Drain per-cpu lists when high-order allocations fail
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/bootmem.h>
23#include <linux/compiler.h>
9f158333 24#include <linux/kernel.h>
1da177e4
LT
25#include <linux/module.h>
26#include <linux/suspend.h>
27#include <linux/pagevec.h>
28#include <linux/blkdev.h>
29#include <linux/slab.h>
30#include <linux/notifier.h>
31#include <linux/topology.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
bdc8cb98 35#include <linux/memory_hotplug.h>
1da177e4
LT
36#include <linux/nodemask.h>
37#include <linux/vmalloc.h>
4be38e35 38#include <linux/mempolicy.h>
6811378e 39#include <linux/stop_machine.h>
c713216d
MG
40#include <linux/sort.h>
41#include <linux/pfn.h>
3fcfab16 42#include <linux/backing-dev.h>
933e312e 43#include <linux/fault-inject.h>
1da177e4
LT
44
45#include <asm/tlbflush.h>
ac924c60 46#include <asm/div64.h>
1da177e4
LT
47#include "internal.h"
48
49/*
13808910 50 * Array of node states.
1da177e4 51 */
13808910
CL
52nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
53 [N_POSSIBLE] = NODE_MASK_ALL,
54 [N_ONLINE] = { { [0] = 1UL } },
55#ifndef CONFIG_NUMA
56 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
57#ifdef CONFIG_HIGHMEM
58 [N_HIGH_MEMORY] = { { [0] = 1UL } },
59#endif
60 [N_CPU] = { { [0] = 1UL } },
61#endif /* NUMA */
62};
63EXPORT_SYMBOL(node_states);
64
6c231b7b 65unsigned long totalram_pages __read_mostly;
cb45b0e9 66unsigned long totalreserve_pages __read_mostly;
1da177e4 67long nr_swap_pages;
8ad4b1fb 68int percpu_pagelist_fraction;
1da177e4 69
d98c7a09 70static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 71
1da177e4
LT
72/*
73 * results with 256, 32 in the lowmem_reserve sysctl:
74 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
75 * 1G machine -> (16M dma, 784M normal, 224M high)
76 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
77 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
78 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
79 *
80 * TBD: should special case ZONE_DMA32 machines here - in those we normally
81 * don't need any ZONE_NORMAL reservation
1da177e4 82 */
2f1b6248 83int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 84#ifdef CONFIG_ZONE_DMA
2f1b6248 85 256,
4b51d669 86#endif
fb0e7942 87#ifdef CONFIG_ZONE_DMA32
2f1b6248 88 256,
fb0e7942 89#endif
e53ef38d 90#ifdef CONFIG_HIGHMEM
2a1e274a 91 32,
e53ef38d 92#endif
2a1e274a 93 32,
2f1b6248 94};
1da177e4
LT
95
96EXPORT_SYMBOL(totalram_pages);
1da177e4 97
15ad7cdc 98static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 99#ifdef CONFIG_ZONE_DMA
2f1b6248 100 "DMA",
4b51d669 101#endif
fb0e7942 102#ifdef CONFIG_ZONE_DMA32
2f1b6248 103 "DMA32",
fb0e7942 104#endif
2f1b6248 105 "Normal",
e53ef38d 106#ifdef CONFIG_HIGHMEM
2a1e274a 107 "HighMem",
e53ef38d 108#endif
2a1e274a 109 "Movable",
2f1b6248
CL
110};
111
1da177e4
LT
112int min_free_kbytes = 1024;
113
86356ab1
YG
114unsigned long __meminitdata nr_kernel_pages;
115unsigned long __meminitdata nr_all_pages;
a3142c8e 116static unsigned long __meminitdata dma_reserve;
1da177e4 117
c713216d
MG
118#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
119 /*
120 * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
121 * ranges of memory (RAM) that may be registered with add_active_range().
122 * Ranges passed to add_active_range() will be merged if possible
123 * so the number of times add_active_range() can be called is
124 * related to the number of nodes and the number of holes
125 */
126 #ifdef CONFIG_MAX_ACTIVE_REGIONS
127 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
128 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
129 #else
130 #if MAX_NUMNODES >= 32
131 /* If there can be many nodes, allow up to 50 holes per node */
132 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
133 #else
134 /* By default, allow up to 256 distinct regions */
135 #define MAX_ACTIVE_REGIONS 256
136 #endif
137 #endif
138
98011f56
JB
139 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
140 static int __meminitdata nr_nodemap_entries;
141 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
142 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
fb01439c 143#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
98011f56
JB
144 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
145 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
fb01439c 146#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
2a1e274a 147 unsigned long __initdata required_kernelcore;
7e63efef 148 unsigned long __initdata required_movablecore;
e228929b 149 unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
2a1e274a
MG
150
151 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
152 int movable_zone;
153 EXPORT_SYMBOL(movable_zone);
c713216d
MG
154#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
155
418508c1
MS
156#if MAX_NUMNODES > 1
157int nr_node_ids __read_mostly = MAX_NUMNODES;
158EXPORT_SYMBOL(nr_node_ids);
159#endif
160
b92a6edd 161#ifdef CONFIG_PAGE_GROUP_BY_MOBILITY
b2a0ac88
MG
162static inline int get_pageblock_migratetype(struct page *page)
163{
164 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
165}
166
167static void set_pageblock_migratetype(struct page *page, int migratetype)
168{
169 set_pageblock_flags_group(page, (unsigned long)migratetype,
170 PB_migrate, PB_migrate_end);
171}
172
173static inline int gfpflags_to_migratetype(gfp_t gfp_flags)
174{
175 return ((gfp_flags & __GFP_MOVABLE) != 0);
176}
177
b92a6edd
MG
178#else
179static inline int get_pageblock_migratetype(struct page *page)
180{
181 return MIGRATE_UNMOVABLE;
182}
183
184static void set_pageblock_migratetype(struct page *page, int migratetype)
185{
186}
187
188static inline int gfpflags_to_migratetype(gfp_t gfp_flags)
189{
190 return MIGRATE_UNMOVABLE;
191}
192#endif /* CONFIG_PAGE_GROUP_BY_MOBILITY */
193
13e7444b 194#ifdef CONFIG_DEBUG_VM
c6a57e19 195static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 196{
bdc8cb98
DH
197 int ret = 0;
198 unsigned seq;
199 unsigned long pfn = page_to_pfn(page);
c6a57e19 200
bdc8cb98
DH
201 do {
202 seq = zone_span_seqbegin(zone);
203 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
204 ret = 1;
205 else if (pfn < zone->zone_start_pfn)
206 ret = 1;
207 } while (zone_span_seqretry(zone, seq));
208
209 return ret;
c6a57e19
DH
210}
211
212static int page_is_consistent(struct zone *zone, struct page *page)
213{
14e07298 214 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 215 return 0;
1da177e4 216 if (zone != page_zone(page))
c6a57e19
DH
217 return 0;
218
219 return 1;
220}
221/*
222 * Temporary debugging check for pages not lying within a given zone.
223 */
224static int bad_range(struct zone *zone, struct page *page)
225{
226 if (page_outside_zone_boundaries(zone, page))
1da177e4 227 return 1;
c6a57e19
DH
228 if (!page_is_consistent(zone, page))
229 return 1;
230
1da177e4
LT
231 return 0;
232}
13e7444b
NP
233#else
234static inline int bad_range(struct zone *zone, struct page *page)
235{
236 return 0;
237}
238#endif
239
224abf92 240static void bad_page(struct page *page)
1da177e4 241{
224abf92 242 printk(KERN_EMERG "Bad page state in process '%s'\n"
7365f3d1
HD
243 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
244 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
245 KERN_EMERG "Backtrace:\n",
224abf92
NP
246 current->comm, page, (int)(2*sizeof(unsigned long)),
247 (unsigned long)page->flags, page->mapping,
248 page_mapcount(page), page_count(page));
1da177e4 249 dump_stack();
334795ec
HD
250 page->flags &= ~(1 << PG_lru |
251 1 << PG_private |
1da177e4 252 1 << PG_locked |
1da177e4
LT
253 1 << PG_active |
254 1 << PG_dirty |
334795ec
HD
255 1 << PG_reclaim |
256 1 << PG_slab |
1da177e4 257 1 << PG_swapcache |
676165a8
NP
258 1 << PG_writeback |
259 1 << PG_buddy );
1da177e4
LT
260 set_page_count(page, 0);
261 reset_page_mapcount(page);
262 page->mapping = NULL;
9f158333 263 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
264}
265
1da177e4
LT
266/*
267 * Higher-order pages are called "compound pages". They are structured thusly:
268 *
269 * The first PAGE_SIZE page is called the "head page".
270 *
271 * The remaining PAGE_SIZE pages are called "tail pages".
272 *
273 * All pages have PG_compound set. All pages have their ->private pointing at
274 * the head page (even the head page has this).
275 *
41d78ba5
HD
276 * The first tail page's ->lru.next holds the address of the compound page's
277 * put_page() function. Its ->lru.prev holds the order of allocation.
278 * This usage means that zero-order pages may not be compound.
1da177e4 279 */
d98c7a09
HD
280
281static void free_compound_page(struct page *page)
282{
d85f3385 283 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
284}
285
1da177e4
LT
286static void prep_compound_page(struct page *page, unsigned long order)
287{
288 int i;
289 int nr_pages = 1 << order;
290
33f2ef89 291 set_compound_page_dtor(page, free_compound_page);
d85f3385 292 set_compound_order(page, order);
6d777953 293 __SetPageHead(page);
d85f3385 294 for (i = 1; i < nr_pages; i++) {
1da177e4
LT
295 struct page *p = page + i;
296
d85f3385 297 __SetPageTail(p);
d85f3385 298 p->first_page = page;
1da177e4
LT
299 }
300}
301
302static void destroy_compound_page(struct page *page, unsigned long order)
303{
304 int i;
305 int nr_pages = 1 << order;
306
d85f3385 307 if (unlikely(compound_order(page) != order))
224abf92 308 bad_page(page);
1da177e4 309
6d777953 310 if (unlikely(!PageHead(page)))
d85f3385 311 bad_page(page);
6d777953 312 __ClearPageHead(page);
d85f3385 313 for (i = 1; i < nr_pages; i++) {
1da177e4
LT
314 struct page *p = page + i;
315
6d777953 316 if (unlikely(!PageTail(p) |
d85f3385 317 (p->first_page != page)))
224abf92 318 bad_page(page);
d85f3385 319 __ClearPageTail(p);
1da177e4
LT
320 }
321}
1da177e4 322
17cf4406
NP
323static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
324{
325 int i;
326
725d704e 327 VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
6626c5d5
AM
328 /*
329 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
330 * and __GFP_HIGHMEM from hard or soft interrupt context.
331 */
725d704e 332 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
333 for (i = 0; i < (1 << order); i++)
334 clear_highpage(page + i);
335}
336
1da177e4
LT
337/*
338 * function for dealing with page's order in buddy system.
339 * zone->lock is already acquired when we use these.
340 * So, we don't need atomic page->flags operations here.
341 */
6aa3001b
AM
342static inline unsigned long page_order(struct page *page)
343{
4c21e2f2 344 return page_private(page);
1da177e4
LT
345}
346
6aa3001b
AM
347static inline void set_page_order(struct page *page, int order)
348{
4c21e2f2 349 set_page_private(page, order);
676165a8 350 __SetPageBuddy(page);
1da177e4
LT
351}
352
353static inline void rmv_page_order(struct page *page)
354{
676165a8 355 __ClearPageBuddy(page);
4c21e2f2 356 set_page_private(page, 0);
1da177e4
LT
357}
358
359/*
360 * Locate the struct page for both the matching buddy in our
361 * pair (buddy1) and the combined O(n+1) page they form (page).
362 *
363 * 1) Any buddy B1 will have an order O twin B2 which satisfies
364 * the following equation:
365 * B2 = B1 ^ (1 << O)
366 * For example, if the starting buddy (buddy2) is #8 its order
367 * 1 buddy is #10:
368 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
369 *
370 * 2) Any buddy B will have an order O+1 parent P which
371 * satisfies the following equation:
372 * P = B & ~(1 << O)
373 *
d6e05edc 374 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4
LT
375 */
376static inline struct page *
377__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
378{
379 unsigned long buddy_idx = page_idx ^ (1 << order);
380
381 return page + (buddy_idx - page_idx);
382}
383
384static inline unsigned long
385__find_combined_index(unsigned long page_idx, unsigned int order)
386{
387 return (page_idx & ~(1 << order));
388}
389
390/*
391 * This function checks whether a page is free && is the buddy
392 * we can do coalesce a page and its buddy if
13e7444b 393 * (a) the buddy is not in a hole &&
676165a8 394 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
395 * (c) a page and its buddy have the same order &&
396 * (d) a page and its buddy are in the same zone.
676165a8
NP
397 *
398 * For recording whether a page is in the buddy system, we use PG_buddy.
399 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
1da177e4 400 *
676165a8 401 * For recording page's order, we use page_private(page).
1da177e4 402 */
cb2b95e1
AW
403static inline int page_is_buddy(struct page *page, struct page *buddy,
404 int order)
1da177e4 405{
14e07298 406 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 407 return 0;
13e7444b 408
cb2b95e1
AW
409 if (page_zone_id(page) != page_zone_id(buddy))
410 return 0;
411
412 if (PageBuddy(buddy) && page_order(buddy) == order) {
413 BUG_ON(page_count(buddy) != 0);
6aa3001b 414 return 1;
676165a8 415 }
6aa3001b 416 return 0;
1da177e4
LT
417}
418
419/*
420 * Freeing function for a buddy system allocator.
421 *
422 * The concept of a buddy system is to maintain direct-mapped table
423 * (containing bit values) for memory blocks of various "orders".
424 * The bottom level table contains the map for the smallest allocatable
425 * units of memory (here, pages), and each level above it describes
426 * pairs of units from the levels below, hence, "buddies".
427 * At a high level, all that happens here is marking the table entry
428 * at the bottom level available, and propagating the changes upward
429 * as necessary, plus some accounting needed to play nicely with other
430 * parts of the VM system.
431 * At each level, we keep a list of pages, which are heads of continuous
676165a8 432 * free pages of length of (1 << order) and marked with PG_buddy. Page's
4c21e2f2 433 * order is recorded in page_private(page) field.
1da177e4
LT
434 * So when we are allocating or freeing one, we can derive the state of the
435 * other. That is, if we allocate a small block, and both were
436 * free, the remainder of the region must be split into blocks.
437 * If a block is freed, and its buddy is also free, then this
438 * triggers coalescing into a block of larger size.
439 *
440 * -- wli
441 */
442
48db57f8 443static inline void __free_one_page(struct page *page,
1da177e4
LT
444 struct zone *zone, unsigned int order)
445{
446 unsigned long page_idx;
447 int order_size = 1 << order;
b2a0ac88 448 int migratetype = get_pageblock_migratetype(page);
1da177e4 449
224abf92 450 if (unlikely(PageCompound(page)))
1da177e4
LT
451 destroy_compound_page(page, order);
452
453 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
454
725d704e
NP
455 VM_BUG_ON(page_idx & (order_size - 1));
456 VM_BUG_ON(bad_range(zone, page));
1da177e4 457
d23ad423 458 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
1da177e4
LT
459 while (order < MAX_ORDER-1) {
460 unsigned long combined_idx;
1da177e4
LT
461 struct page *buddy;
462
1da177e4 463 buddy = __page_find_buddy(page, page_idx, order);
cb2b95e1 464 if (!page_is_buddy(page, buddy, order))
1da177e4 465 break; /* Move the buddy up one level. */
13e7444b 466
1da177e4 467 list_del(&buddy->lru);
b2a0ac88 468 zone->free_area[order].nr_free--;
1da177e4 469 rmv_page_order(buddy);
13e7444b 470 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
471 page = page + (combined_idx - page_idx);
472 page_idx = combined_idx;
473 order++;
474 }
475 set_page_order(page, order);
b2a0ac88
MG
476 list_add(&page->lru,
477 &zone->free_area[order].free_list[migratetype]);
1da177e4
LT
478 zone->free_area[order].nr_free++;
479}
480
224abf92 481static inline int free_pages_check(struct page *page)
1da177e4 482{
92be2e33
NP
483 if (unlikely(page_mapcount(page) |
484 (page->mapping != NULL) |
485 (page_count(page) != 0) |
1da177e4
LT
486 (page->flags & (
487 1 << PG_lru |
488 1 << PG_private |
489 1 << PG_locked |
490 1 << PG_active |
1da177e4
LT
491 1 << PG_slab |
492 1 << PG_swapcache |
b5810039 493 1 << PG_writeback |
676165a8
NP
494 1 << PG_reserved |
495 1 << PG_buddy ))))
224abf92 496 bad_page(page);
1da177e4 497 if (PageDirty(page))
242e5468 498 __ClearPageDirty(page);
689bcebf
HD
499 /*
500 * For now, we report if PG_reserved was found set, but do not
501 * clear it, and do not free the page. But we shall soon need
502 * to do more, for when the ZERO_PAGE count wraps negative.
503 */
504 return PageReserved(page);
1da177e4
LT
505}
506
507/*
508 * Frees a list of pages.
509 * Assumes all pages on list are in same zone, and of same order.
207f36ee 510 * count is the number of pages to free.
1da177e4
LT
511 *
512 * If the zone was previously in an "all pages pinned" state then look to
513 * see if this freeing clears that state.
514 *
515 * And clear the zone's pages_scanned counter, to hold off the "all pages are
516 * pinned" detection logic.
517 */
48db57f8
NP
518static void free_pages_bulk(struct zone *zone, int count,
519 struct list_head *list, int order)
1da177e4 520{
c54ad30c 521 spin_lock(&zone->lock);
1da177e4
LT
522 zone->all_unreclaimable = 0;
523 zone->pages_scanned = 0;
48db57f8
NP
524 while (count--) {
525 struct page *page;
526
725d704e 527 VM_BUG_ON(list_empty(list));
1da177e4 528 page = list_entry(list->prev, struct page, lru);
48db57f8 529 /* have to delete it as __free_one_page list manipulates */
1da177e4 530 list_del(&page->lru);
48db57f8 531 __free_one_page(page, zone, order);
1da177e4 532 }
c54ad30c 533 spin_unlock(&zone->lock);
1da177e4
LT
534}
535
48db57f8 536static void free_one_page(struct zone *zone, struct page *page, int order)
1da177e4 537{
006d22d9
CL
538 spin_lock(&zone->lock);
539 zone->all_unreclaimable = 0;
540 zone->pages_scanned = 0;
0798e519 541 __free_one_page(page, zone, order);
006d22d9 542 spin_unlock(&zone->lock);
48db57f8
NP
543}
544
545static void __free_pages_ok(struct page *page, unsigned int order)
546{
547 unsigned long flags;
1da177e4 548 int i;
689bcebf 549 int reserved = 0;
1da177e4 550
1da177e4 551 for (i = 0 ; i < (1 << order) ; ++i)
224abf92 552 reserved += free_pages_check(page + i);
689bcebf
HD
553 if (reserved)
554 return;
555
9858db50
NP
556 if (!PageHighMem(page))
557 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
dafb1367 558 arch_free_page(page, order);
48db57f8 559 kernel_map_pages(page, 1 << order, 0);
dafb1367 560
c54ad30c 561 local_irq_save(flags);
f8891e5e 562 __count_vm_events(PGFREE, 1 << order);
48db57f8 563 free_one_page(page_zone(page), page, order);
c54ad30c 564 local_irq_restore(flags);
1da177e4
LT
565}
566
a226f6c8
DH
567/*
568 * permit the bootmem allocator to evade page validation on high-order frees
569 */
570void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
571{
572 if (order == 0) {
573 __ClearPageReserved(page);
574 set_page_count(page, 0);
7835e98b 575 set_page_refcounted(page);
545b1ea9 576 __free_page(page);
a226f6c8 577 } else {
a226f6c8
DH
578 int loop;
579
545b1ea9 580 prefetchw(page);
a226f6c8
DH
581 for (loop = 0; loop < BITS_PER_LONG; loop++) {
582 struct page *p = &page[loop];
583
545b1ea9
NP
584 if (loop + 1 < BITS_PER_LONG)
585 prefetchw(p + 1);
a226f6c8
DH
586 __ClearPageReserved(p);
587 set_page_count(p, 0);
588 }
589
7835e98b 590 set_page_refcounted(page);
545b1ea9 591 __free_pages(page, order);
a226f6c8
DH
592 }
593}
594
1da177e4
LT
595
596/*
597 * The order of subdivision here is critical for the IO subsystem.
598 * Please do not alter this order without good reasons and regression
599 * testing. Specifically, as large blocks of memory are subdivided,
600 * the order in which smaller blocks are delivered depends on the order
601 * they're subdivided in this function. This is the primary factor
602 * influencing the order in which pages are delivered to the IO
603 * subsystem according to empirical testing, and this is also justified
604 * by considering the behavior of a buddy system containing a single
605 * large block of memory acted on by a series of small allocations.
606 * This behavior is a critical factor in sglist merging's success.
607 *
608 * -- wli
609 */
085cc7d5 610static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
611 int low, int high, struct free_area *area,
612 int migratetype)
1da177e4
LT
613{
614 unsigned long size = 1 << high;
615
616 while (high > low) {
617 area--;
618 high--;
619 size >>= 1;
725d704e 620 VM_BUG_ON(bad_range(zone, &page[size]));
b2a0ac88 621 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
622 area->nr_free++;
623 set_page_order(&page[size], high);
624 }
1da177e4
LT
625}
626
1da177e4
LT
627/*
628 * This page is about to be returned from the page allocator
629 */
17cf4406 630static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
1da177e4 631{
92be2e33
NP
632 if (unlikely(page_mapcount(page) |
633 (page->mapping != NULL) |
634 (page_count(page) != 0) |
334795ec
HD
635 (page->flags & (
636 1 << PG_lru |
1da177e4
LT
637 1 << PG_private |
638 1 << PG_locked |
1da177e4
LT
639 1 << PG_active |
640 1 << PG_dirty |
334795ec 641 1 << PG_slab |
1da177e4 642 1 << PG_swapcache |
b5810039 643 1 << PG_writeback |
676165a8
NP
644 1 << PG_reserved |
645 1 << PG_buddy ))))
224abf92 646 bad_page(page);
1da177e4 647
689bcebf
HD
648 /*
649 * For now, we report if PG_reserved was found set, but do not
650 * clear it, and do not allocate the page: as a safety net.
651 */
652 if (PageReserved(page))
653 return 1;
654
d77c2d7c 655 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_readahead |
1da177e4 656 1 << PG_referenced | 1 << PG_arch_1 |
5409bae0 657 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
4c21e2f2 658 set_page_private(page, 0);
7835e98b 659 set_page_refcounted(page);
cc102509
NP
660
661 arch_alloc_page(page, order);
1da177e4 662 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
663
664 if (gfp_flags & __GFP_ZERO)
665 prep_zero_page(page, order, gfp_flags);
666
667 if (order && (gfp_flags & __GFP_COMP))
668 prep_compound_page(page, order);
669
689bcebf 670 return 0;
1da177e4
LT
671}
672
b92a6edd 673#ifdef CONFIG_PAGE_GROUP_BY_MOBILITY
b2a0ac88
MG
674/*
675 * This array describes the order lists are fallen back to when
676 * the free lists for the desirable migrate type are depleted
677 */
678static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
679 [MIGRATE_UNMOVABLE] = { MIGRATE_MOVABLE },
680 [MIGRATE_MOVABLE] = { MIGRATE_UNMOVABLE },
681};
682
683/* Remove an element from the buddy allocator from the fallback list */
684static struct page *__rmqueue_fallback(struct zone *zone, int order,
685 int start_migratetype)
686{
687 struct free_area * area;
688 int current_order;
689 struct page *page;
690 int migratetype, i;
691
692 /* Find the largest possible block of pages in the other list */
693 for (current_order = MAX_ORDER-1; current_order >= order;
694 --current_order) {
695 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
696 migratetype = fallbacks[start_migratetype][i];
697
698 area = &(zone->free_area[current_order]);
699 if (list_empty(&area->free_list[migratetype]))
700 continue;
701
702 page = list_entry(area->free_list[migratetype].next,
703 struct page, lru);
704 area->nr_free--;
705
706 /*
707 * If breaking a large block of pages, place the buddies
708 * on the preferred allocation list
709 */
710 if (unlikely(current_order >= MAX_ORDER / 2))
711 migratetype = start_migratetype;
712
713 /* Remove the page from the freelists */
714 list_del(&page->lru);
715 rmv_page_order(page);
716 __mod_zone_page_state(zone, NR_FREE_PAGES,
717 -(1UL << order));
718
719 if (current_order == MAX_ORDER - 1)
720 set_pageblock_migratetype(page,
721 start_migratetype);
722
723 expand(zone, page, order, current_order, area, migratetype);
724 return page;
725 }
726 }
727
728 return NULL;
729}
b92a6edd
MG
730#else
731static struct page *__rmqueue_fallback(struct zone *zone, int order,
732 int start_migratetype)
733{
734 return NULL;
735}
736#endif /* CONFIG_PAGE_GROUP_BY_MOBILITY */
b2a0ac88 737
1da177e4
LT
738/*
739 * Do the hard work of removing an element from the buddy allocator.
740 * Call me with the zone->lock already held.
741 */
b2a0ac88
MG
742static struct page *__rmqueue(struct zone *zone, unsigned int order,
743 int migratetype)
1da177e4
LT
744{
745 struct free_area * area;
746 unsigned int current_order;
747 struct page *page;
748
b2a0ac88 749 /* Find a page of the appropriate size in the preferred list */
1da177e4 750 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
b2a0ac88
MG
751 area = &(zone->free_area[current_order]);
752 if (list_empty(&area->free_list[migratetype]))
1da177e4
LT
753 continue;
754
b2a0ac88
MG
755 page = list_entry(area->free_list[migratetype].next,
756 struct page, lru);
1da177e4
LT
757 list_del(&page->lru);
758 rmv_page_order(page);
759 area->nr_free--;
d23ad423 760 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
b2a0ac88
MG
761 expand(zone, page, order, current_order, area, migratetype);
762 goto got_page;
1da177e4
LT
763 }
764
b2a0ac88
MG
765 page = __rmqueue_fallback(zone, order, migratetype);
766
767got_page:
768
769 return page;
1da177e4
LT
770}
771
772/*
773 * Obtain a specified number of elements from the buddy allocator, all under
774 * a single hold of the lock, for efficiency. Add them to the supplied list.
775 * Returns the number of new pages which were placed at *list.
776 */
777static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88
MG
778 unsigned long count, struct list_head *list,
779 int migratetype)
1da177e4 780{
1da177e4 781 int i;
1da177e4 782
c54ad30c 783 spin_lock(&zone->lock);
1da177e4 784 for (i = 0; i < count; ++i) {
b2a0ac88 785 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 786 if (unlikely(page == NULL))
1da177e4 787 break;
535131e6
MG
788 list_add(&page->lru, list);
789 set_page_private(page, migratetype);
1da177e4 790 }
c54ad30c 791 spin_unlock(&zone->lock);
085cc7d5 792 return i;
1da177e4
LT
793}
794
4ae7c039 795#ifdef CONFIG_NUMA
8fce4d8e 796/*
4037d452
CL
797 * Called from the vmstat counter updater to drain pagesets of this
798 * currently executing processor on remote nodes after they have
799 * expired.
800 *
879336c3
CL
801 * Note that this function must be called with the thread pinned to
802 * a single processor.
8fce4d8e 803 */
4037d452 804void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 805{
4ae7c039 806 unsigned long flags;
4037d452 807 int to_drain;
4ae7c039 808
4037d452
CL
809 local_irq_save(flags);
810 if (pcp->count >= pcp->batch)
811 to_drain = pcp->batch;
812 else
813 to_drain = pcp->count;
814 free_pages_bulk(zone, to_drain, &pcp->list, 0);
815 pcp->count -= to_drain;
816 local_irq_restore(flags);
4ae7c039
CL
817}
818#endif
819
1da177e4
LT
820static void __drain_pages(unsigned int cpu)
821{
c54ad30c 822 unsigned long flags;
1da177e4
LT
823 struct zone *zone;
824 int i;
825
826 for_each_zone(zone) {
827 struct per_cpu_pageset *pset;
828
f2e12bb2
CL
829 if (!populated_zone(zone))
830 continue;
831
e7c8d5c9 832 pset = zone_pcp(zone, cpu);
1da177e4
LT
833 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
834 struct per_cpu_pages *pcp;
835
836 pcp = &pset->pcp[i];
c54ad30c 837 local_irq_save(flags);
48db57f8
NP
838 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
839 pcp->count = 0;
c54ad30c 840 local_irq_restore(flags);
1da177e4
LT
841 }
842 }
843}
1da177e4 844
296699de 845#ifdef CONFIG_HIBERNATION
1da177e4
LT
846
847void mark_free_pages(struct zone *zone)
848{
f623f0db
RW
849 unsigned long pfn, max_zone_pfn;
850 unsigned long flags;
b2a0ac88 851 int order, t;
1da177e4
LT
852 struct list_head *curr;
853
854 if (!zone->spanned_pages)
855 return;
856
857 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
858
859 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
860 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
861 if (pfn_valid(pfn)) {
862 struct page *page = pfn_to_page(pfn);
863
7be98234
RW
864 if (!swsusp_page_is_forbidden(page))
865 swsusp_unset_page_free(page);
f623f0db 866 }
1da177e4 867
b2a0ac88
MG
868 for_each_migratetype_order(order, t) {
869 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 870 unsigned long i;
1da177e4 871
f623f0db
RW
872 pfn = page_to_pfn(list_entry(curr, struct page, lru));
873 for (i = 0; i < (1UL << order); i++)
7be98234 874 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 875 }
b2a0ac88 876 }
1da177e4
LT
877 spin_unlock_irqrestore(&zone->lock, flags);
878}
e2c55dc8 879#endif /* CONFIG_PM */
1da177e4 880
e2c55dc8 881#if defined(CONFIG_HIBERNATION) || defined(CONFIG_PAGE_GROUP_BY_MOBILITY)
1da177e4
LT
882/*
883 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
884 */
885void drain_local_pages(void)
886{
887 unsigned long flags;
888
889 local_irq_save(flags);
890 __drain_pages(smp_processor_id());
891 local_irq_restore(flags);
892}
e2c55dc8
MG
893
894void smp_drain_local_pages(void *arg)
895{
896 drain_local_pages();
897}
898
899/*
900 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
901 */
902void drain_all_local_pages(void)
903{
904 unsigned long flags;
905
906 local_irq_save(flags);
907 __drain_pages(smp_processor_id());
908 local_irq_restore(flags);
909
910 smp_call_function(smp_drain_local_pages, NULL, 0, 1);
911}
912#else
913void drain_all_local_pages(void) {}
914#endif /* CONFIG_HIBERNATION || CONFIG_PAGE_GROUP_BY_MOBILITY */
1da177e4 915
1da177e4
LT
916/*
917 * Free a 0-order page
918 */
1da177e4
LT
919static void fastcall free_hot_cold_page(struct page *page, int cold)
920{
921 struct zone *zone = page_zone(page);
922 struct per_cpu_pages *pcp;
923 unsigned long flags;
924
1da177e4
LT
925 if (PageAnon(page))
926 page->mapping = NULL;
224abf92 927 if (free_pages_check(page))
689bcebf
HD
928 return;
929
9858db50
NP
930 if (!PageHighMem(page))
931 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
dafb1367 932 arch_free_page(page, 0);
689bcebf
HD
933 kernel_map_pages(page, 1, 0);
934
e7c8d5c9 935 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
1da177e4 936 local_irq_save(flags);
f8891e5e 937 __count_vm_event(PGFREE);
1da177e4 938 list_add(&page->lru, &pcp->list);
535131e6 939 set_page_private(page, get_pageblock_migratetype(page));
1da177e4 940 pcp->count++;
48db57f8
NP
941 if (pcp->count >= pcp->high) {
942 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
943 pcp->count -= pcp->batch;
944 }
1da177e4
LT
945 local_irq_restore(flags);
946 put_cpu();
947}
948
949void fastcall free_hot_page(struct page *page)
950{
951 free_hot_cold_page(page, 0);
952}
953
954void fastcall free_cold_page(struct page *page)
955{
956 free_hot_cold_page(page, 1);
957}
958
8dfcc9ba
NP
959/*
960 * split_page takes a non-compound higher-order page, and splits it into
961 * n (1<<order) sub-pages: page[0..n]
962 * Each sub-page must be freed individually.
963 *
964 * Note: this is probably too low level an operation for use in drivers.
965 * Please consult with lkml before using this in your driver.
966 */
967void split_page(struct page *page, unsigned int order)
968{
969 int i;
970
725d704e
NP
971 VM_BUG_ON(PageCompound(page));
972 VM_BUG_ON(!page_count(page));
7835e98b
NP
973 for (i = 1; i < (1 << order); i++)
974 set_page_refcounted(page + i);
8dfcc9ba 975}
8dfcc9ba 976
1da177e4
LT
977/*
978 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
979 * we cheat by calling it from here, in the order > 0 path. Saves a branch
980 * or two.
981 */
a74609fa
NP
982static struct page *buffered_rmqueue(struct zonelist *zonelist,
983 struct zone *zone, int order, gfp_t gfp_flags)
1da177e4
LT
984{
985 unsigned long flags;
689bcebf 986 struct page *page;
1da177e4 987 int cold = !!(gfp_flags & __GFP_COLD);
a74609fa 988 int cpu;
b2a0ac88 989 int migratetype = gfpflags_to_migratetype(gfp_flags);
1da177e4 990
689bcebf 991again:
a74609fa 992 cpu = get_cpu();
48db57f8 993 if (likely(order == 0)) {
1da177e4
LT
994 struct per_cpu_pages *pcp;
995
a74609fa 996 pcp = &zone_pcp(zone, cpu)->pcp[cold];
1da177e4 997 local_irq_save(flags);
a74609fa 998 if (!pcp->count) {
941c7105 999 pcp->count = rmqueue_bulk(zone, 0,
b2a0ac88 1000 pcp->batch, &pcp->list, migratetype);
a74609fa
NP
1001 if (unlikely(!pcp->count))
1002 goto failed;
1da177e4 1003 }
b92a6edd
MG
1004
1005#ifdef CONFIG_PAGE_GROUP_BY_MOBILITY
535131e6 1006 /* Find a page of the appropriate migrate type */
b92a6edd
MG
1007 list_for_each_entry(page, &pcp->list, lru)
1008 if (page_private(page) == migratetype)
535131e6 1009 break;
535131e6 1010
b92a6edd
MG
1011 /* Allocate more to the pcp list if necessary */
1012 if (unlikely(&page->lru == &pcp->list)) {
535131e6
MG
1013 pcp->count += rmqueue_bulk(zone, 0,
1014 pcp->batch, &pcp->list, migratetype);
1015 page = list_entry(pcp->list.next, struct page, lru);
535131e6 1016 }
b92a6edd
MG
1017#else
1018 page = list_entry(pcp->list.next, struct page, lru);
1019#endif /* CONFIG_PAGE_GROUP_BY_MOBILITY */
1020
1021 list_del(&page->lru);
1022 pcp->count--;
7fb1d9fc 1023 } else {
1da177e4 1024 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1025 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1026 spin_unlock(&zone->lock);
1027 if (!page)
1028 goto failed;
1da177e4
LT
1029 }
1030
f8891e5e 1031 __count_zone_vm_events(PGALLOC, zone, 1 << order);
ca889e6c 1032 zone_statistics(zonelist, zone);
a74609fa
NP
1033 local_irq_restore(flags);
1034 put_cpu();
1da177e4 1035
725d704e 1036 VM_BUG_ON(bad_range(zone, page));
17cf4406 1037 if (prep_new_page(page, order, gfp_flags))
a74609fa 1038 goto again;
1da177e4 1039 return page;
a74609fa
NP
1040
1041failed:
1042 local_irq_restore(flags);
1043 put_cpu();
1044 return NULL;
1da177e4
LT
1045}
1046
7fb1d9fc 1047#define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
3148890b
NP
1048#define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1049#define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1050#define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1051#define ALLOC_HARDER 0x10 /* try to alloc harder */
1052#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1053#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 1054
933e312e
AM
1055#ifdef CONFIG_FAIL_PAGE_ALLOC
1056
1057static struct fail_page_alloc_attr {
1058 struct fault_attr attr;
1059
1060 u32 ignore_gfp_highmem;
1061 u32 ignore_gfp_wait;
54114994 1062 u32 min_order;
933e312e
AM
1063
1064#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1065
1066 struct dentry *ignore_gfp_highmem_file;
1067 struct dentry *ignore_gfp_wait_file;
54114994 1068 struct dentry *min_order_file;
933e312e
AM
1069
1070#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1071
1072} fail_page_alloc = {
1073 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1074 .ignore_gfp_wait = 1,
1075 .ignore_gfp_highmem = 1,
54114994 1076 .min_order = 1,
933e312e
AM
1077};
1078
1079static int __init setup_fail_page_alloc(char *str)
1080{
1081 return setup_fault_attr(&fail_page_alloc.attr, str);
1082}
1083__setup("fail_page_alloc=", setup_fail_page_alloc);
1084
1085static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1086{
54114994
AM
1087 if (order < fail_page_alloc.min_order)
1088 return 0;
933e312e
AM
1089 if (gfp_mask & __GFP_NOFAIL)
1090 return 0;
1091 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1092 return 0;
1093 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1094 return 0;
1095
1096 return should_fail(&fail_page_alloc.attr, 1 << order);
1097}
1098
1099#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1100
1101static int __init fail_page_alloc_debugfs(void)
1102{
1103 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1104 struct dentry *dir;
1105 int err;
1106
1107 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1108 "fail_page_alloc");
1109 if (err)
1110 return err;
1111 dir = fail_page_alloc.attr.dentries.dir;
1112
1113 fail_page_alloc.ignore_gfp_wait_file =
1114 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1115 &fail_page_alloc.ignore_gfp_wait);
1116
1117 fail_page_alloc.ignore_gfp_highmem_file =
1118 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1119 &fail_page_alloc.ignore_gfp_highmem);
54114994
AM
1120 fail_page_alloc.min_order_file =
1121 debugfs_create_u32("min-order", mode, dir,
1122 &fail_page_alloc.min_order);
933e312e
AM
1123
1124 if (!fail_page_alloc.ignore_gfp_wait_file ||
54114994
AM
1125 !fail_page_alloc.ignore_gfp_highmem_file ||
1126 !fail_page_alloc.min_order_file) {
933e312e
AM
1127 err = -ENOMEM;
1128 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1129 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
54114994 1130 debugfs_remove(fail_page_alloc.min_order_file);
933e312e
AM
1131 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1132 }
1133
1134 return err;
1135}
1136
1137late_initcall(fail_page_alloc_debugfs);
1138
1139#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1140
1141#else /* CONFIG_FAIL_PAGE_ALLOC */
1142
1143static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1144{
1145 return 0;
1146}
1147
1148#endif /* CONFIG_FAIL_PAGE_ALLOC */
1149
1da177e4
LT
1150/*
1151 * Return 1 if free pages are above 'mark'. This takes into account the order
1152 * of the allocation.
1153 */
1154int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 1155 int classzone_idx, int alloc_flags)
1da177e4
LT
1156{
1157 /* free_pages my go negative - that's OK */
d23ad423
CL
1158 long min = mark;
1159 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1da177e4
LT
1160 int o;
1161
7fb1d9fc 1162 if (alloc_flags & ALLOC_HIGH)
1da177e4 1163 min -= min / 2;
7fb1d9fc 1164 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1165 min -= min / 4;
1166
1167 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1168 return 0;
1169 for (o = 0; o < order; o++) {
1170 /* At the next order, this order's pages become unavailable */
1171 free_pages -= z->free_area[o].nr_free << o;
1172
1173 /* Require fewer higher order pages to be free */
1174 min >>= 1;
1175
1176 if (free_pages <= min)
1177 return 0;
1178 }
1179 return 1;
1180}
1181
9276b1bc
PJ
1182#ifdef CONFIG_NUMA
1183/*
1184 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1185 * skip over zones that are not allowed by the cpuset, or that have
1186 * been recently (in last second) found to be nearly full. See further
1187 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1188 * that have to skip over alot of full or unallowed zones.
1189 *
1190 * If the zonelist cache is present in the passed in zonelist, then
1191 * returns a pointer to the allowed node mask (either the current
37b07e41 1192 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1193 *
1194 * If the zonelist cache is not available for this zonelist, does
1195 * nothing and returns NULL.
1196 *
1197 * If the fullzones BITMAP in the zonelist cache is stale (more than
1198 * a second since last zap'd) then we zap it out (clear its bits.)
1199 *
1200 * We hold off even calling zlc_setup, until after we've checked the
1201 * first zone in the zonelist, on the theory that most allocations will
1202 * be satisfied from that first zone, so best to examine that zone as
1203 * quickly as we can.
1204 */
1205static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1206{
1207 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1208 nodemask_t *allowednodes; /* zonelist_cache approximation */
1209
1210 zlc = zonelist->zlcache_ptr;
1211 if (!zlc)
1212 return NULL;
1213
1214 if (jiffies - zlc->last_full_zap > 1 * HZ) {
1215 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1216 zlc->last_full_zap = jiffies;
1217 }
1218
1219 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1220 &cpuset_current_mems_allowed :
37b07e41 1221 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1222 return allowednodes;
1223}
1224
1225/*
1226 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1227 * if it is worth looking at further for free memory:
1228 * 1) Check that the zone isn't thought to be full (doesn't have its
1229 * bit set in the zonelist_cache fullzones BITMAP).
1230 * 2) Check that the zones node (obtained from the zonelist_cache
1231 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1232 * Return true (non-zero) if zone is worth looking at further, or
1233 * else return false (zero) if it is not.
1234 *
1235 * This check -ignores- the distinction between various watermarks,
1236 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1237 * found to be full for any variation of these watermarks, it will
1238 * be considered full for up to one second by all requests, unless
1239 * we are so low on memory on all allowed nodes that we are forced
1240 * into the second scan of the zonelist.
1241 *
1242 * In the second scan we ignore this zonelist cache and exactly
1243 * apply the watermarks to all zones, even it is slower to do so.
1244 * We are low on memory in the second scan, and should leave no stone
1245 * unturned looking for a free page.
1246 */
1247static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1248 nodemask_t *allowednodes)
1249{
1250 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1251 int i; /* index of *z in zonelist zones */
1252 int n; /* node that zone *z is on */
1253
1254 zlc = zonelist->zlcache_ptr;
1255 if (!zlc)
1256 return 1;
1257
1258 i = z - zonelist->zones;
1259 n = zlc->z_to_n[i];
1260
1261 /* This zone is worth trying if it is allowed but not full */
1262 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1263}
1264
1265/*
1266 * Given 'z' scanning a zonelist, set the corresponding bit in
1267 * zlc->fullzones, so that subsequent attempts to allocate a page
1268 * from that zone don't waste time re-examining it.
1269 */
1270static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1271{
1272 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1273 int i; /* index of *z in zonelist zones */
1274
1275 zlc = zonelist->zlcache_ptr;
1276 if (!zlc)
1277 return;
1278
1279 i = z - zonelist->zones;
1280
1281 set_bit(i, zlc->fullzones);
1282}
1283
1284#else /* CONFIG_NUMA */
1285
1286static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1287{
1288 return NULL;
1289}
1290
1291static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1292 nodemask_t *allowednodes)
1293{
1294 return 1;
1295}
1296
1297static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1298{
1299}
1300#endif /* CONFIG_NUMA */
1301
7fb1d9fc 1302/*
0798e519 1303 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1304 * a page.
1305 */
1306static struct page *
1307get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
1308 struct zonelist *zonelist, int alloc_flags)
753ee728 1309{
9276b1bc 1310 struct zone **z;
7fb1d9fc 1311 struct page *page = NULL;
9276b1bc 1312 int classzone_idx = zone_idx(zonelist->zones[0]);
1192d526 1313 struct zone *zone;
9276b1bc
PJ
1314 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1315 int zlc_active = 0; /* set if using zonelist_cache */
1316 int did_zlc_setup = 0; /* just call zlc_setup() one time */
b377fd39 1317 enum zone_type highest_zoneidx = -1; /* Gets set for policy zonelists */
7fb1d9fc 1318
9276b1bc 1319zonelist_scan:
7fb1d9fc 1320 /*
9276b1bc 1321 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1322 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1323 */
9276b1bc
PJ
1324 z = zonelist->zones;
1325
7fb1d9fc 1326 do {
b377fd39
MG
1327 /*
1328 * In NUMA, this could be a policy zonelist which contains
1329 * zones that may not be allowed by the current gfp_mask.
1330 * Check the zone is allowed by the current flags
1331 */
1332 if (unlikely(alloc_should_filter_zonelist(zonelist))) {
1333 if (highest_zoneidx == -1)
1334 highest_zoneidx = gfp_zone(gfp_mask);
1335 if (zone_idx(*z) > highest_zoneidx)
1336 continue;
1337 }
1338
9276b1bc
PJ
1339 if (NUMA_BUILD && zlc_active &&
1340 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1341 continue;
1192d526 1342 zone = *z;
7fb1d9fc 1343 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1344 !cpuset_zone_allowed_softwall(zone, gfp_mask))
9276b1bc 1345 goto try_next_zone;
7fb1d9fc
RS
1346
1347 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b
NP
1348 unsigned long mark;
1349 if (alloc_flags & ALLOC_WMARK_MIN)
1192d526 1350 mark = zone->pages_min;
3148890b 1351 else if (alloc_flags & ALLOC_WMARK_LOW)
1192d526 1352 mark = zone->pages_low;
3148890b 1353 else
1192d526 1354 mark = zone->pages_high;
0798e519
PJ
1355 if (!zone_watermark_ok(zone, order, mark,
1356 classzone_idx, alloc_flags)) {
9eeff239 1357 if (!zone_reclaim_mode ||
1192d526 1358 !zone_reclaim(zone, gfp_mask, order))
9276b1bc 1359 goto this_zone_full;
0798e519 1360 }
7fb1d9fc
RS
1361 }
1362
1192d526 1363 page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
0798e519 1364 if (page)
7fb1d9fc 1365 break;
9276b1bc
PJ
1366this_zone_full:
1367 if (NUMA_BUILD)
1368 zlc_mark_zone_full(zonelist, z);
1369try_next_zone:
1370 if (NUMA_BUILD && !did_zlc_setup) {
1371 /* we do zlc_setup after the first zone is tried */
1372 allowednodes = zlc_setup(zonelist, alloc_flags);
1373 zlc_active = 1;
1374 did_zlc_setup = 1;
1375 }
7fb1d9fc 1376 } while (*(++z) != NULL);
9276b1bc
PJ
1377
1378 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1379 /* Disable zlc cache for second zonelist scan */
1380 zlc_active = 0;
1381 goto zonelist_scan;
1382 }
7fb1d9fc 1383 return page;
753ee728
MH
1384}
1385
1da177e4
LT
1386/*
1387 * This is the 'heart' of the zoned buddy allocator.
1388 */
1389struct page * fastcall
dd0fc66f 1390__alloc_pages(gfp_t gfp_mask, unsigned int order,
1da177e4
LT
1391 struct zonelist *zonelist)
1392{
260b2367 1393 const gfp_t wait = gfp_mask & __GFP_WAIT;
7fb1d9fc 1394 struct zone **z;
1da177e4
LT
1395 struct page *page;
1396 struct reclaim_state reclaim_state;
1397 struct task_struct *p = current;
1da177e4 1398 int do_retry;
7fb1d9fc 1399 int alloc_flags;
1da177e4
LT
1400 int did_some_progress;
1401
1402 might_sleep_if(wait);
1403
933e312e
AM
1404 if (should_fail_alloc_page(gfp_mask, order))
1405 return NULL;
1406
6b1de916 1407restart:
7fb1d9fc 1408 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1da177e4 1409
7fb1d9fc 1410 if (unlikely(*z == NULL)) {
523b9458
CL
1411 /*
1412 * Happens if we have an empty zonelist as a result of
1413 * GFP_THISNODE being used on a memoryless node
1414 */
1da177e4
LT
1415 return NULL;
1416 }
6b1de916 1417
7fb1d9fc 1418 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 1419 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
7fb1d9fc
RS
1420 if (page)
1421 goto got_pg;
1da177e4 1422
952f3b51
CL
1423 /*
1424 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1425 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1426 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1427 * using a larger set of nodes after it has established that the
1428 * allowed per node queues are empty and that nodes are
1429 * over allocated.
1430 */
1431 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1432 goto nopage;
1433
0798e519 1434 for (z = zonelist->zones; *z; z++)
43b0bc00 1435 wakeup_kswapd(*z, order);
1da177e4 1436
9bf2229f 1437 /*
7fb1d9fc
RS
1438 * OK, we're below the kswapd watermark and have kicked background
1439 * reclaim. Now things get more complex, so set up alloc_flags according
1440 * to how we want to proceed.
1441 *
1442 * The caller may dip into page reserves a bit more if the caller
1443 * cannot run direct reclaim, or if the caller has realtime scheduling
4eac915d
PJ
1444 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1445 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
9bf2229f 1446 */
3148890b 1447 alloc_flags = ALLOC_WMARK_MIN;
7fb1d9fc
RS
1448 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1449 alloc_flags |= ALLOC_HARDER;
1450 if (gfp_mask & __GFP_HIGH)
1451 alloc_flags |= ALLOC_HIGH;
bdd804f4
PJ
1452 if (wait)
1453 alloc_flags |= ALLOC_CPUSET;
1da177e4
LT
1454
1455 /*
1456 * Go through the zonelist again. Let __GFP_HIGH and allocations
7fb1d9fc 1457 * coming from realtime tasks go deeper into reserves.
1da177e4
LT
1458 *
1459 * This is the last chance, in general, before the goto nopage.
1460 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
9bf2229f 1461 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1da177e4 1462 */
7fb1d9fc
RS
1463 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1464 if (page)
1465 goto got_pg;
1da177e4
LT
1466
1467 /* This allocation should allow future memory freeing. */
b84a35be 1468
b43a57bb 1469rebalance:
b84a35be
NP
1470 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1471 && !in_interrupt()) {
1472 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
885036d3 1473nofail_alloc:
b84a35be 1474 /* go through the zonelist yet again, ignoring mins */
7fb1d9fc 1475 page = get_page_from_freelist(gfp_mask, order,
47f3a867 1476 zonelist, ALLOC_NO_WATERMARKS);
7fb1d9fc
RS
1477 if (page)
1478 goto got_pg;
885036d3 1479 if (gfp_mask & __GFP_NOFAIL) {
3fcfab16 1480 congestion_wait(WRITE, HZ/50);
885036d3
KK
1481 goto nofail_alloc;
1482 }
1da177e4
LT
1483 }
1484 goto nopage;
1485 }
1486
1487 /* Atomic allocations - we can't balance anything */
1488 if (!wait)
1489 goto nopage;
1490
1da177e4
LT
1491 cond_resched();
1492
1493 /* We now go into synchronous reclaim */
3e0d98b9 1494 cpuset_memory_pressure_bump();
1da177e4
LT
1495 p->flags |= PF_MEMALLOC;
1496 reclaim_state.reclaimed_slab = 0;
1497 p->reclaim_state = &reclaim_state;
1498
5ad333eb 1499 did_some_progress = try_to_free_pages(zonelist->zones, order, gfp_mask);
1da177e4
LT
1500
1501 p->reclaim_state = NULL;
1502 p->flags &= ~PF_MEMALLOC;
1503
1504 cond_resched();
1505
e2c55dc8
MG
1506 if (order != 0)
1507 drain_all_local_pages();
1508
1da177e4 1509 if (likely(did_some_progress)) {
7fb1d9fc
RS
1510 page = get_page_from_freelist(gfp_mask, order,
1511 zonelist, alloc_flags);
1512 if (page)
1513 goto got_pg;
1da177e4
LT
1514 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1515 /*
1516 * Go through the zonelist yet one more time, keep
1517 * very high watermark here, this is only to catch
1518 * a parallel oom killing, we must fail if we're still
1519 * under heavy pressure.
1520 */
7fb1d9fc 1521 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 1522 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
7fb1d9fc
RS
1523 if (page)
1524 goto got_pg;
1da177e4 1525
a8bbf72a
MG
1526 /* The OOM killer will not help higher order allocs so fail */
1527 if (order > PAGE_ALLOC_COSTLY_ORDER)
1528 goto nopage;
1529
9b0f8b04 1530 out_of_memory(zonelist, gfp_mask, order);
1da177e4
LT
1531 goto restart;
1532 }
1533
1534 /*
1535 * Don't let big-order allocations loop unless the caller explicitly
1536 * requests that. Wait for some write requests to complete then retry.
1537 *
1538 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1539 * <= 3, but that may not be true in other implementations.
1540 */
1541 do_retry = 0;
1542 if (!(gfp_mask & __GFP_NORETRY)) {
5ad333eb
AW
1543 if ((order <= PAGE_ALLOC_COSTLY_ORDER) ||
1544 (gfp_mask & __GFP_REPEAT))
1da177e4
LT
1545 do_retry = 1;
1546 if (gfp_mask & __GFP_NOFAIL)
1547 do_retry = 1;
1548 }
1549 if (do_retry) {
3fcfab16 1550 congestion_wait(WRITE, HZ/50);
1da177e4
LT
1551 goto rebalance;
1552 }
1553
1554nopage:
1555 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1556 printk(KERN_WARNING "%s: page allocation failure."
1557 " order:%d, mode:0x%x\n",
1558 p->comm, order, gfp_mask);
1559 dump_stack();
578c2fd6 1560 show_mem();
1da177e4 1561 }
1da177e4 1562got_pg:
1da177e4
LT
1563 return page;
1564}
1565
1566EXPORT_SYMBOL(__alloc_pages);
1567
1568/*
1569 * Common helper functions.
1570 */
dd0fc66f 1571fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4
LT
1572{
1573 struct page * page;
1574 page = alloc_pages(gfp_mask, order);
1575 if (!page)
1576 return 0;
1577 return (unsigned long) page_address(page);
1578}
1579
1580EXPORT_SYMBOL(__get_free_pages);
1581
dd0fc66f 1582fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4
LT
1583{
1584 struct page * page;
1585
1586 /*
1587 * get_zeroed_page() returns a 32-bit address, which cannot represent
1588 * a highmem page
1589 */
725d704e 1590 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1da177e4
LT
1591
1592 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1593 if (page)
1594 return (unsigned long) page_address(page);
1595 return 0;
1596}
1597
1598EXPORT_SYMBOL(get_zeroed_page);
1599
1600void __pagevec_free(struct pagevec *pvec)
1601{
1602 int i = pagevec_count(pvec);
1603
1604 while (--i >= 0)
1605 free_hot_cold_page(pvec->pages[i], pvec->cold);
1606}
1607
1608fastcall void __free_pages(struct page *page, unsigned int order)
1609{
b5810039 1610 if (put_page_testzero(page)) {
1da177e4
LT
1611 if (order == 0)
1612 free_hot_page(page);
1613 else
1614 __free_pages_ok(page, order);
1615 }
1616}
1617
1618EXPORT_SYMBOL(__free_pages);
1619
1620fastcall void free_pages(unsigned long addr, unsigned int order)
1621{
1622 if (addr != 0) {
725d704e 1623 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
1624 __free_pages(virt_to_page((void *)addr), order);
1625 }
1626}
1627
1628EXPORT_SYMBOL(free_pages);
1629
1da177e4
LT
1630static unsigned int nr_free_zone_pages(int offset)
1631{
e310fd43
MB
1632 /* Just pick one node, since fallback list is circular */
1633 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1da177e4
LT
1634 unsigned int sum = 0;
1635
e310fd43
MB
1636 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1637 struct zone **zonep = zonelist->zones;
1638 struct zone *zone;
1da177e4 1639
e310fd43
MB
1640 for (zone = *zonep++; zone; zone = *zonep++) {
1641 unsigned long size = zone->present_pages;
1642 unsigned long high = zone->pages_high;
1643 if (size > high)
1644 sum += size - high;
1da177e4
LT
1645 }
1646
1647 return sum;
1648}
1649
1650/*
1651 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1652 */
1653unsigned int nr_free_buffer_pages(void)
1654{
af4ca457 1655 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 1656}
c2f1a551 1657EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
1658
1659/*
1660 * Amount of free RAM allocatable within all zones
1661 */
1662unsigned int nr_free_pagecache_pages(void)
1663{
2a1e274a 1664 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 1665}
08e0f6a9
CL
1666
1667static inline void show_node(struct zone *zone)
1da177e4 1668{
08e0f6a9 1669 if (NUMA_BUILD)
25ba77c1 1670 printk("Node %d ", zone_to_nid(zone));
1da177e4 1671}
1da177e4 1672
1da177e4
LT
1673void si_meminfo(struct sysinfo *val)
1674{
1675 val->totalram = totalram_pages;
1676 val->sharedram = 0;
d23ad423 1677 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 1678 val->bufferram = nr_blockdev_pages();
1da177e4
LT
1679 val->totalhigh = totalhigh_pages;
1680 val->freehigh = nr_free_highpages();
1da177e4
LT
1681 val->mem_unit = PAGE_SIZE;
1682}
1683
1684EXPORT_SYMBOL(si_meminfo);
1685
1686#ifdef CONFIG_NUMA
1687void si_meminfo_node(struct sysinfo *val, int nid)
1688{
1689 pg_data_t *pgdat = NODE_DATA(nid);
1690
1691 val->totalram = pgdat->node_present_pages;
d23ad423 1692 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 1693#ifdef CONFIG_HIGHMEM
1da177e4 1694 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
1695 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1696 NR_FREE_PAGES);
98d2b0eb
CL
1697#else
1698 val->totalhigh = 0;
1699 val->freehigh = 0;
1700#endif
1da177e4
LT
1701 val->mem_unit = PAGE_SIZE;
1702}
1703#endif
1704
1705#define K(x) ((x) << (PAGE_SHIFT-10))
1706
1707/*
1708 * Show free area list (used inside shift_scroll-lock stuff)
1709 * We also calculate the percentage fragmentation. We do this by counting the
1710 * memory on each free list with the exception of the first item on the list.
1711 */
1712void show_free_areas(void)
1713{
c7241913 1714 int cpu;
1da177e4
LT
1715 struct zone *zone;
1716
1717 for_each_zone(zone) {
c7241913 1718 if (!populated_zone(zone))
1da177e4 1719 continue;
c7241913
JS
1720
1721 show_node(zone);
1722 printk("%s per-cpu:\n", zone->name);
1da177e4 1723
6b482c67 1724 for_each_online_cpu(cpu) {
1da177e4
LT
1725 struct per_cpu_pageset *pageset;
1726
e7c8d5c9 1727 pageset = zone_pcp(zone, cpu);
1da177e4 1728
c7241913
JS
1729 printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d "
1730 "Cold: hi:%5d, btch:%4d usd:%4d\n",
1731 cpu, pageset->pcp[0].high,
1732 pageset->pcp[0].batch, pageset->pcp[0].count,
1733 pageset->pcp[1].high, pageset->pcp[1].batch,
1734 pageset->pcp[1].count);
1da177e4
LT
1735 }
1736 }
1737
a25700a5 1738 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
d23ad423 1739 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
65e458d4
CL
1740 global_page_state(NR_ACTIVE),
1741 global_page_state(NR_INACTIVE),
b1e7a8fd 1742 global_page_state(NR_FILE_DIRTY),
ce866b34 1743 global_page_state(NR_WRITEBACK),
fd39fc85 1744 global_page_state(NR_UNSTABLE_NFS),
d23ad423 1745 global_page_state(NR_FREE_PAGES),
972d1a7b
CL
1746 global_page_state(NR_SLAB_RECLAIMABLE) +
1747 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 1748 global_page_state(NR_FILE_MAPPED),
a25700a5
AM
1749 global_page_state(NR_PAGETABLE),
1750 global_page_state(NR_BOUNCE));
1da177e4
LT
1751
1752 for_each_zone(zone) {
1753 int i;
1754
c7241913
JS
1755 if (!populated_zone(zone))
1756 continue;
1757
1da177e4
LT
1758 show_node(zone);
1759 printk("%s"
1760 " free:%lukB"
1761 " min:%lukB"
1762 " low:%lukB"
1763 " high:%lukB"
1764 " active:%lukB"
1765 " inactive:%lukB"
1766 " present:%lukB"
1767 " pages_scanned:%lu"
1768 " all_unreclaimable? %s"
1769 "\n",
1770 zone->name,
d23ad423 1771 K(zone_page_state(zone, NR_FREE_PAGES)),
1da177e4
LT
1772 K(zone->pages_min),
1773 K(zone->pages_low),
1774 K(zone->pages_high),
c8785385
CL
1775 K(zone_page_state(zone, NR_ACTIVE)),
1776 K(zone_page_state(zone, NR_INACTIVE)),
1da177e4
LT
1777 K(zone->present_pages),
1778 zone->pages_scanned,
1779 (zone->all_unreclaimable ? "yes" : "no")
1780 );
1781 printk("lowmem_reserve[]:");
1782 for (i = 0; i < MAX_NR_ZONES; i++)
1783 printk(" %lu", zone->lowmem_reserve[i]);
1784 printk("\n");
1785 }
1786
1787 for_each_zone(zone) {
8f9de51a 1788 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4 1789
c7241913
JS
1790 if (!populated_zone(zone))
1791 continue;
1792
1da177e4
LT
1793 show_node(zone);
1794 printk("%s: ", zone->name);
1da177e4
LT
1795
1796 spin_lock_irqsave(&zone->lock, flags);
1797 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
1798 nr[order] = zone->free_area[order].nr_free;
1799 total += nr[order] << order;
1da177e4
LT
1800 }
1801 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
1802 for (order = 0; order < MAX_ORDER; order++)
1803 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
1804 printk("= %lukB\n", K(total));
1805 }
1806
1807 show_swap_cache_info();
1808}
1809
1810/*
1811 * Builds allocation fallback zone lists.
1a93205b
CL
1812 *
1813 * Add all populated zones of a node to the zonelist.
1da177e4 1814 */
f0c0b2b8
KH
1815static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1816 int nr_zones, enum zone_type zone_type)
1da177e4 1817{
1a93205b
CL
1818 struct zone *zone;
1819
98d2b0eb 1820 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 1821 zone_type++;
02a68a5e
CL
1822
1823 do {
2f6726e5 1824 zone_type--;
070f8032 1825 zone = pgdat->node_zones + zone_type;
1a93205b 1826 if (populated_zone(zone)) {
070f8032
CL
1827 zonelist->zones[nr_zones++] = zone;
1828 check_highest_zone(zone_type);
1da177e4 1829 }
02a68a5e 1830
2f6726e5 1831 } while (zone_type);
070f8032 1832 return nr_zones;
1da177e4
LT
1833}
1834
f0c0b2b8
KH
1835
1836/*
1837 * zonelist_order:
1838 * 0 = automatic detection of better ordering.
1839 * 1 = order by ([node] distance, -zonetype)
1840 * 2 = order by (-zonetype, [node] distance)
1841 *
1842 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1843 * the same zonelist. So only NUMA can configure this param.
1844 */
1845#define ZONELIST_ORDER_DEFAULT 0
1846#define ZONELIST_ORDER_NODE 1
1847#define ZONELIST_ORDER_ZONE 2
1848
1849/* zonelist order in the kernel.
1850 * set_zonelist_order() will set this to NODE or ZONE.
1851 */
1852static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
1853static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
1854
1855
1da177e4 1856#ifdef CONFIG_NUMA
f0c0b2b8
KH
1857/* The value user specified ....changed by config */
1858static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1859/* string for sysctl */
1860#define NUMA_ZONELIST_ORDER_LEN 16
1861char numa_zonelist_order[16] = "default";
1862
1863/*
1864 * interface for configure zonelist ordering.
1865 * command line option "numa_zonelist_order"
1866 * = "[dD]efault - default, automatic configuration.
1867 * = "[nN]ode - order by node locality, then by zone within node
1868 * = "[zZ]one - order by zone, then by locality within zone
1869 */
1870
1871static int __parse_numa_zonelist_order(char *s)
1872{
1873 if (*s == 'd' || *s == 'D') {
1874 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1875 } else if (*s == 'n' || *s == 'N') {
1876 user_zonelist_order = ZONELIST_ORDER_NODE;
1877 } else if (*s == 'z' || *s == 'Z') {
1878 user_zonelist_order = ZONELIST_ORDER_ZONE;
1879 } else {
1880 printk(KERN_WARNING
1881 "Ignoring invalid numa_zonelist_order value: "
1882 "%s\n", s);
1883 return -EINVAL;
1884 }
1885 return 0;
1886}
1887
1888static __init int setup_numa_zonelist_order(char *s)
1889{
1890 if (s)
1891 return __parse_numa_zonelist_order(s);
1892 return 0;
1893}
1894early_param("numa_zonelist_order", setup_numa_zonelist_order);
1895
1896/*
1897 * sysctl handler for numa_zonelist_order
1898 */
1899int numa_zonelist_order_handler(ctl_table *table, int write,
1900 struct file *file, void __user *buffer, size_t *length,
1901 loff_t *ppos)
1902{
1903 char saved_string[NUMA_ZONELIST_ORDER_LEN];
1904 int ret;
1905
1906 if (write)
1907 strncpy(saved_string, (char*)table->data,
1908 NUMA_ZONELIST_ORDER_LEN);
1909 ret = proc_dostring(table, write, file, buffer, length, ppos);
1910 if (ret)
1911 return ret;
1912 if (write) {
1913 int oldval = user_zonelist_order;
1914 if (__parse_numa_zonelist_order((char*)table->data)) {
1915 /*
1916 * bogus value. restore saved string
1917 */
1918 strncpy((char*)table->data, saved_string,
1919 NUMA_ZONELIST_ORDER_LEN);
1920 user_zonelist_order = oldval;
1921 } else if (oldval != user_zonelist_order)
1922 build_all_zonelists();
1923 }
1924 return 0;
1925}
1926
1927
1da177e4 1928#define MAX_NODE_LOAD (num_online_nodes())
f0c0b2b8
KH
1929static int node_load[MAX_NUMNODES];
1930
1da177e4 1931/**
4dc3b16b 1932 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
1933 * @node: node whose fallback list we're appending
1934 * @used_node_mask: nodemask_t of already used nodes
1935 *
1936 * We use a number of factors to determine which is the next node that should
1937 * appear on a given node's fallback list. The node should not have appeared
1938 * already in @node's fallback list, and it should be the next closest node
1939 * according to the distance array (which contains arbitrary distance values
1940 * from each node to each node in the system), and should also prefer nodes
1941 * with no CPUs, since presumably they'll have very little allocation pressure
1942 * on them otherwise.
1943 * It returns -1 if no node is found.
1944 */
f0c0b2b8 1945static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 1946{
4cf808eb 1947 int n, val;
1da177e4
LT
1948 int min_val = INT_MAX;
1949 int best_node = -1;
1950
4cf808eb
LT
1951 /* Use the local node if we haven't already */
1952 if (!node_isset(node, *used_node_mask)) {
1953 node_set(node, *used_node_mask);
1954 return node;
1955 }
1da177e4 1956
37b07e41 1957 for_each_node_state(n, N_HIGH_MEMORY) {
4cf808eb 1958 cpumask_t tmp;
1da177e4
LT
1959
1960 /* Don't want a node to appear more than once */
1961 if (node_isset(n, *used_node_mask))
1962 continue;
1963
1da177e4
LT
1964 /* Use the distance array to find the distance */
1965 val = node_distance(node, n);
1966
4cf808eb
LT
1967 /* Penalize nodes under us ("prefer the next node") */
1968 val += (n < node);
1969
1da177e4
LT
1970 /* Give preference to headless and unused nodes */
1971 tmp = node_to_cpumask(n);
1972 if (!cpus_empty(tmp))
1973 val += PENALTY_FOR_NODE_WITH_CPUS;
1974
1975 /* Slight preference for less loaded node */
1976 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1977 val += node_load[n];
1978
1979 if (val < min_val) {
1980 min_val = val;
1981 best_node = n;
1982 }
1983 }
1984
1985 if (best_node >= 0)
1986 node_set(best_node, *used_node_mask);
1987
1988 return best_node;
1989}
1990
f0c0b2b8
KH
1991
1992/*
1993 * Build zonelists ordered by node and zones within node.
1994 * This results in maximum locality--normal zone overflows into local
1995 * DMA zone, if any--but risks exhausting DMA zone.
1996 */
1997static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 1998{
19655d34 1999 enum zone_type i;
f0c0b2b8 2000 int j;
1da177e4 2001 struct zonelist *zonelist;
f0c0b2b8
KH
2002
2003 for (i = 0; i < MAX_NR_ZONES; i++) {
2004 zonelist = pgdat->node_zonelists + i;
2005 for (j = 0; zonelist->zones[j] != NULL; j++)
2006 ;
2007 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2008 zonelist->zones[j] = NULL;
2009 }
2010}
2011
523b9458
CL
2012/*
2013 * Build gfp_thisnode zonelists
2014 */
2015static void build_thisnode_zonelists(pg_data_t *pgdat)
2016{
2017 enum zone_type i;
2018 int j;
2019 struct zonelist *zonelist;
2020
2021 for (i = 0; i < MAX_NR_ZONES; i++) {
2022 zonelist = pgdat->node_zonelists + MAX_NR_ZONES + i;
2023 j = build_zonelists_node(pgdat, zonelist, 0, i);
2024 zonelist->zones[j] = NULL;
2025 }
2026}
2027
f0c0b2b8
KH
2028/*
2029 * Build zonelists ordered by zone and nodes within zones.
2030 * This results in conserving DMA zone[s] until all Normal memory is
2031 * exhausted, but results in overflowing to remote node while memory
2032 * may still exist in local DMA zone.
2033 */
2034static int node_order[MAX_NUMNODES];
2035
2036static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2037{
2038 enum zone_type i;
2039 int pos, j, node;
2040 int zone_type; /* needs to be signed */
2041 struct zone *z;
2042 struct zonelist *zonelist;
2043
2044 for (i = 0; i < MAX_NR_ZONES; i++) {
2045 zonelist = pgdat->node_zonelists + i;
2046 pos = 0;
2047 for (zone_type = i; zone_type >= 0; zone_type--) {
2048 for (j = 0; j < nr_nodes; j++) {
2049 node = node_order[j];
2050 z = &NODE_DATA(node)->node_zones[zone_type];
2051 if (populated_zone(z)) {
2052 zonelist->zones[pos++] = z;
2053 check_highest_zone(zone_type);
2054 }
2055 }
2056 }
2057 zonelist->zones[pos] = NULL;
2058 }
2059}
2060
2061static int default_zonelist_order(void)
2062{
2063 int nid, zone_type;
2064 unsigned long low_kmem_size,total_size;
2065 struct zone *z;
2066 int average_size;
2067 /*
2068 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2069 * If they are really small and used heavily, the system can fall
2070 * into OOM very easily.
2071 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2072 */
2073 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2074 low_kmem_size = 0;
2075 total_size = 0;
2076 for_each_online_node(nid) {
2077 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2078 z = &NODE_DATA(nid)->node_zones[zone_type];
2079 if (populated_zone(z)) {
2080 if (zone_type < ZONE_NORMAL)
2081 low_kmem_size += z->present_pages;
2082 total_size += z->present_pages;
2083 }
2084 }
2085 }
2086 if (!low_kmem_size || /* there are no DMA area. */
2087 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2088 return ZONELIST_ORDER_NODE;
2089 /*
2090 * look into each node's config.
2091 * If there is a node whose DMA/DMA32 memory is very big area on
2092 * local memory, NODE_ORDER may be suitable.
2093 */
37b07e41
LS
2094 average_size = total_size /
2095 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
2096 for_each_online_node(nid) {
2097 low_kmem_size = 0;
2098 total_size = 0;
2099 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2100 z = &NODE_DATA(nid)->node_zones[zone_type];
2101 if (populated_zone(z)) {
2102 if (zone_type < ZONE_NORMAL)
2103 low_kmem_size += z->present_pages;
2104 total_size += z->present_pages;
2105 }
2106 }
2107 if (low_kmem_size &&
2108 total_size > average_size && /* ignore small node */
2109 low_kmem_size > total_size * 70/100)
2110 return ZONELIST_ORDER_NODE;
2111 }
2112 return ZONELIST_ORDER_ZONE;
2113}
2114
2115static void set_zonelist_order(void)
2116{
2117 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2118 current_zonelist_order = default_zonelist_order();
2119 else
2120 current_zonelist_order = user_zonelist_order;
2121}
2122
2123static void build_zonelists(pg_data_t *pgdat)
2124{
2125 int j, node, load;
2126 enum zone_type i;
1da177e4 2127 nodemask_t used_mask;
f0c0b2b8
KH
2128 int local_node, prev_node;
2129 struct zonelist *zonelist;
2130 int order = current_zonelist_order;
1da177e4
LT
2131
2132 /* initialize zonelists */
523b9458 2133 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4
LT
2134 zonelist = pgdat->node_zonelists + i;
2135 zonelist->zones[0] = NULL;
2136 }
2137
2138 /* NUMA-aware ordering of nodes */
2139 local_node = pgdat->node_id;
2140 load = num_online_nodes();
2141 prev_node = local_node;
2142 nodes_clear(used_mask);
f0c0b2b8
KH
2143
2144 memset(node_load, 0, sizeof(node_load));
2145 memset(node_order, 0, sizeof(node_order));
2146 j = 0;
2147
1da177e4 2148 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
2149 int distance = node_distance(local_node, node);
2150
2151 /*
2152 * If another node is sufficiently far away then it is better
2153 * to reclaim pages in a zone before going off node.
2154 */
2155 if (distance > RECLAIM_DISTANCE)
2156 zone_reclaim_mode = 1;
2157
1da177e4
LT
2158 /*
2159 * We don't want to pressure a particular node.
2160 * So adding penalty to the first node in same
2161 * distance group to make it round-robin.
2162 */
9eeff239 2163 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
2164 node_load[node] = load;
2165
1da177e4
LT
2166 prev_node = node;
2167 load--;
f0c0b2b8
KH
2168 if (order == ZONELIST_ORDER_NODE)
2169 build_zonelists_in_node_order(pgdat, node);
2170 else
2171 node_order[j++] = node; /* remember order */
2172 }
1da177e4 2173
f0c0b2b8
KH
2174 if (order == ZONELIST_ORDER_ZONE) {
2175 /* calculate node order -- i.e., DMA last! */
2176 build_zonelists_in_zone_order(pgdat, j);
1da177e4 2177 }
523b9458
CL
2178
2179 build_thisnode_zonelists(pgdat);
1da177e4
LT
2180}
2181
9276b1bc 2182/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 2183static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc
PJ
2184{
2185 int i;
2186
2187 for (i = 0; i < MAX_NR_ZONES; i++) {
2188 struct zonelist *zonelist;
2189 struct zonelist_cache *zlc;
2190 struct zone **z;
2191
2192 zonelist = pgdat->node_zonelists + i;
2193 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2194 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2195 for (z = zonelist->zones; *z; z++)
2196 zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
2197 }
2198}
2199
f0c0b2b8 2200
1da177e4
LT
2201#else /* CONFIG_NUMA */
2202
f0c0b2b8
KH
2203static void set_zonelist_order(void)
2204{
2205 current_zonelist_order = ZONELIST_ORDER_ZONE;
2206}
2207
2208static void build_zonelists(pg_data_t *pgdat)
1da177e4 2209{
19655d34
CL
2210 int node, local_node;
2211 enum zone_type i,j;
1da177e4
LT
2212
2213 local_node = pgdat->node_id;
19655d34 2214 for (i = 0; i < MAX_NR_ZONES; i++) {
1da177e4
LT
2215 struct zonelist *zonelist;
2216
2217 zonelist = pgdat->node_zonelists + i;
2218
19655d34 2219 j = build_zonelists_node(pgdat, zonelist, 0, i);
1da177e4
LT
2220 /*
2221 * Now we build the zonelist so that it contains the zones
2222 * of all the other nodes.
2223 * We don't want to pressure a particular node, so when
2224 * building the zones for node N, we make sure that the
2225 * zones coming right after the local ones are those from
2226 * node N+1 (modulo N)
2227 */
2228 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2229 if (!node_online(node))
2230 continue;
19655d34 2231 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1da177e4
LT
2232 }
2233 for (node = 0; node < local_node; node++) {
2234 if (!node_online(node))
2235 continue;
19655d34 2236 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1da177e4
LT
2237 }
2238
2239 zonelist->zones[j] = NULL;
2240 }
2241}
2242
9276b1bc 2243/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 2244static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc
PJ
2245{
2246 int i;
2247
2248 for (i = 0; i < MAX_NR_ZONES; i++)
2249 pgdat->node_zonelists[i].zlcache_ptr = NULL;
2250}
2251
1da177e4
LT
2252#endif /* CONFIG_NUMA */
2253
6811378e 2254/* return values int ....just for stop_machine_run() */
f0c0b2b8 2255static int __build_all_zonelists(void *dummy)
1da177e4 2256{
6811378e 2257 int nid;
9276b1bc
PJ
2258
2259 for_each_online_node(nid) {
7ea1530a
CL
2260 pg_data_t *pgdat = NODE_DATA(nid);
2261
2262 build_zonelists(pgdat);
2263 build_zonelist_cache(pgdat);
9276b1bc 2264 }
6811378e
YG
2265 return 0;
2266}
2267
f0c0b2b8 2268void build_all_zonelists(void)
6811378e 2269{
f0c0b2b8
KH
2270 set_zonelist_order();
2271
6811378e 2272 if (system_state == SYSTEM_BOOTING) {
423b41d7 2273 __build_all_zonelists(NULL);
6811378e
YG
2274 cpuset_init_current_mems_allowed();
2275 } else {
2276 /* we have to stop all cpus to guaranntee there is no user
2277 of zonelist */
2278 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
2279 /* cpuset refresh routine should be here */
2280 }
bd1e22b8 2281 vm_total_pages = nr_free_pagecache_pages();
f0c0b2b8
KH
2282 printk("Built %i zonelists in %s order. Total pages: %ld\n",
2283 num_online_nodes(),
2284 zonelist_order_name[current_zonelist_order],
2285 vm_total_pages);
2286#ifdef CONFIG_NUMA
2287 printk("Policy zone: %s\n", zone_names[policy_zone]);
2288#endif
1da177e4
LT
2289}
2290
2291/*
2292 * Helper functions to size the waitqueue hash table.
2293 * Essentially these want to choose hash table sizes sufficiently
2294 * large so that collisions trying to wait on pages are rare.
2295 * But in fact, the number of active page waitqueues on typical
2296 * systems is ridiculously low, less than 200. So this is even
2297 * conservative, even though it seems large.
2298 *
2299 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2300 * waitqueues, i.e. the size of the waitq table given the number of pages.
2301 */
2302#define PAGES_PER_WAITQUEUE 256
2303
cca448fe 2304#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 2305static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
2306{
2307 unsigned long size = 1;
2308
2309 pages /= PAGES_PER_WAITQUEUE;
2310
2311 while (size < pages)
2312 size <<= 1;
2313
2314 /*
2315 * Once we have dozens or even hundreds of threads sleeping
2316 * on IO we've got bigger problems than wait queue collision.
2317 * Limit the size of the wait table to a reasonable size.
2318 */
2319 size = min(size, 4096UL);
2320
2321 return max(size, 4UL);
2322}
cca448fe
YG
2323#else
2324/*
2325 * A zone's size might be changed by hot-add, so it is not possible to determine
2326 * a suitable size for its wait_table. So we use the maximum size now.
2327 *
2328 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2329 *
2330 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2331 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2332 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2333 *
2334 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2335 * or more by the traditional way. (See above). It equals:
2336 *
2337 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2338 * ia64(16K page size) : = ( 8G + 4M)byte.
2339 * powerpc (64K page size) : = (32G +16M)byte.
2340 */
2341static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2342{
2343 return 4096UL;
2344}
2345#endif
1da177e4
LT
2346
2347/*
2348 * This is an integer logarithm so that shifts can be used later
2349 * to extract the more random high bits from the multiplicative
2350 * hash function before the remainder is taken.
2351 */
2352static inline unsigned long wait_table_bits(unsigned long size)
2353{
2354 return ffz(~size);
2355}
2356
2357#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2358
1da177e4
LT
2359/*
2360 * Initially all pages are reserved - free ones are freed
2361 * up by free_all_bootmem() once the early boot process is
2362 * done. Non-atomic initialization, single-pass.
2363 */
c09b4240 2364void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 2365 unsigned long start_pfn, enum memmap_context context)
1da177e4 2366{
1da177e4 2367 struct page *page;
29751f69
AW
2368 unsigned long end_pfn = start_pfn + size;
2369 unsigned long pfn;
1da177e4 2370
cbe8dd4a 2371 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
2372 /*
2373 * There can be holes in boot-time mem_map[]s
2374 * handed to this function. They do not
2375 * exist on hotplugged memory.
2376 */
2377 if (context == MEMMAP_EARLY) {
2378 if (!early_pfn_valid(pfn))
2379 continue;
2380 if (!early_pfn_in_nid(pfn, nid))
2381 continue;
2382 }
d41dee36
AW
2383 page = pfn_to_page(pfn);
2384 set_page_links(page, zone, nid, pfn);
7835e98b 2385 init_page_count(page);
1da177e4
LT
2386 reset_page_mapcount(page);
2387 SetPageReserved(page);
b2a0ac88
MG
2388
2389 /*
2390 * Mark the block movable so that blocks are reserved for
2391 * movable at startup. This will force kernel allocations
2392 * to reserve their blocks rather than leaking throughout
2393 * the address space during boot when many long-lived
2394 * kernel allocations are made
2395 */
2396 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2397
1da177e4
LT
2398 INIT_LIST_HEAD(&page->lru);
2399#ifdef WANT_PAGE_VIRTUAL
2400 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2401 if (!is_highmem_idx(zone))
3212c6be 2402 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 2403#endif
1da177e4
LT
2404 }
2405}
2406
6ea6e688
PM
2407static void __meminit zone_init_free_lists(struct pglist_data *pgdat,
2408 struct zone *zone, unsigned long size)
1da177e4 2409{
b2a0ac88
MG
2410 int order, t;
2411 for_each_migratetype_order(order, t) {
2412 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
2413 zone->free_area[order].nr_free = 0;
2414 }
2415}
2416
2417#ifndef __HAVE_ARCH_MEMMAP_INIT
2418#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 2419 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
2420#endif
2421
d09c6b80 2422static int __devinit zone_batchsize(struct zone *zone)
e7c8d5c9
CL
2423{
2424 int batch;
2425
2426 /*
2427 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 2428 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
2429 *
2430 * OK, so we don't know how big the cache is. So guess.
2431 */
2432 batch = zone->present_pages / 1024;
ba56e91c
SR
2433 if (batch * PAGE_SIZE > 512 * 1024)
2434 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
2435 batch /= 4; /* We effectively *= 4 below */
2436 if (batch < 1)
2437 batch = 1;
2438
2439 /*
0ceaacc9
NP
2440 * Clamp the batch to a 2^n - 1 value. Having a power
2441 * of 2 value was found to be more likely to have
2442 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 2443 *
0ceaacc9
NP
2444 * For example if 2 tasks are alternately allocating
2445 * batches of pages, one task can end up with a lot
2446 * of pages of one half of the possible page colors
2447 * and the other with pages of the other colors.
e7c8d5c9 2448 */
0ceaacc9 2449 batch = (1 << (fls(batch + batch/2)-1)) - 1;
ba56e91c 2450
e7c8d5c9
CL
2451 return batch;
2452}
2453
2caaad41
CL
2454inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2455{
2456 struct per_cpu_pages *pcp;
2457
1c6fe946
MD
2458 memset(p, 0, sizeof(*p));
2459
2caaad41
CL
2460 pcp = &p->pcp[0]; /* hot */
2461 pcp->count = 0;
2caaad41
CL
2462 pcp->high = 6 * batch;
2463 pcp->batch = max(1UL, 1 * batch);
2464 INIT_LIST_HEAD(&pcp->list);
2465
2466 pcp = &p->pcp[1]; /* cold*/
2467 pcp->count = 0;
2caaad41 2468 pcp->high = 2 * batch;
e46a5e28 2469 pcp->batch = max(1UL, batch/2);
2caaad41
CL
2470 INIT_LIST_HEAD(&pcp->list);
2471}
2472
8ad4b1fb
RS
2473/*
2474 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2475 * to the value high for the pageset p.
2476 */
2477
2478static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2479 unsigned long high)
2480{
2481 struct per_cpu_pages *pcp;
2482
2483 pcp = &p->pcp[0]; /* hot list */
2484 pcp->high = high;
2485 pcp->batch = max(1UL, high/4);
2486 if ((high/4) > (PAGE_SHIFT * 8))
2487 pcp->batch = PAGE_SHIFT * 8;
2488}
2489
2490
e7c8d5c9
CL
2491#ifdef CONFIG_NUMA
2492/*
2caaad41
CL
2493 * Boot pageset table. One per cpu which is going to be used for all
2494 * zones and all nodes. The parameters will be set in such a way
2495 * that an item put on a list will immediately be handed over to
2496 * the buddy list. This is safe since pageset manipulation is done
2497 * with interrupts disabled.
2498 *
2499 * Some NUMA counter updates may also be caught by the boot pagesets.
b7c84c6a
CL
2500 *
2501 * The boot_pagesets must be kept even after bootup is complete for
2502 * unused processors and/or zones. They do play a role for bootstrapping
2503 * hotplugged processors.
2504 *
2505 * zoneinfo_show() and maybe other functions do
2506 * not check if the processor is online before following the pageset pointer.
2507 * Other parts of the kernel may not check if the zone is available.
2caaad41 2508 */
88a2a4ac 2509static struct per_cpu_pageset boot_pageset[NR_CPUS];
2caaad41
CL
2510
2511/*
2512 * Dynamically allocate memory for the
e7c8d5c9
CL
2513 * per cpu pageset array in struct zone.
2514 */
6292d9aa 2515static int __cpuinit process_zones(int cpu)
e7c8d5c9
CL
2516{
2517 struct zone *zone, *dzone;
37c0708d
CL
2518 int node = cpu_to_node(cpu);
2519
2520 node_set_state(node, N_CPU); /* this node has a cpu */
e7c8d5c9
CL
2521
2522 for_each_zone(zone) {
e7c8d5c9 2523
66a55030
CL
2524 if (!populated_zone(zone))
2525 continue;
2526
23316bc8 2527 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
37c0708d 2528 GFP_KERNEL, node);
23316bc8 2529 if (!zone_pcp(zone, cpu))
e7c8d5c9 2530 goto bad;
e7c8d5c9 2531
23316bc8 2532 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
8ad4b1fb
RS
2533
2534 if (percpu_pagelist_fraction)
2535 setup_pagelist_highmark(zone_pcp(zone, cpu),
2536 (zone->present_pages / percpu_pagelist_fraction));
e7c8d5c9
CL
2537 }
2538
2539 return 0;
2540bad:
2541 for_each_zone(dzone) {
64191688
AM
2542 if (!populated_zone(dzone))
2543 continue;
e7c8d5c9
CL
2544 if (dzone == zone)
2545 break;
23316bc8
NP
2546 kfree(zone_pcp(dzone, cpu));
2547 zone_pcp(dzone, cpu) = NULL;
e7c8d5c9
CL
2548 }
2549 return -ENOMEM;
2550}
2551
2552static inline void free_zone_pagesets(int cpu)
2553{
e7c8d5c9
CL
2554 struct zone *zone;
2555
2556 for_each_zone(zone) {
2557 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2558
f3ef9ead
DR
2559 /* Free per_cpu_pageset if it is slab allocated */
2560 if (pset != &boot_pageset[cpu])
2561 kfree(pset);
e7c8d5c9 2562 zone_pcp(zone, cpu) = NULL;
e7c8d5c9 2563 }
e7c8d5c9
CL
2564}
2565
9c7b216d 2566static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
e7c8d5c9
CL
2567 unsigned long action,
2568 void *hcpu)
2569{
2570 int cpu = (long)hcpu;
2571 int ret = NOTIFY_OK;
2572
2573 switch (action) {
ce421c79 2574 case CPU_UP_PREPARE:
8bb78442 2575 case CPU_UP_PREPARE_FROZEN:
ce421c79
AW
2576 if (process_zones(cpu))
2577 ret = NOTIFY_BAD;
2578 break;
2579 case CPU_UP_CANCELED:
8bb78442 2580 case CPU_UP_CANCELED_FROZEN:
ce421c79 2581 case CPU_DEAD:
8bb78442 2582 case CPU_DEAD_FROZEN:
ce421c79
AW
2583 free_zone_pagesets(cpu);
2584 break;
2585 default:
2586 break;
e7c8d5c9
CL
2587 }
2588 return ret;
2589}
2590
74b85f37 2591static struct notifier_block __cpuinitdata pageset_notifier =
e7c8d5c9
CL
2592 { &pageset_cpuup_callback, NULL, 0 };
2593
78d9955b 2594void __init setup_per_cpu_pageset(void)
e7c8d5c9
CL
2595{
2596 int err;
2597
2598 /* Initialize per_cpu_pageset for cpu 0.
2599 * A cpuup callback will do this for every cpu
2600 * as it comes online
2601 */
2602 err = process_zones(smp_processor_id());
2603 BUG_ON(err);
2604 register_cpu_notifier(&pageset_notifier);
2605}
2606
2607#endif
2608
577a32f6 2609static noinline __init_refok
cca448fe 2610int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
2611{
2612 int i;
2613 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 2614 size_t alloc_size;
ed8ece2e
DH
2615
2616 /*
2617 * The per-page waitqueue mechanism uses hashed waitqueues
2618 * per zone.
2619 */
02b694de
YG
2620 zone->wait_table_hash_nr_entries =
2621 wait_table_hash_nr_entries(zone_size_pages);
2622 zone->wait_table_bits =
2623 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
2624 alloc_size = zone->wait_table_hash_nr_entries
2625 * sizeof(wait_queue_head_t);
2626
2627 if (system_state == SYSTEM_BOOTING) {
2628 zone->wait_table = (wait_queue_head_t *)
2629 alloc_bootmem_node(pgdat, alloc_size);
2630 } else {
2631 /*
2632 * This case means that a zone whose size was 0 gets new memory
2633 * via memory hot-add.
2634 * But it may be the case that a new node was hot-added. In
2635 * this case vmalloc() will not be able to use this new node's
2636 * memory - this wait_table must be initialized to use this new
2637 * node itself as well.
2638 * To use this new node's memory, further consideration will be
2639 * necessary.
2640 */
8691f3a7 2641 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
2642 }
2643 if (!zone->wait_table)
2644 return -ENOMEM;
ed8ece2e 2645
02b694de 2646 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 2647 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
2648
2649 return 0;
ed8ece2e
DH
2650}
2651
c09b4240 2652static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e
DH
2653{
2654 int cpu;
2655 unsigned long batch = zone_batchsize(zone);
2656
2657 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2658#ifdef CONFIG_NUMA
2659 /* Early boot. Slab allocator not functional yet */
23316bc8 2660 zone_pcp(zone, cpu) = &boot_pageset[cpu];
ed8ece2e
DH
2661 setup_pageset(&boot_pageset[cpu],0);
2662#else
2663 setup_pageset(zone_pcp(zone,cpu), batch);
2664#endif
2665 }
f5335c0f
AB
2666 if (zone->present_pages)
2667 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2668 zone->name, zone->present_pages, batch);
ed8ece2e
DH
2669}
2670
718127cc
YG
2671__meminit int init_currently_empty_zone(struct zone *zone,
2672 unsigned long zone_start_pfn,
a2f3aa02
DH
2673 unsigned long size,
2674 enum memmap_context context)
ed8ece2e
DH
2675{
2676 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
2677 int ret;
2678 ret = zone_wait_table_init(zone, size);
2679 if (ret)
2680 return ret;
ed8ece2e
DH
2681 pgdat->nr_zones = zone_idx(zone) + 1;
2682
ed8ece2e
DH
2683 zone->zone_start_pfn = zone_start_pfn;
2684
2685 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2686
2687 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
718127cc
YG
2688
2689 return 0;
ed8ece2e
DH
2690}
2691
c713216d
MG
2692#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2693/*
2694 * Basic iterator support. Return the first range of PFNs for a node
2695 * Note: nid == MAX_NUMNODES returns first region regardless of node
2696 */
a3142c8e 2697static int __meminit first_active_region_index_in_nid(int nid)
c713216d
MG
2698{
2699 int i;
2700
2701 for (i = 0; i < nr_nodemap_entries; i++)
2702 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2703 return i;
2704
2705 return -1;
2706}
2707
2708/*
2709 * Basic iterator support. Return the next active range of PFNs for a node
2710 * Note: nid == MAX_NUMNODES returns next region regardles of node
2711 */
a3142c8e 2712static int __meminit next_active_region_index_in_nid(int index, int nid)
c713216d
MG
2713{
2714 for (index = index + 1; index < nr_nodemap_entries; index++)
2715 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2716 return index;
2717
2718 return -1;
2719}
2720
2721#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2722/*
2723 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2724 * Architectures may implement their own version but if add_active_range()
2725 * was used and there are no special requirements, this is a convenient
2726 * alternative
2727 */
6f076f5d 2728int __meminit early_pfn_to_nid(unsigned long pfn)
c713216d
MG
2729{
2730 int i;
2731
2732 for (i = 0; i < nr_nodemap_entries; i++) {
2733 unsigned long start_pfn = early_node_map[i].start_pfn;
2734 unsigned long end_pfn = early_node_map[i].end_pfn;
2735
2736 if (start_pfn <= pfn && pfn < end_pfn)
2737 return early_node_map[i].nid;
2738 }
2739
2740 return 0;
2741}
2742#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2743
2744/* Basic iterator support to walk early_node_map[] */
2745#define for_each_active_range_index_in_nid(i, nid) \
2746 for (i = first_active_region_index_in_nid(nid); i != -1; \
2747 i = next_active_region_index_in_nid(i, nid))
2748
2749/**
2750 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
2751 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2752 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
2753 *
2754 * If an architecture guarantees that all ranges registered with
2755 * add_active_ranges() contain no holes and may be freed, this
2756 * this function may be used instead of calling free_bootmem() manually.
2757 */
2758void __init free_bootmem_with_active_regions(int nid,
2759 unsigned long max_low_pfn)
2760{
2761 int i;
2762
2763 for_each_active_range_index_in_nid(i, nid) {
2764 unsigned long size_pages = 0;
2765 unsigned long end_pfn = early_node_map[i].end_pfn;
2766
2767 if (early_node_map[i].start_pfn >= max_low_pfn)
2768 continue;
2769
2770 if (end_pfn > max_low_pfn)
2771 end_pfn = max_low_pfn;
2772
2773 size_pages = end_pfn - early_node_map[i].start_pfn;
2774 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2775 PFN_PHYS(early_node_map[i].start_pfn),
2776 size_pages << PAGE_SHIFT);
2777 }
2778}
2779
2780/**
2781 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 2782 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
2783 *
2784 * If an architecture guarantees that all ranges registered with
2785 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 2786 * function may be used instead of calling memory_present() manually.
c713216d
MG
2787 */
2788void __init sparse_memory_present_with_active_regions(int nid)
2789{
2790 int i;
2791
2792 for_each_active_range_index_in_nid(i, nid)
2793 memory_present(early_node_map[i].nid,
2794 early_node_map[i].start_pfn,
2795 early_node_map[i].end_pfn);
2796}
2797
fb01439c
MG
2798/**
2799 * push_node_boundaries - Push node boundaries to at least the requested boundary
2800 * @nid: The nid of the node to push the boundary for
2801 * @start_pfn: The start pfn of the node
2802 * @end_pfn: The end pfn of the node
2803 *
2804 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2805 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2806 * be hotplugged even though no physical memory exists. This function allows
2807 * an arch to push out the node boundaries so mem_map is allocated that can
2808 * be used later.
2809 */
2810#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2811void __init push_node_boundaries(unsigned int nid,
2812 unsigned long start_pfn, unsigned long end_pfn)
2813{
2814 printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2815 nid, start_pfn, end_pfn);
2816
2817 /* Initialise the boundary for this node if necessary */
2818 if (node_boundary_end_pfn[nid] == 0)
2819 node_boundary_start_pfn[nid] = -1UL;
2820
2821 /* Update the boundaries */
2822 if (node_boundary_start_pfn[nid] > start_pfn)
2823 node_boundary_start_pfn[nid] = start_pfn;
2824 if (node_boundary_end_pfn[nid] < end_pfn)
2825 node_boundary_end_pfn[nid] = end_pfn;
2826}
2827
2828/* If necessary, push the node boundary out for reserve hotadd */
98011f56 2829static void __meminit account_node_boundary(unsigned int nid,
fb01439c
MG
2830 unsigned long *start_pfn, unsigned long *end_pfn)
2831{
2832 printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2833 nid, *start_pfn, *end_pfn);
2834
2835 /* Return if boundary information has not been provided */
2836 if (node_boundary_end_pfn[nid] == 0)
2837 return;
2838
2839 /* Check the boundaries and update if necessary */
2840 if (node_boundary_start_pfn[nid] < *start_pfn)
2841 *start_pfn = node_boundary_start_pfn[nid];
2842 if (node_boundary_end_pfn[nid] > *end_pfn)
2843 *end_pfn = node_boundary_end_pfn[nid];
2844}
2845#else
2846void __init push_node_boundaries(unsigned int nid,
2847 unsigned long start_pfn, unsigned long end_pfn) {}
2848
98011f56 2849static void __meminit account_node_boundary(unsigned int nid,
fb01439c
MG
2850 unsigned long *start_pfn, unsigned long *end_pfn) {}
2851#endif
2852
2853
c713216d
MG
2854/**
2855 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
2856 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
2857 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
2858 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
2859 *
2860 * It returns the start and end page frame of a node based on information
2861 * provided by an arch calling add_active_range(). If called for a node
2862 * with no available memory, a warning is printed and the start and end
88ca3b94 2863 * PFNs will be 0.
c713216d 2864 */
a3142c8e 2865void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
2866 unsigned long *start_pfn, unsigned long *end_pfn)
2867{
2868 int i;
2869 *start_pfn = -1UL;
2870 *end_pfn = 0;
2871
2872 for_each_active_range_index_in_nid(i, nid) {
2873 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
2874 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
2875 }
2876
633c0666 2877 if (*start_pfn == -1UL)
c713216d 2878 *start_pfn = 0;
fb01439c
MG
2879
2880 /* Push the node boundaries out if requested */
2881 account_node_boundary(nid, start_pfn, end_pfn);
c713216d
MG
2882}
2883
2a1e274a
MG
2884/*
2885 * This finds a zone that can be used for ZONE_MOVABLE pages. The
2886 * assumption is made that zones within a node are ordered in monotonic
2887 * increasing memory addresses so that the "highest" populated zone is used
2888 */
2889void __init find_usable_zone_for_movable(void)
2890{
2891 int zone_index;
2892 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
2893 if (zone_index == ZONE_MOVABLE)
2894 continue;
2895
2896 if (arch_zone_highest_possible_pfn[zone_index] >
2897 arch_zone_lowest_possible_pfn[zone_index])
2898 break;
2899 }
2900
2901 VM_BUG_ON(zone_index == -1);
2902 movable_zone = zone_index;
2903}
2904
2905/*
2906 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
2907 * because it is sized independant of architecture. Unlike the other zones,
2908 * the starting point for ZONE_MOVABLE is not fixed. It may be different
2909 * in each node depending on the size of each node and how evenly kernelcore
2910 * is distributed. This helper function adjusts the zone ranges
2911 * provided by the architecture for a given node by using the end of the
2912 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
2913 * zones within a node are in order of monotonic increases memory addresses
2914 */
2915void __meminit adjust_zone_range_for_zone_movable(int nid,
2916 unsigned long zone_type,
2917 unsigned long node_start_pfn,
2918 unsigned long node_end_pfn,
2919 unsigned long *zone_start_pfn,
2920 unsigned long *zone_end_pfn)
2921{
2922 /* Only adjust if ZONE_MOVABLE is on this node */
2923 if (zone_movable_pfn[nid]) {
2924 /* Size ZONE_MOVABLE */
2925 if (zone_type == ZONE_MOVABLE) {
2926 *zone_start_pfn = zone_movable_pfn[nid];
2927 *zone_end_pfn = min(node_end_pfn,
2928 arch_zone_highest_possible_pfn[movable_zone]);
2929
2930 /* Adjust for ZONE_MOVABLE starting within this range */
2931 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
2932 *zone_end_pfn > zone_movable_pfn[nid]) {
2933 *zone_end_pfn = zone_movable_pfn[nid];
2934
2935 /* Check if this whole range is within ZONE_MOVABLE */
2936 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
2937 *zone_start_pfn = *zone_end_pfn;
2938 }
2939}
2940
c713216d
MG
2941/*
2942 * Return the number of pages a zone spans in a node, including holes
2943 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
2944 */
6ea6e688 2945static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
2946 unsigned long zone_type,
2947 unsigned long *ignored)
2948{
2949 unsigned long node_start_pfn, node_end_pfn;
2950 unsigned long zone_start_pfn, zone_end_pfn;
2951
2952 /* Get the start and end of the node and zone */
2953 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2954 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
2955 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
2956 adjust_zone_range_for_zone_movable(nid, zone_type,
2957 node_start_pfn, node_end_pfn,
2958 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
2959
2960 /* Check that this node has pages within the zone's required range */
2961 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
2962 return 0;
2963
2964 /* Move the zone boundaries inside the node if necessary */
2965 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
2966 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
2967
2968 /* Return the spanned pages */
2969 return zone_end_pfn - zone_start_pfn;
2970}
2971
2972/*
2973 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 2974 * then all holes in the requested range will be accounted for.
c713216d 2975 */
a3142c8e 2976unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
2977 unsigned long range_start_pfn,
2978 unsigned long range_end_pfn)
2979{
2980 int i = 0;
2981 unsigned long prev_end_pfn = 0, hole_pages = 0;
2982 unsigned long start_pfn;
2983
2984 /* Find the end_pfn of the first active range of pfns in the node */
2985 i = first_active_region_index_in_nid(nid);
2986 if (i == -1)
2987 return 0;
2988
b5445f95
MG
2989 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
2990
9c7cd687
MG
2991 /* Account for ranges before physical memory on this node */
2992 if (early_node_map[i].start_pfn > range_start_pfn)
b5445f95 2993 hole_pages = prev_end_pfn - range_start_pfn;
c713216d
MG
2994
2995 /* Find all holes for the zone within the node */
2996 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
2997
2998 /* No need to continue if prev_end_pfn is outside the zone */
2999 if (prev_end_pfn >= range_end_pfn)
3000 break;
3001
3002 /* Make sure the end of the zone is not within the hole */
3003 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3004 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3005
3006 /* Update the hole size cound and move on */
3007 if (start_pfn > range_start_pfn) {
3008 BUG_ON(prev_end_pfn > start_pfn);
3009 hole_pages += start_pfn - prev_end_pfn;
3010 }
3011 prev_end_pfn = early_node_map[i].end_pfn;
3012 }
3013
9c7cd687
MG
3014 /* Account for ranges past physical memory on this node */
3015 if (range_end_pfn > prev_end_pfn)
0c6cb974 3016 hole_pages += range_end_pfn -
9c7cd687
MG
3017 max(range_start_pfn, prev_end_pfn);
3018
c713216d
MG
3019 return hole_pages;
3020}
3021
3022/**
3023 * absent_pages_in_range - Return number of page frames in holes within a range
3024 * @start_pfn: The start PFN to start searching for holes
3025 * @end_pfn: The end PFN to stop searching for holes
3026 *
88ca3b94 3027 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
3028 */
3029unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3030 unsigned long end_pfn)
3031{
3032 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3033}
3034
3035/* Return the number of page frames in holes in a zone on a node */
6ea6e688 3036static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3037 unsigned long zone_type,
3038 unsigned long *ignored)
3039{
9c7cd687
MG
3040 unsigned long node_start_pfn, node_end_pfn;
3041 unsigned long zone_start_pfn, zone_end_pfn;
3042
3043 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3044 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3045 node_start_pfn);
3046 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3047 node_end_pfn);
3048
2a1e274a
MG
3049 adjust_zone_range_for_zone_movable(nid, zone_type,
3050 node_start_pfn, node_end_pfn,
3051 &zone_start_pfn, &zone_end_pfn);
9c7cd687 3052 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 3053}
0e0b864e 3054
c713216d 3055#else
6ea6e688 3056static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3057 unsigned long zone_type,
3058 unsigned long *zones_size)
3059{
3060 return zones_size[zone_type];
3061}
3062
6ea6e688 3063static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3064 unsigned long zone_type,
3065 unsigned long *zholes_size)
3066{
3067 if (!zholes_size)
3068 return 0;
3069
3070 return zholes_size[zone_type];
3071}
0e0b864e 3072
c713216d
MG
3073#endif
3074
a3142c8e 3075static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
3076 unsigned long *zones_size, unsigned long *zholes_size)
3077{
3078 unsigned long realtotalpages, totalpages = 0;
3079 enum zone_type i;
3080
3081 for (i = 0; i < MAX_NR_ZONES; i++)
3082 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3083 zones_size);
3084 pgdat->node_spanned_pages = totalpages;
3085
3086 realtotalpages = totalpages;
3087 for (i = 0; i < MAX_NR_ZONES; i++)
3088 realtotalpages -=
3089 zone_absent_pages_in_node(pgdat->node_id, i,
3090 zholes_size);
3091 pgdat->node_present_pages = realtotalpages;
3092 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3093 realtotalpages);
3094}
3095
835c134e
MG
3096#ifndef CONFIG_SPARSEMEM
3097/*
3098 * Calculate the size of the zone->blockflags rounded to an unsigned long
3099 * Start by making sure zonesize is a multiple of MAX_ORDER-1 by rounding up
3100 * Then figure 1 NR_PAGEBLOCK_BITS worth of bits per MAX_ORDER-1, finally
3101 * round what is now in bits to nearest long in bits, then return it in
3102 * bytes.
3103 */
3104static unsigned long __init usemap_size(unsigned long zonesize)
3105{
3106 unsigned long usemapsize;
3107
3108 usemapsize = roundup(zonesize, MAX_ORDER_NR_PAGES);
3109 usemapsize = usemapsize >> (MAX_ORDER-1);
3110 usemapsize *= NR_PAGEBLOCK_BITS;
3111 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3112
3113 return usemapsize / 8;
3114}
3115
3116static void __init setup_usemap(struct pglist_data *pgdat,
3117 struct zone *zone, unsigned long zonesize)
3118{
3119 unsigned long usemapsize = usemap_size(zonesize);
3120 zone->pageblock_flags = NULL;
3121 if (usemapsize) {
3122 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3123 memset(zone->pageblock_flags, 0, usemapsize);
3124 }
3125}
3126#else
3127static void inline setup_usemap(struct pglist_data *pgdat,
3128 struct zone *zone, unsigned long zonesize) {}
3129#endif /* CONFIG_SPARSEMEM */
3130
1da177e4
LT
3131/*
3132 * Set up the zone data structures:
3133 * - mark all pages reserved
3134 * - mark all memory queues empty
3135 * - clear the memory bitmaps
3136 */
86356ab1 3137static void __meminit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
3138 unsigned long *zones_size, unsigned long *zholes_size)
3139{
2f1b6248 3140 enum zone_type j;
ed8ece2e 3141 int nid = pgdat->node_id;
1da177e4 3142 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 3143 int ret;
1da177e4 3144
208d54e5 3145 pgdat_resize_init(pgdat);
1da177e4
LT
3146 pgdat->nr_zones = 0;
3147 init_waitqueue_head(&pgdat->kswapd_wait);
3148 pgdat->kswapd_max_order = 0;
3149
3150 for (j = 0; j < MAX_NR_ZONES; j++) {
3151 struct zone *zone = pgdat->node_zones + j;
0e0b864e 3152 unsigned long size, realsize, memmap_pages;
1da177e4 3153
c713216d
MG
3154 size = zone_spanned_pages_in_node(nid, j, zones_size);
3155 realsize = size - zone_absent_pages_in_node(nid, j,
3156 zholes_size);
1da177e4 3157
0e0b864e
MG
3158 /*
3159 * Adjust realsize so that it accounts for how much memory
3160 * is used by this zone for memmap. This affects the watermark
3161 * and per-cpu initialisations
3162 */
3163 memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
3164 if (realsize >= memmap_pages) {
3165 realsize -= memmap_pages;
3166 printk(KERN_DEBUG
3167 " %s zone: %lu pages used for memmap\n",
3168 zone_names[j], memmap_pages);
3169 } else
3170 printk(KERN_WARNING
3171 " %s zone: %lu pages exceeds realsize %lu\n",
3172 zone_names[j], memmap_pages, realsize);
3173
6267276f
CL
3174 /* Account for reserved pages */
3175 if (j == 0 && realsize > dma_reserve) {
0e0b864e 3176 realsize -= dma_reserve;
6267276f
CL
3177 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3178 zone_names[0], dma_reserve);
0e0b864e
MG
3179 }
3180
98d2b0eb 3181 if (!is_highmem_idx(j))
1da177e4
LT
3182 nr_kernel_pages += realsize;
3183 nr_all_pages += realsize;
3184
3185 zone->spanned_pages = size;
3186 zone->present_pages = realsize;
9614634f 3187#ifdef CONFIG_NUMA
d5f541ed 3188 zone->node = nid;
8417bba4 3189 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 3190 / 100;
0ff38490 3191 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 3192#endif
1da177e4
LT
3193 zone->name = zone_names[j];
3194 spin_lock_init(&zone->lock);
3195 spin_lock_init(&zone->lru_lock);
bdc8cb98 3196 zone_seqlock_init(zone);
1da177e4 3197 zone->zone_pgdat = pgdat;
1da177e4 3198
3bb1a852 3199 zone->prev_priority = DEF_PRIORITY;
1da177e4 3200
ed8ece2e 3201 zone_pcp_init(zone);
1da177e4
LT
3202 INIT_LIST_HEAD(&zone->active_list);
3203 INIT_LIST_HEAD(&zone->inactive_list);
3204 zone->nr_scan_active = 0;
3205 zone->nr_scan_inactive = 0;
2244b95a 3206 zap_zone_vm_stats(zone);
53e9a615 3207 atomic_set(&zone->reclaim_in_progress, 0);
1da177e4
LT
3208 if (!size)
3209 continue;
3210
835c134e 3211 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
3212 ret = init_currently_empty_zone(zone, zone_start_pfn,
3213 size, MEMMAP_EARLY);
718127cc 3214 BUG_ON(ret);
1da177e4 3215 zone_start_pfn += size;
1da177e4
LT
3216 }
3217}
3218
577a32f6 3219static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 3220{
1da177e4
LT
3221 /* Skip empty nodes */
3222 if (!pgdat->node_spanned_pages)
3223 return;
3224
d41dee36 3225#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
3226 /* ia64 gets its own node_mem_map, before this, without bootmem */
3227 if (!pgdat->node_mem_map) {
e984bb43 3228 unsigned long size, start, end;
d41dee36
AW
3229 struct page *map;
3230
e984bb43
BP
3231 /*
3232 * The zone's endpoints aren't required to be MAX_ORDER
3233 * aligned but the node_mem_map endpoints must be in order
3234 * for the buddy allocator to function correctly.
3235 */
3236 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3237 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3238 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3239 size = (end - start) * sizeof(struct page);
6f167ec7
DH
3240 map = alloc_remap(pgdat->node_id, size);
3241 if (!map)
3242 map = alloc_bootmem_node(pgdat, size);
e984bb43 3243 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 3244 }
12d810c1 3245#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
3246 /*
3247 * With no DISCONTIG, the global mem_map is just set as node 0's
3248 */
c713216d 3249 if (pgdat == NODE_DATA(0)) {
1da177e4 3250 mem_map = NODE_DATA(0)->node_mem_map;
c713216d
MG
3251#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3252 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3253 mem_map -= pgdat->node_start_pfn;
3254#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3255 }
1da177e4 3256#endif
d41dee36 3257#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
3258}
3259
86356ab1 3260void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
1da177e4
LT
3261 unsigned long *zones_size, unsigned long node_start_pfn,
3262 unsigned long *zholes_size)
3263{
3264 pgdat->node_id = nid;
3265 pgdat->node_start_pfn = node_start_pfn;
c713216d 3266 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
3267
3268 alloc_node_mem_map(pgdat);
3269
3270 free_area_init_core(pgdat, zones_size, zholes_size);
3271}
3272
c713216d 3273#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
418508c1
MS
3274
3275#if MAX_NUMNODES > 1
3276/*
3277 * Figure out the number of possible node ids.
3278 */
3279static void __init setup_nr_node_ids(void)
3280{
3281 unsigned int node;
3282 unsigned int highest = 0;
3283
3284 for_each_node_mask(node, node_possible_map)
3285 highest = node;
3286 nr_node_ids = highest + 1;
3287}
3288#else
3289static inline void setup_nr_node_ids(void)
3290{
3291}
3292#endif
3293
c713216d
MG
3294/**
3295 * add_active_range - Register a range of PFNs backed by physical memory
3296 * @nid: The node ID the range resides on
3297 * @start_pfn: The start PFN of the available physical memory
3298 * @end_pfn: The end PFN of the available physical memory
3299 *
3300 * These ranges are stored in an early_node_map[] and later used by
3301 * free_area_init_nodes() to calculate zone sizes and holes. If the
3302 * range spans a memory hole, it is up to the architecture to ensure
3303 * the memory is not freed by the bootmem allocator. If possible
3304 * the range being registered will be merged with existing ranges.
3305 */
3306void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3307 unsigned long end_pfn)
3308{
3309 int i;
3310
3311 printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
3312 "%d entries of %d used\n",
3313 nid, start_pfn, end_pfn,
3314 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3315
3316 /* Merge with existing active regions if possible */
3317 for (i = 0; i < nr_nodemap_entries; i++) {
3318 if (early_node_map[i].nid != nid)
3319 continue;
3320
3321 /* Skip if an existing region covers this new one */
3322 if (start_pfn >= early_node_map[i].start_pfn &&
3323 end_pfn <= early_node_map[i].end_pfn)
3324 return;
3325
3326 /* Merge forward if suitable */
3327 if (start_pfn <= early_node_map[i].end_pfn &&
3328 end_pfn > early_node_map[i].end_pfn) {
3329 early_node_map[i].end_pfn = end_pfn;
3330 return;
3331 }
3332
3333 /* Merge backward if suitable */
3334 if (start_pfn < early_node_map[i].end_pfn &&
3335 end_pfn >= early_node_map[i].start_pfn) {
3336 early_node_map[i].start_pfn = start_pfn;
3337 return;
3338 }
3339 }
3340
3341 /* Check that early_node_map is large enough */
3342 if (i >= MAX_ACTIVE_REGIONS) {
3343 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3344 MAX_ACTIVE_REGIONS);
3345 return;
3346 }
3347
3348 early_node_map[i].nid = nid;
3349 early_node_map[i].start_pfn = start_pfn;
3350 early_node_map[i].end_pfn = end_pfn;
3351 nr_nodemap_entries = i + 1;
3352}
3353
3354/**
3355 * shrink_active_range - Shrink an existing registered range of PFNs
3356 * @nid: The node id the range is on that should be shrunk
3357 * @old_end_pfn: The old end PFN of the range
3358 * @new_end_pfn: The new PFN of the range
3359 *
3360 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3361 * The map is kept at the end physical page range that has already been
3362 * registered with add_active_range(). This function allows an arch to shrink
3363 * an existing registered range.
3364 */
3365void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
3366 unsigned long new_end_pfn)
3367{
3368 int i;
3369
3370 /* Find the old active region end and shrink */
3371 for_each_active_range_index_in_nid(i, nid)
3372 if (early_node_map[i].end_pfn == old_end_pfn) {
3373 early_node_map[i].end_pfn = new_end_pfn;
3374 break;
3375 }
3376}
3377
3378/**
3379 * remove_all_active_ranges - Remove all currently registered regions
88ca3b94 3380 *
c713216d
MG
3381 * During discovery, it may be found that a table like SRAT is invalid
3382 * and an alternative discovery method must be used. This function removes
3383 * all currently registered regions.
3384 */
88ca3b94 3385void __init remove_all_active_ranges(void)
c713216d
MG
3386{
3387 memset(early_node_map, 0, sizeof(early_node_map));
3388 nr_nodemap_entries = 0;
fb01439c
MG
3389#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3390 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3391 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3392#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
c713216d
MG
3393}
3394
3395/* Compare two active node_active_regions */
3396static int __init cmp_node_active_region(const void *a, const void *b)
3397{
3398 struct node_active_region *arange = (struct node_active_region *)a;
3399 struct node_active_region *brange = (struct node_active_region *)b;
3400
3401 /* Done this way to avoid overflows */
3402 if (arange->start_pfn > brange->start_pfn)
3403 return 1;
3404 if (arange->start_pfn < brange->start_pfn)
3405 return -1;
3406
3407 return 0;
3408}
3409
3410/* sort the node_map by start_pfn */
3411static void __init sort_node_map(void)
3412{
3413 sort(early_node_map, (size_t)nr_nodemap_entries,
3414 sizeof(struct node_active_region),
3415 cmp_node_active_region, NULL);
3416}
3417
a6af2bc3 3418/* Find the lowest pfn for a node */
c713216d
MG
3419unsigned long __init find_min_pfn_for_node(unsigned long nid)
3420{
3421 int i;
a6af2bc3 3422 unsigned long min_pfn = ULONG_MAX;
1abbfb41 3423
c713216d
MG
3424 /* Assuming a sorted map, the first range found has the starting pfn */
3425 for_each_active_range_index_in_nid(i, nid)
a6af2bc3 3426 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
c713216d 3427
a6af2bc3
MG
3428 if (min_pfn == ULONG_MAX) {
3429 printk(KERN_WARNING
3430 "Could not find start_pfn for node %lu\n", nid);
3431 return 0;
3432 }
3433
3434 return min_pfn;
c713216d
MG
3435}
3436
3437/**
3438 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3439 *
3440 * It returns the minimum PFN based on information provided via
88ca3b94 3441 * add_active_range().
c713216d
MG
3442 */
3443unsigned long __init find_min_pfn_with_active_regions(void)
3444{
3445 return find_min_pfn_for_node(MAX_NUMNODES);
3446}
3447
3448/**
3449 * find_max_pfn_with_active_regions - Find the maximum PFN registered
3450 *
3451 * It returns the maximum PFN based on information provided via
88ca3b94 3452 * add_active_range().
c713216d
MG
3453 */
3454unsigned long __init find_max_pfn_with_active_regions(void)
3455{
3456 int i;
3457 unsigned long max_pfn = 0;
3458
3459 for (i = 0; i < nr_nodemap_entries; i++)
3460 max_pfn = max(max_pfn, early_node_map[i].end_pfn);
3461
3462 return max_pfn;
3463}
3464
37b07e41
LS
3465/*
3466 * early_calculate_totalpages()
3467 * Sum pages in active regions for movable zone.
3468 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3469 */
7e63efef
MG
3470unsigned long __init early_calculate_totalpages(void)
3471{
3472 int i;
3473 unsigned long totalpages = 0;
3474
37b07e41
LS
3475 for (i = 0; i < nr_nodemap_entries; i++) {
3476 unsigned long pages = early_node_map[i].end_pfn -
7e63efef 3477 early_node_map[i].start_pfn;
37b07e41
LS
3478 totalpages += pages;
3479 if (pages)
3480 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3481 }
3482 return totalpages;
7e63efef
MG
3483}
3484
2a1e274a
MG
3485/*
3486 * Find the PFN the Movable zone begins in each node. Kernel memory
3487 * is spread evenly between nodes as long as the nodes have enough
3488 * memory. When they don't, some nodes will have more kernelcore than
3489 * others
3490 */
3491void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3492{
3493 int i, nid;
3494 unsigned long usable_startpfn;
3495 unsigned long kernelcore_node, kernelcore_remaining;
37b07e41
LS
3496 unsigned long totalpages = early_calculate_totalpages();
3497 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 3498
7e63efef
MG
3499 /*
3500 * If movablecore was specified, calculate what size of
3501 * kernelcore that corresponds so that memory usable for
3502 * any allocation type is evenly spread. If both kernelcore
3503 * and movablecore are specified, then the value of kernelcore
3504 * will be used for required_kernelcore if it's greater than
3505 * what movablecore would have allowed.
3506 */
3507 if (required_movablecore) {
7e63efef
MG
3508 unsigned long corepages;
3509
3510 /*
3511 * Round-up so that ZONE_MOVABLE is at least as large as what
3512 * was requested by the user
3513 */
3514 required_movablecore =
3515 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3516 corepages = totalpages - required_movablecore;
3517
3518 required_kernelcore = max(required_kernelcore, corepages);
3519 }
3520
2a1e274a
MG
3521 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3522 if (!required_kernelcore)
3523 return;
3524
3525 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3526 find_usable_zone_for_movable();
3527 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3528
3529restart:
3530 /* Spread kernelcore memory as evenly as possible throughout nodes */
3531 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 3532 for_each_node_state(nid, N_HIGH_MEMORY) {
2a1e274a
MG
3533 /*
3534 * Recalculate kernelcore_node if the division per node
3535 * now exceeds what is necessary to satisfy the requested
3536 * amount of memory for the kernel
3537 */
3538 if (required_kernelcore < kernelcore_node)
3539 kernelcore_node = required_kernelcore / usable_nodes;
3540
3541 /*
3542 * As the map is walked, we track how much memory is usable
3543 * by the kernel using kernelcore_remaining. When it is
3544 * 0, the rest of the node is usable by ZONE_MOVABLE
3545 */
3546 kernelcore_remaining = kernelcore_node;
3547
3548 /* Go through each range of PFNs within this node */
3549 for_each_active_range_index_in_nid(i, nid) {
3550 unsigned long start_pfn, end_pfn;
3551 unsigned long size_pages;
3552
3553 start_pfn = max(early_node_map[i].start_pfn,
3554 zone_movable_pfn[nid]);
3555 end_pfn = early_node_map[i].end_pfn;
3556 if (start_pfn >= end_pfn)
3557 continue;
3558
3559 /* Account for what is only usable for kernelcore */
3560 if (start_pfn < usable_startpfn) {
3561 unsigned long kernel_pages;
3562 kernel_pages = min(end_pfn, usable_startpfn)
3563 - start_pfn;
3564
3565 kernelcore_remaining -= min(kernel_pages,
3566 kernelcore_remaining);
3567 required_kernelcore -= min(kernel_pages,
3568 required_kernelcore);
3569
3570 /* Continue if range is now fully accounted */
3571 if (end_pfn <= usable_startpfn) {
3572
3573 /*
3574 * Push zone_movable_pfn to the end so
3575 * that if we have to rebalance
3576 * kernelcore across nodes, we will
3577 * not double account here
3578 */
3579 zone_movable_pfn[nid] = end_pfn;
3580 continue;
3581 }
3582 start_pfn = usable_startpfn;
3583 }
3584
3585 /*
3586 * The usable PFN range for ZONE_MOVABLE is from
3587 * start_pfn->end_pfn. Calculate size_pages as the
3588 * number of pages used as kernelcore
3589 */
3590 size_pages = end_pfn - start_pfn;
3591 if (size_pages > kernelcore_remaining)
3592 size_pages = kernelcore_remaining;
3593 zone_movable_pfn[nid] = start_pfn + size_pages;
3594
3595 /*
3596 * Some kernelcore has been met, update counts and
3597 * break if the kernelcore for this node has been
3598 * satisified
3599 */
3600 required_kernelcore -= min(required_kernelcore,
3601 size_pages);
3602 kernelcore_remaining -= size_pages;
3603 if (!kernelcore_remaining)
3604 break;
3605 }
3606 }
3607
3608 /*
3609 * If there is still required_kernelcore, we do another pass with one
3610 * less node in the count. This will push zone_movable_pfn[nid] further
3611 * along on the nodes that still have memory until kernelcore is
3612 * satisified
3613 */
3614 usable_nodes--;
3615 if (usable_nodes && required_kernelcore > usable_nodes)
3616 goto restart;
3617
3618 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3619 for (nid = 0; nid < MAX_NUMNODES; nid++)
3620 zone_movable_pfn[nid] =
3621 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3622}
3623
37b07e41
LS
3624/* Any regular memory on that node ? */
3625static void check_for_regular_memory(pg_data_t *pgdat)
3626{
3627#ifdef CONFIG_HIGHMEM
3628 enum zone_type zone_type;
3629
3630 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
3631 struct zone *zone = &pgdat->node_zones[zone_type];
3632 if (zone->present_pages)
3633 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
3634 }
3635#endif
3636}
3637
c713216d
MG
3638/**
3639 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 3640 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
3641 *
3642 * This will call free_area_init_node() for each active node in the system.
3643 * Using the page ranges provided by add_active_range(), the size of each
3644 * zone in each node and their holes is calculated. If the maximum PFN
3645 * between two adjacent zones match, it is assumed that the zone is empty.
3646 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3647 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3648 * starts where the previous one ended. For example, ZONE_DMA32 starts
3649 * at arch_max_dma_pfn.
3650 */
3651void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3652{
3653 unsigned long nid;
3654 enum zone_type i;
3655
a6af2bc3
MG
3656 /* Sort early_node_map as initialisation assumes it is sorted */
3657 sort_node_map();
3658
c713216d
MG
3659 /* Record where the zone boundaries are */
3660 memset(arch_zone_lowest_possible_pfn, 0,
3661 sizeof(arch_zone_lowest_possible_pfn));
3662 memset(arch_zone_highest_possible_pfn, 0,
3663 sizeof(arch_zone_highest_possible_pfn));
3664 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3665 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3666 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
3667 if (i == ZONE_MOVABLE)
3668 continue;
c713216d
MG
3669 arch_zone_lowest_possible_pfn[i] =
3670 arch_zone_highest_possible_pfn[i-1];
3671 arch_zone_highest_possible_pfn[i] =
3672 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3673 }
2a1e274a
MG
3674 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
3675 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
3676
3677 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
3678 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
3679 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
c713216d 3680
c713216d
MG
3681 /* Print out the zone ranges */
3682 printk("Zone PFN ranges:\n");
2a1e274a
MG
3683 for (i = 0; i < MAX_NR_ZONES; i++) {
3684 if (i == ZONE_MOVABLE)
3685 continue;
c713216d
MG
3686 printk(" %-8s %8lu -> %8lu\n",
3687 zone_names[i],
3688 arch_zone_lowest_possible_pfn[i],
3689 arch_zone_highest_possible_pfn[i]);
2a1e274a
MG
3690 }
3691
3692 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
3693 printk("Movable zone start PFN for each node\n");
3694 for (i = 0; i < MAX_NUMNODES; i++) {
3695 if (zone_movable_pfn[i])
3696 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
3697 }
c713216d
MG
3698
3699 /* Print out the early_node_map[] */
3700 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
3701 for (i = 0; i < nr_nodemap_entries; i++)
3702 printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
3703 early_node_map[i].start_pfn,
3704 early_node_map[i].end_pfn);
3705
3706 /* Initialise every node */
8ef82866 3707 setup_nr_node_ids();
c713216d
MG
3708 for_each_online_node(nid) {
3709 pg_data_t *pgdat = NODE_DATA(nid);
3710 free_area_init_node(nid, pgdat, NULL,
3711 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
3712
3713 /* Any memory on that node */
3714 if (pgdat->node_present_pages)
3715 node_set_state(nid, N_HIGH_MEMORY);
3716 check_for_regular_memory(pgdat);
c713216d
MG
3717 }
3718}
2a1e274a 3719
7e63efef 3720static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
3721{
3722 unsigned long long coremem;
3723 if (!p)
3724 return -EINVAL;
3725
3726 coremem = memparse(p, &p);
7e63efef 3727 *core = coremem >> PAGE_SHIFT;
2a1e274a 3728
7e63efef 3729 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
3730 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
3731
3732 return 0;
3733}
ed7ed365 3734
7e63efef
MG
3735/*
3736 * kernelcore=size sets the amount of memory for use for allocations that
3737 * cannot be reclaimed or migrated.
3738 */
3739static int __init cmdline_parse_kernelcore(char *p)
3740{
3741 return cmdline_parse_core(p, &required_kernelcore);
3742}
3743
3744/*
3745 * movablecore=size sets the amount of memory for use for allocations that
3746 * can be reclaimed or migrated.
3747 */
3748static int __init cmdline_parse_movablecore(char *p)
3749{
3750 return cmdline_parse_core(p, &required_movablecore);
3751}
3752
ed7ed365 3753early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 3754early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 3755
c713216d
MG
3756#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3757
0e0b864e 3758/**
88ca3b94
RD
3759 * set_dma_reserve - set the specified number of pages reserved in the first zone
3760 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
3761 *
3762 * The per-cpu batchsize and zone watermarks are determined by present_pages.
3763 * In the DMA zone, a significant percentage may be consumed by kernel image
3764 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
3765 * function may optionally be used to account for unfreeable pages in the
3766 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
3767 * smaller per-cpu batchsize.
0e0b864e
MG
3768 */
3769void __init set_dma_reserve(unsigned long new_dma_reserve)
3770{
3771 dma_reserve = new_dma_reserve;
3772}
3773
93b7504e 3774#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
3775static bootmem_data_t contig_bootmem_data;
3776struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
3777
3778EXPORT_SYMBOL(contig_page_data);
93b7504e 3779#endif
1da177e4
LT
3780
3781void __init free_area_init(unsigned long *zones_size)
3782{
93b7504e 3783 free_area_init_node(0, NODE_DATA(0), zones_size,
1da177e4
LT
3784 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
3785}
1da177e4 3786
1da177e4
LT
3787static int page_alloc_cpu_notify(struct notifier_block *self,
3788 unsigned long action, void *hcpu)
3789{
3790 int cpu = (unsigned long)hcpu;
1da177e4 3791
8bb78442 3792 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1da177e4
LT
3793 local_irq_disable();
3794 __drain_pages(cpu);
f8891e5e 3795 vm_events_fold_cpu(cpu);
1da177e4 3796 local_irq_enable();
2244b95a 3797 refresh_cpu_vm_stats(cpu);
1da177e4
LT
3798 }
3799 return NOTIFY_OK;
3800}
1da177e4
LT
3801
3802void __init page_alloc_init(void)
3803{
3804 hotcpu_notifier(page_alloc_cpu_notify, 0);
3805}
3806
cb45b0e9
HA
3807/*
3808 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
3809 * or min_free_kbytes changes.
3810 */
3811static void calculate_totalreserve_pages(void)
3812{
3813 struct pglist_data *pgdat;
3814 unsigned long reserve_pages = 0;
2f6726e5 3815 enum zone_type i, j;
cb45b0e9
HA
3816
3817 for_each_online_pgdat(pgdat) {
3818 for (i = 0; i < MAX_NR_ZONES; i++) {
3819 struct zone *zone = pgdat->node_zones + i;
3820 unsigned long max = 0;
3821
3822 /* Find valid and maximum lowmem_reserve in the zone */
3823 for (j = i; j < MAX_NR_ZONES; j++) {
3824 if (zone->lowmem_reserve[j] > max)
3825 max = zone->lowmem_reserve[j];
3826 }
3827
3828 /* we treat pages_high as reserved pages. */
3829 max += zone->pages_high;
3830
3831 if (max > zone->present_pages)
3832 max = zone->present_pages;
3833 reserve_pages += max;
3834 }
3835 }
3836 totalreserve_pages = reserve_pages;
3837}
3838
1da177e4
LT
3839/*
3840 * setup_per_zone_lowmem_reserve - called whenever
3841 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
3842 * has a correct pages reserved value, so an adequate number of
3843 * pages are left in the zone after a successful __alloc_pages().
3844 */
3845static void setup_per_zone_lowmem_reserve(void)
3846{
3847 struct pglist_data *pgdat;
2f6726e5 3848 enum zone_type j, idx;
1da177e4 3849
ec936fc5 3850 for_each_online_pgdat(pgdat) {
1da177e4
LT
3851 for (j = 0; j < MAX_NR_ZONES; j++) {
3852 struct zone *zone = pgdat->node_zones + j;
3853 unsigned long present_pages = zone->present_pages;
3854
3855 zone->lowmem_reserve[j] = 0;
3856
2f6726e5
CL
3857 idx = j;
3858 while (idx) {
1da177e4
LT
3859 struct zone *lower_zone;
3860
2f6726e5
CL
3861 idx--;
3862
1da177e4
LT
3863 if (sysctl_lowmem_reserve_ratio[idx] < 1)
3864 sysctl_lowmem_reserve_ratio[idx] = 1;
3865
3866 lower_zone = pgdat->node_zones + idx;
3867 lower_zone->lowmem_reserve[j] = present_pages /
3868 sysctl_lowmem_reserve_ratio[idx];
3869 present_pages += lower_zone->present_pages;
3870 }
3871 }
3872 }
cb45b0e9
HA
3873
3874 /* update totalreserve_pages */
3875 calculate_totalreserve_pages();
1da177e4
LT
3876}
3877
88ca3b94
RD
3878/**
3879 * setup_per_zone_pages_min - called when min_free_kbytes changes.
3880 *
3881 * Ensures that the pages_{min,low,high} values for each zone are set correctly
3882 * with respect to min_free_kbytes.
1da177e4 3883 */
3947be19 3884void setup_per_zone_pages_min(void)
1da177e4
LT
3885{
3886 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
3887 unsigned long lowmem_pages = 0;
3888 struct zone *zone;
3889 unsigned long flags;
3890
3891 /* Calculate total number of !ZONE_HIGHMEM pages */
3892 for_each_zone(zone) {
3893 if (!is_highmem(zone))
3894 lowmem_pages += zone->present_pages;
3895 }
3896
3897 for_each_zone(zone) {
ac924c60
AM
3898 u64 tmp;
3899
1da177e4 3900 spin_lock_irqsave(&zone->lru_lock, flags);
ac924c60
AM
3901 tmp = (u64)pages_min * zone->present_pages;
3902 do_div(tmp, lowmem_pages);
1da177e4
LT
3903 if (is_highmem(zone)) {
3904 /*
669ed175
NP
3905 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
3906 * need highmem pages, so cap pages_min to a small
3907 * value here.
3908 *
3909 * The (pages_high-pages_low) and (pages_low-pages_min)
3910 * deltas controls asynch page reclaim, and so should
3911 * not be capped for highmem.
1da177e4
LT
3912 */
3913 int min_pages;
3914
3915 min_pages = zone->present_pages / 1024;
3916 if (min_pages < SWAP_CLUSTER_MAX)
3917 min_pages = SWAP_CLUSTER_MAX;
3918 if (min_pages > 128)
3919 min_pages = 128;
3920 zone->pages_min = min_pages;
3921 } else {
669ed175
NP
3922 /*
3923 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
3924 * proportionate to the zone's size.
3925 */
669ed175 3926 zone->pages_min = tmp;
1da177e4
LT
3927 }
3928
ac924c60
AM
3929 zone->pages_low = zone->pages_min + (tmp >> 2);
3930 zone->pages_high = zone->pages_min + (tmp >> 1);
1da177e4
LT
3931 spin_unlock_irqrestore(&zone->lru_lock, flags);
3932 }
cb45b0e9
HA
3933
3934 /* update totalreserve_pages */
3935 calculate_totalreserve_pages();
1da177e4
LT
3936}
3937
3938/*
3939 * Initialise min_free_kbytes.
3940 *
3941 * For small machines we want it small (128k min). For large machines
3942 * we want it large (64MB max). But it is not linear, because network
3943 * bandwidth does not increase linearly with machine size. We use
3944 *
3945 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
3946 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
3947 *
3948 * which yields
3949 *
3950 * 16MB: 512k
3951 * 32MB: 724k
3952 * 64MB: 1024k
3953 * 128MB: 1448k
3954 * 256MB: 2048k
3955 * 512MB: 2896k
3956 * 1024MB: 4096k
3957 * 2048MB: 5792k
3958 * 4096MB: 8192k
3959 * 8192MB: 11584k
3960 * 16384MB: 16384k
3961 */
3962static int __init init_per_zone_pages_min(void)
3963{
3964 unsigned long lowmem_kbytes;
3965
3966 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
3967
3968 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
3969 if (min_free_kbytes < 128)
3970 min_free_kbytes = 128;
3971 if (min_free_kbytes > 65536)
3972 min_free_kbytes = 65536;
3973 setup_per_zone_pages_min();
3974 setup_per_zone_lowmem_reserve();
3975 return 0;
3976}
3977module_init(init_per_zone_pages_min)
3978
3979/*
3980 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
3981 * that we can call two helper functions whenever min_free_kbytes
3982 * changes.
3983 */
3984int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
3985 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3986{
3987 proc_dointvec(table, write, file, buffer, length, ppos);
3b1d92c5
MG
3988 if (write)
3989 setup_per_zone_pages_min();
1da177e4
LT
3990 return 0;
3991}
3992
9614634f
CL
3993#ifdef CONFIG_NUMA
3994int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
3995 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3996{
3997 struct zone *zone;
3998 int rc;
3999
4000 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4001 if (rc)
4002 return rc;
4003
4004 for_each_zone(zone)
8417bba4 4005 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
4006 sysctl_min_unmapped_ratio) / 100;
4007 return 0;
4008}
0ff38490
CL
4009
4010int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4011 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4012{
4013 struct zone *zone;
4014 int rc;
4015
4016 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4017 if (rc)
4018 return rc;
4019
4020 for_each_zone(zone)
4021 zone->min_slab_pages = (zone->present_pages *
4022 sysctl_min_slab_ratio) / 100;
4023 return 0;
4024}
9614634f
CL
4025#endif
4026
1da177e4
LT
4027/*
4028 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4029 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4030 * whenever sysctl_lowmem_reserve_ratio changes.
4031 *
4032 * The reserve ratio obviously has absolutely no relation with the
4033 * pages_min watermarks. The lowmem reserve ratio can only make sense
4034 * if in function of the boot time zone sizes.
4035 */
4036int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4037 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4038{
4039 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4040 setup_per_zone_lowmem_reserve();
4041 return 0;
4042}
4043
8ad4b1fb
RS
4044/*
4045 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4046 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4047 * can have before it gets flushed back to buddy allocator.
4048 */
4049
4050int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4051 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4052{
4053 struct zone *zone;
4054 unsigned int cpu;
4055 int ret;
4056
4057 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4058 if (!write || (ret == -EINVAL))
4059 return ret;
4060 for_each_zone(zone) {
4061 for_each_online_cpu(cpu) {
4062 unsigned long high;
4063 high = zone->present_pages / percpu_pagelist_fraction;
4064 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4065 }
4066 }
4067 return 0;
4068}
4069
f034b5d4 4070int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
4071
4072#ifdef CONFIG_NUMA
4073static int __init set_hashdist(char *str)
4074{
4075 if (!str)
4076 return 0;
4077 hashdist = simple_strtoul(str, &str, 0);
4078 return 1;
4079}
4080__setup("hashdist=", set_hashdist);
4081#endif
4082
4083/*
4084 * allocate a large system hash table from bootmem
4085 * - it is assumed that the hash table must contain an exact power-of-2
4086 * quantity of entries
4087 * - limit is the number of hash buckets, not the total allocation size
4088 */
4089void *__init alloc_large_system_hash(const char *tablename,
4090 unsigned long bucketsize,
4091 unsigned long numentries,
4092 int scale,
4093 int flags,
4094 unsigned int *_hash_shift,
4095 unsigned int *_hash_mask,
4096 unsigned long limit)
4097{
4098 unsigned long long max = limit;
4099 unsigned long log2qty, size;
4100 void *table = NULL;
4101
4102 /* allow the kernel cmdline to have a say */
4103 if (!numentries) {
4104 /* round applicable memory size up to nearest megabyte */
04903664 4105 numentries = nr_kernel_pages;
1da177e4
LT
4106 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4107 numentries >>= 20 - PAGE_SHIFT;
4108 numentries <<= 20 - PAGE_SHIFT;
4109
4110 /* limit to 1 bucket per 2^scale bytes of low memory */
4111 if (scale > PAGE_SHIFT)
4112 numentries >>= (scale - PAGE_SHIFT);
4113 else
4114 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
4115
4116 /* Make sure we've got at least a 0-order allocation.. */
4117 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4118 numentries = PAGE_SIZE / bucketsize;
1da177e4 4119 }
6e692ed3 4120 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
4121
4122 /* limit allocation size to 1/16 total memory by default */
4123 if (max == 0) {
4124 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4125 do_div(max, bucketsize);
4126 }
4127
4128 if (numentries > max)
4129 numentries = max;
4130
f0d1b0b3 4131 log2qty = ilog2(numentries);
1da177e4
LT
4132
4133 do {
4134 size = bucketsize << log2qty;
4135 if (flags & HASH_EARLY)
4136 table = alloc_bootmem(size);
4137 else if (hashdist)
4138 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4139 else {
4140 unsigned long order;
4141 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
4142 ;
4143 table = (void*) __get_free_pages(GFP_ATOMIC, order);
1037b83b
ED
4144 /*
4145 * If bucketsize is not a power-of-two, we may free
4146 * some pages at the end of hash table.
4147 */
4148 if (table) {
4149 unsigned long alloc_end = (unsigned long)table +
4150 (PAGE_SIZE << order);
4151 unsigned long used = (unsigned long)table +
4152 PAGE_ALIGN(size);
4153 split_page(virt_to_page(table), order);
4154 while (used < alloc_end) {
4155 free_page(used);
4156 used += PAGE_SIZE;
4157 }
4158 }
1da177e4
LT
4159 }
4160 } while (!table && size > PAGE_SIZE && --log2qty);
4161
4162 if (!table)
4163 panic("Failed to allocate %s hash table\n", tablename);
4164
b49ad484 4165 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
1da177e4
LT
4166 tablename,
4167 (1U << log2qty),
f0d1b0b3 4168 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
4169 size);
4170
4171 if (_hash_shift)
4172 *_hash_shift = log2qty;
4173 if (_hash_mask)
4174 *_hash_mask = (1 << log2qty) - 1;
4175
4176 return table;
4177}
a117e66e
KH
4178
4179#ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
a117e66e
KH
4180struct page *pfn_to_page(unsigned long pfn)
4181{
67de6482 4182 return __pfn_to_page(pfn);
a117e66e
KH
4183}
4184unsigned long page_to_pfn(struct page *page)
4185{
67de6482 4186 return __page_to_pfn(page);
a117e66e 4187}
a117e66e
KH
4188EXPORT_SYMBOL(pfn_to_page);
4189EXPORT_SYMBOL(page_to_pfn);
4190#endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
6220ec78 4191
835c134e
MG
4192/* Return a pointer to the bitmap storing bits affecting a block of pages */
4193static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4194 unsigned long pfn)
4195{
4196#ifdef CONFIG_SPARSEMEM
4197 return __pfn_to_section(pfn)->pageblock_flags;
4198#else
4199 return zone->pageblock_flags;
4200#endif /* CONFIG_SPARSEMEM */
4201}
4202
4203static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4204{
4205#ifdef CONFIG_SPARSEMEM
4206 pfn &= (PAGES_PER_SECTION-1);
4207 return (pfn >> (MAX_ORDER-1)) * NR_PAGEBLOCK_BITS;
4208#else
4209 pfn = pfn - zone->zone_start_pfn;
4210 return (pfn >> (MAX_ORDER-1)) * NR_PAGEBLOCK_BITS;
4211#endif /* CONFIG_SPARSEMEM */
4212}
4213
4214/**
4215 * get_pageblock_flags_group - Return the requested group of flags for the MAX_ORDER_NR_PAGES block of pages
4216 * @page: The page within the block of interest
4217 * @start_bitidx: The first bit of interest to retrieve
4218 * @end_bitidx: The last bit of interest
4219 * returns pageblock_bits flags
4220 */
4221unsigned long get_pageblock_flags_group(struct page *page,
4222 int start_bitidx, int end_bitidx)
4223{
4224 struct zone *zone;
4225 unsigned long *bitmap;
4226 unsigned long pfn, bitidx;
4227 unsigned long flags = 0;
4228 unsigned long value = 1;
4229
4230 zone = page_zone(page);
4231 pfn = page_to_pfn(page);
4232 bitmap = get_pageblock_bitmap(zone, pfn);
4233 bitidx = pfn_to_bitidx(zone, pfn);
4234
4235 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4236 if (test_bit(bitidx + start_bitidx, bitmap))
4237 flags |= value;
6220ec78 4238
835c134e
MG
4239 return flags;
4240}
4241
4242/**
4243 * set_pageblock_flags_group - Set the requested group of flags for a MAX_ORDER_NR_PAGES block of pages
4244 * @page: The page within the block of interest
4245 * @start_bitidx: The first bit of interest
4246 * @end_bitidx: The last bit of interest
4247 * @flags: The flags to set
4248 */
4249void set_pageblock_flags_group(struct page *page, unsigned long flags,
4250 int start_bitidx, int end_bitidx)
4251{
4252 struct zone *zone;
4253 unsigned long *bitmap;
4254 unsigned long pfn, bitidx;
4255 unsigned long value = 1;
4256
4257 zone = page_zone(page);
4258 pfn = page_to_pfn(page);
4259 bitmap = get_pageblock_bitmap(zone, pfn);
4260 bitidx = pfn_to_bitidx(zone, pfn);
4261
4262 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4263 if (flags & value)
4264 __set_bit(bitidx + start_bitidx, bitmap);
4265 else
4266 __clear_bit(bitidx + start_bitidx, bitmap);
4267}