[PATCH] mm: page_state fixes
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/config.h>
18#include <linux/stddef.h>
19#include <linux/mm.h>
20#include <linux/swap.h>
21#include <linux/interrupt.h>
22#include <linux/pagemap.h>
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
9f158333 25#include <linux/kernel.h>
1da177e4
LT
26#include <linux/module.h>
27#include <linux/suspend.h>
28#include <linux/pagevec.h>
29#include <linux/blkdev.h>
30#include <linux/slab.h>
31#include <linux/notifier.h>
32#include <linux/topology.h>
33#include <linux/sysctl.h>
34#include <linux/cpu.h>
35#include <linux/cpuset.h>
bdc8cb98 36#include <linux/memory_hotplug.h>
1da177e4
LT
37#include <linux/nodemask.h>
38#include <linux/vmalloc.h>
39
40#include <asm/tlbflush.h>
41#include "internal.h"
42
43/*
44 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
45 * initializer cleaner
46 */
c3d8c141 47nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
7223a93a 48EXPORT_SYMBOL(node_online_map);
c3d8c141 49nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
7223a93a 50EXPORT_SYMBOL(node_possible_map);
c3d8c141 51struct pglist_data *pgdat_list __read_mostly;
6c231b7b
RT
52unsigned long totalram_pages __read_mostly;
53unsigned long totalhigh_pages __read_mostly;
1da177e4
LT
54long nr_swap_pages;
55
56/*
57 * results with 256, 32 in the lowmem_reserve sysctl:
58 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
59 * 1G machine -> (16M dma, 784M normal, 224M high)
60 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
61 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
62 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
63 *
64 * TBD: should special case ZONE_DMA32 machines here - in those we normally
65 * don't need any ZONE_NORMAL reservation
1da177e4 66 */
a2f1b424 67int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 };
1da177e4
LT
68
69EXPORT_SYMBOL(totalram_pages);
1da177e4
LT
70
71/*
72 * Used by page_zone() to look up the address of the struct zone whose
73 * id is encoded in the upper bits of page->flags
74 */
c3d8c141 75struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
1da177e4
LT
76EXPORT_SYMBOL(zone_table);
77
a2f1b424 78static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" };
1da177e4
LT
79int min_free_kbytes = 1024;
80
81unsigned long __initdata nr_kernel_pages;
82unsigned long __initdata nr_all_pages;
83
13e7444b 84#ifdef CONFIG_DEBUG_VM
c6a57e19 85static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 86{
bdc8cb98
DH
87 int ret = 0;
88 unsigned seq;
89 unsigned long pfn = page_to_pfn(page);
c6a57e19 90
bdc8cb98
DH
91 do {
92 seq = zone_span_seqbegin(zone);
93 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
94 ret = 1;
95 else if (pfn < zone->zone_start_pfn)
96 ret = 1;
97 } while (zone_span_seqretry(zone, seq));
98
99 return ret;
c6a57e19
DH
100}
101
102static int page_is_consistent(struct zone *zone, struct page *page)
103{
1da177e4
LT
104#ifdef CONFIG_HOLES_IN_ZONE
105 if (!pfn_valid(page_to_pfn(page)))
c6a57e19 106 return 0;
1da177e4
LT
107#endif
108 if (zone != page_zone(page))
c6a57e19
DH
109 return 0;
110
111 return 1;
112}
113/*
114 * Temporary debugging check for pages not lying within a given zone.
115 */
116static int bad_range(struct zone *zone, struct page *page)
117{
118 if (page_outside_zone_boundaries(zone, page))
1da177e4 119 return 1;
c6a57e19
DH
120 if (!page_is_consistent(zone, page))
121 return 1;
122
1da177e4
LT
123 return 0;
124}
125
13e7444b
NP
126#else
127static inline int bad_range(struct zone *zone, struct page *page)
128{
129 return 0;
130}
131#endif
132
1da177e4
LT
133static void bad_page(const char *function, struct page *page)
134{
135 printk(KERN_EMERG "Bad page state at %s (in process '%s', page %p)\n",
136 function, current->comm, page);
137 printk(KERN_EMERG "flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
07808b74 138 (int)(2*sizeof(unsigned long)), (unsigned long)page->flags,
1da177e4
LT
139 page->mapping, page_mapcount(page), page_count(page));
140 printk(KERN_EMERG "Backtrace:\n");
141 dump_stack();
142 printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n");
334795ec
HD
143 page->flags &= ~(1 << PG_lru |
144 1 << PG_private |
1da177e4 145 1 << PG_locked |
1da177e4
LT
146 1 << PG_active |
147 1 << PG_dirty |
334795ec
HD
148 1 << PG_reclaim |
149 1 << PG_slab |
1da177e4 150 1 << PG_swapcache |
689bcebf 151 1 << PG_writeback );
1da177e4
LT
152 set_page_count(page, 0);
153 reset_page_mapcount(page);
154 page->mapping = NULL;
9f158333 155 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
156}
157
1da177e4
LT
158/*
159 * Higher-order pages are called "compound pages". They are structured thusly:
160 *
161 * The first PAGE_SIZE page is called the "head page".
162 *
163 * The remaining PAGE_SIZE pages are called "tail pages".
164 *
165 * All pages have PG_compound set. All pages have their ->private pointing at
166 * the head page (even the head page has this).
167 *
168 * The first tail page's ->mapping, if non-zero, holds the address of the
169 * compound page's put_page() function.
170 *
171 * The order of the allocation is stored in the first tail page's ->index
172 * This is only for debug at present. This usage means that zero-order pages
173 * may not be compound.
174 */
175static void prep_compound_page(struct page *page, unsigned long order)
176{
177 int i;
178 int nr_pages = 1 << order;
179
180 page[1].mapping = NULL;
181 page[1].index = order;
182 for (i = 0; i < nr_pages; i++) {
183 struct page *p = page + i;
184
185 SetPageCompound(p);
4c21e2f2 186 set_page_private(p, (unsigned long)page);
1da177e4
LT
187 }
188}
189
190static void destroy_compound_page(struct page *page, unsigned long order)
191{
192 int i;
193 int nr_pages = 1 << order;
194
195 if (!PageCompound(page))
196 return;
197
198 if (page[1].index != order)
199 bad_page(__FUNCTION__, page);
200
201 for (i = 0; i < nr_pages; i++) {
202 struct page *p = page + i;
203
204 if (!PageCompound(p))
205 bad_page(__FUNCTION__, page);
4c21e2f2 206 if (page_private(p) != (unsigned long)page)
1da177e4
LT
207 bad_page(__FUNCTION__, page);
208 ClearPageCompound(p);
209 }
210}
1da177e4
LT
211
212/*
213 * function for dealing with page's order in buddy system.
214 * zone->lock is already acquired when we use these.
215 * So, we don't need atomic page->flags operations here.
216 */
217static inline unsigned long page_order(struct page *page) {
4c21e2f2 218 return page_private(page);
1da177e4
LT
219}
220
221static inline void set_page_order(struct page *page, int order) {
4c21e2f2 222 set_page_private(page, order);
1da177e4
LT
223 __SetPagePrivate(page);
224}
225
226static inline void rmv_page_order(struct page *page)
227{
228 __ClearPagePrivate(page);
4c21e2f2 229 set_page_private(page, 0);
1da177e4
LT
230}
231
232/*
233 * Locate the struct page for both the matching buddy in our
234 * pair (buddy1) and the combined O(n+1) page they form (page).
235 *
236 * 1) Any buddy B1 will have an order O twin B2 which satisfies
237 * the following equation:
238 * B2 = B1 ^ (1 << O)
239 * For example, if the starting buddy (buddy2) is #8 its order
240 * 1 buddy is #10:
241 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
242 *
243 * 2) Any buddy B will have an order O+1 parent P which
244 * satisfies the following equation:
245 * P = B & ~(1 << O)
246 *
247 * Assumption: *_mem_map is contigious at least up to MAX_ORDER
248 */
249static inline struct page *
250__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
251{
252 unsigned long buddy_idx = page_idx ^ (1 << order);
253
254 return page + (buddy_idx - page_idx);
255}
256
257static inline unsigned long
258__find_combined_index(unsigned long page_idx, unsigned int order)
259{
260 return (page_idx & ~(1 << order));
261}
262
263/*
264 * This function checks whether a page is free && is the buddy
265 * we can do coalesce a page and its buddy if
13e7444b
NP
266 * (a) the buddy is not in a hole &&
267 * (b) the buddy is free &&
268 * (c) the buddy is on the buddy system &&
269 * (d) a page and its buddy have the same order.
4c21e2f2 270 * for recording page's order, we use page_private(page) and PG_private.
1da177e4
LT
271 *
272 */
273static inline int page_is_buddy(struct page *page, int order)
274{
13e7444b
NP
275#ifdef CONFIG_HOLES_IN_ZONE
276 if (!pfn_valid(page_to_pfn(page)))
277 return 0;
278#endif
279
1da177e4
LT
280 if (PagePrivate(page) &&
281 (page_order(page) == order) &&
1da177e4
LT
282 page_count(page) == 0)
283 return 1;
284 return 0;
285}
286
287/*
288 * Freeing function for a buddy system allocator.
289 *
290 * The concept of a buddy system is to maintain direct-mapped table
291 * (containing bit values) for memory blocks of various "orders".
292 * The bottom level table contains the map for the smallest allocatable
293 * units of memory (here, pages), and each level above it describes
294 * pairs of units from the levels below, hence, "buddies".
295 * At a high level, all that happens here is marking the table entry
296 * at the bottom level available, and propagating the changes upward
297 * as necessary, plus some accounting needed to play nicely with other
298 * parts of the VM system.
299 * At each level, we keep a list of pages, which are heads of continuous
300 * free pages of length of (1 << order) and marked with PG_Private.Page's
4c21e2f2 301 * order is recorded in page_private(page) field.
1da177e4
LT
302 * So when we are allocating or freeing one, we can derive the state of the
303 * other. That is, if we allocate a small block, and both were
304 * free, the remainder of the region must be split into blocks.
305 * If a block is freed, and its buddy is also free, then this
306 * triggers coalescing into a block of larger size.
307 *
308 * -- wli
309 */
310
311static inline void __free_pages_bulk (struct page *page,
312 struct zone *zone, unsigned int order)
313{
314 unsigned long page_idx;
315 int order_size = 1 << order;
316
317 if (unlikely(order))
318 destroy_compound_page(page, order);
319
320 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
321
322 BUG_ON(page_idx & (order_size - 1));
323 BUG_ON(bad_range(zone, page));
324
325 zone->free_pages += order_size;
326 while (order < MAX_ORDER-1) {
327 unsigned long combined_idx;
328 struct free_area *area;
329 struct page *buddy;
330
1da177e4 331 buddy = __page_find_buddy(page, page_idx, order);
1da177e4
LT
332 if (!page_is_buddy(buddy, order))
333 break; /* Move the buddy up one level. */
13e7444b 334
1da177e4
LT
335 list_del(&buddy->lru);
336 area = zone->free_area + order;
337 area->nr_free--;
338 rmv_page_order(buddy);
13e7444b 339 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
340 page = page + (combined_idx - page_idx);
341 page_idx = combined_idx;
342 order++;
343 }
344 set_page_order(page, order);
345 list_add(&page->lru, &zone->free_area[order].free_list);
346 zone->free_area[order].nr_free++;
347}
348
689bcebf 349static inline int free_pages_check(const char *function, struct page *page)
1da177e4 350{
92be2e33
NP
351 if (unlikely(page_mapcount(page) |
352 (page->mapping != NULL) |
353 (page_count(page) != 0) |
1da177e4
LT
354 (page->flags & (
355 1 << PG_lru |
356 1 << PG_private |
357 1 << PG_locked |
358 1 << PG_active |
359 1 << PG_reclaim |
360 1 << PG_slab |
361 1 << PG_swapcache |
b5810039 362 1 << PG_writeback |
92be2e33 363 1 << PG_reserved ))))
1da177e4
LT
364 bad_page(function, page);
365 if (PageDirty(page))
242e5468 366 __ClearPageDirty(page);
689bcebf
HD
367 /*
368 * For now, we report if PG_reserved was found set, but do not
369 * clear it, and do not free the page. But we shall soon need
370 * to do more, for when the ZERO_PAGE count wraps negative.
371 */
372 return PageReserved(page);
1da177e4
LT
373}
374
375/*
376 * Frees a list of pages.
377 * Assumes all pages on list are in same zone, and of same order.
207f36ee 378 * count is the number of pages to free.
1da177e4
LT
379 *
380 * If the zone was previously in an "all pages pinned" state then look to
381 * see if this freeing clears that state.
382 *
383 * And clear the zone's pages_scanned counter, to hold off the "all pages are
384 * pinned" detection logic.
385 */
386static int
387free_pages_bulk(struct zone *zone, int count,
388 struct list_head *list, unsigned int order)
389{
1da177e4
LT
390 struct page *page = NULL;
391 int ret = 0;
392
c54ad30c 393 spin_lock(&zone->lock);
1da177e4
LT
394 zone->all_unreclaimable = 0;
395 zone->pages_scanned = 0;
396 while (!list_empty(list) && count--) {
397 page = list_entry(list->prev, struct page, lru);
398 /* have to delete it as __free_pages_bulk list manipulates */
399 list_del(&page->lru);
400 __free_pages_bulk(page, zone, order);
401 ret++;
402 }
c54ad30c 403 spin_unlock(&zone->lock);
1da177e4
LT
404 return ret;
405}
406
407void __free_pages_ok(struct page *page, unsigned int order)
408{
c54ad30c 409 unsigned long flags;
1da177e4
LT
410 LIST_HEAD(list);
411 int i;
689bcebf 412 int reserved = 0;
1da177e4
LT
413
414 arch_free_page(page, order);
415
1da177e4
LT
416#ifndef CONFIG_MMU
417 if (order > 0)
418 for (i = 1 ; i < (1 << order) ; ++i)
419 __put_page(page + i);
420#endif
421
422 for (i = 0 ; i < (1 << order) ; ++i)
689bcebf
HD
423 reserved += free_pages_check(__FUNCTION__, page + i);
424 if (reserved)
425 return;
426
1da177e4 427 list_add(&page->lru, &list);
689bcebf 428 mod_page_state(pgfree, 1 << order);
1da177e4 429 kernel_map_pages(page, 1<<order, 0);
c54ad30c 430 local_irq_save(flags);
1da177e4 431 free_pages_bulk(page_zone(page), 1, &list, order);
c54ad30c 432 local_irq_restore(flags);
1da177e4
LT
433}
434
435
436/*
437 * The order of subdivision here is critical for the IO subsystem.
438 * Please do not alter this order without good reasons and regression
439 * testing. Specifically, as large blocks of memory are subdivided,
440 * the order in which smaller blocks are delivered depends on the order
441 * they're subdivided in this function. This is the primary factor
442 * influencing the order in which pages are delivered to the IO
443 * subsystem according to empirical testing, and this is also justified
444 * by considering the behavior of a buddy system containing a single
445 * large block of memory acted on by a series of small allocations.
446 * This behavior is a critical factor in sglist merging's success.
447 *
448 * -- wli
449 */
450static inline struct page *
451expand(struct zone *zone, struct page *page,
452 int low, int high, struct free_area *area)
453{
454 unsigned long size = 1 << high;
455
456 while (high > low) {
457 area--;
458 high--;
459 size >>= 1;
460 BUG_ON(bad_range(zone, &page[size]));
461 list_add(&page[size].lru, &area->free_list);
462 area->nr_free++;
463 set_page_order(&page[size], high);
464 }
465 return page;
466}
467
1da177e4
LT
468/*
469 * This page is about to be returned from the page allocator
470 */
689bcebf 471static int prep_new_page(struct page *page, int order)
1da177e4 472{
92be2e33
NP
473 if (unlikely(page_mapcount(page) |
474 (page->mapping != NULL) |
475 (page_count(page) != 0) |
334795ec
HD
476 (page->flags & (
477 1 << PG_lru |
1da177e4
LT
478 1 << PG_private |
479 1 << PG_locked |
1da177e4
LT
480 1 << PG_active |
481 1 << PG_dirty |
482 1 << PG_reclaim |
334795ec 483 1 << PG_slab |
1da177e4 484 1 << PG_swapcache |
b5810039 485 1 << PG_writeback |
92be2e33 486 1 << PG_reserved ))))
1da177e4
LT
487 bad_page(__FUNCTION__, page);
488
689bcebf
HD
489 /*
490 * For now, we report if PG_reserved was found set, but do not
491 * clear it, and do not allocate the page: as a safety net.
492 */
493 if (PageReserved(page))
494 return 1;
495
1da177e4
LT
496 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
497 1 << PG_referenced | 1 << PG_arch_1 |
498 1 << PG_checked | 1 << PG_mappedtodisk);
4c21e2f2 499 set_page_private(page, 0);
1da177e4
LT
500 set_page_refs(page, order);
501 kernel_map_pages(page, 1 << order, 1);
689bcebf 502 return 0;
1da177e4
LT
503}
504
505/*
506 * Do the hard work of removing an element from the buddy allocator.
507 * Call me with the zone->lock already held.
508 */
509static struct page *__rmqueue(struct zone *zone, unsigned int order)
510{
511 struct free_area * area;
512 unsigned int current_order;
513 struct page *page;
514
515 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
516 area = zone->free_area + current_order;
517 if (list_empty(&area->free_list))
518 continue;
519
520 page = list_entry(area->free_list.next, struct page, lru);
521 list_del(&page->lru);
522 rmv_page_order(page);
523 area->nr_free--;
524 zone->free_pages -= 1UL << order;
525 return expand(zone, page, order, current_order, area);
526 }
527
528 return NULL;
529}
530
531/*
532 * Obtain a specified number of elements from the buddy allocator, all under
533 * a single hold of the lock, for efficiency. Add them to the supplied list.
534 * Returns the number of new pages which were placed at *list.
535 */
536static int rmqueue_bulk(struct zone *zone, unsigned int order,
537 unsigned long count, struct list_head *list)
538{
1da177e4
LT
539 int i;
540 int allocated = 0;
541 struct page *page;
542
c54ad30c 543 spin_lock(&zone->lock);
1da177e4
LT
544 for (i = 0; i < count; ++i) {
545 page = __rmqueue(zone, order);
546 if (page == NULL)
547 break;
548 allocated++;
549 list_add_tail(&page->lru, list);
550 }
c54ad30c 551 spin_unlock(&zone->lock);
1da177e4
LT
552 return allocated;
553}
554
4ae7c039
CL
555#ifdef CONFIG_NUMA
556/* Called from the slab reaper to drain remote pagesets */
557void drain_remote_pages(void)
558{
559 struct zone *zone;
560 int i;
561 unsigned long flags;
562
563 local_irq_save(flags);
564 for_each_zone(zone) {
565 struct per_cpu_pageset *pset;
566
567 /* Do not drain local pagesets */
568 if (zone->zone_pgdat->node_id == numa_node_id())
569 continue;
570
571 pset = zone->pageset[smp_processor_id()];
572 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
573 struct per_cpu_pages *pcp;
574
575 pcp = &pset->pcp[i];
576 if (pcp->count)
577 pcp->count -= free_pages_bulk(zone, pcp->count,
578 &pcp->list, 0);
579 }
580 }
581 local_irq_restore(flags);
582}
583#endif
584
1da177e4
LT
585#if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
586static void __drain_pages(unsigned int cpu)
587{
c54ad30c 588 unsigned long flags;
1da177e4
LT
589 struct zone *zone;
590 int i;
591
592 for_each_zone(zone) {
593 struct per_cpu_pageset *pset;
594
e7c8d5c9 595 pset = zone_pcp(zone, cpu);
1da177e4
LT
596 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
597 struct per_cpu_pages *pcp;
598
599 pcp = &pset->pcp[i];
c54ad30c 600 local_irq_save(flags);
1da177e4
LT
601 pcp->count -= free_pages_bulk(zone, pcp->count,
602 &pcp->list, 0);
c54ad30c 603 local_irq_restore(flags);
1da177e4
LT
604 }
605 }
606}
607#endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
608
609#ifdef CONFIG_PM
610
611void mark_free_pages(struct zone *zone)
612{
613 unsigned long zone_pfn, flags;
614 int order;
615 struct list_head *curr;
616
617 if (!zone->spanned_pages)
618 return;
619
620 spin_lock_irqsave(&zone->lock, flags);
621 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
622 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
623
624 for (order = MAX_ORDER - 1; order >= 0; --order)
625 list_for_each(curr, &zone->free_area[order].free_list) {
626 unsigned long start_pfn, i;
627
628 start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
629
630 for (i=0; i < (1<<order); i++)
631 SetPageNosaveFree(pfn_to_page(start_pfn+i));
632 }
633 spin_unlock_irqrestore(&zone->lock, flags);
634}
635
636/*
637 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
638 */
639void drain_local_pages(void)
640{
641 unsigned long flags;
642
643 local_irq_save(flags);
644 __drain_pages(smp_processor_id());
645 local_irq_restore(flags);
646}
647#endif /* CONFIG_PM */
648
649static void zone_statistics(struct zonelist *zonelist, struct zone *z)
650{
651#ifdef CONFIG_NUMA
652 unsigned long flags;
653 int cpu;
654 pg_data_t *pg = z->zone_pgdat;
655 pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
656 struct per_cpu_pageset *p;
657
658 local_irq_save(flags);
659 cpu = smp_processor_id();
e7c8d5c9 660 p = zone_pcp(z,cpu);
1da177e4 661 if (pg == orig) {
e7c8d5c9 662 p->numa_hit++;
1da177e4
LT
663 } else {
664 p->numa_miss++;
e7c8d5c9 665 zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
1da177e4
LT
666 }
667 if (pg == NODE_DATA(numa_node_id()))
668 p->local_node++;
669 else
670 p->other_node++;
671 local_irq_restore(flags);
672#endif
673}
674
675/*
676 * Free a 0-order page
677 */
678static void FASTCALL(free_hot_cold_page(struct page *page, int cold));
679static void fastcall free_hot_cold_page(struct page *page, int cold)
680{
681 struct zone *zone = page_zone(page);
682 struct per_cpu_pages *pcp;
683 unsigned long flags;
684
685 arch_free_page(page, 0);
686
1da177e4
LT
687 if (PageAnon(page))
688 page->mapping = NULL;
689bcebf
HD
689 if (free_pages_check(__FUNCTION__, page))
690 return;
691
692 inc_page_state(pgfree);
693 kernel_map_pages(page, 1, 0);
694
e7c8d5c9 695 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
1da177e4 696 local_irq_save(flags);
1da177e4
LT
697 list_add(&page->lru, &pcp->list);
698 pcp->count++;
2caaad41
CL
699 if (pcp->count >= pcp->high)
700 pcp->count -= free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1da177e4
LT
701 local_irq_restore(flags);
702 put_cpu();
703}
704
705void fastcall free_hot_page(struct page *page)
706{
707 free_hot_cold_page(page, 0);
708}
709
710void fastcall free_cold_page(struct page *page)
711{
712 free_hot_cold_page(page, 1);
713}
714
dd0fc66f 715static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
1da177e4
LT
716{
717 int i;
718
719 BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
720 for(i = 0; i < (1 << order); i++)
721 clear_highpage(page + i);
722}
723
724/*
725 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
726 * we cheat by calling it from here, in the order > 0 path. Saves a branch
727 * or two.
728 */
729static struct page *
dd0fc66f 730buffered_rmqueue(struct zone *zone, int order, gfp_t gfp_flags)
1da177e4
LT
731{
732 unsigned long flags;
689bcebf 733 struct page *page;
1da177e4
LT
734 int cold = !!(gfp_flags & __GFP_COLD);
735
689bcebf 736again:
1da177e4
LT
737 if (order == 0) {
738 struct per_cpu_pages *pcp;
739
689bcebf 740 page = NULL;
e7c8d5c9 741 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
1da177e4 742 local_irq_save(flags);
2d92c5c9 743 if (!pcp->count)
1da177e4
LT
744 pcp->count += rmqueue_bulk(zone, 0,
745 pcp->batch, &pcp->list);
c54ad30c 746 if (likely(pcp->count)) {
1da177e4
LT
747 page = list_entry(pcp->list.next, struct page, lru);
748 list_del(&page->lru);
749 pcp->count--;
750 }
751 local_irq_restore(flags);
752 put_cpu();
7fb1d9fc 753 } else {
1da177e4
LT
754 spin_lock_irqsave(&zone->lock, flags);
755 page = __rmqueue(zone, order);
756 spin_unlock_irqrestore(&zone->lock, flags);
757 }
758
759 if (page != NULL) {
760 BUG_ON(bad_range(zone, page));
761 mod_page_state_zone(zone, pgalloc, 1 << order);
689bcebf
HD
762 if (prep_new_page(page, order))
763 goto again;
1da177e4
LT
764
765 if (gfp_flags & __GFP_ZERO)
766 prep_zero_page(page, order, gfp_flags);
767
768 if (order && (gfp_flags & __GFP_COMP))
769 prep_compound_page(page, order);
770 }
771 return page;
772}
773
7fb1d9fc 774#define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
3148890b
NP
775#define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
776#define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
777#define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
778#define ALLOC_HARDER 0x10 /* try to alloc harder */
779#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
780#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 781
1da177e4
LT
782/*
783 * Return 1 if free pages are above 'mark'. This takes into account the order
784 * of the allocation.
785 */
786int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 787 int classzone_idx, int alloc_flags)
1da177e4
LT
788{
789 /* free_pages my go negative - that's OK */
790 long min = mark, free_pages = z->free_pages - (1 << order) + 1;
791 int o;
792
7fb1d9fc 793 if (alloc_flags & ALLOC_HIGH)
1da177e4 794 min -= min / 2;
7fb1d9fc 795 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
796 min -= min / 4;
797
798 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
799 return 0;
800 for (o = 0; o < order; o++) {
801 /* At the next order, this order's pages become unavailable */
802 free_pages -= z->free_area[o].nr_free << o;
803
804 /* Require fewer higher order pages to be free */
805 min >>= 1;
806
807 if (free_pages <= min)
808 return 0;
809 }
810 return 1;
811}
812
7fb1d9fc
RS
813/*
814 * get_page_from_freeliest goes through the zonelist trying to allocate
815 * a page.
816 */
817static struct page *
818get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
819 struct zonelist *zonelist, int alloc_flags)
753ee728 820{
7fb1d9fc
RS
821 struct zone **z = zonelist->zones;
822 struct page *page = NULL;
823 int classzone_idx = zone_idx(*z);
824
825 /*
826 * Go through the zonelist once, looking for a zone with enough free.
827 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
828 */
829 do {
830 if ((alloc_flags & ALLOC_CPUSET) &&
831 !cpuset_zone_allowed(*z, gfp_mask))
832 continue;
833
834 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b
NP
835 unsigned long mark;
836 if (alloc_flags & ALLOC_WMARK_MIN)
837 mark = (*z)->pages_min;
838 else if (alloc_flags & ALLOC_WMARK_LOW)
839 mark = (*z)->pages_low;
840 else
841 mark = (*z)->pages_high;
842 if (!zone_watermark_ok(*z, order, mark,
7fb1d9fc
RS
843 classzone_idx, alloc_flags))
844 continue;
845 }
846
847 page = buffered_rmqueue(*z, order, gfp_mask);
848 if (page) {
849 zone_statistics(zonelist, *z);
850 break;
851 }
852 } while (*(++z) != NULL);
853 return page;
753ee728
MH
854}
855
1da177e4
LT
856/*
857 * This is the 'heart' of the zoned buddy allocator.
858 */
859struct page * fastcall
dd0fc66f 860__alloc_pages(gfp_t gfp_mask, unsigned int order,
1da177e4
LT
861 struct zonelist *zonelist)
862{
260b2367 863 const gfp_t wait = gfp_mask & __GFP_WAIT;
7fb1d9fc 864 struct zone **z;
1da177e4
LT
865 struct page *page;
866 struct reclaim_state reclaim_state;
867 struct task_struct *p = current;
1da177e4 868 int do_retry;
7fb1d9fc 869 int alloc_flags;
1da177e4
LT
870 int did_some_progress;
871
872 might_sleep_if(wait);
873
6b1de916 874restart:
7fb1d9fc 875 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1da177e4 876
7fb1d9fc 877 if (unlikely(*z == NULL)) {
1da177e4
LT
878 /* Should this ever happen?? */
879 return NULL;
880 }
6b1de916 881
7fb1d9fc 882 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 883 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
7fb1d9fc
RS
884 if (page)
885 goto got_pg;
1da177e4 886
6b1de916 887 do {
7fb1d9fc 888 wakeup_kswapd(*z, order);
6b1de916 889 } while (*(++z));
1da177e4 890
9bf2229f 891 /*
7fb1d9fc
RS
892 * OK, we're below the kswapd watermark and have kicked background
893 * reclaim. Now things get more complex, so set up alloc_flags according
894 * to how we want to proceed.
895 *
896 * The caller may dip into page reserves a bit more if the caller
897 * cannot run direct reclaim, or if the caller has realtime scheduling
898 * policy.
9bf2229f 899 */
3148890b 900 alloc_flags = ALLOC_WMARK_MIN;
7fb1d9fc
RS
901 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
902 alloc_flags |= ALLOC_HARDER;
903 if (gfp_mask & __GFP_HIGH)
904 alloc_flags |= ALLOC_HIGH;
47f3a867 905 alloc_flags |= ALLOC_CPUSET;
1da177e4
LT
906
907 /*
908 * Go through the zonelist again. Let __GFP_HIGH and allocations
7fb1d9fc 909 * coming from realtime tasks go deeper into reserves.
1da177e4
LT
910 *
911 * This is the last chance, in general, before the goto nopage.
912 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
9bf2229f 913 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1da177e4 914 */
7fb1d9fc
RS
915 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
916 if (page)
917 goto got_pg;
1da177e4
LT
918
919 /* This allocation should allow future memory freeing. */
b84a35be
NP
920
921 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
922 && !in_interrupt()) {
923 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
885036d3 924nofail_alloc:
b84a35be 925 /* go through the zonelist yet again, ignoring mins */
7fb1d9fc 926 page = get_page_from_freelist(gfp_mask, order,
47f3a867 927 zonelist, ALLOC_NO_WATERMARKS);
7fb1d9fc
RS
928 if (page)
929 goto got_pg;
885036d3
KK
930 if (gfp_mask & __GFP_NOFAIL) {
931 blk_congestion_wait(WRITE, HZ/50);
932 goto nofail_alloc;
933 }
1da177e4
LT
934 }
935 goto nopage;
936 }
937
938 /* Atomic allocations - we can't balance anything */
939 if (!wait)
940 goto nopage;
941
942rebalance:
943 cond_resched();
944
945 /* We now go into synchronous reclaim */
946 p->flags |= PF_MEMALLOC;
947 reclaim_state.reclaimed_slab = 0;
948 p->reclaim_state = &reclaim_state;
949
7fb1d9fc 950 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1da177e4
LT
951
952 p->reclaim_state = NULL;
953 p->flags &= ~PF_MEMALLOC;
954
955 cond_resched();
956
957 if (likely(did_some_progress)) {
7fb1d9fc
RS
958 page = get_page_from_freelist(gfp_mask, order,
959 zonelist, alloc_flags);
960 if (page)
961 goto got_pg;
1da177e4
LT
962 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
963 /*
964 * Go through the zonelist yet one more time, keep
965 * very high watermark here, this is only to catch
966 * a parallel oom killing, we must fail if we're still
967 * under heavy pressure.
968 */
7fb1d9fc 969 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 970 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
7fb1d9fc
RS
971 if (page)
972 goto got_pg;
1da177e4 973
79b9ce31 974 out_of_memory(gfp_mask, order);
1da177e4
LT
975 goto restart;
976 }
977
978 /*
979 * Don't let big-order allocations loop unless the caller explicitly
980 * requests that. Wait for some write requests to complete then retry.
981 *
982 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
983 * <= 3, but that may not be true in other implementations.
984 */
985 do_retry = 0;
986 if (!(gfp_mask & __GFP_NORETRY)) {
987 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
988 do_retry = 1;
989 if (gfp_mask & __GFP_NOFAIL)
990 do_retry = 1;
991 }
992 if (do_retry) {
993 blk_congestion_wait(WRITE, HZ/50);
994 goto rebalance;
995 }
996
997nopage:
998 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
999 printk(KERN_WARNING "%s: page allocation failure."
1000 " order:%d, mode:0x%x\n",
1001 p->comm, order, gfp_mask);
1002 dump_stack();
578c2fd6 1003 show_mem();
1da177e4 1004 }
1da177e4 1005got_pg:
1da177e4
LT
1006 return page;
1007}
1008
1009EXPORT_SYMBOL(__alloc_pages);
1010
1011/*
1012 * Common helper functions.
1013 */
dd0fc66f 1014fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4
LT
1015{
1016 struct page * page;
1017 page = alloc_pages(gfp_mask, order);
1018 if (!page)
1019 return 0;
1020 return (unsigned long) page_address(page);
1021}
1022
1023EXPORT_SYMBOL(__get_free_pages);
1024
dd0fc66f 1025fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4
LT
1026{
1027 struct page * page;
1028
1029 /*
1030 * get_zeroed_page() returns a 32-bit address, which cannot represent
1031 * a highmem page
1032 */
260b2367 1033 BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1da177e4
LT
1034
1035 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1036 if (page)
1037 return (unsigned long) page_address(page);
1038 return 0;
1039}
1040
1041EXPORT_SYMBOL(get_zeroed_page);
1042
1043void __pagevec_free(struct pagevec *pvec)
1044{
1045 int i = pagevec_count(pvec);
1046
1047 while (--i >= 0)
1048 free_hot_cold_page(pvec->pages[i], pvec->cold);
1049}
1050
1051fastcall void __free_pages(struct page *page, unsigned int order)
1052{
b5810039 1053 if (put_page_testzero(page)) {
1da177e4
LT
1054 if (order == 0)
1055 free_hot_page(page);
1056 else
1057 __free_pages_ok(page, order);
1058 }
1059}
1060
1061EXPORT_SYMBOL(__free_pages);
1062
1063fastcall void free_pages(unsigned long addr, unsigned int order)
1064{
1065 if (addr != 0) {
1066 BUG_ON(!virt_addr_valid((void *)addr));
1067 __free_pages(virt_to_page((void *)addr), order);
1068 }
1069}
1070
1071EXPORT_SYMBOL(free_pages);
1072
1073/*
1074 * Total amount of free (allocatable) RAM:
1075 */
1076unsigned int nr_free_pages(void)
1077{
1078 unsigned int sum = 0;
1079 struct zone *zone;
1080
1081 for_each_zone(zone)
1082 sum += zone->free_pages;
1083
1084 return sum;
1085}
1086
1087EXPORT_SYMBOL(nr_free_pages);
1088
1089#ifdef CONFIG_NUMA
1090unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1091{
1092 unsigned int i, sum = 0;
1093
1094 for (i = 0; i < MAX_NR_ZONES; i++)
1095 sum += pgdat->node_zones[i].free_pages;
1096
1097 return sum;
1098}
1099#endif
1100
1101static unsigned int nr_free_zone_pages(int offset)
1102{
e310fd43
MB
1103 /* Just pick one node, since fallback list is circular */
1104 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1da177e4
LT
1105 unsigned int sum = 0;
1106
e310fd43
MB
1107 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1108 struct zone **zonep = zonelist->zones;
1109 struct zone *zone;
1da177e4 1110
e310fd43
MB
1111 for (zone = *zonep++; zone; zone = *zonep++) {
1112 unsigned long size = zone->present_pages;
1113 unsigned long high = zone->pages_high;
1114 if (size > high)
1115 sum += size - high;
1da177e4
LT
1116 }
1117
1118 return sum;
1119}
1120
1121/*
1122 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1123 */
1124unsigned int nr_free_buffer_pages(void)
1125{
af4ca457 1126 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4
LT
1127}
1128
1129/*
1130 * Amount of free RAM allocatable within all zones
1131 */
1132unsigned int nr_free_pagecache_pages(void)
1133{
af4ca457 1134 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1da177e4
LT
1135}
1136
1137#ifdef CONFIG_HIGHMEM
1138unsigned int nr_free_highpages (void)
1139{
1140 pg_data_t *pgdat;
1141 unsigned int pages = 0;
1142
1143 for_each_pgdat(pgdat)
1144 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1145
1146 return pages;
1147}
1148#endif
1149
1150#ifdef CONFIG_NUMA
1151static void show_node(struct zone *zone)
1152{
1153 printk("Node %d ", zone->zone_pgdat->node_id);
1154}
1155#else
1156#define show_node(zone) do { } while (0)
1157#endif
1158
1159/*
1160 * Accumulate the page_state information across all CPUs.
1161 * The result is unavoidably approximate - it can change
1162 * during and after execution of this function.
1163 */
1164static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1165
1166atomic_t nr_pagecache = ATOMIC_INIT(0);
1167EXPORT_SYMBOL(nr_pagecache);
1168#ifdef CONFIG_SMP
1169DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1170#endif
1171
a86b1f53 1172static void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask)
1da177e4
LT
1173{
1174 int cpu = 0;
1175
1176 memset(ret, 0, sizeof(*ret));
1177
c07e02db 1178 cpu = first_cpu(*cpumask);
1da177e4
LT
1179 while (cpu < NR_CPUS) {
1180 unsigned long *in, *out, off;
1181
1182 in = (unsigned long *)&per_cpu(page_states, cpu);
1183
c07e02db 1184 cpu = next_cpu(cpu, *cpumask);
1da177e4
LT
1185
1186 if (cpu < NR_CPUS)
1187 prefetch(&per_cpu(page_states, cpu));
1188
1189 out = (unsigned long *)ret;
1190 for (off = 0; off < nr; off++)
1191 *out++ += *in++;
1192 }
1193}
1194
c07e02db
MH
1195void get_page_state_node(struct page_state *ret, int node)
1196{
1197 int nr;
1198 cpumask_t mask = node_to_cpumask(node);
1199
1200 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1201 nr /= sizeof(unsigned long);
1202
1203 __get_page_state(ret, nr+1, &mask);
1204}
1205
1da177e4
LT
1206void get_page_state(struct page_state *ret)
1207{
1208 int nr;
c07e02db 1209 cpumask_t mask = CPU_MASK_ALL;
1da177e4
LT
1210
1211 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1212 nr /= sizeof(unsigned long);
1213
c07e02db 1214 __get_page_state(ret, nr + 1, &mask);
1da177e4
LT
1215}
1216
1217void get_full_page_state(struct page_state *ret)
1218{
c07e02db
MH
1219 cpumask_t mask = CPU_MASK_ALL;
1220
1221 __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask);
1da177e4
LT
1222}
1223
c2f29ea1 1224unsigned long __read_page_state(unsigned long offset)
1da177e4
LT
1225{
1226 unsigned long ret = 0;
1227 int cpu;
1228
a86b1f53 1229 for_each_cpu(cpu) {
1da177e4
LT
1230 unsigned long in;
1231
1232 in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1233 ret += *((unsigned long *)in);
1234 }
1235 return ret;
1236}
1237
83e5d8f7 1238void __mod_page_state(unsigned long offset, unsigned long delta)
1da177e4
LT
1239{
1240 unsigned long flags;
1241 void* ptr;
1242
1243 local_irq_save(flags);
1244 ptr = &__get_cpu_var(page_states);
1245 *(unsigned long*)(ptr + offset) += delta;
1246 local_irq_restore(flags);
1247}
1248
1249EXPORT_SYMBOL(__mod_page_state);
1250
1251void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1252 unsigned long *free, struct pglist_data *pgdat)
1253{
1254 struct zone *zones = pgdat->node_zones;
1255 int i;
1256
1257 *active = 0;
1258 *inactive = 0;
1259 *free = 0;
1260 for (i = 0; i < MAX_NR_ZONES; i++) {
1261 *active += zones[i].nr_active;
1262 *inactive += zones[i].nr_inactive;
1263 *free += zones[i].free_pages;
1264 }
1265}
1266
1267void get_zone_counts(unsigned long *active,
1268 unsigned long *inactive, unsigned long *free)
1269{
1270 struct pglist_data *pgdat;
1271
1272 *active = 0;
1273 *inactive = 0;
1274 *free = 0;
1275 for_each_pgdat(pgdat) {
1276 unsigned long l, m, n;
1277 __get_zone_counts(&l, &m, &n, pgdat);
1278 *active += l;
1279 *inactive += m;
1280 *free += n;
1281 }
1282}
1283
1284void si_meminfo(struct sysinfo *val)
1285{
1286 val->totalram = totalram_pages;
1287 val->sharedram = 0;
1288 val->freeram = nr_free_pages();
1289 val->bufferram = nr_blockdev_pages();
1290#ifdef CONFIG_HIGHMEM
1291 val->totalhigh = totalhigh_pages;
1292 val->freehigh = nr_free_highpages();
1293#else
1294 val->totalhigh = 0;
1295 val->freehigh = 0;
1296#endif
1297 val->mem_unit = PAGE_SIZE;
1298}
1299
1300EXPORT_SYMBOL(si_meminfo);
1301
1302#ifdef CONFIG_NUMA
1303void si_meminfo_node(struct sysinfo *val, int nid)
1304{
1305 pg_data_t *pgdat = NODE_DATA(nid);
1306
1307 val->totalram = pgdat->node_present_pages;
1308 val->freeram = nr_free_pages_pgdat(pgdat);
1309 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1310 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1311 val->mem_unit = PAGE_SIZE;
1312}
1313#endif
1314
1315#define K(x) ((x) << (PAGE_SHIFT-10))
1316
1317/*
1318 * Show free area list (used inside shift_scroll-lock stuff)
1319 * We also calculate the percentage fragmentation. We do this by counting the
1320 * memory on each free list with the exception of the first item on the list.
1321 */
1322void show_free_areas(void)
1323{
1324 struct page_state ps;
1325 int cpu, temperature;
1326 unsigned long active;
1327 unsigned long inactive;
1328 unsigned long free;
1329 struct zone *zone;
1330
1331 for_each_zone(zone) {
1332 show_node(zone);
1333 printk("%s per-cpu:", zone->name);
1334
1335 if (!zone->present_pages) {
1336 printk(" empty\n");
1337 continue;
1338 } else
1339 printk("\n");
1340
6b482c67 1341 for_each_online_cpu(cpu) {
1da177e4
LT
1342 struct per_cpu_pageset *pageset;
1343
e7c8d5c9 1344 pageset = zone_pcp(zone, cpu);
1da177e4
LT
1345
1346 for (temperature = 0; temperature < 2; temperature++)
2d92c5c9 1347 printk("cpu %d %s: high %d, batch %d used:%d\n",
1da177e4
LT
1348 cpu,
1349 temperature ? "cold" : "hot",
1da177e4 1350 pageset->pcp[temperature].high,
4ae7c039
CL
1351 pageset->pcp[temperature].batch,
1352 pageset->pcp[temperature].count);
1da177e4
LT
1353 }
1354 }
1355
1356 get_page_state(&ps);
1357 get_zone_counts(&active, &inactive, &free);
1358
c0d62219 1359 printk("Free pages: %11ukB (%ukB HighMem)\n",
1da177e4
LT
1360 K(nr_free_pages()),
1361 K(nr_free_highpages()));
1362
1363 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1364 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1365 active,
1366 inactive,
1367 ps.nr_dirty,
1368 ps.nr_writeback,
1369 ps.nr_unstable,
1370 nr_free_pages(),
1371 ps.nr_slab,
1372 ps.nr_mapped,
1373 ps.nr_page_table_pages);
1374
1375 for_each_zone(zone) {
1376 int i;
1377
1378 show_node(zone);
1379 printk("%s"
1380 " free:%lukB"
1381 " min:%lukB"
1382 " low:%lukB"
1383 " high:%lukB"
1384 " active:%lukB"
1385 " inactive:%lukB"
1386 " present:%lukB"
1387 " pages_scanned:%lu"
1388 " all_unreclaimable? %s"
1389 "\n",
1390 zone->name,
1391 K(zone->free_pages),
1392 K(zone->pages_min),
1393 K(zone->pages_low),
1394 K(zone->pages_high),
1395 K(zone->nr_active),
1396 K(zone->nr_inactive),
1397 K(zone->present_pages),
1398 zone->pages_scanned,
1399 (zone->all_unreclaimable ? "yes" : "no")
1400 );
1401 printk("lowmem_reserve[]:");
1402 for (i = 0; i < MAX_NR_ZONES; i++)
1403 printk(" %lu", zone->lowmem_reserve[i]);
1404 printk("\n");
1405 }
1406
1407 for_each_zone(zone) {
1408 unsigned long nr, flags, order, total = 0;
1409
1410 show_node(zone);
1411 printk("%s: ", zone->name);
1412 if (!zone->present_pages) {
1413 printk("empty\n");
1414 continue;
1415 }
1416
1417 spin_lock_irqsave(&zone->lock, flags);
1418 for (order = 0; order < MAX_ORDER; order++) {
1419 nr = zone->free_area[order].nr_free;
1420 total += nr << order;
1421 printk("%lu*%lukB ", nr, K(1UL) << order);
1422 }
1423 spin_unlock_irqrestore(&zone->lock, flags);
1424 printk("= %lukB\n", K(total));
1425 }
1426
1427 show_swap_cache_info();
1428}
1429
1430/*
1431 * Builds allocation fallback zone lists.
1432 */
1433static int __init build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, int j, int k)
1434{
1435 switch (k) {
1436 struct zone *zone;
1437 default:
1438 BUG();
1439 case ZONE_HIGHMEM:
1440 zone = pgdat->node_zones + ZONE_HIGHMEM;
1441 if (zone->present_pages) {
1442#ifndef CONFIG_HIGHMEM
1443 BUG();
1444#endif
1445 zonelist->zones[j++] = zone;
1446 }
1447 case ZONE_NORMAL:
1448 zone = pgdat->node_zones + ZONE_NORMAL;
1449 if (zone->present_pages)
1450 zonelist->zones[j++] = zone;
a2f1b424
AK
1451 case ZONE_DMA32:
1452 zone = pgdat->node_zones + ZONE_DMA32;
1453 if (zone->present_pages)
1454 zonelist->zones[j++] = zone;
1da177e4
LT
1455 case ZONE_DMA:
1456 zone = pgdat->node_zones + ZONE_DMA;
1457 if (zone->present_pages)
1458 zonelist->zones[j++] = zone;
1459 }
1460
1461 return j;
1462}
1463
260b2367
AV
1464static inline int highest_zone(int zone_bits)
1465{
1466 int res = ZONE_NORMAL;
1467 if (zone_bits & (__force int)__GFP_HIGHMEM)
1468 res = ZONE_HIGHMEM;
a2f1b424
AK
1469 if (zone_bits & (__force int)__GFP_DMA32)
1470 res = ZONE_DMA32;
260b2367
AV
1471 if (zone_bits & (__force int)__GFP_DMA)
1472 res = ZONE_DMA;
1473 return res;
1474}
1475
1da177e4
LT
1476#ifdef CONFIG_NUMA
1477#define MAX_NODE_LOAD (num_online_nodes())
1478static int __initdata node_load[MAX_NUMNODES];
1479/**
4dc3b16b 1480 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
1481 * @node: node whose fallback list we're appending
1482 * @used_node_mask: nodemask_t of already used nodes
1483 *
1484 * We use a number of factors to determine which is the next node that should
1485 * appear on a given node's fallback list. The node should not have appeared
1486 * already in @node's fallback list, and it should be the next closest node
1487 * according to the distance array (which contains arbitrary distance values
1488 * from each node to each node in the system), and should also prefer nodes
1489 * with no CPUs, since presumably they'll have very little allocation pressure
1490 * on them otherwise.
1491 * It returns -1 if no node is found.
1492 */
1493static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1494{
1495 int i, n, val;
1496 int min_val = INT_MAX;
1497 int best_node = -1;
1498
1499 for_each_online_node(i) {
1500 cpumask_t tmp;
1501
1502 /* Start from local node */
1503 n = (node+i) % num_online_nodes();
1504
1505 /* Don't want a node to appear more than once */
1506 if (node_isset(n, *used_node_mask))
1507 continue;
1508
1509 /* Use the local node if we haven't already */
1510 if (!node_isset(node, *used_node_mask)) {
1511 best_node = node;
1512 break;
1513 }
1514
1515 /* Use the distance array to find the distance */
1516 val = node_distance(node, n);
1517
1518 /* Give preference to headless and unused nodes */
1519 tmp = node_to_cpumask(n);
1520 if (!cpus_empty(tmp))
1521 val += PENALTY_FOR_NODE_WITH_CPUS;
1522
1523 /* Slight preference for less loaded node */
1524 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1525 val += node_load[n];
1526
1527 if (val < min_val) {
1528 min_val = val;
1529 best_node = n;
1530 }
1531 }
1532
1533 if (best_node >= 0)
1534 node_set(best_node, *used_node_mask);
1535
1536 return best_node;
1537}
1538
1539static void __init build_zonelists(pg_data_t *pgdat)
1540{
1541 int i, j, k, node, local_node;
1542 int prev_node, load;
1543 struct zonelist *zonelist;
1544 nodemask_t used_mask;
1545
1546 /* initialize zonelists */
1547 for (i = 0; i < GFP_ZONETYPES; i++) {
1548 zonelist = pgdat->node_zonelists + i;
1549 zonelist->zones[0] = NULL;
1550 }
1551
1552 /* NUMA-aware ordering of nodes */
1553 local_node = pgdat->node_id;
1554 load = num_online_nodes();
1555 prev_node = local_node;
1556 nodes_clear(used_mask);
1557 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1558 /*
1559 * We don't want to pressure a particular node.
1560 * So adding penalty to the first node in same
1561 * distance group to make it round-robin.
1562 */
1563 if (node_distance(local_node, node) !=
1564 node_distance(local_node, prev_node))
1565 node_load[node] += load;
1566 prev_node = node;
1567 load--;
1568 for (i = 0; i < GFP_ZONETYPES; i++) {
1569 zonelist = pgdat->node_zonelists + i;
1570 for (j = 0; zonelist->zones[j] != NULL; j++);
1571
260b2367 1572 k = highest_zone(i);
1da177e4
LT
1573
1574 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1575 zonelist->zones[j] = NULL;
1576 }
1577 }
1578}
1579
1580#else /* CONFIG_NUMA */
1581
1582static void __init build_zonelists(pg_data_t *pgdat)
1583{
1584 int i, j, k, node, local_node;
1585
1586 local_node = pgdat->node_id;
1587 for (i = 0; i < GFP_ZONETYPES; i++) {
1588 struct zonelist *zonelist;
1589
1590 zonelist = pgdat->node_zonelists + i;
1591
1592 j = 0;
260b2367 1593 k = highest_zone(i);
1da177e4
LT
1594 j = build_zonelists_node(pgdat, zonelist, j, k);
1595 /*
1596 * Now we build the zonelist so that it contains the zones
1597 * of all the other nodes.
1598 * We don't want to pressure a particular node, so when
1599 * building the zones for node N, we make sure that the
1600 * zones coming right after the local ones are those from
1601 * node N+1 (modulo N)
1602 */
1603 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1604 if (!node_online(node))
1605 continue;
1606 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1607 }
1608 for (node = 0; node < local_node; node++) {
1609 if (!node_online(node))
1610 continue;
1611 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1612 }
1613
1614 zonelist->zones[j] = NULL;
1615 }
1616}
1617
1618#endif /* CONFIG_NUMA */
1619
1620void __init build_all_zonelists(void)
1621{
1622 int i;
1623
1624 for_each_online_node(i)
1625 build_zonelists(NODE_DATA(i));
1626 printk("Built %i zonelists\n", num_online_nodes());
1627 cpuset_init_current_mems_allowed();
1628}
1629
1630/*
1631 * Helper functions to size the waitqueue hash table.
1632 * Essentially these want to choose hash table sizes sufficiently
1633 * large so that collisions trying to wait on pages are rare.
1634 * But in fact, the number of active page waitqueues on typical
1635 * systems is ridiculously low, less than 200. So this is even
1636 * conservative, even though it seems large.
1637 *
1638 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1639 * waitqueues, i.e. the size of the waitq table given the number of pages.
1640 */
1641#define PAGES_PER_WAITQUEUE 256
1642
1643static inline unsigned long wait_table_size(unsigned long pages)
1644{
1645 unsigned long size = 1;
1646
1647 pages /= PAGES_PER_WAITQUEUE;
1648
1649 while (size < pages)
1650 size <<= 1;
1651
1652 /*
1653 * Once we have dozens or even hundreds of threads sleeping
1654 * on IO we've got bigger problems than wait queue collision.
1655 * Limit the size of the wait table to a reasonable size.
1656 */
1657 size = min(size, 4096UL);
1658
1659 return max(size, 4UL);
1660}
1661
1662/*
1663 * This is an integer logarithm so that shifts can be used later
1664 * to extract the more random high bits from the multiplicative
1665 * hash function before the remainder is taken.
1666 */
1667static inline unsigned long wait_table_bits(unsigned long size)
1668{
1669 return ffz(~size);
1670}
1671
1672#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1673
1674static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1675 unsigned long *zones_size, unsigned long *zholes_size)
1676{
1677 unsigned long realtotalpages, totalpages = 0;
1678 int i;
1679
1680 for (i = 0; i < MAX_NR_ZONES; i++)
1681 totalpages += zones_size[i];
1682 pgdat->node_spanned_pages = totalpages;
1683
1684 realtotalpages = totalpages;
1685 if (zholes_size)
1686 for (i = 0; i < MAX_NR_ZONES; i++)
1687 realtotalpages -= zholes_size[i];
1688 pgdat->node_present_pages = realtotalpages;
1689 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1690}
1691
1692
1693/*
1694 * Initially all pages are reserved - free ones are freed
1695 * up by free_all_bootmem() once the early boot process is
1696 * done. Non-atomic initialization, single-pass.
1697 */
3947be19 1698void __devinit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1da177e4
LT
1699 unsigned long start_pfn)
1700{
1da177e4 1701 struct page *page;
29751f69
AW
1702 unsigned long end_pfn = start_pfn + size;
1703 unsigned long pfn;
1da177e4 1704
d41dee36
AW
1705 for (pfn = start_pfn; pfn < end_pfn; pfn++, page++) {
1706 if (!early_pfn_valid(pfn))
1707 continue;
1708 page = pfn_to_page(pfn);
1709 set_page_links(page, zone, nid, pfn);
b5810039 1710 set_page_count(page, 1);
1da177e4
LT
1711 reset_page_mapcount(page);
1712 SetPageReserved(page);
1713 INIT_LIST_HEAD(&page->lru);
1714#ifdef WANT_PAGE_VIRTUAL
1715 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1716 if (!is_highmem_idx(zone))
3212c6be 1717 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 1718#endif
1da177e4
LT
1719 }
1720}
1721
1722void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1723 unsigned long size)
1724{
1725 int order;
1726 for (order = 0; order < MAX_ORDER ; order++) {
1727 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1728 zone->free_area[order].nr_free = 0;
1729 }
1730}
1731
d41dee36
AW
1732#define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
1733void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1734 unsigned long size)
1735{
1736 unsigned long snum = pfn_to_section_nr(pfn);
1737 unsigned long end = pfn_to_section_nr(pfn + size);
1738
1739 if (FLAGS_HAS_NODE)
1740 zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1741 else
1742 for (; snum <= end; snum++)
1743 zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1744}
1745
1da177e4
LT
1746#ifndef __HAVE_ARCH_MEMMAP_INIT
1747#define memmap_init(size, nid, zone, start_pfn) \
1748 memmap_init_zone((size), (nid), (zone), (start_pfn))
1749#endif
1750
e7c8d5c9
CL
1751static int __devinit zone_batchsize(struct zone *zone)
1752{
1753 int batch;
1754
1755 /*
1756 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 1757 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
1758 *
1759 * OK, so we don't know how big the cache is. So guess.
1760 */
1761 batch = zone->present_pages / 1024;
ba56e91c
SR
1762 if (batch * PAGE_SIZE > 512 * 1024)
1763 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
1764 batch /= 4; /* We effectively *= 4 below */
1765 if (batch < 1)
1766 batch = 1;
1767
1768 /*
0ceaacc9
NP
1769 * Clamp the batch to a 2^n - 1 value. Having a power
1770 * of 2 value was found to be more likely to have
1771 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 1772 *
0ceaacc9
NP
1773 * For example if 2 tasks are alternately allocating
1774 * batches of pages, one task can end up with a lot
1775 * of pages of one half of the possible page colors
1776 * and the other with pages of the other colors.
e7c8d5c9 1777 */
0ceaacc9 1778 batch = (1 << (fls(batch + batch/2)-1)) - 1;
ba56e91c 1779
e7c8d5c9
CL
1780 return batch;
1781}
1782
2caaad41
CL
1783inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1784{
1785 struct per_cpu_pages *pcp;
1786
1c6fe946
MD
1787 memset(p, 0, sizeof(*p));
1788
2caaad41
CL
1789 pcp = &p->pcp[0]; /* hot */
1790 pcp->count = 0;
2caaad41
CL
1791 pcp->high = 6 * batch;
1792 pcp->batch = max(1UL, 1 * batch);
1793 INIT_LIST_HEAD(&pcp->list);
1794
1795 pcp = &p->pcp[1]; /* cold*/
1796 pcp->count = 0;
2caaad41 1797 pcp->high = 2 * batch;
e46a5e28 1798 pcp->batch = max(1UL, batch/2);
2caaad41
CL
1799 INIT_LIST_HEAD(&pcp->list);
1800}
1801
e7c8d5c9
CL
1802#ifdef CONFIG_NUMA
1803/*
2caaad41
CL
1804 * Boot pageset table. One per cpu which is going to be used for all
1805 * zones and all nodes. The parameters will be set in such a way
1806 * that an item put on a list will immediately be handed over to
1807 * the buddy list. This is safe since pageset manipulation is done
1808 * with interrupts disabled.
1809 *
1810 * Some NUMA counter updates may also be caught by the boot pagesets.
b7c84c6a
CL
1811 *
1812 * The boot_pagesets must be kept even after bootup is complete for
1813 * unused processors and/or zones. They do play a role for bootstrapping
1814 * hotplugged processors.
1815 *
1816 * zoneinfo_show() and maybe other functions do
1817 * not check if the processor is online before following the pageset pointer.
1818 * Other parts of the kernel may not check if the zone is available.
2caaad41
CL
1819 */
1820static struct per_cpu_pageset
b7c84c6a 1821 boot_pageset[NR_CPUS];
2caaad41
CL
1822
1823/*
1824 * Dynamically allocate memory for the
e7c8d5c9
CL
1825 * per cpu pageset array in struct zone.
1826 */
1827static int __devinit process_zones(int cpu)
1828{
1829 struct zone *zone, *dzone;
e7c8d5c9
CL
1830
1831 for_each_zone(zone) {
e7c8d5c9 1832
2caaad41 1833 zone->pageset[cpu] = kmalloc_node(sizeof(struct per_cpu_pageset),
e7c8d5c9 1834 GFP_KERNEL, cpu_to_node(cpu));
2caaad41 1835 if (!zone->pageset[cpu])
e7c8d5c9 1836 goto bad;
e7c8d5c9 1837
2caaad41 1838 setup_pageset(zone->pageset[cpu], zone_batchsize(zone));
e7c8d5c9
CL
1839 }
1840
1841 return 0;
1842bad:
1843 for_each_zone(dzone) {
1844 if (dzone == zone)
1845 break;
1846 kfree(dzone->pageset[cpu]);
1847 dzone->pageset[cpu] = NULL;
1848 }
1849 return -ENOMEM;
1850}
1851
1852static inline void free_zone_pagesets(int cpu)
1853{
1854#ifdef CONFIG_NUMA
1855 struct zone *zone;
1856
1857 for_each_zone(zone) {
1858 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1859
1860 zone_pcp(zone, cpu) = NULL;
1861 kfree(pset);
1862 }
1863#endif
1864}
1865
1866static int __devinit pageset_cpuup_callback(struct notifier_block *nfb,
1867 unsigned long action,
1868 void *hcpu)
1869{
1870 int cpu = (long)hcpu;
1871 int ret = NOTIFY_OK;
1872
1873 switch (action) {
1874 case CPU_UP_PREPARE:
1875 if (process_zones(cpu))
1876 ret = NOTIFY_BAD;
1877 break;
b0d41693 1878 case CPU_UP_CANCELED:
e7c8d5c9
CL
1879 case CPU_DEAD:
1880 free_zone_pagesets(cpu);
1881 break;
e7c8d5c9
CL
1882 default:
1883 break;
1884 }
1885 return ret;
1886}
1887
1888static struct notifier_block pageset_notifier =
1889 { &pageset_cpuup_callback, NULL, 0 };
1890
78d9955b 1891void __init setup_per_cpu_pageset(void)
e7c8d5c9
CL
1892{
1893 int err;
1894
1895 /* Initialize per_cpu_pageset for cpu 0.
1896 * A cpuup callback will do this for every cpu
1897 * as it comes online
1898 */
1899 err = process_zones(smp_processor_id());
1900 BUG_ON(err);
1901 register_cpu_notifier(&pageset_notifier);
1902}
1903
1904#endif
1905
ed8ece2e
DH
1906static __devinit
1907void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
1908{
1909 int i;
1910 struct pglist_data *pgdat = zone->zone_pgdat;
1911
1912 /*
1913 * The per-page waitqueue mechanism uses hashed waitqueues
1914 * per zone.
1915 */
1916 zone->wait_table_size = wait_table_size(zone_size_pages);
1917 zone->wait_table_bits = wait_table_bits(zone->wait_table_size);
1918 zone->wait_table = (wait_queue_head_t *)
1919 alloc_bootmem_node(pgdat, zone->wait_table_size
1920 * sizeof(wait_queue_head_t));
1921
1922 for(i = 0; i < zone->wait_table_size; ++i)
1923 init_waitqueue_head(zone->wait_table + i);
1924}
1925
1926static __devinit void zone_pcp_init(struct zone *zone)
1927{
1928 int cpu;
1929 unsigned long batch = zone_batchsize(zone);
1930
1931 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1932#ifdef CONFIG_NUMA
1933 /* Early boot. Slab allocator not functional yet */
1934 zone->pageset[cpu] = &boot_pageset[cpu];
1935 setup_pageset(&boot_pageset[cpu],0);
1936#else
1937 setup_pageset(zone_pcp(zone,cpu), batch);
1938#endif
1939 }
1940 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
1941 zone->name, zone->present_pages, batch);
1942}
1943
1944static __devinit void init_currently_empty_zone(struct zone *zone,
1945 unsigned long zone_start_pfn, unsigned long size)
1946{
1947 struct pglist_data *pgdat = zone->zone_pgdat;
1948
1949 zone_wait_table_init(zone, size);
1950 pgdat->nr_zones = zone_idx(zone) + 1;
1951
1952 zone->zone_mem_map = pfn_to_page(zone_start_pfn);
1953 zone->zone_start_pfn = zone_start_pfn;
1954
1955 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
1956
1957 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
1958}
1959
1da177e4
LT
1960/*
1961 * Set up the zone data structures:
1962 * - mark all pages reserved
1963 * - mark all memory queues empty
1964 * - clear the memory bitmaps
1965 */
1966static void __init free_area_init_core(struct pglist_data *pgdat,
1967 unsigned long *zones_size, unsigned long *zholes_size)
1968{
ed8ece2e
DH
1969 unsigned long j;
1970 int nid = pgdat->node_id;
1da177e4
LT
1971 unsigned long zone_start_pfn = pgdat->node_start_pfn;
1972
208d54e5 1973 pgdat_resize_init(pgdat);
1da177e4
LT
1974 pgdat->nr_zones = 0;
1975 init_waitqueue_head(&pgdat->kswapd_wait);
1976 pgdat->kswapd_max_order = 0;
1977
1978 for (j = 0; j < MAX_NR_ZONES; j++) {
1979 struct zone *zone = pgdat->node_zones + j;
1980 unsigned long size, realsize;
1da177e4 1981
1da177e4
LT
1982 realsize = size = zones_size[j];
1983 if (zholes_size)
1984 realsize -= zholes_size[j];
1985
a2f1b424 1986 if (j < ZONE_HIGHMEM)
1da177e4
LT
1987 nr_kernel_pages += realsize;
1988 nr_all_pages += realsize;
1989
1990 zone->spanned_pages = size;
1991 zone->present_pages = realsize;
1992 zone->name = zone_names[j];
1993 spin_lock_init(&zone->lock);
1994 spin_lock_init(&zone->lru_lock);
bdc8cb98 1995 zone_seqlock_init(zone);
1da177e4
LT
1996 zone->zone_pgdat = pgdat;
1997 zone->free_pages = 0;
1998
1999 zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2000
ed8ece2e 2001 zone_pcp_init(zone);
1da177e4
LT
2002 INIT_LIST_HEAD(&zone->active_list);
2003 INIT_LIST_HEAD(&zone->inactive_list);
2004 zone->nr_scan_active = 0;
2005 zone->nr_scan_inactive = 0;
2006 zone->nr_active = 0;
2007 zone->nr_inactive = 0;
53e9a615 2008 atomic_set(&zone->reclaim_in_progress, 0);
1da177e4
LT
2009 if (!size)
2010 continue;
2011
d41dee36 2012 zonetable_add(zone, nid, j, zone_start_pfn, size);
ed8ece2e 2013 init_currently_empty_zone(zone, zone_start_pfn, size);
1da177e4 2014 zone_start_pfn += size;
1da177e4
LT
2015 }
2016}
2017
2018static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2019{
1da177e4
LT
2020 /* Skip empty nodes */
2021 if (!pgdat->node_spanned_pages)
2022 return;
2023
d41dee36 2024#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
2025 /* ia64 gets its own node_mem_map, before this, without bootmem */
2026 if (!pgdat->node_mem_map) {
d41dee36
AW
2027 unsigned long size;
2028 struct page *map;
2029
1da177e4 2030 size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
6f167ec7
DH
2031 map = alloc_remap(pgdat->node_id, size);
2032 if (!map)
2033 map = alloc_bootmem_node(pgdat, size);
2034 pgdat->node_mem_map = map;
1da177e4 2035 }
d41dee36 2036#ifdef CONFIG_FLATMEM
1da177e4
LT
2037 /*
2038 * With no DISCONTIG, the global mem_map is just set as node 0's
2039 */
2040 if (pgdat == NODE_DATA(0))
2041 mem_map = NODE_DATA(0)->node_mem_map;
2042#endif
d41dee36 2043#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
2044}
2045
2046void __init free_area_init_node(int nid, struct pglist_data *pgdat,
2047 unsigned long *zones_size, unsigned long node_start_pfn,
2048 unsigned long *zholes_size)
2049{
2050 pgdat->node_id = nid;
2051 pgdat->node_start_pfn = node_start_pfn;
2052 calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2053
2054 alloc_node_mem_map(pgdat);
2055
2056 free_area_init_core(pgdat, zones_size, zholes_size);
2057}
2058
93b7504e 2059#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
2060static bootmem_data_t contig_bootmem_data;
2061struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2062
2063EXPORT_SYMBOL(contig_page_data);
93b7504e 2064#endif
1da177e4
LT
2065
2066void __init free_area_init(unsigned long *zones_size)
2067{
93b7504e 2068 free_area_init_node(0, NODE_DATA(0), zones_size,
1da177e4
LT
2069 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2070}
1da177e4
LT
2071
2072#ifdef CONFIG_PROC_FS
2073
2074#include <linux/seq_file.h>
2075
2076static void *frag_start(struct seq_file *m, loff_t *pos)
2077{
2078 pg_data_t *pgdat;
2079 loff_t node = *pos;
2080
2081 for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
2082 --node;
2083
2084 return pgdat;
2085}
2086
2087static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
2088{
2089 pg_data_t *pgdat = (pg_data_t *)arg;
2090
2091 (*pos)++;
2092 return pgdat->pgdat_next;
2093}
2094
2095static void frag_stop(struct seq_file *m, void *arg)
2096{
2097}
2098
2099/*
2100 * This walks the free areas for each zone.
2101 */
2102static int frag_show(struct seq_file *m, void *arg)
2103{
2104 pg_data_t *pgdat = (pg_data_t *)arg;
2105 struct zone *zone;
2106 struct zone *node_zones = pgdat->node_zones;
2107 unsigned long flags;
2108 int order;
2109
2110 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2111 if (!zone->present_pages)
2112 continue;
2113
2114 spin_lock_irqsave(&zone->lock, flags);
2115 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
2116 for (order = 0; order < MAX_ORDER; ++order)
2117 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
2118 spin_unlock_irqrestore(&zone->lock, flags);
2119 seq_putc(m, '\n');
2120 }
2121 return 0;
2122}
2123
2124struct seq_operations fragmentation_op = {
2125 .start = frag_start,
2126 .next = frag_next,
2127 .stop = frag_stop,
2128 .show = frag_show,
2129};
2130
295ab934
ND
2131/*
2132 * Output information about zones in @pgdat.
2133 */
2134static int zoneinfo_show(struct seq_file *m, void *arg)
2135{
2136 pg_data_t *pgdat = arg;
2137 struct zone *zone;
2138 struct zone *node_zones = pgdat->node_zones;
2139 unsigned long flags;
2140
2141 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
2142 int i;
2143
2144 if (!zone->present_pages)
2145 continue;
2146
2147 spin_lock_irqsave(&zone->lock, flags);
2148 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
2149 seq_printf(m,
2150 "\n pages free %lu"
2151 "\n min %lu"
2152 "\n low %lu"
2153 "\n high %lu"
2154 "\n active %lu"
2155 "\n inactive %lu"
2156 "\n scanned %lu (a: %lu i: %lu)"
2157 "\n spanned %lu"
2158 "\n present %lu",
2159 zone->free_pages,
2160 zone->pages_min,
2161 zone->pages_low,
2162 zone->pages_high,
2163 zone->nr_active,
2164 zone->nr_inactive,
2165 zone->pages_scanned,
2166 zone->nr_scan_active, zone->nr_scan_inactive,
2167 zone->spanned_pages,
2168 zone->present_pages);
2169 seq_printf(m,
2170 "\n protection: (%lu",
2171 zone->lowmem_reserve[0]);
2172 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
2173 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
2174 seq_printf(m,
2175 ")"
2176 "\n pagesets");
2177 for (i = 0; i < ARRAY_SIZE(zone->pageset); i++) {
2178 struct per_cpu_pageset *pageset;
2179 int j;
2180
e7c8d5c9 2181 pageset = zone_pcp(zone, i);
295ab934
ND
2182 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2183 if (pageset->pcp[j].count)
2184 break;
2185 }
2186 if (j == ARRAY_SIZE(pageset->pcp))
2187 continue;
2188 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2189 seq_printf(m,
2190 "\n cpu: %i pcp: %i"
2191 "\n count: %i"
295ab934
ND
2192 "\n high: %i"
2193 "\n batch: %i",
2194 i, j,
2195 pageset->pcp[j].count,
295ab934
ND
2196 pageset->pcp[j].high,
2197 pageset->pcp[j].batch);
2198 }
2199#ifdef CONFIG_NUMA
2200 seq_printf(m,
2201 "\n numa_hit: %lu"
2202 "\n numa_miss: %lu"
2203 "\n numa_foreign: %lu"
2204 "\n interleave_hit: %lu"
2205 "\n local_node: %lu"
2206 "\n other_node: %lu",
2207 pageset->numa_hit,
2208 pageset->numa_miss,
2209 pageset->numa_foreign,
2210 pageset->interleave_hit,
2211 pageset->local_node,
2212 pageset->other_node);
2213#endif
2214 }
2215 seq_printf(m,
2216 "\n all_unreclaimable: %u"
2217 "\n prev_priority: %i"
2218 "\n temp_priority: %i"
2219 "\n start_pfn: %lu",
2220 zone->all_unreclaimable,
2221 zone->prev_priority,
2222 zone->temp_priority,
2223 zone->zone_start_pfn);
2224 spin_unlock_irqrestore(&zone->lock, flags);
2225 seq_putc(m, '\n');
2226 }
2227 return 0;
2228}
2229
2230struct seq_operations zoneinfo_op = {
2231 .start = frag_start, /* iterate over all zones. The same as in
2232 * fragmentation. */
2233 .next = frag_next,
2234 .stop = frag_stop,
2235 .show = zoneinfo_show,
2236};
2237
1da177e4
LT
2238static char *vmstat_text[] = {
2239 "nr_dirty",
2240 "nr_writeback",
2241 "nr_unstable",
2242 "nr_page_table_pages",
2243 "nr_mapped",
2244 "nr_slab",
2245
2246 "pgpgin",
2247 "pgpgout",
2248 "pswpin",
2249 "pswpout",
2250 "pgalloc_high",
2251
2252 "pgalloc_normal",
2253 "pgalloc_dma",
2254 "pgfree",
2255 "pgactivate",
2256 "pgdeactivate",
2257
2258 "pgfault",
2259 "pgmajfault",
2260 "pgrefill_high",
2261 "pgrefill_normal",
2262 "pgrefill_dma",
2263
2264 "pgsteal_high",
2265 "pgsteal_normal",
2266 "pgsteal_dma",
2267 "pgscan_kswapd_high",
2268 "pgscan_kswapd_normal",
2269
2270 "pgscan_kswapd_dma",
2271 "pgscan_direct_high",
2272 "pgscan_direct_normal",
2273 "pgscan_direct_dma",
2274 "pginodesteal",
2275
2276 "slabs_scanned",
2277 "kswapd_steal",
2278 "kswapd_inodesteal",
2279 "pageoutrun",
2280 "allocstall",
2281
2282 "pgrotated",
edfbe2b0 2283 "nr_bounce",
1da177e4
LT
2284};
2285
2286static void *vmstat_start(struct seq_file *m, loff_t *pos)
2287{
2288 struct page_state *ps;
2289
2290 if (*pos >= ARRAY_SIZE(vmstat_text))
2291 return NULL;
2292
2293 ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2294 m->private = ps;
2295 if (!ps)
2296 return ERR_PTR(-ENOMEM);
2297 get_full_page_state(ps);
2298 ps->pgpgin /= 2; /* sectors -> kbytes */
2299 ps->pgpgout /= 2;
2300 return (unsigned long *)ps + *pos;
2301}
2302
2303static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2304{
2305 (*pos)++;
2306 if (*pos >= ARRAY_SIZE(vmstat_text))
2307 return NULL;
2308 return (unsigned long *)m->private + *pos;
2309}
2310
2311static int vmstat_show(struct seq_file *m, void *arg)
2312{
2313 unsigned long *l = arg;
2314 unsigned long off = l - (unsigned long *)m->private;
2315
2316 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2317 return 0;
2318}
2319
2320static void vmstat_stop(struct seq_file *m, void *arg)
2321{
2322 kfree(m->private);
2323 m->private = NULL;
2324}
2325
2326struct seq_operations vmstat_op = {
2327 .start = vmstat_start,
2328 .next = vmstat_next,
2329 .stop = vmstat_stop,
2330 .show = vmstat_show,
2331};
2332
2333#endif /* CONFIG_PROC_FS */
2334
2335#ifdef CONFIG_HOTPLUG_CPU
2336static int page_alloc_cpu_notify(struct notifier_block *self,
2337 unsigned long action, void *hcpu)
2338{
2339 int cpu = (unsigned long)hcpu;
2340 long *count;
2341 unsigned long *src, *dest;
2342
2343 if (action == CPU_DEAD) {
2344 int i;
2345
2346 /* Drain local pagecache count. */
2347 count = &per_cpu(nr_pagecache_local, cpu);
2348 atomic_add(*count, &nr_pagecache);
2349 *count = 0;
2350 local_irq_disable();
2351 __drain_pages(cpu);
2352
2353 /* Add dead cpu's page_states to our own. */
2354 dest = (unsigned long *)&__get_cpu_var(page_states);
2355 src = (unsigned long *)&per_cpu(page_states, cpu);
2356
2357 for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2358 i++) {
2359 dest[i] += src[i];
2360 src[i] = 0;
2361 }
2362
2363 local_irq_enable();
2364 }
2365 return NOTIFY_OK;
2366}
2367#endif /* CONFIG_HOTPLUG_CPU */
2368
2369void __init page_alloc_init(void)
2370{
2371 hotcpu_notifier(page_alloc_cpu_notify, 0);
2372}
2373
2374/*
2375 * setup_per_zone_lowmem_reserve - called whenever
2376 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2377 * has a correct pages reserved value, so an adequate number of
2378 * pages are left in the zone after a successful __alloc_pages().
2379 */
2380static void setup_per_zone_lowmem_reserve(void)
2381{
2382 struct pglist_data *pgdat;
2383 int j, idx;
2384
2385 for_each_pgdat(pgdat) {
2386 for (j = 0; j < MAX_NR_ZONES; j++) {
2387 struct zone *zone = pgdat->node_zones + j;
2388 unsigned long present_pages = zone->present_pages;
2389
2390 zone->lowmem_reserve[j] = 0;
2391
2392 for (idx = j-1; idx >= 0; idx--) {
2393 struct zone *lower_zone;
2394
2395 if (sysctl_lowmem_reserve_ratio[idx] < 1)
2396 sysctl_lowmem_reserve_ratio[idx] = 1;
2397
2398 lower_zone = pgdat->node_zones + idx;
2399 lower_zone->lowmem_reserve[j] = present_pages /
2400 sysctl_lowmem_reserve_ratio[idx];
2401 present_pages += lower_zone->present_pages;
2402 }
2403 }
2404 }
2405}
2406
2407/*
2408 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2409 * that the pages_{min,low,high} values for each zone are set correctly
2410 * with respect to min_free_kbytes.
2411 */
3947be19 2412void setup_per_zone_pages_min(void)
1da177e4
LT
2413{
2414 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2415 unsigned long lowmem_pages = 0;
2416 struct zone *zone;
2417 unsigned long flags;
2418
2419 /* Calculate total number of !ZONE_HIGHMEM pages */
2420 for_each_zone(zone) {
2421 if (!is_highmem(zone))
2422 lowmem_pages += zone->present_pages;
2423 }
2424
2425 for_each_zone(zone) {
669ed175 2426 unsigned long tmp;
1da177e4 2427 spin_lock_irqsave(&zone->lru_lock, flags);
669ed175 2428 tmp = (pages_min * zone->present_pages) / lowmem_pages;
1da177e4
LT
2429 if (is_highmem(zone)) {
2430 /*
669ed175
NP
2431 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2432 * need highmem pages, so cap pages_min to a small
2433 * value here.
2434 *
2435 * The (pages_high-pages_low) and (pages_low-pages_min)
2436 * deltas controls asynch page reclaim, and so should
2437 * not be capped for highmem.
1da177e4
LT
2438 */
2439 int min_pages;
2440
2441 min_pages = zone->present_pages / 1024;
2442 if (min_pages < SWAP_CLUSTER_MAX)
2443 min_pages = SWAP_CLUSTER_MAX;
2444 if (min_pages > 128)
2445 min_pages = 128;
2446 zone->pages_min = min_pages;
2447 } else {
669ed175
NP
2448 /*
2449 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
2450 * proportionate to the zone's size.
2451 */
669ed175 2452 zone->pages_min = tmp;
1da177e4
LT
2453 }
2454
669ed175
NP
2455 zone->pages_low = zone->pages_min + tmp / 4;
2456 zone->pages_high = zone->pages_min + tmp / 2;
1da177e4
LT
2457 spin_unlock_irqrestore(&zone->lru_lock, flags);
2458 }
2459}
2460
2461/*
2462 * Initialise min_free_kbytes.
2463 *
2464 * For small machines we want it small (128k min). For large machines
2465 * we want it large (64MB max). But it is not linear, because network
2466 * bandwidth does not increase linearly with machine size. We use
2467 *
2468 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2469 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2470 *
2471 * which yields
2472 *
2473 * 16MB: 512k
2474 * 32MB: 724k
2475 * 64MB: 1024k
2476 * 128MB: 1448k
2477 * 256MB: 2048k
2478 * 512MB: 2896k
2479 * 1024MB: 4096k
2480 * 2048MB: 5792k
2481 * 4096MB: 8192k
2482 * 8192MB: 11584k
2483 * 16384MB: 16384k
2484 */
2485static int __init init_per_zone_pages_min(void)
2486{
2487 unsigned long lowmem_kbytes;
2488
2489 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2490
2491 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2492 if (min_free_kbytes < 128)
2493 min_free_kbytes = 128;
2494 if (min_free_kbytes > 65536)
2495 min_free_kbytes = 65536;
2496 setup_per_zone_pages_min();
2497 setup_per_zone_lowmem_reserve();
2498 return 0;
2499}
2500module_init(init_per_zone_pages_min)
2501
2502/*
2503 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2504 * that we can call two helper functions whenever min_free_kbytes
2505 * changes.
2506 */
2507int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2508 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2509{
2510 proc_dointvec(table, write, file, buffer, length, ppos);
2511 setup_per_zone_pages_min();
2512 return 0;
2513}
2514
2515/*
2516 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2517 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2518 * whenever sysctl_lowmem_reserve_ratio changes.
2519 *
2520 * The reserve ratio obviously has absolutely no relation with the
2521 * pages_min watermarks. The lowmem reserve ratio can only make sense
2522 * if in function of the boot time zone sizes.
2523 */
2524int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2525 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2526{
2527 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2528 setup_per_zone_lowmem_reserve();
2529 return 0;
2530}
2531
2532__initdata int hashdist = HASHDIST_DEFAULT;
2533
2534#ifdef CONFIG_NUMA
2535static int __init set_hashdist(char *str)
2536{
2537 if (!str)
2538 return 0;
2539 hashdist = simple_strtoul(str, &str, 0);
2540 return 1;
2541}
2542__setup("hashdist=", set_hashdist);
2543#endif
2544
2545/*
2546 * allocate a large system hash table from bootmem
2547 * - it is assumed that the hash table must contain an exact power-of-2
2548 * quantity of entries
2549 * - limit is the number of hash buckets, not the total allocation size
2550 */
2551void *__init alloc_large_system_hash(const char *tablename,
2552 unsigned long bucketsize,
2553 unsigned long numentries,
2554 int scale,
2555 int flags,
2556 unsigned int *_hash_shift,
2557 unsigned int *_hash_mask,
2558 unsigned long limit)
2559{
2560 unsigned long long max = limit;
2561 unsigned long log2qty, size;
2562 void *table = NULL;
2563
2564 /* allow the kernel cmdline to have a say */
2565 if (!numentries) {
2566 /* round applicable memory size up to nearest megabyte */
2567 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2568 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2569 numentries >>= 20 - PAGE_SHIFT;
2570 numentries <<= 20 - PAGE_SHIFT;
2571
2572 /* limit to 1 bucket per 2^scale bytes of low memory */
2573 if (scale > PAGE_SHIFT)
2574 numentries >>= (scale - PAGE_SHIFT);
2575 else
2576 numentries <<= (PAGE_SHIFT - scale);
2577 }
2578 /* rounded up to nearest power of 2 in size */
2579 numentries = 1UL << (long_log2(numentries) + 1);
2580
2581 /* limit allocation size to 1/16 total memory by default */
2582 if (max == 0) {
2583 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2584 do_div(max, bucketsize);
2585 }
2586
2587 if (numentries > max)
2588 numentries = max;
2589
2590 log2qty = long_log2(numentries);
2591
2592 do {
2593 size = bucketsize << log2qty;
2594 if (flags & HASH_EARLY)
2595 table = alloc_bootmem(size);
2596 else if (hashdist)
2597 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2598 else {
2599 unsigned long order;
2600 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2601 ;
2602 table = (void*) __get_free_pages(GFP_ATOMIC, order);
2603 }
2604 } while (!table && size > PAGE_SIZE && --log2qty);
2605
2606 if (!table)
2607 panic("Failed to allocate %s hash table\n", tablename);
2608
2609 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2610 tablename,
2611 (1U << log2qty),
2612 long_log2(size) - PAGE_SHIFT,
2613 size);
2614
2615 if (_hash_shift)
2616 *_hash_shift = log2qty;
2617 if (_hash_mask)
2618 *_hash_mask = (1 << log2qty) - 1;
2619
2620 return table;
2621}