HWPOISON: change order of error_states[]'s elements
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
52d4b9ac 51#include <linux/page_cgroup.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
718a3821 56#include <linux/ftrace_event.h>
f212ad7c 57#include <linux/memcontrol.h>
268bb0ce 58#include <linux/prefetch.h>
041d3a8c 59#include <linux/migrate.h>
c0a32fc5 60#include <linux/page-debug-flags.h>
8bd75c77 61#include <linux/sched/rt.h>
1da177e4
LT
62
63#include <asm/tlbflush.h>
ac924c60 64#include <asm/div64.h>
1da177e4
LT
65#include "internal.h"
66
72812019
LS
67#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
68DEFINE_PER_CPU(int, numa_node);
69EXPORT_PER_CPU_SYMBOL(numa_node);
70#endif
71
7aac7898
LS
72#ifdef CONFIG_HAVE_MEMORYLESS_NODES
73/*
74 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
75 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
76 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
77 * defined in <linux/topology.h>.
78 */
79DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
80EXPORT_PER_CPU_SYMBOL(_numa_mem_);
81#endif
82
1da177e4 83/*
13808910 84 * Array of node states.
1da177e4 85 */
13808910
CL
86nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
87 [N_POSSIBLE] = NODE_MASK_ALL,
88 [N_ONLINE] = { { [0] = 1UL } },
89#ifndef CONFIG_NUMA
90 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
91#ifdef CONFIG_HIGHMEM
92 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
93#endif
94#ifdef CONFIG_MOVABLE_NODE
95 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
96#endif
97 [N_CPU] = { { [0] = 1UL } },
98#endif /* NUMA */
99};
100EXPORT_SYMBOL(node_states);
101
6c231b7b 102unsigned long totalram_pages __read_mostly;
cb45b0e9 103unsigned long totalreserve_pages __read_mostly;
ab8fabd4
JW
104/*
105 * When calculating the number of globally allowed dirty pages, there
106 * is a certain number of per-zone reserves that should not be
107 * considered dirtyable memory. This is the sum of those reserves
108 * over all existing zones that contribute dirtyable memory.
109 */
110unsigned long dirty_balance_reserve __read_mostly;
111
1b76b02f 112int percpu_pagelist_fraction;
dcce284a 113gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 114
452aa699
RW
115#ifdef CONFIG_PM_SLEEP
116/*
117 * The following functions are used by the suspend/hibernate code to temporarily
118 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
119 * while devices are suspended. To avoid races with the suspend/hibernate code,
120 * they should always be called with pm_mutex held (gfp_allowed_mask also should
121 * only be modified with pm_mutex held, unless the suspend/hibernate code is
122 * guaranteed not to run in parallel with that modification).
123 */
c9e664f1
RW
124
125static gfp_t saved_gfp_mask;
126
127void pm_restore_gfp_mask(void)
452aa699
RW
128{
129 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
130 if (saved_gfp_mask) {
131 gfp_allowed_mask = saved_gfp_mask;
132 saved_gfp_mask = 0;
133 }
452aa699
RW
134}
135
c9e664f1 136void pm_restrict_gfp_mask(void)
452aa699 137{
452aa699 138 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
139 WARN_ON(saved_gfp_mask);
140 saved_gfp_mask = gfp_allowed_mask;
141 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 142}
f90ac398
MG
143
144bool pm_suspended_storage(void)
145{
146 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
147 return false;
148 return true;
149}
452aa699
RW
150#endif /* CONFIG_PM_SLEEP */
151
d9c23400
MG
152#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
153int pageblock_order __read_mostly;
154#endif
155
d98c7a09 156static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 157
1da177e4
LT
158/*
159 * results with 256, 32 in the lowmem_reserve sysctl:
160 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
161 * 1G machine -> (16M dma, 784M normal, 224M high)
162 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
163 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
164 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
165 *
166 * TBD: should special case ZONE_DMA32 machines here - in those we normally
167 * don't need any ZONE_NORMAL reservation
1da177e4 168 */
2f1b6248 169int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 170#ifdef CONFIG_ZONE_DMA
2f1b6248 171 256,
4b51d669 172#endif
fb0e7942 173#ifdef CONFIG_ZONE_DMA32
2f1b6248 174 256,
fb0e7942 175#endif
e53ef38d 176#ifdef CONFIG_HIGHMEM
2a1e274a 177 32,
e53ef38d 178#endif
2a1e274a 179 32,
2f1b6248 180};
1da177e4
LT
181
182EXPORT_SYMBOL(totalram_pages);
1da177e4 183
15ad7cdc 184static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 185#ifdef CONFIG_ZONE_DMA
2f1b6248 186 "DMA",
4b51d669 187#endif
fb0e7942 188#ifdef CONFIG_ZONE_DMA32
2f1b6248 189 "DMA32",
fb0e7942 190#endif
2f1b6248 191 "Normal",
e53ef38d 192#ifdef CONFIG_HIGHMEM
2a1e274a 193 "HighMem",
e53ef38d 194#endif
2a1e274a 195 "Movable",
2f1b6248
CL
196};
197
1da177e4
LT
198int min_free_kbytes = 1024;
199
2c85f51d
JB
200static unsigned long __meminitdata nr_kernel_pages;
201static unsigned long __meminitdata nr_all_pages;
a3142c8e 202static unsigned long __meminitdata dma_reserve;
1da177e4 203
0ee332c1 204#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
34b71f1e 205/* Movable memory ranges, will also be used by memblock subsystem. */
01a178a9
TC
206struct movablemem_map movablemem_map = {
207 .acpi = false,
208 .nr_map = 0,
209};
34b71f1e 210
0ee332c1
TH
211static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
212static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
213static unsigned long __initdata required_kernelcore;
214static unsigned long __initdata required_movablecore;
215static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
6981ec31 216static unsigned long __meminitdata zone_movable_limit[MAX_NUMNODES];
0ee332c1
TH
217
218/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
219int movable_zone;
220EXPORT_SYMBOL(movable_zone);
221#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 222
418508c1
MS
223#if MAX_NUMNODES > 1
224int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 225int nr_online_nodes __read_mostly = 1;
418508c1 226EXPORT_SYMBOL(nr_node_ids);
62bc62a8 227EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
228#endif
229
9ef9acb0
MG
230int page_group_by_mobility_disabled __read_mostly;
231
ee6f509c 232void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 233{
49255c61
MG
234
235 if (unlikely(page_group_by_mobility_disabled))
236 migratetype = MIGRATE_UNMOVABLE;
237
b2a0ac88
MG
238 set_pageblock_flags_group(page, (unsigned long)migratetype,
239 PB_migrate, PB_migrate_end);
240}
241
7f33d49a
RW
242bool oom_killer_disabled __read_mostly;
243
13e7444b 244#ifdef CONFIG_DEBUG_VM
c6a57e19 245static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 246{
bdc8cb98
DH
247 int ret = 0;
248 unsigned seq;
249 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 250 unsigned long sp, start_pfn;
c6a57e19 251
bdc8cb98
DH
252 do {
253 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
254 start_pfn = zone->zone_start_pfn;
255 sp = zone->spanned_pages;
108bcc96 256 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
257 ret = 1;
258 } while (zone_span_seqretry(zone, seq));
259
b5e6a5a2
CS
260 if (ret)
261 pr_err("page %lu outside zone [ %lu - %lu ]\n",
262 pfn, start_pfn, start_pfn + sp);
263
bdc8cb98 264 return ret;
c6a57e19
DH
265}
266
267static int page_is_consistent(struct zone *zone, struct page *page)
268{
14e07298 269 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 270 return 0;
1da177e4 271 if (zone != page_zone(page))
c6a57e19
DH
272 return 0;
273
274 return 1;
275}
276/*
277 * Temporary debugging check for pages not lying within a given zone.
278 */
279static int bad_range(struct zone *zone, struct page *page)
280{
281 if (page_outside_zone_boundaries(zone, page))
1da177e4 282 return 1;
c6a57e19
DH
283 if (!page_is_consistent(zone, page))
284 return 1;
285
1da177e4
LT
286 return 0;
287}
13e7444b
NP
288#else
289static inline int bad_range(struct zone *zone, struct page *page)
290{
291 return 0;
292}
293#endif
294
224abf92 295static void bad_page(struct page *page)
1da177e4 296{
d936cf9b
HD
297 static unsigned long resume;
298 static unsigned long nr_shown;
299 static unsigned long nr_unshown;
300
2a7684a2
WF
301 /* Don't complain about poisoned pages */
302 if (PageHWPoison(page)) {
22b751c3 303 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
304 return;
305 }
306
d936cf9b
HD
307 /*
308 * Allow a burst of 60 reports, then keep quiet for that minute;
309 * or allow a steady drip of one report per second.
310 */
311 if (nr_shown == 60) {
312 if (time_before(jiffies, resume)) {
313 nr_unshown++;
314 goto out;
315 }
316 if (nr_unshown) {
1e9e6365
HD
317 printk(KERN_ALERT
318 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
319 nr_unshown);
320 nr_unshown = 0;
321 }
322 nr_shown = 0;
323 }
324 if (nr_shown++ == 0)
325 resume = jiffies + 60 * HZ;
326
1e9e6365 327 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 328 current->comm, page_to_pfn(page));
718a3821 329 dump_page(page);
3dc14741 330
4f31888c 331 print_modules();
1da177e4 332 dump_stack();
d936cf9b 333out:
8cc3b392 334 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 335 page_mapcount_reset(page); /* remove PageBuddy */
9f158333 336 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
337}
338
1da177e4
LT
339/*
340 * Higher-order pages are called "compound pages". They are structured thusly:
341 *
342 * The first PAGE_SIZE page is called the "head page".
343 *
344 * The remaining PAGE_SIZE pages are called "tail pages".
345 *
6416b9fa
WSH
346 * All pages have PG_compound set. All tail pages have their ->first_page
347 * pointing at the head page.
1da177e4 348 *
41d78ba5
HD
349 * The first tail page's ->lru.next holds the address of the compound page's
350 * put_page() function. Its ->lru.prev holds the order of allocation.
351 * This usage means that zero-order pages may not be compound.
1da177e4 352 */
d98c7a09
HD
353
354static void free_compound_page(struct page *page)
355{
d85f3385 356 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
357}
358
01ad1c08 359void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
360{
361 int i;
362 int nr_pages = 1 << order;
363
364 set_compound_page_dtor(page, free_compound_page);
365 set_compound_order(page, order);
366 __SetPageHead(page);
367 for (i = 1; i < nr_pages; i++) {
368 struct page *p = page + i;
18229df5 369 __SetPageTail(p);
58a84aa9 370 set_page_count(p, 0);
18229df5
AW
371 p->first_page = page;
372 }
373}
374
59ff4216 375/* update __split_huge_page_refcount if you change this function */
8cc3b392 376static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
377{
378 int i;
379 int nr_pages = 1 << order;
8cc3b392 380 int bad = 0;
1da177e4 381
0bb2c763 382 if (unlikely(compound_order(page) != order)) {
224abf92 383 bad_page(page);
8cc3b392
HD
384 bad++;
385 }
1da177e4 386
6d777953 387 __ClearPageHead(page);
8cc3b392 388
18229df5
AW
389 for (i = 1; i < nr_pages; i++) {
390 struct page *p = page + i;
1da177e4 391
e713a21d 392 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 393 bad_page(page);
8cc3b392
HD
394 bad++;
395 }
d85f3385 396 __ClearPageTail(p);
1da177e4 397 }
8cc3b392
HD
398
399 return bad;
1da177e4 400}
1da177e4 401
17cf4406
NP
402static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
403{
404 int i;
405
6626c5d5
AM
406 /*
407 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
408 * and __GFP_HIGHMEM from hard or soft interrupt context.
409 */
725d704e 410 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
411 for (i = 0; i < (1 << order); i++)
412 clear_highpage(page + i);
413}
414
c0a32fc5
SG
415#ifdef CONFIG_DEBUG_PAGEALLOC
416unsigned int _debug_guardpage_minorder;
417
418static int __init debug_guardpage_minorder_setup(char *buf)
419{
420 unsigned long res;
421
422 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
423 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
424 return 0;
425 }
426 _debug_guardpage_minorder = res;
427 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
428 return 0;
429}
430__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
431
432static inline void set_page_guard_flag(struct page *page)
433{
434 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
435}
436
437static inline void clear_page_guard_flag(struct page *page)
438{
439 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
440}
441#else
442static inline void set_page_guard_flag(struct page *page) { }
443static inline void clear_page_guard_flag(struct page *page) { }
444#endif
445
6aa3001b
AM
446static inline void set_page_order(struct page *page, int order)
447{
4c21e2f2 448 set_page_private(page, order);
676165a8 449 __SetPageBuddy(page);
1da177e4
LT
450}
451
452static inline void rmv_page_order(struct page *page)
453{
676165a8 454 __ClearPageBuddy(page);
4c21e2f2 455 set_page_private(page, 0);
1da177e4
LT
456}
457
458/*
459 * Locate the struct page for both the matching buddy in our
460 * pair (buddy1) and the combined O(n+1) page they form (page).
461 *
462 * 1) Any buddy B1 will have an order O twin B2 which satisfies
463 * the following equation:
464 * B2 = B1 ^ (1 << O)
465 * For example, if the starting buddy (buddy2) is #8 its order
466 * 1 buddy is #10:
467 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
468 *
469 * 2) Any buddy B will have an order O+1 parent P which
470 * satisfies the following equation:
471 * P = B & ~(1 << O)
472 *
d6e05edc 473 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4 474 */
1da177e4 475static inline unsigned long
43506fad 476__find_buddy_index(unsigned long page_idx, unsigned int order)
1da177e4 477{
43506fad 478 return page_idx ^ (1 << order);
1da177e4
LT
479}
480
481/*
482 * This function checks whether a page is free && is the buddy
483 * we can do coalesce a page and its buddy if
13e7444b 484 * (a) the buddy is not in a hole &&
676165a8 485 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
486 * (c) a page and its buddy have the same order &&
487 * (d) a page and its buddy are in the same zone.
676165a8 488 *
5f24ce5f
AA
489 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
490 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
1da177e4 491 *
676165a8 492 * For recording page's order, we use page_private(page).
1da177e4 493 */
cb2b95e1
AW
494static inline int page_is_buddy(struct page *page, struct page *buddy,
495 int order)
1da177e4 496{
14e07298 497 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 498 return 0;
13e7444b 499
cb2b95e1
AW
500 if (page_zone_id(page) != page_zone_id(buddy))
501 return 0;
502
c0a32fc5
SG
503 if (page_is_guard(buddy) && page_order(buddy) == order) {
504 VM_BUG_ON(page_count(buddy) != 0);
505 return 1;
506 }
507
cb2b95e1 508 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 509 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 510 return 1;
676165a8 511 }
6aa3001b 512 return 0;
1da177e4
LT
513}
514
515/*
516 * Freeing function for a buddy system allocator.
517 *
518 * The concept of a buddy system is to maintain direct-mapped table
519 * (containing bit values) for memory blocks of various "orders".
520 * The bottom level table contains the map for the smallest allocatable
521 * units of memory (here, pages), and each level above it describes
522 * pairs of units from the levels below, hence, "buddies".
523 * At a high level, all that happens here is marking the table entry
524 * at the bottom level available, and propagating the changes upward
525 * as necessary, plus some accounting needed to play nicely with other
526 * parts of the VM system.
527 * At each level, we keep a list of pages, which are heads of continuous
5f24ce5f 528 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
4c21e2f2 529 * order is recorded in page_private(page) field.
1da177e4 530 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
531 * other. That is, if we allocate a small block, and both were
532 * free, the remainder of the region must be split into blocks.
1da177e4 533 * If a block is freed, and its buddy is also free, then this
5f63b720 534 * triggers coalescing into a block of larger size.
1da177e4 535 *
6d49e352 536 * -- nyc
1da177e4
LT
537 */
538
48db57f8 539static inline void __free_one_page(struct page *page,
ed0ae21d
MG
540 struct zone *zone, unsigned int order,
541 int migratetype)
1da177e4
LT
542{
543 unsigned long page_idx;
6dda9d55 544 unsigned long combined_idx;
43506fad 545 unsigned long uninitialized_var(buddy_idx);
6dda9d55 546 struct page *buddy;
1da177e4 547
d29bb978
CS
548 VM_BUG_ON(!zone_is_initialized(zone));
549
224abf92 550 if (unlikely(PageCompound(page)))
8cc3b392
HD
551 if (unlikely(destroy_compound_page(page, order)))
552 return;
1da177e4 553
ed0ae21d
MG
554 VM_BUG_ON(migratetype == -1);
555
1da177e4
LT
556 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
557
f2260e6b 558 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 559 VM_BUG_ON(bad_range(zone, page));
1da177e4 560
1da177e4 561 while (order < MAX_ORDER-1) {
43506fad
KC
562 buddy_idx = __find_buddy_index(page_idx, order);
563 buddy = page + (buddy_idx - page_idx);
cb2b95e1 564 if (!page_is_buddy(page, buddy, order))
3c82d0ce 565 break;
c0a32fc5
SG
566 /*
567 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
568 * merge with it and move up one order.
569 */
570 if (page_is_guard(buddy)) {
571 clear_page_guard_flag(buddy);
572 set_page_private(page, 0);
d1ce749a
BZ
573 __mod_zone_freepage_state(zone, 1 << order,
574 migratetype);
c0a32fc5
SG
575 } else {
576 list_del(&buddy->lru);
577 zone->free_area[order].nr_free--;
578 rmv_page_order(buddy);
579 }
43506fad 580 combined_idx = buddy_idx & page_idx;
1da177e4
LT
581 page = page + (combined_idx - page_idx);
582 page_idx = combined_idx;
583 order++;
584 }
585 set_page_order(page, order);
6dda9d55
CZ
586
587 /*
588 * If this is not the largest possible page, check if the buddy
589 * of the next-highest order is free. If it is, it's possible
590 * that pages are being freed that will coalesce soon. In case,
591 * that is happening, add the free page to the tail of the list
592 * so it's less likely to be used soon and more likely to be merged
593 * as a higher order page
594 */
b7f50cfa 595 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 596 struct page *higher_page, *higher_buddy;
43506fad
KC
597 combined_idx = buddy_idx & page_idx;
598 higher_page = page + (combined_idx - page_idx);
599 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 600 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
601 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
602 list_add_tail(&page->lru,
603 &zone->free_area[order].free_list[migratetype]);
604 goto out;
605 }
606 }
607
608 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
609out:
1da177e4
LT
610 zone->free_area[order].nr_free++;
611}
612
224abf92 613static inline int free_pages_check(struct page *page)
1da177e4 614{
92be2e33
NP
615 if (unlikely(page_mapcount(page) |
616 (page->mapping != NULL) |
a3af9c38 617 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
618 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
619 (mem_cgroup_bad_page_check(page)))) {
224abf92 620 bad_page(page);
79f4b7bf 621 return 1;
8cc3b392 622 }
22b751c3 623 page_nid_reset_last(page);
79f4b7bf
HD
624 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
625 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
626 return 0;
1da177e4
LT
627}
628
629/*
5f8dcc21 630 * Frees a number of pages from the PCP lists
1da177e4 631 * Assumes all pages on list are in same zone, and of same order.
207f36ee 632 * count is the number of pages to free.
1da177e4
LT
633 *
634 * If the zone was previously in an "all pages pinned" state then look to
635 * see if this freeing clears that state.
636 *
637 * And clear the zone's pages_scanned counter, to hold off the "all pages are
638 * pinned" detection logic.
639 */
5f8dcc21
MG
640static void free_pcppages_bulk(struct zone *zone, int count,
641 struct per_cpu_pages *pcp)
1da177e4 642{
5f8dcc21 643 int migratetype = 0;
a6f9edd6 644 int batch_free = 0;
72853e29 645 int to_free = count;
5f8dcc21 646
c54ad30c 647 spin_lock(&zone->lock);
93e4a89a 648 zone->all_unreclaimable = 0;
1da177e4 649 zone->pages_scanned = 0;
f2260e6b 650
72853e29 651 while (to_free) {
48db57f8 652 struct page *page;
5f8dcc21
MG
653 struct list_head *list;
654
655 /*
a6f9edd6
MG
656 * Remove pages from lists in a round-robin fashion. A
657 * batch_free count is maintained that is incremented when an
658 * empty list is encountered. This is so more pages are freed
659 * off fuller lists instead of spinning excessively around empty
660 * lists
5f8dcc21
MG
661 */
662 do {
a6f9edd6 663 batch_free++;
5f8dcc21
MG
664 if (++migratetype == MIGRATE_PCPTYPES)
665 migratetype = 0;
666 list = &pcp->lists[migratetype];
667 } while (list_empty(list));
48db57f8 668
1d16871d
NK
669 /* This is the only non-empty list. Free them all. */
670 if (batch_free == MIGRATE_PCPTYPES)
671 batch_free = to_free;
672
a6f9edd6 673 do {
770c8aaa
BZ
674 int mt; /* migratetype of the to-be-freed page */
675
a6f9edd6
MG
676 page = list_entry(list->prev, struct page, lru);
677 /* must delete as __free_one_page list manipulates */
678 list_del(&page->lru);
b12c4ad1 679 mt = get_freepage_migratetype(page);
a7016235 680 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
770c8aaa
BZ
681 __free_one_page(page, zone, 0, mt);
682 trace_mm_page_pcpu_drain(page, 0, mt);
194159fb 683 if (likely(!is_migrate_isolate_page(page))) {
97d0da22
WC
684 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
685 if (is_migrate_cma(mt))
686 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
687 }
72853e29 688 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 689 }
c54ad30c 690 spin_unlock(&zone->lock);
1da177e4
LT
691}
692
ed0ae21d
MG
693static void free_one_page(struct zone *zone, struct page *page, int order,
694 int migratetype)
1da177e4 695{
006d22d9 696 spin_lock(&zone->lock);
93e4a89a 697 zone->all_unreclaimable = 0;
006d22d9 698 zone->pages_scanned = 0;
f2260e6b 699
ed0ae21d 700 __free_one_page(page, zone, order, migratetype);
194159fb 701 if (unlikely(!is_migrate_isolate(migratetype)))
d1ce749a 702 __mod_zone_freepage_state(zone, 1 << order, migratetype);
006d22d9 703 spin_unlock(&zone->lock);
48db57f8
NP
704}
705
ec95f53a 706static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 707{
1da177e4 708 int i;
8cc3b392 709 int bad = 0;
1da177e4 710
b413d48a 711 trace_mm_page_free(page, order);
b1eeab67
VN
712 kmemcheck_free_shadow(page, order);
713
8dd60a3a
AA
714 if (PageAnon(page))
715 page->mapping = NULL;
716 for (i = 0; i < (1 << order); i++)
717 bad += free_pages_check(page + i);
8cc3b392 718 if (bad)
ec95f53a 719 return false;
689bcebf 720
3ac7fe5a 721 if (!PageHighMem(page)) {
9858db50 722 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
723 debug_check_no_obj_freed(page_address(page),
724 PAGE_SIZE << order);
725 }
dafb1367 726 arch_free_page(page, order);
48db57f8 727 kernel_map_pages(page, 1 << order, 0);
dafb1367 728
ec95f53a
KM
729 return true;
730}
731
732static void __free_pages_ok(struct page *page, unsigned int order)
733{
734 unsigned long flags;
95e34412 735 int migratetype;
ec95f53a
KM
736
737 if (!free_pages_prepare(page, order))
738 return;
739
c54ad30c 740 local_irq_save(flags);
f8891e5e 741 __count_vm_events(PGFREE, 1 << order);
95e34412
MK
742 migratetype = get_pageblock_migratetype(page);
743 set_freepage_migratetype(page, migratetype);
744 free_one_page(page_zone(page), page, order, migratetype);
c54ad30c 745 local_irq_restore(flags);
1da177e4
LT
746}
747
9feedc9d
JL
748/*
749 * Read access to zone->managed_pages is safe because it's unsigned long,
750 * but we still need to serialize writers. Currently all callers of
751 * __free_pages_bootmem() except put_page_bootmem() should only be used
752 * at boot time. So for shorter boot time, we shift the burden to
753 * put_page_bootmem() to serialize writers.
754 */
af370fb8 755void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8 756{
c3993076
JW
757 unsigned int nr_pages = 1 << order;
758 unsigned int loop;
a226f6c8 759
c3993076
JW
760 prefetchw(page);
761 for (loop = 0; loop < nr_pages; loop++) {
762 struct page *p = &page[loop];
763
764 if (loop + 1 < nr_pages)
765 prefetchw(p + 1);
766 __ClearPageReserved(p);
767 set_page_count(p, 0);
a226f6c8 768 }
c3993076 769
9feedc9d 770 page_zone(page)->managed_pages += 1 << order;
c3993076
JW
771 set_page_refcounted(page);
772 __free_pages(page, order);
a226f6c8
DH
773}
774
47118af0
MN
775#ifdef CONFIG_CMA
776/* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
777void __init init_cma_reserved_pageblock(struct page *page)
778{
779 unsigned i = pageblock_nr_pages;
780 struct page *p = page;
781
782 do {
783 __ClearPageReserved(p);
784 set_page_count(p, 0);
785 } while (++p, --i);
786
787 set_page_refcounted(page);
788 set_pageblock_migratetype(page, MIGRATE_CMA);
789 __free_pages(page, pageblock_order);
790 totalram_pages += pageblock_nr_pages;
41a79734
MS
791#ifdef CONFIG_HIGHMEM
792 if (PageHighMem(page))
793 totalhigh_pages += pageblock_nr_pages;
794#endif
47118af0
MN
795}
796#endif
1da177e4
LT
797
798/*
799 * The order of subdivision here is critical for the IO subsystem.
800 * Please do not alter this order without good reasons and regression
801 * testing. Specifically, as large blocks of memory are subdivided,
802 * the order in which smaller blocks are delivered depends on the order
803 * they're subdivided in this function. This is the primary factor
804 * influencing the order in which pages are delivered to the IO
805 * subsystem according to empirical testing, and this is also justified
806 * by considering the behavior of a buddy system containing a single
807 * large block of memory acted on by a series of small allocations.
808 * This behavior is a critical factor in sglist merging's success.
809 *
6d49e352 810 * -- nyc
1da177e4 811 */
085cc7d5 812static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
813 int low, int high, struct free_area *area,
814 int migratetype)
1da177e4
LT
815{
816 unsigned long size = 1 << high;
817
818 while (high > low) {
819 area--;
820 high--;
821 size >>= 1;
725d704e 822 VM_BUG_ON(bad_range(zone, &page[size]));
c0a32fc5
SG
823
824#ifdef CONFIG_DEBUG_PAGEALLOC
825 if (high < debug_guardpage_minorder()) {
826 /*
827 * Mark as guard pages (or page), that will allow to
828 * merge back to allocator when buddy will be freed.
829 * Corresponding page table entries will not be touched,
830 * pages will stay not present in virtual address space
831 */
832 INIT_LIST_HEAD(&page[size].lru);
833 set_page_guard_flag(&page[size]);
834 set_page_private(&page[size], high);
835 /* Guard pages are not available for any usage */
d1ce749a
BZ
836 __mod_zone_freepage_state(zone, -(1 << high),
837 migratetype);
c0a32fc5
SG
838 continue;
839 }
840#endif
b2a0ac88 841 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
842 area->nr_free++;
843 set_page_order(&page[size], high);
844 }
1da177e4
LT
845}
846
1da177e4
LT
847/*
848 * This page is about to be returned from the page allocator
849 */
2a7684a2 850static inline int check_new_page(struct page *page)
1da177e4 851{
92be2e33
NP
852 if (unlikely(page_mapcount(page) |
853 (page->mapping != NULL) |
a3af9c38 854 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
855 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
856 (mem_cgroup_bad_page_check(page)))) {
224abf92 857 bad_page(page);
689bcebf 858 return 1;
8cc3b392 859 }
2a7684a2
WF
860 return 0;
861}
862
863static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
864{
865 int i;
866
867 for (i = 0; i < (1 << order); i++) {
868 struct page *p = page + i;
869 if (unlikely(check_new_page(p)))
870 return 1;
871 }
689bcebf 872
4c21e2f2 873 set_page_private(page, 0);
7835e98b 874 set_page_refcounted(page);
cc102509
NP
875
876 arch_alloc_page(page, order);
1da177e4 877 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
878
879 if (gfp_flags & __GFP_ZERO)
880 prep_zero_page(page, order, gfp_flags);
881
882 if (order && (gfp_flags & __GFP_COMP))
883 prep_compound_page(page, order);
884
689bcebf 885 return 0;
1da177e4
LT
886}
887
56fd56b8
MG
888/*
889 * Go through the free lists for the given migratetype and remove
890 * the smallest available page from the freelists
891 */
728ec980
MG
892static inline
893struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
894 int migratetype)
895{
896 unsigned int current_order;
897 struct free_area * area;
898 struct page *page;
899
900 /* Find a page of the appropriate size in the preferred list */
901 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
902 area = &(zone->free_area[current_order]);
903 if (list_empty(&area->free_list[migratetype]))
904 continue;
905
906 page = list_entry(area->free_list[migratetype].next,
907 struct page, lru);
908 list_del(&page->lru);
909 rmv_page_order(page);
910 area->nr_free--;
56fd56b8
MG
911 expand(zone, page, order, current_order, area, migratetype);
912 return page;
913 }
914
915 return NULL;
916}
917
918
b2a0ac88
MG
919/*
920 * This array describes the order lists are fallen back to when
921 * the free lists for the desirable migrate type are depleted
922 */
47118af0
MN
923static int fallbacks[MIGRATE_TYPES][4] = {
924 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
925 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
926#ifdef CONFIG_CMA
927 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
928 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
929#else
930 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
931#endif
6d4a4916 932 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 933#ifdef CONFIG_MEMORY_ISOLATION
6d4a4916 934 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 935#endif
b2a0ac88
MG
936};
937
c361be55
MG
938/*
939 * Move the free pages in a range to the free lists of the requested type.
d9c23400 940 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
941 * boundary. If alignment is required, use move_freepages_block()
942 */
435b405c 943int move_freepages(struct zone *zone,
b69a7288
AB
944 struct page *start_page, struct page *end_page,
945 int migratetype)
c361be55
MG
946{
947 struct page *page;
948 unsigned long order;
d100313f 949 int pages_moved = 0;
c361be55
MG
950
951#ifndef CONFIG_HOLES_IN_ZONE
952 /*
953 * page_zone is not safe to call in this context when
954 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
955 * anyway as we check zone boundaries in move_freepages_block().
956 * Remove at a later date when no bug reports exist related to
ac0e5b7a 957 * grouping pages by mobility
c361be55
MG
958 */
959 BUG_ON(page_zone(start_page) != page_zone(end_page));
960#endif
961
962 for (page = start_page; page <= end_page;) {
344c790e
AL
963 /* Make sure we are not inadvertently changing nodes */
964 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
965
c361be55
MG
966 if (!pfn_valid_within(page_to_pfn(page))) {
967 page++;
968 continue;
969 }
970
971 if (!PageBuddy(page)) {
972 page++;
973 continue;
974 }
975
976 order = page_order(page);
84be48d8
KS
977 list_move(&page->lru,
978 &zone->free_area[order].free_list[migratetype]);
95e34412 979 set_freepage_migratetype(page, migratetype);
c361be55 980 page += 1 << order;
d100313f 981 pages_moved += 1 << order;
c361be55
MG
982 }
983
d100313f 984 return pages_moved;
c361be55
MG
985}
986
ee6f509c 987int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 988 int migratetype)
c361be55
MG
989{
990 unsigned long start_pfn, end_pfn;
991 struct page *start_page, *end_page;
992
993 start_pfn = page_to_pfn(page);
d9c23400 994 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 995 start_page = pfn_to_page(start_pfn);
d9c23400
MG
996 end_page = start_page + pageblock_nr_pages - 1;
997 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
998
999 /* Do not cross zone boundaries */
108bcc96 1000 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1001 start_page = page;
108bcc96 1002 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1003 return 0;
1004
1005 return move_freepages(zone, start_page, end_page, migratetype);
1006}
1007
2f66a68f
MG
1008static void change_pageblock_range(struct page *pageblock_page,
1009 int start_order, int migratetype)
1010{
1011 int nr_pageblocks = 1 << (start_order - pageblock_order);
1012
1013 while (nr_pageblocks--) {
1014 set_pageblock_migratetype(pageblock_page, migratetype);
1015 pageblock_page += pageblock_nr_pages;
1016 }
1017}
1018
b2a0ac88 1019/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
1020static inline struct page *
1021__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
1022{
1023 struct free_area * area;
1024 int current_order;
1025 struct page *page;
1026 int migratetype, i;
1027
1028 /* Find the largest possible block of pages in the other list */
1029 for (current_order = MAX_ORDER-1; current_order >= order;
1030 --current_order) {
6d4a4916 1031 for (i = 0;; i++) {
b2a0ac88
MG
1032 migratetype = fallbacks[start_migratetype][i];
1033
56fd56b8
MG
1034 /* MIGRATE_RESERVE handled later if necessary */
1035 if (migratetype == MIGRATE_RESERVE)
6d4a4916 1036 break;
e010487d 1037
b2a0ac88
MG
1038 area = &(zone->free_area[current_order]);
1039 if (list_empty(&area->free_list[migratetype]))
1040 continue;
1041
1042 page = list_entry(area->free_list[migratetype].next,
1043 struct page, lru);
1044 area->nr_free--;
1045
1046 /*
c361be55 1047 * If breaking a large block of pages, move all free
46dafbca
MG
1048 * pages to the preferred allocation list. If falling
1049 * back for a reclaimable kernel allocation, be more
25985edc 1050 * aggressive about taking ownership of free pages
47118af0
MN
1051 *
1052 * On the other hand, never change migration
1053 * type of MIGRATE_CMA pageblocks nor move CMA
1054 * pages on different free lists. We don't
1055 * want unmovable pages to be allocated from
1056 * MIGRATE_CMA areas.
b2a0ac88 1057 */
47118af0
MN
1058 if (!is_migrate_cma(migratetype) &&
1059 (unlikely(current_order >= pageblock_order / 2) ||
1060 start_migratetype == MIGRATE_RECLAIMABLE ||
1061 page_group_by_mobility_disabled)) {
1062 int pages;
46dafbca
MG
1063 pages = move_freepages_block(zone, page,
1064 start_migratetype);
1065
1066 /* Claim the whole block if over half of it is free */
dd5d241e
MG
1067 if (pages >= (1 << (pageblock_order-1)) ||
1068 page_group_by_mobility_disabled)
46dafbca
MG
1069 set_pageblock_migratetype(page,
1070 start_migratetype);
1071
b2a0ac88 1072 migratetype = start_migratetype;
c361be55 1073 }
b2a0ac88
MG
1074
1075 /* Remove the page from the freelists */
1076 list_del(&page->lru);
1077 rmv_page_order(page);
b2a0ac88 1078
2f66a68f 1079 /* Take ownership for orders >= pageblock_order */
47118af0
MN
1080 if (current_order >= pageblock_order &&
1081 !is_migrate_cma(migratetype))
2f66a68f 1082 change_pageblock_range(page, current_order,
b2a0ac88
MG
1083 start_migratetype);
1084
47118af0
MN
1085 expand(zone, page, order, current_order, area,
1086 is_migrate_cma(migratetype)
1087 ? migratetype : start_migratetype);
e0fff1bd
MG
1088
1089 trace_mm_page_alloc_extfrag(page, order, current_order,
1090 start_migratetype, migratetype);
1091
b2a0ac88
MG
1092 return page;
1093 }
1094 }
1095
728ec980 1096 return NULL;
b2a0ac88
MG
1097}
1098
56fd56b8 1099/*
1da177e4
LT
1100 * Do the hard work of removing an element from the buddy allocator.
1101 * Call me with the zone->lock already held.
1102 */
b2a0ac88
MG
1103static struct page *__rmqueue(struct zone *zone, unsigned int order,
1104 int migratetype)
1da177e4 1105{
1da177e4
LT
1106 struct page *page;
1107
728ec980 1108retry_reserve:
56fd56b8 1109 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1110
728ec980 1111 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 1112 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1113
728ec980
MG
1114 /*
1115 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1116 * is used because __rmqueue_smallest is an inline function
1117 * and we want just one call site
1118 */
1119 if (!page) {
1120 migratetype = MIGRATE_RESERVE;
1121 goto retry_reserve;
1122 }
1123 }
1124
0d3d062a 1125 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1126 return page;
1da177e4
LT
1127}
1128
5f63b720 1129/*
1da177e4
LT
1130 * Obtain a specified number of elements from the buddy allocator, all under
1131 * a single hold of the lock, for efficiency. Add them to the supplied list.
1132 * Returns the number of new pages which were placed at *list.
1133 */
5f63b720 1134static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1135 unsigned long count, struct list_head *list,
e084b2d9 1136 int migratetype, int cold)
1da177e4 1137{
47118af0 1138 int mt = migratetype, i;
5f63b720 1139
c54ad30c 1140 spin_lock(&zone->lock);
1da177e4 1141 for (i = 0; i < count; ++i) {
b2a0ac88 1142 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1143 if (unlikely(page == NULL))
1da177e4 1144 break;
81eabcbe
MG
1145
1146 /*
1147 * Split buddy pages returned by expand() are received here
1148 * in physical page order. The page is added to the callers and
1149 * list and the list head then moves forward. From the callers
1150 * perspective, the linked list is ordered by page number in
1151 * some conditions. This is useful for IO devices that can
1152 * merge IO requests if the physical pages are ordered
1153 * properly.
1154 */
e084b2d9
MG
1155 if (likely(cold == 0))
1156 list_add(&page->lru, list);
1157 else
1158 list_add_tail(&page->lru, list);
47118af0
MN
1159 if (IS_ENABLED(CONFIG_CMA)) {
1160 mt = get_pageblock_migratetype(page);
194159fb 1161 if (!is_migrate_cma(mt) && !is_migrate_isolate(mt))
47118af0
MN
1162 mt = migratetype;
1163 }
b12c4ad1 1164 set_freepage_migratetype(page, mt);
81eabcbe 1165 list = &page->lru;
d1ce749a
BZ
1166 if (is_migrate_cma(mt))
1167 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1168 -(1 << order));
1da177e4 1169 }
f2260e6b 1170 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1171 spin_unlock(&zone->lock);
085cc7d5 1172 return i;
1da177e4
LT
1173}
1174
4ae7c039 1175#ifdef CONFIG_NUMA
8fce4d8e 1176/*
4037d452
CL
1177 * Called from the vmstat counter updater to drain pagesets of this
1178 * currently executing processor on remote nodes after they have
1179 * expired.
1180 *
879336c3
CL
1181 * Note that this function must be called with the thread pinned to
1182 * a single processor.
8fce4d8e 1183 */
4037d452 1184void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1185{
4ae7c039 1186 unsigned long flags;
4037d452 1187 int to_drain;
4ae7c039 1188
4037d452
CL
1189 local_irq_save(flags);
1190 if (pcp->count >= pcp->batch)
1191 to_drain = pcp->batch;
1192 else
1193 to_drain = pcp->count;
2a13515c
KM
1194 if (to_drain > 0) {
1195 free_pcppages_bulk(zone, to_drain, pcp);
1196 pcp->count -= to_drain;
1197 }
4037d452 1198 local_irq_restore(flags);
4ae7c039
CL
1199}
1200#endif
1201
9f8f2172
CL
1202/*
1203 * Drain pages of the indicated processor.
1204 *
1205 * The processor must either be the current processor and the
1206 * thread pinned to the current processor or a processor that
1207 * is not online.
1208 */
1209static void drain_pages(unsigned int cpu)
1da177e4 1210{
c54ad30c 1211 unsigned long flags;
1da177e4 1212 struct zone *zone;
1da177e4 1213
ee99c71c 1214 for_each_populated_zone(zone) {
1da177e4 1215 struct per_cpu_pageset *pset;
3dfa5721 1216 struct per_cpu_pages *pcp;
1da177e4 1217
99dcc3e5
CL
1218 local_irq_save(flags);
1219 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1220
1221 pcp = &pset->pcp;
2ff754fa
DR
1222 if (pcp->count) {
1223 free_pcppages_bulk(zone, pcp->count, pcp);
1224 pcp->count = 0;
1225 }
3dfa5721 1226 local_irq_restore(flags);
1da177e4
LT
1227 }
1228}
1da177e4 1229
9f8f2172
CL
1230/*
1231 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1232 */
1233void drain_local_pages(void *arg)
1234{
1235 drain_pages(smp_processor_id());
1236}
1237
1238/*
74046494
GBY
1239 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1240 *
1241 * Note that this code is protected against sending an IPI to an offline
1242 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1243 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1244 * nothing keeps CPUs from showing up after we populated the cpumask and
1245 * before the call to on_each_cpu_mask().
9f8f2172
CL
1246 */
1247void drain_all_pages(void)
1248{
74046494
GBY
1249 int cpu;
1250 struct per_cpu_pageset *pcp;
1251 struct zone *zone;
1252
1253 /*
1254 * Allocate in the BSS so we wont require allocation in
1255 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1256 */
1257 static cpumask_t cpus_with_pcps;
1258
1259 /*
1260 * We don't care about racing with CPU hotplug event
1261 * as offline notification will cause the notified
1262 * cpu to drain that CPU pcps and on_each_cpu_mask
1263 * disables preemption as part of its processing
1264 */
1265 for_each_online_cpu(cpu) {
1266 bool has_pcps = false;
1267 for_each_populated_zone(zone) {
1268 pcp = per_cpu_ptr(zone->pageset, cpu);
1269 if (pcp->pcp.count) {
1270 has_pcps = true;
1271 break;
1272 }
1273 }
1274 if (has_pcps)
1275 cpumask_set_cpu(cpu, &cpus_with_pcps);
1276 else
1277 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1278 }
1279 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
9f8f2172
CL
1280}
1281
296699de 1282#ifdef CONFIG_HIBERNATION
1da177e4
LT
1283
1284void mark_free_pages(struct zone *zone)
1285{
f623f0db
RW
1286 unsigned long pfn, max_zone_pfn;
1287 unsigned long flags;
b2a0ac88 1288 int order, t;
1da177e4
LT
1289 struct list_head *curr;
1290
1291 if (!zone->spanned_pages)
1292 return;
1293
1294 spin_lock_irqsave(&zone->lock, flags);
f623f0db 1295
108bcc96 1296 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
1297 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1298 if (pfn_valid(pfn)) {
1299 struct page *page = pfn_to_page(pfn);
1300
7be98234
RW
1301 if (!swsusp_page_is_forbidden(page))
1302 swsusp_unset_page_free(page);
f623f0db 1303 }
1da177e4 1304
b2a0ac88
MG
1305 for_each_migratetype_order(order, t) {
1306 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1307 unsigned long i;
1da177e4 1308
f623f0db
RW
1309 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1310 for (i = 0; i < (1UL << order); i++)
7be98234 1311 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1312 }
b2a0ac88 1313 }
1da177e4
LT
1314 spin_unlock_irqrestore(&zone->lock, flags);
1315}
e2c55dc8 1316#endif /* CONFIG_PM */
1da177e4 1317
1da177e4
LT
1318/*
1319 * Free a 0-order page
fc91668e 1320 * cold == 1 ? free a cold page : free a hot page
1da177e4 1321 */
fc91668e 1322void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1323{
1324 struct zone *zone = page_zone(page);
1325 struct per_cpu_pages *pcp;
1326 unsigned long flags;
5f8dcc21 1327 int migratetype;
1da177e4 1328
ec95f53a 1329 if (!free_pages_prepare(page, 0))
689bcebf
HD
1330 return;
1331
5f8dcc21 1332 migratetype = get_pageblock_migratetype(page);
b12c4ad1 1333 set_freepage_migratetype(page, migratetype);
1da177e4 1334 local_irq_save(flags);
f8891e5e 1335 __count_vm_event(PGFREE);
da456f14 1336
5f8dcc21
MG
1337 /*
1338 * We only track unmovable, reclaimable and movable on pcp lists.
1339 * Free ISOLATE pages back to the allocator because they are being
1340 * offlined but treat RESERVE as movable pages so we can get those
1341 * areas back if necessary. Otherwise, we may have to free
1342 * excessively into the page allocator
1343 */
1344 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 1345 if (unlikely(is_migrate_isolate(migratetype))) {
5f8dcc21
MG
1346 free_one_page(zone, page, 0, migratetype);
1347 goto out;
1348 }
1349 migratetype = MIGRATE_MOVABLE;
1350 }
1351
99dcc3e5 1352 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1353 if (cold)
5f8dcc21 1354 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1355 else
5f8dcc21 1356 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1357 pcp->count++;
48db57f8 1358 if (pcp->count >= pcp->high) {
5f8dcc21 1359 free_pcppages_bulk(zone, pcp->batch, pcp);
48db57f8
NP
1360 pcp->count -= pcp->batch;
1361 }
5f8dcc21
MG
1362
1363out:
1da177e4 1364 local_irq_restore(flags);
1da177e4
LT
1365}
1366
cc59850e
KK
1367/*
1368 * Free a list of 0-order pages
1369 */
1370void free_hot_cold_page_list(struct list_head *list, int cold)
1371{
1372 struct page *page, *next;
1373
1374 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1375 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1376 free_hot_cold_page(page, cold);
1377 }
1378}
1379
8dfcc9ba
NP
1380/*
1381 * split_page takes a non-compound higher-order page, and splits it into
1382 * n (1<<order) sub-pages: page[0..n]
1383 * Each sub-page must be freed individually.
1384 *
1385 * Note: this is probably too low level an operation for use in drivers.
1386 * Please consult with lkml before using this in your driver.
1387 */
1388void split_page(struct page *page, unsigned int order)
1389{
1390 int i;
1391
725d704e
NP
1392 VM_BUG_ON(PageCompound(page));
1393 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1394
1395#ifdef CONFIG_KMEMCHECK
1396 /*
1397 * Split shadow pages too, because free(page[0]) would
1398 * otherwise free the whole shadow.
1399 */
1400 if (kmemcheck_page_is_tracked(page))
1401 split_page(virt_to_page(page[0].shadow), order);
1402#endif
1403
7835e98b
NP
1404 for (i = 1; i < (1 << order); i++)
1405 set_page_refcounted(page + i);
8dfcc9ba 1406}
8dfcc9ba 1407
8fb74b9f 1408static int __isolate_free_page(struct page *page, unsigned int order)
748446bb 1409{
748446bb
MG
1410 unsigned long watermark;
1411 struct zone *zone;
2139cbe6 1412 int mt;
748446bb
MG
1413
1414 BUG_ON(!PageBuddy(page));
1415
1416 zone = page_zone(page);
2e30abd1 1417 mt = get_pageblock_migratetype(page);
748446bb 1418
194159fb 1419 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
1420 /* Obey watermarks as if the page was being allocated */
1421 watermark = low_wmark_pages(zone) + (1 << order);
1422 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1423 return 0;
1424
8fb74b9f 1425 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 1426 }
748446bb
MG
1427
1428 /* Remove page from free list */
1429 list_del(&page->lru);
1430 zone->free_area[order].nr_free--;
1431 rmv_page_order(page);
2139cbe6 1432
8fb74b9f 1433 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
1434 if (order >= pageblock_order - 1) {
1435 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
1436 for (; page < endpage; page += pageblock_nr_pages) {
1437 int mt = get_pageblock_migratetype(page);
194159fb 1438 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
1439 set_pageblock_migratetype(page,
1440 MIGRATE_MOVABLE);
1441 }
748446bb
MG
1442 }
1443
8fb74b9f 1444 return 1UL << order;
1fb3f8ca
MG
1445}
1446
1447/*
1448 * Similar to split_page except the page is already free. As this is only
1449 * being used for migration, the migratetype of the block also changes.
1450 * As this is called with interrupts disabled, the caller is responsible
1451 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1452 * are enabled.
1453 *
1454 * Note: this is probably too low level an operation for use in drivers.
1455 * Please consult with lkml before using this in your driver.
1456 */
1457int split_free_page(struct page *page)
1458{
1459 unsigned int order;
1460 int nr_pages;
1461
1fb3f8ca
MG
1462 order = page_order(page);
1463
8fb74b9f 1464 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
1465 if (!nr_pages)
1466 return 0;
1467
1468 /* Split into individual pages */
1469 set_page_refcounted(page);
1470 split_page(page, order);
1471 return nr_pages;
748446bb
MG
1472}
1473
1da177e4
LT
1474/*
1475 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1476 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1477 * or two.
1478 */
0a15c3e9
MG
1479static inline
1480struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1481 struct zone *zone, int order, gfp_t gfp_flags,
1482 int migratetype)
1da177e4
LT
1483{
1484 unsigned long flags;
689bcebf 1485 struct page *page;
1da177e4
LT
1486 int cold = !!(gfp_flags & __GFP_COLD);
1487
689bcebf 1488again:
48db57f8 1489 if (likely(order == 0)) {
1da177e4 1490 struct per_cpu_pages *pcp;
5f8dcc21 1491 struct list_head *list;
1da177e4 1492
1da177e4 1493 local_irq_save(flags);
99dcc3e5
CL
1494 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1495 list = &pcp->lists[migratetype];
5f8dcc21 1496 if (list_empty(list)) {
535131e6 1497 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1498 pcp->batch, list,
e084b2d9 1499 migratetype, cold);
5f8dcc21 1500 if (unlikely(list_empty(list)))
6fb332fa 1501 goto failed;
535131e6 1502 }
b92a6edd 1503
5f8dcc21
MG
1504 if (cold)
1505 page = list_entry(list->prev, struct page, lru);
1506 else
1507 page = list_entry(list->next, struct page, lru);
1508
b92a6edd
MG
1509 list_del(&page->lru);
1510 pcp->count--;
7fb1d9fc 1511 } else {
dab48dab
AM
1512 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1513 /*
1514 * __GFP_NOFAIL is not to be used in new code.
1515 *
1516 * All __GFP_NOFAIL callers should be fixed so that they
1517 * properly detect and handle allocation failures.
1518 *
1519 * We most definitely don't want callers attempting to
4923abf9 1520 * allocate greater than order-1 page units with
dab48dab
AM
1521 * __GFP_NOFAIL.
1522 */
4923abf9 1523 WARN_ON_ONCE(order > 1);
dab48dab 1524 }
1da177e4 1525 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1526 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1527 spin_unlock(&zone->lock);
1528 if (!page)
1529 goto failed;
d1ce749a
BZ
1530 __mod_zone_freepage_state(zone, -(1 << order),
1531 get_pageblock_migratetype(page));
1da177e4
LT
1532 }
1533
f8891e5e 1534 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1535 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1536 local_irq_restore(flags);
1da177e4 1537
725d704e 1538 VM_BUG_ON(bad_range(zone, page));
17cf4406 1539 if (prep_new_page(page, order, gfp_flags))
a74609fa 1540 goto again;
1da177e4 1541 return page;
a74609fa
NP
1542
1543failed:
1544 local_irq_restore(flags);
a74609fa 1545 return NULL;
1da177e4
LT
1546}
1547
933e312e
AM
1548#ifdef CONFIG_FAIL_PAGE_ALLOC
1549
b2588c4b 1550static struct {
933e312e
AM
1551 struct fault_attr attr;
1552
1553 u32 ignore_gfp_highmem;
1554 u32 ignore_gfp_wait;
54114994 1555 u32 min_order;
933e312e
AM
1556} fail_page_alloc = {
1557 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1558 .ignore_gfp_wait = 1,
1559 .ignore_gfp_highmem = 1,
54114994 1560 .min_order = 1,
933e312e
AM
1561};
1562
1563static int __init setup_fail_page_alloc(char *str)
1564{
1565 return setup_fault_attr(&fail_page_alloc.attr, str);
1566}
1567__setup("fail_page_alloc=", setup_fail_page_alloc);
1568
deaf386e 1569static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1570{
54114994 1571 if (order < fail_page_alloc.min_order)
deaf386e 1572 return false;
933e312e 1573 if (gfp_mask & __GFP_NOFAIL)
deaf386e 1574 return false;
933e312e 1575 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 1576 return false;
933e312e 1577 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 1578 return false;
933e312e
AM
1579
1580 return should_fail(&fail_page_alloc.attr, 1 << order);
1581}
1582
1583#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1584
1585static int __init fail_page_alloc_debugfs(void)
1586{
f4ae40a6 1587 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1588 struct dentry *dir;
933e312e 1589
dd48c085
AM
1590 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1591 &fail_page_alloc.attr);
1592 if (IS_ERR(dir))
1593 return PTR_ERR(dir);
933e312e 1594
b2588c4b
AM
1595 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1596 &fail_page_alloc.ignore_gfp_wait))
1597 goto fail;
1598 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1599 &fail_page_alloc.ignore_gfp_highmem))
1600 goto fail;
1601 if (!debugfs_create_u32("min-order", mode, dir,
1602 &fail_page_alloc.min_order))
1603 goto fail;
1604
1605 return 0;
1606fail:
dd48c085 1607 debugfs_remove_recursive(dir);
933e312e 1608
b2588c4b 1609 return -ENOMEM;
933e312e
AM
1610}
1611
1612late_initcall(fail_page_alloc_debugfs);
1613
1614#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1615
1616#else /* CONFIG_FAIL_PAGE_ALLOC */
1617
deaf386e 1618static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1619{
deaf386e 1620 return false;
933e312e
AM
1621}
1622
1623#endif /* CONFIG_FAIL_PAGE_ALLOC */
1624
1da177e4 1625/*
88f5acf8 1626 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1627 * of the allocation.
1628 */
88f5acf8
MG
1629static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1630 int classzone_idx, int alloc_flags, long free_pages)
1da177e4
LT
1631{
1632 /* free_pages my go negative - that's OK */
d23ad423 1633 long min = mark;
2cfed075 1634 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1da177e4
LT
1635 int o;
1636
df0a6daa 1637 free_pages -= (1 << order) - 1;
7fb1d9fc 1638 if (alloc_flags & ALLOC_HIGH)
1da177e4 1639 min -= min / 2;
7fb1d9fc 1640 if (alloc_flags & ALLOC_HARDER)
1da177e4 1641 min -= min / 4;
d95ea5d1
BZ
1642#ifdef CONFIG_CMA
1643 /* If allocation can't use CMA areas don't use free CMA pages */
1644 if (!(alloc_flags & ALLOC_CMA))
1645 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
1646#endif
2cfed075 1647 if (free_pages <= min + lowmem_reserve)
88f5acf8 1648 return false;
1da177e4
LT
1649 for (o = 0; o < order; o++) {
1650 /* At the next order, this order's pages become unavailable */
1651 free_pages -= z->free_area[o].nr_free << o;
1652
1653 /* Require fewer higher order pages to be free */
1654 min >>= 1;
1655
1656 if (free_pages <= min)
88f5acf8 1657 return false;
1da177e4 1658 }
88f5acf8
MG
1659 return true;
1660}
1661
1662bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1663 int classzone_idx, int alloc_flags)
1664{
1665 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1666 zone_page_state(z, NR_FREE_PAGES));
1667}
1668
1669bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1670 int classzone_idx, int alloc_flags)
1671{
1672 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1673
1674 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1675 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1676
1677 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1678 free_pages);
1da177e4
LT
1679}
1680
9276b1bc
PJ
1681#ifdef CONFIG_NUMA
1682/*
1683 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1684 * skip over zones that are not allowed by the cpuset, or that have
1685 * been recently (in last second) found to be nearly full. See further
1686 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1687 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1688 *
1689 * If the zonelist cache is present in the passed in zonelist, then
1690 * returns a pointer to the allowed node mask (either the current
4b0ef1fe 1691 * tasks mems_allowed, or node_states[N_MEMORY].)
9276b1bc
PJ
1692 *
1693 * If the zonelist cache is not available for this zonelist, does
1694 * nothing and returns NULL.
1695 *
1696 * If the fullzones BITMAP in the zonelist cache is stale (more than
1697 * a second since last zap'd) then we zap it out (clear its bits.)
1698 *
1699 * We hold off even calling zlc_setup, until after we've checked the
1700 * first zone in the zonelist, on the theory that most allocations will
1701 * be satisfied from that first zone, so best to examine that zone as
1702 * quickly as we can.
1703 */
1704static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1705{
1706 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1707 nodemask_t *allowednodes; /* zonelist_cache approximation */
1708
1709 zlc = zonelist->zlcache_ptr;
1710 if (!zlc)
1711 return NULL;
1712
f05111f5 1713 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1714 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1715 zlc->last_full_zap = jiffies;
1716 }
1717
1718 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1719 &cpuset_current_mems_allowed :
4b0ef1fe 1720 &node_states[N_MEMORY];
9276b1bc
PJ
1721 return allowednodes;
1722}
1723
1724/*
1725 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1726 * if it is worth looking at further for free memory:
1727 * 1) Check that the zone isn't thought to be full (doesn't have its
1728 * bit set in the zonelist_cache fullzones BITMAP).
1729 * 2) Check that the zones node (obtained from the zonelist_cache
1730 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1731 * Return true (non-zero) if zone is worth looking at further, or
1732 * else return false (zero) if it is not.
1733 *
1734 * This check -ignores- the distinction between various watermarks,
1735 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1736 * found to be full for any variation of these watermarks, it will
1737 * be considered full for up to one second by all requests, unless
1738 * we are so low on memory on all allowed nodes that we are forced
1739 * into the second scan of the zonelist.
1740 *
1741 * In the second scan we ignore this zonelist cache and exactly
1742 * apply the watermarks to all zones, even it is slower to do so.
1743 * We are low on memory in the second scan, and should leave no stone
1744 * unturned looking for a free page.
1745 */
dd1a239f 1746static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1747 nodemask_t *allowednodes)
1748{
1749 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1750 int i; /* index of *z in zonelist zones */
1751 int n; /* node that zone *z is on */
1752
1753 zlc = zonelist->zlcache_ptr;
1754 if (!zlc)
1755 return 1;
1756
dd1a239f 1757 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1758 n = zlc->z_to_n[i];
1759
1760 /* This zone is worth trying if it is allowed but not full */
1761 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1762}
1763
1764/*
1765 * Given 'z' scanning a zonelist, set the corresponding bit in
1766 * zlc->fullzones, so that subsequent attempts to allocate a page
1767 * from that zone don't waste time re-examining it.
1768 */
dd1a239f 1769static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1770{
1771 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1772 int i; /* index of *z in zonelist zones */
1773
1774 zlc = zonelist->zlcache_ptr;
1775 if (!zlc)
1776 return;
1777
dd1a239f 1778 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1779
1780 set_bit(i, zlc->fullzones);
1781}
1782
76d3fbf8
MG
1783/*
1784 * clear all zones full, called after direct reclaim makes progress so that
1785 * a zone that was recently full is not skipped over for up to a second
1786 */
1787static void zlc_clear_zones_full(struct zonelist *zonelist)
1788{
1789 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1790
1791 zlc = zonelist->zlcache_ptr;
1792 if (!zlc)
1793 return;
1794
1795 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1796}
1797
957f822a
DR
1798static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1799{
1800 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1801}
1802
1803static void __paginginit init_zone_allows_reclaim(int nid)
1804{
1805 int i;
1806
1807 for_each_online_node(i)
6b187d02 1808 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
957f822a 1809 node_set(i, NODE_DATA(nid)->reclaim_nodes);
6b187d02 1810 else
957f822a 1811 zone_reclaim_mode = 1;
957f822a
DR
1812}
1813
9276b1bc
PJ
1814#else /* CONFIG_NUMA */
1815
1816static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1817{
1818 return NULL;
1819}
1820
dd1a239f 1821static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1822 nodemask_t *allowednodes)
1823{
1824 return 1;
1825}
1826
dd1a239f 1827static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1828{
1829}
76d3fbf8
MG
1830
1831static void zlc_clear_zones_full(struct zonelist *zonelist)
1832{
1833}
957f822a
DR
1834
1835static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1836{
1837 return true;
1838}
1839
1840static inline void init_zone_allows_reclaim(int nid)
1841{
1842}
9276b1bc
PJ
1843#endif /* CONFIG_NUMA */
1844
7fb1d9fc 1845/*
0798e519 1846 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1847 * a page.
1848 */
1849static struct page *
19770b32 1850get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1851 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1852 struct zone *preferred_zone, int migratetype)
753ee728 1853{
dd1a239f 1854 struct zoneref *z;
7fb1d9fc 1855 struct page *page = NULL;
54a6eb5c 1856 int classzone_idx;
5117f45d 1857 struct zone *zone;
9276b1bc
PJ
1858 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1859 int zlc_active = 0; /* set if using zonelist_cache */
1860 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1861
19770b32 1862 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1863zonelist_scan:
7fb1d9fc 1864 /*
9276b1bc 1865 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1866 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1867 */
19770b32
MG
1868 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1869 high_zoneidx, nodemask) {
e5adfffc 1870 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
9276b1bc
PJ
1871 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1872 continue;
7fb1d9fc 1873 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1874 !cpuset_zone_allowed_softwall(zone, gfp_mask))
cd38b115 1875 continue;
a756cf59
JW
1876 /*
1877 * When allocating a page cache page for writing, we
1878 * want to get it from a zone that is within its dirty
1879 * limit, such that no single zone holds more than its
1880 * proportional share of globally allowed dirty pages.
1881 * The dirty limits take into account the zone's
1882 * lowmem reserves and high watermark so that kswapd
1883 * should be able to balance it without having to
1884 * write pages from its LRU list.
1885 *
1886 * This may look like it could increase pressure on
1887 * lower zones by failing allocations in higher zones
1888 * before they are full. But the pages that do spill
1889 * over are limited as the lower zones are protected
1890 * by this very same mechanism. It should not become
1891 * a practical burden to them.
1892 *
1893 * XXX: For now, allow allocations to potentially
1894 * exceed the per-zone dirty limit in the slowpath
1895 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1896 * which is important when on a NUMA setup the allowed
1897 * zones are together not big enough to reach the
1898 * global limit. The proper fix for these situations
1899 * will require awareness of zones in the
1900 * dirty-throttling and the flusher threads.
1901 */
1902 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1903 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1904 goto this_zone_full;
7fb1d9fc 1905
41858966 1906 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1907 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1908 unsigned long mark;
fa5e084e
MG
1909 int ret;
1910
41858966 1911 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
fa5e084e
MG
1912 if (zone_watermark_ok(zone, order, mark,
1913 classzone_idx, alloc_flags))
1914 goto try_this_zone;
1915
e5adfffc
KS
1916 if (IS_ENABLED(CONFIG_NUMA) &&
1917 !did_zlc_setup && nr_online_nodes > 1) {
cd38b115
MG
1918 /*
1919 * we do zlc_setup if there are multiple nodes
1920 * and before considering the first zone allowed
1921 * by the cpuset.
1922 */
1923 allowednodes = zlc_setup(zonelist, alloc_flags);
1924 zlc_active = 1;
1925 did_zlc_setup = 1;
1926 }
1927
957f822a
DR
1928 if (zone_reclaim_mode == 0 ||
1929 !zone_allows_reclaim(preferred_zone, zone))
fa5e084e
MG
1930 goto this_zone_full;
1931
cd38b115
MG
1932 /*
1933 * As we may have just activated ZLC, check if the first
1934 * eligible zone has failed zone_reclaim recently.
1935 */
e5adfffc 1936 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
cd38b115
MG
1937 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1938 continue;
1939
fa5e084e
MG
1940 ret = zone_reclaim(zone, gfp_mask, order);
1941 switch (ret) {
1942 case ZONE_RECLAIM_NOSCAN:
1943 /* did not scan */
cd38b115 1944 continue;
fa5e084e
MG
1945 case ZONE_RECLAIM_FULL:
1946 /* scanned but unreclaimable */
cd38b115 1947 continue;
fa5e084e
MG
1948 default:
1949 /* did we reclaim enough */
1950 if (!zone_watermark_ok(zone, order, mark,
1951 classzone_idx, alloc_flags))
9276b1bc 1952 goto this_zone_full;
0798e519 1953 }
7fb1d9fc
RS
1954 }
1955
fa5e084e 1956try_this_zone:
3dd28266
MG
1957 page = buffered_rmqueue(preferred_zone, zone, order,
1958 gfp_mask, migratetype);
0798e519 1959 if (page)
7fb1d9fc 1960 break;
9276b1bc 1961this_zone_full:
e5adfffc 1962 if (IS_ENABLED(CONFIG_NUMA))
9276b1bc 1963 zlc_mark_zone_full(zonelist, z);
54a6eb5c 1964 }
9276b1bc 1965
e5adfffc 1966 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
9276b1bc
PJ
1967 /* Disable zlc cache for second zonelist scan */
1968 zlc_active = 0;
1969 goto zonelist_scan;
1970 }
b121186a
AS
1971
1972 if (page)
1973 /*
1974 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1975 * necessary to allocate the page. The expectation is
1976 * that the caller is taking steps that will free more
1977 * memory. The caller should avoid the page being used
1978 * for !PFMEMALLOC purposes.
1979 */
1980 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1981
7fb1d9fc 1982 return page;
753ee728
MH
1983}
1984
29423e77
DR
1985/*
1986 * Large machines with many possible nodes should not always dump per-node
1987 * meminfo in irq context.
1988 */
1989static inline bool should_suppress_show_mem(void)
1990{
1991 bool ret = false;
1992
1993#if NODES_SHIFT > 8
1994 ret = in_interrupt();
1995#endif
1996 return ret;
1997}
1998
a238ab5b
DH
1999static DEFINE_RATELIMIT_STATE(nopage_rs,
2000 DEFAULT_RATELIMIT_INTERVAL,
2001 DEFAULT_RATELIMIT_BURST);
2002
2003void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2004{
a238ab5b
DH
2005 unsigned int filter = SHOW_MEM_FILTER_NODES;
2006
c0a32fc5
SG
2007 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2008 debug_guardpage_minorder() > 0)
a238ab5b
DH
2009 return;
2010
2011 /*
2012 * This documents exceptions given to allocations in certain
2013 * contexts that are allowed to allocate outside current's set
2014 * of allowed nodes.
2015 */
2016 if (!(gfp_mask & __GFP_NOMEMALLOC))
2017 if (test_thread_flag(TIF_MEMDIE) ||
2018 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2019 filter &= ~SHOW_MEM_FILTER_NODES;
2020 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2021 filter &= ~SHOW_MEM_FILTER_NODES;
2022
2023 if (fmt) {
3ee9a4f0
JP
2024 struct va_format vaf;
2025 va_list args;
2026
a238ab5b 2027 va_start(args, fmt);
3ee9a4f0
JP
2028
2029 vaf.fmt = fmt;
2030 vaf.va = &args;
2031
2032 pr_warn("%pV", &vaf);
2033
a238ab5b
DH
2034 va_end(args);
2035 }
2036
3ee9a4f0
JP
2037 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2038 current->comm, order, gfp_mask);
a238ab5b
DH
2039
2040 dump_stack();
2041 if (!should_suppress_show_mem())
2042 show_mem(filter);
2043}
2044
11e33f6a
MG
2045static inline int
2046should_alloc_retry(gfp_t gfp_mask, unsigned int order,
f90ac398 2047 unsigned long did_some_progress,
11e33f6a 2048 unsigned long pages_reclaimed)
1da177e4 2049{
11e33f6a
MG
2050 /* Do not loop if specifically requested */
2051 if (gfp_mask & __GFP_NORETRY)
2052 return 0;
1da177e4 2053
f90ac398
MG
2054 /* Always retry if specifically requested */
2055 if (gfp_mask & __GFP_NOFAIL)
2056 return 1;
2057
2058 /*
2059 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2060 * making forward progress without invoking OOM. Suspend also disables
2061 * storage devices so kswapd will not help. Bail if we are suspending.
2062 */
2063 if (!did_some_progress && pm_suspended_storage())
2064 return 0;
2065
11e33f6a
MG
2066 /*
2067 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2068 * means __GFP_NOFAIL, but that may not be true in other
2069 * implementations.
2070 */
2071 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2072 return 1;
2073
2074 /*
2075 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2076 * specified, then we retry until we no longer reclaim any pages
2077 * (above), or we've reclaimed an order of pages at least as
2078 * large as the allocation's order. In both cases, if the
2079 * allocation still fails, we stop retrying.
2080 */
2081 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2082 return 1;
cf40bd16 2083
11e33f6a
MG
2084 return 0;
2085}
933e312e 2086
11e33f6a
MG
2087static inline struct page *
2088__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2089 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2090 nodemask_t *nodemask, struct zone *preferred_zone,
2091 int migratetype)
11e33f6a
MG
2092{
2093 struct page *page;
2094
2095 /* Acquire the OOM killer lock for the zones in zonelist */
ff321fea 2096 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
11e33f6a 2097 schedule_timeout_uninterruptible(1);
1da177e4
LT
2098 return NULL;
2099 }
6b1de916 2100
11e33f6a
MG
2101 /*
2102 * Go through the zonelist yet one more time, keep very high watermark
2103 * here, this is only to catch a parallel oom killing, we must fail if
2104 * we're still under heavy pressure.
2105 */
2106 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2107 order, zonelist, high_zoneidx,
5117f45d 2108 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 2109 preferred_zone, migratetype);
7fb1d9fc 2110 if (page)
11e33f6a
MG
2111 goto out;
2112
4365a567
KH
2113 if (!(gfp_mask & __GFP_NOFAIL)) {
2114 /* The OOM killer will not help higher order allocs */
2115 if (order > PAGE_ALLOC_COSTLY_ORDER)
2116 goto out;
03668b3c
DR
2117 /* The OOM killer does not needlessly kill tasks for lowmem */
2118 if (high_zoneidx < ZONE_NORMAL)
2119 goto out;
4365a567
KH
2120 /*
2121 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2122 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2123 * The caller should handle page allocation failure by itself if
2124 * it specifies __GFP_THISNODE.
2125 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2126 */
2127 if (gfp_mask & __GFP_THISNODE)
2128 goto out;
2129 }
11e33f6a 2130 /* Exhausted what can be done so it's blamo time */
08ab9b10 2131 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
11e33f6a
MG
2132
2133out:
2134 clear_zonelist_oom(zonelist, gfp_mask);
2135 return page;
2136}
2137
56de7263
MG
2138#ifdef CONFIG_COMPACTION
2139/* Try memory compaction for high-order allocations before reclaim */
2140static struct page *
2141__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2142 struct zonelist *zonelist, enum zone_type high_zoneidx,
2143 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2144 int migratetype, bool sync_migration,
c67fe375 2145 bool *contended_compaction, bool *deferred_compaction,
66199712 2146 unsigned long *did_some_progress)
56de7263 2147{
66199712 2148 if (!order)
56de7263
MG
2149 return NULL;
2150
aff62249 2151 if (compaction_deferred(preferred_zone, order)) {
66199712
MG
2152 *deferred_compaction = true;
2153 return NULL;
2154 }
2155
c06b1fca 2156 current->flags |= PF_MEMALLOC;
56de7263 2157 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
c67fe375 2158 nodemask, sync_migration,
8fb74b9f 2159 contended_compaction);
c06b1fca 2160 current->flags &= ~PF_MEMALLOC;
56de7263 2161
1fb3f8ca 2162 if (*did_some_progress != COMPACT_SKIPPED) {
8fb74b9f
MG
2163 struct page *page;
2164
56de7263
MG
2165 /* Page migration frees to the PCP lists but we want merging */
2166 drain_pages(get_cpu());
2167 put_cpu();
2168
2169 page = get_page_from_freelist(gfp_mask, nodemask,
2170 order, zonelist, high_zoneidx,
cfd19c5a
MG
2171 alloc_flags & ~ALLOC_NO_WATERMARKS,
2172 preferred_zone, migratetype);
56de7263 2173 if (page) {
62997027 2174 preferred_zone->compact_blockskip_flush = false;
4f92e258
MG
2175 preferred_zone->compact_considered = 0;
2176 preferred_zone->compact_defer_shift = 0;
aff62249
RR
2177 if (order >= preferred_zone->compact_order_failed)
2178 preferred_zone->compact_order_failed = order + 1;
56de7263
MG
2179 count_vm_event(COMPACTSUCCESS);
2180 return page;
2181 }
2182
2183 /*
2184 * It's bad if compaction run occurs and fails.
2185 * The most likely reason is that pages exist,
2186 * but not enough to satisfy watermarks.
2187 */
2188 count_vm_event(COMPACTFAIL);
66199712
MG
2189
2190 /*
2191 * As async compaction considers a subset of pageblocks, only
2192 * defer if the failure was a sync compaction failure.
2193 */
2194 if (sync_migration)
aff62249 2195 defer_compaction(preferred_zone, order);
56de7263
MG
2196
2197 cond_resched();
2198 }
2199
2200 return NULL;
2201}
2202#else
2203static inline struct page *
2204__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2205 struct zonelist *zonelist, enum zone_type high_zoneidx,
2206 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2207 int migratetype, bool sync_migration,
c67fe375 2208 bool *contended_compaction, bool *deferred_compaction,
66199712 2209 unsigned long *did_some_progress)
56de7263
MG
2210{
2211 return NULL;
2212}
2213#endif /* CONFIG_COMPACTION */
2214
bba90710
MS
2215/* Perform direct synchronous page reclaim */
2216static int
2217__perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2218 nodemask_t *nodemask)
11e33f6a 2219{
11e33f6a 2220 struct reclaim_state reclaim_state;
bba90710 2221 int progress;
11e33f6a
MG
2222
2223 cond_resched();
2224
2225 /* We now go into synchronous reclaim */
2226 cpuset_memory_pressure_bump();
c06b1fca 2227 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2228 lockdep_set_current_reclaim_state(gfp_mask);
2229 reclaim_state.reclaimed_slab = 0;
c06b1fca 2230 current->reclaim_state = &reclaim_state;
11e33f6a 2231
bba90710 2232 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
11e33f6a 2233
c06b1fca 2234 current->reclaim_state = NULL;
11e33f6a 2235 lockdep_clear_current_reclaim_state();
c06b1fca 2236 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2237
2238 cond_resched();
2239
bba90710
MS
2240 return progress;
2241}
2242
2243/* The really slow allocator path where we enter direct reclaim */
2244static inline struct page *
2245__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2246 struct zonelist *zonelist, enum zone_type high_zoneidx,
2247 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2248 int migratetype, unsigned long *did_some_progress)
2249{
2250 struct page *page = NULL;
2251 bool drained = false;
2252
2253 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2254 nodemask);
9ee493ce
MG
2255 if (unlikely(!(*did_some_progress)))
2256 return NULL;
11e33f6a 2257
76d3fbf8 2258 /* After successful reclaim, reconsider all zones for allocation */
e5adfffc 2259 if (IS_ENABLED(CONFIG_NUMA))
76d3fbf8
MG
2260 zlc_clear_zones_full(zonelist);
2261
9ee493ce
MG
2262retry:
2263 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2264 zonelist, high_zoneidx,
cfd19c5a
MG
2265 alloc_flags & ~ALLOC_NO_WATERMARKS,
2266 preferred_zone, migratetype);
9ee493ce
MG
2267
2268 /*
2269 * If an allocation failed after direct reclaim, it could be because
2270 * pages are pinned on the per-cpu lists. Drain them and try again
2271 */
2272 if (!page && !drained) {
2273 drain_all_pages();
2274 drained = true;
2275 goto retry;
2276 }
2277
11e33f6a
MG
2278 return page;
2279}
2280
1da177e4 2281/*
11e33f6a
MG
2282 * This is called in the allocator slow-path if the allocation request is of
2283 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2284 */
11e33f6a
MG
2285static inline struct page *
2286__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2287 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2288 nodemask_t *nodemask, struct zone *preferred_zone,
2289 int migratetype)
11e33f6a
MG
2290{
2291 struct page *page;
2292
2293 do {
2294 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2295 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 2296 preferred_zone, migratetype);
11e33f6a
MG
2297
2298 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 2299 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
2300 } while (!page && (gfp_mask & __GFP_NOFAIL));
2301
2302 return page;
2303}
2304
2305static inline
2306void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
99504748
MG
2307 enum zone_type high_zoneidx,
2308 enum zone_type classzone_idx)
1da177e4 2309{
dd1a239f
MG
2310 struct zoneref *z;
2311 struct zone *zone;
1da177e4 2312
11e33f6a 2313 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
99504748 2314 wakeup_kswapd(zone, order, classzone_idx);
11e33f6a 2315}
cf40bd16 2316
341ce06f
PZ
2317static inline int
2318gfp_to_alloc_flags(gfp_t gfp_mask)
2319{
341ce06f
PZ
2320 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2321 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 2322
a56f57ff 2323 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2324 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2325
341ce06f
PZ
2326 /*
2327 * The caller may dip into page reserves a bit more if the caller
2328 * cannot run direct reclaim, or if the caller has realtime scheduling
2329 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2330 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2331 */
e6223a3b 2332 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2333
341ce06f 2334 if (!wait) {
5c3240d9
AA
2335 /*
2336 * Not worth trying to allocate harder for
2337 * __GFP_NOMEMALLOC even if it can't schedule.
2338 */
2339 if (!(gfp_mask & __GFP_NOMEMALLOC))
2340 alloc_flags |= ALLOC_HARDER;
523b9458 2341 /*
341ce06f
PZ
2342 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2343 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 2344 */
341ce06f 2345 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2346 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2347 alloc_flags |= ALLOC_HARDER;
2348
b37f1dd0
MG
2349 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2350 if (gfp_mask & __GFP_MEMALLOC)
2351 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2352 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2353 alloc_flags |= ALLOC_NO_WATERMARKS;
2354 else if (!in_interrupt() &&
2355 ((current->flags & PF_MEMALLOC) ||
2356 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2357 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2358 }
d95ea5d1
BZ
2359#ifdef CONFIG_CMA
2360 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2361 alloc_flags |= ALLOC_CMA;
2362#endif
341ce06f
PZ
2363 return alloc_flags;
2364}
2365
072bb0aa
MG
2366bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2367{
b37f1dd0 2368 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2369}
2370
11e33f6a
MG
2371static inline struct page *
2372__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2373 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2374 nodemask_t *nodemask, struct zone *preferred_zone,
2375 int migratetype)
11e33f6a
MG
2376{
2377 const gfp_t wait = gfp_mask & __GFP_WAIT;
2378 struct page *page = NULL;
2379 int alloc_flags;
2380 unsigned long pages_reclaimed = 0;
2381 unsigned long did_some_progress;
77f1fe6b 2382 bool sync_migration = false;
66199712 2383 bool deferred_compaction = false;
c67fe375 2384 bool contended_compaction = false;
1da177e4 2385
72807a74
MG
2386 /*
2387 * In the slowpath, we sanity check order to avoid ever trying to
2388 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2389 * be using allocators in order of preference for an area that is
2390 * too large.
2391 */
1fc28b70
MG
2392 if (order >= MAX_ORDER) {
2393 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2394 return NULL;
1fc28b70 2395 }
1da177e4 2396
952f3b51
CL
2397 /*
2398 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2399 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2400 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2401 * using a larger set of nodes after it has established that the
2402 * allowed per node queues are empty and that nodes are
2403 * over allocated.
2404 */
e5adfffc
KS
2405 if (IS_ENABLED(CONFIG_NUMA) &&
2406 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
952f3b51
CL
2407 goto nopage;
2408
cc4a6851 2409restart:
caf49191
LT
2410 if (!(gfp_mask & __GFP_NO_KSWAPD))
2411 wake_all_kswapd(order, zonelist, high_zoneidx,
2412 zone_idx(preferred_zone));
1da177e4 2413
9bf2229f 2414 /*
7fb1d9fc
RS
2415 * OK, we're below the kswapd watermark and have kicked background
2416 * reclaim. Now things get more complex, so set up alloc_flags according
2417 * to how we want to proceed.
9bf2229f 2418 */
341ce06f 2419 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2420
f33261d7
DR
2421 /*
2422 * Find the true preferred zone if the allocation is unconstrained by
2423 * cpusets.
2424 */
2425 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2426 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2427 &preferred_zone);
2428
cfa54a0f 2429rebalance:
341ce06f 2430 /* This is the last chance, in general, before the goto nopage. */
19770b32 2431 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
2432 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2433 preferred_zone, migratetype);
7fb1d9fc
RS
2434 if (page)
2435 goto got_pg;
1da177e4 2436
11e33f6a 2437 /* Allocate without watermarks if the context allows */
341ce06f 2438 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
2439 /*
2440 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2441 * the allocation is high priority and these type of
2442 * allocations are system rather than user orientated
2443 */
2444 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2445
341ce06f
PZ
2446 page = __alloc_pages_high_priority(gfp_mask, order,
2447 zonelist, high_zoneidx, nodemask,
2448 preferred_zone, migratetype);
cfd19c5a 2449 if (page) {
341ce06f 2450 goto got_pg;
cfd19c5a 2451 }
1da177e4
LT
2452 }
2453
2454 /* Atomic allocations - we can't balance anything */
2455 if (!wait)
2456 goto nopage;
2457
341ce06f 2458 /* Avoid recursion of direct reclaim */
c06b1fca 2459 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2460 goto nopage;
2461
6583bb64
DR
2462 /* Avoid allocations with no watermarks from looping endlessly */
2463 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2464 goto nopage;
2465
77f1fe6b
MG
2466 /*
2467 * Try direct compaction. The first pass is asynchronous. Subsequent
2468 * attempts after direct reclaim are synchronous
2469 */
56de7263
MG
2470 page = __alloc_pages_direct_compact(gfp_mask, order,
2471 zonelist, high_zoneidx,
2472 nodemask,
2473 alloc_flags, preferred_zone,
66199712 2474 migratetype, sync_migration,
c67fe375 2475 &contended_compaction,
66199712
MG
2476 &deferred_compaction,
2477 &did_some_progress);
56de7263
MG
2478 if (page)
2479 goto got_pg;
c6a140bf 2480 sync_migration = true;
56de7263 2481
31f8d42d
LT
2482 /*
2483 * If compaction is deferred for high-order allocations, it is because
2484 * sync compaction recently failed. In this is the case and the caller
2485 * requested a movable allocation that does not heavily disrupt the
2486 * system then fail the allocation instead of entering direct reclaim.
2487 */
2488 if ((deferred_compaction || contended_compaction) &&
caf49191 2489 (gfp_mask & __GFP_NO_KSWAPD))
31f8d42d 2490 goto nopage;
66199712 2491
11e33f6a
MG
2492 /* Try direct reclaim and then allocating */
2493 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2494 zonelist, high_zoneidx,
2495 nodemask,
5117f45d 2496 alloc_flags, preferred_zone,
3dd28266 2497 migratetype, &did_some_progress);
11e33f6a
MG
2498 if (page)
2499 goto got_pg;
1da177e4 2500
e33c3b5e 2501 /*
11e33f6a
MG
2502 * If we failed to make any progress reclaiming, then we are
2503 * running out of options and have to consider going OOM
e33c3b5e 2504 */
11e33f6a
MG
2505 if (!did_some_progress) {
2506 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
2507 if (oom_killer_disabled)
2508 goto nopage;
29fd66d2
DR
2509 /* Coredumps can quickly deplete all memory reserves */
2510 if ((current->flags & PF_DUMPCORE) &&
2511 !(gfp_mask & __GFP_NOFAIL))
2512 goto nopage;
11e33f6a
MG
2513 page = __alloc_pages_may_oom(gfp_mask, order,
2514 zonelist, high_zoneidx,
3dd28266
MG
2515 nodemask, preferred_zone,
2516 migratetype);
11e33f6a
MG
2517 if (page)
2518 goto got_pg;
1da177e4 2519
03668b3c
DR
2520 if (!(gfp_mask & __GFP_NOFAIL)) {
2521 /*
2522 * The oom killer is not called for high-order
2523 * allocations that may fail, so if no progress
2524 * is being made, there are no other options and
2525 * retrying is unlikely to help.
2526 */
2527 if (order > PAGE_ALLOC_COSTLY_ORDER)
2528 goto nopage;
2529 /*
2530 * The oom killer is not called for lowmem
2531 * allocations to prevent needlessly killing
2532 * innocent tasks.
2533 */
2534 if (high_zoneidx < ZONE_NORMAL)
2535 goto nopage;
2536 }
e2c55dc8 2537
ff0ceb9d
DR
2538 goto restart;
2539 }
1da177e4
LT
2540 }
2541
11e33f6a 2542 /* Check if we should retry the allocation */
a41f24ea 2543 pages_reclaimed += did_some_progress;
f90ac398
MG
2544 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2545 pages_reclaimed)) {
11e33f6a 2546 /* Wait for some write requests to complete then retry */
0e093d99 2547 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2548 goto rebalance;
3e7d3449
MG
2549 } else {
2550 /*
2551 * High-order allocations do not necessarily loop after
2552 * direct reclaim and reclaim/compaction depends on compaction
2553 * being called after reclaim so call directly if necessary
2554 */
2555 page = __alloc_pages_direct_compact(gfp_mask, order,
2556 zonelist, high_zoneidx,
2557 nodemask,
2558 alloc_flags, preferred_zone,
66199712 2559 migratetype, sync_migration,
c67fe375 2560 &contended_compaction,
66199712
MG
2561 &deferred_compaction,
2562 &did_some_progress);
3e7d3449
MG
2563 if (page)
2564 goto got_pg;
1da177e4
LT
2565 }
2566
2567nopage:
a238ab5b 2568 warn_alloc_failed(gfp_mask, order, NULL);
b1eeab67 2569 return page;
1da177e4 2570got_pg:
b1eeab67
VN
2571 if (kmemcheck_enabled)
2572 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
11e33f6a 2573
072bb0aa 2574 return page;
1da177e4 2575}
11e33f6a
MG
2576
2577/*
2578 * This is the 'heart' of the zoned buddy allocator.
2579 */
2580struct page *
2581__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2582 struct zonelist *zonelist, nodemask_t *nodemask)
2583{
2584 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2585 struct zone *preferred_zone;
cc9a6c87 2586 struct page *page = NULL;
3dd28266 2587 int migratetype = allocflags_to_migratetype(gfp_mask);
cc9a6c87 2588 unsigned int cpuset_mems_cookie;
d95ea5d1 2589 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
6a1a0d3b 2590 struct mem_cgroup *memcg = NULL;
11e33f6a 2591
dcce284a
BH
2592 gfp_mask &= gfp_allowed_mask;
2593
11e33f6a
MG
2594 lockdep_trace_alloc(gfp_mask);
2595
2596 might_sleep_if(gfp_mask & __GFP_WAIT);
2597
2598 if (should_fail_alloc_page(gfp_mask, order))
2599 return NULL;
2600
2601 /*
2602 * Check the zones suitable for the gfp_mask contain at least one
2603 * valid zone. It's possible to have an empty zonelist as a result
2604 * of GFP_THISNODE and a memoryless node
2605 */
2606 if (unlikely(!zonelist->_zonerefs->zone))
2607 return NULL;
2608
6a1a0d3b
GC
2609 /*
2610 * Will only have any effect when __GFP_KMEMCG is set. This is
2611 * verified in the (always inline) callee
2612 */
2613 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2614 return NULL;
2615
cc9a6c87
MG
2616retry_cpuset:
2617 cpuset_mems_cookie = get_mems_allowed();
2618
5117f45d 2619 /* The preferred zone is used for statistics later */
f33261d7
DR
2620 first_zones_zonelist(zonelist, high_zoneidx,
2621 nodemask ? : &cpuset_current_mems_allowed,
2622 &preferred_zone);
cc9a6c87
MG
2623 if (!preferred_zone)
2624 goto out;
5117f45d 2625
d95ea5d1
BZ
2626#ifdef CONFIG_CMA
2627 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2628 alloc_flags |= ALLOC_CMA;
2629#endif
5117f45d 2630 /* First allocation attempt */
11e33f6a 2631 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
d95ea5d1 2632 zonelist, high_zoneidx, alloc_flags,
3dd28266 2633 preferred_zone, migratetype);
21caf2fc
ML
2634 if (unlikely(!page)) {
2635 /*
2636 * Runtime PM, block IO and its error handling path
2637 * can deadlock because I/O on the device might not
2638 * complete.
2639 */
2640 gfp_mask = memalloc_noio_flags(gfp_mask);
11e33f6a 2641 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2642 zonelist, high_zoneidx, nodemask,
3dd28266 2643 preferred_zone, migratetype);
21caf2fc 2644 }
11e33f6a 2645
4b4f278c 2646 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
cc9a6c87
MG
2647
2648out:
2649 /*
2650 * When updating a task's mems_allowed, it is possible to race with
2651 * parallel threads in such a way that an allocation can fail while
2652 * the mask is being updated. If a page allocation is about to fail,
2653 * check if the cpuset changed during allocation and if so, retry.
2654 */
2655 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2656 goto retry_cpuset;
2657
6a1a0d3b
GC
2658 memcg_kmem_commit_charge(page, memcg, order);
2659
11e33f6a 2660 return page;
1da177e4 2661}
d239171e 2662EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2663
2664/*
2665 * Common helper functions.
2666 */
920c7a5d 2667unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2668{
945a1113
AM
2669 struct page *page;
2670
2671 /*
2672 * __get_free_pages() returns a 32-bit address, which cannot represent
2673 * a highmem page
2674 */
2675 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2676
1da177e4
LT
2677 page = alloc_pages(gfp_mask, order);
2678 if (!page)
2679 return 0;
2680 return (unsigned long) page_address(page);
2681}
1da177e4
LT
2682EXPORT_SYMBOL(__get_free_pages);
2683
920c7a5d 2684unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2685{
945a1113 2686 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2687}
1da177e4
LT
2688EXPORT_SYMBOL(get_zeroed_page);
2689
920c7a5d 2690void __free_pages(struct page *page, unsigned int order)
1da177e4 2691{
b5810039 2692 if (put_page_testzero(page)) {
1da177e4 2693 if (order == 0)
fc91668e 2694 free_hot_cold_page(page, 0);
1da177e4
LT
2695 else
2696 __free_pages_ok(page, order);
2697 }
2698}
2699
2700EXPORT_SYMBOL(__free_pages);
2701
920c7a5d 2702void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2703{
2704 if (addr != 0) {
725d704e 2705 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2706 __free_pages(virt_to_page((void *)addr), order);
2707 }
2708}
2709
2710EXPORT_SYMBOL(free_pages);
2711
6a1a0d3b
GC
2712/*
2713 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2714 * pages allocated with __GFP_KMEMCG.
2715 *
2716 * Those pages are accounted to a particular memcg, embedded in the
2717 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2718 * for that information only to find out that it is NULL for users who have no
2719 * interest in that whatsoever, we provide these functions.
2720 *
2721 * The caller knows better which flags it relies on.
2722 */
2723void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2724{
2725 memcg_kmem_uncharge_pages(page, order);
2726 __free_pages(page, order);
2727}
2728
2729void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2730{
2731 if (addr != 0) {
2732 VM_BUG_ON(!virt_addr_valid((void *)addr));
2733 __free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2734 }
2735}
2736
ee85c2e1
AK
2737static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2738{
2739 if (addr) {
2740 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2741 unsigned long used = addr + PAGE_ALIGN(size);
2742
2743 split_page(virt_to_page((void *)addr), order);
2744 while (used < alloc_end) {
2745 free_page(used);
2746 used += PAGE_SIZE;
2747 }
2748 }
2749 return (void *)addr;
2750}
2751
2be0ffe2
TT
2752/**
2753 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2754 * @size: the number of bytes to allocate
2755 * @gfp_mask: GFP flags for the allocation
2756 *
2757 * This function is similar to alloc_pages(), except that it allocates the
2758 * minimum number of pages to satisfy the request. alloc_pages() can only
2759 * allocate memory in power-of-two pages.
2760 *
2761 * This function is also limited by MAX_ORDER.
2762 *
2763 * Memory allocated by this function must be released by free_pages_exact().
2764 */
2765void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2766{
2767 unsigned int order = get_order(size);
2768 unsigned long addr;
2769
2770 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 2771 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
2772}
2773EXPORT_SYMBOL(alloc_pages_exact);
2774
ee85c2e1
AK
2775/**
2776 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2777 * pages on a node.
b5e6ab58 2778 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
2779 * @size: the number of bytes to allocate
2780 * @gfp_mask: GFP flags for the allocation
2781 *
2782 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2783 * back.
2784 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2785 * but is not exact.
2786 */
2787void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2788{
2789 unsigned order = get_order(size);
2790 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2791 if (!p)
2792 return NULL;
2793 return make_alloc_exact((unsigned long)page_address(p), order, size);
2794}
2795EXPORT_SYMBOL(alloc_pages_exact_nid);
2796
2be0ffe2
TT
2797/**
2798 * free_pages_exact - release memory allocated via alloc_pages_exact()
2799 * @virt: the value returned by alloc_pages_exact.
2800 * @size: size of allocation, same value as passed to alloc_pages_exact().
2801 *
2802 * Release the memory allocated by a previous call to alloc_pages_exact.
2803 */
2804void free_pages_exact(void *virt, size_t size)
2805{
2806 unsigned long addr = (unsigned long)virt;
2807 unsigned long end = addr + PAGE_ALIGN(size);
2808
2809 while (addr < end) {
2810 free_page(addr);
2811 addr += PAGE_SIZE;
2812 }
2813}
2814EXPORT_SYMBOL(free_pages_exact);
2815
ebec3862 2816static unsigned long nr_free_zone_pages(int offset)
1da177e4 2817{
dd1a239f 2818 struct zoneref *z;
54a6eb5c
MG
2819 struct zone *zone;
2820
e310fd43 2821 /* Just pick one node, since fallback list is circular */
ebec3862 2822 unsigned long sum = 0;
1da177e4 2823
0e88460d 2824 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2825
54a6eb5c 2826 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 2827 unsigned long size = zone->managed_pages;
41858966 2828 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2829 if (size > high)
2830 sum += size - high;
1da177e4
LT
2831 }
2832
2833 return sum;
2834}
2835
2836/*
2837 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2838 */
ebec3862 2839unsigned long nr_free_buffer_pages(void)
1da177e4 2840{
af4ca457 2841 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2842}
c2f1a551 2843EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
2844
2845/*
2846 * Amount of free RAM allocatable within all zones
2847 */
ebec3862 2848unsigned long nr_free_pagecache_pages(void)
1da177e4 2849{
2a1e274a 2850 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2851}
08e0f6a9
CL
2852
2853static inline void show_node(struct zone *zone)
1da177e4 2854{
e5adfffc 2855 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 2856 printk("Node %d ", zone_to_nid(zone));
1da177e4 2857}
1da177e4 2858
1da177e4
LT
2859void si_meminfo(struct sysinfo *val)
2860{
2861 val->totalram = totalram_pages;
2862 val->sharedram = 0;
d23ad423 2863 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2864 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2865 val->totalhigh = totalhigh_pages;
2866 val->freehigh = nr_free_highpages();
1da177e4
LT
2867 val->mem_unit = PAGE_SIZE;
2868}
2869
2870EXPORT_SYMBOL(si_meminfo);
2871
2872#ifdef CONFIG_NUMA
2873void si_meminfo_node(struct sysinfo *val, int nid)
2874{
2875 pg_data_t *pgdat = NODE_DATA(nid);
2876
2877 val->totalram = pgdat->node_present_pages;
d23ad423 2878 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2879#ifdef CONFIG_HIGHMEM
b40da049 2880 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
d23ad423
CL
2881 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2882 NR_FREE_PAGES);
98d2b0eb
CL
2883#else
2884 val->totalhigh = 0;
2885 val->freehigh = 0;
2886#endif
1da177e4
LT
2887 val->mem_unit = PAGE_SIZE;
2888}
2889#endif
2890
ddd588b5 2891/*
7bf02ea2
DR
2892 * Determine whether the node should be displayed or not, depending on whether
2893 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 2894 */
7bf02ea2 2895bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
2896{
2897 bool ret = false;
cc9a6c87 2898 unsigned int cpuset_mems_cookie;
ddd588b5
DR
2899
2900 if (!(flags & SHOW_MEM_FILTER_NODES))
2901 goto out;
2902
cc9a6c87
MG
2903 do {
2904 cpuset_mems_cookie = get_mems_allowed();
2905 ret = !node_isset(nid, cpuset_current_mems_allowed);
2906 } while (!put_mems_allowed(cpuset_mems_cookie));
ddd588b5
DR
2907out:
2908 return ret;
2909}
2910
1da177e4
LT
2911#define K(x) ((x) << (PAGE_SHIFT-10))
2912
377e4f16
RV
2913static void show_migration_types(unsigned char type)
2914{
2915 static const char types[MIGRATE_TYPES] = {
2916 [MIGRATE_UNMOVABLE] = 'U',
2917 [MIGRATE_RECLAIMABLE] = 'E',
2918 [MIGRATE_MOVABLE] = 'M',
2919 [MIGRATE_RESERVE] = 'R',
2920#ifdef CONFIG_CMA
2921 [MIGRATE_CMA] = 'C',
2922#endif
194159fb 2923#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 2924 [MIGRATE_ISOLATE] = 'I',
194159fb 2925#endif
377e4f16
RV
2926 };
2927 char tmp[MIGRATE_TYPES + 1];
2928 char *p = tmp;
2929 int i;
2930
2931 for (i = 0; i < MIGRATE_TYPES; i++) {
2932 if (type & (1 << i))
2933 *p++ = types[i];
2934 }
2935
2936 *p = '\0';
2937 printk("(%s) ", tmp);
2938}
2939
1da177e4
LT
2940/*
2941 * Show free area list (used inside shift_scroll-lock stuff)
2942 * We also calculate the percentage fragmentation. We do this by counting the
2943 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
2944 * Suppresses nodes that are not allowed by current's cpuset if
2945 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 2946 */
7bf02ea2 2947void show_free_areas(unsigned int filter)
1da177e4 2948{
c7241913 2949 int cpu;
1da177e4
LT
2950 struct zone *zone;
2951
ee99c71c 2952 for_each_populated_zone(zone) {
7bf02ea2 2953 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2954 continue;
c7241913
JS
2955 show_node(zone);
2956 printk("%s per-cpu:\n", zone->name);
1da177e4 2957
6b482c67 2958 for_each_online_cpu(cpu) {
1da177e4
LT
2959 struct per_cpu_pageset *pageset;
2960
99dcc3e5 2961 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2962
3dfa5721
CL
2963 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2964 cpu, pageset->pcp.high,
2965 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2966 }
2967 }
2968
a731286d
KM
2969 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2970 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 2971 " unevictable:%lu"
b76146ed 2972 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 2973 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a
BZ
2974 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
2975 " free_cma:%lu\n",
4f98a2fe 2976 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 2977 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
2978 global_page_state(NR_ISOLATED_ANON),
2979 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 2980 global_page_state(NR_INACTIVE_FILE),
a731286d 2981 global_page_state(NR_ISOLATED_FILE),
7b854121 2982 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 2983 global_page_state(NR_FILE_DIRTY),
ce866b34 2984 global_page_state(NR_WRITEBACK),
fd39fc85 2985 global_page_state(NR_UNSTABLE_NFS),
d23ad423 2986 global_page_state(NR_FREE_PAGES),
3701b033
KM
2987 global_page_state(NR_SLAB_RECLAIMABLE),
2988 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2989 global_page_state(NR_FILE_MAPPED),
4b02108a 2990 global_page_state(NR_SHMEM),
a25700a5 2991 global_page_state(NR_PAGETABLE),
d1ce749a
BZ
2992 global_page_state(NR_BOUNCE),
2993 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 2994
ee99c71c 2995 for_each_populated_zone(zone) {
1da177e4
LT
2996 int i;
2997
7bf02ea2 2998 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2999 continue;
1da177e4
LT
3000 show_node(zone);
3001 printk("%s"
3002 " free:%lukB"
3003 " min:%lukB"
3004 " low:%lukB"
3005 " high:%lukB"
4f98a2fe
RR
3006 " active_anon:%lukB"
3007 " inactive_anon:%lukB"
3008 " active_file:%lukB"
3009 " inactive_file:%lukB"
7b854121 3010 " unevictable:%lukB"
a731286d
KM
3011 " isolated(anon):%lukB"
3012 " isolated(file):%lukB"
1da177e4 3013 " present:%lukB"
9feedc9d 3014 " managed:%lukB"
4a0aa73f
KM
3015 " mlocked:%lukB"
3016 " dirty:%lukB"
3017 " writeback:%lukB"
3018 " mapped:%lukB"
4b02108a 3019 " shmem:%lukB"
4a0aa73f
KM
3020 " slab_reclaimable:%lukB"
3021 " slab_unreclaimable:%lukB"
c6a7f572 3022 " kernel_stack:%lukB"
4a0aa73f
KM
3023 " pagetables:%lukB"
3024 " unstable:%lukB"
3025 " bounce:%lukB"
d1ce749a 3026 " free_cma:%lukB"
4a0aa73f 3027 " writeback_tmp:%lukB"
1da177e4
LT
3028 " pages_scanned:%lu"
3029 " all_unreclaimable? %s"
3030 "\n",
3031 zone->name,
88f5acf8 3032 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3033 K(min_wmark_pages(zone)),
3034 K(low_wmark_pages(zone)),
3035 K(high_wmark_pages(zone)),
4f98a2fe
RR
3036 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3037 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3038 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3039 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3040 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3041 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3042 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3043 K(zone->present_pages),
9feedc9d 3044 K(zone->managed_pages),
4a0aa73f
KM
3045 K(zone_page_state(zone, NR_MLOCK)),
3046 K(zone_page_state(zone, NR_FILE_DIRTY)),
3047 K(zone_page_state(zone, NR_WRITEBACK)),
3048 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3049 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3050 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3051 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3052 zone_page_state(zone, NR_KERNEL_STACK) *
3053 THREAD_SIZE / 1024,
4a0aa73f
KM
3054 K(zone_page_state(zone, NR_PAGETABLE)),
3055 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3056 K(zone_page_state(zone, NR_BOUNCE)),
d1ce749a 3057 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3058 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 3059 zone->pages_scanned,
93e4a89a 3060 (zone->all_unreclaimable ? "yes" : "no")
1da177e4
LT
3061 );
3062 printk("lowmem_reserve[]:");
3063 for (i = 0; i < MAX_NR_ZONES; i++)
3064 printk(" %lu", zone->lowmem_reserve[i]);
3065 printk("\n");
3066 }
3067
ee99c71c 3068 for_each_populated_zone(zone) {
8f9de51a 3069 unsigned long nr[MAX_ORDER], flags, order, total = 0;
377e4f16 3070 unsigned char types[MAX_ORDER];
1da177e4 3071
7bf02ea2 3072 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3073 continue;
1da177e4
LT
3074 show_node(zone);
3075 printk("%s: ", zone->name);
1da177e4
LT
3076
3077 spin_lock_irqsave(&zone->lock, flags);
3078 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3079 struct free_area *area = &zone->free_area[order];
3080 int type;
3081
3082 nr[order] = area->nr_free;
8f9de51a 3083 total += nr[order] << order;
377e4f16
RV
3084
3085 types[order] = 0;
3086 for (type = 0; type < MIGRATE_TYPES; type++) {
3087 if (!list_empty(&area->free_list[type]))
3088 types[order] |= 1 << type;
3089 }
1da177e4
LT
3090 }
3091 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3092 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3093 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3094 if (nr[order])
3095 show_migration_types(types[order]);
3096 }
1da177e4
LT
3097 printk("= %lukB\n", K(total));
3098 }
3099
e6f3602d
LW
3100 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3101
1da177e4
LT
3102 show_swap_cache_info();
3103}
3104
19770b32
MG
3105static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3106{
3107 zoneref->zone = zone;
3108 zoneref->zone_idx = zone_idx(zone);
3109}
3110
1da177e4
LT
3111/*
3112 * Builds allocation fallback zone lists.
1a93205b
CL
3113 *
3114 * Add all populated zones of a node to the zonelist.
1da177e4 3115 */
f0c0b2b8
KH
3116static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3117 int nr_zones, enum zone_type zone_type)
1da177e4 3118{
1a93205b
CL
3119 struct zone *zone;
3120
98d2b0eb 3121 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 3122 zone_type++;
02a68a5e
CL
3123
3124 do {
2f6726e5 3125 zone_type--;
070f8032 3126 zone = pgdat->node_zones + zone_type;
1a93205b 3127 if (populated_zone(zone)) {
dd1a239f
MG
3128 zoneref_set_zone(zone,
3129 &zonelist->_zonerefs[nr_zones++]);
070f8032 3130 check_highest_zone(zone_type);
1da177e4 3131 }
02a68a5e 3132
2f6726e5 3133 } while (zone_type);
070f8032 3134 return nr_zones;
1da177e4
LT
3135}
3136
f0c0b2b8
KH
3137
3138/*
3139 * zonelist_order:
3140 * 0 = automatic detection of better ordering.
3141 * 1 = order by ([node] distance, -zonetype)
3142 * 2 = order by (-zonetype, [node] distance)
3143 *
3144 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3145 * the same zonelist. So only NUMA can configure this param.
3146 */
3147#define ZONELIST_ORDER_DEFAULT 0
3148#define ZONELIST_ORDER_NODE 1
3149#define ZONELIST_ORDER_ZONE 2
3150
3151/* zonelist order in the kernel.
3152 * set_zonelist_order() will set this to NODE or ZONE.
3153 */
3154static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3155static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3156
3157
1da177e4 3158#ifdef CONFIG_NUMA
f0c0b2b8
KH
3159/* The value user specified ....changed by config */
3160static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3161/* string for sysctl */
3162#define NUMA_ZONELIST_ORDER_LEN 16
3163char numa_zonelist_order[16] = "default";
3164
3165/*
3166 * interface for configure zonelist ordering.
3167 * command line option "numa_zonelist_order"
3168 * = "[dD]efault - default, automatic configuration.
3169 * = "[nN]ode - order by node locality, then by zone within node
3170 * = "[zZ]one - order by zone, then by locality within zone
3171 */
3172
3173static int __parse_numa_zonelist_order(char *s)
3174{
3175 if (*s == 'd' || *s == 'D') {
3176 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3177 } else if (*s == 'n' || *s == 'N') {
3178 user_zonelist_order = ZONELIST_ORDER_NODE;
3179 } else if (*s == 'z' || *s == 'Z') {
3180 user_zonelist_order = ZONELIST_ORDER_ZONE;
3181 } else {
3182 printk(KERN_WARNING
3183 "Ignoring invalid numa_zonelist_order value: "
3184 "%s\n", s);
3185 return -EINVAL;
3186 }
3187 return 0;
3188}
3189
3190static __init int setup_numa_zonelist_order(char *s)
3191{
ecb256f8
VL
3192 int ret;
3193
3194 if (!s)
3195 return 0;
3196
3197 ret = __parse_numa_zonelist_order(s);
3198 if (ret == 0)
3199 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3200
3201 return ret;
f0c0b2b8
KH
3202}
3203early_param("numa_zonelist_order", setup_numa_zonelist_order);
3204
3205/*
3206 * sysctl handler for numa_zonelist_order
3207 */
3208int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 3209 void __user *buffer, size_t *length,
f0c0b2b8
KH
3210 loff_t *ppos)
3211{
3212 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3213 int ret;
443c6f14 3214 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3215
443c6f14 3216 mutex_lock(&zl_order_mutex);
f0c0b2b8 3217 if (write)
443c6f14 3218 strcpy(saved_string, (char*)table->data);
8d65af78 3219 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3220 if (ret)
443c6f14 3221 goto out;
f0c0b2b8
KH
3222 if (write) {
3223 int oldval = user_zonelist_order;
3224 if (__parse_numa_zonelist_order((char*)table->data)) {
3225 /*
3226 * bogus value. restore saved string
3227 */
3228 strncpy((char*)table->data, saved_string,
3229 NUMA_ZONELIST_ORDER_LEN);
3230 user_zonelist_order = oldval;
4eaf3f64
HL
3231 } else if (oldval != user_zonelist_order) {
3232 mutex_lock(&zonelists_mutex);
9adb62a5 3233 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3234 mutex_unlock(&zonelists_mutex);
3235 }
f0c0b2b8 3236 }
443c6f14
AK
3237out:
3238 mutex_unlock(&zl_order_mutex);
3239 return ret;
f0c0b2b8
KH
3240}
3241
3242
62bc62a8 3243#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3244static int node_load[MAX_NUMNODES];
3245
1da177e4 3246/**
4dc3b16b 3247 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3248 * @node: node whose fallback list we're appending
3249 * @used_node_mask: nodemask_t of already used nodes
3250 *
3251 * We use a number of factors to determine which is the next node that should
3252 * appear on a given node's fallback list. The node should not have appeared
3253 * already in @node's fallback list, and it should be the next closest node
3254 * according to the distance array (which contains arbitrary distance values
3255 * from each node to each node in the system), and should also prefer nodes
3256 * with no CPUs, since presumably they'll have very little allocation pressure
3257 * on them otherwise.
3258 * It returns -1 if no node is found.
3259 */
f0c0b2b8 3260static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3261{
4cf808eb 3262 int n, val;
1da177e4 3263 int min_val = INT_MAX;
00ef2d2f 3264 int best_node = NUMA_NO_NODE;
a70f7302 3265 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3266
4cf808eb
LT
3267 /* Use the local node if we haven't already */
3268 if (!node_isset(node, *used_node_mask)) {
3269 node_set(node, *used_node_mask);
3270 return node;
3271 }
1da177e4 3272
4b0ef1fe 3273 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
3274
3275 /* Don't want a node to appear more than once */
3276 if (node_isset(n, *used_node_mask))
3277 continue;
3278
1da177e4
LT
3279 /* Use the distance array to find the distance */
3280 val = node_distance(node, n);
3281
4cf808eb
LT
3282 /* Penalize nodes under us ("prefer the next node") */
3283 val += (n < node);
3284
1da177e4 3285 /* Give preference to headless and unused nodes */
a70f7302
RR
3286 tmp = cpumask_of_node(n);
3287 if (!cpumask_empty(tmp))
1da177e4
LT
3288 val += PENALTY_FOR_NODE_WITH_CPUS;
3289
3290 /* Slight preference for less loaded node */
3291 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3292 val += node_load[n];
3293
3294 if (val < min_val) {
3295 min_val = val;
3296 best_node = n;
3297 }
3298 }
3299
3300 if (best_node >= 0)
3301 node_set(best_node, *used_node_mask);
3302
3303 return best_node;
3304}
3305
f0c0b2b8
KH
3306
3307/*
3308 * Build zonelists ordered by node and zones within node.
3309 * This results in maximum locality--normal zone overflows into local
3310 * DMA zone, if any--but risks exhausting DMA zone.
3311 */
3312static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 3313{
f0c0b2b8 3314 int j;
1da177e4 3315 struct zonelist *zonelist;
f0c0b2b8 3316
54a6eb5c 3317 zonelist = &pgdat->node_zonelists[0];
dd1a239f 3318 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
3319 ;
3320 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3321 MAX_NR_ZONES - 1);
dd1a239f
MG
3322 zonelist->_zonerefs[j].zone = NULL;
3323 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
3324}
3325
523b9458
CL
3326/*
3327 * Build gfp_thisnode zonelists
3328 */
3329static void build_thisnode_zonelists(pg_data_t *pgdat)
3330{
523b9458
CL
3331 int j;
3332 struct zonelist *zonelist;
3333
54a6eb5c
MG
3334 zonelist = &pgdat->node_zonelists[1];
3335 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
3336 zonelist->_zonerefs[j].zone = NULL;
3337 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3338}
3339
f0c0b2b8
KH
3340/*
3341 * Build zonelists ordered by zone and nodes within zones.
3342 * This results in conserving DMA zone[s] until all Normal memory is
3343 * exhausted, but results in overflowing to remote node while memory
3344 * may still exist in local DMA zone.
3345 */
3346static int node_order[MAX_NUMNODES];
3347
3348static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3349{
f0c0b2b8
KH
3350 int pos, j, node;
3351 int zone_type; /* needs to be signed */
3352 struct zone *z;
3353 struct zonelist *zonelist;
3354
54a6eb5c
MG
3355 zonelist = &pgdat->node_zonelists[0];
3356 pos = 0;
3357 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3358 for (j = 0; j < nr_nodes; j++) {
3359 node = node_order[j];
3360 z = &NODE_DATA(node)->node_zones[zone_type];
3361 if (populated_zone(z)) {
dd1a239f
MG
3362 zoneref_set_zone(z,
3363 &zonelist->_zonerefs[pos++]);
54a6eb5c 3364 check_highest_zone(zone_type);
f0c0b2b8
KH
3365 }
3366 }
f0c0b2b8 3367 }
dd1a239f
MG
3368 zonelist->_zonerefs[pos].zone = NULL;
3369 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3370}
3371
3372static int default_zonelist_order(void)
3373{
3374 int nid, zone_type;
3375 unsigned long low_kmem_size,total_size;
3376 struct zone *z;
3377 int average_size;
3378 /*
88393161 3379 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
3380 * If they are really small and used heavily, the system can fall
3381 * into OOM very easily.
e325c90f 3382 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
3383 */
3384 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3385 low_kmem_size = 0;
3386 total_size = 0;
3387 for_each_online_node(nid) {
3388 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3389 z = &NODE_DATA(nid)->node_zones[zone_type];
3390 if (populated_zone(z)) {
3391 if (zone_type < ZONE_NORMAL)
3392 low_kmem_size += z->present_pages;
3393 total_size += z->present_pages;
e325c90f
DR
3394 } else if (zone_type == ZONE_NORMAL) {
3395 /*
3396 * If any node has only lowmem, then node order
3397 * is preferred to allow kernel allocations
3398 * locally; otherwise, they can easily infringe
3399 * on other nodes when there is an abundance of
3400 * lowmem available to allocate from.
3401 */
3402 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
3403 }
3404 }
3405 }
3406 if (!low_kmem_size || /* there are no DMA area. */
3407 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3408 return ZONELIST_ORDER_NODE;
3409 /*
3410 * look into each node's config.
3411 * If there is a node whose DMA/DMA32 memory is very big area on
3412 * local memory, NODE_ORDER may be suitable.
3413 */
37b07e41 3414 average_size = total_size /
4b0ef1fe 3415 (nodes_weight(node_states[N_MEMORY]) + 1);
f0c0b2b8
KH
3416 for_each_online_node(nid) {
3417 low_kmem_size = 0;
3418 total_size = 0;
3419 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3420 z = &NODE_DATA(nid)->node_zones[zone_type];
3421 if (populated_zone(z)) {
3422 if (zone_type < ZONE_NORMAL)
3423 low_kmem_size += z->present_pages;
3424 total_size += z->present_pages;
3425 }
3426 }
3427 if (low_kmem_size &&
3428 total_size > average_size && /* ignore small node */
3429 low_kmem_size > total_size * 70/100)
3430 return ZONELIST_ORDER_NODE;
3431 }
3432 return ZONELIST_ORDER_ZONE;
3433}
3434
3435static void set_zonelist_order(void)
3436{
3437 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3438 current_zonelist_order = default_zonelist_order();
3439 else
3440 current_zonelist_order = user_zonelist_order;
3441}
3442
3443static void build_zonelists(pg_data_t *pgdat)
3444{
3445 int j, node, load;
3446 enum zone_type i;
1da177e4 3447 nodemask_t used_mask;
f0c0b2b8
KH
3448 int local_node, prev_node;
3449 struct zonelist *zonelist;
3450 int order = current_zonelist_order;
1da177e4
LT
3451
3452 /* initialize zonelists */
523b9458 3453 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3454 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3455 zonelist->_zonerefs[0].zone = NULL;
3456 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3457 }
3458
3459 /* NUMA-aware ordering of nodes */
3460 local_node = pgdat->node_id;
62bc62a8 3461 load = nr_online_nodes;
1da177e4
LT
3462 prev_node = local_node;
3463 nodes_clear(used_mask);
f0c0b2b8 3464
f0c0b2b8
KH
3465 memset(node_order, 0, sizeof(node_order));
3466 j = 0;
3467
1da177e4
LT
3468 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3469 /*
3470 * We don't want to pressure a particular node.
3471 * So adding penalty to the first node in same
3472 * distance group to make it round-robin.
3473 */
957f822a
DR
3474 if (node_distance(local_node, node) !=
3475 node_distance(local_node, prev_node))
f0c0b2b8
KH
3476 node_load[node] = load;
3477
1da177e4
LT
3478 prev_node = node;
3479 load--;
f0c0b2b8
KH
3480 if (order == ZONELIST_ORDER_NODE)
3481 build_zonelists_in_node_order(pgdat, node);
3482 else
3483 node_order[j++] = node; /* remember order */
3484 }
1da177e4 3485
f0c0b2b8
KH
3486 if (order == ZONELIST_ORDER_ZONE) {
3487 /* calculate node order -- i.e., DMA last! */
3488 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3489 }
523b9458
CL
3490
3491 build_thisnode_zonelists(pgdat);
1da177e4
LT
3492}
3493
9276b1bc 3494/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3495static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3496{
54a6eb5c
MG
3497 struct zonelist *zonelist;
3498 struct zonelist_cache *zlc;
dd1a239f 3499 struct zoneref *z;
9276b1bc 3500
54a6eb5c
MG
3501 zonelist = &pgdat->node_zonelists[0];
3502 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3503 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3504 for (z = zonelist->_zonerefs; z->zone; z++)
3505 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3506}
3507
7aac7898
LS
3508#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3509/*
3510 * Return node id of node used for "local" allocations.
3511 * I.e., first node id of first zone in arg node's generic zonelist.
3512 * Used for initializing percpu 'numa_mem', which is used primarily
3513 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3514 */
3515int local_memory_node(int node)
3516{
3517 struct zone *zone;
3518
3519 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3520 gfp_zone(GFP_KERNEL),
3521 NULL,
3522 &zone);
3523 return zone->node;
3524}
3525#endif
f0c0b2b8 3526
1da177e4
LT
3527#else /* CONFIG_NUMA */
3528
f0c0b2b8
KH
3529static void set_zonelist_order(void)
3530{
3531 current_zonelist_order = ZONELIST_ORDER_ZONE;
3532}
3533
3534static void build_zonelists(pg_data_t *pgdat)
1da177e4 3535{
19655d34 3536 int node, local_node;
54a6eb5c
MG
3537 enum zone_type j;
3538 struct zonelist *zonelist;
1da177e4
LT
3539
3540 local_node = pgdat->node_id;
1da177e4 3541
54a6eb5c
MG
3542 zonelist = &pgdat->node_zonelists[0];
3543 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 3544
54a6eb5c
MG
3545 /*
3546 * Now we build the zonelist so that it contains the zones
3547 * of all the other nodes.
3548 * We don't want to pressure a particular node, so when
3549 * building the zones for node N, we make sure that the
3550 * zones coming right after the local ones are those from
3551 * node N+1 (modulo N)
3552 */
3553 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3554 if (!node_online(node))
3555 continue;
3556 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3557 MAX_NR_ZONES - 1);
1da177e4 3558 }
54a6eb5c
MG
3559 for (node = 0; node < local_node; node++) {
3560 if (!node_online(node))
3561 continue;
3562 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3563 MAX_NR_ZONES - 1);
3564 }
3565
dd1a239f
MG
3566 zonelist->_zonerefs[j].zone = NULL;
3567 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3568}
3569
9276b1bc 3570/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3571static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3572{
54a6eb5c 3573 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3574}
3575
1da177e4
LT
3576#endif /* CONFIG_NUMA */
3577
99dcc3e5
CL
3578/*
3579 * Boot pageset table. One per cpu which is going to be used for all
3580 * zones and all nodes. The parameters will be set in such a way
3581 * that an item put on a list will immediately be handed over to
3582 * the buddy list. This is safe since pageset manipulation is done
3583 * with interrupts disabled.
3584 *
3585 * The boot_pagesets must be kept even after bootup is complete for
3586 * unused processors and/or zones. They do play a role for bootstrapping
3587 * hotplugged processors.
3588 *
3589 * zoneinfo_show() and maybe other functions do
3590 * not check if the processor is online before following the pageset pointer.
3591 * Other parts of the kernel may not check if the zone is available.
3592 */
3593static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3594static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3595static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3596
4eaf3f64
HL
3597/*
3598 * Global mutex to protect against size modification of zonelists
3599 * as well as to serialize pageset setup for the new populated zone.
3600 */
3601DEFINE_MUTEX(zonelists_mutex);
3602
9b1a4d38 3603/* return values int ....just for stop_machine() */
4ed7e022 3604static int __build_all_zonelists(void *data)
1da177e4 3605{
6811378e 3606 int nid;
99dcc3e5 3607 int cpu;
9adb62a5 3608 pg_data_t *self = data;
9276b1bc 3609
7f9cfb31
BL
3610#ifdef CONFIG_NUMA
3611 memset(node_load, 0, sizeof(node_load));
3612#endif
9adb62a5
JL
3613
3614 if (self && !node_online(self->node_id)) {
3615 build_zonelists(self);
3616 build_zonelist_cache(self);
3617 }
3618
9276b1bc 3619 for_each_online_node(nid) {
7ea1530a
CL
3620 pg_data_t *pgdat = NODE_DATA(nid);
3621
3622 build_zonelists(pgdat);
3623 build_zonelist_cache(pgdat);
9276b1bc 3624 }
99dcc3e5
CL
3625
3626 /*
3627 * Initialize the boot_pagesets that are going to be used
3628 * for bootstrapping processors. The real pagesets for
3629 * each zone will be allocated later when the per cpu
3630 * allocator is available.
3631 *
3632 * boot_pagesets are used also for bootstrapping offline
3633 * cpus if the system is already booted because the pagesets
3634 * are needed to initialize allocators on a specific cpu too.
3635 * F.e. the percpu allocator needs the page allocator which
3636 * needs the percpu allocator in order to allocate its pagesets
3637 * (a chicken-egg dilemma).
3638 */
7aac7898 3639 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3640 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3641
7aac7898
LS
3642#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3643 /*
3644 * We now know the "local memory node" for each node--
3645 * i.e., the node of the first zone in the generic zonelist.
3646 * Set up numa_mem percpu variable for on-line cpus. During
3647 * boot, only the boot cpu should be on-line; we'll init the
3648 * secondary cpus' numa_mem as they come on-line. During
3649 * node/memory hotplug, we'll fixup all on-line cpus.
3650 */
3651 if (cpu_online(cpu))
3652 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3653#endif
3654 }
3655
6811378e
YG
3656 return 0;
3657}
3658
4eaf3f64
HL
3659/*
3660 * Called with zonelists_mutex held always
3661 * unless system_state == SYSTEM_BOOTING.
3662 */
9adb62a5 3663void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 3664{
f0c0b2b8
KH
3665 set_zonelist_order();
3666
6811378e 3667 if (system_state == SYSTEM_BOOTING) {
423b41d7 3668 __build_all_zonelists(NULL);
68ad8df4 3669 mminit_verify_zonelist();
6811378e
YG
3670 cpuset_init_current_mems_allowed();
3671 } else {
183ff22b 3672 /* we have to stop all cpus to guarantee there is no user
6811378e 3673 of zonelist */
e9959f0f 3674#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
3675 if (zone)
3676 setup_zone_pageset(zone);
e9959f0f 3677#endif
9adb62a5 3678 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
3679 /* cpuset refresh routine should be here */
3680 }
bd1e22b8 3681 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3682 /*
3683 * Disable grouping by mobility if the number of pages in the
3684 * system is too low to allow the mechanism to work. It would be
3685 * more accurate, but expensive to check per-zone. This check is
3686 * made on memory-hotadd so a system can start with mobility
3687 * disabled and enable it later
3688 */
d9c23400 3689 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3690 page_group_by_mobility_disabled = 1;
3691 else
3692 page_group_by_mobility_disabled = 0;
3693
3694 printk("Built %i zonelists in %s order, mobility grouping %s. "
3695 "Total pages: %ld\n",
62bc62a8 3696 nr_online_nodes,
f0c0b2b8 3697 zonelist_order_name[current_zonelist_order],
9ef9acb0 3698 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3699 vm_total_pages);
3700#ifdef CONFIG_NUMA
3701 printk("Policy zone: %s\n", zone_names[policy_zone]);
3702#endif
1da177e4
LT
3703}
3704
3705/*
3706 * Helper functions to size the waitqueue hash table.
3707 * Essentially these want to choose hash table sizes sufficiently
3708 * large so that collisions trying to wait on pages are rare.
3709 * But in fact, the number of active page waitqueues on typical
3710 * systems is ridiculously low, less than 200. So this is even
3711 * conservative, even though it seems large.
3712 *
3713 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3714 * waitqueues, i.e. the size of the waitq table given the number of pages.
3715 */
3716#define PAGES_PER_WAITQUEUE 256
3717
cca448fe 3718#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3719static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3720{
3721 unsigned long size = 1;
3722
3723 pages /= PAGES_PER_WAITQUEUE;
3724
3725 while (size < pages)
3726 size <<= 1;
3727
3728 /*
3729 * Once we have dozens or even hundreds of threads sleeping
3730 * on IO we've got bigger problems than wait queue collision.
3731 * Limit the size of the wait table to a reasonable size.
3732 */
3733 size = min(size, 4096UL);
3734
3735 return max(size, 4UL);
3736}
cca448fe
YG
3737#else
3738/*
3739 * A zone's size might be changed by hot-add, so it is not possible to determine
3740 * a suitable size for its wait_table. So we use the maximum size now.
3741 *
3742 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3743 *
3744 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3745 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3746 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3747 *
3748 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3749 * or more by the traditional way. (See above). It equals:
3750 *
3751 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3752 * ia64(16K page size) : = ( 8G + 4M)byte.
3753 * powerpc (64K page size) : = (32G +16M)byte.
3754 */
3755static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3756{
3757 return 4096UL;
3758}
3759#endif
1da177e4
LT
3760
3761/*
3762 * This is an integer logarithm so that shifts can be used later
3763 * to extract the more random high bits from the multiplicative
3764 * hash function before the remainder is taken.
3765 */
3766static inline unsigned long wait_table_bits(unsigned long size)
3767{
3768 return ffz(~size);
3769}
3770
3771#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3772
6d3163ce
AH
3773/*
3774 * Check if a pageblock contains reserved pages
3775 */
3776static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3777{
3778 unsigned long pfn;
3779
3780 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3781 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3782 return 1;
3783 }
3784 return 0;
3785}
3786
56fd56b8 3787/*
d9c23400 3788 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3789 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3790 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3791 * higher will lead to a bigger reserve which will get freed as contiguous
3792 * blocks as reclaim kicks in
3793 */
3794static void setup_zone_migrate_reserve(struct zone *zone)
3795{
6d3163ce 3796 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 3797 struct page *page;
78986a67
MG
3798 unsigned long block_migratetype;
3799 int reserve;
56fd56b8 3800
d0215638
MH
3801 /*
3802 * Get the start pfn, end pfn and the number of blocks to reserve
3803 * We have to be careful to be aligned to pageblock_nr_pages to
3804 * make sure that we always check pfn_valid for the first page in
3805 * the block.
3806 */
56fd56b8 3807 start_pfn = zone->zone_start_pfn;
108bcc96 3808 end_pfn = zone_end_pfn(zone);
d0215638 3809 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 3810 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3811 pageblock_order;
56fd56b8 3812
78986a67
MG
3813 /*
3814 * Reserve blocks are generally in place to help high-order atomic
3815 * allocations that are short-lived. A min_free_kbytes value that
3816 * would result in more than 2 reserve blocks for atomic allocations
3817 * is assumed to be in place to help anti-fragmentation for the
3818 * future allocation of hugepages at runtime.
3819 */
3820 reserve = min(2, reserve);
3821
d9c23400 3822 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
3823 if (!pfn_valid(pfn))
3824 continue;
3825 page = pfn_to_page(pfn);
3826
344c790e
AL
3827 /* Watch out for overlapping nodes */
3828 if (page_to_nid(page) != zone_to_nid(zone))
3829 continue;
3830
56fd56b8
MG
3831 block_migratetype = get_pageblock_migratetype(page);
3832
938929f1
MG
3833 /* Only test what is necessary when the reserves are not met */
3834 if (reserve > 0) {
3835 /*
3836 * Blocks with reserved pages will never free, skip
3837 * them.
3838 */
3839 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3840 if (pageblock_is_reserved(pfn, block_end_pfn))
3841 continue;
56fd56b8 3842
938929f1
MG
3843 /* If this block is reserved, account for it */
3844 if (block_migratetype == MIGRATE_RESERVE) {
3845 reserve--;
3846 continue;
3847 }
3848
3849 /* Suitable for reserving if this block is movable */
3850 if (block_migratetype == MIGRATE_MOVABLE) {
3851 set_pageblock_migratetype(page,
3852 MIGRATE_RESERVE);
3853 move_freepages_block(zone, page,
3854 MIGRATE_RESERVE);
3855 reserve--;
3856 continue;
3857 }
56fd56b8
MG
3858 }
3859
3860 /*
3861 * If the reserve is met and this is a previous reserved block,
3862 * take it back
3863 */
3864 if (block_migratetype == MIGRATE_RESERVE) {
3865 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3866 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3867 }
3868 }
3869}
ac0e5b7a 3870
1da177e4
LT
3871/*
3872 * Initially all pages are reserved - free ones are freed
3873 * up by free_all_bootmem() once the early boot process is
3874 * done. Non-atomic initialization, single-pass.
3875 */
c09b4240 3876void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 3877 unsigned long start_pfn, enum memmap_context context)
1da177e4 3878{
1da177e4 3879 struct page *page;
29751f69
AW
3880 unsigned long end_pfn = start_pfn + size;
3881 unsigned long pfn;
86051ca5 3882 struct zone *z;
1da177e4 3883
22b31eec
HD
3884 if (highest_memmap_pfn < end_pfn - 1)
3885 highest_memmap_pfn = end_pfn - 1;
3886
86051ca5 3887 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 3888 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
3889 /*
3890 * There can be holes in boot-time mem_map[]s
3891 * handed to this function. They do not
3892 * exist on hotplugged memory.
3893 */
3894 if (context == MEMMAP_EARLY) {
3895 if (!early_pfn_valid(pfn))
3896 continue;
3897 if (!early_pfn_in_nid(pfn, nid))
3898 continue;
3899 }
d41dee36
AW
3900 page = pfn_to_page(pfn);
3901 set_page_links(page, zone, nid, pfn);
708614e6 3902 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 3903 init_page_count(page);
22b751c3
MG
3904 page_mapcount_reset(page);
3905 page_nid_reset_last(page);
1da177e4 3906 SetPageReserved(page);
b2a0ac88
MG
3907 /*
3908 * Mark the block movable so that blocks are reserved for
3909 * movable at startup. This will force kernel allocations
3910 * to reserve their blocks rather than leaking throughout
3911 * the address space during boot when many long-lived
56fd56b8
MG
3912 * kernel allocations are made. Later some blocks near
3913 * the start are marked MIGRATE_RESERVE by
3914 * setup_zone_migrate_reserve()
86051ca5
KH
3915 *
3916 * bitmap is created for zone's valid pfn range. but memmap
3917 * can be created for invalid pages (for alignment)
3918 * check here not to call set_pageblock_migratetype() against
3919 * pfn out of zone.
b2a0ac88 3920 */
86051ca5 3921 if ((z->zone_start_pfn <= pfn)
108bcc96 3922 && (pfn < zone_end_pfn(z))
86051ca5 3923 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 3924 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 3925
1da177e4
LT
3926 INIT_LIST_HEAD(&page->lru);
3927#ifdef WANT_PAGE_VIRTUAL
3928 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3929 if (!is_highmem_idx(zone))
3212c6be 3930 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 3931#endif
1da177e4
LT
3932 }
3933}
3934
1e548deb 3935static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 3936{
b2a0ac88
MG
3937 int order, t;
3938 for_each_migratetype_order(order, t) {
3939 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
3940 zone->free_area[order].nr_free = 0;
3941 }
3942}
3943
3944#ifndef __HAVE_ARCH_MEMMAP_INIT
3945#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 3946 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
3947#endif
3948
4ed7e022 3949static int __meminit zone_batchsize(struct zone *zone)
e7c8d5c9 3950{
3a6be87f 3951#ifdef CONFIG_MMU
e7c8d5c9
CL
3952 int batch;
3953
3954 /*
3955 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 3956 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
3957 *
3958 * OK, so we don't know how big the cache is. So guess.
3959 */
b40da049 3960 batch = zone->managed_pages / 1024;
ba56e91c
SR
3961 if (batch * PAGE_SIZE > 512 * 1024)
3962 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
3963 batch /= 4; /* We effectively *= 4 below */
3964 if (batch < 1)
3965 batch = 1;
3966
3967 /*
0ceaacc9
NP
3968 * Clamp the batch to a 2^n - 1 value. Having a power
3969 * of 2 value was found to be more likely to have
3970 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 3971 *
0ceaacc9
NP
3972 * For example if 2 tasks are alternately allocating
3973 * batches of pages, one task can end up with a lot
3974 * of pages of one half of the possible page colors
3975 * and the other with pages of the other colors.
e7c8d5c9 3976 */
9155203a 3977 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 3978
e7c8d5c9 3979 return batch;
3a6be87f
DH
3980
3981#else
3982 /* The deferral and batching of frees should be suppressed under NOMMU
3983 * conditions.
3984 *
3985 * The problem is that NOMMU needs to be able to allocate large chunks
3986 * of contiguous memory as there's no hardware page translation to
3987 * assemble apparent contiguous memory from discontiguous pages.
3988 *
3989 * Queueing large contiguous runs of pages for batching, however,
3990 * causes the pages to actually be freed in smaller chunks. As there
3991 * can be a significant delay between the individual batches being
3992 * recycled, this leads to the once large chunks of space being
3993 * fragmented and becoming unavailable for high-order allocations.
3994 */
3995 return 0;
3996#endif
e7c8d5c9
CL
3997}
3998
b69a7288 3999static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
4000{
4001 struct per_cpu_pages *pcp;
5f8dcc21 4002 int migratetype;
2caaad41 4003
1c6fe946
MD
4004 memset(p, 0, sizeof(*p));
4005
3dfa5721 4006 pcp = &p->pcp;
2caaad41 4007 pcp->count = 0;
2caaad41
CL
4008 pcp->high = 6 * batch;
4009 pcp->batch = max(1UL, 1 * batch);
5f8dcc21
MG
4010 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4011 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4012}
4013
8ad4b1fb
RS
4014/*
4015 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
4016 * to the value high for the pageset p.
4017 */
4018
4019static void setup_pagelist_highmark(struct per_cpu_pageset *p,
4020 unsigned long high)
4021{
4022 struct per_cpu_pages *pcp;
4023
3dfa5721 4024 pcp = &p->pcp;
8ad4b1fb
RS
4025 pcp->high = high;
4026 pcp->batch = max(1UL, high/4);
4027 if ((high/4) > (PAGE_SHIFT * 8))
4028 pcp->batch = PAGE_SHIFT * 8;
4029}
4030
4ed7e022 4031static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4032{
4033 int cpu;
4034
4035 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4036
4037 for_each_possible_cpu(cpu) {
4038 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4039
4040 setup_pageset(pcp, zone_batchsize(zone));
4041
4042 if (percpu_pagelist_fraction)
4043 setup_pagelist_highmark(pcp,
b40da049 4044 (zone->managed_pages /
319774e2
WF
4045 percpu_pagelist_fraction));
4046 }
4047}
4048
2caaad41 4049/*
99dcc3e5
CL
4050 * Allocate per cpu pagesets and initialize them.
4051 * Before this call only boot pagesets were available.
e7c8d5c9 4052 */
99dcc3e5 4053void __init setup_per_cpu_pageset(void)
e7c8d5c9 4054{
99dcc3e5 4055 struct zone *zone;
e7c8d5c9 4056
319774e2
WF
4057 for_each_populated_zone(zone)
4058 setup_zone_pageset(zone);
e7c8d5c9
CL
4059}
4060
577a32f6 4061static noinline __init_refok
cca448fe 4062int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4063{
4064 int i;
4065 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 4066 size_t alloc_size;
ed8ece2e
DH
4067
4068 /*
4069 * The per-page waitqueue mechanism uses hashed waitqueues
4070 * per zone.
4071 */
02b694de
YG
4072 zone->wait_table_hash_nr_entries =
4073 wait_table_hash_nr_entries(zone_size_pages);
4074 zone->wait_table_bits =
4075 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4076 alloc_size = zone->wait_table_hash_nr_entries
4077 * sizeof(wait_queue_head_t);
4078
cd94b9db 4079 if (!slab_is_available()) {
cca448fe 4080 zone->wait_table = (wait_queue_head_t *)
8f389a99 4081 alloc_bootmem_node_nopanic(pgdat, alloc_size);
cca448fe
YG
4082 } else {
4083 /*
4084 * This case means that a zone whose size was 0 gets new memory
4085 * via memory hot-add.
4086 * But it may be the case that a new node was hot-added. In
4087 * this case vmalloc() will not be able to use this new node's
4088 * memory - this wait_table must be initialized to use this new
4089 * node itself as well.
4090 * To use this new node's memory, further consideration will be
4091 * necessary.
4092 */
8691f3a7 4093 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4094 }
4095 if (!zone->wait_table)
4096 return -ENOMEM;
ed8ece2e 4097
02b694de 4098 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4099 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4100
4101 return 0;
ed8ece2e
DH
4102}
4103
c09b4240 4104static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4105{
99dcc3e5
CL
4106 /*
4107 * per cpu subsystem is not up at this point. The following code
4108 * relies on the ability of the linker to provide the
4109 * offset of a (static) per cpu variable into the per cpu area.
4110 */
4111 zone->pageset = &boot_pageset;
ed8ece2e 4112
f5335c0f 4113 if (zone->present_pages)
99dcc3e5
CL
4114 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4115 zone->name, zone->present_pages,
4116 zone_batchsize(zone));
ed8ece2e
DH
4117}
4118
4ed7e022 4119int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4120 unsigned long zone_start_pfn,
a2f3aa02
DH
4121 unsigned long size,
4122 enum memmap_context context)
ed8ece2e
DH
4123{
4124 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4125 int ret;
4126 ret = zone_wait_table_init(zone, size);
4127 if (ret)
4128 return ret;
ed8ece2e
DH
4129 pgdat->nr_zones = zone_idx(zone) + 1;
4130
ed8ece2e
DH
4131 zone->zone_start_pfn = zone_start_pfn;
4132
708614e6
MG
4133 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4134 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4135 pgdat->node_id,
4136 (unsigned long)zone_idx(zone),
4137 zone_start_pfn, (zone_start_pfn + size));
4138
1e548deb 4139 zone_init_free_lists(zone);
718127cc
YG
4140
4141 return 0;
ed8ece2e
DH
4142}
4143
0ee332c1 4144#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
4145#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4146/*
4147 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4148 * Architectures may implement their own version but if add_active_range()
4149 * was used and there are no special requirements, this is a convenient
4150 * alternative
4151 */
f2dbcfa7 4152int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 4153{
c13291a5
TH
4154 unsigned long start_pfn, end_pfn;
4155 int i, nid;
c713216d 4156
c13291a5 4157 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
c713216d 4158 if (start_pfn <= pfn && pfn < end_pfn)
c13291a5 4159 return nid;
cc2559bc
KH
4160 /* This is a memory hole */
4161 return -1;
c713216d
MG
4162}
4163#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4164
f2dbcfa7
KH
4165int __meminit early_pfn_to_nid(unsigned long pfn)
4166{
cc2559bc
KH
4167 int nid;
4168
4169 nid = __early_pfn_to_nid(pfn);
4170 if (nid >= 0)
4171 return nid;
4172 /* just returns 0 */
4173 return 0;
f2dbcfa7
KH
4174}
4175
cc2559bc
KH
4176#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4177bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4178{
4179 int nid;
4180
4181 nid = __early_pfn_to_nid(pfn);
4182 if (nid >= 0 && nid != node)
4183 return false;
4184 return true;
4185}
4186#endif
f2dbcfa7 4187
c713216d
MG
4188/**
4189 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
4190 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4191 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
4192 *
4193 * If an architecture guarantees that all ranges registered with
4194 * add_active_ranges() contain no holes and may be freed, this
4195 * this function may be used instead of calling free_bootmem() manually.
4196 */
c13291a5 4197void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4198{
c13291a5
TH
4199 unsigned long start_pfn, end_pfn;
4200 int i, this_nid;
edbe7d23 4201
c13291a5
TH
4202 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4203 start_pfn = min(start_pfn, max_low_pfn);
4204 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4205
c13291a5
TH
4206 if (start_pfn < end_pfn)
4207 free_bootmem_node(NODE_DATA(this_nid),
4208 PFN_PHYS(start_pfn),
4209 (end_pfn - start_pfn) << PAGE_SHIFT);
edbe7d23 4210 }
edbe7d23 4211}
edbe7d23 4212
c713216d
MG
4213/**
4214 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4215 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
4216 *
4217 * If an architecture guarantees that all ranges registered with
4218 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 4219 * function may be used instead of calling memory_present() manually.
c713216d
MG
4220 */
4221void __init sparse_memory_present_with_active_regions(int nid)
4222{
c13291a5
TH
4223 unsigned long start_pfn, end_pfn;
4224 int i, this_nid;
c713216d 4225
c13291a5
TH
4226 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4227 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4228}
4229
4230/**
4231 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4232 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4233 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4234 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4235 *
4236 * It returns the start and end page frame of a node based on information
4237 * provided by an arch calling add_active_range(). If called for a node
4238 * with no available memory, a warning is printed and the start and end
88ca3b94 4239 * PFNs will be 0.
c713216d 4240 */
a3142c8e 4241void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4242 unsigned long *start_pfn, unsigned long *end_pfn)
4243{
c13291a5 4244 unsigned long this_start_pfn, this_end_pfn;
c713216d 4245 int i;
c13291a5 4246
c713216d
MG
4247 *start_pfn = -1UL;
4248 *end_pfn = 0;
4249
c13291a5
TH
4250 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4251 *start_pfn = min(*start_pfn, this_start_pfn);
4252 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4253 }
4254
633c0666 4255 if (*start_pfn == -1UL)
c713216d 4256 *start_pfn = 0;
c713216d
MG
4257}
4258
2a1e274a
MG
4259/*
4260 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4261 * assumption is made that zones within a node are ordered in monotonic
4262 * increasing memory addresses so that the "highest" populated zone is used
4263 */
b69a7288 4264static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4265{
4266 int zone_index;
4267 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4268 if (zone_index == ZONE_MOVABLE)
4269 continue;
4270
4271 if (arch_zone_highest_possible_pfn[zone_index] >
4272 arch_zone_lowest_possible_pfn[zone_index])
4273 break;
4274 }
4275
4276 VM_BUG_ON(zone_index == -1);
4277 movable_zone = zone_index;
4278}
4279
4280/*
4281 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4282 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4283 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4284 * in each node depending on the size of each node and how evenly kernelcore
4285 * is distributed. This helper function adjusts the zone ranges
4286 * provided by the architecture for a given node by using the end of the
4287 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4288 * zones within a node are in order of monotonic increases memory addresses
4289 */
b69a7288 4290static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4291 unsigned long zone_type,
4292 unsigned long node_start_pfn,
4293 unsigned long node_end_pfn,
4294 unsigned long *zone_start_pfn,
4295 unsigned long *zone_end_pfn)
4296{
4297 /* Only adjust if ZONE_MOVABLE is on this node */
4298 if (zone_movable_pfn[nid]) {
4299 /* Size ZONE_MOVABLE */
4300 if (zone_type == ZONE_MOVABLE) {
4301 *zone_start_pfn = zone_movable_pfn[nid];
4302 *zone_end_pfn = min(node_end_pfn,
4303 arch_zone_highest_possible_pfn[movable_zone]);
4304
4305 /* Adjust for ZONE_MOVABLE starting within this range */
4306 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4307 *zone_end_pfn > zone_movable_pfn[nid]) {
4308 *zone_end_pfn = zone_movable_pfn[nid];
4309
4310 /* Check if this whole range is within ZONE_MOVABLE */
4311 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4312 *zone_start_pfn = *zone_end_pfn;
4313 }
4314}
4315
c713216d
MG
4316/*
4317 * Return the number of pages a zone spans in a node, including holes
4318 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4319 */
6ea6e688 4320static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4321 unsigned long zone_type,
4322 unsigned long *ignored)
4323{
4324 unsigned long node_start_pfn, node_end_pfn;
4325 unsigned long zone_start_pfn, zone_end_pfn;
4326
4327 /* Get the start and end of the node and zone */
4328 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4329 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4330 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4331 adjust_zone_range_for_zone_movable(nid, zone_type,
4332 node_start_pfn, node_end_pfn,
4333 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4334
4335 /* Check that this node has pages within the zone's required range */
4336 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4337 return 0;
4338
4339 /* Move the zone boundaries inside the node if necessary */
4340 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4341 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4342
4343 /* Return the spanned pages */
4344 return zone_end_pfn - zone_start_pfn;
4345}
4346
4347/*
4348 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4349 * then all holes in the requested range will be accounted for.
c713216d 4350 */
32996250 4351unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4352 unsigned long range_start_pfn,
4353 unsigned long range_end_pfn)
4354{
96e907d1
TH
4355 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4356 unsigned long start_pfn, end_pfn;
4357 int i;
c713216d 4358
96e907d1
TH
4359 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4360 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4361 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4362 nr_absent -= end_pfn - start_pfn;
c713216d 4363 }
96e907d1 4364 return nr_absent;
c713216d
MG
4365}
4366
4367/**
4368 * absent_pages_in_range - Return number of page frames in holes within a range
4369 * @start_pfn: The start PFN to start searching for holes
4370 * @end_pfn: The end PFN to stop searching for holes
4371 *
88ca3b94 4372 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4373 */
4374unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4375 unsigned long end_pfn)
4376{
4377 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4378}
4379
4380/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4381static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4382 unsigned long zone_type,
4383 unsigned long *ignored)
4384{
96e907d1
TH
4385 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4386 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4387 unsigned long node_start_pfn, node_end_pfn;
4388 unsigned long zone_start_pfn, zone_end_pfn;
4389
4390 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
96e907d1
TH
4391 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4392 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4393
2a1e274a
MG
4394 adjust_zone_range_for_zone_movable(nid, zone_type,
4395 node_start_pfn, node_end_pfn,
4396 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4397 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4398}
0e0b864e 4399
6981ec31
TC
4400/**
4401 * sanitize_zone_movable_limit - Sanitize the zone_movable_limit array.
4402 *
4403 * zone_movable_limit is initialized as 0. This function will try to get
4404 * the first ZONE_MOVABLE pfn of each node from movablemem_map, and
4405 * assigne them to zone_movable_limit.
4406 * zone_movable_limit[nid] == 0 means no limit for the node.
4407 *
4408 * Note: Each range is represented as [start_pfn, end_pfn)
4409 */
4410static void __meminit sanitize_zone_movable_limit(void)
4411{
4412 int map_pos = 0, i, nid;
4413 unsigned long start_pfn, end_pfn;
4414
4415 if (!movablemem_map.nr_map)
4416 return;
4417
4418 /* Iterate all ranges from minimum to maximum */
4419 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4420 /*
4421 * If we have found lowest pfn of ZONE_MOVABLE of the node
4422 * specified by user, just go on to check next range.
4423 */
4424 if (zone_movable_limit[nid])
4425 continue;
4426
4427#ifdef CONFIG_ZONE_DMA
4428 /* Skip DMA memory. */
4429 if (start_pfn < arch_zone_highest_possible_pfn[ZONE_DMA])
4430 start_pfn = arch_zone_highest_possible_pfn[ZONE_DMA];
4431#endif
4432
4433#ifdef CONFIG_ZONE_DMA32
4434 /* Skip DMA32 memory. */
4435 if (start_pfn < arch_zone_highest_possible_pfn[ZONE_DMA32])
4436 start_pfn = arch_zone_highest_possible_pfn[ZONE_DMA32];
4437#endif
4438
4439#ifdef CONFIG_HIGHMEM
4440 /* Skip lowmem if ZONE_MOVABLE is highmem. */
4441 if (zone_movable_is_highmem() &&
4442 start_pfn < arch_zone_lowest_possible_pfn[ZONE_HIGHMEM])
4443 start_pfn = arch_zone_lowest_possible_pfn[ZONE_HIGHMEM];
4444#endif
4445
4446 if (start_pfn >= end_pfn)
4447 continue;
4448
4449 while (map_pos < movablemem_map.nr_map) {
4450 if (end_pfn <= movablemem_map.map[map_pos].start_pfn)
4451 break;
4452
4453 if (start_pfn >= movablemem_map.map[map_pos].end_pfn) {
4454 map_pos++;
4455 continue;
4456 }
4457
4458 /*
4459 * The start_pfn of ZONE_MOVABLE is either the minimum
4460 * pfn specified by movablemem_map, or 0, which means
4461 * the node has no ZONE_MOVABLE.
4462 */
4463 zone_movable_limit[nid] = max(start_pfn,
4464 movablemem_map.map[map_pos].start_pfn);
4465
4466 break;
4467 }
4468 }
4469}
4470
0ee332c1 4471#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4472static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4473 unsigned long zone_type,
4474 unsigned long *zones_size)
4475{
4476 return zones_size[zone_type];
4477}
4478
6ea6e688 4479static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4480 unsigned long zone_type,
4481 unsigned long *zholes_size)
4482{
4483 if (!zholes_size)
4484 return 0;
4485
4486 return zholes_size[zone_type];
4487}
0ee332c1 4488#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4489
a3142c8e 4490static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
4491 unsigned long *zones_size, unsigned long *zholes_size)
4492{
4493 unsigned long realtotalpages, totalpages = 0;
4494 enum zone_type i;
4495
4496 for (i = 0; i < MAX_NR_ZONES; i++)
4497 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4498 zones_size);
4499 pgdat->node_spanned_pages = totalpages;
4500
4501 realtotalpages = totalpages;
4502 for (i = 0; i < MAX_NR_ZONES; i++)
4503 realtotalpages -=
4504 zone_absent_pages_in_node(pgdat->node_id, i,
4505 zholes_size);
4506 pgdat->node_present_pages = realtotalpages;
4507 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4508 realtotalpages);
4509}
4510
835c134e
MG
4511#ifndef CONFIG_SPARSEMEM
4512/*
4513 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4514 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4515 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4516 * round what is now in bits to nearest long in bits, then return it in
4517 * bytes.
4518 */
7c45512d 4519static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
4520{
4521 unsigned long usemapsize;
4522
7c45512d 4523 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
4524 usemapsize = roundup(zonesize, pageblock_nr_pages);
4525 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4526 usemapsize *= NR_PAGEBLOCK_BITS;
4527 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4528
4529 return usemapsize / 8;
4530}
4531
4532static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
4533 struct zone *zone,
4534 unsigned long zone_start_pfn,
4535 unsigned long zonesize)
835c134e 4536{
7c45512d 4537 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 4538 zone->pageblock_flags = NULL;
58a01a45 4539 if (usemapsize)
8f389a99
YL
4540 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4541 usemapsize);
835c134e
MG
4542}
4543#else
7c45512d
LT
4544static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4545 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
4546#endif /* CONFIG_SPARSEMEM */
4547
d9c23400 4548#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 4549
d9c23400 4550/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
ca57df79 4551void __init set_pageblock_order(void)
d9c23400 4552{
955c1cd7
AM
4553 unsigned int order;
4554
d9c23400
MG
4555 /* Check that pageblock_nr_pages has not already been setup */
4556 if (pageblock_order)
4557 return;
4558
955c1cd7
AM
4559 if (HPAGE_SHIFT > PAGE_SHIFT)
4560 order = HUGETLB_PAGE_ORDER;
4561 else
4562 order = MAX_ORDER - 1;
4563
d9c23400
MG
4564 /*
4565 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
4566 * This value may be variable depending on boot parameters on IA64 and
4567 * powerpc.
d9c23400
MG
4568 */
4569 pageblock_order = order;
4570}
4571#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4572
ba72cb8c
MG
4573/*
4574 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
4575 * is unused as pageblock_order is set at compile-time. See
4576 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4577 * the kernel config
ba72cb8c 4578 */
ca57df79 4579void __init set_pageblock_order(void)
ba72cb8c 4580{
ba72cb8c 4581}
d9c23400
MG
4582
4583#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4584
01cefaef
JL
4585static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4586 unsigned long present_pages)
4587{
4588 unsigned long pages = spanned_pages;
4589
4590 /*
4591 * Provide a more accurate estimation if there are holes within
4592 * the zone and SPARSEMEM is in use. If there are holes within the
4593 * zone, each populated memory region may cost us one or two extra
4594 * memmap pages due to alignment because memmap pages for each
4595 * populated regions may not naturally algined on page boundary.
4596 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4597 */
4598 if (spanned_pages > present_pages + (present_pages >> 4) &&
4599 IS_ENABLED(CONFIG_SPARSEMEM))
4600 pages = present_pages;
4601
4602 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4603}
4604
1da177e4
LT
4605/*
4606 * Set up the zone data structures:
4607 * - mark all pages reserved
4608 * - mark all memory queues empty
4609 * - clear the memory bitmaps
6527af5d
MK
4610 *
4611 * NOTE: pgdat should get zeroed by caller.
1da177e4 4612 */
b5a0e011 4613static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
4614 unsigned long *zones_size, unsigned long *zholes_size)
4615{
2f1b6248 4616 enum zone_type j;
ed8ece2e 4617 int nid = pgdat->node_id;
1da177e4 4618 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4619 int ret;
1da177e4 4620
208d54e5 4621 pgdat_resize_init(pgdat);
8177a420
AA
4622#ifdef CONFIG_NUMA_BALANCING
4623 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4624 pgdat->numabalancing_migrate_nr_pages = 0;
4625 pgdat->numabalancing_migrate_next_window = jiffies;
4626#endif
1da177e4 4627 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 4628 init_waitqueue_head(&pgdat->pfmemalloc_wait);
52d4b9ac 4629 pgdat_page_cgroup_init(pgdat);
5f63b720 4630
1da177e4
LT
4631 for (j = 0; j < MAX_NR_ZONES; j++) {
4632 struct zone *zone = pgdat->node_zones + j;
9feedc9d 4633 unsigned long size, realsize, freesize, memmap_pages;
1da177e4 4634
c713216d 4635 size = zone_spanned_pages_in_node(nid, j, zones_size);
9feedc9d 4636 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
c713216d 4637 zholes_size);
1da177e4 4638
0e0b864e 4639 /*
9feedc9d 4640 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
4641 * is used by this zone for memmap. This affects the watermark
4642 * and per-cpu initialisations
4643 */
01cefaef 4644 memmap_pages = calc_memmap_size(size, realsize);
9feedc9d
JL
4645 if (freesize >= memmap_pages) {
4646 freesize -= memmap_pages;
5594c8c8
YL
4647 if (memmap_pages)
4648 printk(KERN_DEBUG
4649 " %s zone: %lu pages used for memmap\n",
4650 zone_names[j], memmap_pages);
0e0b864e
MG
4651 } else
4652 printk(KERN_WARNING
9feedc9d
JL
4653 " %s zone: %lu pages exceeds freesize %lu\n",
4654 zone_names[j], memmap_pages, freesize);
0e0b864e 4655
6267276f 4656 /* Account for reserved pages */
9feedc9d
JL
4657 if (j == 0 && freesize > dma_reserve) {
4658 freesize -= dma_reserve;
d903ef9f 4659 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4660 zone_names[0], dma_reserve);
0e0b864e
MG
4661 }
4662
98d2b0eb 4663 if (!is_highmem_idx(j))
9feedc9d 4664 nr_kernel_pages += freesize;
01cefaef
JL
4665 /* Charge for highmem memmap if there are enough kernel pages */
4666 else if (nr_kernel_pages > memmap_pages * 2)
4667 nr_kernel_pages -= memmap_pages;
9feedc9d 4668 nr_all_pages += freesize;
1da177e4
LT
4669
4670 zone->spanned_pages = size;
306f2e9e 4671 zone->present_pages = realsize;
9feedc9d
JL
4672 /*
4673 * Set an approximate value for lowmem here, it will be adjusted
4674 * when the bootmem allocator frees pages into the buddy system.
4675 * And all highmem pages will be managed by the buddy system.
4676 */
4677 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 4678#ifdef CONFIG_NUMA
d5f541ed 4679 zone->node = nid;
9feedc9d 4680 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 4681 / 100;
9feedc9d 4682 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 4683#endif
1da177e4
LT
4684 zone->name = zone_names[j];
4685 spin_lock_init(&zone->lock);
4686 spin_lock_init(&zone->lru_lock);
bdc8cb98 4687 zone_seqlock_init(zone);
1da177e4 4688 zone->zone_pgdat = pgdat;
1da177e4 4689
ed8ece2e 4690 zone_pcp_init(zone);
bea8c150 4691 lruvec_init(&zone->lruvec);
1da177e4
LT
4692 if (!size)
4693 continue;
4694
955c1cd7 4695 set_pageblock_order();
7c45512d 4696 setup_usemap(pgdat, zone, zone_start_pfn, size);
a2f3aa02
DH
4697 ret = init_currently_empty_zone(zone, zone_start_pfn,
4698 size, MEMMAP_EARLY);
718127cc 4699 BUG_ON(ret);
76cdd58e 4700 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4701 zone_start_pfn += size;
1da177e4
LT
4702 }
4703}
4704
577a32f6 4705static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4706{
1da177e4
LT
4707 /* Skip empty nodes */
4708 if (!pgdat->node_spanned_pages)
4709 return;
4710
d41dee36 4711#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4712 /* ia64 gets its own node_mem_map, before this, without bootmem */
4713 if (!pgdat->node_mem_map) {
e984bb43 4714 unsigned long size, start, end;
d41dee36
AW
4715 struct page *map;
4716
e984bb43
BP
4717 /*
4718 * The zone's endpoints aren't required to be MAX_ORDER
4719 * aligned but the node_mem_map endpoints must be in order
4720 * for the buddy allocator to function correctly.
4721 */
4722 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
108bcc96 4723 end = pgdat_end_pfn(pgdat);
e984bb43
BP
4724 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4725 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4726 map = alloc_remap(pgdat->node_id, size);
4727 if (!map)
8f389a99 4728 map = alloc_bootmem_node_nopanic(pgdat, size);
e984bb43 4729 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4730 }
12d810c1 4731#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4732 /*
4733 * With no DISCONTIG, the global mem_map is just set as node 0's
4734 */
c713216d 4735 if (pgdat == NODE_DATA(0)) {
1da177e4 4736 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 4737#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4738 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4739 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 4740#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4741 }
1da177e4 4742#endif
d41dee36 4743#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4744}
4745
9109fb7b
JW
4746void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4747 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4748{
9109fb7b
JW
4749 pg_data_t *pgdat = NODE_DATA(nid);
4750
88fdf75d 4751 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 4752 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 4753
1da177e4
LT
4754 pgdat->node_id = nid;
4755 pgdat->node_start_pfn = node_start_pfn;
957f822a 4756 init_zone_allows_reclaim(nid);
c713216d 4757 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
4758
4759 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4760#ifdef CONFIG_FLAT_NODE_MEM_MAP
4761 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4762 nid, (unsigned long)pgdat,
4763 (unsigned long)pgdat->node_mem_map);
4764#endif
1da177e4
LT
4765
4766 free_area_init_core(pgdat, zones_size, zholes_size);
4767}
4768
0ee332c1 4769#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
4770
4771#if MAX_NUMNODES > 1
4772/*
4773 * Figure out the number of possible node ids.
4774 */
4775static void __init setup_nr_node_ids(void)
4776{
4777 unsigned int node;
4778 unsigned int highest = 0;
4779
4780 for_each_node_mask(node, node_possible_map)
4781 highest = node;
4782 nr_node_ids = highest + 1;
4783}
4784#else
4785static inline void setup_nr_node_ids(void)
4786{
4787}
4788#endif
4789
1e01979c
TH
4790/**
4791 * node_map_pfn_alignment - determine the maximum internode alignment
4792 *
4793 * This function should be called after node map is populated and sorted.
4794 * It calculates the maximum power of two alignment which can distinguish
4795 * all the nodes.
4796 *
4797 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4798 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4799 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4800 * shifted, 1GiB is enough and this function will indicate so.
4801 *
4802 * This is used to test whether pfn -> nid mapping of the chosen memory
4803 * model has fine enough granularity to avoid incorrect mapping for the
4804 * populated node map.
4805 *
4806 * Returns the determined alignment in pfn's. 0 if there is no alignment
4807 * requirement (single node).
4808 */
4809unsigned long __init node_map_pfn_alignment(void)
4810{
4811 unsigned long accl_mask = 0, last_end = 0;
c13291a5 4812 unsigned long start, end, mask;
1e01979c 4813 int last_nid = -1;
c13291a5 4814 int i, nid;
1e01979c 4815
c13291a5 4816 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
4817 if (!start || last_nid < 0 || last_nid == nid) {
4818 last_nid = nid;
4819 last_end = end;
4820 continue;
4821 }
4822
4823 /*
4824 * Start with a mask granular enough to pin-point to the
4825 * start pfn and tick off bits one-by-one until it becomes
4826 * too coarse to separate the current node from the last.
4827 */
4828 mask = ~((1 << __ffs(start)) - 1);
4829 while (mask && last_end <= (start & (mask << 1)))
4830 mask <<= 1;
4831
4832 /* accumulate all internode masks */
4833 accl_mask |= mask;
4834 }
4835
4836 /* convert mask to number of pages */
4837 return ~accl_mask + 1;
4838}
4839
a6af2bc3 4840/* Find the lowest pfn for a node */
b69a7288 4841static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 4842{
a6af2bc3 4843 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
4844 unsigned long start_pfn;
4845 int i;
1abbfb41 4846
c13291a5
TH
4847 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4848 min_pfn = min(min_pfn, start_pfn);
c713216d 4849
a6af2bc3
MG
4850 if (min_pfn == ULONG_MAX) {
4851 printk(KERN_WARNING
2bc0d261 4852 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4853 return 0;
4854 }
4855
4856 return min_pfn;
c713216d
MG
4857}
4858
4859/**
4860 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4861 *
4862 * It returns the minimum PFN based on information provided via
88ca3b94 4863 * add_active_range().
c713216d
MG
4864 */
4865unsigned long __init find_min_pfn_with_active_regions(void)
4866{
4867 return find_min_pfn_for_node(MAX_NUMNODES);
4868}
4869
37b07e41
LS
4870/*
4871 * early_calculate_totalpages()
4872 * Sum pages in active regions for movable zone.
4b0ef1fe 4873 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 4874 */
484f51f8 4875static unsigned long __init early_calculate_totalpages(void)
7e63efef 4876{
7e63efef 4877 unsigned long totalpages = 0;
c13291a5
TH
4878 unsigned long start_pfn, end_pfn;
4879 int i, nid;
4880
4881 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4882 unsigned long pages = end_pfn - start_pfn;
7e63efef 4883
37b07e41
LS
4884 totalpages += pages;
4885 if (pages)
4b0ef1fe 4886 node_set_state(nid, N_MEMORY);
37b07e41
LS
4887 }
4888 return totalpages;
7e63efef
MG
4889}
4890
2a1e274a
MG
4891/*
4892 * Find the PFN the Movable zone begins in each node. Kernel memory
4893 * is spread evenly between nodes as long as the nodes have enough
4894 * memory. When they don't, some nodes will have more kernelcore than
4895 * others
4896 */
b224ef85 4897static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
4898{
4899 int i, nid;
4900 unsigned long usable_startpfn;
4901 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 4902 /* save the state before borrow the nodemask */
4b0ef1fe 4903 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 4904 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 4905 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
2a1e274a 4906
7e63efef
MG
4907 /*
4908 * If movablecore was specified, calculate what size of
4909 * kernelcore that corresponds so that memory usable for
4910 * any allocation type is evenly spread. If both kernelcore
4911 * and movablecore are specified, then the value of kernelcore
4912 * will be used for required_kernelcore if it's greater than
4913 * what movablecore would have allowed.
4914 */
4915 if (required_movablecore) {
7e63efef
MG
4916 unsigned long corepages;
4917
4918 /*
4919 * Round-up so that ZONE_MOVABLE is at least as large as what
4920 * was requested by the user
4921 */
4922 required_movablecore =
4923 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4924 corepages = totalpages - required_movablecore;
4925
4926 required_kernelcore = max(required_kernelcore, corepages);
4927 }
4928
42f47e27
TC
4929 /*
4930 * If neither kernelcore/movablecore nor movablemem_map is specified,
4931 * there is no ZONE_MOVABLE. But if movablemem_map is specified, the
4932 * start pfn of ZONE_MOVABLE has been stored in zone_movable_limit[].
4933 */
4934 if (!required_kernelcore) {
4935 if (movablemem_map.nr_map)
4936 memcpy(zone_movable_pfn, zone_movable_limit,
4937 sizeof(zone_movable_pfn));
66918dcd 4938 goto out;
42f47e27 4939 }
2a1e274a
MG
4940
4941 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
4942 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4943
4944restart:
4945 /* Spread kernelcore memory as evenly as possible throughout nodes */
4946 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 4947 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
4948 unsigned long start_pfn, end_pfn;
4949
2a1e274a
MG
4950 /*
4951 * Recalculate kernelcore_node if the division per node
4952 * now exceeds what is necessary to satisfy the requested
4953 * amount of memory for the kernel
4954 */
4955 if (required_kernelcore < kernelcore_node)
4956 kernelcore_node = required_kernelcore / usable_nodes;
4957
4958 /*
4959 * As the map is walked, we track how much memory is usable
4960 * by the kernel using kernelcore_remaining. When it is
4961 * 0, the rest of the node is usable by ZONE_MOVABLE
4962 */
4963 kernelcore_remaining = kernelcore_node;
4964
4965 /* Go through each range of PFNs within this node */
c13291a5 4966 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
4967 unsigned long size_pages;
4968
42f47e27
TC
4969 /*
4970 * Find more memory for kernelcore in
4971 * [zone_movable_pfn[nid], zone_movable_limit[nid]).
4972 */
c13291a5 4973 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
4974 if (start_pfn >= end_pfn)
4975 continue;
4976
42f47e27
TC
4977 if (zone_movable_limit[nid]) {
4978 end_pfn = min(end_pfn, zone_movable_limit[nid]);
4979 /* No range left for kernelcore in this node */
4980 if (start_pfn >= end_pfn) {
4981 zone_movable_pfn[nid] =
4982 zone_movable_limit[nid];
4983 break;
4984 }
4985 }
4986
2a1e274a
MG
4987 /* Account for what is only usable for kernelcore */
4988 if (start_pfn < usable_startpfn) {
4989 unsigned long kernel_pages;
4990 kernel_pages = min(end_pfn, usable_startpfn)
4991 - start_pfn;
4992
4993 kernelcore_remaining -= min(kernel_pages,
4994 kernelcore_remaining);
4995 required_kernelcore -= min(kernel_pages,
4996 required_kernelcore);
4997
4998 /* Continue if range is now fully accounted */
4999 if (end_pfn <= usable_startpfn) {
5000
5001 /*
5002 * Push zone_movable_pfn to the end so
5003 * that if we have to rebalance
5004 * kernelcore across nodes, we will
5005 * not double account here
5006 */
5007 zone_movable_pfn[nid] = end_pfn;
5008 continue;
5009 }
5010 start_pfn = usable_startpfn;
5011 }
5012
5013 /*
5014 * The usable PFN range for ZONE_MOVABLE is from
5015 * start_pfn->end_pfn. Calculate size_pages as the
5016 * number of pages used as kernelcore
5017 */
5018 size_pages = end_pfn - start_pfn;
5019 if (size_pages > kernelcore_remaining)
5020 size_pages = kernelcore_remaining;
5021 zone_movable_pfn[nid] = start_pfn + size_pages;
5022
5023 /*
5024 * Some kernelcore has been met, update counts and
5025 * break if the kernelcore for this node has been
5026 * satisified
5027 */
5028 required_kernelcore -= min(required_kernelcore,
5029 size_pages);
5030 kernelcore_remaining -= size_pages;
5031 if (!kernelcore_remaining)
5032 break;
5033 }
5034 }
5035
5036 /*
5037 * If there is still required_kernelcore, we do another pass with one
5038 * less node in the count. This will push zone_movable_pfn[nid] further
5039 * along on the nodes that still have memory until kernelcore is
5040 * satisified
5041 */
5042 usable_nodes--;
5043 if (usable_nodes && required_kernelcore > usable_nodes)
5044 goto restart;
5045
42f47e27 5046out:
2a1e274a
MG
5047 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5048 for (nid = 0; nid < MAX_NUMNODES; nid++)
5049 zone_movable_pfn[nid] =
5050 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5051
66918dcd 5052 /* restore the node_state */
4b0ef1fe 5053 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5054}
5055
4b0ef1fe
LJ
5056/* Any regular or high memory on that node ? */
5057static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5058{
37b07e41
LS
5059 enum zone_type zone_type;
5060
4b0ef1fe
LJ
5061 if (N_MEMORY == N_NORMAL_MEMORY)
5062 return;
5063
5064 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5065 struct zone *zone = &pgdat->node_zones[zone_type];
d0048b0e 5066 if (zone->present_pages) {
4b0ef1fe
LJ
5067 node_set_state(nid, N_HIGH_MEMORY);
5068 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5069 zone_type <= ZONE_NORMAL)
5070 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5071 break;
5072 }
37b07e41 5073 }
37b07e41
LS
5074}
5075
c713216d
MG
5076/**
5077 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5078 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5079 *
5080 * This will call free_area_init_node() for each active node in the system.
5081 * Using the page ranges provided by add_active_range(), the size of each
5082 * zone in each node and their holes is calculated. If the maximum PFN
5083 * between two adjacent zones match, it is assumed that the zone is empty.
5084 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5085 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5086 * starts where the previous one ended. For example, ZONE_DMA32 starts
5087 * at arch_max_dma_pfn.
5088 */
5089void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5090{
c13291a5
TH
5091 unsigned long start_pfn, end_pfn;
5092 int i, nid;
a6af2bc3 5093
c713216d
MG
5094 /* Record where the zone boundaries are */
5095 memset(arch_zone_lowest_possible_pfn, 0,
5096 sizeof(arch_zone_lowest_possible_pfn));
5097 memset(arch_zone_highest_possible_pfn, 0,
5098 sizeof(arch_zone_highest_possible_pfn));
5099 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5100 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5101 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5102 if (i == ZONE_MOVABLE)
5103 continue;
c713216d
MG
5104 arch_zone_lowest_possible_pfn[i] =
5105 arch_zone_highest_possible_pfn[i-1];
5106 arch_zone_highest_possible_pfn[i] =
5107 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5108 }
2a1e274a
MG
5109 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5110 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5111
5112 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5113 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6981ec31
TC
5114 find_usable_zone_for_movable();
5115 sanitize_zone_movable_limit();
b224ef85 5116 find_zone_movable_pfns_for_nodes();
c713216d 5117
c713216d 5118 /* Print out the zone ranges */
a62e2f4f 5119 printk("Zone ranges:\n");
2a1e274a
MG
5120 for (i = 0; i < MAX_NR_ZONES; i++) {
5121 if (i == ZONE_MOVABLE)
5122 continue;
155cbfc8 5123 printk(KERN_CONT " %-8s ", zone_names[i]);
72f0ba02
DR
5124 if (arch_zone_lowest_possible_pfn[i] ==
5125 arch_zone_highest_possible_pfn[i])
155cbfc8 5126 printk(KERN_CONT "empty\n");
72f0ba02 5127 else
a62e2f4f
BH
5128 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5129 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5130 (arch_zone_highest_possible_pfn[i]
5131 << PAGE_SHIFT) - 1);
2a1e274a
MG
5132 }
5133
5134 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
a62e2f4f 5135 printk("Movable zone start for each node\n");
2a1e274a
MG
5136 for (i = 0; i < MAX_NUMNODES; i++) {
5137 if (zone_movable_pfn[i])
a62e2f4f
BH
5138 printk(" Node %d: %#010lx\n", i,
5139 zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 5140 }
c713216d 5141
f2d52fe5 5142 /* Print out the early node map */
a62e2f4f 5143 printk("Early memory node ranges\n");
c13291a5 5144 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
a62e2f4f
BH
5145 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5146 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
5147
5148 /* Initialise every node */
708614e6 5149 mminit_verify_pageflags_layout();
8ef82866 5150 setup_nr_node_ids();
c713216d
MG
5151 for_each_online_node(nid) {
5152 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 5153 free_area_init_node(nid, NULL,
c713216d 5154 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
5155
5156 /* Any memory on that node */
5157 if (pgdat->node_present_pages)
4b0ef1fe
LJ
5158 node_set_state(nid, N_MEMORY);
5159 check_for_memory(pgdat, nid);
c713216d
MG
5160 }
5161}
2a1e274a 5162
7e63efef 5163static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5164{
5165 unsigned long long coremem;
5166 if (!p)
5167 return -EINVAL;
5168
5169 coremem = memparse(p, &p);
7e63efef 5170 *core = coremem >> PAGE_SHIFT;
2a1e274a 5171
7e63efef 5172 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5173 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5174
5175 return 0;
5176}
ed7ed365 5177
7e63efef
MG
5178/*
5179 * kernelcore=size sets the amount of memory for use for allocations that
5180 * cannot be reclaimed or migrated.
5181 */
5182static int __init cmdline_parse_kernelcore(char *p)
5183{
5184 return cmdline_parse_core(p, &required_kernelcore);
5185}
5186
5187/*
5188 * movablecore=size sets the amount of memory for use for allocations that
5189 * can be reclaimed or migrated.
5190 */
5191static int __init cmdline_parse_movablecore(char *p)
5192{
5193 return cmdline_parse_core(p, &required_movablecore);
5194}
5195
ed7ed365 5196early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5197early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5198
27168d38
TC
5199/**
5200 * movablemem_map_overlap() - Check if a range overlaps movablemem_map.map[].
5201 * @start_pfn: start pfn of the range to be checked
5202 * @end_pfn: end pfn of the range to be checked (exclusive)
5203 *
5204 * This function checks if a given memory range [start_pfn, end_pfn) overlaps
5205 * the movablemem_map.map[] array.
5206 *
5207 * Return: index of the first overlapped element in movablemem_map.map[]
5208 * or -1 if they don't overlap each other.
5209 */
5210int __init movablemem_map_overlap(unsigned long start_pfn,
5211 unsigned long end_pfn)
5212{
5213 int overlap;
5214
5215 if (!movablemem_map.nr_map)
5216 return -1;
5217
5218 for (overlap = 0; overlap < movablemem_map.nr_map; overlap++)
5219 if (start_pfn < movablemem_map.map[overlap].end_pfn)
5220 break;
5221
5222 if (overlap == movablemem_map.nr_map ||
5223 end_pfn <= movablemem_map.map[overlap].start_pfn)
5224 return -1;
5225
5226 return overlap;
5227}
5228
34b71f1e
TC
5229/**
5230 * insert_movablemem_map - Insert a memory range in to movablemem_map.map.
5231 * @start_pfn: start pfn of the range
5232 * @end_pfn: end pfn of the range
5233 *
5234 * This function will also merge the overlapped ranges, and sort the array
5235 * by start_pfn in monotonic increasing order.
5236 */
27168d38
TC
5237void __init insert_movablemem_map(unsigned long start_pfn,
5238 unsigned long end_pfn)
34b71f1e
TC
5239{
5240 int pos, overlap;
5241
5242 /*
5243 * pos will be at the 1st overlapped range, or the position
5244 * where the element should be inserted.
5245 */
5246 for (pos = 0; pos < movablemem_map.nr_map; pos++)
5247 if (start_pfn <= movablemem_map.map[pos].end_pfn)
5248 break;
5249
5250 /* If there is no overlapped range, just insert the element. */
5251 if (pos == movablemem_map.nr_map ||
5252 end_pfn < movablemem_map.map[pos].start_pfn) {
5253 /*
5254 * If pos is not the end of array, we need to move all
5255 * the rest elements backward.
5256 */
5257 if (pos < movablemem_map.nr_map)
5258 memmove(&movablemem_map.map[pos+1],
5259 &movablemem_map.map[pos],
5260 sizeof(struct movablemem_entry) *
5261 (movablemem_map.nr_map - pos));
5262 movablemem_map.map[pos].start_pfn = start_pfn;
5263 movablemem_map.map[pos].end_pfn = end_pfn;
5264 movablemem_map.nr_map++;
5265 return;
5266 }
5267
5268 /* overlap will be at the last overlapped range */
5269 for (overlap = pos + 1; overlap < movablemem_map.nr_map; overlap++)
5270 if (end_pfn < movablemem_map.map[overlap].start_pfn)
5271 break;
5272
5273 /*
5274 * If there are more ranges overlapped, we need to merge them,
5275 * and move the rest elements forward.
5276 */
5277 overlap--;
5278 movablemem_map.map[pos].start_pfn = min(start_pfn,
5279 movablemem_map.map[pos].start_pfn);
5280 movablemem_map.map[pos].end_pfn = max(end_pfn,
5281 movablemem_map.map[overlap].end_pfn);
5282
5283 if (pos != overlap && overlap + 1 != movablemem_map.nr_map)
5284 memmove(&movablemem_map.map[pos+1],
5285 &movablemem_map.map[overlap+1],
5286 sizeof(struct movablemem_entry) *
5287 (movablemem_map.nr_map - overlap - 1));
5288
5289 movablemem_map.nr_map -= overlap - pos;
5290}
5291
5292/**
5293 * movablemem_map_add_region - Add a memory range into movablemem_map.
5294 * @start: physical start address of range
5295 * @end: physical end address of range
5296 *
5297 * This function transform the physical address into pfn, and then add the
5298 * range into movablemem_map by calling insert_movablemem_map().
5299 */
5300static void __init movablemem_map_add_region(u64 start, u64 size)
5301{
5302 unsigned long start_pfn, end_pfn;
5303
5304 /* In case size == 0 or start + size overflows */
5305 if (start + size <= start)
5306 return;
5307
5308 if (movablemem_map.nr_map >= ARRAY_SIZE(movablemem_map.map)) {
5309 pr_err("movablemem_map: too many entries;"
5310 " ignoring [mem %#010llx-%#010llx]\n",
5311 (unsigned long long) start,
5312 (unsigned long long) (start + size - 1));
5313 return;
5314 }
5315
5316 start_pfn = PFN_DOWN(start);
5317 end_pfn = PFN_UP(start + size);
5318 insert_movablemem_map(start_pfn, end_pfn);
5319}
5320
5321/*
5322 * cmdline_parse_movablemem_map - Parse boot option movablemem_map.
5323 * @p: The boot option of the following format:
5324 * movablemem_map=nn[KMG]@ss[KMG]
5325 *
5326 * This option sets the memory range [ss, ss+nn) to be used as movable memory.
5327 *
5328 * Return: 0 on success or -EINVAL on failure.
5329 */
5330static int __init cmdline_parse_movablemem_map(char *p)
5331{
5332 char *oldp;
5333 u64 start_at, mem_size;
5334
5335 if (!p)
5336 goto err;
5337
01a178a9
TC
5338 if (!strcmp(p, "acpi"))
5339 movablemem_map.acpi = true;
5340
5341 /*
5342 * If user decide to use info from BIOS, all the other user specified
5343 * ranges will be ingored.
5344 */
5345 if (movablemem_map.acpi) {
5346 if (movablemem_map.nr_map) {
5347 memset(movablemem_map.map, 0,
5348 sizeof(struct movablemem_entry)
5349 * movablemem_map.nr_map);
5350 movablemem_map.nr_map = 0;
5351 }
5352 return 0;
5353 }
5354
34b71f1e
TC
5355 oldp = p;
5356 mem_size = memparse(p, &p);
5357 if (p == oldp)
5358 goto err;
5359
5360 if (*p == '@') {
5361 oldp = ++p;
5362 start_at = memparse(p, &p);
5363 if (p == oldp || *p != '\0')
5364 goto err;
5365
5366 movablemem_map_add_region(start_at, mem_size);
5367 return 0;
5368 }
5369err:
5370 return -EINVAL;
5371}
5372early_param("movablemem_map", cmdline_parse_movablemem_map);
5373
0ee332c1 5374#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5375
0e0b864e 5376/**
88ca3b94
RD
5377 * set_dma_reserve - set the specified number of pages reserved in the first zone
5378 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
5379 *
5380 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5381 * In the DMA zone, a significant percentage may be consumed by kernel image
5382 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
5383 * function may optionally be used to account for unfreeable pages in the
5384 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5385 * smaller per-cpu batchsize.
0e0b864e
MG
5386 */
5387void __init set_dma_reserve(unsigned long new_dma_reserve)
5388{
5389 dma_reserve = new_dma_reserve;
5390}
5391
1da177e4
LT
5392void __init free_area_init(unsigned long *zones_size)
5393{
9109fb7b 5394 free_area_init_node(0, zones_size,
1da177e4
LT
5395 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5396}
1da177e4 5397
1da177e4
LT
5398static int page_alloc_cpu_notify(struct notifier_block *self,
5399 unsigned long action, void *hcpu)
5400{
5401 int cpu = (unsigned long)hcpu;
1da177e4 5402
8bb78442 5403 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 5404 lru_add_drain_cpu(cpu);
9f8f2172
CL
5405 drain_pages(cpu);
5406
5407 /*
5408 * Spill the event counters of the dead processor
5409 * into the current processors event counters.
5410 * This artificially elevates the count of the current
5411 * processor.
5412 */
f8891e5e 5413 vm_events_fold_cpu(cpu);
9f8f2172
CL
5414
5415 /*
5416 * Zero the differential counters of the dead processor
5417 * so that the vm statistics are consistent.
5418 *
5419 * This is only okay since the processor is dead and cannot
5420 * race with what we are doing.
5421 */
2244b95a 5422 refresh_cpu_vm_stats(cpu);
1da177e4
LT
5423 }
5424 return NOTIFY_OK;
5425}
1da177e4
LT
5426
5427void __init page_alloc_init(void)
5428{
5429 hotcpu_notifier(page_alloc_cpu_notify, 0);
5430}
5431
cb45b0e9
HA
5432/*
5433 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5434 * or min_free_kbytes changes.
5435 */
5436static void calculate_totalreserve_pages(void)
5437{
5438 struct pglist_data *pgdat;
5439 unsigned long reserve_pages = 0;
2f6726e5 5440 enum zone_type i, j;
cb45b0e9
HA
5441
5442 for_each_online_pgdat(pgdat) {
5443 for (i = 0; i < MAX_NR_ZONES; i++) {
5444 struct zone *zone = pgdat->node_zones + i;
5445 unsigned long max = 0;
5446
5447 /* Find valid and maximum lowmem_reserve in the zone */
5448 for (j = i; j < MAX_NR_ZONES; j++) {
5449 if (zone->lowmem_reserve[j] > max)
5450 max = zone->lowmem_reserve[j];
5451 }
5452
41858966
MG
5453 /* we treat the high watermark as reserved pages. */
5454 max += high_wmark_pages(zone);
cb45b0e9 5455
b40da049
JL
5456 if (max > zone->managed_pages)
5457 max = zone->managed_pages;
cb45b0e9 5458 reserve_pages += max;
ab8fabd4
JW
5459 /*
5460 * Lowmem reserves are not available to
5461 * GFP_HIGHUSER page cache allocations and
5462 * kswapd tries to balance zones to their high
5463 * watermark. As a result, neither should be
5464 * regarded as dirtyable memory, to prevent a
5465 * situation where reclaim has to clean pages
5466 * in order to balance the zones.
5467 */
5468 zone->dirty_balance_reserve = max;
cb45b0e9
HA
5469 }
5470 }
ab8fabd4 5471 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
5472 totalreserve_pages = reserve_pages;
5473}
5474
1da177e4
LT
5475/*
5476 * setup_per_zone_lowmem_reserve - called whenever
5477 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5478 * has a correct pages reserved value, so an adequate number of
5479 * pages are left in the zone after a successful __alloc_pages().
5480 */
5481static void setup_per_zone_lowmem_reserve(void)
5482{
5483 struct pglist_data *pgdat;
2f6726e5 5484 enum zone_type j, idx;
1da177e4 5485
ec936fc5 5486 for_each_online_pgdat(pgdat) {
1da177e4
LT
5487 for (j = 0; j < MAX_NR_ZONES; j++) {
5488 struct zone *zone = pgdat->node_zones + j;
b40da049 5489 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
5490
5491 zone->lowmem_reserve[j] = 0;
5492
2f6726e5
CL
5493 idx = j;
5494 while (idx) {
1da177e4
LT
5495 struct zone *lower_zone;
5496
2f6726e5
CL
5497 idx--;
5498
1da177e4
LT
5499 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5500 sysctl_lowmem_reserve_ratio[idx] = 1;
5501
5502 lower_zone = pgdat->node_zones + idx;
b40da049 5503 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 5504 sysctl_lowmem_reserve_ratio[idx];
b40da049 5505 managed_pages += lower_zone->managed_pages;
1da177e4
LT
5506 }
5507 }
5508 }
cb45b0e9
HA
5509
5510 /* update totalreserve_pages */
5511 calculate_totalreserve_pages();
1da177e4
LT
5512}
5513
cfd3da1e 5514static void __setup_per_zone_wmarks(void)
1da177e4
LT
5515{
5516 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5517 unsigned long lowmem_pages = 0;
5518 struct zone *zone;
5519 unsigned long flags;
5520
5521 /* Calculate total number of !ZONE_HIGHMEM pages */
5522 for_each_zone(zone) {
5523 if (!is_highmem(zone))
b40da049 5524 lowmem_pages += zone->managed_pages;
1da177e4
LT
5525 }
5526
5527 for_each_zone(zone) {
ac924c60
AM
5528 u64 tmp;
5529
1125b4e3 5530 spin_lock_irqsave(&zone->lock, flags);
b40da049 5531 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 5532 do_div(tmp, lowmem_pages);
1da177e4
LT
5533 if (is_highmem(zone)) {
5534 /*
669ed175
NP
5535 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5536 * need highmem pages, so cap pages_min to a small
5537 * value here.
5538 *
41858966 5539 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
5540 * deltas controls asynch page reclaim, and so should
5541 * not be capped for highmem.
1da177e4 5542 */
90ae8d67 5543 unsigned long min_pages;
1da177e4 5544
b40da049 5545 min_pages = zone->managed_pages / 1024;
90ae8d67 5546 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 5547 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5548 } else {
669ed175
NP
5549 /*
5550 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5551 * proportionate to the zone's size.
5552 */
41858966 5553 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5554 }
5555
41858966
MG
5556 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5557 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9 5558
56fd56b8 5559 setup_zone_migrate_reserve(zone);
1125b4e3 5560 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5561 }
cb45b0e9
HA
5562
5563 /* update totalreserve_pages */
5564 calculate_totalreserve_pages();
1da177e4
LT
5565}
5566
cfd3da1e
MG
5567/**
5568 * setup_per_zone_wmarks - called when min_free_kbytes changes
5569 * or when memory is hot-{added|removed}
5570 *
5571 * Ensures that the watermark[min,low,high] values for each zone are set
5572 * correctly with respect to min_free_kbytes.
5573 */
5574void setup_per_zone_wmarks(void)
5575{
5576 mutex_lock(&zonelists_mutex);
5577 __setup_per_zone_wmarks();
5578 mutex_unlock(&zonelists_mutex);
5579}
5580
55a4462a 5581/*
556adecb
RR
5582 * The inactive anon list should be small enough that the VM never has to
5583 * do too much work, but large enough that each inactive page has a chance
5584 * to be referenced again before it is swapped out.
5585 *
5586 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5587 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5588 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5589 * the anonymous pages are kept on the inactive list.
5590 *
5591 * total target max
5592 * memory ratio inactive anon
5593 * -------------------------------------
5594 * 10MB 1 5MB
5595 * 100MB 1 50MB
5596 * 1GB 3 250MB
5597 * 10GB 10 0.9GB
5598 * 100GB 31 3GB
5599 * 1TB 101 10GB
5600 * 10TB 320 32GB
5601 */
1b79acc9 5602static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5603{
96cb4df5 5604 unsigned int gb, ratio;
556adecb 5605
96cb4df5 5606 /* Zone size in gigabytes */
b40da049 5607 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 5608 if (gb)
556adecb 5609 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5610 else
5611 ratio = 1;
556adecb 5612
96cb4df5
MK
5613 zone->inactive_ratio = ratio;
5614}
556adecb 5615
839a4fcc 5616static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5617{
5618 struct zone *zone;
5619
5620 for_each_zone(zone)
5621 calculate_zone_inactive_ratio(zone);
556adecb
RR
5622}
5623
1da177e4
LT
5624/*
5625 * Initialise min_free_kbytes.
5626 *
5627 * For small machines we want it small (128k min). For large machines
5628 * we want it large (64MB max). But it is not linear, because network
5629 * bandwidth does not increase linearly with machine size. We use
5630 *
5631 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5632 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5633 *
5634 * which yields
5635 *
5636 * 16MB: 512k
5637 * 32MB: 724k
5638 * 64MB: 1024k
5639 * 128MB: 1448k
5640 * 256MB: 2048k
5641 * 512MB: 2896k
5642 * 1024MB: 4096k
5643 * 2048MB: 5792k
5644 * 4096MB: 8192k
5645 * 8192MB: 11584k
5646 * 16384MB: 16384k
5647 */
1b79acc9 5648int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5649{
5650 unsigned long lowmem_kbytes;
5651
5652 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5653
5654 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5655 if (min_free_kbytes < 128)
5656 min_free_kbytes = 128;
5657 if (min_free_kbytes > 65536)
5658 min_free_kbytes = 65536;
bc75d33f 5659 setup_per_zone_wmarks();
a6cccdc3 5660 refresh_zone_stat_thresholds();
1da177e4 5661 setup_per_zone_lowmem_reserve();
556adecb 5662 setup_per_zone_inactive_ratio();
1da177e4
LT
5663 return 0;
5664}
bc75d33f 5665module_init(init_per_zone_wmark_min)
1da177e4
LT
5666
5667/*
5668 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5669 * that we can call two helper functions whenever min_free_kbytes
5670 * changes.
5671 */
5672int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 5673 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5674{
8d65af78 5675 proc_dointvec(table, write, buffer, length, ppos);
3b1d92c5 5676 if (write)
bc75d33f 5677 setup_per_zone_wmarks();
1da177e4
LT
5678 return 0;
5679}
5680
9614634f
CL
5681#ifdef CONFIG_NUMA
5682int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5683 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5684{
5685 struct zone *zone;
5686 int rc;
5687
8d65af78 5688 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5689 if (rc)
5690 return rc;
5691
5692 for_each_zone(zone)
b40da049 5693 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
5694 sysctl_min_unmapped_ratio) / 100;
5695 return 0;
5696}
0ff38490
CL
5697
5698int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5699 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5700{
5701 struct zone *zone;
5702 int rc;
5703
8d65af78 5704 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5705 if (rc)
5706 return rc;
5707
5708 for_each_zone(zone)
b40da049 5709 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
5710 sysctl_min_slab_ratio) / 100;
5711 return 0;
5712}
9614634f
CL
5713#endif
5714
1da177e4
LT
5715/*
5716 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5717 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5718 * whenever sysctl_lowmem_reserve_ratio changes.
5719 *
5720 * The reserve ratio obviously has absolutely no relation with the
41858966 5721 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5722 * if in function of the boot time zone sizes.
5723 */
5724int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5725 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5726{
8d65af78 5727 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5728 setup_per_zone_lowmem_reserve();
5729 return 0;
5730}
5731
8ad4b1fb
RS
5732/*
5733 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5734 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5735 * can have before it gets flushed back to buddy allocator.
5736 */
5737
5738int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 5739 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5740{
5741 struct zone *zone;
5742 unsigned int cpu;
5743 int ret;
5744
8d65af78 5745 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
93278814 5746 if (!write || (ret < 0))
8ad4b1fb 5747 return ret;
364df0eb 5748 for_each_populated_zone(zone) {
99dcc3e5 5749 for_each_possible_cpu(cpu) {
8ad4b1fb 5750 unsigned long high;
b40da049 5751 high = zone->managed_pages / percpu_pagelist_fraction;
99dcc3e5
CL
5752 setup_pagelist_highmark(
5753 per_cpu_ptr(zone->pageset, cpu), high);
8ad4b1fb
RS
5754 }
5755 }
5756 return 0;
5757}
5758
f034b5d4 5759int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5760
5761#ifdef CONFIG_NUMA
5762static int __init set_hashdist(char *str)
5763{
5764 if (!str)
5765 return 0;
5766 hashdist = simple_strtoul(str, &str, 0);
5767 return 1;
5768}
5769__setup("hashdist=", set_hashdist);
5770#endif
5771
5772/*
5773 * allocate a large system hash table from bootmem
5774 * - it is assumed that the hash table must contain an exact power-of-2
5775 * quantity of entries
5776 * - limit is the number of hash buckets, not the total allocation size
5777 */
5778void *__init alloc_large_system_hash(const char *tablename,
5779 unsigned long bucketsize,
5780 unsigned long numentries,
5781 int scale,
5782 int flags,
5783 unsigned int *_hash_shift,
5784 unsigned int *_hash_mask,
31fe62b9
TB
5785 unsigned long low_limit,
5786 unsigned long high_limit)
1da177e4 5787{
31fe62b9 5788 unsigned long long max = high_limit;
1da177e4
LT
5789 unsigned long log2qty, size;
5790 void *table = NULL;
5791
5792 /* allow the kernel cmdline to have a say */
5793 if (!numentries) {
5794 /* round applicable memory size up to nearest megabyte */
04903664 5795 numentries = nr_kernel_pages;
1da177e4
LT
5796 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5797 numentries >>= 20 - PAGE_SHIFT;
5798 numentries <<= 20 - PAGE_SHIFT;
5799
5800 /* limit to 1 bucket per 2^scale bytes of low memory */
5801 if (scale > PAGE_SHIFT)
5802 numentries >>= (scale - PAGE_SHIFT);
5803 else
5804 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5805
5806 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5807 if (unlikely(flags & HASH_SMALL)) {
5808 /* Makes no sense without HASH_EARLY */
5809 WARN_ON(!(flags & HASH_EARLY));
5810 if (!(numentries >> *_hash_shift)) {
5811 numentries = 1UL << *_hash_shift;
5812 BUG_ON(!numentries);
5813 }
5814 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5815 numentries = PAGE_SIZE / bucketsize;
1da177e4 5816 }
6e692ed3 5817 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5818
5819 /* limit allocation size to 1/16 total memory by default */
5820 if (max == 0) {
5821 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5822 do_div(max, bucketsize);
5823 }
074b8517 5824 max = min(max, 0x80000000ULL);
1da177e4 5825
31fe62b9
TB
5826 if (numentries < low_limit)
5827 numentries = low_limit;
1da177e4
LT
5828 if (numentries > max)
5829 numentries = max;
5830
f0d1b0b3 5831 log2qty = ilog2(numentries);
1da177e4
LT
5832
5833 do {
5834 size = bucketsize << log2qty;
5835 if (flags & HASH_EARLY)
74768ed8 5836 table = alloc_bootmem_nopanic(size);
1da177e4
LT
5837 else if (hashdist)
5838 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5839 else {
1037b83b
ED
5840 /*
5841 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5842 * some pages at the end of hash table which
5843 * alloc_pages_exact() automatically does
1037b83b 5844 */
264ef8a9 5845 if (get_order(size) < MAX_ORDER) {
a1dd268c 5846 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5847 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5848 }
1da177e4
LT
5849 }
5850 } while (!table && size > PAGE_SIZE && --log2qty);
5851
5852 if (!table)
5853 panic("Failed to allocate %s hash table\n", tablename);
5854
f241e660 5855 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 5856 tablename,
f241e660 5857 (1UL << log2qty),
f0d1b0b3 5858 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5859 size);
5860
5861 if (_hash_shift)
5862 *_hash_shift = log2qty;
5863 if (_hash_mask)
5864 *_hash_mask = (1 << log2qty) - 1;
5865
5866 return table;
5867}
a117e66e 5868
835c134e
MG
5869/* Return a pointer to the bitmap storing bits affecting a block of pages */
5870static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5871 unsigned long pfn)
5872{
5873#ifdef CONFIG_SPARSEMEM
5874 return __pfn_to_section(pfn)->pageblock_flags;
5875#else
5876 return zone->pageblock_flags;
5877#endif /* CONFIG_SPARSEMEM */
5878}
5879
5880static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5881{
5882#ifdef CONFIG_SPARSEMEM
5883 pfn &= (PAGES_PER_SECTION-1);
d9c23400 5884 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 5885#else
c060f943 5886 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 5887 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5888#endif /* CONFIG_SPARSEMEM */
5889}
5890
5891/**
d9c23400 5892 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
5893 * @page: The page within the block of interest
5894 * @start_bitidx: The first bit of interest to retrieve
5895 * @end_bitidx: The last bit of interest
5896 * returns pageblock_bits flags
5897 */
5898unsigned long get_pageblock_flags_group(struct page *page,
5899 int start_bitidx, int end_bitidx)
5900{
5901 struct zone *zone;
5902 unsigned long *bitmap;
5903 unsigned long pfn, bitidx;
5904 unsigned long flags = 0;
5905 unsigned long value = 1;
5906
5907 zone = page_zone(page);
5908 pfn = page_to_pfn(page);
5909 bitmap = get_pageblock_bitmap(zone, pfn);
5910 bitidx = pfn_to_bitidx(zone, pfn);
5911
5912 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5913 if (test_bit(bitidx + start_bitidx, bitmap))
5914 flags |= value;
6220ec78 5915
835c134e
MG
5916 return flags;
5917}
5918
5919/**
d9c23400 5920 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
5921 * @page: The page within the block of interest
5922 * @start_bitidx: The first bit of interest
5923 * @end_bitidx: The last bit of interest
5924 * @flags: The flags to set
5925 */
5926void set_pageblock_flags_group(struct page *page, unsigned long flags,
5927 int start_bitidx, int end_bitidx)
5928{
5929 struct zone *zone;
5930 unsigned long *bitmap;
5931 unsigned long pfn, bitidx;
5932 unsigned long value = 1;
5933
5934 zone = page_zone(page);
5935 pfn = page_to_pfn(page);
5936 bitmap = get_pageblock_bitmap(zone, pfn);
5937 bitidx = pfn_to_bitidx(zone, pfn);
108bcc96 5938 VM_BUG_ON(!zone_spans_pfn(zone, pfn));
835c134e
MG
5939
5940 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5941 if (flags & value)
5942 __set_bit(bitidx + start_bitidx, bitmap);
5943 else
5944 __clear_bit(bitidx + start_bitidx, bitmap);
5945}
a5d76b54
KH
5946
5947/*
80934513
MK
5948 * This function checks whether pageblock includes unmovable pages or not.
5949 * If @count is not zero, it is okay to include less @count unmovable pages
5950 *
5951 * PageLRU check wihtout isolation or lru_lock could race so that
5952 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5953 * expect this function should be exact.
a5d76b54 5954 */
b023f468
WC
5955bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
5956 bool skip_hwpoisoned_pages)
49ac8255
KH
5957{
5958 unsigned long pfn, iter, found;
47118af0
MN
5959 int mt;
5960
49ac8255
KH
5961 /*
5962 * For avoiding noise data, lru_add_drain_all() should be called
80934513 5963 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
5964 */
5965 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 5966 return false;
47118af0
MN
5967 mt = get_pageblock_migratetype(page);
5968 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 5969 return false;
49ac8255
KH
5970
5971 pfn = page_to_pfn(page);
5972 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5973 unsigned long check = pfn + iter;
5974
29723fcc 5975 if (!pfn_valid_within(check))
49ac8255 5976 continue;
29723fcc 5977
49ac8255 5978 page = pfn_to_page(check);
97d255c8
MK
5979 /*
5980 * We can't use page_count without pin a page
5981 * because another CPU can free compound page.
5982 * This check already skips compound tails of THP
5983 * because their page->_count is zero at all time.
5984 */
5985 if (!atomic_read(&page->_count)) {
49ac8255
KH
5986 if (PageBuddy(page))
5987 iter += (1 << page_order(page)) - 1;
5988 continue;
5989 }
97d255c8 5990
b023f468
WC
5991 /*
5992 * The HWPoisoned page may be not in buddy system, and
5993 * page_count() is not 0.
5994 */
5995 if (skip_hwpoisoned_pages && PageHWPoison(page))
5996 continue;
5997
49ac8255
KH
5998 if (!PageLRU(page))
5999 found++;
6000 /*
6001 * If there are RECLAIMABLE pages, we need to check it.
6002 * But now, memory offline itself doesn't call shrink_slab()
6003 * and it still to be fixed.
6004 */
6005 /*
6006 * If the page is not RAM, page_count()should be 0.
6007 * we don't need more check. This is an _used_ not-movable page.
6008 *
6009 * The problematic thing here is PG_reserved pages. PG_reserved
6010 * is set to both of a memory hole page and a _used_ kernel
6011 * page at boot.
6012 */
6013 if (found > count)
80934513 6014 return true;
49ac8255 6015 }
80934513 6016 return false;
49ac8255
KH
6017}
6018
6019bool is_pageblock_removable_nolock(struct page *page)
6020{
656a0706
MH
6021 struct zone *zone;
6022 unsigned long pfn;
687875fb
MH
6023
6024 /*
6025 * We have to be careful here because we are iterating over memory
6026 * sections which are not zone aware so we might end up outside of
6027 * the zone but still within the section.
656a0706
MH
6028 * We have to take care about the node as well. If the node is offline
6029 * its NODE_DATA will be NULL - see page_zone.
687875fb 6030 */
656a0706
MH
6031 if (!node_online(page_to_nid(page)))
6032 return false;
6033
6034 zone = page_zone(page);
6035 pfn = page_to_pfn(page);
108bcc96 6036 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6037 return false;
6038
b023f468 6039 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6040}
0c0e6195 6041
041d3a8c
MN
6042#ifdef CONFIG_CMA
6043
6044static unsigned long pfn_max_align_down(unsigned long pfn)
6045{
6046 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6047 pageblock_nr_pages) - 1);
6048}
6049
6050static unsigned long pfn_max_align_up(unsigned long pfn)
6051{
6052 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6053 pageblock_nr_pages));
6054}
6055
041d3a8c 6056/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6057static int __alloc_contig_migrate_range(struct compact_control *cc,
6058 unsigned long start, unsigned long end)
041d3a8c
MN
6059{
6060 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6061 unsigned long nr_reclaimed;
041d3a8c
MN
6062 unsigned long pfn = start;
6063 unsigned int tries = 0;
6064 int ret = 0;
6065
be49a6e1 6066 migrate_prep();
041d3a8c 6067
bb13ffeb 6068 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6069 if (fatal_signal_pending(current)) {
6070 ret = -EINTR;
6071 break;
6072 }
6073
bb13ffeb
MG
6074 if (list_empty(&cc->migratepages)) {
6075 cc->nr_migratepages = 0;
6076 pfn = isolate_migratepages_range(cc->zone, cc,
e46a2879 6077 pfn, end, true);
041d3a8c
MN
6078 if (!pfn) {
6079 ret = -EINTR;
6080 break;
6081 }
6082 tries = 0;
6083 } else if (++tries == 5) {
6084 ret = ret < 0 ? ret : -EBUSY;
6085 break;
6086 }
6087
beb51eaa
MK
6088 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6089 &cc->migratepages);
6090 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6091
9c620e2b
HD
6092 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6093 0, MIGRATE_SYNC, MR_CMA);
041d3a8c 6094 }
2a6f5124
SP
6095 if (ret < 0) {
6096 putback_movable_pages(&cc->migratepages);
6097 return ret;
6098 }
6099 return 0;
041d3a8c
MN
6100}
6101
6102/**
6103 * alloc_contig_range() -- tries to allocate given range of pages
6104 * @start: start PFN to allocate
6105 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
6106 * @migratetype: migratetype of the underlaying pageblocks (either
6107 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6108 * in range must have the same migratetype and it must
6109 * be either of the two.
041d3a8c
MN
6110 *
6111 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6112 * aligned, however it's the caller's responsibility to guarantee that
6113 * we are the only thread that changes migrate type of pageblocks the
6114 * pages fall in.
6115 *
6116 * The PFN range must belong to a single zone.
6117 *
6118 * Returns zero on success or negative error code. On success all
6119 * pages which PFN is in [start, end) are allocated for the caller and
6120 * need to be freed with free_contig_range().
6121 */
0815f3d8
MN
6122int alloc_contig_range(unsigned long start, unsigned long end,
6123 unsigned migratetype)
041d3a8c 6124{
041d3a8c
MN
6125 unsigned long outer_start, outer_end;
6126 int ret = 0, order;
6127
bb13ffeb
MG
6128 struct compact_control cc = {
6129 .nr_migratepages = 0,
6130 .order = -1,
6131 .zone = page_zone(pfn_to_page(start)),
6132 .sync = true,
6133 .ignore_skip_hint = true,
6134 };
6135 INIT_LIST_HEAD(&cc.migratepages);
6136
041d3a8c
MN
6137 /*
6138 * What we do here is we mark all pageblocks in range as
6139 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6140 * have different sizes, and due to the way page allocator
6141 * work, we align the range to biggest of the two pages so
6142 * that page allocator won't try to merge buddies from
6143 * different pageblocks and change MIGRATE_ISOLATE to some
6144 * other migration type.
6145 *
6146 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6147 * migrate the pages from an unaligned range (ie. pages that
6148 * we are interested in). This will put all the pages in
6149 * range back to page allocator as MIGRATE_ISOLATE.
6150 *
6151 * When this is done, we take the pages in range from page
6152 * allocator removing them from the buddy system. This way
6153 * page allocator will never consider using them.
6154 *
6155 * This lets us mark the pageblocks back as
6156 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6157 * aligned range but not in the unaligned, original range are
6158 * put back to page allocator so that buddy can use them.
6159 */
6160
6161 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
6162 pfn_max_align_up(end), migratetype,
6163 false);
041d3a8c 6164 if (ret)
86a595f9 6165 return ret;
041d3a8c 6166
bb13ffeb 6167 ret = __alloc_contig_migrate_range(&cc, start, end);
041d3a8c
MN
6168 if (ret)
6169 goto done;
6170
6171 /*
6172 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6173 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6174 * more, all pages in [start, end) are free in page allocator.
6175 * What we are going to do is to allocate all pages from
6176 * [start, end) (that is remove them from page allocator).
6177 *
6178 * The only problem is that pages at the beginning and at the
6179 * end of interesting range may be not aligned with pages that
6180 * page allocator holds, ie. they can be part of higher order
6181 * pages. Because of this, we reserve the bigger range and
6182 * once this is done free the pages we are not interested in.
6183 *
6184 * We don't have to hold zone->lock here because the pages are
6185 * isolated thus they won't get removed from buddy.
6186 */
6187
6188 lru_add_drain_all();
6189 drain_all_pages();
6190
6191 order = 0;
6192 outer_start = start;
6193 while (!PageBuddy(pfn_to_page(outer_start))) {
6194 if (++order >= MAX_ORDER) {
6195 ret = -EBUSY;
6196 goto done;
6197 }
6198 outer_start &= ~0UL << order;
6199 }
6200
6201 /* Make sure the range is really isolated. */
b023f468 6202 if (test_pages_isolated(outer_start, end, false)) {
041d3a8c
MN
6203 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6204 outer_start, end);
6205 ret = -EBUSY;
6206 goto done;
6207 }
6208
49f223a9
MS
6209
6210 /* Grab isolated pages from freelists. */
bb13ffeb 6211 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
6212 if (!outer_end) {
6213 ret = -EBUSY;
6214 goto done;
6215 }
6216
6217 /* Free head and tail (if any) */
6218 if (start != outer_start)
6219 free_contig_range(outer_start, start - outer_start);
6220 if (end != outer_end)
6221 free_contig_range(end, outer_end - end);
6222
6223done:
6224 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 6225 pfn_max_align_up(end), migratetype);
041d3a8c
MN
6226 return ret;
6227}
6228
6229void free_contig_range(unsigned long pfn, unsigned nr_pages)
6230{
bcc2b02f
MS
6231 unsigned int count = 0;
6232
6233 for (; nr_pages--; pfn++) {
6234 struct page *page = pfn_to_page(pfn);
6235
6236 count += page_count(page) != 1;
6237 __free_page(page);
6238 }
6239 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
6240}
6241#endif
6242
4ed7e022
JL
6243#ifdef CONFIG_MEMORY_HOTPLUG
6244static int __meminit __zone_pcp_update(void *data)
6245{
6246 struct zone *zone = data;
6247 int cpu;
6248 unsigned long batch = zone_batchsize(zone), flags;
6249
6250 for_each_possible_cpu(cpu) {
6251 struct per_cpu_pageset *pset;
6252 struct per_cpu_pages *pcp;
6253
6254 pset = per_cpu_ptr(zone->pageset, cpu);
6255 pcp = &pset->pcp;
6256
6257 local_irq_save(flags);
6258 if (pcp->count > 0)
6259 free_pcppages_bulk(zone, pcp->count, pcp);
5a883813 6260 drain_zonestat(zone, pset);
4ed7e022
JL
6261 setup_pageset(pset, batch);
6262 local_irq_restore(flags);
6263 }
6264 return 0;
6265}
6266
6267void __meminit zone_pcp_update(struct zone *zone)
6268{
6269 stop_machine(__zone_pcp_update, zone, NULL);
6270}
6271#endif
6272
340175b7
JL
6273void zone_pcp_reset(struct zone *zone)
6274{
6275 unsigned long flags;
5a883813
MK
6276 int cpu;
6277 struct per_cpu_pageset *pset;
340175b7
JL
6278
6279 /* avoid races with drain_pages() */
6280 local_irq_save(flags);
6281 if (zone->pageset != &boot_pageset) {
5a883813
MK
6282 for_each_online_cpu(cpu) {
6283 pset = per_cpu_ptr(zone->pageset, cpu);
6284 drain_zonestat(zone, pset);
6285 }
340175b7
JL
6286 free_percpu(zone->pageset);
6287 zone->pageset = &boot_pageset;
6288 }
6289 local_irq_restore(flags);
6290}
6291
6dcd73d7 6292#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
6293/*
6294 * All pages in the range must be isolated before calling this.
6295 */
6296void
6297__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6298{
6299 struct page *page;
6300 struct zone *zone;
6301 int order, i;
6302 unsigned long pfn;
6303 unsigned long flags;
6304 /* find the first valid pfn */
6305 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6306 if (pfn_valid(pfn))
6307 break;
6308 if (pfn == end_pfn)
6309 return;
6310 zone = page_zone(pfn_to_page(pfn));
6311 spin_lock_irqsave(&zone->lock, flags);
6312 pfn = start_pfn;
6313 while (pfn < end_pfn) {
6314 if (!pfn_valid(pfn)) {
6315 pfn++;
6316 continue;
6317 }
6318 page = pfn_to_page(pfn);
b023f468
WC
6319 /*
6320 * The HWPoisoned page may be not in buddy system, and
6321 * page_count() is not 0.
6322 */
6323 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6324 pfn++;
6325 SetPageReserved(page);
6326 continue;
6327 }
6328
0c0e6195
KH
6329 BUG_ON(page_count(page));
6330 BUG_ON(!PageBuddy(page));
6331 order = page_order(page);
6332#ifdef CONFIG_DEBUG_VM
6333 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6334 pfn, 1 << order, end_pfn);
6335#endif
6336 list_del(&page->lru);
6337 rmv_page_order(page);
6338 zone->free_area[order].nr_free--;
0c0e6195
KH
6339 for (i = 0; i < (1 << order); i++)
6340 SetPageReserved((page+i));
6341 pfn += (1 << order);
6342 }
6343 spin_unlock_irqrestore(&zone->lock, flags);
6344}
6345#endif
8d22ba1b
WF
6346
6347#ifdef CONFIG_MEMORY_FAILURE
6348bool is_free_buddy_page(struct page *page)
6349{
6350 struct zone *zone = page_zone(page);
6351 unsigned long pfn = page_to_pfn(page);
6352 unsigned long flags;
6353 int order;
6354
6355 spin_lock_irqsave(&zone->lock, flags);
6356 for (order = 0; order < MAX_ORDER; order++) {
6357 struct page *page_head = page - (pfn & ((1 << order) - 1));
6358
6359 if (PageBuddy(page_head) && page_order(page_head) >= order)
6360 break;
6361 }
6362 spin_unlock_irqrestore(&zone->lock, flags);
6363
6364 return order < MAX_ORDER;
6365}
6366#endif
718a3821 6367
51300cef 6368static const struct trace_print_flags pageflag_names[] = {
718a3821
WF
6369 {1UL << PG_locked, "locked" },
6370 {1UL << PG_error, "error" },
6371 {1UL << PG_referenced, "referenced" },
6372 {1UL << PG_uptodate, "uptodate" },
6373 {1UL << PG_dirty, "dirty" },
6374 {1UL << PG_lru, "lru" },
6375 {1UL << PG_active, "active" },
6376 {1UL << PG_slab, "slab" },
6377 {1UL << PG_owner_priv_1, "owner_priv_1" },
6378 {1UL << PG_arch_1, "arch_1" },
6379 {1UL << PG_reserved, "reserved" },
6380 {1UL << PG_private, "private" },
6381 {1UL << PG_private_2, "private_2" },
6382 {1UL << PG_writeback, "writeback" },
6383#ifdef CONFIG_PAGEFLAGS_EXTENDED
6384 {1UL << PG_head, "head" },
6385 {1UL << PG_tail, "tail" },
6386#else
6387 {1UL << PG_compound, "compound" },
6388#endif
6389 {1UL << PG_swapcache, "swapcache" },
6390 {1UL << PG_mappedtodisk, "mappedtodisk" },
6391 {1UL << PG_reclaim, "reclaim" },
718a3821
WF
6392 {1UL << PG_swapbacked, "swapbacked" },
6393 {1UL << PG_unevictable, "unevictable" },
6394#ifdef CONFIG_MMU
6395 {1UL << PG_mlocked, "mlocked" },
6396#endif
6397#ifdef CONFIG_ARCH_USES_PG_UNCACHED
6398 {1UL << PG_uncached, "uncached" },
6399#endif
6400#ifdef CONFIG_MEMORY_FAILURE
6401 {1UL << PG_hwpoison, "hwpoison" },
be9cd873
GS
6402#endif
6403#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6404 {1UL << PG_compound_lock, "compound_lock" },
718a3821 6405#endif
718a3821
WF
6406};
6407
6408static void dump_page_flags(unsigned long flags)
6409{
6410 const char *delim = "";
6411 unsigned long mask;
6412 int i;
6413
51300cef 6414 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
acc50c11 6415
718a3821
WF
6416 printk(KERN_ALERT "page flags: %#lx(", flags);
6417
6418 /* remove zone id */
6419 flags &= (1UL << NR_PAGEFLAGS) - 1;
6420
51300cef 6421 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
718a3821
WF
6422
6423 mask = pageflag_names[i].mask;
6424 if ((flags & mask) != mask)
6425 continue;
6426
6427 flags &= ~mask;
6428 printk("%s%s", delim, pageflag_names[i].name);
6429 delim = "|";
6430 }
6431
6432 /* check for left over flags */
6433 if (flags)
6434 printk("%s%#lx", delim, flags);
6435
6436 printk(")\n");
6437}
6438
6439void dump_page(struct page *page)
6440{
6441 printk(KERN_ALERT
6442 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
4e9f64c4 6443 page, atomic_read(&page->_count), page_mapcount(page),
718a3821
WF
6444 page->mapping, page->index);
6445 dump_page_flags(page->flags);
f212ad7c 6446 mem_cgroup_print_bad_page(page);
718a3821 6447}