[PATCH] compound page: use page[1].lru
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/config.h>
18#include <linux/stddef.h>
19#include <linux/mm.h>
20#include <linux/swap.h>
21#include <linux/interrupt.h>
22#include <linux/pagemap.h>
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
9f158333 25#include <linux/kernel.h>
1da177e4
LT
26#include <linux/module.h>
27#include <linux/suspend.h>
28#include <linux/pagevec.h>
29#include <linux/blkdev.h>
30#include <linux/slab.h>
31#include <linux/notifier.h>
32#include <linux/topology.h>
33#include <linux/sysctl.h>
34#include <linux/cpu.h>
35#include <linux/cpuset.h>
bdc8cb98 36#include <linux/memory_hotplug.h>
1da177e4
LT
37#include <linux/nodemask.h>
38#include <linux/vmalloc.h>
4be38e35 39#include <linux/mempolicy.h>
1da177e4
LT
40
41#include <asm/tlbflush.h>
42#include "internal.h"
43
44/*
45 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
46 * initializer cleaner
47 */
c3d8c141 48nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
7223a93a 49EXPORT_SYMBOL(node_online_map);
c3d8c141 50nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
7223a93a 51EXPORT_SYMBOL(node_possible_map);
c3d8c141 52struct pglist_data *pgdat_list __read_mostly;
6c231b7b
RT
53unsigned long totalram_pages __read_mostly;
54unsigned long totalhigh_pages __read_mostly;
1da177e4 55long nr_swap_pages;
8ad4b1fb 56int percpu_pagelist_fraction;
1da177e4 57
a226f6c8
DH
58static void fastcall free_hot_cold_page(struct page *page, int cold);
59
1da177e4
LT
60/*
61 * results with 256, 32 in the lowmem_reserve sysctl:
62 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
63 * 1G machine -> (16M dma, 784M normal, 224M high)
64 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
65 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
66 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
67 *
68 * TBD: should special case ZONE_DMA32 machines here - in those we normally
69 * don't need any ZONE_NORMAL reservation
1da177e4 70 */
a2f1b424 71int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 };
1da177e4
LT
72
73EXPORT_SYMBOL(totalram_pages);
1da177e4
LT
74
75/*
76 * Used by page_zone() to look up the address of the struct zone whose
77 * id is encoded in the upper bits of page->flags
78 */
c3d8c141 79struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
1da177e4
LT
80EXPORT_SYMBOL(zone_table);
81
a2f1b424 82static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" };
1da177e4
LT
83int min_free_kbytes = 1024;
84
85unsigned long __initdata nr_kernel_pages;
86unsigned long __initdata nr_all_pages;
87
13e7444b 88#ifdef CONFIG_DEBUG_VM
c6a57e19 89static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 90{
bdc8cb98
DH
91 int ret = 0;
92 unsigned seq;
93 unsigned long pfn = page_to_pfn(page);
c6a57e19 94
bdc8cb98
DH
95 do {
96 seq = zone_span_seqbegin(zone);
97 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
98 ret = 1;
99 else if (pfn < zone->zone_start_pfn)
100 ret = 1;
101 } while (zone_span_seqretry(zone, seq));
102
103 return ret;
c6a57e19
DH
104}
105
106static int page_is_consistent(struct zone *zone, struct page *page)
107{
1da177e4
LT
108#ifdef CONFIG_HOLES_IN_ZONE
109 if (!pfn_valid(page_to_pfn(page)))
c6a57e19 110 return 0;
1da177e4
LT
111#endif
112 if (zone != page_zone(page))
c6a57e19
DH
113 return 0;
114
115 return 1;
116}
117/*
118 * Temporary debugging check for pages not lying within a given zone.
119 */
120static int bad_range(struct zone *zone, struct page *page)
121{
122 if (page_outside_zone_boundaries(zone, page))
1da177e4 123 return 1;
c6a57e19
DH
124 if (!page_is_consistent(zone, page))
125 return 1;
126
1da177e4
LT
127 return 0;
128}
129
13e7444b
NP
130#else
131static inline int bad_range(struct zone *zone, struct page *page)
132{
133 return 0;
134}
135#endif
136
224abf92 137static void bad_page(struct page *page)
1da177e4 138{
224abf92 139 printk(KERN_EMERG "Bad page state in process '%s'\n"
7365f3d1
HD
140 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
141 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
142 KERN_EMERG "Backtrace:\n",
224abf92
NP
143 current->comm, page, (int)(2*sizeof(unsigned long)),
144 (unsigned long)page->flags, page->mapping,
145 page_mapcount(page), page_count(page));
1da177e4 146 dump_stack();
334795ec
HD
147 page->flags &= ~(1 << PG_lru |
148 1 << PG_private |
1da177e4 149 1 << PG_locked |
1da177e4
LT
150 1 << PG_active |
151 1 << PG_dirty |
334795ec
HD
152 1 << PG_reclaim |
153 1 << PG_slab |
1da177e4 154 1 << PG_swapcache |
689bcebf 155 1 << PG_writeback );
1da177e4
LT
156 set_page_count(page, 0);
157 reset_page_mapcount(page);
158 page->mapping = NULL;
9f158333 159 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
160}
161
1da177e4
LT
162/*
163 * Higher-order pages are called "compound pages". They are structured thusly:
164 *
165 * The first PAGE_SIZE page is called the "head page".
166 *
167 * The remaining PAGE_SIZE pages are called "tail pages".
168 *
169 * All pages have PG_compound set. All pages have their ->private pointing at
170 * the head page (even the head page has this).
171 *
41d78ba5
HD
172 * The first tail page's ->lru.next holds the address of the compound page's
173 * put_page() function. Its ->lru.prev holds the order of allocation.
174 * This usage means that zero-order pages may not be compound.
1da177e4
LT
175 */
176static void prep_compound_page(struct page *page, unsigned long order)
177{
178 int i;
179 int nr_pages = 1 << order;
180
41d78ba5
HD
181 page[1].lru.next = NULL; /* set dtor */
182 page[1].lru.prev = (void *)order;
1da177e4
LT
183 for (i = 0; i < nr_pages; i++) {
184 struct page *p = page + i;
185
186 SetPageCompound(p);
4c21e2f2 187 set_page_private(p, (unsigned long)page);
1da177e4
LT
188 }
189}
190
191static void destroy_compound_page(struct page *page, unsigned long order)
192{
193 int i;
194 int nr_pages = 1 << order;
195
41d78ba5 196 if (unlikely((unsigned long)page[1].lru.prev != order))
224abf92 197 bad_page(page);
1da177e4
LT
198
199 for (i = 0; i < nr_pages; i++) {
200 struct page *p = page + i;
201
224abf92
NP
202 if (unlikely(!PageCompound(p) |
203 (page_private(p) != (unsigned long)page)))
204 bad_page(page);
1da177e4
LT
205 ClearPageCompound(p);
206 }
207}
1da177e4
LT
208
209/*
210 * function for dealing with page's order in buddy system.
211 * zone->lock is already acquired when we use these.
212 * So, we don't need atomic page->flags operations here.
213 */
214static inline unsigned long page_order(struct page *page) {
4c21e2f2 215 return page_private(page);
1da177e4
LT
216}
217
218static inline void set_page_order(struct page *page, int order) {
4c21e2f2 219 set_page_private(page, order);
1da177e4
LT
220 __SetPagePrivate(page);
221}
222
223static inline void rmv_page_order(struct page *page)
224{
225 __ClearPagePrivate(page);
4c21e2f2 226 set_page_private(page, 0);
1da177e4
LT
227}
228
229/*
230 * Locate the struct page for both the matching buddy in our
231 * pair (buddy1) and the combined O(n+1) page they form (page).
232 *
233 * 1) Any buddy B1 will have an order O twin B2 which satisfies
234 * the following equation:
235 * B2 = B1 ^ (1 << O)
236 * For example, if the starting buddy (buddy2) is #8 its order
237 * 1 buddy is #10:
238 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
239 *
240 * 2) Any buddy B will have an order O+1 parent P which
241 * satisfies the following equation:
242 * P = B & ~(1 << O)
243 *
244 * Assumption: *_mem_map is contigious at least up to MAX_ORDER
245 */
246static inline struct page *
247__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
248{
249 unsigned long buddy_idx = page_idx ^ (1 << order);
250
251 return page + (buddy_idx - page_idx);
252}
253
254static inline unsigned long
255__find_combined_index(unsigned long page_idx, unsigned int order)
256{
257 return (page_idx & ~(1 << order));
258}
259
260/*
261 * This function checks whether a page is free && is the buddy
262 * we can do coalesce a page and its buddy if
13e7444b
NP
263 * (a) the buddy is not in a hole &&
264 * (b) the buddy is free &&
265 * (c) the buddy is on the buddy system &&
266 * (d) a page and its buddy have the same order.
4c21e2f2 267 * for recording page's order, we use page_private(page) and PG_private.
1da177e4
LT
268 *
269 */
270static inline int page_is_buddy(struct page *page, int order)
271{
13e7444b
NP
272#ifdef CONFIG_HOLES_IN_ZONE
273 if (!pfn_valid(page_to_pfn(page)))
274 return 0;
275#endif
276
1da177e4
LT
277 if (PagePrivate(page) &&
278 (page_order(page) == order) &&
1da177e4
LT
279 page_count(page) == 0)
280 return 1;
281 return 0;
282}
283
284/*
285 * Freeing function for a buddy system allocator.
286 *
287 * The concept of a buddy system is to maintain direct-mapped table
288 * (containing bit values) for memory blocks of various "orders".
289 * The bottom level table contains the map for the smallest allocatable
290 * units of memory (here, pages), and each level above it describes
291 * pairs of units from the levels below, hence, "buddies".
292 * At a high level, all that happens here is marking the table entry
293 * at the bottom level available, and propagating the changes upward
294 * as necessary, plus some accounting needed to play nicely with other
295 * parts of the VM system.
296 * At each level, we keep a list of pages, which are heads of continuous
297 * free pages of length of (1 << order) and marked with PG_Private.Page's
4c21e2f2 298 * order is recorded in page_private(page) field.
1da177e4
LT
299 * So when we are allocating or freeing one, we can derive the state of the
300 * other. That is, if we allocate a small block, and both were
301 * free, the remainder of the region must be split into blocks.
302 * If a block is freed, and its buddy is also free, then this
303 * triggers coalescing into a block of larger size.
304 *
305 * -- wli
306 */
307
48db57f8 308static inline void __free_one_page(struct page *page,
1da177e4
LT
309 struct zone *zone, unsigned int order)
310{
311 unsigned long page_idx;
312 int order_size = 1 << order;
313
224abf92 314 if (unlikely(PageCompound(page)))
1da177e4
LT
315 destroy_compound_page(page, order);
316
317 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
318
319 BUG_ON(page_idx & (order_size - 1));
320 BUG_ON(bad_range(zone, page));
321
322 zone->free_pages += order_size;
323 while (order < MAX_ORDER-1) {
324 unsigned long combined_idx;
325 struct free_area *area;
326 struct page *buddy;
327
1da177e4 328 buddy = __page_find_buddy(page, page_idx, order);
1da177e4
LT
329 if (!page_is_buddy(buddy, order))
330 break; /* Move the buddy up one level. */
13e7444b 331
1da177e4
LT
332 list_del(&buddy->lru);
333 area = zone->free_area + order;
334 area->nr_free--;
335 rmv_page_order(buddy);
13e7444b 336 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
337 page = page + (combined_idx - page_idx);
338 page_idx = combined_idx;
339 order++;
340 }
341 set_page_order(page, order);
342 list_add(&page->lru, &zone->free_area[order].free_list);
343 zone->free_area[order].nr_free++;
344}
345
224abf92 346static inline int free_pages_check(struct page *page)
1da177e4 347{
92be2e33
NP
348 if (unlikely(page_mapcount(page) |
349 (page->mapping != NULL) |
350 (page_count(page) != 0) |
1da177e4
LT
351 (page->flags & (
352 1 << PG_lru |
353 1 << PG_private |
354 1 << PG_locked |
355 1 << PG_active |
356 1 << PG_reclaim |
357 1 << PG_slab |
358 1 << PG_swapcache |
b5810039 359 1 << PG_writeback |
92be2e33 360 1 << PG_reserved ))))
224abf92 361 bad_page(page);
1da177e4 362 if (PageDirty(page))
242e5468 363 __ClearPageDirty(page);
689bcebf
HD
364 /*
365 * For now, we report if PG_reserved was found set, but do not
366 * clear it, and do not free the page. But we shall soon need
367 * to do more, for when the ZERO_PAGE count wraps negative.
368 */
369 return PageReserved(page);
1da177e4
LT
370}
371
372/*
373 * Frees a list of pages.
374 * Assumes all pages on list are in same zone, and of same order.
207f36ee 375 * count is the number of pages to free.
1da177e4
LT
376 *
377 * If the zone was previously in an "all pages pinned" state then look to
378 * see if this freeing clears that state.
379 *
380 * And clear the zone's pages_scanned counter, to hold off the "all pages are
381 * pinned" detection logic.
382 */
48db57f8
NP
383static void free_pages_bulk(struct zone *zone, int count,
384 struct list_head *list, int order)
1da177e4 385{
c54ad30c 386 spin_lock(&zone->lock);
1da177e4
LT
387 zone->all_unreclaimable = 0;
388 zone->pages_scanned = 0;
48db57f8
NP
389 while (count--) {
390 struct page *page;
391
392 BUG_ON(list_empty(list));
1da177e4 393 page = list_entry(list->prev, struct page, lru);
48db57f8 394 /* have to delete it as __free_one_page list manipulates */
1da177e4 395 list_del(&page->lru);
48db57f8 396 __free_one_page(page, zone, order);
1da177e4 397 }
c54ad30c 398 spin_unlock(&zone->lock);
1da177e4
LT
399}
400
48db57f8 401static void free_one_page(struct zone *zone, struct page *page, int order)
1da177e4
LT
402{
403 LIST_HEAD(list);
48db57f8
NP
404 list_add(&page->lru, &list);
405 free_pages_bulk(zone, 1, &list, order);
406}
407
408static void __free_pages_ok(struct page *page, unsigned int order)
409{
410 unsigned long flags;
1da177e4 411 int i;
689bcebf 412 int reserved = 0;
1da177e4
LT
413
414 arch_free_page(page, order);
de5097c2
IM
415 if (!PageHighMem(page))
416 mutex_debug_check_no_locks_freed(page_address(page),
a4fc7ab1 417 PAGE_SIZE<<order);
1da177e4 418
1da177e4 419#ifndef CONFIG_MMU
48db57f8
NP
420 for (i = 1 ; i < (1 << order) ; ++i)
421 __put_page(page + i);
1da177e4
LT
422#endif
423
424 for (i = 0 ; i < (1 << order) ; ++i)
224abf92 425 reserved += free_pages_check(page + i);
689bcebf
HD
426 if (reserved)
427 return;
428
48db57f8 429 kernel_map_pages(page, 1 << order, 0);
c54ad30c 430 local_irq_save(flags);
a74609fa 431 __mod_page_state(pgfree, 1 << order);
48db57f8 432 free_one_page(page_zone(page), page, order);
c54ad30c 433 local_irq_restore(flags);
1da177e4
LT
434}
435
a226f6c8
DH
436/*
437 * permit the bootmem allocator to evade page validation on high-order frees
438 */
439void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
440{
441 if (order == 0) {
442 __ClearPageReserved(page);
443 set_page_count(page, 0);
444
445 free_hot_cold_page(page, 0);
446 } else {
447 LIST_HEAD(list);
448 int loop;
449
450 for (loop = 0; loop < BITS_PER_LONG; loop++) {
451 struct page *p = &page[loop];
452
453 if (loop + 16 < BITS_PER_LONG)
454 prefetchw(p + 16);
455 __ClearPageReserved(p);
456 set_page_count(p, 0);
457 }
458
459 arch_free_page(page, order);
460
461 mod_page_state(pgfree, 1 << order);
462
463 list_add(&page->lru, &list);
464 kernel_map_pages(page, 1 << order, 0);
465 free_pages_bulk(page_zone(page), 1, &list, order);
466 }
467}
468
1da177e4
LT
469
470/*
471 * The order of subdivision here is critical for the IO subsystem.
472 * Please do not alter this order without good reasons and regression
473 * testing. Specifically, as large blocks of memory are subdivided,
474 * the order in which smaller blocks are delivered depends on the order
475 * they're subdivided in this function. This is the primary factor
476 * influencing the order in which pages are delivered to the IO
477 * subsystem according to empirical testing, and this is also justified
478 * by considering the behavior of a buddy system containing a single
479 * large block of memory acted on by a series of small allocations.
480 * This behavior is a critical factor in sglist merging's success.
481 *
482 * -- wli
483 */
085cc7d5 484static inline void expand(struct zone *zone, struct page *page,
1da177e4
LT
485 int low, int high, struct free_area *area)
486{
487 unsigned long size = 1 << high;
488
489 while (high > low) {
490 area--;
491 high--;
492 size >>= 1;
493 BUG_ON(bad_range(zone, &page[size]));
494 list_add(&page[size].lru, &area->free_list);
495 area->nr_free++;
496 set_page_order(&page[size], high);
497 }
1da177e4
LT
498}
499
1da177e4
LT
500/*
501 * This page is about to be returned from the page allocator
502 */
689bcebf 503static int prep_new_page(struct page *page, int order)
1da177e4 504{
92be2e33
NP
505 if (unlikely(page_mapcount(page) |
506 (page->mapping != NULL) |
507 (page_count(page) != 0) |
334795ec
HD
508 (page->flags & (
509 1 << PG_lru |
1da177e4
LT
510 1 << PG_private |
511 1 << PG_locked |
1da177e4
LT
512 1 << PG_active |
513 1 << PG_dirty |
514 1 << PG_reclaim |
334795ec 515 1 << PG_slab |
1da177e4 516 1 << PG_swapcache |
b5810039 517 1 << PG_writeback |
92be2e33 518 1 << PG_reserved ))))
224abf92 519 bad_page(page);
1da177e4 520
689bcebf
HD
521 /*
522 * For now, we report if PG_reserved was found set, but do not
523 * clear it, and do not allocate the page: as a safety net.
524 */
525 if (PageReserved(page))
526 return 1;
527
1da177e4
LT
528 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
529 1 << PG_referenced | 1 << PG_arch_1 |
530 1 << PG_checked | 1 << PG_mappedtodisk);
4c21e2f2 531 set_page_private(page, 0);
1da177e4
LT
532 set_page_refs(page, order);
533 kernel_map_pages(page, 1 << order, 1);
689bcebf 534 return 0;
1da177e4
LT
535}
536
537/*
538 * Do the hard work of removing an element from the buddy allocator.
539 * Call me with the zone->lock already held.
540 */
541static struct page *__rmqueue(struct zone *zone, unsigned int order)
542{
543 struct free_area * area;
544 unsigned int current_order;
545 struct page *page;
546
547 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
548 area = zone->free_area + current_order;
549 if (list_empty(&area->free_list))
550 continue;
551
552 page = list_entry(area->free_list.next, struct page, lru);
553 list_del(&page->lru);
554 rmv_page_order(page);
555 area->nr_free--;
556 zone->free_pages -= 1UL << order;
085cc7d5
NP
557 expand(zone, page, order, current_order, area);
558 return page;
1da177e4
LT
559 }
560
561 return NULL;
562}
563
564/*
565 * Obtain a specified number of elements from the buddy allocator, all under
566 * a single hold of the lock, for efficiency. Add them to the supplied list.
567 * Returns the number of new pages which were placed at *list.
568 */
569static int rmqueue_bulk(struct zone *zone, unsigned int order,
570 unsigned long count, struct list_head *list)
571{
1da177e4 572 int i;
1da177e4 573
c54ad30c 574 spin_lock(&zone->lock);
1da177e4 575 for (i = 0; i < count; ++i) {
085cc7d5
NP
576 struct page *page = __rmqueue(zone, order);
577 if (unlikely(page == NULL))
1da177e4 578 break;
1da177e4
LT
579 list_add_tail(&page->lru, list);
580 }
c54ad30c 581 spin_unlock(&zone->lock);
085cc7d5 582 return i;
1da177e4
LT
583}
584
4ae7c039
CL
585#ifdef CONFIG_NUMA
586/* Called from the slab reaper to drain remote pagesets */
587void drain_remote_pages(void)
588{
589 struct zone *zone;
590 int i;
591 unsigned long flags;
592
593 local_irq_save(flags);
594 for_each_zone(zone) {
595 struct per_cpu_pageset *pset;
596
597 /* Do not drain local pagesets */
598 if (zone->zone_pgdat->node_id == numa_node_id())
599 continue;
600
23316bc8 601 pset = zone_pcp(zone, smp_processor_id());
4ae7c039
CL
602 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
603 struct per_cpu_pages *pcp;
604
605 pcp = &pset->pcp[i];
48db57f8
NP
606 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
607 pcp->count = 0;
4ae7c039
CL
608 }
609 }
610 local_irq_restore(flags);
611}
612#endif
613
1da177e4
LT
614#if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
615static void __drain_pages(unsigned int cpu)
616{
c54ad30c 617 unsigned long flags;
1da177e4
LT
618 struct zone *zone;
619 int i;
620
621 for_each_zone(zone) {
622 struct per_cpu_pageset *pset;
623
e7c8d5c9 624 pset = zone_pcp(zone, cpu);
1da177e4
LT
625 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
626 struct per_cpu_pages *pcp;
627
628 pcp = &pset->pcp[i];
c54ad30c 629 local_irq_save(flags);
48db57f8
NP
630 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
631 pcp->count = 0;
c54ad30c 632 local_irq_restore(flags);
1da177e4
LT
633 }
634 }
635}
636#endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
637
638#ifdef CONFIG_PM
639
640void mark_free_pages(struct zone *zone)
641{
642 unsigned long zone_pfn, flags;
643 int order;
644 struct list_head *curr;
645
646 if (!zone->spanned_pages)
647 return;
648
649 spin_lock_irqsave(&zone->lock, flags);
650 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
651 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
652
653 for (order = MAX_ORDER - 1; order >= 0; --order)
654 list_for_each(curr, &zone->free_area[order].free_list) {
655 unsigned long start_pfn, i;
656
657 start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
658
659 for (i=0; i < (1<<order); i++)
660 SetPageNosaveFree(pfn_to_page(start_pfn+i));
661 }
662 spin_unlock_irqrestore(&zone->lock, flags);
663}
664
665/*
666 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
667 */
668void drain_local_pages(void)
669{
670 unsigned long flags;
671
672 local_irq_save(flags);
673 __drain_pages(smp_processor_id());
674 local_irq_restore(flags);
675}
676#endif /* CONFIG_PM */
677
a74609fa 678static void zone_statistics(struct zonelist *zonelist, struct zone *z, int cpu)
1da177e4
LT
679{
680#ifdef CONFIG_NUMA
1da177e4
LT
681 pg_data_t *pg = z->zone_pgdat;
682 pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
683 struct per_cpu_pageset *p;
684
a74609fa 685 p = zone_pcp(z, cpu);
1da177e4 686 if (pg == orig) {
e7c8d5c9 687 p->numa_hit++;
1da177e4
LT
688 } else {
689 p->numa_miss++;
e7c8d5c9 690 zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
1da177e4
LT
691 }
692 if (pg == NODE_DATA(numa_node_id()))
693 p->local_node++;
694 else
695 p->other_node++;
1da177e4
LT
696#endif
697}
698
699/*
700 * Free a 0-order page
701 */
1da177e4
LT
702static void fastcall free_hot_cold_page(struct page *page, int cold)
703{
704 struct zone *zone = page_zone(page);
705 struct per_cpu_pages *pcp;
706 unsigned long flags;
707
708 arch_free_page(page, 0);
709
1da177e4
LT
710 if (PageAnon(page))
711 page->mapping = NULL;
224abf92 712 if (free_pages_check(page))
689bcebf
HD
713 return;
714
689bcebf
HD
715 kernel_map_pages(page, 1, 0);
716
e7c8d5c9 717 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
1da177e4 718 local_irq_save(flags);
a74609fa 719 __inc_page_state(pgfree);
1da177e4
LT
720 list_add(&page->lru, &pcp->list);
721 pcp->count++;
48db57f8
NP
722 if (pcp->count >= pcp->high) {
723 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
724 pcp->count -= pcp->batch;
725 }
1da177e4
LT
726 local_irq_restore(flags);
727 put_cpu();
728}
729
730void fastcall free_hot_page(struct page *page)
731{
732 free_hot_cold_page(page, 0);
733}
734
735void fastcall free_cold_page(struct page *page)
736{
737 free_hot_cold_page(page, 1);
738}
739
dd0fc66f 740static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
1da177e4
LT
741{
742 int i;
743
744 BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
745 for(i = 0; i < (1 << order); i++)
746 clear_highpage(page + i);
747}
748
749/*
750 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
751 * we cheat by calling it from here, in the order > 0 path. Saves a branch
752 * or two.
753 */
a74609fa
NP
754static struct page *buffered_rmqueue(struct zonelist *zonelist,
755 struct zone *zone, int order, gfp_t gfp_flags)
1da177e4
LT
756{
757 unsigned long flags;
689bcebf 758 struct page *page;
1da177e4 759 int cold = !!(gfp_flags & __GFP_COLD);
a74609fa 760 int cpu;
1da177e4 761
689bcebf 762again:
a74609fa 763 cpu = get_cpu();
48db57f8 764 if (likely(order == 0)) {
1da177e4
LT
765 struct per_cpu_pages *pcp;
766
a74609fa 767 pcp = &zone_pcp(zone, cpu)->pcp[cold];
1da177e4 768 local_irq_save(flags);
a74609fa 769 if (!pcp->count) {
1da177e4
LT
770 pcp->count += rmqueue_bulk(zone, 0,
771 pcp->batch, &pcp->list);
a74609fa
NP
772 if (unlikely(!pcp->count))
773 goto failed;
1da177e4 774 }
a74609fa
NP
775 page = list_entry(pcp->list.next, struct page, lru);
776 list_del(&page->lru);
777 pcp->count--;
7fb1d9fc 778 } else {
1da177e4
LT
779 spin_lock_irqsave(&zone->lock, flags);
780 page = __rmqueue(zone, order);
a74609fa
NP
781 spin_unlock(&zone->lock);
782 if (!page)
783 goto failed;
1da177e4
LT
784 }
785
a74609fa
NP
786 __mod_page_state_zone(zone, pgalloc, 1 << order);
787 zone_statistics(zonelist, zone, cpu);
788 local_irq_restore(flags);
789 put_cpu();
1da177e4 790
a74609fa
NP
791 BUG_ON(bad_range(zone, page));
792 if (prep_new_page(page, order))
793 goto again;
1da177e4 794
a74609fa
NP
795 if (gfp_flags & __GFP_ZERO)
796 prep_zero_page(page, order, gfp_flags);
797
798 if (order && (gfp_flags & __GFP_COMP))
799 prep_compound_page(page, order);
1da177e4 800 return page;
a74609fa
NP
801
802failed:
803 local_irq_restore(flags);
804 put_cpu();
805 return NULL;
1da177e4
LT
806}
807
7fb1d9fc 808#define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
3148890b
NP
809#define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
810#define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
811#define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
812#define ALLOC_HARDER 0x10 /* try to alloc harder */
813#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
814#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 815
1da177e4
LT
816/*
817 * Return 1 if free pages are above 'mark'. This takes into account the order
818 * of the allocation.
819 */
820int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 821 int classzone_idx, int alloc_flags)
1da177e4
LT
822{
823 /* free_pages my go negative - that's OK */
824 long min = mark, free_pages = z->free_pages - (1 << order) + 1;
825 int o;
826
7fb1d9fc 827 if (alloc_flags & ALLOC_HIGH)
1da177e4 828 min -= min / 2;
7fb1d9fc 829 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
830 min -= min / 4;
831
832 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
833 return 0;
834 for (o = 0; o < order; o++) {
835 /* At the next order, this order's pages become unavailable */
836 free_pages -= z->free_area[o].nr_free << o;
837
838 /* Require fewer higher order pages to be free */
839 min >>= 1;
840
841 if (free_pages <= min)
842 return 0;
843 }
844 return 1;
845}
846
7fb1d9fc
RS
847/*
848 * get_page_from_freeliest goes through the zonelist trying to allocate
849 * a page.
850 */
851static struct page *
852get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
853 struct zonelist *zonelist, int alloc_flags)
753ee728 854{
7fb1d9fc
RS
855 struct zone **z = zonelist->zones;
856 struct page *page = NULL;
857 int classzone_idx = zone_idx(*z);
858
859 /*
860 * Go through the zonelist once, looking for a zone with enough free.
861 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
862 */
863 do {
864 if ((alloc_flags & ALLOC_CPUSET) &&
865 !cpuset_zone_allowed(*z, gfp_mask))
866 continue;
867
868 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b
NP
869 unsigned long mark;
870 if (alloc_flags & ALLOC_WMARK_MIN)
871 mark = (*z)->pages_min;
872 else if (alloc_flags & ALLOC_WMARK_LOW)
873 mark = (*z)->pages_low;
874 else
875 mark = (*z)->pages_high;
876 if (!zone_watermark_ok(*z, order, mark,
7fb1d9fc 877 classzone_idx, alloc_flags))
9eeff239
CL
878 if (!zone_reclaim_mode ||
879 !zone_reclaim(*z, gfp_mask, order))
880 continue;
7fb1d9fc
RS
881 }
882
a74609fa 883 page = buffered_rmqueue(zonelist, *z, order, gfp_mask);
7fb1d9fc 884 if (page) {
7fb1d9fc
RS
885 break;
886 }
887 } while (*(++z) != NULL);
888 return page;
753ee728
MH
889}
890
1da177e4
LT
891/*
892 * This is the 'heart' of the zoned buddy allocator.
893 */
894struct page * fastcall
dd0fc66f 895__alloc_pages(gfp_t gfp_mask, unsigned int order,
1da177e4
LT
896 struct zonelist *zonelist)
897{
260b2367 898 const gfp_t wait = gfp_mask & __GFP_WAIT;
7fb1d9fc 899 struct zone **z;
1da177e4
LT
900 struct page *page;
901 struct reclaim_state reclaim_state;
902 struct task_struct *p = current;
1da177e4 903 int do_retry;
7fb1d9fc 904 int alloc_flags;
1da177e4
LT
905 int did_some_progress;
906
907 might_sleep_if(wait);
908
6b1de916 909restart:
7fb1d9fc 910 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1da177e4 911
7fb1d9fc 912 if (unlikely(*z == NULL)) {
1da177e4
LT
913 /* Should this ever happen?? */
914 return NULL;
915 }
6b1de916 916
7fb1d9fc 917 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 918 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
7fb1d9fc
RS
919 if (page)
920 goto got_pg;
1da177e4 921
6b1de916 922 do {
7fb1d9fc 923 wakeup_kswapd(*z, order);
6b1de916 924 } while (*(++z));
1da177e4 925
9bf2229f 926 /*
7fb1d9fc
RS
927 * OK, we're below the kswapd watermark and have kicked background
928 * reclaim. Now things get more complex, so set up alloc_flags according
929 * to how we want to proceed.
930 *
931 * The caller may dip into page reserves a bit more if the caller
932 * cannot run direct reclaim, or if the caller has realtime scheduling
4eac915d
PJ
933 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
934 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
9bf2229f 935 */
3148890b 936 alloc_flags = ALLOC_WMARK_MIN;
7fb1d9fc
RS
937 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
938 alloc_flags |= ALLOC_HARDER;
939 if (gfp_mask & __GFP_HIGH)
940 alloc_flags |= ALLOC_HIGH;
47f3a867 941 alloc_flags |= ALLOC_CPUSET;
1da177e4
LT
942
943 /*
944 * Go through the zonelist again. Let __GFP_HIGH and allocations
7fb1d9fc 945 * coming from realtime tasks go deeper into reserves.
1da177e4
LT
946 *
947 * This is the last chance, in general, before the goto nopage.
948 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
9bf2229f 949 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1da177e4 950 */
7fb1d9fc
RS
951 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
952 if (page)
953 goto got_pg;
1da177e4
LT
954
955 /* This allocation should allow future memory freeing. */
b84a35be
NP
956
957 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
958 && !in_interrupt()) {
959 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
885036d3 960nofail_alloc:
b84a35be 961 /* go through the zonelist yet again, ignoring mins */
7fb1d9fc 962 page = get_page_from_freelist(gfp_mask, order,
47f3a867 963 zonelist, ALLOC_NO_WATERMARKS);
7fb1d9fc
RS
964 if (page)
965 goto got_pg;
885036d3
KK
966 if (gfp_mask & __GFP_NOFAIL) {
967 blk_congestion_wait(WRITE, HZ/50);
968 goto nofail_alloc;
969 }
1da177e4
LT
970 }
971 goto nopage;
972 }
973
974 /* Atomic allocations - we can't balance anything */
975 if (!wait)
976 goto nopage;
977
978rebalance:
979 cond_resched();
980
981 /* We now go into synchronous reclaim */
3e0d98b9 982 cpuset_memory_pressure_bump();
1da177e4
LT
983 p->flags |= PF_MEMALLOC;
984 reclaim_state.reclaimed_slab = 0;
985 p->reclaim_state = &reclaim_state;
986
7fb1d9fc 987 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1da177e4
LT
988
989 p->reclaim_state = NULL;
990 p->flags &= ~PF_MEMALLOC;
991
992 cond_resched();
993
994 if (likely(did_some_progress)) {
7fb1d9fc
RS
995 page = get_page_from_freelist(gfp_mask, order,
996 zonelist, alloc_flags);
997 if (page)
998 goto got_pg;
1da177e4
LT
999 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1000 /*
1001 * Go through the zonelist yet one more time, keep
1002 * very high watermark here, this is only to catch
1003 * a parallel oom killing, we must fail if we're still
1004 * under heavy pressure.
1005 */
7fb1d9fc 1006 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 1007 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
7fb1d9fc
RS
1008 if (page)
1009 goto got_pg;
1da177e4 1010
79b9ce31 1011 out_of_memory(gfp_mask, order);
1da177e4
LT
1012 goto restart;
1013 }
1014
1015 /*
1016 * Don't let big-order allocations loop unless the caller explicitly
1017 * requests that. Wait for some write requests to complete then retry.
1018 *
1019 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1020 * <= 3, but that may not be true in other implementations.
1021 */
1022 do_retry = 0;
1023 if (!(gfp_mask & __GFP_NORETRY)) {
1024 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1025 do_retry = 1;
1026 if (gfp_mask & __GFP_NOFAIL)
1027 do_retry = 1;
1028 }
1029 if (do_retry) {
1030 blk_congestion_wait(WRITE, HZ/50);
1031 goto rebalance;
1032 }
1033
1034nopage:
1035 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1036 printk(KERN_WARNING "%s: page allocation failure."
1037 " order:%d, mode:0x%x\n",
1038 p->comm, order, gfp_mask);
1039 dump_stack();
578c2fd6 1040 show_mem();
1da177e4 1041 }
1da177e4 1042got_pg:
1da177e4
LT
1043 return page;
1044}
1045
1046EXPORT_SYMBOL(__alloc_pages);
1047
1048/*
1049 * Common helper functions.
1050 */
dd0fc66f 1051fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4
LT
1052{
1053 struct page * page;
1054 page = alloc_pages(gfp_mask, order);
1055 if (!page)
1056 return 0;
1057 return (unsigned long) page_address(page);
1058}
1059
1060EXPORT_SYMBOL(__get_free_pages);
1061
dd0fc66f 1062fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4
LT
1063{
1064 struct page * page;
1065
1066 /*
1067 * get_zeroed_page() returns a 32-bit address, which cannot represent
1068 * a highmem page
1069 */
260b2367 1070 BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1da177e4
LT
1071
1072 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1073 if (page)
1074 return (unsigned long) page_address(page);
1075 return 0;
1076}
1077
1078EXPORT_SYMBOL(get_zeroed_page);
1079
1080void __pagevec_free(struct pagevec *pvec)
1081{
1082 int i = pagevec_count(pvec);
1083
1084 while (--i >= 0)
1085 free_hot_cold_page(pvec->pages[i], pvec->cold);
1086}
1087
1088fastcall void __free_pages(struct page *page, unsigned int order)
1089{
b5810039 1090 if (put_page_testzero(page)) {
1da177e4
LT
1091 if (order == 0)
1092 free_hot_page(page);
1093 else
1094 __free_pages_ok(page, order);
1095 }
1096}
1097
1098EXPORT_SYMBOL(__free_pages);
1099
1100fastcall void free_pages(unsigned long addr, unsigned int order)
1101{
1102 if (addr != 0) {
1103 BUG_ON(!virt_addr_valid((void *)addr));
1104 __free_pages(virt_to_page((void *)addr), order);
1105 }
1106}
1107
1108EXPORT_SYMBOL(free_pages);
1109
1110/*
1111 * Total amount of free (allocatable) RAM:
1112 */
1113unsigned int nr_free_pages(void)
1114{
1115 unsigned int sum = 0;
1116 struct zone *zone;
1117
1118 for_each_zone(zone)
1119 sum += zone->free_pages;
1120
1121 return sum;
1122}
1123
1124EXPORT_SYMBOL(nr_free_pages);
1125
1126#ifdef CONFIG_NUMA
1127unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1128{
1129 unsigned int i, sum = 0;
1130
1131 for (i = 0; i < MAX_NR_ZONES; i++)
1132 sum += pgdat->node_zones[i].free_pages;
1133
1134 return sum;
1135}
1136#endif
1137
1138static unsigned int nr_free_zone_pages(int offset)
1139{
e310fd43
MB
1140 /* Just pick one node, since fallback list is circular */
1141 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1da177e4
LT
1142 unsigned int sum = 0;
1143
e310fd43
MB
1144 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1145 struct zone **zonep = zonelist->zones;
1146 struct zone *zone;
1da177e4 1147
e310fd43
MB
1148 for (zone = *zonep++; zone; zone = *zonep++) {
1149 unsigned long size = zone->present_pages;
1150 unsigned long high = zone->pages_high;
1151 if (size > high)
1152 sum += size - high;
1da177e4
LT
1153 }
1154
1155 return sum;
1156}
1157
1158/*
1159 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1160 */
1161unsigned int nr_free_buffer_pages(void)
1162{
af4ca457 1163 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4
LT
1164}
1165
1166/*
1167 * Amount of free RAM allocatable within all zones
1168 */
1169unsigned int nr_free_pagecache_pages(void)
1170{
af4ca457 1171 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1da177e4
LT
1172}
1173
1174#ifdef CONFIG_HIGHMEM
1175unsigned int nr_free_highpages (void)
1176{
1177 pg_data_t *pgdat;
1178 unsigned int pages = 0;
1179
1180 for_each_pgdat(pgdat)
1181 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1182
1183 return pages;
1184}
1185#endif
1186
1187#ifdef CONFIG_NUMA
1188static void show_node(struct zone *zone)
1189{
1190 printk("Node %d ", zone->zone_pgdat->node_id);
1191}
1192#else
1193#define show_node(zone) do { } while (0)
1194#endif
1195
1196/*
1197 * Accumulate the page_state information across all CPUs.
1198 * The result is unavoidably approximate - it can change
1199 * during and after execution of this function.
1200 */
1201static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1202
1203atomic_t nr_pagecache = ATOMIC_INIT(0);
1204EXPORT_SYMBOL(nr_pagecache);
1205#ifdef CONFIG_SMP
1206DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1207#endif
1208
a86b1f53 1209static void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask)
1da177e4
LT
1210{
1211 int cpu = 0;
1212
88a2a4ac 1213 memset(ret, 0, nr * sizeof(unsigned long));
84c2008a 1214 cpus_and(*cpumask, *cpumask, cpu_online_map);
1da177e4 1215
c07e02db 1216 cpu = first_cpu(*cpumask);
1da177e4
LT
1217 while (cpu < NR_CPUS) {
1218 unsigned long *in, *out, off;
1219
88a2a4ac
ED
1220 if (!cpu_isset(cpu, *cpumask))
1221 continue;
1222
1da177e4
LT
1223 in = (unsigned long *)&per_cpu(page_states, cpu);
1224
c07e02db 1225 cpu = next_cpu(cpu, *cpumask);
1da177e4 1226
88a2a4ac 1227 if (likely(cpu < NR_CPUS))
1da177e4
LT
1228 prefetch(&per_cpu(page_states, cpu));
1229
1230 out = (unsigned long *)ret;
1231 for (off = 0; off < nr; off++)
1232 *out++ += *in++;
1233 }
1234}
1235
c07e02db
MH
1236void get_page_state_node(struct page_state *ret, int node)
1237{
1238 int nr;
1239 cpumask_t mask = node_to_cpumask(node);
1240
1241 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1242 nr /= sizeof(unsigned long);
1243
1244 __get_page_state(ret, nr+1, &mask);
1245}
1246
1da177e4
LT
1247void get_page_state(struct page_state *ret)
1248{
1249 int nr;
c07e02db 1250 cpumask_t mask = CPU_MASK_ALL;
1da177e4
LT
1251
1252 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1253 nr /= sizeof(unsigned long);
1254
c07e02db 1255 __get_page_state(ret, nr + 1, &mask);
1da177e4
LT
1256}
1257
1258void get_full_page_state(struct page_state *ret)
1259{
c07e02db
MH
1260 cpumask_t mask = CPU_MASK_ALL;
1261
1262 __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask);
1da177e4
LT
1263}
1264
a74609fa 1265unsigned long read_page_state_offset(unsigned long offset)
1da177e4
LT
1266{
1267 unsigned long ret = 0;
1268 int cpu;
1269
84c2008a 1270 for_each_online_cpu(cpu) {
1da177e4
LT
1271 unsigned long in;
1272
1273 in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1274 ret += *((unsigned long *)in);
1275 }
1276 return ret;
1277}
1278
a74609fa
NP
1279void __mod_page_state_offset(unsigned long offset, unsigned long delta)
1280{
1281 void *ptr;
1282
1283 ptr = &__get_cpu_var(page_states);
1284 *(unsigned long *)(ptr + offset) += delta;
1285}
1286EXPORT_SYMBOL(__mod_page_state_offset);
1287
1288void mod_page_state_offset(unsigned long offset, unsigned long delta)
1da177e4
LT
1289{
1290 unsigned long flags;
a74609fa 1291 void *ptr;
1da177e4
LT
1292
1293 local_irq_save(flags);
1294 ptr = &__get_cpu_var(page_states);
a74609fa 1295 *(unsigned long *)(ptr + offset) += delta;
1da177e4
LT
1296 local_irq_restore(flags);
1297}
a74609fa 1298EXPORT_SYMBOL(mod_page_state_offset);
1da177e4
LT
1299
1300void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1301 unsigned long *free, struct pglist_data *pgdat)
1302{
1303 struct zone *zones = pgdat->node_zones;
1304 int i;
1305
1306 *active = 0;
1307 *inactive = 0;
1308 *free = 0;
1309 for (i = 0; i < MAX_NR_ZONES; i++) {
1310 *active += zones[i].nr_active;
1311 *inactive += zones[i].nr_inactive;
1312 *free += zones[i].free_pages;
1313 }
1314}
1315
1316void get_zone_counts(unsigned long *active,
1317 unsigned long *inactive, unsigned long *free)
1318{
1319 struct pglist_data *pgdat;
1320
1321 *active = 0;
1322 *inactive = 0;
1323 *free = 0;
1324 for_each_pgdat(pgdat) {
1325 unsigned long l, m, n;
1326 __get_zone_counts(&l, &m, &n, pgdat);
1327 *active += l;
1328 *inactive += m;
1329 *free += n;
1330 }
1331}
1332
1333void si_meminfo(struct sysinfo *val)
1334{
1335 val->totalram = totalram_pages;
1336 val->sharedram = 0;
1337 val->freeram = nr_free_pages();
1338 val->bufferram = nr_blockdev_pages();
1339#ifdef CONFIG_HIGHMEM
1340 val->totalhigh = totalhigh_pages;
1341 val->freehigh = nr_free_highpages();
1342#else
1343 val->totalhigh = 0;
1344 val->freehigh = 0;
1345#endif
1346 val->mem_unit = PAGE_SIZE;
1347}
1348
1349EXPORT_SYMBOL(si_meminfo);
1350
1351#ifdef CONFIG_NUMA
1352void si_meminfo_node(struct sysinfo *val, int nid)
1353{
1354 pg_data_t *pgdat = NODE_DATA(nid);
1355
1356 val->totalram = pgdat->node_present_pages;
1357 val->freeram = nr_free_pages_pgdat(pgdat);
1358 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1359 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1360 val->mem_unit = PAGE_SIZE;
1361}
1362#endif
1363
1364#define K(x) ((x) << (PAGE_SHIFT-10))
1365
1366/*
1367 * Show free area list (used inside shift_scroll-lock stuff)
1368 * We also calculate the percentage fragmentation. We do this by counting the
1369 * memory on each free list with the exception of the first item on the list.
1370 */
1371void show_free_areas(void)
1372{
1373 struct page_state ps;
1374 int cpu, temperature;
1375 unsigned long active;
1376 unsigned long inactive;
1377 unsigned long free;
1378 struct zone *zone;
1379
1380 for_each_zone(zone) {
1381 show_node(zone);
1382 printk("%s per-cpu:", zone->name);
1383
f3fe6512 1384 if (!populated_zone(zone)) {
1da177e4
LT
1385 printk(" empty\n");
1386 continue;
1387 } else
1388 printk("\n");
1389
6b482c67 1390 for_each_online_cpu(cpu) {
1da177e4
LT
1391 struct per_cpu_pageset *pageset;
1392
e7c8d5c9 1393 pageset = zone_pcp(zone, cpu);
1da177e4
LT
1394
1395 for (temperature = 0; temperature < 2; temperature++)
2d92c5c9 1396 printk("cpu %d %s: high %d, batch %d used:%d\n",
1da177e4
LT
1397 cpu,
1398 temperature ? "cold" : "hot",
1da177e4 1399 pageset->pcp[temperature].high,
4ae7c039
CL
1400 pageset->pcp[temperature].batch,
1401 pageset->pcp[temperature].count);
1da177e4
LT
1402 }
1403 }
1404
1405 get_page_state(&ps);
1406 get_zone_counts(&active, &inactive, &free);
1407
c0d62219 1408 printk("Free pages: %11ukB (%ukB HighMem)\n",
1da177e4
LT
1409 K(nr_free_pages()),
1410 K(nr_free_highpages()));
1411
1412 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1413 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1414 active,
1415 inactive,
1416 ps.nr_dirty,
1417 ps.nr_writeback,
1418 ps.nr_unstable,
1419 nr_free_pages(),
1420 ps.nr_slab,
1421 ps.nr_mapped,
1422 ps.nr_page_table_pages);
1423
1424 for_each_zone(zone) {
1425 int i;
1426
1427 show_node(zone);
1428 printk("%s"
1429 " free:%lukB"
1430 " min:%lukB"
1431 " low:%lukB"
1432 " high:%lukB"
1433 " active:%lukB"
1434 " inactive:%lukB"
1435 " present:%lukB"
1436 " pages_scanned:%lu"
1437 " all_unreclaimable? %s"
1438 "\n",
1439 zone->name,
1440 K(zone->free_pages),
1441 K(zone->pages_min),
1442 K(zone->pages_low),
1443 K(zone->pages_high),
1444 K(zone->nr_active),
1445 K(zone->nr_inactive),
1446 K(zone->present_pages),
1447 zone->pages_scanned,
1448 (zone->all_unreclaimable ? "yes" : "no")
1449 );
1450 printk("lowmem_reserve[]:");
1451 for (i = 0; i < MAX_NR_ZONES; i++)
1452 printk(" %lu", zone->lowmem_reserve[i]);
1453 printk("\n");
1454 }
1455
1456 for_each_zone(zone) {
1457 unsigned long nr, flags, order, total = 0;
1458
1459 show_node(zone);
1460 printk("%s: ", zone->name);
f3fe6512 1461 if (!populated_zone(zone)) {
1da177e4
LT
1462 printk("empty\n");
1463 continue;
1464 }
1465
1466 spin_lock_irqsave(&zone->lock, flags);
1467 for (order = 0; order < MAX_ORDER; order++) {
1468 nr = zone->free_area[order].nr_free;
1469 total += nr << order;
1470 printk("%lu*%lukB ", nr, K(1UL) << order);
1471 }
1472 spin_unlock_irqrestore(&zone->lock, flags);
1473 printk("= %lukB\n", K(total));
1474 }
1475
1476 show_swap_cache_info();
1477}
1478
1479/*
1480 * Builds allocation fallback zone lists.
1a93205b
CL
1481 *
1482 * Add all populated zones of a node to the zonelist.
1da177e4 1483 */
1a93205b 1484static int __init build_zonelists_node(pg_data_t *pgdat,
070f8032 1485 struct zonelist *zonelist, int nr_zones, int zone_type)
1da177e4 1486{
1a93205b
CL
1487 struct zone *zone;
1488
070f8032 1489 BUG_ON(zone_type > ZONE_HIGHMEM);
02a68a5e
CL
1490
1491 do {
070f8032 1492 zone = pgdat->node_zones + zone_type;
1a93205b 1493 if (populated_zone(zone)) {
1da177e4 1494#ifndef CONFIG_HIGHMEM
070f8032 1495 BUG_ON(zone_type > ZONE_NORMAL);
1da177e4 1496#endif
070f8032
CL
1497 zonelist->zones[nr_zones++] = zone;
1498 check_highest_zone(zone_type);
1da177e4 1499 }
070f8032 1500 zone_type--;
02a68a5e 1501
070f8032
CL
1502 } while (zone_type >= 0);
1503 return nr_zones;
1da177e4
LT
1504}
1505
260b2367
AV
1506static inline int highest_zone(int zone_bits)
1507{
1508 int res = ZONE_NORMAL;
1509 if (zone_bits & (__force int)__GFP_HIGHMEM)
1510 res = ZONE_HIGHMEM;
a2f1b424
AK
1511 if (zone_bits & (__force int)__GFP_DMA32)
1512 res = ZONE_DMA32;
260b2367
AV
1513 if (zone_bits & (__force int)__GFP_DMA)
1514 res = ZONE_DMA;
1515 return res;
1516}
1517
1da177e4
LT
1518#ifdef CONFIG_NUMA
1519#define MAX_NODE_LOAD (num_online_nodes())
1520static int __initdata node_load[MAX_NUMNODES];
1521/**
4dc3b16b 1522 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
1523 * @node: node whose fallback list we're appending
1524 * @used_node_mask: nodemask_t of already used nodes
1525 *
1526 * We use a number of factors to determine which is the next node that should
1527 * appear on a given node's fallback list. The node should not have appeared
1528 * already in @node's fallback list, and it should be the next closest node
1529 * according to the distance array (which contains arbitrary distance values
1530 * from each node to each node in the system), and should also prefer nodes
1531 * with no CPUs, since presumably they'll have very little allocation pressure
1532 * on them otherwise.
1533 * It returns -1 if no node is found.
1534 */
1535static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1536{
1537 int i, n, val;
1538 int min_val = INT_MAX;
1539 int best_node = -1;
1540
1541 for_each_online_node(i) {
1542 cpumask_t tmp;
1543
1544 /* Start from local node */
1545 n = (node+i) % num_online_nodes();
1546
1547 /* Don't want a node to appear more than once */
1548 if (node_isset(n, *used_node_mask))
1549 continue;
1550
1551 /* Use the local node if we haven't already */
1552 if (!node_isset(node, *used_node_mask)) {
1553 best_node = node;
1554 break;
1555 }
1556
1557 /* Use the distance array to find the distance */
1558 val = node_distance(node, n);
1559
1560 /* Give preference to headless and unused nodes */
1561 tmp = node_to_cpumask(n);
1562 if (!cpus_empty(tmp))
1563 val += PENALTY_FOR_NODE_WITH_CPUS;
1564
1565 /* Slight preference for less loaded node */
1566 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1567 val += node_load[n];
1568
1569 if (val < min_val) {
1570 min_val = val;
1571 best_node = n;
1572 }
1573 }
1574
1575 if (best_node >= 0)
1576 node_set(best_node, *used_node_mask);
1577
1578 return best_node;
1579}
1580
1581static void __init build_zonelists(pg_data_t *pgdat)
1582{
1583 int i, j, k, node, local_node;
1584 int prev_node, load;
1585 struct zonelist *zonelist;
1586 nodemask_t used_mask;
1587
1588 /* initialize zonelists */
1589 for (i = 0; i < GFP_ZONETYPES; i++) {
1590 zonelist = pgdat->node_zonelists + i;
1591 zonelist->zones[0] = NULL;
1592 }
1593
1594 /* NUMA-aware ordering of nodes */
1595 local_node = pgdat->node_id;
1596 load = num_online_nodes();
1597 prev_node = local_node;
1598 nodes_clear(used_mask);
1599 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
1600 int distance = node_distance(local_node, node);
1601
1602 /*
1603 * If another node is sufficiently far away then it is better
1604 * to reclaim pages in a zone before going off node.
1605 */
1606 if (distance > RECLAIM_DISTANCE)
1607 zone_reclaim_mode = 1;
1608
1da177e4
LT
1609 /*
1610 * We don't want to pressure a particular node.
1611 * So adding penalty to the first node in same
1612 * distance group to make it round-robin.
1613 */
9eeff239
CL
1614
1615 if (distance != node_distance(local_node, prev_node))
1da177e4
LT
1616 node_load[node] += load;
1617 prev_node = node;
1618 load--;
1619 for (i = 0; i < GFP_ZONETYPES; i++) {
1620 zonelist = pgdat->node_zonelists + i;
1621 for (j = 0; zonelist->zones[j] != NULL; j++);
1622
260b2367 1623 k = highest_zone(i);
1da177e4
LT
1624
1625 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1626 zonelist->zones[j] = NULL;
1627 }
1628 }
1629}
1630
1631#else /* CONFIG_NUMA */
1632
1633static void __init build_zonelists(pg_data_t *pgdat)
1634{
1635 int i, j, k, node, local_node;
1636
1637 local_node = pgdat->node_id;
1638 for (i = 0; i < GFP_ZONETYPES; i++) {
1639 struct zonelist *zonelist;
1640
1641 zonelist = pgdat->node_zonelists + i;
1642
1643 j = 0;
260b2367 1644 k = highest_zone(i);
1da177e4
LT
1645 j = build_zonelists_node(pgdat, zonelist, j, k);
1646 /*
1647 * Now we build the zonelist so that it contains the zones
1648 * of all the other nodes.
1649 * We don't want to pressure a particular node, so when
1650 * building the zones for node N, we make sure that the
1651 * zones coming right after the local ones are those from
1652 * node N+1 (modulo N)
1653 */
1654 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1655 if (!node_online(node))
1656 continue;
1657 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1658 }
1659 for (node = 0; node < local_node; node++) {
1660 if (!node_online(node))
1661 continue;
1662 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1663 }
1664
1665 zonelist->zones[j] = NULL;
1666 }
1667}
1668
1669#endif /* CONFIG_NUMA */
1670
1671void __init build_all_zonelists(void)
1672{
1673 int i;
1674
1675 for_each_online_node(i)
1676 build_zonelists(NODE_DATA(i));
1677 printk("Built %i zonelists\n", num_online_nodes());
1678 cpuset_init_current_mems_allowed();
1679}
1680
1681/*
1682 * Helper functions to size the waitqueue hash table.
1683 * Essentially these want to choose hash table sizes sufficiently
1684 * large so that collisions trying to wait on pages are rare.
1685 * But in fact, the number of active page waitqueues on typical
1686 * systems is ridiculously low, less than 200. So this is even
1687 * conservative, even though it seems large.
1688 *
1689 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1690 * waitqueues, i.e. the size of the waitq table given the number of pages.
1691 */
1692#define PAGES_PER_WAITQUEUE 256
1693
1694static inline unsigned long wait_table_size(unsigned long pages)
1695{
1696 unsigned long size = 1;
1697
1698 pages /= PAGES_PER_WAITQUEUE;
1699
1700 while (size < pages)
1701 size <<= 1;
1702
1703 /*
1704 * Once we have dozens or even hundreds of threads sleeping
1705 * on IO we've got bigger problems than wait queue collision.
1706 * Limit the size of the wait table to a reasonable size.
1707 */
1708 size = min(size, 4096UL);
1709
1710 return max(size, 4UL);
1711}
1712
1713/*
1714 * This is an integer logarithm so that shifts can be used later
1715 * to extract the more random high bits from the multiplicative
1716 * hash function before the remainder is taken.
1717 */
1718static inline unsigned long wait_table_bits(unsigned long size)
1719{
1720 return ffz(~size);
1721}
1722
1723#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1724
1725static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1726 unsigned long *zones_size, unsigned long *zholes_size)
1727{
1728 unsigned long realtotalpages, totalpages = 0;
1729 int i;
1730
1731 for (i = 0; i < MAX_NR_ZONES; i++)
1732 totalpages += zones_size[i];
1733 pgdat->node_spanned_pages = totalpages;
1734
1735 realtotalpages = totalpages;
1736 if (zholes_size)
1737 for (i = 0; i < MAX_NR_ZONES; i++)
1738 realtotalpages -= zholes_size[i];
1739 pgdat->node_present_pages = realtotalpages;
1740 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1741}
1742
1743
1744/*
1745 * Initially all pages are reserved - free ones are freed
1746 * up by free_all_bootmem() once the early boot process is
1747 * done. Non-atomic initialization, single-pass.
1748 */
c09b4240 1749void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1da177e4
LT
1750 unsigned long start_pfn)
1751{
1da177e4 1752 struct page *page;
29751f69
AW
1753 unsigned long end_pfn = start_pfn + size;
1754 unsigned long pfn;
1da177e4 1755
cbe8dd4a 1756 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
d41dee36
AW
1757 if (!early_pfn_valid(pfn))
1758 continue;
1759 page = pfn_to_page(pfn);
1760 set_page_links(page, zone, nid, pfn);
b5810039 1761 set_page_count(page, 1);
1da177e4
LT
1762 reset_page_mapcount(page);
1763 SetPageReserved(page);
1764 INIT_LIST_HEAD(&page->lru);
1765#ifdef WANT_PAGE_VIRTUAL
1766 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1767 if (!is_highmem_idx(zone))
3212c6be 1768 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 1769#endif
1da177e4
LT
1770 }
1771}
1772
1773void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1774 unsigned long size)
1775{
1776 int order;
1777 for (order = 0; order < MAX_ORDER ; order++) {
1778 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1779 zone->free_area[order].nr_free = 0;
1780 }
1781}
1782
d41dee36
AW
1783#define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
1784void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1785 unsigned long size)
1786{
1787 unsigned long snum = pfn_to_section_nr(pfn);
1788 unsigned long end = pfn_to_section_nr(pfn + size);
1789
1790 if (FLAGS_HAS_NODE)
1791 zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1792 else
1793 for (; snum <= end; snum++)
1794 zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1795}
1796
1da177e4
LT
1797#ifndef __HAVE_ARCH_MEMMAP_INIT
1798#define memmap_init(size, nid, zone, start_pfn) \
1799 memmap_init_zone((size), (nid), (zone), (start_pfn))
1800#endif
1801
6292d9aa 1802static int __cpuinit zone_batchsize(struct zone *zone)
e7c8d5c9
CL
1803{
1804 int batch;
1805
1806 /*
1807 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 1808 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
1809 *
1810 * OK, so we don't know how big the cache is. So guess.
1811 */
1812 batch = zone->present_pages / 1024;
ba56e91c
SR
1813 if (batch * PAGE_SIZE > 512 * 1024)
1814 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
1815 batch /= 4; /* We effectively *= 4 below */
1816 if (batch < 1)
1817 batch = 1;
1818
1819 /*
0ceaacc9
NP
1820 * Clamp the batch to a 2^n - 1 value. Having a power
1821 * of 2 value was found to be more likely to have
1822 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 1823 *
0ceaacc9
NP
1824 * For example if 2 tasks are alternately allocating
1825 * batches of pages, one task can end up with a lot
1826 * of pages of one half of the possible page colors
1827 * and the other with pages of the other colors.
e7c8d5c9 1828 */
0ceaacc9 1829 batch = (1 << (fls(batch + batch/2)-1)) - 1;
ba56e91c 1830
e7c8d5c9
CL
1831 return batch;
1832}
1833
2caaad41
CL
1834inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1835{
1836 struct per_cpu_pages *pcp;
1837
1c6fe946
MD
1838 memset(p, 0, sizeof(*p));
1839
2caaad41
CL
1840 pcp = &p->pcp[0]; /* hot */
1841 pcp->count = 0;
2caaad41
CL
1842 pcp->high = 6 * batch;
1843 pcp->batch = max(1UL, 1 * batch);
1844 INIT_LIST_HEAD(&pcp->list);
1845
1846 pcp = &p->pcp[1]; /* cold*/
1847 pcp->count = 0;
2caaad41 1848 pcp->high = 2 * batch;
e46a5e28 1849 pcp->batch = max(1UL, batch/2);
2caaad41
CL
1850 INIT_LIST_HEAD(&pcp->list);
1851}
1852
8ad4b1fb
RS
1853/*
1854 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1855 * to the value high for the pageset p.
1856 */
1857
1858static void setup_pagelist_highmark(struct per_cpu_pageset *p,
1859 unsigned long high)
1860{
1861 struct per_cpu_pages *pcp;
1862
1863 pcp = &p->pcp[0]; /* hot list */
1864 pcp->high = high;
1865 pcp->batch = max(1UL, high/4);
1866 if ((high/4) > (PAGE_SHIFT * 8))
1867 pcp->batch = PAGE_SHIFT * 8;
1868}
1869
1870
e7c8d5c9
CL
1871#ifdef CONFIG_NUMA
1872/*
2caaad41
CL
1873 * Boot pageset table. One per cpu which is going to be used for all
1874 * zones and all nodes. The parameters will be set in such a way
1875 * that an item put on a list will immediately be handed over to
1876 * the buddy list. This is safe since pageset manipulation is done
1877 * with interrupts disabled.
1878 *
1879 * Some NUMA counter updates may also be caught by the boot pagesets.
b7c84c6a
CL
1880 *
1881 * The boot_pagesets must be kept even after bootup is complete for
1882 * unused processors and/or zones. They do play a role for bootstrapping
1883 * hotplugged processors.
1884 *
1885 * zoneinfo_show() and maybe other functions do
1886 * not check if the processor is online before following the pageset pointer.
1887 * Other parts of the kernel may not check if the zone is available.
2caaad41 1888 */
88a2a4ac 1889static struct per_cpu_pageset boot_pageset[NR_CPUS];
2caaad41
CL
1890
1891/*
1892 * Dynamically allocate memory for the
e7c8d5c9
CL
1893 * per cpu pageset array in struct zone.
1894 */
6292d9aa 1895static int __cpuinit process_zones(int cpu)
e7c8d5c9
CL
1896{
1897 struct zone *zone, *dzone;
e7c8d5c9
CL
1898
1899 for_each_zone(zone) {
e7c8d5c9 1900
23316bc8 1901 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
e7c8d5c9 1902 GFP_KERNEL, cpu_to_node(cpu));
23316bc8 1903 if (!zone_pcp(zone, cpu))
e7c8d5c9 1904 goto bad;
e7c8d5c9 1905
23316bc8 1906 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
8ad4b1fb
RS
1907
1908 if (percpu_pagelist_fraction)
1909 setup_pagelist_highmark(zone_pcp(zone, cpu),
1910 (zone->present_pages / percpu_pagelist_fraction));
e7c8d5c9
CL
1911 }
1912
1913 return 0;
1914bad:
1915 for_each_zone(dzone) {
1916 if (dzone == zone)
1917 break;
23316bc8
NP
1918 kfree(zone_pcp(dzone, cpu));
1919 zone_pcp(dzone, cpu) = NULL;
e7c8d5c9
CL
1920 }
1921 return -ENOMEM;
1922}
1923
1924static inline void free_zone_pagesets(int cpu)
1925{
e7c8d5c9
CL
1926 struct zone *zone;
1927
1928 for_each_zone(zone) {
1929 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1930
1931 zone_pcp(zone, cpu) = NULL;
1932 kfree(pset);
1933 }
e7c8d5c9
CL
1934}
1935
6292d9aa 1936static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
e7c8d5c9
CL
1937 unsigned long action,
1938 void *hcpu)
1939{
1940 int cpu = (long)hcpu;
1941 int ret = NOTIFY_OK;
1942
1943 switch (action) {
1944 case CPU_UP_PREPARE:
1945 if (process_zones(cpu))
1946 ret = NOTIFY_BAD;
1947 break;
b0d41693 1948 case CPU_UP_CANCELED:
e7c8d5c9
CL
1949 case CPU_DEAD:
1950 free_zone_pagesets(cpu);
1951 break;
e7c8d5c9
CL
1952 default:
1953 break;
1954 }
1955 return ret;
1956}
1957
1958static struct notifier_block pageset_notifier =
1959 { &pageset_cpuup_callback, NULL, 0 };
1960
78d9955b 1961void __init setup_per_cpu_pageset(void)
e7c8d5c9
CL
1962{
1963 int err;
1964
1965 /* Initialize per_cpu_pageset for cpu 0.
1966 * A cpuup callback will do this for every cpu
1967 * as it comes online
1968 */
1969 err = process_zones(smp_processor_id());
1970 BUG_ON(err);
1971 register_cpu_notifier(&pageset_notifier);
1972}
1973
1974#endif
1975
c09b4240 1976static __meminit
ed8ece2e
DH
1977void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
1978{
1979 int i;
1980 struct pglist_data *pgdat = zone->zone_pgdat;
1981
1982 /*
1983 * The per-page waitqueue mechanism uses hashed waitqueues
1984 * per zone.
1985 */
1986 zone->wait_table_size = wait_table_size(zone_size_pages);
1987 zone->wait_table_bits = wait_table_bits(zone->wait_table_size);
1988 zone->wait_table = (wait_queue_head_t *)
1989 alloc_bootmem_node(pgdat, zone->wait_table_size
1990 * sizeof(wait_queue_head_t));
1991
1992 for(i = 0; i < zone->wait_table_size; ++i)
1993 init_waitqueue_head(zone->wait_table + i);
1994}
1995
c09b4240 1996static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e
DH
1997{
1998 int cpu;
1999 unsigned long batch = zone_batchsize(zone);
2000
2001 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2002#ifdef CONFIG_NUMA
2003 /* Early boot. Slab allocator not functional yet */
23316bc8 2004 zone_pcp(zone, cpu) = &boot_pageset[cpu];
ed8ece2e
DH
2005 setup_pageset(&boot_pageset[cpu],0);
2006#else
2007 setup_pageset(zone_pcp(zone,cpu), batch);
2008#endif
2009 }
2010 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2011 zone->name, zone->present_pages, batch);
2012}
2013
c09b4240 2014static __meminit void init_currently_empty_zone(struct zone *zone,
ed8ece2e
DH
2015 unsigned long zone_start_pfn, unsigned long size)
2016{
2017 struct pglist_data *pgdat = zone->zone_pgdat;
2018
2019 zone_wait_table_init(zone, size);
2020 pgdat->nr_zones = zone_idx(zone) + 1;
2021
2022 zone->zone_mem_map = pfn_to_page(zone_start_pfn);
2023 zone->zone_start_pfn = zone_start_pfn;
2024
2025 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2026
2027 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2028}
2029
1da177e4
LT
2030/*
2031 * Set up the zone data structures:
2032 * - mark all pages reserved
2033 * - mark all memory queues empty
2034 * - clear the memory bitmaps
2035 */
2036static void __init free_area_init_core(struct pglist_data *pgdat,
2037 unsigned long *zones_size, unsigned long *zholes_size)
2038{
ed8ece2e
DH
2039 unsigned long j;
2040 int nid = pgdat->node_id;
1da177e4
LT
2041 unsigned long zone_start_pfn = pgdat->node_start_pfn;
2042
208d54e5 2043 pgdat_resize_init(pgdat);
1da177e4
LT
2044 pgdat->nr_zones = 0;
2045 init_waitqueue_head(&pgdat->kswapd_wait);
2046 pgdat->kswapd_max_order = 0;
2047
2048 for (j = 0; j < MAX_NR_ZONES; j++) {
2049 struct zone *zone = pgdat->node_zones + j;
2050 unsigned long size, realsize;
1da177e4 2051
1da177e4
LT
2052 realsize = size = zones_size[j];
2053 if (zholes_size)
2054 realsize -= zholes_size[j];
2055
a2f1b424 2056 if (j < ZONE_HIGHMEM)
1da177e4
LT
2057 nr_kernel_pages += realsize;
2058 nr_all_pages += realsize;
2059
2060 zone->spanned_pages = size;
2061 zone->present_pages = realsize;
2062 zone->name = zone_names[j];
2063 spin_lock_init(&zone->lock);
2064 spin_lock_init(&zone->lru_lock);
bdc8cb98 2065 zone_seqlock_init(zone);
1da177e4
LT
2066 zone->zone_pgdat = pgdat;
2067 zone->free_pages = 0;
2068
2069 zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2070
ed8ece2e 2071 zone_pcp_init(zone);
1da177e4
LT
2072 INIT_LIST_HEAD(&zone->active_list);
2073 INIT_LIST_HEAD(&zone->inactive_list);
2074 zone->nr_scan_active = 0;
2075 zone->nr_scan_inactive = 0;
2076 zone->nr_active = 0;
2077 zone->nr_inactive = 0;
53e9a615 2078 atomic_set(&zone->reclaim_in_progress, 0);
1da177e4
LT
2079 if (!size)
2080 continue;
2081
d41dee36 2082 zonetable_add(zone, nid, j, zone_start_pfn, size);
ed8ece2e 2083 init_currently_empty_zone(zone, zone_start_pfn, size);
1da177e4 2084 zone_start_pfn += size;
1da177e4
LT
2085 }
2086}
2087
2088static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2089{
1da177e4
LT
2090 /* Skip empty nodes */
2091 if (!pgdat->node_spanned_pages)
2092 return;
2093
d41dee36 2094#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
2095 /* ia64 gets its own node_mem_map, before this, without bootmem */
2096 if (!pgdat->node_mem_map) {
d41dee36
AW
2097 unsigned long size;
2098 struct page *map;
2099
1da177e4 2100 size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
6f167ec7
DH
2101 map = alloc_remap(pgdat->node_id, size);
2102 if (!map)
2103 map = alloc_bootmem_node(pgdat, size);
2104 pgdat->node_mem_map = map;
1da177e4 2105 }
d41dee36 2106#ifdef CONFIG_FLATMEM
1da177e4
LT
2107 /*
2108 * With no DISCONTIG, the global mem_map is just set as node 0's
2109 */
2110 if (pgdat == NODE_DATA(0))
2111 mem_map = NODE_DATA(0)->node_mem_map;
2112#endif
d41dee36 2113#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
2114}
2115
2116void __init free_area_init_node(int nid, struct pglist_data *pgdat,
2117 unsigned long *zones_size, unsigned long node_start_pfn,
2118 unsigned long *zholes_size)
2119{
2120 pgdat->node_id = nid;
2121 pgdat->node_start_pfn = node_start_pfn;
2122 calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2123
2124 alloc_node_mem_map(pgdat);
2125
2126 free_area_init_core(pgdat, zones_size, zholes_size);
2127}
2128
93b7504e 2129#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
2130static bootmem_data_t contig_bootmem_data;
2131struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2132
2133EXPORT_SYMBOL(contig_page_data);
93b7504e 2134#endif
1da177e4
LT
2135
2136void __init free_area_init(unsigned long *zones_size)
2137{
93b7504e 2138 free_area_init_node(0, NODE_DATA(0), zones_size,
1da177e4
LT
2139 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2140}
1da177e4
LT
2141
2142#ifdef CONFIG_PROC_FS
2143
2144#include <linux/seq_file.h>
2145
2146static void *frag_start(struct seq_file *m, loff_t *pos)
2147{
2148 pg_data_t *pgdat;
2149 loff_t node = *pos;
2150
2151 for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
2152 --node;
2153
2154 return pgdat;
2155}
2156
2157static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
2158{
2159 pg_data_t *pgdat = (pg_data_t *)arg;
2160
2161 (*pos)++;
2162 return pgdat->pgdat_next;
2163}
2164
2165static void frag_stop(struct seq_file *m, void *arg)
2166{
2167}
2168
2169/*
2170 * This walks the free areas for each zone.
2171 */
2172static int frag_show(struct seq_file *m, void *arg)
2173{
2174 pg_data_t *pgdat = (pg_data_t *)arg;
2175 struct zone *zone;
2176 struct zone *node_zones = pgdat->node_zones;
2177 unsigned long flags;
2178 int order;
2179
2180 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
f3fe6512 2181 if (!populated_zone(zone))
1da177e4
LT
2182 continue;
2183
2184 spin_lock_irqsave(&zone->lock, flags);
2185 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
2186 for (order = 0; order < MAX_ORDER; ++order)
2187 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
2188 spin_unlock_irqrestore(&zone->lock, flags);
2189 seq_putc(m, '\n');
2190 }
2191 return 0;
2192}
2193
2194struct seq_operations fragmentation_op = {
2195 .start = frag_start,
2196 .next = frag_next,
2197 .stop = frag_stop,
2198 .show = frag_show,
2199};
2200
295ab934
ND
2201/*
2202 * Output information about zones in @pgdat.
2203 */
2204static int zoneinfo_show(struct seq_file *m, void *arg)
2205{
2206 pg_data_t *pgdat = arg;
2207 struct zone *zone;
2208 struct zone *node_zones = pgdat->node_zones;
2209 unsigned long flags;
2210
2211 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
2212 int i;
2213
f3fe6512 2214 if (!populated_zone(zone))
295ab934
ND
2215 continue;
2216
2217 spin_lock_irqsave(&zone->lock, flags);
2218 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
2219 seq_printf(m,
2220 "\n pages free %lu"
2221 "\n min %lu"
2222 "\n low %lu"
2223 "\n high %lu"
2224 "\n active %lu"
2225 "\n inactive %lu"
2226 "\n scanned %lu (a: %lu i: %lu)"
2227 "\n spanned %lu"
2228 "\n present %lu",
2229 zone->free_pages,
2230 zone->pages_min,
2231 zone->pages_low,
2232 zone->pages_high,
2233 zone->nr_active,
2234 zone->nr_inactive,
2235 zone->pages_scanned,
2236 zone->nr_scan_active, zone->nr_scan_inactive,
2237 zone->spanned_pages,
2238 zone->present_pages);
2239 seq_printf(m,
2240 "\n protection: (%lu",
2241 zone->lowmem_reserve[0]);
2242 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
2243 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
2244 seq_printf(m,
2245 ")"
2246 "\n pagesets");
23316bc8 2247 for_each_online_cpu(i) {
295ab934
ND
2248 struct per_cpu_pageset *pageset;
2249 int j;
2250
e7c8d5c9 2251 pageset = zone_pcp(zone, i);
295ab934
ND
2252 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2253 if (pageset->pcp[j].count)
2254 break;
2255 }
2256 if (j == ARRAY_SIZE(pageset->pcp))
2257 continue;
2258 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2259 seq_printf(m,
2260 "\n cpu: %i pcp: %i"
2261 "\n count: %i"
295ab934
ND
2262 "\n high: %i"
2263 "\n batch: %i",
2264 i, j,
2265 pageset->pcp[j].count,
295ab934
ND
2266 pageset->pcp[j].high,
2267 pageset->pcp[j].batch);
2268 }
2269#ifdef CONFIG_NUMA
2270 seq_printf(m,
2271 "\n numa_hit: %lu"
2272 "\n numa_miss: %lu"
2273 "\n numa_foreign: %lu"
2274 "\n interleave_hit: %lu"
2275 "\n local_node: %lu"
2276 "\n other_node: %lu",
2277 pageset->numa_hit,
2278 pageset->numa_miss,
2279 pageset->numa_foreign,
2280 pageset->interleave_hit,
2281 pageset->local_node,
2282 pageset->other_node);
2283#endif
2284 }
2285 seq_printf(m,
2286 "\n all_unreclaimable: %u"
2287 "\n prev_priority: %i"
2288 "\n temp_priority: %i"
2289 "\n start_pfn: %lu",
2290 zone->all_unreclaimable,
2291 zone->prev_priority,
2292 zone->temp_priority,
2293 zone->zone_start_pfn);
2294 spin_unlock_irqrestore(&zone->lock, flags);
2295 seq_putc(m, '\n');
2296 }
2297 return 0;
2298}
2299
2300struct seq_operations zoneinfo_op = {
2301 .start = frag_start, /* iterate over all zones. The same as in
2302 * fragmentation. */
2303 .next = frag_next,
2304 .stop = frag_stop,
2305 .show = zoneinfo_show,
2306};
2307
1da177e4
LT
2308static char *vmstat_text[] = {
2309 "nr_dirty",
2310 "nr_writeback",
2311 "nr_unstable",
2312 "nr_page_table_pages",
2313 "nr_mapped",
2314 "nr_slab",
2315
2316 "pgpgin",
2317 "pgpgout",
2318 "pswpin",
2319 "pswpout",
1da177e4 2320
9328b8fa 2321 "pgalloc_high",
1da177e4 2322 "pgalloc_normal",
9328b8fa 2323 "pgalloc_dma32",
1da177e4 2324 "pgalloc_dma",
9328b8fa 2325
1da177e4
LT
2326 "pgfree",
2327 "pgactivate",
2328 "pgdeactivate",
2329
2330 "pgfault",
2331 "pgmajfault",
9328b8fa 2332
1da177e4
LT
2333 "pgrefill_high",
2334 "pgrefill_normal",
9328b8fa 2335 "pgrefill_dma32",
1da177e4
LT
2336 "pgrefill_dma",
2337
2338 "pgsteal_high",
2339 "pgsteal_normal",
9328b8fa 2340 "pgsteal_dma32",
1da177e4 2341 "pgsteal_dma",
9328b8fa 2342
1da177e4
LT
2343 "pgscan_kswapd_high",
2344 "pgscan_kswapd_normal",
9328b8fa 2345 "pgscan_kswapd_dma32",
1da177e4 2346 "pgscan_kswapd_dma",
9328b8fa 2347
1da177e4
LT
2348 "pgscan_direct_high",
2349 "pgscan_direct_normal",
9328b8fa 2350 "pgscan_direct_dma32",
1da177e4 2351 "pgscan_direct_dma",
1da177e4 2352
9328b8fa 2353 "pginodesteal",
1da177e4
LT
2354 "slabs_scanned",
2355 "kswapd_steal",
2356 "kswapd_inodesteal",
2357 "pageoutrun",
2358 "allocstall",
2359
2360 "pgrotated",
edfbe2b0 2361 "nr_bounce",
1da177e4
LT
2362};
2363
2364static void *vmstat_start(struct seq_file *m, loff_t *pos)
2365{
2366 struct page_state *ps;
2367
2368 if (*pos >= ARRAY_SIZE(vmstat_text))
2369 return NULL;
2370
2371 ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2372 m->private = ps;
2373 if (!ps)
2374 return ERR_PTR(-ENOMEM);
2375 get_full_page_state(ps);
2376 ps->pgpgin /= 2; /* sectors -> kbytes */
2377 ps->pgpgout /= 2;
2378 return (unsigned long *)ps + *pos;
2379}
2380
2381static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2382{
2383 (*pos)++;
2384 if (*pos >= ARRAY_SIZE(vmstat_text))
2385 return NULL;
2386 return (unsigned long *)m->private + *pos;
2387}
2388
2389static int vmstat_show(struct seq_file *m, void *arg)
2390{
2391 unsigned long *l = arg;
2392 unsigned long off = l - (unsigned long *)m->private;
2393
2394 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2395 return 0;
2396}
2397
2398static void vmstat_stop(struct seq_file *m, void *arg)
2399{
2400 kfree(m->private);
2401 m->private = NULL;
2402}
2403
2404struct seq_operations vmstat_op = {
2405 .start = vmstat_start,
2406 .next = vmstat_next,
2407 .stop = vmstat_stop,
2408 .show = vmstat_show,
2409};
2410
2411#endif /* CONFIG_PROC_FS */
2412
2413#ifdef CONFIG_HOTPLUG_CPU
2414static int page_alloc_cpu_notify(struct notifier_block *self,
2415 unsigned long action, void *hcpu)
2416{
2417 int cpu = (unsigned long)hcpu;
2418 long *count;
2419 unsigned long *src, *dest;
2420
2421 if (action == CPU_DEAD) {
2422 int i;
2423
2424 /* Drain local pagecache count. */
2425 count = &per_cpu(nr_pagecache_local, cpu);
2426 atomic_add(*count, &nr_pagecache);
2427 *count = 0;
2428 local_irq_disable();
2429 __drain_pages(cpu);
2430
2431 /* Add dead cpu's page_states to our own. */
2432 dest = (unsigned long *)&__get_cpu_var(page_states);
2433 src = (unsigned long *)&per_cpu(page_states, cpu);
2434
2435 for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2436 i++) {
2437 dest[i] += src[i];
2438 src[i] = 0;
2439 }
2440
2441 local_irq_enable();
2442 }
2443 return NOTIFY_OK;
2444}
2445#endif /* CONFIG_HOTPLUG_CPU */
2446
2447void __init page_alloc_init(void)
2448{
2449 hotcpu_notifier(page_alloc_cpu_notify, 0);
2450}
2451
2452/*
2453 * setup_per_zone_lowmem_reserve - called whenever
2454 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2455 * has a correct pages reserved value, so an adequate number of
2456 * pages are left in the zone after a successful __alloc_pages().
2457 */
2458static void setup_per_zone_lowmem_reserve(void)
2459{
2460 struct pglist_data *pgdat;
2461 int j, idx;
2462
2463 for_each_pgdat(pgdat) {
2464 for (j = 0; j < MAX_NR_ZONES; j++) {
2465 struct zone *zone = pgdat->node_zones + j;
2466 unsigned long present_pages = zone->present_pages;
2467
2468 zone->lowmem_reserve[j] = 0;
2469
2470 for (idx = j-1; idx >= 0; idx--) {
2471 struct zone *lower_zone;
2472
2473 if (sysctl_lowmem_reserve_ratio[idx] < 1)
2474 sysctl_lowmem_reserve_ratio[idx] = 1;
2475
2476 lower_zone = pgdat->node_zones + idx;
2477 lower_zone->lowmem_reserve[j] = present_pages /
2478 sysctl_lowmem_reserve_ratio[idx];
2479 present_pages += lower_zone->present_pages;
2480 }
2481 }
2482 }
2483}
2484
2485/*
2486 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2487 * that the pages_{min,low,high} values for each zone are set correctly
2488 * with respect to min_free_kbytes.
2489 */
3947be19 2490void setup_per_zone_pages_min(void)
1da177e4
LT
2491{
2492 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2493 unsigned long lowmem_pages = 0;
2494 struct zone *zone;
2495 unsigned long flags;
2496
2497 /* Calculate total number of !ZONE_HIGHMEM pages */
2498 for_each_zone(zone) {
2499 if (!is_highmem(zone))
2500 lowmem_pages += zone->present_pages;
2501 }
2502
2503 for_each_zone(zone) {
669ed175 2504 unsigned long tmp;
1da177e4 2505 spin_lock_irqsave(&zone->lru_lock, flags);
669ed175 2506 tmp = (pages_min * zone->present_pages) / lowmem_pages;
1da177e4
LT
2507 if (is_highmem(zone)) {
2508 /*
669ed175
NP
2509 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2510 * need highmem pages, so cap pages_min to a small
2511 * value here.
2512 *
2513 * The (pages_high-pages_low) and (pages_low-pages_min)
2514 * deltas controls asynch page reclaim, and so should
2515 * not be capped for highmem.
1da177e4
LT
2516 */
2517 int min_pages;
2518
2519 min_pages = zone->present_pages / 1024;
2520 if (min_pages < SWAP_CLUSTER_MAX)
2521 min_pages = SWAP_CLUSTER_MAX;
2522 if (min_pages > 128)
2523 min_pages = 128;
2524 zone->pages_min = min_pages;
2525 } else {
669ed175
NP
2526 /*
2527 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
2528 * proportionate to the zone's size.
2529 */
669ed175 2530 zone->pages_min = tmp;
1da177e4
LT
2531 }
2532
669ed175
NP
2533 zone->pages_low = zone->pages_min + tmp / 4;
2534 zone->pages_high = zone->pages_min + tmp / 2;
1da177e4
LT
2535 spin_unlock_irqrestore(&zone->lru_lock, flags);
2536 }
2537}
2538
2539/*
2540 * Initialise min_free_kbytes.
2541 *
2542 * For small machines we want it small (128k min). For large machines
2543 * we want it large (64MB max). But it is not linear, because network
2544 * bandwidth does not increase linearly with machine size. We use
2545 *
2546 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2547 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2548 *
2549 * which yields
2550 *
2551 * 16MB: 512k
2552 * 32MB: 724k
2553 * 64MB: 1024k
2554 * 128MB: 1448k
2555 * 256MB: 2048k
2556 * 512MB: 2896k
2557 * 1024MB: 4096k
2558 * 2048MB: 5792k
2559 * 4096MB: 8192k
2560 * 8192MB: 11584k
2561 * 16384MB: 16384k
2562 */
2563static int __init init_per_zone_pages_min(void)
2564{
2565 unsigned long lowmem_kbytes;
2566
2567 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2568
2569 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2570 if (min_free_kbytes < 128)
2571 min_free_kbytes = 128;
2572 if (min_free_kbytes > 65536)
2573 min_free_kbytes = 65536;
2574 setup_per_zone_pages_min();
2575 setup_per_zone_lowmem_reserve();
2576 return 0;
2577}
2578module_init(init_per_zone_pages_min)
2579
2580/*
2581 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2582 * that we can call two helper functions whenever min_free_kbytes
2583 * changes.
2584 */
2585int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2586 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2587{
2588 proc_dointvec(table, write, file, buffer, length, ppos);
2589 setup_per_zone_pages_min();
2590 return 0;
2591}
2592
2593/*
2594 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2595 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2596 * whenever sysctl_lowmem_reserve_ratio changes.
2597 *
2598 * The reserve ratio obviously has absolutely no relation with the
2599 * pages_min watermarks. The lowmem reserve ratio can only make sense
2600 * if in function of the boot time zone sizes.
2601 */
2602int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2603 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2604{
2605 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2606 setup_per_zone_lowmem_reserve();
2607 return 0;
2608}
2609
8ad4b1fb
RS
2610/*
2611 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2612 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
2613 * can have before it gets flushed back to buddy allocator.
2614 */
2615
2616int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
2617 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2618{
2619 struct zone *zone;
2620 unsigned int cpu;
2621 int ret;
2622
2623 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2624 if (!write || (ret == -EINVAL))
2625 return ret;
2626 for_each_zone(zone) {
2627 for_each_online_cpu(cpu) {
2628 unsigned long high;
2629 high = zone->present_pages / percpu_pagelist_fraction;
2630 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
2631 }
2632 }
2633 return 0;
2634}
2635
1da177e4
LT
2636__initdata int hashdist = HASHDIST_DEFAULT;
2637
2638#ifdef CONFIG_NUMA
2639static int __init set_hashdist(char *str)
2640{
2641 if (!str)
2642 return 0;
2643 hashdist = simple_strtoul(str, &str, 0);
2644 return 1;
2645}
2646__setup("hashdist=", set_hashdist);
2647#endif
2648
2649/*
2650 * allocate a large system hash table from bootmem
2651 * - it is assumed that the hash table must contain an exact power-of-2
2652 * quantity of entries
2653 * - limit is the number of hash buckets, not the total allocation size
2654 */
2655void *__init alloc_large_system_hash(const char *tablename,
2656 unsigned long bucketsize,
2657 unsigned long numentries,
2658 int scale,
2659 int flags,
2660 unsigned int *_hash_shift,
2661 unsigned int *_hash_mask,
2662 unsigned long limit)
2663{
2664 unsigned long long max = limit;
2665 unsigned long log2qty, size;
2666 void *table = NULL;
2667
2668 /* allow the kernel cmdline to have a say */
2669 if (!numentries) {
2670 /* round applicable memory size up to nearest megabyte */
2671 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2672 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2673 numentries >>= 20 - PAGE_SHIFT;
2674 numentries <<= 20 - PAGE_SHIFT;
2675
2676 /* limit to 1 bucket per 2^scale bytes of low memory */
2677 if (scale > PAGE_SHIFT)
2678 numentries >>= (scale - PAGE_SHIFT);
2679 else
2680 numentries <<= (PAGE_SHIFT - scale);
2681 }
2682 /* rounded up to nearest power of 2 in size */
2683 numentries = 1UL << (long_log2(numentries) + 1);
2684
2685 /* limit allocation size to 1/16 total memory by default */
2686 if (max == 0) {
2687 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2688 do_div(max, bucketsize);
2689 }
2690
2691 if (numentries > max)
2692 numentries = max;
2693
2694 log2qty = long_log2(numentries);
2695
2696 do {
2697 size = bucketsize << log2qty;
2698 if (flags & HASH_EARLY)
2699 table = alloc_bootmem(size);
2700 else if (hashdist)
2701 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2702 else {
2703 unsigned long order;
2704 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2705 ;
2706 table = (void*) __get_free_pages(GFP_ATOMIC, order);
2707 }
2708 } while (!table && size > PAGE_SIZE && --log2qty);
2709
2710 if (!table)
2711 panic("Failed to allocate %s hash table\n", tablename);
2712
2713 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2714 tablename,
2715 (1U << log2qty),
2716 long_log2(size) - PAGE_SHIFT,
2717 size);
2718
2719 if (_hash_shift)
2720 *_hash_shift = log2qty;
2721 if (_hash_mask)
2722 *_hash_mask = (1 << log2qty) - 1;
2723
2724 return table;
2725}