[PATCH] reduce MAX_NR_ZONES: use enum to define zones, reformat and comment
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/bootmem.h>
23#include <linux/compiler.h>
9f158333 24#include <linux/kernel.h>
1da177e4
LT
25#include <linux/module.h>
26#include <linux/suspend.h>
27#include <linux/pagevec.h>
28#include <linux/blkdev.h>
29#include <linux/slab.h>
30#include <linux/notifier.h>
31#include <linux/topology.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
bdc8cb98 35#include <linux/memory_hotplug.h>
1da177e4
LT
36#include <linux/nodemask.h>
37#include <linux/vmalloc.h>
4be38e35 38#include <linux/mempolicy.h>
6811378e 39#include <linux/stop_machine.h>
1da177e4
LT
40
41#include <asm/tlbflush.h>
ac924c60 42#include <asm/div64.h>
1da177e4
LT
43#include "internal.h"
44
45/*
46 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
47 * initializer cleaner
48 */
c3d8c141 49nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
7223a93a 50EXPORT_SYMBOL(node_online_map);
c3d8c141 51nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
7223a93a 52EXPORT_SYMBOL(node_possible_map);
6c231b7b 53unsigned long totalram_pages __read_mostly;
cb45b0e9 54unsigned long totalreserve_pages __read_mostly;
1da177e4 55long nr_swap_pages;
8ad4b1fb 56int percpu_pagelist_fraction;
1da177e4 57
d98c7a09 58static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 59
1da177e4
LT
60/*
61 * results with 256, 32 in the lowmem_reserve sysctl:
62 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
63 * 1G machine -> (16M dma, 784M normal, 224M high)
64 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
65 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
66 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
67 *
68 * TBD: should special case ZONE_DMA32 machines here - in those we normally
69 * don't need any ZONE_NORMAL reservation
1da177e4 70 */
2f1b6248
CL
71int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
72 256,
73 256,
74 32
75};
1da177e4
LT
76
77EXPORT_SYMBOL(totalram_pages);
1da177e4
LT
78
79/*
80 * Used by page_zone() to look up the address of the struct zone whose
81 * id is encoded in the upper bits of page->flags
82 */
c3d8c141 83struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
1da177e4
LT
84EXPORT_SYMBOL(zone_table);
85
2f1b6248
CL
86static char *zone_names[MAX_NR_ZONES] = {
87 "DMA",
88 "DMA32",
89 "Normal",
90 "HighMem"
91};
92
1da177e4
LT
93int min_free_kbytes = 1024;
94
86356ab1
YG
95unsigned long __meminitdata nr_kernel_pages;
96unsigned long __meminitdata nr_all_pages;
1da177e4 97
13e7444b 98#ifdef CONFIG_DEBUG_VM
c6a57e19 99static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 100{
bdc8cb98
DH
101 int ret = 0;
102 unsigned seq;
103 unsigned long pfn = page_to_pfn(page);
c6a57e19 104
bdc8cb98
DH
105 do {
106 seq = zone_span_seqbegin(zone);
107 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
108 ret = 1;
109 else if (pfn < zone->zone_start_pfn)
110 ret = 1;
111 } while (zone_span_seqretry(zone, seq));
112
113 return ret;
c6a57e19
DH
114}
115
116static int page_is_consistent(struct zone *zone, struct page *page)
117{
1da177e4
LT
118#ifdef CONFIG_HOLES_IN_ZONE
119 if (!pfn_valid(page_to_pfn(page)))
c6a57e19 120 return 0;
1da177e4
LT
121#endif
122 if (zone != page_zone(page))
c6a57e19
DH
123 return 0;
124
125 return 1;
126}
127/*
128 * Temporary debugging check for pages not lying within a given zone.
129 */
130static int bad_range(struct zone *zone, struct page *page)
131{
132 if (page_outside_zone_boundaries(zone, page))
1da177e4 133 return 1;
c6a57e19
DH
134 if (!page_is_consistent(zone, page))
135 return 1;
136
1da177e4
LT
137 return 0;
138}
13e7444b
NP
139#else
140static inline int bad_range(struct zone *zone, struct page *page)
141{
142 return 0;
143}
144#endif
145
224abf92 146static void bad_page(struct page *page)
1da177e4 147{
224abf92 148 printk(KERN_EMERG "Bad page state in process '%s'\n"
7365f3d1
HD
149 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
150 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
151 KERN_EMERG "Backtrace:\n",
224abf92
NP
152 current->comm, page, (int)(2*sizeof(unsigned long)),
153 (unsigned long)page->flags, page->mapping,
154 page_mapcount(page), page_count(page));
1da177e4 155 dump_stack();
334795ec
HD
156 page->flags &= ~(1 << PG_lru |
157 1 << PG_private |
1da177e4 158 1 << PG_locked |
1da177e4
LT
159 1 << PG_active |
160 1 << PG_dirty |
334795ec
HD
161 1 << PG_reclaim |
162 1 << PG_slab |
1da177e4 163 1 << PG_swapcache |
676165a8
NP
164 1 << PG_writeback |
165 1 << PG_buddy );
1da177e4
LT
166 set_page_count(page, 0);
167 reset_page_mapcount(page);
168 page->mapping = NULL;
9f158333 169 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
170}
171
1da177e4
LT
172/*
173 * Higher-order pages are called "compound pages". They are structured thusly:
174 *
175 * The first PAGE_SIZE page is called the "head page".
176 *
177 * The remaining PAGE_SIZE pages are called "tail pages".
178 *
179 * All pages have PG_compound set. All pages have their ->private pointing at
180 * the head page (even the head page has this).
181 *
41d78ba5
HD
182 * The first tail page's ->lru.next holds the address of the compound page's
183 * put_page() function. Its ->lru.prev holds the order of allocation.
184 * This usage means that zero-order pages may not be compound.
1da177e4 185 */
d98c7a09
HD
186
187static void free_compound_page(struct page *page)
188{
189 __free_pages_ok(page, (unsigned long)page[1].lru.prev);
190}
191
1da177e4
LT
192static void prep_compound_page(struct page *page, unsigned long order)
193{
194 int i;
195 int nr_pages = 1 << order;
196
d98c7a09 197 page[1].lru.next = (void *)free_compound_page; /* set dtor */
41d78ba5 198 page[1].lru.prev = (void *)order;
1da177e4
LT
199 for (i = 0; i < nr_pages; i++) {
200 struct page *p = page + i;
201
5e9dace8 202 __SetPageCompound(p);
4c21e2f2 203 set_page_private(p, (unsigned long)page);
1da177e4
LT
204 }
205}
206
207static void destroy_compound_page(struct page *page, unsigned long order)
208{
209 int i;
210 int nr_pages = 1 << order;
211
41d78ba5 212 if (unlikely((unsigned long)page[1].lru.prev != order))
224abf92 213 bad_page(page);
1da177e4
LT
214
215 for (i = 0; i < nr_pages; i++) {
216 struct page *p = page + i;
217
224abf92
NP
218 if (unlikely(!PageCompound(p) |
219 (page_private(p) != (unsigned long)page)))
220 bad_page(page);
5e9dace8 221 __ClearPageCompound(p);
1da177e4
LT
222 }
223}
1da177e4 224
17cf4406
NP
225static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
226{
227 int i;
228
725d704e 229 VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
6626c5d5
AM
230 /*
231 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
232 * and __GFP_HIGHMEM from hard or soft interrupt context.
233 */
725d704e 234 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
235 for (i = 0; i < (1 << order); i++)
236 clear_highpage(page + i);
237}
238
1da177e4
LT
239/*
240 * function for dealing with page's order in buddy system.
241 * zone->lock is already acquired when we use these.
242 * So, we don't need atomic page->flags operations here.
243 */
6aa3001b
AM
244static inline unsigned long page_order(struct page *page)
245{
4c21e2f2 246 return page_private(page);
1da177e4
LT
247}
248
6aa3001b
AM
249static inline void set_page_order(struct page *page, int order)
250{
4c21e2f2 251 set_page_private(page, order);
676165a8 252 __SetPageBuddy(page);
1da177e4
LT
253}
254
255static inline void rmv_page_order(struct page *page)
256{
676165a8 257 __ClearPageBuddy(page);
4c21e2f2 258 set_page_private(page, 0);
1da177e4
LT
259}
260
261/*
262 * Locate the struct page for both the matching buddy in our
263 * pair (buddy1) and the combined O(n+1) page they form (page).
264 *
265 * 1) Any buddy B1 will have an order O twin B2 which satisfies
266 * the following equation:
267 * B2 = B1 ^ (1 << O)
268 * For example, if the starting buddy (buddy2) is #8 its order
269 * 1 buddy is #10:
270 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
271 *
272 * 2) Any buddy B will have an order O+1 parent P which
273 * satisfies the following equation:
274 * P = B & ~(1 << O)
275 *
d6e05edc 276 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4
LT
277 */
278static inline struct page *
279__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
280{
281 unsigned long buddy_idx = page_idx ^ (1 << order);
282
283 return page + (buddy_idx - page_idx);
284}
285
286static inline unsigned long
287__find_combined_index(unsigned long page_idx, unsigned int order)
288{
289 return (page_idx & ~(1 << order));
290}
291
292/*
293 * This function checks whether a page is free && is the buddy
294 * we can do coalesce a page and its buddy if
13e7444b 295 * (a) the buddy is not in a hole &&
676165a8 296 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
297 * (c) a page and its buddy have the same order &&
298 * (d) a page and its buddy are in the same zone.
676165a8
NP
299 *
300 * For recording whether a page is in the buddy system, we use PG_buddy.
301 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
1da177e4 302 *
676165a8 303 * For recording page's order, we use page_private(page).
1da177e4 304 */
cb2b95e1
AW
305static inline int page_is_buddy(struct page *page, struct page *buddy,
306 int order)
1da177e4 307{
13e7444b 308#ifdef CONFIG_HOLES_IN_ZONE
cb2b95e1 309 if (!pfn_valid(page_to_pfn(buddy)))
13e7444b
NP
310 return 0;
311#endif
312
cb2b95e1
AW
313 if (page_zone_id(page) != page_zone_id(buddy))
314 return 0;
315
316 if (PageBuddy(buddy) && page_order(buddy) == order) {
317 BUG_ON(page_count(buddy) != 0);
6aa3001b 318 return 1;
676165a8 319 }
6aa3001b 320 return 0;
1da177e4
LT
321}
322
323/*
324 * Freeing function for a buddy system allocator.
325 *
326 * The concept of a buddy system is to maintain direct-mapped table
327 * (containing bit values) for memory blocks of various "orders".
328 * The bottom level table contains the map for the smallest allocatable
329 * units of memory (here, pages), and each level above it describes
330 * pairs of units from the levels below, hence, "buddies".
331 * At a high level, all that happens here is marking the table entry
332 * at the bottom level available, and propagating the changes upward
333 * as necessary, plus some accounting needed to play nicely with other
334 * parts of the VM system.
335 * At each level, we keep a list of pages, which are heads of continuous
676165a8 336 * free pages of length of (1 << order) and marked with PG_buddy. Page's
4c21e2f2 337 * order is recorded in page_private(page) field.
1da177e4
LT
338 * So when we are allocating or freeing one, we can derive the state of the
339 * other. That is, if we allocate a small block, and both were
340 * free, the remainder of the region must be split into blocks.
341 * If a block is freed, and its buddy is also free, then this
342 * triggers coalescing into a block of larger size.
343 *
344 * -- wli
345 */
346
48db57f8 347static inline void __free_one_page(struct page *page,
1da177e4
LT
348 struct zone *zone, unsigned int order)
349{
350 unsigned long page_idx;
351 int order_size = 1 << order;
352
224abf92 353 if (unlikely(PageCompound(page)))
1da177e4
LT
354 destroy_compound_page(page, order);
355
356 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
357
725d704e
NP
358 VM_BUG_ON(page_idx & (order_size - 1));
359 VM_BUG_ON(bad_range(zone, page));
1da177e4
LT
360
361 zone->free_pages += order_size;
362 while (order < MAX_ORDER-1) {
363 unsigned long combined_idx;
364 struct free_area *area;
365 struct page *buddy;
366
1da177e4 367 buddy = __page_find_buddy(page, page_idx, order);
cb2b95e1 368 if (!page_is_buddy(page, buddy, order))
1da177e4 369 break; /* Move the buddy up one level. */
13e7444b 370
1da177e4
LT
371 list_del(&buddy->lru);
372 area = zone->free_area + order;
373 area->nr_free--;
374 rmv_page_order(buddy);
13e7444b 375 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
376 page = page + (combined_idx - page_idx);
377 page_idx = combined_idx;
378 order++;
379 }
380 set_page_order(page, order);
381 list_add(&page->lru, &zone->free_area[order].free_list);
382 zone->free_area[order].nr_free++;
383}
384
224abf92 385static inline int free_pages_check(struct page *page)
1da177e4 386{
92be2e33
NP
387 if (unlikely(page_mapcount(page) |
388 (page->mapping != NULL) |
389 (page_count(page) != 0) |
1da177e4
LT
390 (page->flags & (
391 1 << PG_lru |
392 1 << PG_private |
393 1 << PG_locked |
394 1 << PG_active |
395 1 << PG_reclaim |
396 1 << PG_slab |
397 1 << PG_swapcache |
b5810039 398 1 << PG_writeback |
676165a8
NP
399 1 << PG_reserved |
400 1 << PG_buddy ))))
224abf92 401 bad_page(page);
1da177e4 402 if (PageDirty(page))
242e5468 403 __ClearPageDirty(page);
689bcebf
HD
404 /*
405 * For now, we report if PG_reserved was found set, but do not
406 * clear it, and do not free the page. But we shall soon need
407 * to do more, for when the ZERO_PAGE count wraps negative.
408 */
409 return PageReserved(page);
1da177e4
LT
410}
411
412/*
413 * Frees a list of pages.
414 * Assumes all pages on list are in same zone, and of same order.
207f36ee 415 * count is the number of pages to free.
1da177e4
LT
416 *
417 * If the zone was previously in an "all pages pinned" state then look to
418 * see if this freeing clears that state.
419 *
420 * And clear the zone's pages_scanned counter, to hold off the "all pages are
421 * pinned" detection logic.
422 */
48db57f8
NP
423static void free_pages_bulk(struct zone *zone, int count,
424 struct list_head *list, int order)
1da177e4 425{
c54ad30c 426 spin_lock(&zone->lock);
1da177e4
LT
427 zone->all_unreclaimable = 0;
428 zone->pages_scanned = 0;
48db57f8
NP
429 while (count--) {
430 struct page *page;
431
725d704e 432 VM_BUG_ON(list_empty(list));
1da177e4 433 page = list_entry(list->prev, struct page, lru);
48db57f8 434 /* have to delete it as __free_one_page list manipulates */
1da177e4 435 list_del(&page->lru);
48db57f8 436 __free_one_page(page, zone, order);
1da177e4 437 }
c54ad30c 438 spin_unlock(&zone->lock);
1da177e4
LT
439}
440
48db57f8 441static void free_one_page(struct zone *zone, struct page *page, int order)
1da177e4
LT
442{
443 LIST_HEAD(list);
48db57f8
NP
444 list_add(&page->lru, &list);
445 free_pages_bulk(zone, 1, &list, order);
446}
447
448static void __free_pages_ok(struct page *page, unsigned int order)
449{
450 unsigned long flags;
1da177e4 451 int i;
689bcebf 452 int reserved = 0;
1da177e4
LT
453
454 arch_free_page(page, order);
de5097c2 455 if (!PageHighMem(page))
f9b8404c
IM
456 debug_check_no_locks_freed(page_address(page),
457 PAGE_SIZE<<order);
1da177e4 458
1da177e4 459 for (i = 0 ; i < (1 << order) ; ++i)
224abf92 460 reserved += free_pages_check(page + i);
689bcebf
HD
461 if (reserved)
462 return;
463
48db57f8 464 kernel_map_pages(page, 1 << order, 0);
c54ad30c 465 local_irq_save(flags);
f8891e5e 466 __count_vm_events(PGFREE, 1 << order);
48db57f8 467 free_one_page(page_zone(page), page, order);
c54ad30c 468 local_irq_restore(flags);
1da177e4
LT
469}
470
a226f6c8
DH
471/*
472 * permit the bootmem allocator to evade page validation on high-order frees
473 */
474void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
475{
476 if (order == 0) {
477 __ClearPageReserved(page);
478 set_page_count(page, 0);
7835e98b 479 set_page_refcounted(page);
545b1ea9 480 __free_page(page);
a226f6c8 481 } else {
a226f6c8
DH
482 int loop;
483
545b1ea9 484 prefetchw(page);
a226f6c8
DH
485 for (loop = 0; loop < BITS_PER_LONG; loop++) {
486 struct page *p = &page[loop];
487
545b1ea9
NP
488 if (loop + 1 < BITS_PER_LONG)
489 prefetchw(p + 1);
a226f6c8
DH
490 __ClearPageReserved(p);
491 set_page_count(p, 0);
492 }
493
7835e98b 494 set_page_refcounted(page);
545b1ea9 495 __free_pages(page, order);
a226f6c8
DH
496 }
497}
498
1da177e4
LT
499
500/*
501 * The order of subdivision here is critical for the IO subsystem.
502 * Please do not alter this order without good reasons and regression
503 * testing. Specifically, as large blocks of memory are subdivided,
504 * the order in which smaller blocks are delivered depends on the order
505 * they're subdivided in this function. This is the primary factor
506 * influencing the order in which pages are delivered to the IO
507 * subsystem according to empirical testing, and this is also justified
508 * by considering the behavior of a buddy system containing a single
509 * large block of memory acted on by a series of small allocations.
510 * This behavior is a critical factor in sglist merging's success.
511 *
512 * -- wli
513 */
085cc7d5 514static inline void expand(struct zone *zone, struct page *page,
1da177e4
LT
515 int low, int high, struct free_area *area)
516{
517 unsigned long size = 1 << high;
518
519 while (high > low) {
520 area--;
521 high--;
522 size >>= 1;
725d704e 523 VM_BUG_ON(bad_range(zone, &page[size]));
1da177e4
LT
524 list_add(&page[size].lru, &area->free_list);
525 area->nr_free++;
526 set_page_order(&page[size], high);
527 }
1da177e4
LT
528}
529
1da177e4
LT
530/*
531 * This page is about to be returned from the page allocator
532 */
17cf4406 533static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
1da177e4 534{
92be2e33
NP
535 if (unlikely(page_mapcount(page) |
536 (page->mapping != NULL) |
537 (page_count(page) != 0) |
334795ec
HD
538 (page->flags & (
539 1 << PG_lru |
1da177e4
LT
540 1 << PG_private |
541 1 << PG_locked |
1da177e4
LT
542 1 << PG_active |
543 1 << PG_dirty |
544 1 << PG_reclaim |
334795ec 545 1 << PG_slab |
1da177e4 546 1 << PG_swapcache |
b5810039 547 1 << PG_writeback |
676165a8
NP
548 1 << PG_reserved |
549 1 << PG_buddy ))))
224abf92 550 bad_page(page);
1da177e4 551
689bcebf
HD
552 /*
553 * For now, we report if PG_reserved was found set, but do not
554 * clear it, and do not allocate the page: as a safety net.
555 */
556 if (PageReserved(page))
557 return 1;
558
1da177e4
LT
559 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
560 1 << PG_referenced | 1 << PG_arch_1 |
561 1 << PG_checked | 1 << PG_mappedtodisk);
4c21e2f2 562 set_page_private(page, 0);
7835e98b 563 set_page_refcounted(page);
1da177e4 564 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
565
566 if (gfp_flags & __GFP_ZERO)
567 prep_zero_page(page, order, gfp_flags);
568
569 if (order && (gfp_flags & __GFP_COMP))
570 prep_compound_page(page, order);
571
689bcebf 572 return 0;
1da177e4
LT
573}
574
575/*
576 * Do the hard work of removing an element from the buddy allocator.
577 * Call me with the zone->lock already held.
578 */
579static struct page *__rmqueue(struct zone *zone, unsigned int order)
580{
581 struct free_area * area;
582 unsigned int current_order;
583 struct page *page;
584
585 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
586 area = zone->free_area + current_order;
587 if (list_empty(&area->free_list))
588 continue;
589
590 page = list_entry(area->free_list.next, struct page, lru);
591 list_del(&page->lru);
592 rmv_page_order(page);
593 area->nr_free--;
594 zone->free_pages -= 1UL << order;
085cc7d5
NP
595 expand(zone, page, order, current_order, area);
596 return page;
1da177e4
LT
597 }
598
599 return NULL;
600}
601
602/*
603 * Obtain a specified number of elements from the buddy allocator, all under
604 * a single hold of the lock, for efficiency. Add them to the supplied list.
605 * Returns the number of new pages which were placed at *list.
606 */
607static int rmqueue_bulk(struct zone *zone, unsigned int order,
608 unsigned long count, struct list_head *list)
609{
1da177e4 610 int i;
1da177e4 611
c54ad30c 612 spin_lock(&zone->lock);
1da177e4 613 for (i = 0; i < count; ++i) {
085cc7d5
NP
614 struct page *page = __rmqueue(zone, order);
615 if (unlikely(page == NULL))
1da177e4 616 break;
1da177e4
LT
617 list_add_tail(&page->lru, list);
618 }
c54ad30c 619 spin_unlock(&zone->lock);
085cc7d5 620 return i;
1da177e4
LT
621}
622
4ae7c039 623#ifdef CONFIG_NUMA
8fce4d8e
CL
624/*
625 * Called from the slab reaper to drain pagesets on a particular node that
626 * belong to the currently executing processor.
879336c3
CL
627 * Note that this function must be called with the thread pinned to
628 * a single processor.
8fce4d8e
CL
629 */
630void drain_node_pages(int nodeid)
4ae7c039 631{
8fce4d8e 632 int i, z;
4ae7c039
CL
633 unsigned long flags;
634
8fce4d8e
CL
635 for (z = 0; z < MAX_NR_ZONES; z++) {
636 struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
4ae7c039
CL
637 struct per_cpu_pageset *pset;
638
23316bc8 639 pset = zone_pcp(zone, smp_processor_id());
4ae7c039
CL
640 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
641 struct per_cpu_pages *pcp;
642
643 pcp = &pset->pcp[i];
879336c3
CL
644 if (pcp->count) {
645 local_irq_save(flags);
646 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
647 pcp->count = 0;
648 local_irq_restore(flags);
649 }
4ae7c039
CL
650 }
651 }
4ae7c039
CL
652}
653#endif
654
1da177e4
LT
655#if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
656static void __drain_pages(unsigned int cpu)
657{
c54ad30c 658 unsigned long flags;
1da177e4
LT
659 struct zone *zone;
660 int i;
661
662 for_each_zone(zone) {
663 struct per_cpu_pageset *pset;
664
e7c8d5c9 665 pset = zone_pcp(zone, cpu);
1da177e4
LT
666 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
667 struct per_cpu_pages *pcp;
668
669 pcp = &pset->pcp[i];
c54ad30c 670 local_irq_save(flags);
48db57f8
NP
671 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
672 pcp->count = 0;
c54ad30c 673 local_irq_restore(flags);
1da177e4
LT
674 }
675 }
676}
677#endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
678
679#ifdef CONFIG_PM
680
681void mark_free_pages(struct zone *zone)
682{
683 unsigned long zone_pfn, flags;
684 int order;
685 struct list_head *curr;
686
687 if (!zone->spanned_pages)
688 return;
689
690 spin_lock_irqsave(&zone->lock, flags);
691 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
692 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
693
694 for (order = MAX_ORDER - 1; order >= 0; --order)
695 list_for_each(curr, &zone->free_area[order].free_list) {
696 unsigned long start_pfn, i;
697
698 start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
699
700 for (i=0; i < (1<<order); i++)
701 SetPageNosaveFree(pfn_to_page(start_pfn+i));
702 }
703 spin_unlock_irqrestore(&zone->lock, flags);
704}
705
706/*
707 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
708 */
709void drain_local_pages(void)
710{
711 unsigned long flags;
712
713 local_irq_save(flags);
714 __drain_pages(smp_processor_id());
715 local_irq_restore(flags);
716}
717#endif /* CONFIG_PM */
718
1da177e4
LT
719/*
720 * Free a 0-order page
721 */
1da177e4
LT
722static void fastcall free_hot_cold_page(struct page *page, int cold)
723{
724 struct zone *zone = page_zone(page);
725 struct per_cpu_pages *pcp;
726 unsigned long flags;
727
728 arch_free_page(page, 0);
729
1da177e4
LT
730 if (PageAnon(page))
731 page->mapping = NULL;
224abf92 732 if (free_pages_check(page))
689bcebf
HD
733 return;
734
689bcebf
HD
735 kernel_map_pages(page, 1, 0);
736
e7c8d5c9 737 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
1da177e4 738 local_irq_save(flags);
f8891e5e 739 __count_vm_event(PGFREE);
1da177e4
LT
740 list_add(&page->lru, &pcp->list);
741 pcp->count++;
48db57f8
NP
742 if (pcp->count >= pcp->high) {
743 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
744 pcp->count -= pcp->batch;
745 }
1da177e4
LT
746 local_irq_restore(flags);
747 put_cpu();
748}
749
750void fastcall free_hot_page(struct page *page)
751{
752 free_hot_cold_page(page, 0);
753}
754
755void fastcall free_cold_page(struct page *page)
756{
757 free_hot_cold_page(page, 1);
758}
759
8dfcc9ba
NP
760/*
761 * split_page takes a non-compound higher-order page, and splits it into
762 * n (1<<order) sub-pages: page[0..n]
763 * Each sub-page must be freed individually.
764 *
765 * Note: this is probably too low level an operation for use in drivers.
766 * Please consult with lkml before using this in your driver.
767 */
768void split_page(struct page *page, unsigned int order)
769{
770 int i;
771
725d704e
NP
772 VM_BUG_ON(PageCompound(page));
773 VM_BUG_ON(!page_count(page));
7835e98b
NP
774 for (i = 1; i < (1 << order); i++)
775 set_page_refcounted(page + i);
8dfcc9ba 776}
8dfcc9ba 777
1da177e4
LT
778/*
779 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
780 * we cheat by calling it from here, in the order > 0 path. Saves a branch
781 * or two.
782 */
a74609fa
NP
783static struct page *buffered_rmqueue(struct zonelist *zonelist,
784 struct zone *zone, int order, gfp_t gfp_flags)
1da177e4
LT
785{
786 unsigned long flags;
689bcebf 787 struct page *page;
1da177e4 788 int cold = !!(gfp_flags & __GFP_COLD);
a74609fa 789 int cpu;
1da177e4 790
689bcebf 791again:
a74609fa 792 cpu = get_cpu();
48db57f8 793 if (likely(order == 0)) {
1da177e4
LT
794 struct per_cpu_pages *pcp;
795
a74609fa 796 pcp = &zone_pcp(zone, cpu)->pcp[cold];
1da177e4 797 local_irq_save(flags);
a74609fa 798 if (!pcp->count) {
1da177e4
LT
799 pcp->count += rmqueue_bulk(zone, 0,
800 pcp->batch, &pcp->list);
a74609fa
NP
801 if (unlikely(!pcp->count))
802 goto failed;
1da177e4 803 }
a74609fa
NP
804 page = list_entry(pcp->list.next, struct page, lru);
805 list_del(&page->lru);
806 pcp->count--;
7fb1d9fc 807 } else {
1da177e4
LT
808 spin_lock_irqsave(&zone->lock, flags);
809 page = __rmqueue(zone, order);
a74609fa
NP
810 spin_unlock(&zone->lock);
811 if (!page)
812 goto failed;
1da177e4
LT
813 }
814
f8891e5e 815 __count_zone_vm_events(PGALLOC, zone, 1 << order);
ca889e6c 816 zone_statistics(zonelist, zone);
a74609fa
NP
817 local_irq_restore(flags);
818 put_cpu();
1da177e4 819
725d704e 820 VM_BUG_ON(bad_range(zone, page));
17cf4406 821 if (prep_new_page(page, order, gfp_flags))
a74609fa 822 goto again;
1da177e4 823 return page;
a74609fa
NP
824
825failed:
826 local_irq_restore(flags);
827 put_cpu();
828 return NULL;
1da177e4
LT
829}
830
7fb1d9fc 831#define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
3148890b
NP
832#define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
833#define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
834#define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
835#define ALLOC_HARDER 0x10 /* try to alloc harder */
836#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
837#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 838
1da177e4
LT
839/*
840 * Return 1 if free pages are above 'mark'. This takes into account the order
841 * of the allocation.
842 */
843int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 844 int classzone_idx, int alloc_flags)
1da177e4
LT
845{
846 /* free_pages my go negative - that's OK */
847 long min = mark, free_pages = z->free_pages - (1 << order) + 1;
848 int o;
849
7fb1d9fc 850 if (alloc_flags & ALLOC_HIGH)
1da177e4 851 min -= min / 2;
7fb1d9fc 852 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
853 min -= min / 4;
854
855 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
856 return 0;
857 for (o = 0; o < order; o++) {
858 /* At the next order, this order's pages become unavailable */
859 free_pages -= z->free_area[o].nr_free << o;
860
861 /* Require fewer higher order pages to be free */
862 min >>= 1;
863
864 if (free_pages <= min)
865 return 0;
866 }
867 return 1;
868}
869
7fb1d9fc
RS
870/*
871 * get_page_from_freeliest goes through the zonelist trying to allocate
872 * a page.
873 */
874static struct page *
875get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
876 struct zonelist *zonelist, int alloc_flags)
753ee728 877{
7fb1d9fc
RS
878 struct zone **z = zonelist->zones;
879 struct page *page = NULL;
880 int classzone_idx = zone_idx(*z);
881
882 /*
883 * Go through the zonelist once, looking for a zone with enough free.
884 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
885 */
886 do {
887 if ((alloc_flags & ALLOC_CPUSET) &&
888 !cpuset_zone_allowed(*z, gfp_mask))
889 continue;
890
891 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b
NP
892 unsigned long mark;
893 if (alloc_flags & ALLOC_WMARK_MIN)
894 mark = (*z)->pages_min;
895 else if (alloc_flags & ALLOC_WMARK_LOW)
896 mark = (*z)->pages_low;
897 else
898 mark = (*z)->pages_high;
899 if (!zone_watermark_ok(*z, order, mark,
7fb1d9fc 900 classzone_idx, alloc_flags))
9eeff239
CL
901 if (!zone_reclaim_mode ||
902 !zone_reclaim(*z, gfp_mask, order))
903 continue;
7fb1d9fc
RS
904 }
905
a74609fa 906 page = buffered_rmqueue(zonelist, *z, order, gfp_mask);
7fb1d9fc 907 if (page) {
7fb1d9fc
RS
908 break;
909 }
910 } while (*(++z) != NULL);
911 return page;
753ee728
MH
912}
913
1da177e4
LT
914/*
915 * This is the 'heart' of the zoned buddy allocator.
916 */
917struct page * fastcall
dd0fc66f 918__alloc_pages(gfp_t gfp_mask, unsigned int order,
1da177e4
LT
919 struct zonelist *zonelist)
920{
260b2367 921 const gfp_t wait = gfp_mask & __GFP_WAIT;
7fb1d9fc 922 struct zone **z;
1da177e4
LT
923 struct page *page;
924 struct reclaim_state reclaim_state;
925 struct task_struct *p = current;
1da177e4 926 int do_retry;
7fb1d9fc 927 int alloc_flags;
1da177e4
LT
928 int did_some_progress;
929
930 might_sleep_if(wait);
931
6b1de916 932restart:
7fb1d9fc 933 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1da177e4 934
7fb1d9fc 935 if (unlikely(*z == NULL)) {
1da177e4
LT
936 /* Should this ever happen?? */
937 return NULL;
938 }
6b1de916 939
7fb1d9fc 940 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 941 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
7fb1d9fc
RS
942 if (page)
943 goto got_pg;
1da177e4 944
6b1de916 945 do {
43b0bc00 946 wakeup_kswapd(*z, order);
6b1de916 947 } while (*(++z));
1da177e4 948
9bf2229f 949 /*
7fb1d9fc
RS
950 * OK, we're below the kswapd watermark and have kicked background
951 * reclaim. Now things get more complex, so set up alloc_flags according
952 * to how we want to proceed.
953 *
954 * The caller may dip into page reserves a bit more if the caller
955 * cannot run direct reclaim, or if the caller has realtime scheduling
4eac915d
PJ
956 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
957 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
9bf2229f 958 */
3148890b 959 alloc_flags = ALLOC_WMARK_MIN;
7fb1d9fc
RS
960 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
961 alloc_flags |= ALLOC_HARDER;
962 if (gfp_mask & __GFP_HIGH)
963 alloc_flags |= ALLOC_HIGH;
bdd804f4
PJ
964 if (wait)
965 alloc_flags |= ALLOC_CPUSET;
1da177e4
LT
966
967 /*
968 * Go through the zonelist again. Let __GFP_HIGH and allocations
7fb1d9fc 969 * coming from realtime tasks go deeper into reserves.
1da177e4
LT
970 *
971 * This is the last chance, in general, before the goto nopage.
972 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
9bf2229f 973 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1da177e4 974 */
7fb1d9fc
RS
975 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
976 if (page)
977 goto got_pg;
1da177e4
LT
978
979 /* This allocation should allow future memory freeing. */
b84a35be
NP
980
981 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
982 && !in_interrupt()) {
983 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
885036d3 984nofail_alloc:
b84a35be 985 /* go through the zonelist yet again, ignoring mins */
7fb1d9fc 986 page = get_page_from_freelist(gfp_mask, order,
47f3a867 987 zonelist, ALLOC_NO_WATERMARKS);
7fb1d9fc
RS
988 if (page)
989 goto got_pg;
885036d3
KK
990 if (gfp_mask & __GFP_NOFAIL) {
991 blk_congestion_wait(WRITE, HZ/50);
992 goto nofail_alloc;
993 }
1da177e4
LT
994 }
995 goto nopage;
996 }
997
998 /* Atomic allocations - we can't balance anything */
999 if (!wait)
1000 goto nopage;
1001
1002rebalance:
1003 cond_resched();
1004
1005 /* We now go into synchronous reclaim */
3e0d98b9 1006 cpuset_memory_pressure_bump();
1da177e4
LT
1007 p->flags |= PF_MEMALLOC;
1008 reclaim_state.reclaimed_slab = 0;
1009 p->reclaim_state = &reclaim_state;
1010
7fb1d9fc 1011 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1da177e4
LT
1012
1013 p->reclaim_state = NULL;
1014 p->flags &= ~PF_MEMALLOC;
1015
1016 cond_resched();
1017
1018 if (likely(did_some_progress)) {
7fb1d9fc
RS
1019 page = get_page_from_freelist(gfp_mask, order,
1020 zonelist, alloc_flags);
1021 if (page)
1022 goto got_pg;
1da177e4
LT
1023 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1024 /*
1025 * Go through the zonelist yet one more time, keep
1026 * very high watermark here, this is only to catch
1027 * a parallel oom killing, we must fail if we're still
1028 * under heavy pressure.
1029 */
7fb1d9fc 1030 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 1031 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
7fb1d9fc
RS
1032 if (page)
1033 goto got_pg;
1da177e4 1034
9b0f8b04 1035 out_of_memory(zonelist, gfp_mask, order);
1da177e4
LT
1036 goto restart;
1037 }
1038
1039 /*
1040 * Don't let big-order allocations loop unless the caller explicitly
1041 * requests that. Wait for some write requests to complete then retry.
1042 *
1043 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1044 * <= 3, but that may not be true in other implementations.
1045 */
1046 do_retry = 0;
1047 if (!(gfp_mask & __GFP_NORETRY)) {
1048 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1049 do_retry = 1;
1050 if (gfp_mask & __GFP_NOFAIL)
1051 do_retry = 1;
1052 }
1053 if (do_retry) {
1054 blk_congestion_wait(WRITE, HZ/50);
1055 goto rebalance;
1056 }
1057
1058nopage:
1059 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1060 printk(KERN_WARNING "%s: page allocation failure."
1061 " order:%d, mode:0x%x\n",
1062 p->comm, order, gfp_mask);
1063 dump_stack();
578c2fd6 1064 show_mem();
1da177e4 1065 }
1da177e4 1066got_pg:
1da177e4
LT
1067 return page;
1068}
1069
1070EXPORT_SYMBOL(__alloc_pages);
1071
1072/*
1073 * Common helper functions.
1074 */
dd0fc66f 1075fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4
LT
1076{
1077 struct page * page;
1078 page = alloc_pages(gfp_mask, order);
1079 if (!page)
1080 return 0;
1081 return (unsigned long) page_address(page);
1082}
1083
1084EXPORT_SYMBOL(__get_free_pages);
1085
dd0fc66f 1086fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4
LT
1087{
1088 struct page * page;
1089
1090 /*
1091 * get_zeroed_page() returns a 32-bit address, which cannot represent
1092 * a highmem page
1093 */
725d704e 1094 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1da177e4
LT
1095
1096 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1097 if (page)
1098 return (unsigned long) page_address(page);
1099 return 0;
1100}
1101
1102EXPORT_SYMBOL(get_zeroed_page);
1103
1104void __pagevec_free(struct pagevec *pvec)
1105{
1106 int i = pagevec_count(pvec);
1107
1108 while (--i >= 0)
1109 free_hot_cold_page(pvec->pages[i], pvec->cold);
1110}
1111
1112fastcall void __free_pages(struct page *page, unsigned int order)
1113{
b5810039 1114 if (put_page_testzero(page)) {
1da177e4
LT
1115 if (order == 0)
1116 free_hot_page(page);
1117 else
1118 __free_pages_ok(page, order);
1119 }
1120}
1121
1122EXPORT_SYMBOL(__free_pages);
1123
1124fastcall void free_pages(unsigned long addr, unsigned int order)
1125{
1126 if (addr != 0) {
725d704e 1127 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
1128 __free_pages(virt_to_page((void *)addr), order);
1129 }
1130}
1131
1132EXPORT_SYMBOL(free_pages);
1133
1134/*
1135 * Total amount of free (allocatable) RAM:
1136 */
1137unsigned int nr_free_pages(void)
1138{
1139 unsigned int sum = 0;
1140 struct zone *zone;
1141
1142 for_each_zone(zone)
1143 sum += zone->free_pages;
1144
1145 return sum;
1146}
1147
1148EXPORT_SYMBOL(nr_free_pages);
1149
1150#ifdef CONFIG_NUMA
1151unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1152{
1153 unsigned int i, sum = 0;
1154
1155 for (i = 0; i < MAX_NR_ZONES; i++)
1156 sum += pgdat->node_zones[i].free_pages;
1157
1158 return sum;
1159}
1160#endif
1161
1162static unsigned int nr_free_zone_pages(int offset)
1163{
e310fd43
MB
1164 /* Just pick one node, since fallback list is circular */
1165 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1da177e4
LT
1166 unsigned int sum = 0;
1167
e310fd43
MB
1168 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1169 struct zone **zonep = zonelist->zones;
1170 struct zone *zone;
1da177e4 1171
e310fd43
MB
1172 for (zone = *zonep++; zone; zone = *zonep++) {
1173 unsigned long size = zone->present_pages;
1174 unsigned long high = zone->pages_high;
1175 if (size > high)
1176 sum += size - high;
1da177e4
LT
1177 }
1178
1179 return sum;
1180}
1181
1182/*
1183 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1184 */
1185unsigned int nr_free_buffer_pages(void)
1186{
af4ca457 1187 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4
LT
1188}
1189
1190/*
1191 * Amount of free RAM allocatable within all zones
1192 */
1193unsigned int nr_free_pagecache_pages(void)
1194{
af4ca457 1195 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1da177e4 1196}
1da177e4
LT
1197#ifdef CONFIG_NUMA
1198static void show_node(struct zone *zone)
1199{
1200 printk("Node %d ", zone->zone_pgdat->node_id);
1201}
1202#else
1203#define show_node(zone) do { } while (0)
1204#endif
1205
1da177e4
LT
1206void si_meminfo(struct sysinfo *val)
1207{
1208 val->totalram = totalram_pages;
1209 val->sharedram = 0;
1210 val->freeram = nr_free_pages();
1211 val->bufferram = nr_blockdev_pages();
1da177e4
LT
1212 val->totalhigh = totalhigh_pages;
1213 val->freehigh = nr_free_highpages();
1da177e4
LT
1214 val->mem_unit = PAGE_SIZE;
1215}
1216
1217EXPORT_SYMBOL(si_meminfo);
1218
1219#ifdef CONFIG_NUMA
1220void si_meminfo_node(struct sysinfo *val, int nid)
1221{
1222 pg_data_t *pgdat = NODE_DATA(nid);
1223
1224 val->totalram = pgdat->node_present_pages;
1225 val->freeram = nr_free_pages_pgdat(pgdat);
98d2b0eb 1226#ifdef CONFIG_HIGHMEM
1da177e4
LT
1227 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1228 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
98d2b0eb
CL
1229#else
1230 val->totalhigh = 0;
1231 val->freehigh = 0;
1232#endif
1da177e4
LT
1233 val->mem_unit = PAGE_SIZE;
1234}
1235#endif
1236
1237#define K(x) ((x) << (PAGE_SHIFT-10))
1238
1239/*
1240 * Show free area list (used inside shift_scroll-lock stuff)
1241 * We also calculate the percentage fragmentation. We do this by counting the
1242 * memory on each free list with the exception of the first item on the list.
1243 */
1244void show_free_areas(void)
1245{
1da177e4
LT
1246 int cpu, temperature;
1247 unsigned long active;
1248 unsigned long inactive;
1249 unsigned long free;
1250 struct zone *zone;
1251
1252 for_each_zone(zone) {
1253 show_node(zone);
1254 printk("%s per-cpu:", zone->name);
1255
f3fe6512 1256 if (!populated_zone(zone)) {
1da177e4
LT
1257 printk(" empty\n");
1258 continue;
1259 } else
1260 printk("\n");
1261
6b482c67 1262 for_each_online_cpu(cpu) {
1da177e4
LT
1263 struct per_cpu_pageset *pageset;
1264
e7c8d5c9 1265 pageset = zone_pcp(zone, cpu);
1da177e4
LT
1266
1267 for (temperature = 0; temperature < 2; temperature++)
2d92c5c9 1268 printk("cpu %d %s: high %d, batch %d used:%d\n",
1da177e4
LT
1269 cpu,
1270 temperature ? "cold" : "hot",
1da177e4 1271 pageset->pcp[temperature].high,
4ae7c039
CL
1272 pageset->pcp[temperature].batch,
1273 pageset->pcp[temperature].count);
1da177e4
LT
1274 }
1275 }
1276
1da177e4
LT
1277 get_zone_counts(&active, &inactive, &free);
1278
1da177e4
LT
1279 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1280 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1281 active,
1282 inactive,
b1e7a8fd 1283 global_page_state(NR_FILE_DIRTY),
ce866b34 1284 global_page_state(NR_WRITEBACK),
fd39fc85 1285 global_page_state(NR_UNSTABLE_NFS),
1da177e4 1286 nr_free_pages(),
9a865ffa 1287 global_page_state(NR_SLAB),
65ba55f5 1288 global_page_state(NR_FILE_MAPPED),
df849a15 1289 global_page_state(NR_PAGETABLE));
1da177e4
LT
1290
1291 for_each_zone(zone) {
1292 int i;
1293
1294 show_node(zone);
1295 printk("%s"
1296 " free:%lukB"
1297 " min:%lukB"
1298 " low:%lukB"
1299 " high:%lukB"
1300 " active:%lukB"
1301 " inactive:%lukB"
1302 " present:%lukB"
1303 " pages_scanned:%lu"
1304 " all_unreclaimable? %s"
1305 "\n",
1306 zone->name,
1307 K(zone->free_pages),
1308 K(zone->pages_min),
1309 K(zone->pages_low),
1310 K(zone->pages_high),
1311 K(zone->nr_active),
1312 K(zone->nr_inactive),
1313 K(zone->present_pages),
1314 zone->pages_scanned,
1315 (zone->all_unreclaimable ? "yes" : "no")
1316 );
1317 printk("lowmem_reserve[]:");
1318 for (i = 0; i < MAX_NR_ZONES; i++)
1319 printk(" %lu", zone->lowmem_reserve[i]);
1320 printk("\n");
1321 }
1322
1323 for_each_zone(zone) {
8f9de51a 1324 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4
LT
1325
1326 show_node(zone);
1327 printk("%s: ", zone->name);
f3fe6512 1328 if (!populated_zone(zone)) {
1da177e4
LT
1329 printk("empty\n");
1330 continue;
1331 }
1332
1333 spin_lock_irqsave(&zone->lock, flags);
1334 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
1335 nr[order] = zone->free_area[order].nr_free;
1336 total += nr[order] << order;
1da177e4
LT
1337 }
1338 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
1339 for (order = 0; order < MAX_ORDER; order++)
1340 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
1341 printk("= %lukB\n", K(total));
1342 }
1343
1344 show_swap_cache_info();
1345}
1346
1347/*
1348 * Builds allocation fallback zone lists.
1a93205b
CL
1349 *
1350 * Add all populated zones of a node to the zonelist.
1da177e4 1351 */
86356ab1 1352static int __meminit build_zonelists_node(pg_data_t *pgdat,
070f8032 1353 struct zonelist *zonelist, int nr_zones, int zone_type)
1da177e4 1354{
1a93205b
CL
1355 struct zone *zone;
1356
98d2b0eb 1357 BUG_ON(zone_type >= MAX_NR_ZONES);
02a68a5e
CL
1358
1359 do {
070f8032 1360 zone = pgdat->node_zones + zone_type;
1a93205b 1361 if (populated_zone(zone)) {
070f8032
CL
1362 zonelist->zones[nr_zones++] = zone;
1363 check_highest_zone(zone_type);
1da177e4 1364 }
070f8032 1365 zone_type--;
02a68a5e 1366
070f8032
CL
1367 } while (zone_type >= 0);
1368 return nr_zones;
1da177e4
LT
1369}
1370
260b2367
AV
1371static inline int highest_zone(int zone_bits)
1372{
1373 int res = ZONE_NORMAL;
1374 if (zone_bits & (__force int)__GFP_HIGHMEM)
1375 res = ZONE_HIGHMEM;
a2f1b424
AK
1376 if (zone_bits & (__force int)__GFP_DMA32)
1377 res = ZONE_DMA32;
260b2367
AV
1378 if (zone_bits & (__force int)__GFP_DMA)
1379 res = ZONE_DMA;
1380 return res;
1381}
1382
1da177e4
LT
1383#ifdef CONFIG_NUMA
1384#define MAX_NODE_LOAD (num_online_nodes())
86356ab1 1385static int __meminitdata node_load[MAX_NUMNODES];
1da177e4 1386/**
4dc3b16b 1387 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
1388 * @node: node whose fallback list we're appending
1389 * @used_node_mask: nodemask_t of already used nodes
1390 *
1391 * We use a number of factors to determine which is the next node that should
1392 * appear on a given node's fallback list. The node should not have appeared
1393 * already in @node's fallback list, and it should be the next closest node
1394 * according to the distance array (which contains arbitrary distance values
1395 * from each node to each node in the system), and should also prefer nodes
1396 * with no CPUs, since presumably they'll have very little allocation pressure
1397 * on them otherwise.
1398 * It returns -1 if no node is found.
1399 */
86356ab1 1400static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 1401{
4cf808eb 1402 int n, val;
1da177e4
LT
1403 int min_val = INT_MAX;
1404 int best_node = -1;
1405
4cf808eb
LT
1406 /* Use the local node if we haven't already */
1407 if (!node_isset(node, *used_node_mask)) {
1408 node_set(node, *used_node_mask);
1409 return node;
1410 }
1da177e4 1411
4cf808eb
LT
1412 for_each_online_node(n) {
1413 cpumask_t tmp;
1da177e4
LT
1414
1415 /* Don't want a node to appear more than once */
1416 if (node_isset(n, *used_node_mask))
1417 continue;
1418
1da177e4
LT
1419 /* Use the distance array to find the distance */
1420 val = node_distance(node, n);
1421
4cf808eb
LT
1422 /* Penalize nodes under us ("prefer the next node") */
1423 val += (n < node);
1424
1da177e4
LT
1425 /* Give preference to headless and unused nodes */
1426 tmp = node_to_cpumask(n);
1427 if (!cpus_empty(tmp))
1428 val += PENALTY_FOR_NODE_WITH_CPUS;
1429
1430 /* Slight preference for less loaded node */
1431 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1432 val += node_load[n];
1433
1434 if (val < min_val) {
1435 min_val = val;
1436 best_node = n;
1437 }
1438 }
1439
1440 if (best_node >= 0)
1441 node_set(best_node, *used_node_mask);
1442
1443 return best_node;
1444}
1445
86356ab1 1446static void __meminit build_zonelists(pg_data_t *pgdat)
1da177e4
LT
1447{
1448 int i, j, k, node, local_node;
1449 int prev_node, load;
1450 struct zonelist *zonelist;
1451 nodemask_t used_mask;
1452
1453 /* initialize zonelists */
1454 for (i = 0; i < GFP_ZONETYPES; i++) {
1455 zonelist = pgdat->node_zonelists + i;
1456 zonelist->zones[0] = NULL;
1457 }
1458
1459 /* NUMA-aware ordering of nodes */
1460 local_node = pgdat->node_id;
1461 load = num_online_nodes();
1462 prev_node = local_node;
1463 nodes_clear(used_mask);
1464 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
1465 int distance = node_distance(local_node, node);
1466
1467 /*
1468 * If another node is sufficiently far away then it is better
1469 * to reclaim pages in a zone before going off node.
1470 */
1471 if (distance > RECLAIM_DISTANCE)
1472 zone_reclaim_mode = 1;
1473
1da177e4
LT
1474 /*
1475 * We don't want to pressure a particular node.
1476 * So adding penalty to the first node in same
1477 * distance group to make it round-robin.
1478 */
9eeff239
CL
1479
1480 if (distance != node_distance(local_node, prev_node))
1da177e4
LT
1481 node_load[node] += load;
1482 prev_node = node;
1483 load--;
1484 for (i = 0; i < GFP_ZONETYPES; i++) {
1485 zonelist = pgdat->node_zonelists + i;
1486 for (j = 0; zonelist->zones[j] != NULL; j++);
1487
260b2367 1488 k = highest_zone(i);
1da177e4
LT
1489
1490 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1491 zonelist->zones[j] = NULL;
1492 }
1493 }
1494}
1495
1496#else /* CONFIG_NUMA */
1497
86356ab1 1498static void __meminit build_zonelists(pg_data_t *pgdat)
1da177e4 1499{
2f1b6248
CL
1500 int i, node, local_node;
1501 enum zone_type k;
1502 enum zone_type j;
1da177e4
LT
1503
1504 local_node = pgdat->node_id;
1505 for (i = 0; i < GFP_ZONETYPES; i++) {
1506 struct zonelist *zonelist;
1507
1508 zonelist = pgdat->node_zonelists + i;
1509
1510 j = 0;
260b2367 1511 k = highest_zone(i);
1da177e4
LT
1512 j = build_zonelists_node(pgdat, zonelist, j, k);
1513 /*
1514 * Now we build the zonelist so that it contains the zones
1515 * of all the other nodes.
1516 * We don't want to pressure a particular node, so when
1517 * building the zones for node N, we make sure that the
1518 * zones coming right after the local ones are those from
1519 * node N+1 (modulo N)
1520 */
1521 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1522 if (!node_online(node))
1523 continue;
1524 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1525 }
1526 for (node = 0; node < local_node; node++) {
1527 if (!node_online(node))
1528 continue;
1529 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1530 }
1531
1532 zonelist->zones[j] = NULL;
1533 }
1534}
1535
1536#endif /* CONFIG_NUMA */
1537
6811378e
YG
1538/* return values int ....just for stop_machine_run() */
1539static int __meminit __build_all_zonelists(void *dummy)
1da177e4 1540{
6811378e
YG
1541 int nid;
1542 for_each_online_node(nid)
1543 build_zonelists(NODE_DATA(nid));
1544 return 0;
1545}
1546
1547void __meminit build_all_zonelists(void)
1548{
1549 if (system_state == SYSTEM_BOOTING) {
1550 __build_all_zonelists(0);
1551 cpuset_init_current_mems_allowed();
1552 } else {
1553 /* we have to stop all cpus to guaranntee there is no user
1554 of zonelist */
1555 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
1556 /* cpuset refresh routine should be here */
1557 }
bd1e22b8
AM
1558 vm_total_pages = nr_free_pagecache_pages();
1559 printk("Built %i zonelists. Total pages: %ld\n",
1560 num_online_nodes(), vm_total_pages);
1da177e4
LT
1561}
1562
1563/*
1564 * Helper functions to size the waitqueue hash table.
1565 * Essentially these want to choose hash table sizes sufficiently
1566 * large so that collisions trying to wait on pages are rare.
1567 * But in fact, the number of active page waitqueues on typical
1568 * systems is ridiculously low, less than 200. So this is even
1569 * conservative, even though it seems large.
1570 *
1571 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1572 * waitqueues, i.e. the size of the waitq table given the number of pages.
1573 */
1574#define PAGES_PER_WAITQUEUE 256
1575
cca448fe 1576#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 1577static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
1578{
1579 unsigned long size = 1;
1580
1581 pages /= PAGES_PER_WAITQUEUE;
1582
1583 while (size < pages)
1584 size <<= 1;
1585
1586 /*
1587 * Once we have dozens or even hundreds of threads sleeping
1588 * on IO we've got bigger problems than wait queue collision.
1589 * Limit the size of the wait table to a reasonable size.
1590 */
1591 size = min(size, 4096UL);
1592
1593 return max(size, 4UL);
1594}
cca448fe
YG
1595#else
1596/*
1597 * A zone's size might be changed by hot-add, so it is not possible to determine
1598 * a suitable size for its wait_table. So we use the maximum size now.
1599 *
1600 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
1601 *
1602 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
1603 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
1604 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
1605 *
1606 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
1607 * or more by the traditional way. (See above). It equals:
1608 *
1609 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
1610 * ia64(16K page size) : = ( 8G + 4M)byte.
1611 * powerpc (64K page size) : = (32G +16M)byte.
1612 */
1613static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1614{
1615 return 4096UL;
1616}
1617#endif
1da177e4
LT
1618
1619/*
1620 * This is an integer logarithm so that shifts can be used later
1621 * to extract the more random high bits from the multiplicative
1622 * hash function before the remainder is taken.
1623 */
1624static inline unsigned long wait_table_bits(unsigned long size)
1625{
1626 return ffz(~size);
1627}
1628
1629#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1630
1631static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1632 unsigned long *zones_size, unsigned long *zholes_size)
1633{
1634 unsigned long realtotalpages, totalpages = 0;
1635 int i;
1636
1637 for (i = 0; i < MAX_NR_ZONES; i++)
1638 totalpages += zones_size[i];
1639 pgdat->node_spanned_pages = totalpages;
1640
1641 realtotalpages = totalpages;
1642 if (zholes_size)
1643 for (i = 0; i < MAX_NR_ZONES; i++)
1644 realtotalpages -= zholes_size[i];
1645 pgdat->node_present_pages = realtotalpages;
1646 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1647}
1648
1649
1650/*
1651 * Initially all pages are reserved - free ones are freed
1652 * up by free_all_bootmem() once the early boot process is
1653 * done. Non-atomic initialization, single-pass.
1654 */
c09b4240 1655void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1da177e4
LT
1656 unsigned long start_pfn)
1657{
1da177e4 1658 struct page *page;
29751f69
AW
1659 unsigned long end_pfn = start_pfn + size;
1660 unsigned long pfn;
1da177e4 1661
cbe8dd4a 1662 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
d41dee36
AW
1663 if (!early_pfn_valid(pfn))
1664 continue;
1665 page = pfn_to_page(pfn);
1666 set_page_links(page, zone, nid, pfn);
7835e98b 1667 init_page_count(page);
1da177e4
LT
1668 reset_page_mapcount(page);
1669 SetPageReserved(page);
1670 INIT_LIST_HEAD(&page->lru);
1671#ifdef WANT_PAGE_VIRTUAL
1672 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1673 if (!is_highmem_idx(zone))
3212c6be 1674 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 1675#endif
1da177e4
LT
1676 }
1677}
1678
1679void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1680 unsigned long size)
1681{
1682 int order;
1683 for (order = 0; order < MAX_ORDER ; order++) {
1684 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1685 zone->free_area[order].nr_free = 0;
1686 }
1687}
1688
d41dee36 1689#define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
2f1b6248
CL
1690void zonetable_add(struct zone *zone, int nid, enum zone_type zid,
1691 unsigned long pfn, unsigned long size)
d41dee36
AW
1692{
1693 unsigned long snum = pfn_to_section_nr(pfn);
1694 unsigned long end = pfn_to_section_nr(pfn + size);
1695
1696 if (FLAGS_HAS_NODE)
1697 zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1698 else
1699 for (; snum <= end; snum++)
1700 zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1701}
1702
1da177e4
LT
1703#ifndef __HAVE_ARCH_MEMMAP_INIT
1704#define memmap_init(size, nid, zone, start_pfn) \
1705 memmap_init_zone((size), (nid), (zone), (start_pfn))
1706#endif
1707
6292d9aa 1708static int __cpuinit zone_batchsize(struct zone *zone)
e7c8d5c9
CL
1709{
1710 int batch;
1711
1712 /*
1713 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 1714 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
1715 *
1716 * OK, so we don't know how big the cache is. So guess.
1717 */
1718 batch = zone->present_pages / 1024;
ba56e91c
SR
1719 if (batch * PAGE_SIZE > 512 * 1024)
1720 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
1721 batch /= 4; /* We effectively *= 4 below */
1722 if (batch < 1)
1723 batch = 1;
1724
1725 /*
0ceaacc9
NP
1726 * Clamp the batch to a 2^n - 1 value. Having a power
1727 * of 2 value was found to be more likely to have
1728 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 1729 *
0ceaacc9
NP
1730 * For example if 2 tasks are alternately allocating
1731 * batches of pages, one task can end up with a lot
1732 * of pages of one half of the possible page colors
1733 * and the other with pages of the other colors.
e7c8d5c9 1734 */
0ceaacc9 1735 batch = (1 << (fls(batch + batch/2)-1)) - 1;
ba56e91c 1736
e7c8d5c9
CL
1737 return batch;
1738}
1739
2caaad41
CL
1740inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1741{
1742 struct per_cpu_pages *pcp;
1743
1c6fe946
MD
1744 memset(p, 0, sizeof(*p));
1745
2caaad41
CL
1746 pcp = &p->pcp[0]; /* hot */
1747 pcp->count = 0;
2caaad41
CL
1748 pcp->high = 6 * batch;
1749 pcp->batch = max(1UL, 1 * batch);
1750 INIT_LIST_HEAD(&pcp->list);
1751
1752 pcp = &p->pcp[1]; /* cold*/
1753 pcp->count = 0;
2caaad41 1754 pcp->high = 2 * batch;
e46a5e28 1755 pcp->batch = max(1UL, batch/2);
2caaad41
CL
1756 INIT_LIST_HEAD(&pcp->list);
1757}
1758
8ad4b1fb
RS
1759/*
1760 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1761 * to the value high for the pageset p.
1762 */
1763
1764static void setup_pagelist_highmark(struct per_cpu_pageset *p,
1765 unsigned long high)
1766{
1767 struct per_cpu_pages *pcp;
1768
1769 pcp = &p->pcp[0]; /* hot list */
1770 pcp->high = high;
1771 pcp->batch = max(1UL, high/4);
1772 if ((high/4) > (PAGE_SHIFT * 8))
1773 pcp->batch = PAGE_SHIFT * 8;
1774}
1775
1776
e7c8d5c9
CL
1777#ifdef CONFIG_NUMA
1778/*
2caaad41
CL
1779 * Boot pageset table. One per cpu which is going to be used for all
1780 * zones and all nodes. The parameters will be set in such a way
1781 * that an item put on a list will immediately be handed over to
1782 * the buddy list. This is safe since pageset manipulation is done
1783 * with interrupts disabled.
1784 *
1785 * Some NUMA counter updates may also be caught by the boot pagesets.
b7c84c6a
CL
1786 *
1787 * The boot_pagesets must be kept even after bootup is complete for
1788 * unused processors and/or zones. They do play a role for bootstrapping
1789 * hotplugged processors.
1790 *
1791 * zoneinfo_show() and maybe other functions do
1792 * not check if the processor is online before following the pageset pointer.
1793 * Other parts of the kernel may not check if the zone is available.
2caaad41 1794 */
88a2a4ac 1795static struct per_cpu_pageset boot_pageset[NR_CPUS];
2caaad41
CL
1796
1797/*
1798 * Dynamically allocate memory for the
e7c8d5c9
CL
1799 * per cpu pageset array in struct zone.
1800 */
6292d9aa 1801static int __cpuinit process_zones(int cpu)
e7c8d5c9
CL
1802{
1803 struct zone *zone, *dzone;
e7c8d5c9
CL
1804
1805 for_each_zone(zone) {
e7c8d5c9 1806
23316bc8 1807 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
e7c8d5c9 1808 GFP_KERNEL, cpu_to_node(cpu));
23316bc8 1809 if (!zone_pcp(zone, cpu))
e7c8d5c9 1810 goto bad;
e7c8d5c9 1811
23316bc8 1812 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
8ad4b1fb
RS
1813
1814 if (percpu_pagelist_fraction)
1815 setup_pagelist_highmark(zone_pcp(zone, cpu),
1816 (zone->present_pages / percpu_pagelist_fraction));
e7c8d5c9
CL
1817 }
1818
1819 return 0;
1820bad:
1821 for_each_zone(dzone) {
1822 if (dzone == zone)
1823 break;
23316bc8
NP
1824 kfree(zone_pcp(dzone, cpu));
1825 zone_pcp(dzone, cpu) = NULL;
e7c8d5c9
CL
1826 }
1827 return -ENOMEM;
1828}
1829
1830static inline void free_zone_pagesets(int cpu)
1831{
e7c8d5c9
CL
1832 struct zone *zone;
1833
1834 for_each_zone(zone) {
1835 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1836
f3ef9ead
DR
1837 /* Free per_cpu_pageset if it is slab allocated */
1838 if (pset != &boot_pageset[cpu])
1839 kfree(pset);
e7c8d5c9 1840 zone_pcp(zone, cpu) = NULL;
e7c8d5c9 1841 }
e7c8d5c9
CL
1842}
1843
9c7b216d 1844static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
e7c8d5c9
CL
1845 unsigned long action,
1846 void *hcpu)
1847{
1848 int cpu = (long)hcpu;
1849 int ret = NOTIFY_OK;
1850
1851 switch (action) {
1852 case CPU_UP_PREPARE:
1853 if (process_zones(cpu))
1854 ret = NOTIFY_BAD;
1855 break;
b0d41693 1856 case CPU_UP_CANCELED:
e7c8d5c9
CL
1857 case CPU_DEAD:
1858 free_zone_pagesets(cpu);
1859 break;
e7c8d5c9
CL
1860 default:
1861 break;
1862 }
1863 return ret;
1864}
1865
74b85f37 1866static struct notifier_block __cpuinitdata pageset_notifier =
e7c8d5c9
CL
1867 { &pageset_cpuup_callback, NULL, 0 };
1868
78d9955b 1869void __init setup_per_cpu_pageset(void)
e7c8d5c9
CL
1870{
1871 int err;
1872
1873 /* Initialize per_cpu_pageset for cpu 0.
1874 * A cpuup callback will do this for every cpu
1875 * as it comes online
1876 */
1877 err = process_zones(smp_processor_id());
1878 BUG_ON(err);
1879 register_cpu_notifier(&pageset_notifier);
1880}
1881
1882#endif
1883
c09b4240 1884static __meminit
cca448fe 1885int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
1886{
1887 int i;
1888 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 1889 size_t alloc_size;
ed8ece2e
DH
1890
1891 /*
1892 * The per-page waitqueue mechanism uses hashed waitqueues
1893 * per zone.
1894 */
02b694de
YG
1895 zone->wait_table_hash_nr_entries =
1896 wait_table_hash_nr_entries(zone_size_pages);
1897 zone->wait_table_bits =
1898 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
1899 alloc_size = zone->wait_table_hash_nr_entries
1900 * sizeof(wait_queue_head_t);
1901
1902 if (system_state == SYSTEM_BOOTING) {
1903 zone->wait_table = (wait_queue_head_t *)
1904 alloc_bootmem_node(pgdat, alloc_size);
1905 } else {
1906 /*
1907 * This case means that a zone whose size was 0 gets new memory
1908 * via memory hot-add.
1909 * But it may be the case that a new node was hot-added. In
1910 * this case vmalloc() will not be able to use this new node's
1911 * memory - this wait_table must be initialized to use this new
1912 * node itself as well.
1913 * To use this new node's memory, further consideration will be
1914 * necessary.
1915 */
1916 zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
1917 }
1918 if (!zone->wait_table)
1919 return -ENOMEM;
ed8ece2e 1920
02b694de 1921 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 1922 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
1923
1924 return 0;
ed8ece2e
DH
1925}
1926
c09b4240 1927static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e
DH
1928{
1929 int cpu;
1930 unsigned long batch = zone_batchsize(zone);
1931
1932 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1933#ifdef CONFIG_NUMA
1934 /* Early boot. Slab allocator not functional yet */
23316bc8 1935 zone_pcp(zone, cpu) = &boot_pageset[cpu];
ed8ece2e
DH
1936 setup_pageset(&boot_pageset[cpu],0);
1937#else
1938 setup_pageset(zone_pcp(zone,cpu), batch);
1939#endif
1940 }
f5335c0f
AB
1941 if (zone->present_pages)
1942 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
1943 zone->name, zone->present_pages, batch);
ed8ece2e
DH
1944}
1945
718127cc
YG
1946__meminit int init_currently_empty_zone(struct zone *zone,
1947 unsigned long zone_start_pfn,
1948 unsigned long size)
ed8ece2e
DH
1949{
1950 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
1951 int ret;
1952 ret = zone_wait_table_init(zone, size);
1953 if (ret)
1954 return ret;
ed8ece2e
DH
1955 pgdat->nr_zones = zone_idx(zone) + 1;
1956
ed8ece2e
DH
1957 zone->zone_start_pfn = zone_start_pfn;
1958
1959 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
1960
1961 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
718127cc
YG
1962
1963 return 0;
ed8ece2e
DH
1964}
1965
1da177e4
LT
1966/*
1967 * Set up the zone data structures:
1968 * - mark all pages reserved
1969 * - mark all memory queues empty
1970 * - clear the memory bitmaps
1971 */
86356ab1 1972static void __meminit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
1973 unsigned long *zones_size, unsigned long *zholes_size)
1974{
2f1b6248 1975 enum zone_type j;
ed8ece2e 1976 int nid = pgdat->node_id;
1da177e4 1977 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 1978 int ret;
1da177e4 1979
208d54e5 1980 pgdat_resize_init(pgdat);
1da177e4
LT
1981 pgdat->nr_zones = 0;
1982 init_waitqueue_head(&pgdat->kswapd_wait);
1983 pgdat->kswapd_max_order = 0;
1984
1985 for (j = 0; j < MAX_NR_ZONES; j++) {
1986 struct zone *zone = pgdat->node_zones + j;
1987 unsigned long size, realsize;
1da177e4 1988
1da177e4
LT
1989 realsize = size = zones_size[j];
1990 if (zholes_size)
1991 realsize -= zholes_size[j];
1992
98d2b0eb 1993 if (!is_highmem_idx(j))
1da177e4
LT
1994 nr_kernel_pages += realsize;
1995 nr_all_pages += realsize;
1996
1997 zone->spanned_pages = size;
1998 zone->present_pages = realsize;
9614634f
CL
1999#ifdef CONFIG_NUMA
2000 zone->min_unmapped_ratio = (realsize*sysctl_min_unmapped_ratio)
2001 / 100;
2002#endif
1da177e4
LT
2003 zone->name = zone_names[j];
2004 spin_lock_init(&zone->lock);
2005 spin_lock_init(&zone->lru_lock);
bdc8cb98 2006 zone_seqlock_init(zone);
1da177e4
LT
2007 zone->zone_pgdat = pgdat;
2008 zone->free_pages = 0;
2009
2010 zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2011
ed8ece2e 2012 zone_pcp_init(zone);
1da177e4
LT
2013 INIT_LIST_HEAD(&zone->active_list);
2014 INIT_LIST_HEAD(&zone->inactive_list);
2015 zone->nr_scan_active = 0;
2016 zone->nr_scan_inactive = 0;
2017 zone->nr_active = 0;
2018 zone->nr_inactive = 0;
2244b95a 2019 zap_zone_vm_stats(zone);
53e9a615 2020 atomic_set(&zone->reclaim_in_progress, 0);
1da177e4
LT
2021 if (!size)
2022 continue;
2023
d41dee36 2024 zonetable_add(zone, nid, j, zone_start_pfn, size);
718127cc
YG
2025 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
2026 BUG_ON(ret);
1da177e4 2027 zone_start_pfn += size;
1da177e4
LT
2028 }
2029}
2030
2031static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2032{
1da177e4
LT
2033 /* Skip empty nodes */
2034 if (!pgdat->node_spanned_pages)
2035 return;
2036
d41dee36 2037#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
2038 /* ia64 gets its own node_mem_map, before this, without bootmem */
2039 if (!pgdat->node_mem_map) {
e984bb43 2040 unsigned long size, start, end;
d41dee36
AW
2041 struct page *map;
2042
e984bb43
BP
2043 /*
2044 * The zone's endpoints aren't required to be MAX_ORDER
2045 * aligned but the node_mem_map endpoints must be in order
2046 * for the buddy allocator to function correctly.
2047 */
2048 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
2049 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
2050 end = ALIGN(end, MAX_ORDER_NR_PAGES);
2051 size = (end - start) * sizeof(struct page);
6f167ec7
DH
2052 map = alloc_remap(pgdat->node_id, size);
2053 if (!map)
2054 map = alloc_bootmem_node(pgdat, size);
e984bb43 2055 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 2056 }
d41dee36 2057#ifdef CONFIG_FLATMEM
1da177e4
LT
2058 /*
2059 * With no DISCONTIG, the global mem_map is just set as node 0's
2060 */
2061 if (pgdat == NODE_DATA(0))
2062 mem_map = NODE_DATA(0)->node_mem_map;
2063#endif
d41dee36 2064#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
2065}
2066
86356ab1 2067void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
1da177e4
LT
2068 unsigned long *zones_size, unsigned long node_start_pfn,
2069 unsigned long *zholes_size)
2070{
2071 pgdat->node_id = nid;
2072 pgdat->node_start_pfn = node_start_pfn;
2073 calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2074
2075 alloc_node_mem_map(pgdat);
2076
2077 free_area_init_core(pgdat, zones_size, zholes_size);
2078}
2079
93b7504e 2080#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
2081static bootmem_data_t contig_bootmem_data;
2082struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2083
2084EXPORT_SYMBOL(contig_page_data);
93b7504e 2085#endif
1da177e4
LT
2086
2087void __init free_area_init(unsigned long *zones_size)
2088{
93b7504e 2089 free_area_init_node(0, NODE_DATA(0), zones_size,
1da177e4
LT
2090 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2091}
1da177e4 2092
1da177e4
LT
2093#ifdef CONFIG_HOTPLUG_CPU
2094static int page_alloc_cpu_notify(struct notifier_block *self,
2095 unsigned long action, void *hcpu)
2096{
2097 int cpu = (unsigned long)hcpu;
1da177e4
LT
2098
2099 if (action == CPU_DEAD) {
1da177e4
LT
2100 local_irq_disable();
2101 __drain_pages(cpu);
f8891e5e 2102 vm_events_fold_cpu(cpu);
1da177e4 2103 local_irq_enable();
2244b95a 2104 refresh_cpu_vm_stats(cpu);
1da177e4
LT
2105 }
2106 return NOTIFY_OK;
2107}
2108#endif /* CONFIG_HOTPLUG_CPU */
2109
2110void __init page_alloc_init(void)
2111{
2112 hotcpu_notifier(page_alloc_cpu_notify, 0);
2113}
2114
cb45b0e9
HA
2115/*
2116 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
2117 * or min_free_kbytes changes.
2118 */
2119static void calculate_totalreserve_pages(void)
2120{
2121 struct pglist_data *pgdat;
2122 unsigned long reserve_pages = 0;
2123 int i, j;
2124
2125 for_each_online_pgdat(pgdat) {
2126 for (i = 0; i < MAX_NR_ZONES; i++) {
2127 struct zone *zone = pgdat->node_zones + i;
2128 unsigned long max = 0;
2129
2130 /* Find valid and maximum lowmem_reserve in the zone */
2131 for (j = i; j < MAX_NR_ZONES; j++) {
2132 if (zone->lowmem_reserve[j] > max)
2133 max = zone->lowmem_reserve[j];
2134 }
2135
2136 /* we treat pages_high as reserved pages. */
2137 max += zone->pages_high;
2138
2139 if (max > zone->present_pages)
2140 max = zone->present_pages;
2141 reserve_pages += max;
2142 }
2143 }
2144 totalreserve_pages = reserve_pages;
2145}
2146
1da177e4
LT
2147/*
2148 * setup_per_zone_lowmem_reserve - called whenever
2149 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2150 * has a correct pages reserved value, so an adequate number of
2151 * pages are left in the zone after a successful __alloc_pages().
2152 */
2153static void setup_per_zone_lowmem_reserve(void)
2154{
2155 struct pglist_data *pgdat;
2156 int j, idx;
2157
ec936fc5 2158 for_each_online_pgdat(pgdat) {
1da177e4
LT
2159 for (j = 0; j < MAX_NR_ZONES; j++) {
2160 struct zone *zone = pgdat->node_zones + j;
2161 unsigned long present_pages = zone->present_pages;
2162
2163 zone->lowmem_reserve[j] = 0;
2164
2165 for (idx = j-1; idx >= 0; idx--) {
2166 struct zone *lower_zone;
2167
2168 if (sysctl_lowmem_reserve_ratio[idx] < 1)
2169 sysctl_lowmem_reserve_ratio[idx] = 1;
2170
2171 lower_zone = pgdat->node_zones + idx;
2172 lower_zone->lowmem_reserve[j] = present_pages /
2173 sysctl_lowmem_reserve_ratio[idx];
2174 present_pages += lower_zone->present_pages;
2175 }
2176 }
2177 }
cb45b0e9
HA
2178
2179 /* update totalreserve_pages */
2180 calculate_totalreserve_pages();
1da177e4
LT
2181}
2182
2183/*
2184 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2185 * that the pages_{min,low,high} values for each zone are set correctly
2186 * with respect to min_free_kbytes.
2187 */
3947be19 2188void setup_per_zone_pages_min(void)
1da177e4
LT
2189{
2190 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2191 unsigned long lowmem_pages = 0;
2192 struct zone *zone;
2193 unsigned long flags;
2194
2195 /* Calculate total number of !ZONE_HIGHMEM pages */
2196 for_each_zone(zone) {
2197 if (!is_highmem(zone))
2198 lowmem_pages += zone->present_pages;
2199 }
2200
2201 for_each_zone(zone) {
ac924c60
AM
2202 u64 tmp;
2203
1da177e4 2204 spin_lock_irqsave(&zone->lru_lock, flags);
ac924c60
AM
2205 tmp = (u64)pages_min * zone->present_pages;
2206 do_div(tmp, lowmem_pages);
1da177e4
LT
2207 if (is_highmem(zone)) {
2208 /*
669ed175
NP
2209 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2210 * need highmem pages, so cap pages_min to a small
2211 * value here.
2212 *
2213 * The (pages_high-pages_low) and (pages_low-pages_min)
2214 * deltas controls asynch page reclaim, and so should
2215 * not be capped for highmem.
1da177e4
LT
2216 */
2217 int min_pages;
2218
2219 min_pages = zone->present_pages / 1024;
2220 if (min_pages < SWAP_CLUSTER_MAX)
2221 min_pages = SWAP_CLUSTER_MAX;
2222 if (min_pages > 128)
2223 min_pages = 128;
2224 zone->pages_min = min_pages;
2225 } else {
669ed175
NP
2226 /*
2227 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
2228 * proportionate to the zone's size.
2229 */
669ed175 2230 zone->pages_min = tmp;
1da177e4
LT
2231 }
2232
ac924c60
AM
2233 zone->pages_low = zone->pages_min + (tmp >> 2);
2234 zone->pages_high = zone->pages_min + (tmp >> 1);
1da177e4
LT
2235 spin_unlock_irqrestore(&zone->lru_lock, flags);
2236 }
cb45b0e9
HA
2237
2238 /* update totalreserve_pages */
2239 calculate_totalreserve_pages();
1da177e4
LT
2240}
2241
2242/*
2243 * Initialise min_free_kbytes.
2244 *
2245 * For small machines we want it small (128k min). For large machines
2246 * we want it large (64MB max). But it is not linear, because network
2247 * bandwidth does not increase linearly with machine size. We use
2248 *
2249 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2250 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2251 *
2252 * which yields
2253 *
2254 * 16MB: 512k
2255 * 32MB: 724k
2256 * 64MB: 1024k
2257 * 128MB: 1448k
2258 * 256MB: 2048k
2259 * 512MB: 2896k
2260 * 1024MB: 4096k
2261 * 2048MB: 5792k
2262 * 4096MB: 8192k
2263 * 8192MB: 11584k
2264 * 16384MB: 16384k
2265 */
2266static int __init init_per_zone_pages_min(void)
2267{
2268 unsigned long lowmem_kbytes;
2269
2270 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2271
2272 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2273 if (min_free_kbytes < 128)
2274 min_free_kbytes = 128;
2275 if (min_free_kbytes > 65536)
2276 min_free_kbytes = 65536;
2277 setup_per_zone_pages_min();
2278 setup_per_zone_lowmem_reserve();
2279 return 0;
2280}
2281module_init(init_per_zone_pages_min)
2282
2283/*
2284 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2285 * that we can call two helper functions whenever min_free_kbytes
2286 * changes.
2287 */
2288int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2289 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2290{
2291 proc_dointvec(table, write, file, buffer, length, ppos);
2292 setup_per_zone_pages_min();
2293 return 0;
2294}
2295
9614634f
CL
2296#ifdef CONFIG_NUMA
2297int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
2298 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2299{
2300 struct zone *zone;
2301 int rc;
2302
2303 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2304 if (rc)
2305 return rc;
2306
2307 for_each_zone(zone)
2308 zone->min_unmapped_ratio = (zone->present_pages *
2309 sysctl_min_unmapped_ratio) / 100;
2310 return 0;
2311}
2312#endif
2313
1da177e4
LT
2314/*
2315 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2316 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2317 * whenever sysctl_lowmem_reserve_ratio changes.
2318 *
2319 * The reserve ratio obviously has absolutely no relation with the
2320 * pages_min watermarks. The lowmem reserve ratio can only make sense
2321 * if in function of the boot time zone sizes.
2322 */
2323int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2324 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2325{
2326 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2327 setup_per_zone_lowmem_reserve();
2328 return 0;
2329}
2330
8ad4b1fb
RS
2331/*
2332 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2333 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
2334 * can have before it gets flushed back to buddy allocator.
2335 */
2336
2337int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
2338 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2339{
2340 struct zone *zone;
2341 unsigned int cpu;
2342 int ret;
2343
2344 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2345 if (!write || (ret == -EINVAL))
2346 return ret;
2347 for_each_zone(zone) {
2348 for_each_online_cpu(cpu) {
2349 unsigned long high;
2350 high = zone->present_pages / percpu_pagelist_fraction;
2351 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
2352 }
2353 }
2354 return 0;
2355}
2356
f034b5d4 2357int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
2358
2359#ifdef CONFIG_NUMA
2360static int __init set_hashdist(char *str)
2361{
2362 if (!str)
2363 return 0;
2364 hashdist = simple_strtoul(str, &str, 0);
2365 return 1;
2366}
2367__setup("hashdist=", set_hashdist);
2368#endif
2369
2370/*
2371 * allocate a large system hash table from bootmem
2372 * - it is assumed that the hash table must contain an exact power-of-2
2373 * quantity of entries
2374 * - limit is the number of hash buckets, not the total allocation size
2375 */
2376void *__init alloc_large_system_hash(const char *tablename,
2377 unsigned long bucketsize,
2378 unsigned long numentries,
2379 int scale,
2380 int flags,
2381 unsigned int *_hash_shift,
2382 unsigned int *_hash_mask,
2383 unsigned long limit)
2384{
2385 unsigned long long max = limit;
2386 unsigned long log2qty, size;
2387 void *table = NULL;
2388
2389 /* allow the kernel cmdline to have a say */
2390 if (!numentries) {
2391 /* round applicable memory size up to nearest megabyte */
2392 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2393 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2394 numentries >>= 20 - PAGE_SHIFT;
2395 numentries <<= 20 - PAGE_SHIFT;
2396
2397 /* limit to 1 bucket per 2^scale bytes of low memory */
2398 if (scale > PAGE_SHIFT)
2399 numentries >>= (scale - PAGE_SHIFT);
2400 else
2401 numentries <<= (PAGE_SHIFT - scale);
2402 }
6e692ed3 2403 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
2404
2405 /* limit allocation size to 1/16 total memory by default */
2406 if (max == 0) {
2407 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2408 do_div(max, bucketsize);
2409 }
2410
2411 if (numentries > max)
2412 numentries = max;
2413
2414 log2qty = long_log2(numentries);
2415
2416 do {
2417 size = bucketsize << log2qty;
2418 if (flags & HASH_EARLY)
2419 table = alloc_bootmem(size);
2420 else if (hashdist)
2421 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2422 else {
2423 unsigned long order;
2424 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2425 ;
2426 table = (void*) __get_free_pages(GFP_ATOMIC, order);
2427 }
2428 } while (!table && size > PAGE_SIZE && --log2qty);
2429
2430 if (!table)
2431 panic("Failed to allocate %s hash table\n", tablename);
2432
2433 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2434 tablename,
2435 (1U << log2qty),
2436 long_log2(size) - PAGE_SHIFT,
2437 size);
2438
2439 if (_hash_shift)
2440 *_hash_shift = log2qty;
2441 if (_hash_mask)
2442 *_hash_mask = (1 << log2qty) - 1;
2443
2444 return table;
2445}
a117e66e
KH
2446
2447#ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
a117e66e
KH
2448struct page *pfn_to_page(unsigned long pfn)
2449{
67de6482 2450 return __pfn_to_page(pfn);
a117e66e
KH
2451}
2452unsigned long page_to_pfn(struct page *page)
2453{
67de6482 2454 return __page_to_pfn(page);
a117e66e 2455}
a117e66e
KH
2456EXPORT_SYMBOL(pfn_to_page);
2457EXPORT_SYMBOL(page_to_pfn);
2458#endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */