task (see
5635 * curr_task() above) and restore that value before reenabling interrupts and
5636 * re-starting the system.
5637 *
5638 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
5639 */
5640void set_curr_task(int cpu, task_t *p)
5641{
5642 cpu_curr(cpu) = p;
5643}
5644
5645#endif