mm/memblock: use existing interface to set nid
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
52d4b9ac 51#include <linux/page_cgroup.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
718a3821 56#include <linux/ftrace_event.h>
f212ad7c 57#include <linux/memcontrol.h>
268bb0ce 58#include <linux/prefetch.h>
041d3a8c 59#include <linux/migrate.h>
c0a32fc5 60#include <linux/page-debug-flags.h>
1da177e4
LT
61
62#include <asm/tlbflush.h>
ac924c60 63#include <asm/div64.h>
1da177e4
LT
64#include "internal.h"
65
72812019
LS
66#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
67DEFINE_PER_CPU(int, numa_node);
68EXPORT_PER_CPU_SYMBOL(numa_node);
69#endif
70
7aac7898
LS
71#ifdef CONFIG_HAVE_MEMORYLESS_NODES
72/*
73 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
74 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
75 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
76 * defined in <linux/topology.h>.
77 */
78DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
79EXPORT_PER_CPU_SYMBOL(_numa_mem_);
80#endif
81
1da177e4 82/*
13808910 83 * Array of node states.
1da177e4 84 */
13808910
CL
85nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
86 [N_POSSIBLE] = NODE_MASK_ALL,
87 [N_ONLINE] = { { [0] = 1UL } },
88#ifndef CONFIG_NUMA
89 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
90#ifdef CONFIG_HIGHMEM
91 [N_HIGH_MEMORY] = { { [0] = 1UL } },
92#endif
93 [N_CPU] = { { [0] = 1UL } },
94#endif /* NUMA */
95};
96EXPORT_SYMBOL(node_states);
97
6c231b7b 98unsigned long totalram_pages __read_mostly;
cb45b0e9 99unsigned long totalreserve_pages __read_mostly;
ab8fabd4
JW
100/*
101 * When calculating the number of globally allowed dirty pages, there
102 * is a certain number of per-zone reserves that should not be
103 * considered dirtyable memory. This is the sum of those reserves
104 * over all existing zones that contribute dirtyable memory.
105 */
106unsigned long dirty_balance_reserve __read_mostly;
107
1b76b02f 108int percpu_pagelist_fraction;
dcce284a 109gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 110
452aa699
RW
111#ifdef CONFIG_PM_SLEEP
112/*
113 * The following functions are used by the suspend/hibernate code to temporarily
114 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
115 * while devices are suspended. To avoid races with the suspend/hibernate code,
116 * they should always be called with pm_mutex held (gfp_allowed_mask also should
117 * only be modified with pm_mutex held, unless the suspend/hibernate code is
118 * guaranteed not to run in parallel with that modification).
119 */
c9e664f1
RW
120
121static gfp_t saved_gfp_mask;
122
123void pm_restore_gfp_mask(void)
452aa699
RW
124{
125 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
126 if (saved_gfp_mask) {
127 gfp_allowed_mask = saved_gfp_mask;
128 saved_gfp_mask = 0;
129 }
452aa699
RW
130}
131
c9e664f1 132void pm_restrict_gfp_mask(void)
452aa699 133{
452aa699 134 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
135 WARN_ON(saved_gfp_mask);
136 saved_gfp_mask = gfp_allowed_mask;
137 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 138}
f90ac398
MG
139
140bool pm_suspended_storage(void)
141{
142 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
143 return false;
144 return true;
145}
452aa699
RW
146#endif /* CONFIG_PM_SLEEP */
147
d9c23400
MG
148#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
149int pageblock_order __read_mostly;
150#endif
151
d98c7a09 152static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 153
1da177e4
LT
154/*
155 * results with 256, 32 in the lowmem_reserve sysctl:
156 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
157 * 1G machine -> (16M dma, 784M normal, 224M high)
158 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
159 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
160 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
161 *
162 * TBD: should special case ZONE_DMA32 machines here - in those we normally
163 * don't need any ZONE_NORMAL reservation
1da177e4 164 */
2f1b6248 165int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 166#ifdef CONFIG_ZONE_DMA
2f1b6248 167 256,
4b51d669 168#endif
fb0e7942 169#ifdef CONFIG_ZONE_DMA32
2f1b6248 170 256,
fb0e7942 171#endif
e53ef38d 172#ifdef CONFIG_HIGHMEM
2a1e274a 173 32,
e53ef38d 174#endif
2a1e274a 175 32,
2f1b6248 176};
1da177e4
LT
177
178EXPORT_SYMBOL(totalram_pages);
1da177e4 179
15ad7cdc 180static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 181#ifdef CONFIG_ZONE_DMA
2f1b6248 182 "DMA",
4b51d669 183#endif
fb0e7942 184#ifdef CONFIG_ZONE_DMA32
2f1b6248 185 "DMA32",
fb0e7942 186#endif
2f1b6248 187 "Normal",
e53ef38d 188#ifdef CONFIG_HIGHMEM
2a1e274a 189 "HighMem",
e53ef38d 190#endif
2a1e274a 191 "Movable",
2f1b6248
CL
192};
193
1da177e4
LT
194int min_free_kbytes = 1024;
195
2c85f51d
JB
196static unsigned long __meminitdata nr_kernel_pages;
197static unsigned long __meminitdata nr_all_pages;
a3142c8e 198static unsigned long __meminitdata dma_reserve;
1da177e4 199
0ee332c1
TH
200#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
201static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
202static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
203static unsigned long __initdata required_kernelcore;
204static unsigned long __initdata required_movablecore;
205static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
206
207/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
208int movable_zone;
209EXPORT_SYMBOL(movable_zone);
210#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 211
418508c1
MS
212#if MAX_NUMNODES > 1
213int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 214int nr_online_nodes __read_mostly = 1;
418508c1 215EXPORT_SYMBOL(nr_node_ids);
62bc62a8 216EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
217#endif
218
9ef9acb0
MG
219int page_group_by_mobility_disabled __read_mostly;
220
702d1a6e
MK
221/*
222 * NOTE:
223 * Don't use set_pageblock_migratetype(page, MIGRATE_ISOLATE) directly.
224 * Instead, use {un}set_pageblock_isolate.
225 */
ee6f509c 226void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 227{
49255c61
MG
228
229 if (unlikely(page_group_by_mobility_disabled))
230 migratetype = MIGRATE_UNMOVABLE;
231
b2a0ac88
MG
232 set_pageblock_flags_group(page, (unsigned long)migratetype,
233 PB_migrate, PB_migrate_end);
234}
235
7f33d49a
RW
236bool oom_killer_disabled __read_mostly;
237
13e7444b 238#ifdef CONFIG_DEBUG_VM
c6a57e19 239static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 240{
bdc8cb98
DH
241 int ret = 0;
242 unsigned seq;
243 unsigned long pfn = page_to_pfn(page);
c6a57e19 244
bdc8cb98
DH
245 do {
246 seq = zone_span_seqbegin(zone);
247 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
248 ret = 1;
249 else if (pfn < zone->zone_start_pfn)
250 ret = 1;
251 } while (zone_span_seqretry(zone, seq));
252
253 return ret;
c6a57e19
DH
254}
255
256static int page_is_consistent(struct zone *zone, struct page *page)
257{
14e07298 258 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 259 return 0;
1da177e4 260 if (zone != page_zone(page))
c6a57e19
DH
261 return 0;
262
263 return 1;
264}
265/*
266 * Temporary debugging check for pages not lying within a given zone.
267 */
268static int bad_range(struct zone *zone, struct page *page)
269{
270 if (page_outside_zone_boundaries(zone, page))
1da177e4 271 return 1;
c6a57e19
DH
272 if (!page_is_consistent(zone, page))
273 return 1;
274
1da177e4
LT
275 return 0;
276}
13e7444b
NP
277#else
278static inline int bad_range(struct zone *zone, struct page *page)
279{
280 return 0;
281}
282#endif
283
224abf92 284static void bad_page(struct page *page)
1da177e4 285{
d936cf9b
HD
286 static unsigned long resume;
287 static unsigned long nr_shown;
288 static unsigned long nr_unshown;
289
2a7684a2
WF
290 /* Don't complain about poisoned pages */
291 if (PageHWPoison(page)) {
ef2b4b95 292 reset_page_mapcount(page); /* remove PageBuddy */
2a7684a2
WF
293 return;
294 }
295
d936cf9b
HD
296 /*
297 * Allow a burst of 60 reports, then keep quiet for that minute;
298 * or allow a steady drip of one report per second.
299 */
300 if (nr_shown == 60) {
301 if (time_before(jiffies, resume)) {
302 nr_unshown++;
303 goto out;
304 }
305 if (nr_unshown) {
1e9e6365
HD
306 printk(KERN_ALERT
307 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
308 nr_unshown);
309 nr_unshown = 0;
310 }
311 nr_shown = 0;
312 }
313 if (nr_shown++ == 0)
314 resume = jiffies + 60 * HZ;
315
1e9e6365 316 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 317 current->comm, page_to_pfn(page));
718a3821 318 dump_page(page);
3dc14741 319
4f31888c 320 print_modules();
1da177e4 321 dump_stack();
d936cf9b 322out:
8cc3b392 323 /* Leave bad fields for debug, except PageBuddy could make trouble */
ef2b4b95 324 reset_page_mapcount(page); /* remove PageBuddy */
9f158333 325 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
326}
327
1da177e4
LT
328/*
329 * Higher-order pages are called "compound pages". They are structured thusly:
330 *
331 * The first PAGE_SIZE page is called the "head page".
332 *
333 * The remaining PAGE_SIZE pages are called "tail pages".
334 *
6416b9fa
WSH
335 * All pages have PG_compound set. All tail pages have their ->first_page
336 * pointing at the head page.
1da177e4 337 *
41d78ba5
HD
338 * The first tail page's ->lru.next holds the address of the compound page's
339 * put_page() function. Its ->lru.prev holds the order of allocation.
340 * This usage means that zero-order pages may not be compound.
1da177e4 341 */
d98c7a09
HD
342
343static void free_compound_page(struct page *page)
344{
d85f3385 345 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
346}
347
01ad1c08 348void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
349{
350 int i;
351 int nr_pages = 1 << order;
352
353 set_compound_page_dtor(page, free_compound_page);
354 set_compound_order(page, order);
355 __SetPageHead(page);
356 for (i = 1; i < nr_pages; i++) {
357 struct page *p = page + i;
18229df5 358 __SetPageTail(p);
58a84aa9 359 set_page_count(p, 0);
18229df5
AW
360 p->first_page = page;
361 }
362}
363
59ff4216 364/* update __split_huge_page_refcount if you change this function */
8cc3b392 365static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
366{
367 int i;
368 int nr_pages = 1 << order;
8cc3b392 369 int bad = 0;
1da177e4 370
8cc3b392
HD
371 if (unlikely(compound_order(page) != order) ||
372 unlikely(!PageHead(page))) {
224abf92 373 bad_page(page);
8cc3b392
HD
374 bad++;
375 }
1da177e4 376
6d777953 377 __ClearPageHead(page);
8cc3b392 378
18229df5
AW
379 for (i = 1; i < nr_pages; i++) {
380 struct page *p = page + i;
1da177e4 381
e713a21d 382 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 383 bad_page(page);
8cc3b392
HD
384 bad++;
385 }
d85f3385 386 __ClearPageTail(p);
1da177e4 387 }
8cc3b392
HD
388
389 return bad;
1da177e4 390}
1da177e4 391
17cf4406
NP
392static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
393{
394 int i;
395
6626c5d5
AM
396 /*
397 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
398 * and __GFP_HIGHMEM from hard or soft interrupt context.
399 */
725d704e 400 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
401 for (i = 0; i < (1 << order); i++)
402 clear_highpage(page + i);
403}
404
c0a32fc5
SG
405#ifdef CONFIG_DEBUG_PAGEALLOC
406unsigned int _debug_guardpage_minorder;
407
408static int __init debug_guardpage_minorder_setup(char *buf)
409{
410 unsigned long res;
411
412 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
413 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
414 return 0;
415 }
416 _debug_guardpage_minorder = res;
417 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
418 return 0;
419}
420__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
421
422static inline void set_page_guard_flag(struct page *page)
423{
424 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
425}
426
427static inline void clear_page_guard_flag(struct page *page)
428{
429 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
430}
431#else
432static inline void set_page_guard_flag(struct page *page) { }
433static inline void clear_page_guard_flag(struct page *page) { }
434#endif
435
6aa3001b
AM
436static inline void set_page_order(struct page *page, int order)
437{
4c21e2f2 438 set_page_private(page, order);
676165a8 439 __SetPageBuddy(page);
1da177e4
LT
440}
441
442static inline void rmv_page_order(struct page *page)
443{
676165a8 444 __ClearPageBuddy(page);
4c21e2f2 445 set_page_private(page, 0);
1da177e4
LT
446}
447
448/*
449 * Locate the struct page for both the matching buddy in our
450 * pair (buddy1) and the combined O(n+1) page they form (page).
451 *
452 * 1) Any buddy B1 will have an order O twin B2 which satisfies
453 * the following equation:
454 * B2 = B1 ^ (1 << O)
455 * For example, if the starting buddy (buddy2) is #8 its order
456 * 1 buddy is #10:
457 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
458 *
459 * 2) Any buddy B will have an order O+1 parent P which
460 * satisfies the following equation:
461 * P = B & ~(1 << O)
462 *
d6e05edc 463 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4 464 */
1da177e4 465static inline unsigned long
43506fad 466__find_buddy_index(unsigned long page_idx, unsigned int order)
1da177e4 467{
43506fad 468 return page_idx ^ (1 << order);
1da177e4
LT
469}
470
471/*
472 * This function checks whether a page is free && is the buddy
473 * we can do coalesce a page and its buddy if
13e7444b 474 * (a) the buddy is not in a hole &&
676165a8 475 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
476 * (c) a page and its buddy have the same order &&
477 * (d) a page and its buddy are in the same zone.
676165a8 478 *
5f24ce5f
AA
479 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
480 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
1da177e4 481 *
676165a8 482 * For recording page's order, we use page_private(page).
1da177e4 483 */
cb2b95e1
AW
484static inline int page_is_buddy(struct page *page, struct page *buddy,
485 int order)
1da177e4 486{
14e07298 487 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 488 return 0;
13e7444b 489
cb2b95e1
AW
490 if (page_zone_id(page) != page_zone_id(buddy))
491 return 0;
492
c0a32fc5
SG
493 if (page_is_guard(buddy) && page_order(buddy) == order) {
494 VM_BUG_ON(page_count(buddy) != 0);
495 return 1;
496 }
497
cb2b95e1 498 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 499 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 500 return 1;
676165a8 501 }
6aa3001b 502 return 0;
1da177e4
LT
503}
504
505/*
506 * Freeing function for a buddy system allocator.
507 *
508 * The concept of a buddy system is to maintain direct-mapped table
509 * (containing bit values) for memory blocks of various "orders".
510 * The bottom level table contains the map for the smallest allocatable
511 * units of memory (here, pages), and each level above it describes
512 * pairs of units from the levels below, hence, "buddies".
513 * At a high level, all that happens here is marking the table entry
514 * at the bottom level available, and propagating the changes upward
515 * as necessary, plus some accounting needed to play nicely with other
516 * parts of the VM system.
517 * At each level, we keep a list of pages, which are heads of continuous
5f24ce5f 518 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
4c21e2f2 519 * order is recorded in page_private(page) field.
1da177e4 520 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
521 * other. That is, if we allocate a small block, and both were
522 * free, the remainder of the region must be split into blocks.
1da177e4 523 * If a block is freed, and its buddy is also free, then this
5f63b720 524 * triggers coalescing into a block of larger size.
1da177e4
LT
525 *
526 * -- wli
527 */
528
48db57f8 529static inline void __free_one_page(struct page *page,
ed0ae21d
MG
530 struct zone *zone, unsigned int order,
531 int migratetype)
1da177e4
LT
532{
533 unsigned long page_idx;
6dda9d55 534 unsigned long combined_idx;
43506fad 535 unsigned long uninitialized_var(buddy_idx);
6dda9d55 536 struct page *buddy;
1da177e4 537
224abf92 538 if (unlikely(PageCompound(page)))
8cc3b392
HD
539 if (unlikely(destroy_compound_page(page, order)))
540 return;
1da177e4 541
ed0ae21d
MG
542 VM_BUG_ON(migratetype == -1);
543
1da177e4
LT
544 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
545
f2260e6b 546 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 547 VM_BUG_ON(bad_range(zone, page));
1da177e4 548
1da177e4 549 while (order < MAX_ORDER-1) {
43506fad
KC
550 buddy_idx = __find_buddy_index(page_idx, order);
551 buddy = page + (buddy_idx - page_idx);
cb2b95e1 552 if (!page_is_buddy(page, buddy, order))
3c82d0ce 553 break;
c0a32fc5
SG
554 /*
555 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
556 * merge with it and move up one order.
557 */
558 if (page_is_guard(buddy)) {
559 clear_page_guard_flag(buddy);
560 set_page_private(page, 0);
d1ce749a
BZ
561 __mod_zone_freepage_state(zone, 1 << order,
562 migratetype);
c0a32fc5
SG
563 } else {
564 list_del(&buddy->lru);
565 zone->free_area[order].nr_free--;
566 rmv_page_order(buddy);
567 }
43506fad 568 combined_idx = buddy_idx & page_idx;
1da177e4
LT
569 page = page + (combined_idx - page_idx);
570 page_idx = combined_idx;
571 order++;
572 }
573 set_page_order(page, order);
6dda9d55
CZ
574
575 /*
576 * If this is not the largest possible page, check if the buddy
577 * of the next-highest order is free. If it is, it's possible
578 * that pages are being freed that will coalesce soon. In case,
579 * that is happening, add the free page to the tail of the list
580 * so it's less likely to be used soon and more likely to be merged
581 * as a higher order page
582 */
b7f50cfa 583 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 584 struct page *higher_page, *higher_buddy;
43506fad
KC
585 combined_idx = buddy_idx & page_idx;
586 higher_page = page + (combined_idx - page_idx);
587 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 588 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
589 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
590 list_add_tail(&page->lru,
591 &zone->free_area[order].free_list[migratetype]);
592 goto out;
593 }
594 }
595
596 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
597out:
1da177e4
LT
598 zone->free_area[order].nr_free++;
599}
600
092cead6
KM
601/*
602 * free_page_mlock() -- clean up attempts to free and mlocked() page.
603 * Page should not be on lru, so no need to fix that up.
604 * free_pages_check() will verify...
605 */
606static inline void free_page_mlock(struct page *page)
607{
092cead6
KM
608 __dec_zone_page_state(page, NR_MLOCK);
609 __count_vm_event(UNEVICTABLE_MLOCKFREED);
610}
092cead6 611
224abf92 612static inline int free_pages_check(struct page *page)
1da177e4 613{
92be2e33
NP
614 if (unlikely(page_mapcount(page) |
615 (page->mapping != NULL) |
a3af9c38 616 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
617 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
618 (mem_cgroup_bad_page_check(page)))) {
224abf92 619 bad_page(page);
79f4b7bf 620 return 1;
8cc3b392 621 }
79f4b7bf
HD
622 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
623 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
624 return 0;
1da177e4
LT
625}
626
627/*
5f8dcc21 628 * Frees a number of pages from the PCP lists
1da177e4 629 * Assumes all pages on list are in same zone, and of same order.
207f36ee 630 * count is the number of pages to free.
1da177e4
LT
631 *
632 * If the zone was previously in an "all pages pinned" state then look to
633 * see if this freeing clears that state.
634 *
635 * And clear the zone's pages_scanned counter, to hold off the "all pages are
636 * pinned" detection logic.
637 */
5f8dcc21
MG
638static void free_pcppages_bulk(struct zone *zone, int count,
639 struct per_cpu_pages *pcp)
1da177e4 640{
5f8dcc21 641 int migratetype = 0;
a6f9edd6 642 int batch_free = 0;
72853e29 643 int to_free = count;
5f8dcc21 644
c54ad30c 645 spin_lock(&zone->lock);
93e4a89a 646 zone->all_unreclaimable = 0;
1da177e4 647 zone->pages_scanned = 0;
f2260e6b 648
72853e29 649 while (to_free) {
48db57f8 650 struct page *page;
5f8dcc21
MG
651 struct list_head *list;
652
653 /*
a6f9edd6
MG
654 * Remove pages from lists in a round-robin fashion. A
655 * batch_free count is maintained that is incremented when an
656 * empty list is encountered. This is so more pages are freed
657 * off fuller lists instead of spinning excessively around empty
658 * lists
5f8dcc21
MG
659 */
660 do {
a6f9edd6 661 batch_free++;
5f8dcc21
MG
662 if (++migratetype == MIGRATE_PCPTYPES)
663 migratetype = 0;
664 list = &pcp->lists[migratetype];
665 } while (list_empty(list));
48db57f8 666
1d16871d
NK
667 /* This is the only non-empty list. Free them all. */
668 if (batch_free == MIGRATE_PCPTYPES)
669 batch_free = to_free;
670
a6f9edd6 671 do {
770c8aaa
BZ
672 int mt; /* migratetype of the to-be-freed page */
673
a6f9edd6
MG
674 page = list_entry(list->prev, struct page, lru);
675 /* must delete as __free_one_page list manipulates */
676 list_del(&page->lru);
b12c4ad1 677 mt = get_freepage_migratetype(page);
a7016235 678 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
770c8aaa
BZ
679 __free_one_page(page, zone, 0, mt);
680 trace_mm_page_pcpu_drain(page, 0, mt);
d1ce749a
BZ
681 if (is_migrate_cma(mt))
682 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
72853e29 683 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 684 }
72853e29 685 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
c54ad30c 686 spin_unlock(&zone->lock);
1da177e4
LT
687}
688
ed0ae21d
MG
689static void free_one_page(struct zone *zone, struct page *page, int order,
690 int migratetype)
1da177e4 691{
006d22d9 692 spin_lock(&zone->lock);
93e4a89a 693 zone->all_unreclaimable = 0;
006d22d9 694 zone->pages_scanned = 0;
f2260e6b 695
ed0ae21d 696 __free_one_page(page, zone, order, migratetype);
2139cbe6 697 if (unlikely(migratetype != MIGRATE_ISOLATE))
d1ce749a 698 __mod_zone_freepage_state(zone, 1 << order, migratetype);
006d22d9 699 spin_unlock(&zone->lock);
48db57f8
NP
700}
701
ec95f53a 702static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 703{
1da177e4 704 int i;
8cc3b392 705 int bad = 0;
1da177e4 706
b413d48a 707 trace_mm_page_free(page, order);
b1eeab67
VN
708 kmemcheck_free_shadow(page, order);
709
8dd60a3a
AA
710 if (PageAnon(page))
711 page->mapping = NULL;
712 for (i = 0; i < (1 << order); i++)
713 bad += free_pages_check(page + i);
8cc3b392 714 if (bad)
ec95f53a 715 return false;
689bcebf 716
3ac7fe5a 717 if (!PageHighMem(page)) {
9858db50 718 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
719 debug_check_no_obj_freed(page_address(page),
720 PAGE_SIZE << order);
721 }
dafb1367 722 arch_free_page(page, order);
48db57f8 723 kernel_map_pages(page, 1 << order, 0);
dafb1367 724
ec95f53a
KM
725 return true;
726}
727
728static void __free_pages_ok(struct page *page, unsigned int order)
729{
730 unsigned long flags;
731 int wasMlocked = __TestClearPageMlocked(page);
95e34412 732 int migratetype;
ec95f53a
KM
733
734 if (!free_pages_prepare(page, order))
735 return;
736
c54ad30c 737 local_irq_save(flags);
c277331d 738 if (unlikely(wasMlocked))
da456f14 739 free_page_mlock(page);
f8891e5e 740 __count_vm_events(PGFREE, 1 << order);
95e34412
MK
741 migratetype = get_pageblock_migratetype(page);
742 set_freepage_migratetype(page, migratetype);
743 free_one_page(page_zone(page), page, order, migratetype);
c54ad30c 744 local_irq_restore(flags);
1da177e4
LT
745}
746
af370fb8 747void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8 748{
c3993076
JW
749 unsigned int nr_pages = 1 << order;
750 unsigned int loop;
a226f6c8 751
c3993076
JW
752 prefetchw(page);
753 for (loop = 0; loop < nr_pages; loop++) {
754 struct page *p = &page[loop];
755
756 if (loop + 1 < nr_pages)
757 prefetchw(p + 1);
758 __ClearPageReserved(p);
759 set_page_count(p, 0);
a226f6c8 760 }
c3993076
JW
761
762 set_page_refcounted(page);
763 __free_pages(page, order);
a226f6c8
DH
764}
765
47118af0
MN
766#ifdef CONFIG_CMA
767/* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
768void __init init_cma_reserved_pageblock(struct page *page)
769{
770 unsigned i = pageblock_nr_pages;
771 struct page *p = page;
772
773 do {
774 __ClearPageReserved(p);
775 set_page_count(p, 0);
776 } while (++p, --i);
777
778 set_page_refcounted(page);
779 set_pageblock_migratetype(page, MIGRATE_CMA);
780 __free_pages(page, pageblock_order);
781 totalram_pages += pageblock_nr_pages;
782}
783#endif
1da177e4
LT
784
785/*
786 * The order of subdivision here is critical for the IO subsystem.
787 * Please do not alter this order without good reasons and regression
788 * testing. Specifically, as large blocks of memory are subdivided,
789 * the order in which smaller blocks are delivered depends on the order
790 * they're subdivided in this function. This is the primary factor
791 * influencing the order in which pages are delivered to the IO
792 * subsystem according to empirical testing, and this is also justified
793 * by considering the behavior of a buddy system containing a single
794 * large block of memory acted on by a series of small allocations.
795 * This behavior is a critical factor in sglist merging's success.
796 *
797 * -- wli
798 */
085cc7d5 799static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
800 int low, int high, struct free_area *area,
801 int migratetype)
1da177e4
LT
802{
803 unsigned long size = 1 << high;
804
805 while (high > low) {
806 area--;
807 high--;
808 size >>= 1;
725d704e 809 VM_BUG_ON(bad_range(zone, &page[size]));
c0a32fc5
SG
810
811#ifdef CONFIG_DEBUG_PAGEALLOC
812 if (high < debug_guardpage_minorder()) {
813 /*
814 * Mark as guard pages (or page), that will allow to
815 * merge back to allocator when buddy will be freed.
816 * Corresponding page table entries will not be touched,
817 * pages will stay not present in virtual address space
818 */
819 INIT_LIST_HEAD(&page[size].lru);
820 set_page_guard_flag(&page[size]);
821 set_page_private(&page[size], high);
822 /* Guard pages are not available for any usage */
d1ce749a
BZ
823 __mod_zone_freepage_state(zone, -(1 << high),
824 migratetype);
c0a32fc5
SG
825 continue;
826 }
827#endif
b2a0ac88 828 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
829 area->nr_free++;
830 set_page_order(&page[size], high);
831 }
1da177e4
LT
832}
833
1da177e4
LT
834/*
835 * This page is about to be returned from the page allocator
836 */
2a7684a2 837static inline int check_new_page(struct page *page)
1da177e4 838{
92be2e33
NP
839 if (unlikely(page_mapcount(page) |
840 (page->mapping != NULL) |
a3af9c38 841 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
842 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
843 (mem_cgroup_bad_page_check(page)))) {
224abf92 844 bad_page(page);
689bcebf 845 return 1;
8cc3b392 846 }
2a7684a2
WF
847 return 0;
848}
849
850static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
851{
852 int i;
853
854 for (i = 0; i < (1 << order); i++) {
855 struct page *p = page + i;
856 if (unlikely(check_new_page(p)))
857 return 1;
858 }
689bcebf 859
4c21e2f2 860 set_page_private(page, 0);
7835e98b 861 set_page_refcounted(page);
cc102509
NP
862
863 arch_alloc_page(page, order);
1da177e4 864 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
865
866 if (gfp_flags & __GFP_ZERO)
867 prep_zero_page(page, order, gfp_flags);
868
869 if (order && (gfp_flags & __GFP_COMP))
870 prep_compound_page(page, order);
871
689bcebf 872 return 0;
1da177e4
LT
873}
874
56fd56b8
MG
875/*
876 * Go through the free lists for the given migratetype and remove
877 * the smallest available page from the freelists
878 */
728ec980
MG
879static inline
880struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
881 int migratetype)
882{
883 unsigned int current_order;
884 struct free_area * area;
885 struct page *page;
886
887 /* Find a page of the appropriate size in the preferred list */
888 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
889 area = &(zone->free_area[current_order]);
890 if (list_empty(&area->free_list[migratetype]))
891 continue;
892
893 page = list_entry(area->free_list[migratetype].next,
894 struct page, lru);
895 list_del(&page->lru);
896 rmv_page_order(page);
897 area->nr_free--;
56fd56b8
MG
898 expand(zone, page, order, current_order, area, migratetype);
899 return page;
900 }
901
902 return NULL;
903}
904
905
b2a0ac88
MG
906/*
907 * This array describes the order lists are fallen back to when
908 * the free lists for the desirable migrate type are depleted
909 */
47118af0
MN
910static int fallbacks[MIGRATE_TYPES][4] = {
911 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
912 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
913#ifdef CONFIG_CMA
914 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
915 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
916#else
917 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
918#endif
6d4a4916
MN
919 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
920 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
921};
922
c361be55
MG
923/*
924 * Move the free pages in a range to the free lists of the requested type.
d9c23400 925 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
926 * boundary. If alignment is required, use move_freepages_block()
927 */
435b405c 928int move_freepages(struct zone *zone,
b69a7288
AB
929 struct page *start_page, struct page *end_page,
930 int migratetype)
c361be55
MG
931{
932 struct page *page;
933 unsigned long order;
d100313f 934 int pages_moved = 0;
c361be55
MG
935
936#ifndef CONFIG_HOLES_IN_ZONE
937 /*
938 * page_zone is not safe to call in this context when
939 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
940 * anyway as we check zone boundaries in move_freepages_block().
941 * Remove at a later date when no bug reports exist related to
ac0e5b7a 942 * grouping pages by mobility
c361be55
MG
943 */
944 BUG_ON(page_zone(start_page) != page_zone(end_page));
945#endif
946
947 for (page = start_page; page <= end_page;) {
344c790e
AL
948 /* Make sure we are not inadvertently changing nodes */
949 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
950
c361be55
MG
951 if (!pfn_valid_within(page_to_pfn(page))) {
952 page++;
953 continue;
954 }
955
956 if (!PageBuddy(page)) {
957 page++;
958 continue;
959 }
960
961 order = page_order(page);
84be48d8
KS
962 list_move(&page->lru,
963 &zone->free_area[order].free_list[migratetype]);
95e34412 964 set_freepage_migratetype(page, migratetype);
c361be55 965 page += 1 << order;
d100313f 966 pages_moved += 1 << order;
c361be55
MG
967 }
968
d100313f 969 return pages_moved;
c361be55
MG
970}
971
ee6f509c 972int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 973 int migratetype)
c361be55
MG
974{
975 unsigned long start_pfn, end_pfn;
976 struct page *start_page, *end_page;
977
978 start_pfn = page_to_pfn(page);
d9c23400 979 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 980 start_page = pfn_to_page(start_pfn);
d9c23400
MG
981 end_page = start_page + pageblock_nr_pages - 1;
982 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
983
984 /* Do not cross zone boundaries */
985 if (start_pfn < zone->zone_start_pfn)
986 start_page = page;
987 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
988 return 0;
989
990 return move_freepages(zone, start_page, end_page, migratetype);
991}
992
2f66a68f
MG
993static void change_pageblock_range(struct page *pageblock_page,
994 int start_order, int migratetype)
995{
996 int nr_pageblocks = 1 << (start_order - pageblock_order);
997
998 while (nr_pageblocks--) {
999 set_pageblock_migratetype(pageblock_page, migratetype);
1000 pageblock_page += pageblock_nr_pages;
1001 }
1002}
1003
b2a0ac88 1004/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
1005static inline struct page *
1006__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
1007{
1008 struct free_area * area;
1009 int current_order;
1010 struct page *page;
1011 int migratetype, i;
1012
1013 /* Find the largest possible block of pages in the other list */
1014 for (current_order = MAX_ORDER-1; current_order >= order;
1015 --current_order) {
6d4a4916 1016 for (i = 0;; i++) {
b2a0ac88
MG
1017 migratetype = fallbacks[start_migratetype][i];
1018
56fd56b8
MG
1019 /* MIGRATE_RESERVE handled later if necessary */
1020 if (migratetype == MIGRATE_RESERVE)
6d4a4916 1021 break;
e010487d 1022
b2a0ac88
MG
1023 area = &(zone->free_area[current_order]);
1024 if (list_empty(&area->free_list[migratetype]))
1025 continue;
1026
1027 page = list_entry(area->free_list[migratetype].next,
1028 struct page, lru);
1029 area->nr_free--;
1030
1031 /*
c361be55 1032 * If breaking a large block of pages, move all free
46dafbca
MG
1033 * pages to the preferred allocation list. If falling
1034 * back for a reclaimable kernel allocation, be more
25985edc 1035 * aggressive about taking ownership of free pages
47118af0
MN
1036 *
1037 * On the other hand, never change migration
1038 * type of MIGRATE_CMA pageblocks nor move CMA
1039 * pages on different free lists. We don't
1040 * want unmovable pages to be allocated from
1041 * MIGRATE_CMA areas.
b2a0ac88 1042 */
47118af0
MN
1043 if (!is_migrate_cma(migratetype) &&
1044 (unlikely(current_order >= pageblock_order / 2) ||
1045 start_migratetype == MIGRATE_RECLAIMABLE ||
1046 page_group_by_mobility_disabled)) {
1047 int pages;
46dafbca
MG
1048 pages = move_freepages_block(zone, page,
1049 start_migratetype);
1050
1051 /* Claim the whole block if over half of it is free */
dd5d241e
MG
1052 if (pages >= (1 << (pageblock_order-1)) ||
1053 page_group_by_mobility_disabled)
46dafbca
MG
1054 set_pageblock_migratetype(page,
1055 start_migratetype);
1056
b2a0ac88 1057 migratetype = start_migratetype;
c361be55 1058 }
b2a0ac88
MG
1059
1060 /* Remove the page from the freelists */
1061 list_del(&page->lru);
1062 rmv_page_order(page);
b2a0ac88 1063
2f66a68f 1064 /* Take ownership for orders >= pageblock_order */
47118af0
MN
1065 if (current_order >= pageblock_order &&
1066 !is_migrate_cma(migratetype))
2f66a68f 1067 change_pageblock_range(page, current_order,
b2a0ac88
MG
1068 start_migratetype);
1069
47118af0
MN
1070 expand(zone, page, order, current_order, area,
1071 is_migrate_cma(migratetype)
1072 ? migratetype : start_migratetype);
e0fff1bd
MG
1073
1074 trace_mm_page_alloc_extfrag(page, order, current_order,
1075 start_migratetype, migratetype);
1076
b2a0ac88
MG
1077 return page;
1078 }
1079 }
1080
728ec980 1081 return NULL;
b2a0ac88
MG
1082}
1083
56fd56b8 1084/*
1da177e4
LT
1085 * Do the hard work of removing an element from the buddy allocator.
1086 * Call me with the zone->lock already held.
1087 */
b2a0ac88
MG
1088static struct page *__rmqueue(struct zone *zone, unsigned int order,
1089 int migratetype)
1da177e4 1090{
1da177e4
LT
1091 struct page *page;
1092
728ec980 1093retry_reserve:
56fd56b8 1094 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1095
728ec980 1096 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 1097 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1098
728ec980
MG
1099 /*
1100 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1101 * is used because __rmqueue_smallest is an inline function
1102 * and we want just one call site
1103 */
1104 if (!page) {
1105 migratetype = MIGRATE_RESERVE;
1106 goto retry_reserve;
1107 }
1108 }
1109
0d3d062a 1110 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1111 return page;
1da177e4
LT
1112}
1113
5f63b720 1114/*
1da177e4
LT
1115 * Obtain a specified number of elements from the buddy allocator, all under
1116 * a single hold of the lock, for efficiency. Add them to the supplied list.
1117 * Returns the number of new pages which were placed at *list.
1118 */
5f63b720 1119static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1120 unsigned long count, struct list_head *list,
e084b2d9 1121 int migratetype, int cold)
1da177e4 1122{
47118af0 1123 int mt = migratetype, i;
5f63b720 1124
c54ad30c 1125 spin_lock(&zone->lock);
1da177e4 1126 for (i = 0; i < count; ++i) {
b2a0ac88 1127 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1128 if (unlikely(page == NULL))
1da177e4 1129 break;
81eabcbe
MG
1130
1131 /*
1132 * Split buddy pages returned by expand() are received here
1133 * in physical page order. The page is added to the callers and
1134 * list and the list head then moves forward. From the callers
1135 * perspective, the linked list is ordered by page number in
1136 * some conditions. This is useful for IO devices that can
1137 * merge IO requests if the physical pages are ordered
1138 * properly.
1139 */
e084b2d9
MG
1140 if (likely(cold == 0))
1141 list_add(&page->lru, list);
1142 else
1143 list_add_tail(&page->lru, list);
47118af0
MN
1144 if (IS_ENABLED(CONFIG_CMA)) {
1145 mt = get_pageblock_migratetype(page);
1146 if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
1147 mt = migratetype;
1148 }
b12c4ad1 1149 set_freepage_migratetype(page, mt);
81eabcbe 1150 list = &page->lru;
d1ce749a
BZ
1151 if (is_migrate_cma(mt))
1152 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1153 -(1 << order));
1da177e4 1154 }
f2260e6b 1155 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1156 spin_unlock(&zone->lock);
085cc7d5 1157 return i;
1da177e4
LT
1158}
1159
4ae7c039 1160#ifdef CONFIG_NUMA
8fce4d8e 1161/*
4037d452
CL
1162 * Called from the vmstat counter updater to drain pagesets of this
1163 * currently executing processor on remote nodes after they have
1164 * expired.
1165 *
879336c3
CL
1166 * Note that this function must be called with the thread pinned to
1167 * a single processor.
8fce4d8e 1168 */
4037d452 1169void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1170{
4ae7c039 1171 unsigned long flags;
4037d452 1172 int to_drain;
4ae7c039 1173
4037d452
CL
1174 local_irq_save(flags);
1175 if (pcp->count >= pcp->batch)
1176 to_drain = pcp->batch;
1177 else
1178 to_drain = pcp->count;
2a13515c
KM
1179 if (to_drain > 0) {
1180 free_pcppages_bulk(zone, to_drain, pcp);
1181 pcp->count -= to_drain;
1182 }
4037d452 1183 local_irq_restore(flags);
4ae7c039
CL
1184}
1185#endif
1186
9f8f2172
CL
1187/*
1188 * Drain pages of the indicated processor.
1189 *
1190 * The processor must either be the current processor and the
1191 * thread pinned to the current processor or a processor that
1192 * is not online.
1193 */
1194static void drain_pages(unsigned int cpu)
1da177e4 1195{
c54ad30c 1196 unsigned long flags;
1da177e4 1197 struct zone *zone;
1da177e4 1198
ee99c71c 1199 for_each_populated_zone(zone) {
1da177e4 1200 struct per_cpu_pageset *pset;
3dfa5721 1201 struct per_cpu_pages *pcp;
1da177e4 1202
99dcc3e5
CL
1203 local_irq_save(flags);
1204 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1205
1206 pcp = &pset->pcp;
2ff754fa
DR
1207 if (pcp->count) {
1208 free_pcppages_bulk(zone, pcp->count, pcp);
1209 pcp->count = 0;
1210 }
3dfa5721 1211 local_irq_restore(flags);
1da177e4
LT
1212 }
1213}
1da177e4 1214
9f8f2172
CL
1215/*
1216 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1217 */
1218void drain_local_pages(void *arg)
1219{
1220 drain_pages(smp_processor_id());
1221}
1222
1223/*
74046494
GBY
1224 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1225 *
1226 * Note that this code is protected against sending an IPI to an offline
1227 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1228 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1229 * nothing keeps CPUs from showing up after we populated the cpumask and
1230 * before the call to on_each_cpu_mask().
9f8f2172
CL
1231 */
1232void drain_all_pages(void)
1233{
74046494
GBY
1234 int cpu;
1235 struct per_cpu_pageset *pcp;
1236 struct zone *zone;
1237
1238 /*
1239 * Allocate in the BSS so we wont require allocation in
1240 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1241 */
1242 static cpumask_t cpus_with_pcps;
1243
1244 /*
1245 * We don't care about racing with CPU hotplug event
1246 * as offline notification will cause the notified
1247 * cpu to drain that CPU pcps and on_each_cpu_mask
1248 * disables preemption as part of its processing
1249 */
1250 for_each_online_cpu(cpu) {
1251 bool has_pcps = false;
1252 for_each_populated_zone(zone) {
1253 pcp = per_cpu_ptr(zone->pageset, cpu);
1254 if (pcp->pcp.count) {
1255 has_pcps = true;
1256 break;
1257 }
1258 }
1259 if (has_pcps)
1260 cpumask_set_cpu(cpu, &cpus_with_pcps);
1261 else
1262 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1263 }
1264 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
9f8f2172
CL
1265}
1266
296699de 1267#ifdef CONFIG_HIBERNATION
1da177e4
LT
1268
1269void mark_free_pages(struct zone *zone)
1270{
f623f0db
RW
1271 unsigned long pfn, max_zone_pfn;
1272 unsigned long flags;
b2a0ac88 1273 int order, t;
1da177e4
LT
1274 struct list_head *curr;
1275
1276 if (!zone->spanned_pages)
1277 return;
1278
1279 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
1280
1281 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1282 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1283 if (pfn_valid(pfn)) {
1284 struct page *page = pfn_to_page(pfn);
1285
7be98234
RW
1286 if (!swsusp_page_is_forbidden(page))
1287 swsusp_unset_page_free(page);
f623f0db 1288 }
1da177e4 1289
b2a0ac88
MG
1290 for_each_migratetype_order(order, t) {
1291 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1292 unsigned long i;
1da177e4 1293
f623f0db
RW
1294 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1295 for (i = 0; i < (1UL << order); i++)
7be98234 1296 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1297 }
b2a0ac88 1298 }
1da177e4
LT
1299 spin_unlock_irqrestore(&zone->lock, flags);
1300}
e2c55dc8 1301#endif /* CONFIG_PM */
1da177e4 1302
1da177e4
LT
1303/*
1304 * Free a 0-order page
fc91668e 1305 * cold == 1 ? free a cold page : free a hot page
1da177e4 1306 */
fc91668e 1307void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1308{
1309 struct zone *zone = page_zone(page);
1310 struct per_cpu_pages *pcp;
1311 unsigned long flags;
5f8dcc21 1312 int migratetype;
451ea25d 1313 int wasMlocked = __TestClearPageMlocked(page);
1da177e4 1314
ec95f53a 1315 if (!free_pages_prepare(page, 0))
689bcebf
HD
1316 return;
1317
5f8dcc21 1318 migratetype = get_pageblock_migratetype(page);
b12c4ad1 1319 set_freepage_migratetype(page, migratetype);
1da177e4 1320 local_irq_save(flags);
c277331d 1321 if (unlikely(wasMlocked))
da456f14 1322 free_page_mlock(page);
f8891e5e 1323 __count_vm_event(PGFREE);
da456f14 1324
5f8dcc21
MG
1325 /*
1326 * We only track unmovable, reclaimable and movable on pcp lists.
1327 * Free ISOLATE pages back to the allocator because they are being
1328 * offlined but treat RESERVE as movable pages so we can get those
1329 * areas back if necessary. Otherwise, we may have to free
1330 * excessively into the page allocator
1331 */
1332 if (migratetype >= MIGRATE_PCPTYPES) {
1333 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1334 free_one_page(zone, page, 0, migratetype);
1335 goto out;
1336 }
1337 migratetype = MIGRATE_MOVABLE;
1338 }
1339
99dcc3e5 1340 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1341 if (cold)
5f8dcc21 1342 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1343 else
5f8dcc21 1344 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1345 pcp->count++;
48db57f8 1346 if (pcp->count >= pcp->high) {
5f8dcc21 1347 free_pcppages_bulk(zone, pcp->batch, pcp);
48db57f8
NP
1348 pcp->count -= pcp->batch;
1349 }
5f8dcc21
MG
1350
1351out:
1da177e4 1352 local_irq_restore(flags);
1da177e4
LT
1353}
1354
cc59850e
KK
1355/*
1356 * Free a list of 0-order pages
1357 */
1358void free_hot_cold_page_list(struct list_head *list, int cold)
1359{
1360 struct page *page, *next;
1361
1362 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1363 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1364 free_hot_cold_page(page, cold);
1365 }
1366}
1367
8dfcc9ba
NP
1368/*
1369 * split_page takes a non-compound higher-order page, and splits it into
1370 * n (1<<order) sub-pages: page[0..n]
1371 * Each sub-page must be freed individually.
1372 *
1373 * Note: this is probably too low level an operation for use in drivers.
1374 * Please consult with lkml before using this in your driver.
1375 */
1376void split_page(struct page *page, unsigned int order)
1377{
1378 int i;
1379
725d704e
NP
1380 VM_BUG_ON(PageCompound(page));
1381 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1382
1383#ifdef CONFIG_KMEMCHECK
1384 /*
1385 * Split shadow pages too, because free(page[0]) would
1386 * otherwise free the whole shadow.
1387 */
1388 if (kmemcheck_page_is_tracked(page))
1389 split_page(virt_to_page(page[0].shadow), order);
1390#endif
1391
7835e98b
NP
1392 for (i = 1; i < (1 << order); i++)
1393 set_page_refcounted(page + i);
8dfcc9ba 1394}
8dfcc9ba 1395
748446bb 1396/*
1fb3f8ca
MG
1397 * Similar to the split_page family of functions except that the page
1398 * required at the given order and being isolated now to prevent races
1399 * with parallel allocators
748446bb 1400 */
1fb3f8ca 1401int capture_free_page(struct page *page, int alloc_order, int migratetype)
748446bb
MG
1402{
1403 unsigned int order;
1404 unsigned long watermark;
1405 struct zone *zone;
2139cbe6 1406 int mt;
748446bb
MG
1407
1408 BUG_ON(!PageBuddy(page));
1409
1410 zone = page_zone(page);
1411 order = page_order(page);
1412
1413 /* Obey watermarks as if the page was being allocated */
1414 watermark = low_wmark_pages(zone) + (1 << order);
1415 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1416 return 0;
1417
1418 /* Remove page from free list */
1419 list_del(&page->lru);
1420 zone->free_area[order].nr_free--;
1421 rmv_page_order(page);
2139cbe6
BZ
1422
1423 mt = get_pageblock_migratetype(page);
1424 if (unlikely(mt != MIGRATE_ISOLATE))
d1ce749a 1425 __mod_zone_freepage_state(zone, -(1UL << order), mt);
748446bb 1426
1fb3f8ca
MG
1427 if (alloc_order != order)
1428 expand(zone, page, alloc_order, order,
1429 &zone->free_area[order], migratetype);
748446bb 1430
1fb3f8ca 1431 /* Set the pageblock if the captured page is at least a pageblock */
748446bb
MG
1432 if (order >= pageblock_order - 1) {
1433 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
1434 for (; page < endpage; page += pageblock_nr_pages) {
1435 int mt = get_pageblock_migratetype(page);
1436 if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
1437 set_pageblock_migratetype(page,
1438 MIGRATE_MOVABLE);
1439 }
748446bb
MG
1440 }
1441
1fb3f8ca
MG
1442 return 1UL << order;
1443}
1444
1445/*
1446 * Similar to split_page except the page is already free. As this is only
1447 * being used for migration, the migratetype of the block also changes.
1448 * As this is called with interrupts disabled, the caller is responsible
1449 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1450 * are enabled.
1451 *
1452 * Note: this is probably too low level an operation for use in drivers.
1453 * Please consult with lkml before using this in your driver.
1454 */
1455int split_free_page(struct page *page)
1456{
1457 unsigned int order;
1458 int nr_pages;
1459
1460 BUG_ON(!PageBuddy(page));
1461 order = page_order(page);
1462
1463 nr_pages = capture_free_page(page, order, 0);
1464 if (!nr_pages)
1465 return 0;
1466
1467 /* Split into individual pages */
1468 set_page_refcounted(page);
1469 split_page(page, order);
1470 return nr_pages;
748446bb
MG
1471}
1472
1da177e4
LT
1473/*
1474 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1475 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1476 * or two.
1477 */
0a15c3e9
MG
1478static inline
1479struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1480 struct zone *zone, int order, gfp_t gfp_flags,
1481 int migratetype)
1da177e4
LT
1482{
1483 unsigned long flags;
689bcebf 1484 struct page *page;
1da177e4
LT
1485 int cold = !!(gfp_flags & __GFP_COLD);
1486
689bcebf 1487again:
48db57f8 1488 if (likely(order == 0)) {
1da177e4 1489 struct per_cpu_pages *pcp;
5f8dcc21 1490 struct list_head *list;
1da177e4 1491
1da177e4 1492 local_irq_save(flags);
99dcc3e5
CL
1493 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1494 list = &pcp->lists[migratetype];
5f8dcc21 1495 if (list_empty(list)) {
535131e6 1496 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1497 pcp->batch, list,
e084b2d9 1498 migratetype, cold);
5f8dcc21 1499 if (unlikely(list_empty(list)))
6fb332fa 1500 goto failed;
535131e6 1501 }
b92a6edd 1502
5f8dcc21
MG
1503 if (cold)
1504 page = list_entry(list->prev, struct page, lru);
1505 else
1506 page = list_entry(list->next, struct page, lru);
1507
b92a6edd
MG
1508 list_del(&page->lru);
1509 pcp->count--;
7fb1d9fc 1510 } else {
dab48dab
AM
1511 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1512 /*
1513 * __GFP_NOFAIL is not to be used in new code.
1514 *
1515 * All __GFP_NOFAIL callers should be fixed so that they
1516 * properly detect and handle allocation failures.
1517 *
1518 * We most definitely don't want callers attempting to
4923abf9 1519 * allocate greater than order-1 page units with
dab48dab
AM
1520 * __GFP_NOFAIL.
1521 */
4923abf9 1522 WARN_ON_ONCE(order > 1);
dab48dab 1523 }
1da177e4 1524 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1525 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1526 spin_unlock(&zone->lock);
1527 if (!page)
1528 goto failed;
d1ce749a
BZ
1529 __mod_zone_freepage_state(zone, -(1 << order),
1530 get_pageblock_migratetype(page));
1da177e4
LT
1531 }
1532
f8891e5e 1533 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1534 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1535 local_irq_restore(flags);
1da177e4 1536
725d704e 1537 VM_BUG_ON(bad_range(zone, page));
17cf4406 1538 if (prep_new_page(page, order, gfp_flags))
a74609fa 1539 goto again;
1da177e4 1540 return page;
a74609fa
NP
1541
1542failed:
1543 local_irq_restore(flags);
a74609fa 1544 return NULL;
1da177e4
LT
1545}
1546
933e312e
AM
1547#ifdef CONFIG_FAIL_PAGE_ALLOC
1548
b2588c4b 1549static struct {
933e312e
AM
1550 struct fault_attr attr;
1551
1552 u32 ignore_gfp_highmem;
1553 u32 ignore_gfp_wait;
54114994 1554 u32 min_order;
933e312e
AM
1555} fail_page_alloc = {
1556 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1557 .ignore_gfp_wait = 1,
1558 .ignore_gfp_highmem = 1,
54114994 1559 .min_order = 1,
933e312e
AM
1560};
1561
1562static int __init setup_fail_page_alloc(char *str)
1563{
1564 return setup_fault_attr(&fail_page_alloc.attr, str);
1565}
1566__setup("fail_page_alloc=", setup_fail_page_alloc);
1567
deaf386e 1568static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1569{
54114994 1570 if (order < fail_page_alloc.min_order)
deaf386e 1571 return false;
933e312e 1572 if (gfp_mask & __GFP_NOFAIL)
deaf386e 1573 return false;
933e312e 1574 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 1575 return false;
933e312e 1576 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 1577 return false;
933e312e
AM
1578
1579 return should_fail(&fail_page_alloc.attr, 1 << order);
1580}
1581
1582#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1583
1584static int __init fail_page_alloc_debugfs(void)
1585{
f4ae40a6 1586 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1587 struct dentry *dir;
933e312e 1588
dd48c085
AM
1589 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1590 &fail_page_alloc.attr);
1591 if (IS_ERR(dir))
1592 return PTR_ERR(dir);
933e312e 1593
b2588c4b
AM
1594 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1595 &fail_page_alloc.ignore_gfp_wait))
1596 goto fail;
1597 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1598 &fail_page_alloc.ignore_gfp_highmem))
1599 goto fail;
1600 if (!debugfs_create_u32("min-order", mode, dir,
1601 &fail_page_alloc.min_order))
1602 goto fail;
1603
1604 return 0;
1605fail:
dd48c085 1606 debugfs_remove_recursive(dir);
933e312e 1607
b2588c4b 1608 return -ENOMEM;
933e312e
AM
1609}
1610
1611late_initcall(fail_page_alloc_debugfs);
1612
1613#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1614
1615#else /* CONFIG_FAIL_PAGE_ALLOC */
1616
deaf386e 1617static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1618{
deaf386e 1619 return false;
933e312e
AM
1620}
1621
1622#endif /* CONFIG_FAIL_PAGE_ALLOC */
1623
1da177e4 1624/*
88f5acf8 1625 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1626 * of the allocation.
1627 */
88f5acf8
MG
1628static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1629 int classzone_idx, int alloc_flags, long free_pages)
1da177e4
LT
1630{
1631 /* free_pages my go negative - that's OK */
d23ad423 1632 long min = mark;
2cfed075 1633 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1da177e4
LT
1634 int o;
1635
df0a6daa 1636 free_pages -= (1 << order) - 1;
7fb1d9fc 1637 if (alloc_flags & ALLOC_HIGH)
1da177e4 1638 min -= min / 2;
7fb1d9fc 1639 if (alloc_flags & ALLOC_HARDER)
1da177e4 1640 min -= min / 4;
d95ea5d1
BZ
1641#ifdef CONFIG_CMA
1642 /* If allocation can't use CMA areas don't use free CMA pages */
1643 if (!(alloc_flags & ALLOC_CMA))
1644 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
1645#endif
2cfed075 1646 if (free_pages <= min + lowmem_reserve)
88f5acf8 1647 return false;
1da177e4
LT
1648 for (o = 0; o < order; o++) {
1649 /* At the next order, this order's pages become unavailable */
1650 free_pages -= z->free_area[o].nr_free << o;
1651
1652 /* Require fewer higher order pages to be free */
1653 min >>= 1;
1654
1655 if (free_pages <= min)
88f5acf8 1656 return false;
1da177e4 1657 }
88f5acf8
MG
1658 return true;
1659}
1660
702d1a6e
MK
1661#ifdef CONFIG_MEMORY_ISOLATION
1662static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1663{
1664 if (unlikely(zone->nr_pageblock_isolate))
1665 return zone->nr_pageblock_isolate * pageblock_nr_pages;
1666 return 0;
1667}
1668#else
1669static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1670{
1671 return 0;
1672}
1673#endif
1674
88f5acf8
MG
1675bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1676 int classzone_idx, int alloc_flags)
1677{
1678 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1679 zone_page_state(z, NR_FREE_PAGES));
1680}
1681
1682bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1683 int classzone_idx, int alloc_flags)
1684{
1685 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1686
1687 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1688 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1689
702d1a6e
MK
1690 /*
1691 * If the zone has MIGRATE_ISOLATE type free pages, we should consider
1692 * it. nr_zone_isolate_freepages is never accurate so kswapd might not
1693 * sleep although it could do so. But this is more desirable for memory
1694 * hotplug than sleeping which can cause a livelock in the direct
1695 * reclaim path.
1696 */
1697 free_pages -= nr_zone_isolate_freepages(z);
88f5acf8
MG
1698 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1699 free_pages);
1da177e4
LT
1700}
1701
9276b1bc
PJ
1702#ifdef CONFIG_NUMA
1703/*
1704 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1705 * skip over zones that are not allowed by the cpuset, or that have
1706 * been recently (in last second) found to be nearly full. See further
1707 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1708 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1709 *
1710 * If the zonelist cache is present in the passed in zonelist, then
1711 * returns a pointer to the allowed node mask (either the current
37b07e41 1712 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1713 *
1714 * If the zonelist cache is not available for this zonelist, does
1715 * nothing and returns NULL.
1716 *
1717 * If the fullzones BITMAP in the zonelist cache is stale (more than
1718 * a second since last zap'd) then we zap it out (clear its bits.)
1719 *
1720 * We hold off even calling zlc_setup, until after we've checked the
1721 * first zone in the zonelist, on the theory that most allocations will
1722 * be satisfied from that first zone, so best to examine that zone as
1723 * quickly as we can.
1724 */
1725static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1726{
1727 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1728 nodemask_t *allowednodes; /* zonelist_cache approximation */
1729
1730 zlc = zonelist->zlcache_ptr;
1731 if (!zlc)
1732 return NULL;
1733
f05111f5 1734 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1735 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1736 zlc->last_full_zap = jiffies;
1737 }
1738
1739 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1740 &cpuset_current_mems_allowed :
37b07e41 1741 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1742 return allowednodes;
1743}
1744
1745/*
1746 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1747 * if it is worth looking at further for free memory:
1748 * 1) Check that the zone isn't thought to be full (doesn't have its
1749 * bit set in the zonelist_cache fullzones BITMAP).
1750 * 2) Check that the zones node (obtained from the zonelist_cache
1751 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1752 * Return true (non-zero) if zone is worth looking at further, or
1753 * else return false (zero) if it is not.
1754 *
1755 * This check -ignores- the distinction between various watermarks,
1756 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1757 * found to be full for any variation of these watermarks, it will
1758 * be considered full for up to one second by all requests, unless
1759 * we are so low on memory on all allowed nodes that we are forced
1760 * into the second scan of the zonelist.
1761 *
1762 * In the second scan we ignore this zonelist cache and exactly
1763 * apply the watermarks to all zones, even it is slower to do so.
1764 * We are low on memory in the second scan, and should leave no stone
1765 * unturned looking for a free page.
1766 */
dd1a239f 1767static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1768 nodemask_t *allowednodes)
1769{
1770 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1771 int i; /* index of *z in zonelist zones */
1772 int n; /* node that zone *z is on */
1773
1774 zlc = zonelist->zlcache_ptr;
1775 if (!zlc)
1776 return 1;
1777
dd1a239f 1778 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1779 n = zlc->z_to_n[i];
1780
1781 /* This zone is worth trying if it is allowed but not full */
1782 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1783}
1784
1785/*
1786 * Given 'z' scanning a zonelist, set the corresponding bit in
1787 * zlc->fullzones, so that subsequent attempts to allocate a page
1788 * from that zone don't waste time re-examining it.
1789 */
dd1a239f 1790static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1791{
1792 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1793 int i; /* index of *z in zonelist zones */
1794
1795 zlc = zonelist->zlcache_ptr;
1796 if (!zlc)
1797 return;
1798
dd1a239f 1799 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1800
1801 set_bit(i, zlc->fullzones);
1802}
1803
76d3fbf8
MG
1804/*
1805 * clear all zones full, called after direct reclaim makes progress so that
1806 * a zone that was recently full is not skipped over for up to a second
1807 */
1808static void zlc_clear_zones_full(struct zonelist *zonelist)
1809{
1810 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1811
1812 zlc = zonelist->zlcache_ptr;
1813 if (!zlc)
1814 return;
1815
1816 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1817}
1818
9276b1bc
PJ
1819#else /* CONFIG_NUMA */
1820
1821static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1822{
1823 return NULL;
1824}
1825
dd1a239f 1826static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1827 nodemask_t *allowednodes)
1828{
1829 return 1;
1830}
1831
dd1a239f 1832static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1833{
1834}
76d3fbf8
MG
1835
1836static void zlc_clear_zones_full(struct zonelist *zonelist)
1837{
1838}
9276b1bc
PJ
1839#endif /* CONFIG_NUMA */
1840
7fb1d9fc 1841/*
0798e519 1842 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1843 * a page.
1844 */
1845static struct page *
19770b32 1846get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1847 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1848 struct zone *preferred_zone, int migratetype)
753ee728 1849{
dd1a239f 1850 struct zoneref *z;
7fb1d9fc 1851 struct page *page = NULL;
54a6eb5c 1852 int classzone_idx;
5117f45d 1853 struct zone *zone;
9276b1bc
PJ
1854 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1855 int zlc_active = 0; /* set if using zonelist_cache */
1856 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1857
19770b32 1858 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1859zonelist_scan:
7fb1d9fc 1860 /*
9276b1bc 1861 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1862 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1863 */
19770b32
MG
1864 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1865 high_zoneidx, nodemask) {
9276b1bc
PJ
1866 if (NUMA_BUILD && zlc_active &&
1867 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1868 continue;
7fb1d9fc 1869 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1870 !cpuset_zone_allowed_softwall(zone, gfp_mask))
cd38b115 1871 continue;
a756cf59
JW
1872 /*
1873 * When allocating a page cache page for writing, we
1874 * want to get it from a zone that is within its dirty
1875 * limit, such that no single zone holds more than its
1876 * proportional share of globally allowed dirty pages.
1877 * The dirty limits take into account the zone's
1878 * lowmem reserves and high watermark so that kswapd
1879 * should be able to balance it without having to
1880 * write pages from its LRU list.
1881 *
1882 * This may look like it could increase pressure on
1883 * lower zones by failing allocations in higher zones
1884 * before they are full. But the pages that do spill
1885 * over are limited as the lower zones are protected
1886 * by this very same mechanism. It should not become
1887 * a practical burden to them.
1888 *
1889 * XXX: For now, allow allocations to potentially
1890 * exceed the per-zone dirty limit in the slowpath
1891 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1892 * which is important when on a NUMA setup the allowed
1893 * zones are together not big enough to reach the
1894 * global limit. The proper fix for these situations
1895 * will require awareness of zones in the
1896 * dirty-throttling and the flusher threads.
1897 */
1898 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1899 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1900 goto this_zone_full;
7fb1d9fc 1901
41858966 1902 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1903 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1904 unsigned long mark;
fa5e084e
MG
1905 int ret;
1906
41858966 1907 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
fa5e084e
MG
1908 if (zone_watermark_ok(zone, order, mark,
1909 classzone_idx, alloc_flags))
1910 goto try_this_zone;
1911
cd38b115
MG
1912 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1913 /*
1914 * we do zlc_setup if there are multiple nodes
1915 * and before considering the first zone allowed
1916 * by the cpuset.
1917 */
1918 allowednodes = zlc_setup(zonelist, alloc_flags);
1919 zlc_active = 1;
1920 did_zlc_setup = 1;
1921 }
1922
fa5e084e
MG
1923 if (zone_reclaim_mode == 0)
1924 goto this_zone_full;
1925
cd38b115
MG
1926 /*
1927 * As we may have just activated ZLC, check if the first
1928 * eligible zone has failed zone_reclaim recently.
1929 */
1930 if (NUMA_BUILD && zlc_active &&
1931 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1932 continue;
1933
fa5e084e
MG
1934 ret = zone_reclaim(zone, gfp_mask, order);
1935 switch (ret) {
1936 case ZONE_RECLAIM_NOSCAN:
1937 /* did not scan */
cd38b115 1938 continue;
fa5e084e
MG
1939 case ZONE_RECLAIM_FULL:
1940 /* scanned but unreclaimable */
cd38b115 1941 continue;
fa5e084e
MG
1942 default:
1943 /* did we reclaim enough */
1944 if (!zone_watermark_ok(zone, order, mark,
1945 classzone_idx, alloc_flags))
9276b1bc 1946 goto this_zone_full;
0798e519 1947 }
7fb1d9fc
RS
1948 }
1949
fa5e084e 1950try_this_zone:
3dd28266
MG
1951 page = buffered_rmqueue(preferred_zone, zone, order,
1952 gfp_mask, migratetype);
0798e519 1953 if (page)
7fb1d9fc 1954 break;
9276b1bc
PJ
1955this_zone_full:
1956 if (NUMA_BUILD)
1957 zlc_mark_zone_full(zonelist, z);
54a6eb5c 1958 }
9276b1bc
PJ
1959
1960 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1961 /* Disable zlc cache for second zonelist scan */
1962 zlc_active = 0;
1963 goto zonelist_scan;
1964 }
b121186a
AS
1965
1966 if (page)
1967 /*
1968 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1969 * necessary to allocate the page. The expectation is
1970 * that the caller is taking steps that will free more
1971 * memory. The caller should avoid the page being used
1972 * for !PFMEMALLOC purposes.
1973 */
1974 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1975
7fb1d9fc 1976 return page;
753ee728
MH
1977}
1978
29423e77
DR
1979/*
1980 * Large machines with many possible nodes should not always dump per-node
1981 * meminfo in irq context.
1982 */
1983static inline bool should_suppress_show_mem(void)
1984{
1985 bool ret = false;
1986
1987#if NODES_SHIFT > 8
1988 ret = in_interrupt();
1989#endif
1990 return ret;
1991}
1992
a238ab5b
DH
1993static DEFINE_RATELIMIT_STATE(nopage_rs,
1994 DEFAULT_RATELIMIT_INTERVAL,
1995 DEFAULT_RATELIMIT_BURST);
1996
1997void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1998{
a238ab5b
DH
1999 unsigned int filter = SHOW_MEM_FILTER_NODES;
2000
c0a32fc5
SG
2001 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2002 debug_guardpage_minorder() > 0)
a238ab5b
DH
2003 return;
2004
2005 /*
2006 * This documents exceptions given to allocations in certain
2007 * contexts that are allowed to allocate outside current's set
2008 * of allowed nodes.
2009 */
2010 if (!(gfp_mask & __GFP_NOMEMALLOC))
2011 if (test_thread_flag(TIF_MEMDIE) ||
2012 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2013 filter &= ~SHOW_MEM_FILTER_NODES;
2014 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2015 filter &= ~SHOW_MEM_FILTER_NODES;
2016
2017 if (fmt) {
3ee9a4f0
JP
2018 struct va_format vaf;
2019 va_list args;
2020
a238ab5b 2021 va_start(args, fmt);
3ee9a4f0
JP
2022
2023 vaf.fmt = fmt;
2024 vaf.va = &args;
2025
2026 pr_warn("%pV", &vaf);
2027
a238ab5b
DH
2028 va_end(args);
2029 }
2030
3ee9a4f0
JP
2031 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2032 current->comm, order, gfp_mask);
a238ab5b
DH
2033
2034 dump_stack();
2035 if (!should_suppress_show_mem())
2036 show_mem(filter);
2037}
2038
11e33f6a
MG
2039static inline int
2040should_alloc_retry(gfp_t gfp_mask, unsigned int order,
f90ac398 2041 unsigned long did_some_progress,
11e33f6a 2042 unsigned long pages_reclaimed)
1da177e4 2043{
11e33f6a
MG
2044 /* Do not loop if specifically requested */
2045 if (gfp_mask & __GFP_NORETRY)
2046 return 0;
1da177e4 2047
f90ac398
MG
2048 /* Always retry if specifically requested */
2049 if (gfp_mask & __GFP_NOFAIL)
2050 return 1;
2051
2052 /*
2053 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2054 * making forward progress without invoking OOM. Suspend also disables
2055 * storage devices so kswapd will not help. Bail if we are suspending.
2056 */
2057 if (!did_some_progress && pm_suspended_storage())
2058 return 0;
2059
11e33f6a
MG
2060 /*
2061 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2062 * means __GFP_NOFAIL, but that may not be true in other
2063 * implementations.
2064 */
2065 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2066 return 1;
2067
2068 /*
2069 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2070 * specified, then we retry until we no longer reclaim any pages
2071 * (above), or we've reclaimed an order of pages at least as
2072 * large as the allocation's order. In both cases, if the
2073 * allocation still fails, we stop retrying.
2074 */
2075 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2076 return 1;
cf40bd16 2077
11e33f6a
MG
2078 return 0;
2079}
933e312e 2080
11e33f6a
MG
2081static inline struct page *
2082__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2083 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2084 nodemask_t *nodemask, struct zone *preferred_zone,
2085 int migratetype)
11e33f6a
MG
2086{
2087 struct page *page;
2088
2089 /* Acquire the OOM killer lock for the zones in zonelist */
ff321fea 2090 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
11e33f6a 2091 schedule_timeout_uninterruptible(1);
1da177e4
LT
2092 return NULL;
2093 }
6b1de916 2094
11e33f6a
MG
2095 /*
2096 * Go through the zonelist yet one more time, keep very high watermark
2097 * here, this is only to catch a parallel oom killing, we must fail if
2098 * we're still under heavy pressure.
2099 */
2100 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2101 order, zonelist, high_zoneidx,
5117f45d 2102 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 2103 preferred_zone, migratetype);
7fb1d9fc 2104 if (page)
11e33f6a
MG
2105 goto out;
2106
4365a567
KH
2107 if (!(gfp_mask & __GFP_NOFAIL)) {
2108 /* The OOM killer will not help higher order allocs */
2109 if (order > PAGE_ALLOC_COSTLY_ORDER)
2110 goto out;
03668b3c
DR
2111 /* The OOM killer does not needlessly kill tasks for lowmem */
2112 if (high_zoneidx < ZONE_NORMAL)
2113 goto out;
4365a567
KH
2114 /*
2115 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2116 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2117 * The caller should handle page allocation failure by itself if
2118 * it specifies __GFP_THISNODE.
2119 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2120 */
2121 if (gfp_mask & __GFP_THISNODE)
2122 goto out;
2123 }
11e33f6a 2124 /* Exhausted what can be done so it's blamo time */
08ab9b10 2125 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
11e33f6a
MG
2126
2127out:
2128 clear_zonelist_oom(zonelist, gfp_mask);
2129 return page;
2130}
2131
56de7263
MG
2132#ifdef CONFIG_COMPACTION
2133/* Try memory compaction for high-order allocations before reclaim */
2134static struct page *
2135__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2136 struct zonelist *zonelist, enum zone_type high_zoneidx,
2137 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2138 int migratetype, bool sync_migration,
c67fe375 2139 bool *contended_compaction, bool *deferred_compaction,
66199712 2140 unsigned long *did_some_progress)
56de7263 2141{
1fb3f8ca 2142 struct page *page = NULL;
56de7263 2143
66199712 2144 if (!order)
56de7263
MG
2145 return NULL;
2146
aff62249 2147 if (compaction_deferred(preferred_zone, order)) {
66199712
MG
2148 *deferred_compaction = true;
2149 return NULL;
2150 }
2151
c06b1fca 2152 current->flags |= PF_MEMALLOC;
56de7263 2153 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
c67fe375 2154 nodemask, sync_migration,
1fb3f8ca 2155 contended_compaction, &page);
c06b1fca 2156 current->flags &= ~PF_MEMALLOC;
56de7263 2157
1fb3f8ca
MG
2158 /* If compaction captured a page, prep and use it */
2159 if (page) {
2160 prep_new_page(page, order, gfp_mask);
2161 goto got_page;
2162 }
2163
2164 if (*did_some_progress != COMPACT_SKIPPED) {
56de7263
MG
2165 /* Page migration frees to the PCP lists but we want merging */
2166 drain_pages(get_cpu());
2167 put_cpu();
2168
2169 page = get_page_from_freelist(gfp_mask, nodemask,
2170 order, zonelist, high_zoneidx,
cfd19c5a
MG
2171 alloc_flags & ~ALLOC_NO_WATERMARKS,
2172 preferred_zone, migratetype);
56de7263 2173 if (page) {
1fb3f8ca 2174got_page:
4f92e258
MG
2175 preferred_zone->compact_considered = 0;
2176 preferred_zone->compact_defer_shift = 0;
aff62249
RR
2177 if (order >= preferred_zone->compact_order_failed)
2178 preferred_zone->compact_order_failed = order + 1;
56de7263
MG
2179 count_vm_event(COMPACTSUCCESS);
2180 return page;
2181 }
2182
2183 /*
2184 * It's bad if compaction run occurs and fails.
2185 * The most likely reason is that pages exist,
2186 * but not enough to satisfy watermarks.
2187 */
2188 count_vm_event(COMPACTFAIL);
66199712
MG
2189
2190 /*
2191 * As async compaction considers a subset of pageblocks, only
2192 * defer if the failure was a sync compaction failure.
2193 */
2194 if (sync_migration)
aff62249 2195 defer_compaction(preferred_zone, order);
56de7263
MG
2196
2197 cond_resched();
2198 }
2199
2200 return NULL;
2201}
2202#else
2203static inline struct page *
2204__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2205 struct zonelist *zonelist, enum zone_type high_zoneidx,
2206 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2207 int migratetype, bool sync_migration,
c67fe375 2208 bool *contended_compaction, bool *deferred_compaction,
66199712 2209 unsigned long *did_some_progress)
56de7263
MG
2210{
2211 return NULL;
2212}
2213#endif /* CONFIG_COMPACTION */
2214
bba90710
MS
2215/* Perform direct synchronous page reclaim */
2216static int
2217__perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2218 nodemask_t *nodemask)
11e33f6a 2219{
11e33f6a 2220 struct reclaim_state reclaim_state;
bba90710 2221 int progress;
11e33f6a
MG
2222
2223 cond_resched();
2224
2225 /* We now go into synchronous reclaim */
2226 cpuset_memory_pressure_bump();
c06b1fca 2227 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2228 lockdep_set_current_reclaim_state(gfp_mask);
2229 reclaim_state.reclaimed_slab = 0;
c06b1fca 2230 current->reclaim_state = &reclaim_state;
11e33f6a 2231
bba90710 2232 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
11e33f6a 2233
c06b1fca 2234 current->reclaim_state = NULL;
11e33f6a 2235 lockdep_clear_current_reclaim_state();
c06b1fca 2236 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2237
2238 cond_resched();
2239
bba90710
MS
2240 return progress;
2241}
2242
2243/* The really slow allocator path where we enter direct reclaim */
2244static inline struct page *
2245__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2246 struct zonelist *zonelist, enum zone_type high_zoneidx,
2247 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2248 int migratetype, unsigned long *did_some_progress)
2249{
2250 struct page *page = NULL;
2251 bool drained = false;
2252
2253 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2254 nodemask);
9ee493ce
MG
2255 if (unlikely(!(*did_some_progress)))
2256 return NULL;
11e33f6a 2257
76d3fbf8
MG
2258 /* After successful reclaim, reconsider all zones for allocation */
2259 if (NUMA_BUILD)
2260 zlc_clear_zones_full(zonelist);
2261
9ee493ce
MG
2262retry:
2263 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2264 zonelist, high_zoneidx,
cfd19c5a
MG
2265 alloc_flags & ~ALLOC_NO_WATERMARKS,
2266 preferred_zone, migratetype);
9ee493ce
MG
2267
2268 /*
2269 * If an allocation failed after direct reclaim, it could be because
2270 * pages are pinned on the per-cpu lists. Drain them and try again
2271 */
2272 if (!page && !drained) {
2273 drain_all_pages();
2274 drained = true;
2275 goto retry;
2276 }
2277
11e33f6a
MG
2278 return page;
2279}
2280
1da177e4 2281/*
11e33f6a
MG
2282 * This is called in the allocator slow-path if the allocation request is of
2283 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2284 */
11e33f6a
MG
2285static inline struct page *
2286__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2287 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2288 nodemask_t *nodemask, struct zone *preferred_zone,
2289 int migratetype)
11e33f6a
MG
2290{
2291 struct page *page;
2292
2293 do {
2294 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2295 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 2296 preferred_zone, migratetype);
11e33f6a
MG
2297
2298 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 2299 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
2300 } while (!page && (gfp_mask & __GFP_NOFAIL));
2301
2302 return page;
2303}
2304
2305static inline
2306void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
99504748
MG
2307 enum zone_type high_zoneidx,
2308 enum zone_type classzone_idx)
1da177e4 2309{
dd1a239f
MG
2310 struct zoneref *z;
2311 struct zone *zone;
1da177e4 2312
11e33f6a 2313 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
99504748 2314 wakeup_kswapd(zone, order, classzone_idx);
11e33f6a 2315}
cf40bd16 2316
341ce06f
PZ
2317static inline int
2318gfp_to_alloc_flags(gfp_t gfp_mask)
2319{
341ce06f
PZ
2320 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2321 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 2322
a56f57ff 2323 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2324 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2325
341ce06f
PZ
2326 /*
2327 * The caller may dip into page reserves a bit more if the caller
2328 * cannot run direct reclaim, or if the caller has realtime scheduling
2329 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2330 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2331 */
e6223a3b 2332 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2333
341ce06f 2334 if (!wait) {
5c3240d9
AA
2335 /*
2336 * Not worth trying to allocate harder for
2337 * __GFP_NOMEMALLOC even if it can't schedule.
2338 */
2339 if (!(gfp_mask & __GFP_NOMEMALLOC))
2340 alloc_flags |= ALLOC_HARDER;
523b9458 2341 /*
341ce06f
PZ
2342 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2343 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 2344 */
341ce06f 2345 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2346 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2347 alloc_flags |= ALLOC_HARDER;
2348
b37f1dd0
MG
2349 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2350 if (gfp_mask & __GFP_MEMALLOC)
2351 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2352 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2353 alloc_flags |= ALLOC_NO_WATERMARKS;
2354 else if (!in_interrupt() &&
2355 ((current->flags & PF_MEMALLOC) ||
2356 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2357 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2358 }
d95ea5d1
BZ
2359#ifdef CONFIG_CMA
2360 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2361 alloc_flags |= ALLOC_CMA;
2362#endif
341ce06f
PZ
2363 return alloc_flags;
2364}
2365
072bb0aa
MG
2366bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2367{
b37f1dd0 2368 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2369}
2370
11e33f6a
MG
2371static inline struct page *
2372__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2373 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2374 nodemask_t *nodemask, struct zone *preferred_zone,
2375 int migratetype)
11e33f6a
MG
2376{
2377 const gfp_t wait = gfp_mask & __GFP_WAIT;
2378 struct page *page = NULL;
2379 int alloc_flags;
2380 unsigned long pages_reclaimed = 0;
2381 unsigned long did_some_progress;
77f1fe6b 2382 bool sync_migration = false;
66199712 2383 bool deferred_compaction = false;
c67fe375 2384 bool contended_compaction = false;
1da177e4 2385
72807a74
MG
2386 /*
2387 * In the slowpath, we sanity check order to avoid ever trying to
2388 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2389 * be using allocators in order of preference for an area that is
2390 * too large.
2391 */
1fc28b70
MG
2392 if (order >= MAX_ORDER) {
2393 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2394 return NULL;
1fc28b70 2395 }
1da177e4 2396
952f3b51
CL
2397 /*
2398 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2399 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2400 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2401 * using a larger set of nodes after it has established that the
2402 * allowed per node queues are empty and that nodes are
2403 * over allocated.
2404 */
2405 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2406 goto nopage;
2407
cc4a6851 2408restart:
c6543459
RR
2409 wake_all_kswapd(order, zonelist, high_zoneidx,
2410 zone_idx(preferred_zone));
1da177e4 2411
9bf2229f 2412 /*
7fb1d9fc
RS
2413 * OK, we're below the kswapd watermark and have kicked background
2414 * reclaim. Now things get more complex, so set up alloc_flags according
2415 * to how we want to proceed.
9bf2229f 2416 */
341ce06f 2417 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2418
f33261d7
DR
2419 /*
2420 * Find the true preferred zone if the allocation is unconstrained by
2421 * cpusets.
2422 */
2423 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2424 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2425 &preferred_zone);
2426
cfa54a0f 2427rebalance:
341ce06f 2428 /* This is the last chance, in general, before the goto nopage. */
19770b32 2429 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
2430 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2431 preferred_zone, migratetype);
7fb1d9fc
RS
2432 if (page)
2433 goto got_pg;
1da177e4 2434
11e33f6a 2435 /* Allocate without watermarks if the context allows */
341ce06f 2436 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
2437 /*
2438 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2439 * the allocation is high priority and these type of
2440 * allocations are system rather than user orientated
2441 */
2442 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2443
341ce06f
PZ
2444 page = __alloc_pages_high_priority(gfp_mask, order,
2445 zonelist, high_zoneidx, nodemask,
2446 preferred_zone, migratetype);
cfd19c5a 2447 if (page) {
341ce06f 2448 goto got_pg;
cfd19c5a 2449 }
1da177e4
LT
2450 }
2451
2452 /* Atomic allocations - we can't balance anything */
2453 if (!wait)
2454 goto nopage;
2455
341ce06f 2456 /* Avoid recursion of direct reclaim */
c06b1fca 2457 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2458 goto nopage;
2459
6583bb64
DR
2460 /* Avoid allocations with no watermarks from looping endlessly */
2461 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2462 goto nopage;
2463
77f1fe6b
MG
2464 /*
2465 * Try direct compaction. The first pass is asynchronous. Subsequent
2466 * attempts after direct reclaim are synchronous
2467 */
56de7263
MG
2468 page = __alloc_pages_direct_compact(gfp_mask, order,
2469 zonelist, high_zoneidx,
2470 nodemask,
2471 alloc_flags, preferred_zone,
66199712 2472 migratetype, sync_migration,
c67fe375 2473 &contended_compaction,
66199712
MG
2474 &deferred_compaction,
2475 &did_some_progress);
56de7263
MG
2476 if (page)
2477 goto got_pg;
c6a140bf 2478 sync_migration = true;
56de7263 2479
66199712
MG
2480 /*
2481 * If compaction is deferred for high-order allocations, it is because
2482 * sync compaction recently failed. In this is the case and the caller
c67fe375
MG
2483 * requested a movable allocation that does not heavily disrupt the
2484 * system then fail the allocation instead of entering direct reclaim.
66199712 2485 */
c67fe375 2486 if ((deferred_compaction || contended_compaction) &&
c6543459 2487 (gfp_mask & (__GFP_MOVABLE|__GFP_REPEAT)) == __GFP_MOVABLE)
66199712
MG
2488 goto nopage;
2489
11e33f6a
MG
2490 /* Try direct reclaim and then allocating */
2491 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2492 zonelist, high_zoneidx,
2493 nodemask,
5117f45d 2494 alloc_flags, preferred_zone,
3dd28266 2495 migratetype, &did_some_progress);
11e33f6a
MG
2496 if (page)
2497 goto got_pg;
1da177e4 2498
e33c3b5e 2499 /*
11e33f6a
MG
2500 * If we failed to make any progress reclaiming, then we are
2501 * running out of options and have to consider going OOM
e33c3b5e 2502 */
11e33f6a
MG
2503 if (!did_some_progress) {
2504 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
2505 if (oom_killer_disabled)
2506 goto nopage;
29fd66d2
DR
2507 /* Coredumps can quickly deplete all memory reserves */
2508 if ((current->flags & PF_DUMPCORE) &&
2509 !(gfp_mask & __GFP_NOFAIL))
2510 goto nopage;
11e33f6a
MG
2511 page = __alloc_pages_may_oom(gfp_mask, order,
2512 zonelist, high_zoneidx,
3dd28266
MG
2513 nodemask, preferred_zone,
2514 migratetype);
11e33f6a
MG
2515 if (page)
2516 goto got_pg;
1da177e4 2517
03668b3c
DR
2518 if (!(gfp_mask & __GFP_NOFAIL)) {
2519 /*
2520 * The oom killer is not called for high-order
2521 * allocations that may fail, so if no progress
2522 * is being made, there are no other options and
2523 * retrying is unlikely to help.
2524 */
2525 if (order > PAGE_ALLOC_COSTLY_ORDER)
2526 goto nopage;
2527 /*
2528 * The oom killer is not called for lowmem
2529 * allocations to prevent needlessly killing
2530 * innocent tasks.
2531 */
2532 if (high_zoneidx < ZONE_NORMAL)
2533 goto nopage;
2534 }
e2c55dc8 2535
ff0ceb9d
DR
2536 goto restart;
2537 }
1da177e4
LT
2538 }
2539
11e33f6a 2540 /* Check if we should retry the allocation */
a41f24ea 2541 pages_reclaimed += did_some_progress;
f90ac398
MG
2542 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2543 pages_reclaimed)) {
11e33f6a 2544 /* Wait for some write requests to complete then retry */
0e093d99 2545 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2546 goto rebalance;
3e7d3449
MG
2547 } else {
2548 /*
2549 * High-order allocations do not necessarily loop after
2550 * direct reclaim and reclaim/compaction depends on compaction
2551 * being called after reclaim so call directly if necessary
2552 */
2553 page = __alloc_pages_direct_compact(gfp_mask, order,
2554 zonelist, high_zoneidx,
2555 nodemask,
2556 alloc_flags, preferred_zone,
66199712 2557 migratetype, sync_migration,
c67fe375 2558 &contended_compaction,
66199712
MG
2559 &deferred_compaction,
2560 &did_some_progress);
3e7d3449
MG
2561 if (page)
2562 goto got_pg;
1da177e4
LT
2563 }
2564
2565nopage:
a238ab5b 2566 warn_alloc_failed(gfp_mask, order, NULL);
b1eeab67 2567 return page;
1da177e4 2568got_pg:
b1eeab67
VN
2569 if (kmemcheck_enabled)
2570 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
11e33f6a 2571
072bb0aa 2572 return page;
1da177e4 2573}
11e33f6a
MG
2574
2575/*
2576 * This is the 'heart' of the zoned buddy allocator.
2577 */
2578struct page *
2579__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2580 struct zonelist *zonelist, nodemask_t *nodemask)
2581{
2582 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2583 struct zone *preferred_zone;
cc9a6c87 2584 struct page *page = NULL;
3dd28266 2585 int migratetype = allocflags_to_migratetype(gfp_mask);
cc9a6c87 2586 unsigned int cpuset_mems_cookie;
d95ea5d1 2587 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
11e33f6a 2588
dcce284a
BH
2589 gfp_mask &= gfp_allowed_mask;
2590
11e33f6a
MG
2591 lockdep_trace_alloc(gfp_mask);
2592
2593 might_sleep_if(gfp_mask & __GFP_WAIT);
2594
2595 if (should_fail_alloc_page(gfp_mask, order))
2596 return NULL;
2597
2598 /*
2599 * Check the zones suitable for the gfp_mask contain at least one
2600 * valid zone. It's possible to have an empty zonelist as a result
2601 * of GFP_THISNODE and a memoryless node
2602 */
2603 if (unlikely(!zonelist->_zonerefs->zone))
2604 return NULL;
2605
cc9a6c87
MG
2606retry_cpuset:
2607 cpuset_mems_cookie = get_mems_allowed();
2608
5117f45d 2609 /* The preferred zone is used for statistics later */
f33261d7
DR
2610 first_zones_zonelist(zonelist, high_zoneidx,
2611 nodemask ? : &cpuset_current_mems_allowed,
2612 &preferred_zone);
cc9a6c87
MG
2613 if (!preferred_zone)
2614 goto out;
5117f45d 2615
d95ea5d1
BZ
2616#ifdef CONFIG_CMA
2617 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2618 alloc_flags |= ALLOC_CMA;
2619#endif
5117f45d 2620 /* First allocation attempt */
11e33f6a 2621 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
d95ea5d1 2622 zonelist, high_zoneidx, alloc_flags,
3dd28266 2623 preferred_zone, migratetype);
11e33f6a
MG
2624 if (unlikely(!page))
2625 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2626 zonelist, high_zoneidx, nodemask,
3dd28266 2627 preferred_zone, migratetype);
11e33f6a 2628
4b4f278c 2629 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
cc9a6c87
MG
2630
2631out:
2632 /*
2633 * When updating a task's mems_allowed, it is possible to race with
2634 * parallel threads in such a way that an allocation can fail while
2635 * the mask is being updated. If a page allocation is about to fail,
2636 * check if the cpuset changed during allocation and if so, retry.
2637 */
2638 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2639 goto retry_cpuset;
2640
11e33f6a 2641 return page;
1da177e4 2642}
d239171e 2643EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2644
2645/*
2646 * Common helper functions.
2647 */
920c7a5d 2648unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2649{
945a1113
AM
2650 struct page *page;
2651
2652 /*
2653 * __get_free_pages() returns a 32-bit address, which cannot represent
2654 * a highmem page
2655 */
2656 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2657
1da177e4
LT
2658 page = alloc_pages(gfp_mask, order);
2659 if (!page)
2660 return 0;
2661 return (unsigned long) page_address(page);
2662}
1da177e4
LT
2663EXPORT_SYMBOL(__get_free_pages);
2664
920c7a5d 2665unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2666{
945a1113 2667 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2668}
1da177e4
LT
2669EXPORT_SYMBOL(get_zeroed_page);
2670
920c7a5d 2671void __free_pages(struct page *page, unsigned int order)
1da177e4 2672{
b5810039 2673 if (put_page_testzero(page)) {
1da177e4 2674 if (order == 0)
fc91668e 2675 free_hot_cold_page(page, 0);
1da177e4
LT
2676 else
2677 __free_pages_ok(page, order);
2678 }
2679}
2680
2681EXPORT_SYMBOL(__free_pages);
2682
920c7a5d 2683void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2684{
2685 if (addr != 0) {
725d704e 2686 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2687 __free_pages(virt_to_page((void *)addr), order);
2688 }
2689}
2690
2691EXPORT_SYMBOL(free_pages);
2692
ee85c2e1
AK
2693static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2694{
2695 if (addr) {
2696 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2697 unsigned long used = addr + PAGE_ALIGN(size);
2698
2699 split_page(virt_to_page((void *)addr), order);
2700 while (used < alloc_end) {
2701 free_page(used);
2702 used += PAGE_SIZE;
2703 }
2704 }
2705 return (void *)addr;
2706}
2707
2be0ffe2
TT
2708/**
2709 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2710 * @size: the number of bytes to allocate
2711 * @gfp_mask: GFP flags for the allocation
2712 *
2713 * This function is similar to alloc_pages(), except that it allocates the
2714 * minimum number of pages to satisfy the request. alloc_pages() can only
2715 * allocate memory in power-of-two pages.
2716 *
2717 * This function is also limited by MAX_ORDER.
2718 *
2719 * Memory allocated by this function must be released by free_pages_exact().
2720 */
2721void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2722{
2723 unsigned int order = get_order(size);
2724 unsigned long addr;
2725
2726 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 2727 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
2728}
2729EXPORT_SYMBOL(alloc_pages_exact);
2730
ee85c2e1
AK
2731/**
2732 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2733 * pages on a node.
b5e6ab58 2734 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
2735 * @size: the number of bytes to allocate
2736 * @gfp_mask: GFP flags for the allocation
2737 *
2738 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2739 * back.
2740 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2741 * but is not exact.
2742 */
2743void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2744{
2745 unsigned order = get_order(size);
2746 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2747 if (!p)
2748 return NULL;
2749 return make_alloc_exact((unsigned long)page_address(p), order, size);
2750}
2751EXPORT_SYMBOL(alloc_pages_exact_nid);
2752
2be0ffe2
TT
2753/**
2754 * free_pages_exact - release memory allocated via alloc_pages_exact()
2755 * @virt: the value returned by alloc_pages_exact.
2756 * @size: size of allocation, same value as passed to alloc_pages_exact().
2757 *
2758 * Release the memory allocated by a previous call to alloc_pages_exact.
2759 */
2760void free_pages_exact(void *virt, size_t size)
2761{
2762 unsigned long addr = (unsigned long)virt;
2763 unsigned long end = addr + PAGE_ALIGN(size);
2764
2765 while (addr < end) {
2766 free_page(addr);
2767 addr += PAGE_SIZE;
2768 }
2769}
2770EXPORT_SYMBOL(free_pages_exact);
2771
1da177e4
LT
2772static unsigned int nr_free_zone_pages(int offset)
2773{
dd1a239f 2774 struct zoneref *z;
54a6eb5c
MG
2775 struct zone *zone;
2776
e310fd43 2777 /* Just pick one node, since fallback list is circular */
1da177e4
LT
2778 unsigned int sum = 0;
2779
0e88460d 2780 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2781
54a6eb5c 2782 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43 2783 unsigned long size = zone->present_pages;
41858966 2784 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2785 if (size > high)
2786 sum += size - high;
1da177e4
LT
2787 }
2788
2789 return sum;
2790}
2791
2792/*
2793 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2794 */
2795unsigned int nr_free_buffer_pages(void)
2796{
af4ca457 2797 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2798}
c2f1a551 2799EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
2800
2801/*
2802 * Amount of free RAM allocatable within all zones
2803 */
2804unsigned int nr_free_pagecache_pages(void)
2805{
2a1e274a 2806 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2807}
08e0f6a9
CL
2808
2809static inline void show_node(struct zone *zone)
1da177e4 2810{
08e0f6a9 2811 if (NUMA_BUILD)
25ba77c1 2812 printk("Node %d ", zone_to_nid(zone));
1da177e4 2813}
1da177e4 2814
1da177e4
LT
2815void si_meminfo(struct sysinfo *val)
2816{
2817 val->totalram = totalram_pages;
2818 val->sharedram = 0;
d23ad423 2819 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2820 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2821 val->totalhigh = totalhigh_pages;
2822 val->freehigh = nr_free_highpages();
1da177e4
LT
2823 val->mem_unit = PAGE_SIZE;
2824}
2825
2826EXPORT_SYMBOL(si_meminfo);
2827
2828#ifdef CONFIG_NUMA
2829void si_meminfo_node(struct sysinfo *val, int nid)
2830{
2831 pg_data_t *pgdat = NODE_DATA(nid);
2832
2833 val->totalram = pgdat->node_present_pages;
d23ad423 2834 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2835#ifdef CONFIG_HIGHMEM
1da177e4 2836 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
2837 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2838 NR_FREE_PAGES);
98d2b0eb
CL
2839#else
2840 val->totalhigh = 0;
2841 val->freehigh = 0;
2842#endif
1da177e4
LT
2843 val->mem_unit = PAGE_SIZE;
2844}
2845#endif
2846
ddd588b5 2847/*
7bf02ea2
DR
2848 * Determine whether the node should be displayed or not, depending on whether
2849 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 2850 */
7bf02ea2 2851bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
2852{
2853 bool ret = false;
cc9a6c87 2854 unsigned int cpuset_mems_cookie;
ddd588b5
DR
2855
2856 if (!(flags & SHOW_MEM_FILTER_NODES))
2857 goto out;
2858
cc9a6c87
MG
2859 do {
2860 cpuset_mems_cookie = get_mems_allowed();
2861 ret = !node_isset(nid, cpuset_current_mems_allowed);
2862 } while (!put_mems_allowed(cpuset_mems_cookie));
ddd588b5
DR
2863out:
2864 return ret;
2865}
2866
1da177e4
LT
2867#define K(x) ((x) << (PAGE_SHIFT-10))
2868
2869/*
2870 * Show free area list (used inside shift_scroll-lock stuff)
2871 * We also calculate the percentage fragmentation. We do this by counting the
2872 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
2873 * Suppresses nodes that are not allowed by current's cpuset if
2874 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 2875 */
7bf02ea2 2876void show_free_areas(unsigned int filter)
1da177e4 2877{
c7241913 2878 int cpu;
1da177e4
LT
2879 struct zone *zone;
2880
ee99c71c 2881 for_each_populated_zone(zone) {
7bf02ea2 2882 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2883 continue;
c7241913
JS
2884 show_node(zone);
2885 printk("%s per-cpu:\n", zone->name);
1da177e4 2886
6b482c67 2887 for_each_online_cpu(cpu) {
1da177e4
LT
2888 struct per_cpu_pageset *pageset;
2889
99dcc3e5 2890 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2891
3dfa5721
CL
2892 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2893 cpu, pageset->pcp.high,
2894 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2895 }
2896 }
2897
a731286d
KM
2898 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2899 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 2900 " unevictable:%lu"
b76146ed 2901 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 2902 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a
BZ
2903 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
2904 " free_cma:%lu\n",
4f98a2fe 2905 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 2906 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
2907 global_page_state(NR_ISOLATED_ANON),
2908 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 2909 global_page_state(NR_INACTIVE_FILE),
a731286d 2910 global_page_state(NR_ISOLATED_FILE),
7b854121 2911 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 2912 global_page_state(NR_FILE_DIRTY),
ce866b34 2913 global_page_state(NR_WRITEBACK),
fd39fc85 2914 global_page_state(NR_UNSTABLE_NFS),
d23ad423 2915 global_page_state(NR_FREE_PAGES),
3701b033
KM
2916 global_page_state(NR_SLAB_RECLAIMABLE),
2917 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2918 global_page_state(NR_FILE_MAPPED),
4b02108a 2919 global_page_state(NR_SHMEM),
a25700a5 2920 global_page_state(NR_PAGETABLE),
d1ce749a
BZ
2921 global_page_state(NR_BOUNCE),
2922 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 2923
ee99c71c 2924 for_each_populated_zone(zone) {
1da177e4
LT
2925 int i;
2926
7bf02ea2 2927 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2928 continue;
1da177e4
LT
2929 show_node(zone);
2930 printk("%s"
2931 " free:%lukB"
2932 " min:%lukB"
2933 " low:%lukB"
2934 " high:%lukB"
4f98a2fe
RR
2935 " active_anon:%lukB"
2936 " inactive_anon:%lukB"
2937 " active_file:%lukB"
2938 " inactive_file:%lukB"
7b854121 2939 " unevictable:%lukB"
a731286d
KM
2940 " isolated(anon):%lukB"
2941 " isolated(file):%lukB"
1da177e4 2942 " present:%lukB"
4a0aa73f
KM
2943 " mlocked:%lukB"
2944 " dirty:%lukB"
2945 " writeback:%lukB"
2946 " mapped:%lukB"
4b02108a 2947 " shmem:%lukB"
4a0aa73f
KM
2948 " slab_reclaimable:%lukB"
2949 " slab_unreclaimable:%lukB"
c6a7f572 2950 " kernel_stack:%lukB"
4a0aa73f
KM
2951 " pagetables:%lukB"
2952 " unstable:%lukB"
2953 " bounce:%lukB"
d1ce749a 2954 " free_cma:%lukB"
4a0aa73f 2955 " writeback_tmp:%lukB"
1da177e4
LT
2956 " pages_scanned:%lu"
2957 " all_unreclaimable? %s"
2958 "\n",
2959 zone->name,
88f5acf8 2960 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
2961 K(min_wmark_pages(zone)),
2962 K(low_wmark_pages(zone)),
2963 K(high_wmark_pages(zone)),
4f98a2fe
RR
2964 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2965 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2966 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2967 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 2968 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
2969 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2970 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 2971 K(zone->present_pages),
4a0aa73f
KM
2972 K(zone_page_state(zone, NR_MLOCK)),
2973 K(zone_page_state(zone, NR_FILE_DIRTY)),
2974 K(zone_page_state(zone, NR_WRITEBACK)),
2975 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 2976 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
2977 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2978 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
2979 zone_page_state(zone, NR_KERNEL_STACK) *
2980 THREAD_SIZE / 1024,
4a0aa73f
KM
2981 K(zone_page_state(zone, NR_PAGETABLE)),
2982 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2983 K(zone_page_state(zone, NR_BOUNCE)),
d1ce749a 2984 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 2985 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 2986 zone->pages_scanned,
93e4a89a 2987 (zone->all_unreclaimable ? "yes" : "no")
1da177e4
LT
2988 );
2989 printk("lowmem_reserve[]:");
2990 for (i = 0; i < MAX_NR_ZONES; i++)
2991 printk(" %lu", zone->lowmem_reserve[i]);
2992 printk("\n");
2993 }
2994
ee99c71c 2995 for_each_populated_zone(zone) {
8f9de51a 2996 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4 2997
7bf02ea2 2998 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2999 continue;
1da177e4
LT
3000 show_node(zone);
3001 printk("%s: ", zone->name);
1da177e4
LT
3002
3003 spin_lock_irqsave(&zone->lock, flags);
3004 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
3005 nr[order] = zone->free_area[order].nr_free;
3006 total += nr[order] << order;
1da177e4
LT
3007 }
3008 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
3009 for (order = 0; order < MAX_ORDER; order++)
3010 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
3011 printk("= %lukB\n", K(total));
3012 }
3013
e6f3602d
LW
3014 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3015
1da177e4
LT
3016 show_swap_cache_info();
3017}
3018
19770b32
MG
3019static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3020{
3021 zoneref->zone = zone;
3022 zoneref->zone_idx = zone_idx(zone);
3023}
3024
1da177e4
LT
3025/*
3026 * Builds allocation fallback zone lists.
1a93205b
CL
3027 *
3028 * Add all populated zones of a node to the zonelist.
1da177e4 3029 */
f0c0b2b8
KH
3030static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3031 int nr_zones, enum zone_type zone_type)
1da177e4 3032{
1a93205b
CL
3033 struct zone *zone;
3034
98d2b0eb 3035 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 3036 zone_type++;
02a68a5e
CL
3037
3038 do {
2f6726e5 3039 zone_type--;
070f8032 3040 zone = pgdat->node_zones + zone_type;
1a93205b 3041 if (populated_zone(zone)) {
dd1a239f
MG
3042 zoneref_set_zone(zone,
3043 &zonelist->_zonerefs[nr_zones++]);
070f8032 3044 check_highest_zone(zone_type);
1da177e4 3045 }
02a68a5e 3046
2f6726e5 3047 } while (zone_type);
070f8032 3048 return nr_zones;
1da177e4
LT
3049}
3050
f0c0b2b8
KH
3051
3052/*
3053 * zonelist_order:
3054 * 0 = automatic detection of better ordering.
3055 * 1 = order by ([node] distance, -zonetype)
3056 * 2 = order by (-zonetype, [node] distance)
3057 *
3058 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3059 * the same zonelist. So only NUMA can configure this param.
3060 */
3061#define ZONELIST_ORDER_DEFAULT 0
3062#define ZONELIST_ORDER_NODE 1
3063#define ZONELIST_ORDER_ZONE 2
3064
3065/* zonelist order in the kernel.
3066 * set_zonelist_order() will set this to NODE or ZONE.
3067 */
3068static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3069static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3070
3071
1da177e4 3072#ifdef CONFIG_NUMA
f0c0b2b8
KH
3073/* The value user specified ....changed by config */
3074static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3075/* string for sysctl */
3076#define NUMA_ZONELIST_ORDER_LEN 16
3077char numa_zonelist_order[16] = "default";
3078
3079/*
3080 * interface for configure zonelist ordering.
3081 * command line option "numa_zonelist_order"
3082 * = "[dD]efault - default, automatic configuration.
3083 * = "[nN]ode - order by node locality, then by zone within node
3084 * = "[zZ]one - order by zone, then by locality within zone
3085 */
3086
3087static int __parse_numa_zonelist_order(char *s)
3088{
3089 if (*s == 'd' || *s == 'D') {
3090 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3091 } else if (*s == 'n' || *s == 'N') {
3092 user_zonelist_order = ZONELIST_ORDER_NODE;
3093 } else if (*s == 'z' || *s == 'Z') {
3094 user_zonelist_order = ZONELIST_ORDER_ZONE;
3095 } else {
3096 printk(KERN_WARNING
3097 "Ignoring invalid numa_zonelist_order value: "
3098 "%s\n", s);
3099 return -EINVAL;
3100 }
3101 return 0;
3102}
3103
3104static __init int setup_numa_zonelist_order(char *s)
3105{
ecb256f8
VL
3106 int ret;
3107
3108 if (!s)
3109 return 0;
3110
3111 ret = __parse_numa_zonelist_order(s);
3112 if (ret == 0)
3113 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3114
3115 return ret;
f0c0b2b8
KH
3116}
3117early_param("numa_zonelist_order", setup_numa_zonelist_order);
3118
3119/*
3120 * sysctl handler for numa_zonelist_order
3121 */
3122int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 3123 void __user *buffer, size_t *length,
f0c0b2b8
KH
3124 loff_t *ppos)
3125{
3126 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3127 int ret;
443c6f14 3128 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3129
443c6f14 3130 mutex_lock(&zl_order_mutex);
f0c0b2b8 3131 if (write)
443c6f14 3132 strcpy(saved_string, (char*)table->data);
8d65af78 3133 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3134 if (ret)
443c6f14 3135 goto out;
f0c0b2b8
KH
3136 if (write) {
3137 int oldval = user_zonelist_order;
3138 if (__parse_numa_zonelist_order((char*)table->data)) {
3139 /*
3140 * bogus value. restore saved string
3141 */
3142 strncpy((char*)table->data, saved_string,
3143 NUMA_ZONELIST_ORDER_LEN);
3144 user_zonelist_order = oldval;
4eaf3f64
HL
3145 } else if (oldval != user_zonelist_order) {
3146 mutex_lock(&zonelists_mutex);
9adb62a5 3147 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3148 mutex_unlock(&zonelists_mutex);
3149 }
f0c0b2b8 3150 }
443c6f14
AK
3151out:
3152 mutex_unlock(&zl_order_mutex);
3153 return ret;
f0c0b2b8
KH
3154}
3155
3156
62bc62a8 3157#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3158static int node_load[MAX_NUMNODES];
3159
1da177e4 3160/**
4dc3b16b 3161 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3162 * @node: node whose fallback list we're appending
3163 * @used_node_mask: nodemask_t of already used nodes
3164 *
3165 * We use a number of factors to determine which is the next node that should
3166 * appear on a given node's fallback list. The node should not have appeared
3167 * already in @node's fallback list, and it should be the next closest node
3168 * according to the distance array (which contains arbitrary distance values
3169 * from each node to each node in the system), and should also prefer nodes
3170 * with no CPUs, since presumably they'll have very little allocation pressure
3171 * on them otherwise.
3172 * It returns -1 if no node is found.
3173 */
f0c0b2b8 3174static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3175{
4cf808eb 3176 int n, val;
1da177e4
LT
3177 int min_val = INT_MAX;
3178 int best_node = -1;
a70f7302 3179 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3180
4cf808eb
LT
3181 /* Use the local node if we haven't already */
3182 if (!node_isset(node, *used_node_mask)) {
3183 node_set(node, *used_node_mask);
3184 return node;
3185 }
1da177e4 3186
37b07e41 3187 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
3188
3189 /* Don't want a node to appear more than once */
3190 if (node_isset(n, *used_node_mask))
3191 continue;
3192
1da177e4
LT
3193 /* Use the distance array to find the distance */
3194 val = node_distance(node, n);
3195
4cf808eb
LT
3196 /* Penalize nodes under us ("prefer the next node") */
3197 val += (n < node);
3198
1da177e4 3199 /* Give preference to headless and unused nodes */
a70f7302
RR
3200 tmp = cpumask_of_node(n);
3201 if (!cpumask_empty(tmp))
1da177e4
LT
3202 val += PENALTY_FOR_NODE_WITH_CPUS;
3203
3204 /* Slight preference for less loaded node */
3205 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3206 val += node_load[n];
3207
3208 if (val < min_val) {
3209 min_val = val;
3210 best_node = n;
3211 }
3212 }
3213
3214 if (best_node >= 0)
3215 node_set(best_node, *used_node_mask);
3216
3217 return best_node;
3218}
3219
f0c0b2b8
KH
3220
3221/*
3222 * Build zonelists ordered by node and zones within node.
3223 * This results in maximum locality--normal zone overflows into local
3224 * DMA zone, if any--but risks exhausting DMA zone.
3225 */
3226static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 3227{
f0c0b2b8 3228 int j;
1da177e4 3229 struct zonelist *zonelist;
f0c0b2b8 3230
54a6eb5c 3231 zonelist = &pgdat->node_zonelists[0];
dd1a239f 3232 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
3233 ;
3234 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3235 MAX_NR_ZONES - 1);
dd1a239f
MG
3236 zonelist->_zonerefs[j].zone = NULL;
3237 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
3238}
3239
523b9458
CL
3240/*
3241 * Build gfp_thisnode zonelists
3242 */
3243static void build_thisnode_zonelists(pg_data_t *pgdat)
3244{
523b9458
CL
3245 int j;
3246 struct zonelist *zonelist;
3247
54a6eb5c
MG
3248 zonelist = &pgdat->node_zonelists[1];
3249 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
3250 zonelist->_zonerefs[j].zone = NULL;
3251 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3252}
3253
f0c0b2b8
KH
3254/*
3255 * Build zonelists ordered by zone and nodes within zones.
3256 * This results in conserving DMA zone[s] until all Normal memory is
3257 * exhausted, but results in overflowing to remote node while memory
3258 * may still exist in local DMA zone.
3259 */
3260static int node_order[MAX_NUMNODES];
3261
3262static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3263{
f0c0b2b8
KH
3264 int pos, j, node;
3265 int zone_type; /* needs to be signed */
3266 struct zone *z;
3267 struct zonelist *zonelist;
3268
54a6eb5c
MG
3269 zonelist = &pgdat->node_zonelists[0];
3270 pos = 0;
3271 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3272 for (j = 0; j < nr_nodes; j++) {
3273 node = node_order[j];
3274 z = &NODE_DATA(node)->node_zones[zone_type];
3275 if (populated_zone(z)) {
dd1a239f
MG
3276 zoneref_set_zone(z,
3277 &zonelist->_zonerefs[pos++]);
54a6eb5c 3278 check_highest_zone(zone_type);
f0c0b2b8
KH
3279 }
3280 }
f0c0b2b8 3281 }
dd1a239f
MG
3282 zonelist->_zonerefs[pos].zone = NULL;
3283 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3284}
3285
3286static int default_zonelist_order(void)
3287{
3288 int nid, zone_type;
3289 unsigned long low_kmem_size,total_size;
3290 struct zone *z;
3291 int average_size;
3292 /*
88393161 3293 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
3294 * If they are really small and used heavily, the system can fall
3295 * into OOM very easily.
e325c90f 3296 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
3297 */
3298 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3299 low_kmem_size = 0;
3300 total_size = 0;
3301 for_each_online_node(nid) {
3302 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3303 z = &NODE_DATA(nid)->node_zones[zone_type];
3304 if (populated_zone(z)) {
3305 if (zone_type < ZONE_NORMAL)
3306 low_kmem_size += z->present_pages;
3307 total_size += z->present_pages;
e325c90f
DR
3308 } else if (zone_type == ZONE_NORMAL) {
3309 /*
3310 * If any node has only lowmem, then node order
3311 * is preferred to allow kernel allocations
3312 * locally; otherwise, they can easily infringe
3313 * on other nodes when there is an abundance of
3314 * lowmem available to allocate from.
3315 */
3316 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
3317 }
3318 }
3319 }
3320 if (!low_kmem_size || /* there are no DMA area. */
3321 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3322 return ZONELIST_ORDER_NODE;
3323 /*
3324 * look into each node's config.
3325 * If there is a node whose DMA/DMA32 memory is very big area on
3326 * local memory, NODE_ORDER may be suitable.
3327 */
37b07e41
LS
3328 average_size = total_size /
3329 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
3330 for_each_online_node(nid) {
3331 low_kmem_size = 0;
3332 total_size = 0;
3333 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3334 z = &NODE_DATA(nid)->node_zones[zone_type];
3335 if (populated_zone(z)) {
3336 if (zone_type < ZONE_NORMAL)
3337 low_kmem_size += z->present_pages;
3338 total_size += z->present_pages;
3339 }
3340 }
3341 if (low_kmem_size &&
3342 total_size > average_size && /* ignore small node */
3343 low_kmem_size > total_size * 70/100)
3344 return ZONELIST_ORDER_NODE;
3345 }
3346 return ZONELIST_ORDER_ZONE;
3347}
3348
3349static void set_zonelist_order(void)
3350{
3351 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3352 current_zonelist_order = default_zonelist_order();
3353 else
3354 current_zonelist_order = user_zonelist_order;
3355}
3356
3357static void build_zonelists(pg_data_t *pgdat)
3358{
3359 int j, node, load;
3360 enum zone_type i;
1da177e4 3361 nodemask_t used_mask;
f0c0b2b8
KH
3362 int local_node, prev_node;
3363 struct zonelist *zonelist;
3364 int order = current_zonelist_order;
1da177e4
LT
3365
3366 /* initialize zonelists */
523b9458 3367 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3368 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3369 zonelist->_zonerefs[0].zone = NULL;
3370 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3371 }
3372
3373 /* NUMA-aware ordering of nodes */
3374 local_node = pgdat->node_id;
62bc62a8 3375 load = nr_online_nodes;
1da177e4
LT
3376 prev_node = local_node;
3377 nodes_clear(used_mask);
f0c0b2b8 3378
f0c0b2b8
KH
3379 memset(node_order, 0, sizeof(node_order));
3380 j = 0;
3381
1da177e4 3382 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
3383 int distance = node_distance(local_node, node);
3384
3385 /*
3386 * If another node is sufficiently far away then it is better
3387 * to reclaim pages in a zone before going off node.
3388 */
3389 if (distance > RECLAIM_DISTANCE)
3390 zone_reclaim_mode = 1;
3391
1da177e4
LT
3392 /*
3393 * We don't want to pressure a particular node.
3394 * So adding penalty to the first node in same
3395 * distance group to make it round-robin.
3396 */
9eeff239 3397 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
3398 node_load[node] = load;
3399
1da177e4
LT
3400 prev_node = node;
3401 load--;
f0c0b2b8
KH
3402 if (order == ZONELIST_ORDER_NODE)
3403 build_zonelists_in_node_order(pgdat, node);
3404 else
3405 node_order[j++] = node; /* remember order */
3406 }
1da177e4 3407
f0c0b2b8
KH
3408 if (order == ZONELIST_ORDER_ZONE) {
3409 /* calculate node order -- i.e., DMA last! */
3410 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3411 }
523b9458
CL
3412
3413 build_thisnode_zonelists(pgdat);
1da177e4
LT
3414}
3415
9276b1bc 3416/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3417static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3418{
54a6eb5c
MG
3419 struct zonelist *zonelist;
3420 struct zonelist_cache *zlc;
dd1a239f 3421 struct zoneref *z;
9276b1bc 3422
54a6eb5c
MG
3423 zonelist = &pgdat->node_zonelists[0];
3424 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3425 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3426 for (z = zonelist->_zonerefs; z->zone; z++)
3427 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3428}
3429
7aac7898
LS
3430#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3431/*
3432 * Return node id of node used for "local" allocations.
3433 * I.e., first node id of first zone in arg node's generic zonelist.
3434 * Used for initializing percpu 'numa_mem', which is used primarily
3435 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3436 */
3437int local_memory_node(int node)
3438{
3439 struct zone *zone;
3440
3441 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3442 gfp_zone(GFP_KERNEL),
3443 NULL,
3444 &zone);
3445 return zone->node;
3446}
3447#endif
f0c0b2b8 3448
1da177e4
LT
3449#else /* CONFIG_NUMA */
3450
f0c0b2b8
KH
3451static void set_zonelist_order(void)
3452{
3453 current_zonelist_order = ZONELIST_ORDER_ZONE;
3454}
3455
3456static void build_zonelists(pg_data_t *pgdat)
1da177e4 3457{
19655d34 3458 int node, local_node;
54a6eb5c
MG
3459 enum zone_type j;
3460 struct zonelist *zonelist;
1da177e4
LT
3461
3462 local_node = pgdat->node_id;
1da177e4 3463
54a6eb5c
MG
3464 zonelist = &pgdat->node_zonelists[0];
3465 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 3466
54a6eb5c
MG
3467 /*
3468 * Now we build the zonelist so that it contains the zones
3469 * of all the other nodes.
3470 * We don't want to pressure a particular node, so when
3471 * building the zones for node N, we make sure that the
3472 * zones coming right after the local ones are those from
3473 * node N+1 (modulo N)
3474 */
3475 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3476 if (!node_online(node))
3477 continue;
3478 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3479 MAX_NR_ZONES - 1);
1da177e4 3480 }
54a6eb5c
MG
3481 for (node = 0; node < local_node; node++) {
3482 if (!node_online(node))
3483 continue;
3484 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3485 MAX_NR_ZONES - 1);
3486 }
3487
dd1a239f
MG
3488 zonelist->_zonerefs[j].zone = NULL;
3489 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3490}
3491
9276b1bc 3492/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3493static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3494{
54a6eb5c 3495 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3496}
3497
1da177e4
LT
3498#endif /* CONFIG_NUMA */
3499
99dcc3e5
CL
3500/*
3501 * Boot pageset table. One per cpu which is going to be used for all
3502 * zones and all nodes. The parameters will be set in such a way
3503 * that an item put on a list will immediately be handed over to
3504 * the buddy list. This is safe since pageset manipulation is done
3505 * with interrupts disabled.
3506 *
3507 * The boot_pagesets must be kept even after bootup is complete for
3508 * unused processors and/or zones. They do play a role for bootstrapping
3509 * hotplugged processors.
3510 *
3511 * zoneinfo_show() and maybe other functions do
3512 * not check if the processor is online before following the pageset pointer.
3513 * Other parts of the kernel may not check if the zone is available.
3514 */
3515static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3516static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3517static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3518
4eaf3f64
HL
3519/*
3520 * Global mutex to protect against size modification of zonelists
3521 * as well as to serialize pageset setup for the new populated zone.
3522 */
3523DEFINE_MUTEX(zonelists_mutex);
3524
9b1a4d38 3525/* return values int ....just for stop_machine() */
4ed7e022 3526static int __build_all_zonelists(void *data)
1da177e4 3527{
6811378e 3528 int nid;
99dcc3e5 3529 int cpu;
9adb62a5 3530 pg_data_t *self = data;
9276b1bc 3531
7f9cfb31
BL
3532#ifdef CONFIG_NUMA
3533 memset(node_load, 0, sizeof(node_load));
3534#endif
9adb62a5
JL
3535
3536 if (self && !node_online(self->node_id)) {
3537 build_zonelists(self);
3538 build_zonelist_cache(self);
3539 }
3540
9276b1bc 3541 for_each_online_node(nid) {
7ea1530a
CL
3542 pg_data_t *pgdat = NODE_DATA(nid);
3543
3544 build_zonelists(pgdat);
3545 build_zonelist_cache(pgdat);
9276b1bc 3546 }
99dcc3e5
CL
3547
3548 /*
3549 * Initialize the boot_pagesets that are going to be used
3550 * for bootstrapping processors. The real pagesets for
3551 * each zone will be allocated later when the per cpu
3552 * allocator is available.
3553 *
3554 * boot_pagesets are used also for bootstrapping offline
3555 * cpus if the system is already booted because the pagesets
3556 * are needed to initialize allocators on a specific cpu too.
3557 * F.e. the percpu allocator needs the page allocator which
3558 * needs the percpu allocator in order to allocate its pagesets
3559 * (a chicken-egg dilemma).
3560 */
7aac7898 3561 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3562 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3563
7aac7898
LS
3564#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3565 /*
3566 * We now know the "local memory node" for each node--
3567 * i.e., the node of the first zone in the generic zonelist.
3568 * Set up numa_mem percpu variable for on-line cpus. During
3569 * boot, only the boot cpu should be on-line; we'll init the
3570 * secondary cpus' numa_mem as they come on-line. During
3571 * node/memory hotplug, we'll fixup all on-line cpus.
3572 */
3573 if (cpu_online(cpu))
3574 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3575#endif
3576 }
3577
6811378e
YG
3578 return 0;
3579}
3580
4eaf3f64
HL
3581/*
3582 * Called with zonelists_mutex held always
3583 * unless system_state == SYSTEM_BOOTING.
3584 */
9adb62a5 3585void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 3586{
f0c0b2b8
KH
3587 set_zonelist_order();
3588
6811378e 3589 if (system_state == SYSTEM_BOOTING) {
423b41d7 3590 __build_all_zonelists(NULL);
68ad8df4 3591 mminit_verify_zonelist();
6811378e
YG
3592 cpuset_init_current_mems_allowed();
3593 } else {
183ff22b 3594 /* we have to stop all cpus to guarantee there is no user
6811378e 3595 of zonelist */
e9959f0f 3596#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
3597 if (zone)
3598 setup_zone_pageset(zone);
e9959f0f 3599#endif
9adb62a5 3600 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
3601 /* cpuset refresh routine should be here */
3602 }
bd1e22b8 3603 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3604 /*
3605 * Disable grouping by mobility if the number of pages in the
3606 * system is too low to allow the mechanism to work. It would be
3607 * more accurate, but expensive to check per-zone. This check is
3608 * made on memory-hotadd so a system can start with mobility
3609 * disabled and enable it later
3610 */
d9c23400 3611 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3612 page_group_by_mobility_disabled = 1;
3613 else
3614 page_group_by_mobility_disabled = 0;
3615
3616 printk("Built %i zonelists in %s order, mobility grouping %s. "
3617 "Total pages: %ld\n",
62bc62a8 3618 nr_online_nodes,
f0c0b2b8 3619 zonelist_order_name[current_zonelist_order],
9ef9acb0 3620 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3621 vm_total_pages);
3622#ifdef CONFIG_NUMA
3623 printk("Policy zone: %s\n", zone_names[policy_zone]);
3624#endif
1da177e4
LT
3625}
3626
3627/*
3628 * Helper functions to size the waitqueue hash table.
3629 * Essentially these want to choose hash table sizes sufficiently
3630 * large so that collisions trying to wait on pages are rare.
3631 * But in fact, the number of active page waitqueues on typical
3632 * systems is ridiculously low, less than 200. So this is even
3633 * conservative, even though it seems large.
3634 *
3635 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3636 * waitqueues, i.e. the size of the waitq table given the number of pages.
3637 */
3638#define PAGES_PER_WAITQUEUE 256
3639
cca448fe 3640#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3641static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3642{
3643 unsigned long size = 1;
3644
3645 pages /= PAGES_PER_WAITQUEUE;
3646
3647 while (size < pages)
3648 size <<= 1;
3649
3650 /*
3651 * Once we have dozens or even hundreds of threads sleeping
3652 * on IO we've got bigger problems than wait queue collision.
3653 * Limit the size of the wait table to a reasonable size.
3654 */
3655 size = min(size, 4096UL);
3656
3657 return max(size, 4UL);
3658}
cca448fe
YG
3659#else
3660/*
3661 * A zone's size might be changed by hot-add, so it is not possible to determine
3662 * a suitable size for its wait_table. So we use the maximum size now.
3663 *
3664 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3665 *
3666 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3667 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3668 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3669 *
3670 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3671 * or more by the traditional way. (See above). It equals:
3672 *
3673 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3674 * ia64(16K page size) : = ( 8G + 4M)byte.
3675 * powerpc (64K page size) : = (32G +16M)byte.
3676 */
3677static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3678{
3679 return 4096UL;
3680}
3681#endif
1da177e4
LT
3682
3683/*
3684 * This is an integer logarithm so that shifts can be used later
3685 * to extract the more random high bits from the multiplicative
3686 * hash function before the remainder is taken.
3687 */
3688static inline unsigned long wait_table_bits(unsigned long size)
3689{
3690 return ffz(~size);
3691}
3692
3693#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3694
6d3163ce
AH
3695/*
3696 * Check if a pageblock contains reserved pages
3697 */
3698static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3699{
3700 unsigned long pfn;
3701
3702 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3703 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3704 return 1;
3705 }
3706 return 0;
3707}
3708
56fd56b8 3709/*
d9c23400 3710 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3711 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3712 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3713 * higher will lead to a bigger reserve which will get freed as contiguous
3714 * blocks as reclaim kicks in
3715 */
3716static void setup_zone_migrate_reserve(struct zone *zone)
3717{
6d3163ce 3718 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 3719 struct page *page;
78986a67
MG
3720 unsigned long block_migratetype;
3721 int reserve;
56fd56b8 3722
d0215638
MH
3723 /*
3724 * Get the start pfn, end pfn and the number of blocks to reserve
3725 * We have to be careful to be aligned to pageblock_nr_pages to
3726 * make sure that we always check pfn_valid for the first page in
3727 * the block.
3728 */
56fd56b8
MG
3729 start_pfn = zone->zone_start_pfn;
3730 end_pfn = start_pfn + zone->spanned_pages;
d0215638 3731 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 3732 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3733 pageblock_order;
56fd56b8 3734
78986a67
MG
3735 /*
3736 * Reserve blocks are generally in place to help high-order atomic
3737 * allocations that are short-lived. A min_free_kbytes value that
3738 * would result in more than 2 reserve blocks for atomic allocations
3739 * is assumed to be in place to help anti-fragmentation for the
3740 * future allocation of hugepages at runtime.
3741 */
3742 reserve = min(2, reserve);
3743
d9c23400 3744 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
3745 if (!pfn_valid(pfn))
3746 continue;
3747 page = pfn_to_page(pfn);
3748
344c790e
AL
3749 /* Watch out for overlapping nodes */
3750 if (page_to_nid(page) != zone_to_nid(zone))
3751 continue;
3752
56fd56b8
MG
3753 block_migratetype = get_pageblock_migratetype(page);
3754
938929f1
MG
3755 /* Only test what is necessary when the reserves are not met */
3756 if (reserve > 0) {
3757 /*
3758 * Blocks with reserved pages will never free, skip
3759 * them.
3760 */
3761 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3762 if (pageblock_is_reserved(pfn, block_end_pfn))
3763 continue;
56fd56b8 3764
938929f1
MG
3765 /* If this block is reserved, account for it */
3766 if (block_migratetype == MIGRATE_RESERVE) {
3767 reserve--;
3768 continue;
3769 }
3770
3771 /* Suitable for reserving if this block is movable */
3772 if (block_migratetype == MIGRATE_MOVABLE) {
3773 set_pageblock_migratetype(page,
3774 MIGRATE_RESERVE);
3775 move_freepages_block(zone, page,
3776 MIGRATE_RESERVE);
3777 reserve--;
3778 continue;
3779 }
56fd56b8
MG
3780 }
3781
3782 /*
3783 * If the reserve is met and this is a previous reserved block,
3784 * take it back
3785 */
3786 if (block_migratetype == MIGRATE_RESERVE) {
3787 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3788 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3789 }
3790 }
3791}
ac0e5b7a 3792
1da177e4
LT
3793/*
3794 * Initially all pages are reserved - free ones are freed
3795 * up by free_all_bootmem() once the early boot process is
3796 * done. Non-atomic initialization, single-pass.
3797 */
c09b4240 3798void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 3799 unsigned long start_pfn, enum memmap_context context)
1da177e4 3800{
1da177e4 3801 struct page *page;
29751f69
AW
3802 unsigned long end_pfn = start_pfn + size;
3803 unsigned long pfn;
86051ca5 3804 struct zone *z;
1da177e4 3805
22b31eec
HD
3806 if (highest_memmap_pfn < end_pfn - 1)
3807 highest_memmap_pfn = end_pfn - 1;
3808
86051ca5 3809 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 3810 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
3811 /*
3812 * There can be holes in boot-time mem_map[]s
3813 * handed to this function. They do not
3814 * exist on hotplugged memory.
3815 */
3816 if (context == MEMMAP_EARLY) {
3817 if (!early_pfn_valid(pfn))
3818 continue;
3819 if (!early_pfn_in_nid(pfn, nid))
3820 continue;
3821 }
d41dee36
AW
3822 page = pfn_to_page(pfn);
3823 set_page_links(page, zone, nid, pfn);
708614e6 3824 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 3825 init_page_count(page);
1da177e4
LT
3826 reset_page_mapcount(page);
3827 SetPageReserved(page);
b2a0ac88
MG
3828 /*
3829 * Mark the block movable so that blocks are reserved for
3830 * movable at startup. This will force kernel allocations
3831 * to reserve their blocks rather than leaking throughout
3832 * the address space during boot when many long-lived
56fd56b8
MG
3833 * kernel allocations are made. Later some blocks near
3834 * the start are marked MIGRATE_RESERVE by
3835 * setup_zone_migrate_reserve()
86051ca5
KH
3836 *
3837 * bitmap is created for zone's valid pfn range. but memmap
3838 * can be created for invalid pages (for alignment)
3839 * check here not to call set_pageblock_migratetype() against
3840 * pfn out of zone.
b2a0ac88 3841 */
86051ca5
KH
3842 if ((z->zone_start_pfn <= pfn)
3843 && (pfn < z->zone_start_pfn + z->spanned_pages)
3844 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 3845 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 3846
1da177e4
LT
3847 INIT_LIST_HEAD(&page->lru);
3848#ifdef WANT_PAGE_VIRTUAL
3849 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3850 if (!is_highmem_idx(zone))
3212c6be 3851 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 3852#endif
1da177e4
LT
3853 }
3854}
3855
1e548deb 3856static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 3857{
b2a0ac88
MG
3858 int order, t;
3859 for_each_migratetype_order(order, t) {
3860 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
3861 zone->free_area[order].nr_free = 0;
3862 }
3863}
3864
3865#ifndef __HAVE_ARCH_MEMMAP_INIT
3866#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 3867 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
3868#endif
3869
4ed7e022 3870static int __meminit zone_batchsize(struct zone *zone)
e7c8d5c9 3871{
3a6be87f 3872#ifdef CONFIG_MMU
e7c8d5c9
CL
3873 int batch;
3874
3875 /*
3876 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 3877 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
3878 *
3879 * OK, so we don't know how big the cache is. So guess.
3880 */
3881 batch = zone->present_pages / 1024;
ba56e91c
SR
3882 if (batch * PAGE_SIZE > 512 * 1024)
3883 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
3884 batch /= 4; /* We effectively *= 4 below */
3885 if (batch < 1)
3886 batch = 1;
3887
3888 /*
0ceaacc9
NP
3889 * Clamp the batch to a 2^n - 1 value. Having a power
3890 * of 2 value was found to be more likely to have
3891 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 3892 *
0ceaacc9
NP
3893 * For example if 2 tasks are alternately allocating
3894 * batches of pages, one task can end up with a lot
3895 * of pages of one half of the possible page colors
3896 * and the other with pages of the other colors.
e7c8d5c9 3897 */
9155203a 3898 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 3899
e7c8d5c9 3900 return batch;
3a6be87f
DH
3901
3902#else
3903 /* The deferral and batching of frees should be suppressed under NOMMU
3904 * conditions.
3905 *
3906 * The problem is that NOMMU needs to be able to allocate large chunks
3907 * of contiguous memory as there's no hardware page translation to
3908 * assemble apparent contiguous memory from discontiguous pages.
3909 *
3910 * Queueing large contiguous runs of pages for batching, however,
3911 * causes the pages to actually be freed in smaller chunks. As there
3912 * can be a significant delay between the individual batches being
3913 * recycled, this leads to the once large chunks of space being
3914 * fragmented and becoming unavailable for high-order allocations.
3915 */
3916 return 0;
3917#endif
e7c8d5c9
CL
3918}
3919
b69a7288 3920static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
3921{
3922 struct per_cpu_pages *pcp;
5f8dcc21 3923 int migratetype;
2caaad41 3924
1c6fe946
MD
3925 memset(p, 0, sizeof(*p));
3926
3dfa5721 3927 pcp = &p->pcp;
2caaad41 3928 pcp->count = 0;
2caaad41
CL
3929 pcp->high = 6 * batch;
3930 pcp->batch = max(1UL, 1 * batch);
5f8dcc21
MG
3931 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3932 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
3933}
3934
8ad4b1fb
RS
3935/*
3936 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3937 * to the value high for the pageset p.
3938 */
3939
3940static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3941 unsigned long high)
3942{
3943 struct per_cpu_pages *pcp;
3944
3dfa5721 3945 pcp = &p->pcp;
8ad4b1fb
RS
3946 pcp->high = high;
3947 pcp->batch = max(1UL, high/4);
3948 if ((high/4) > (PAGE_SHIFT * 8))
3949 pcp->batch = PAGE_SHIFT * 8;
3950}
3951
4ed7e022 3952static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
3953{
3954 int cpu;
3955
3956 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3957
3958 for_each_possible_cpu(cpu) {
3959 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3960
3961 setup_pageset(pcp, zone_batchsize(zone));
3962
3963 if (percpu_pagelist_fraction)
3964 setup_pagelist_highmark(pcp,
3965 (zone->present_pages /
3966 percpu_pagelist_fraction));
3967 }
3968}
3969
2caaad41 3970/*
99dcc3e5
CL
3971 * Allocate per cpu pagesets and initialize them.
3972 * Before this call only boot pagesets were available.
e7c8d5c9 3973 */
99dcc3e5 3974void __init setup_per_cpu_pageset(void)
e7c8d5c9 3975{
99dcc3e5 3976 struct zone *zone;
e7c8d5c9 3977
319774e2
WF
3978 for_each_populated_zone(zone)
3979 setup_zone_pageset(zone);
e7c8d5c9
CL
3980}
3981
577a32f6 3982static noinline __init_refok
cca448fe 3983int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
3984{
3985 int i;
3986 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 3987 size_t alloc_size;
ed8ece2e
DH
3988
3989 /*
3990 * The per-page waitqueue mechanism uses hashed waitqueues
3991 * per zone.
3992 */
02b694de
YG
3993 zone->wait_table_hash_nr_entries =
3994 wait_table_hash_nr_entries(zone_size_pages);
3995 zone->wait_table_bits =
3996 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
3997 alloc_size = zone->wait_table_hash_nr_entries
3998 * sizeof(wait_queue_head_t);
3999
cd94b9db 4000 if (!slab_is_available()) {
cca448fe 4001 zone->wait_table = (wait_queue_head_t *)
8f389a99 4002 alloc_bootmem_node_nopanic(pgdat, alloc_size);
cca448fe
YG
4003 } else {
4004 /*
4005 * This case means that a zone whose size was 0 gets new memory
4006 * via memory hot-add.
4007 * But it may be the case that a new node was hot-added. In
4008 * this case vmalloc() will not be able to use this new node's
4009 * memory - this wait_table must be initialized to use this new
4010 * node itself as well.
4011 * To use this new node's memory, further consideration will be
4012 * necessary.
4013 */
8691f3a7 4014 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4015 }
4016 if (!zone->wait_table)
4017 return -ENOMEM;
ed8ece2e 4018
02b694de 4019 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4020 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4021
4022 return 0;
ed8ece2e
DH
4023}
4024
c09b4240 4025static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4026{
99dcc3e5
CL
4027 /*
4028 * per cpu subsystem is not up at this point. The following code
4029 * relies on the ability of the linker to provide the
4030 * offset of a (static) per cpu variable into the per cpu area.
4031 */
4032 zone->pageset = &boot_pageset;
ed8ece2e 4033
f5335c0f 4034 if (zone->present_pages)
99dcc3e5
CL
4035 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4036 zone->name, zone->present_pages,
4037 zone_batchsize(zone));
ed8ece2e
DH
4038}
4039
4ed7e022 4040int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4041 unsigned long zone_start_pfn,
a2f3aa02
DH
4042 unsigned long size,
4043 enum memmap_context context)
ed8ece2e
DH
4044{
4045 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4046 int ret;
4047 ret = zone_wait_table_init(zone, size);
4048 if (ret)
4049 return ret;
ed8ece2e
DH
4050 pgdat->nr_zones = zone_idx(zone) + 1;
4051
ed8ece2e
DH
4052 zone->zone_start_pfn = zone_start_pfn;
4053
708614e6
MG
4054 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4055 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4056 pgdat->node_id,
4057 (unsigned long)zone_idx(zone),
4058 zone_start_pfn, (zone_start_pfn + size));
4059
1e548deb 4060 zone_init_free_lists(zone);
718127cc
YG
4061
4062 return 0;
ed8ece2e
DH
4063}
4064
0ee332c1 4065#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
4066#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4067/*
4068 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4069 * Architectures may implement their own version but if add_active_range()
4070 * was used and there are no special requirements, this is a convenient
4071 * alternative
4072 */
f2dbcfa7 4073int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 4074{
c13291a5
TH
4075 unsigned long start_pfn, end_pfn;
4076 int i, nid;
c713216d 4077
c13291a5 4078 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
c713216d 4079 if (start_pfn <= pfn && pfn < end_pfn)
c13291a5 4080 return nid;
cc2559bc
KH
4081 /* This is a memory hole */
4082 return -1;
c713216d
MG
4083}
4084#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4085
f2dbcfa7
KH
4086int __meminit early_pfn_to_nid(unsigned long pfn)
4087{
cc2559bc
KH
4088 int nid;
4089
4090 nid = __early_pfn_to_nid(pfn);
4091 if (nid >= 0)
4092 return nid;
4093 /* just returns 0 */
4094 return 0;
f2dbcfa7
KH
4095}
4096
cc2559bc
KH
4097#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4098bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4099{
4100 int nid;
4101
4102 nid = __early_pfn_to_nid(pfn);
4103 if (nid >= 0 && nid != node)
4104 return false;
4105 return true;
4106}
4107#endif
f2dbcfa7 4108
c713216d
MG
4109/**
4110 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
4111 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4112 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
4113 *
4114 * If an architecture guarantees that all ranges registered with
4115 * add_active_ranges() contain no holes and may be freed, this
4116 * this function may be used instead of calling free_bootmem() manually.
4117 */
c13291a5 4118void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4119{
c13291a5
TH
4120 unsigned long start_pfn, end_pfn;
4121 int i, this_nid;
edbe7d23 4122
c13291a5
TH
4123 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4124 start_pfn = min(start_pfn, max_low_pfn);
4125 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4126
c13291a5
TH
4127 if (start_pfn < end_pfn)
4128 free_bootmem_node(NODE_DATA(this_nid),
4129 PFN_PHYS(start_pfn),
4130 (end_pfn - start_pfn) << PAGE_SHIFT);
edbe7d23 4131 }
edbe7d23 4132}
edbe7d23 4133
c713216d
MG
4134/**
4135 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4136 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
4137 *
4138 * If an architecture guarantees that all ranges registered with
4139 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 4140 * function may be used instead of calling memory_present() manually.
c713216d
MG
4141 */
4142void __init sparse_memory_present_with_active_regions(int nid)
4143{
c13291a5
TH
4144 unsigned long start_pfn, end_pfn;
4145 int i, this_nid;
c713216d 4146
c13291a5
TH
4147 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4148 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4149}
4150
4151/**
4152 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4153 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4154 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4155 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4156 *
4157 * It returns the start and end page frame of a node based on information
4158 * provided by an arch calling add_active_range(). If called for a node
4159 * with no available memory, a warning is printed and the start and end
88ca3b94 4160 * PFNs will be 0.
c713216d 4161 */
a3142c8e 4162void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4163 unsigned long *start_pfn, unsigned long *end_pfn)
4164{
c13291a5 4165 unsigned long this_start_pfn, this_end_pfn;
c713216d 4166 int i;
c13291a5 4167
c713216d
MG
4168 *start_pfn = -1UL;
4169 *end_pfn = 0;
4170
c13291a5
TH
4171 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4172 *start_pfn = min(*start_pfn, this_start_pfn);
4173 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4174 }
4175
633c0666 4176 if (*start_pfn == -1UL)
c713216d 4177 *start_pfn = 0;
c713216d
MG
4178}
4179
2a1e274a
MG
4180/*
4181 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4182 * assumption is made that zones within a node are ordered in monotonic
4183 * increasing memory addresses so that the "highest" populated zone is used
4184 */
b69a7288 4185static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4186{
4187 int zone_index;
4188 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4189 if (zone_index == ZONE_MOVABLE)
4190 continue;
4191
4192 if (arch_zone_highest_possible_pfn[zone_index] >
4193 arch_zone_lowest_possible_pfn[zone_index])
4194 break;
4195 }
4196
4197 VM_BUG_ON(zone_index == -1);
4198 movable_zone = zone_index;
4199}
4200
4201/*
4202 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4203 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4204 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4205 * in each node depending on the size of each node and how evenly kernelcore
4206 * is distributed. This helper function adjusts the zone ranges
4207 * provided by the architecture for a given node by using the end of the
4208 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4209 * zones within a node are in order of monotonic increases memory addresses
4210 */
b69a7288 4211static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4212 unsigned long zone_type,
4213 unsigned long node_start_pfn,
4214 unsigned long node_end_pfn,
4215 unsigned long *zone_start_pfn,
4216 unsigned long *zone_end_pfn)
4217{
4218 /* Only adjust if ZONE_MOVABLE is on this node */
4219 if (zone_movable_pfn[nid]) {
4220 /* Size ZONE_MOVABLE */
4221 if (zone_type == ZONE_MOVABLE) {
4222 *zone_start_pfn = zone_movable_pfn[nid];
4223 *zone_end_pfn = min(node_end_pfn,
4224 arch_zone_highest_possible_pfn[movable_zone]);
4225
4226 /* Adjust for ZONE_MOVABLE starting within this range */
4227 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4228 *zone_end_pfn > zone_movable_pfn[nid]) {
4229 *zone_end_pfn = zone_movable_pfn[nid];
4230
4231 /* Check if this whole range is within ZONE_MOVABLE */
4232 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4233 *zone_start_pfn = *zone_end_pfn;
4234 }
4235}
4236
c713216d
MG
4237/*
4238 * Return the number of pages a zone spans in a node, including holes
4239 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4240 */
6ea6e688 4241static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4242 unsigned long zone_type,
4243 unsigned long *ignored)
4244{
4245 unsigned long node_start_pfn, node_end_pfn;
4246 unsigned long zone_start_pfn, zone_end_pfn;
4247
4248 /* Get the start and end of the node and zone */
4249 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4250 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4251 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4252 adjust_zone_range_for_zone_movable(nid, zone_type,
4253 node_start_pfn, node_end_pfn,
4254 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4255
4256 /* Check that this node has pages within the zone's required range */
4257 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4258 return 0;
4259
4260 /* Move the zone boundaries inside the node if necessary */
4261 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4262 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4263
4264 /* Return the spanned pages */
4265 return zone_end_pfn - zone_start_pfn;
4266}
4267
4268/*
4269 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4270 * then all holes in the requested range will be accounted for.
c713216d 4271 */
32996250 4272unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4273 unsigned long range_start_pfn,
4274 unsigned long range_end_pfn)
4275{
96e907d1
TH
4276 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4277 unsigned long start_pfn, end_pfn;
4278 int i;
c713216d 4279
96e907d1
TH
4280 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4281 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4282 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4283 nr_absent -= end_pfn - start_pfn;
c713216d 4284 }
96e907d1 4285 return nr_absent;
c713216d
MG
4286}
4287
4288/**
4289 * absent_pages_in_range - Return number of page frames in holes within a range
4290 * @start_pfn: The start PFN to start searching for holes
4291 * @end_pfn: The end PFN to stop searching for holes
4292 *
88ca3b94 4293 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4294 */
4295unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4296 unsigned long end_pfn)
4297{
4298 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4299}
4300
4301/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4302static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4303 unsigned long zone_type,
4304 unsigned long *ignored)
4305{
96e907d1
TH
4306 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4307 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4308 unsigned long node_start_pfn, node_end_pfn;
4309 unsigned long zone_start_pfn, zone_end_pfn;
4310
4311 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
96e907d1
TH
4312 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4313 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4314
2a1e274a
MG
4315 adjust_zone_range_for_zone_movable(nid, zone_type,
4316 node_start_pfn, node_end_pfn,
4317 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4318 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4319}
0e0b864e 4320
0ee332c1 4321#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4322static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4323 unsigned long zone_type,
4324 unsigned long *zones_size)
4325{
4326 return zones_size[zone_type];
4327}
4328
6ea6e688 4329static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4330 unsigned long zone_type,
4331 unsigned long *zholes_size)
4332{
4333 if (!zholes_size)
4334 return 0;
4335
4336 return zholes_size[zone_type];
4337}
0e0b864e 4338
0ee332c1 4339#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4340
a3142c8e 4341static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
4342 unsigned long *zones_size, unsigned long *zholes_size)
4343{
4344 unsigned long realtotalpages, totalpages = 0;
4345 enum zone_type i;
4346
4347 for (i = 0; i < MAX_NR_ZONES; i++)
4348 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4349 zones_size);
4350 pgdat->node_spanned_pages = totalpages;
4351
4352 realtotalpages = totalpages;
4353 for (i = 0; i < MAX_NR_ZONES; i++)
4354 realtotalpages -=
4355 zone_absent_pages_in_node(pgdat->node_id, i,
4356 zholes_size);
4357 pgdat->node_present_pages = realtotalpages;
4358 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4359 realtotalpages);
4360}
4361
835c134e
MG
4362#ifndef CONFIG_SPARSEMEM
4363/*
4364 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4365 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4366 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4367 * round what is now in bits to nearest long in bits, then return it in
4368 * bytes.
4369 */
4370static unsigned long __init usemap_size(unsigned long zonesize)
4371{
4372 unsigned long usemapsize;
4373
d9c23400
MG
4374 usemapsize = roundup(zonesize, pageblock_nr_pages);
4375 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4376 usemapsize *= NR_PAGEBLOCK_BITS;
4377 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4378
4379 return usemapsize / 8;
4380}
4381
4382static void __init setup_usemap(struct pglist_data *pgdat,
4383 struct zone *zone, unsigned long zonesize)
4384{
4385 unsigned long usemapsize = usemap_size(zonesize);
4386 zone->pageblock_flags = NULL;
58a01a45 4387 if (usemapsize)
8f389a99
YL
4388 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4389 usemapsize);
835c134e
MG
4390}
4391#else
fa9f90be 4392static inline void setup_usemap(struct pglist_data *pgdat,
835c134e
MG
4393 struct zone *zone, unsigned long zonesize) {}
4394#endif /* CONFIG_SPARSEMEM */
4395
d9c23400 4396#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 4397
d9c23400 4398/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
ca57df79 4399void __init set_pageblock_order(void)
d9c23400 4400{
955c1cd7
AM
4401 unsigned int order;
4402
d9c23400
MG
4403 /* Check that pageblock_nr_pages has not already been setup */
4404 if (pageblock_order)
4405 return;
4406
955c1cd7
AM
4407 if (HPAGE_SHIFT > PAGE_SHIFT)
4408 order = HUGETLB_PAGE_ORDER;
4409 else
4410 order = MAX_ORDER - 1;
4411
d9c23400
MG
4412 /*
4413 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
4414 * This value may be variable depending on boot parameters on IA64 and
4415 * powerpc.
d9c23400
MG
4416 */
4417 pageblock_order = order;
4418}
4419#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4420
ba72cb8c
MG
4421/*
4422 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
4423 * is unused as pageblock_order is set at compile-time. See
4424 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4425 * the kernel config
ba72cb8c 4426 */
ca57df79 4427void __init set_pageblock_order(void)
ba72cb8c 4428{
ba72cb8c 4429}
d9c23400
MG
4430
4431#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4432
1da177e4
LT
4433/*
4434 * Set up the zone data structures:
4435 * - mark all pages reserved
4436 * - mark all memory queues empty
4437 * - clear the memory bitmaps
6527af5d
MK
4438 *
4439 * NOTE: pgdat should get zeroed by caller.
1da177e4 4440 */
b5a0e011 4441static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
4442 unsigned long *zones_size, unsigned long *zholes_size)
4443{
2f1b6248 4444 enum zone_type j;
ed8ece2e 4445 int nid = pgdat->node_id;
1da177e4 4446 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4447 int ret;
1da177e4 4448
208d54e5 4449 pgdat_resize_init(pgdat);
1da177e4 4450 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 4451 init_waitqueue_head(&pgdat->pfmemalloc_wait);
52d4b9ac 4452 pgdat_page_cgroup_init(pgdat);
5f63b720 4453
1da177e4
LT
4454 for (j = 0; j < MAX_NR_ZONES; j++) {
4455 struct zone *zone = pgdat->node_zones + j;
0e0b864e 4456 unsigned long size, realsize, memmap_pages;
1da177e4 4457
c713216d
MG
4458 size = zone_spanned_pages_in_node(nid, j, zones_size);
4459 realsize = size - zone_absent_pages_in_node(nid, j,
4460 zholes_size);
1da177e4 4461
0e0b864e
MG
4462 /*
4463 * Adjust realsize so that it accounts for how much memory
4464 * is used by this zone for memmap. This affects the watermark
4465 * and per-cpu initialisations
4466 */
f7232154
JW
4467 memmap_pages =
4468 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
4469 if (realsize >= memmap_pages) {
4470 realsize -= memmap_pages;
5594c8c8
YL
4471 if (memmap_pages)
4472 printk(KERN_DEBUG
4473 " %s zone: %lu pages used for memmap\n",
4474 zone_names[j], memmap_pages);
0e0b864e
MG
4475 } else
4476 printk(KERN_WARNING
4477 " %s zone: %lu pages exceeds realsize %lu\n",
4478 zone_names[j], memmap_pages, realsize);
4479
6267276f
CL
4480 /* Account for reserved pages */
4481 if (j == 0 && realsize > dma_reserve) {
0e0b864e 4482 realsize -= dma_reserve;
d903ef9f 4483 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4484 zone_names[0], dma_reserve);
0e0b864e
MG
4485 }
4486
98d2b0eb 4487 if (!is_highmem_idx(j))
1da177e4
LT
4488 nr_kernel_pages += realsize;
4489 nr_all_pages += realsize;
4490
4491 zone->spanned_pages = size;
4492 zone->present_pages = realsize;
7db8889a
RR
4493#if defined CONFIG_COMPACTION || defined CONFIG_CMA
4494 zone->compact_cached_free_pfn = zone->zone_start_pfn +
4495 zone->spanned_pages;
4496 zone->compact_cached_free_pfn &= ~(pageblock_nr_pages-1);
4497#endif
9614634f 4498#ifdef CONFIG_NUMA
d5f541ed 4499 zone->node = nid;
8417bba4 4500 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 4501 / 100;
0ff38490 4502 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 4503#endif
1da177e4
LT
4504 zone->name = zone_names[j];
4505 spin_lock_init(&zone->lock);
4506 spin_lock_init(&zone->lru_lock);
bdc8cb98 4507 zone_seqlock_init(zone);
1da177e4 4508 zone->zone_pgdat = pgdat;
1da177e4 4509
ed8ece2e 4510 zone_pcp_init(zone);
7f5e86c2 4511 lruvec_init(&zone->lruvec, zone);
1da177e4
LT
4512 if (!size)
4513 continue;
4514
955c1cd7 4515 set_pageblock_order();
835c134e 4516 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
4517 ret = init_currently_empty_zone(zone, zone_start_pfn,
4518 size, MEMMAP_EARLY);
718127cc 4519 BUG_ON(ret);
76cdd58e 4520 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4521 zone_start_pfn += size;
1da177e4
LT
4522 }
4523}
4524
577a32f6 4525static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4526{
1da177e4
LT
4527 /* Skip empty nodes */
4528 if (!pgdat->node_spanned_pages)
4529 return;
4530
d41dee36 4531#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4532 /* ia64 gets its own node_mem_map, before this, without bootmem */
4533 if (!pgdat->node_mem_map) {
e984bb43 4534 unsigned long size, start, end;
d41dee36
AW
4535 struct page *map;
4536
e984bb43
BP
4537 /*
4538 * The zone's endpoints aren't required to be MAX_ORDER
4539 * aligned but the node_mem_map endpoints must be in order
4540 * for the buddy allocator to function correctly.
4541 */
4542 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4543 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4544 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4545 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4546 map = alloc_remap(pgdat->node_id, size);
4547 if (!map)
8f389a99 4548 map = alloc_bootmem_node_nopanic(pgdat, size);
e984bb43 4549 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4550 }
12d810c1 4551#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4552 /*
4553 * With no DISCONTIG, the global mem_map is just set as node 0's
4554 */
c713216d 4555 if (pgdat == NODE_DATA(0)) {
1da177e4 4556 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 4557#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4558 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4559 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 4560#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4561 }
1da177e4 4562#endif
d41dee36 4563#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4564}
4565
9109fb7b
JW
4566void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4567 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4568{
9109fb7b
JW
4569 pg_data_t *pgdat = NODE_DATA(nid);
4570
88fdf75d 4571 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 4572 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 4573
1da177e4
LT
4574 pgdat->node_id = nid;
4575 pgdat->node_start_pfn = node_start_pfn;
c713216d 4576 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
4577
4578 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4579#ifdef CONFIG_FLAT_NODE_MEM_MAP
4580 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4581 nid, (unsigned long)pgdat,
4582 (unsigned long)pgdat->node_mem_map);
4583#endif
1da177e4
LT
4584
4585 free_area_init_core(pgdat, zones_size, zholes_size);
4586}
4587
0ee332c1 4588#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
4589
4590#if MAX_NUMNODES > 1
4591/*
4592 * Figure out the number of possible node ids.
4593 */
4594static void __init setup_nr_node_ids(void)
4595{
4596 unsigned int node;
4597 unsigned int highest = 0;
4598
4599 for_each_node_mask(node, node_possible_map)
4600 highest = node;
4601 nr_node_ids = highest + 1;
4602}
4603#else
4604static inline void setup_nr_node_ids(void)
4605{
4606}
4607#endif
4608
1e01979c
TH
4609/**
4610 * node_map_pfn_alignment - determine the maximum internode alignment
4611 *
4612 * This function should be called after node map is populated and sorted.
4613 * It calculates the maximum power of two alignment which can distinguish
4614 * all the nodes.
4615 *
4616 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4617 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4618 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4619 * shifted, 1GiB is enough and this function will indicate so.
4620 *
4621 * This is used to test whether pfn -> nid mapping of the chosen memory
4622 * model has fine enough granularity to avoid incorrect mapping for the
4623 * populated node map.
4624 *
4625 * Returns the determined alignment in pfn's. 0 if there is no alignment
4626 * requirement (single node).
4627 */
4628unsigned long __init node_map_pfn_alignment(void)
4629{
4630 unsigned long accl_mask = 0, last_end = 0;
c13291a5 4631 unsigned long start, end, mask;
1e01979c 4632 int last_nid = -1;
c13291a5 4633 int i, nid;
1e01979c 4634
c13291a5 4635 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
4636 if (!start || last_nid < 0 || last_nid == nid) {
4637 last_nid = nid;
4638 last_end = end;
4639 continue;
4640 }
4641
4642 /*
4643 * Start with a mask granular enough to pin-point to the
4644 * start pfn and tick off bits one-by-one until it becomes
4645 * too coarse to separate the current node from the last.
4646 */
4647 mask = ~((1 << __ffs(start)) - 1);
4648 while (mask && last_end <= (start & (mask << 1)))
4649 mask <<= 1;
4650
4651 /* accumulate all internode masks */
4652 accl_mask |= mask;
4653 }
4654
4655 /* convert mask to number of pages */
4656 return ~accl_mask + 1;
4657}
4658
a6af2bc3 4659/* Find the lowest pfn for a node */
b69a7288 4660static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 4661{
a6af2bc3 4662 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
4663 unsigned long start_pfn;
4664 int i;
1abbfb41 4665
c13291a5
TH
4666 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4667 min_pfn = min(min_pfn, start_pfn);
c713216d 4668
a6af2bc3
MG
4669 if (min_pfn == ULONG_MAX) {
4670 printk(KERN_WARNING
2bc0d261 4671 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4672 return 0;
4673 }
4674
4675 return min_pfn;
c713216d
MG
4676}
4677
4678/**
4679 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4680 *
4681 * It returns the minimum PFN based on information provided via
88ca3b94 4682 * add_active_range().
c713216d
MG
4683 */
4684unsigned long __init find_min_pfn_with_active_regions(void)
4685{
4686 return find_min_pfn_for_node(MAX_NUMNODES);
4687}
4688
37b07e41
LS
4689/*
4690 * early_calculate_totalpages()
4691 * Sum pages in active regions for movable zone.
4692 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4693 */
484f51f8 4694static unsigned long __init early_calculate_totalpages(void)
7e63efef 4695{
7e63efef 4696 unsigned long totalpages = 0;
c13291a5
TH
4697 unsigned long start_pfn, end_pfn;
4698 int i, nid;
4699
4700 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4701 unsigned long pages = end_pfn - start_pfn;
7e63efef 4702
37b07e41
LS
4703 totalpages += pages;
4704 if (pages)
c13291a5 4705 node_set_state(nid, N_HIGH_MEMORY);
37b07e41
LS
4706 }
4707 return totalpages;
7e63efef
MG
4708}
4709
2a1e274a
MG
4710/*
4711 * Find the PFN the Movable zone begins in each node. Kernel memory
4712 * is spread evenly between nodes as long as the nodes have enough
4713 * memory. When they don't, some nodes will have more kernelcore than
4714 * others
4715 */
b224ef85 4716static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
4717{
4718 int i, nid;
4719 unsigned long usable_startpfn;
4720 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd
YL
4721 /* save the state before borrow the nodemask */
4722 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
37b07e41
LS
4723 unsigned long totalpages = early_calculate_totalpages();
4724 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 4725
7e63efef
MG
4726 /*
4727 * If movablecore was specified, calculate what size of
4728 * kernelcore that corresponds so that memory usable for
4729 * any allocation type is evenly spread. If both kernelcore
4730 * and movablecore are specified, then the value of kernelcore
4731 * will be used for required_kernelcore if it's greater than
4732 * what movablecore would have allowed.
4733 */
4734 if (required_movablecore) {
7e63efef
MG
4735 unsigned long corepages;
4736
4737 /*
4738 * Round-up so that ZONE_MOVABLE is at least as large as what
4739 * was requested by the user
4740 */
4741 required_movablecore =
4742 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4743 corepages = totalpages - required_movablecore;
4744
4745 required_kernelcore = max(required_kernelcore, corepages);
4746 }
4747
2a1e274a
MG
4748 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4749 if (!required_kernelcore)
66918dcd 4750 goto out;
2a1e274a
MG
4751
4752 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4753 find_usable_zone_for_movable();
4754 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4755
4756restart:
4757 /* Spread kernelcore memory as evenly as possible throughout nodes */
4758 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 4759 for_each_node_state(nid, N_HIGH_MEMORY) {
c13291a5
TH
4760 unsigned long start_pfn, end_pfn;
4761
2a1e274a
MG
4762 /*
4763 * Recalculate kernelcore_node if the division per node
4764 * now exceeds what is necessary to satisfy the requested
4765 * amount of memory for the kernel
4766 */
4767 if (required_kernelcore < kernelcore_node)
4768 kernelcore_node = required_kernelcore / usable_nodes;
4769
4770 /*
4771 * As the map is walked, we track how much memory is usable
4772 * by the kernel using kernelcore_remaining. When it is
4773 * 0, the rest of the node is usable by ZONE_MOVABLE
4774 */
4775 kernelcore_remaining = kernelcore_node;
4776
4777 /* Go through each range of PFNs within this node */
c13291a5 4778 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
4779 unsigned long size_pages;
4780
c13291a5 4781 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
4782 if (start_pfn >= end_pfn)
4783 continue;
4784
4785 /* Account for what is only usable for kernelcore */
4786 if (start_pfn < usable_startpfn) {
4787 unsigned long kernel_pages;
4788 kernel_pages = min(end_pfn, usable_startpfn)
4789 - start_pfn;
4790
4791 kernelcore_remaining -= min(kernel_pages,
4792 kernelcore_remaining);
4793 required_kernelcore -= min(kernel_pages,
4794 required_kernelcore);
4795
4796 /* Continue if range is now fully accounted */
4797 if (end_pfn <= usable_startpfn) {
4798
4799 /*
4800 * Push zone_movable_pfn to the end so
4801 * that if we have to rebalance
4802 * kernelcore across nodes, we will
4803 * not double account here
4804 */
4805 zone_movable_pfn[nid] = end_pfn;
4806 continue;
4807 }
4808 start_pfn = usable_startpfn;
4809 }
4810
4811 /*
4812 * The usable PFN range for ZONE_MOVABLE is from
4813 * start_pfn->end_pfn. Calculate size_pages as the
4814 * number of pages used as kernelcore
4815 */
4816 size_pages = end_pfn - start_pfn;
4817 if (size_pages > kernelcore_remaining)
4818 size_pages = kernelcore_remaining;
4819 zone_movable_pfn[nid] = start_pfn + size_pages;
4820
4821 /*
4822 * Some kernelcore has been met, update counts and
4823 * break if the kernelcore for this node has been
4824 * satisified
4825 */
4826 required_kernelcore -= min(required_kernelcore,
4827 size_pages);
4828 kernelcore_remaining -= size_pages;
4829 if (!kernelcore_remaining)
4830 break;
4831 }
4832 }
4833
4834 /*
4835 * If there is still required_kernelcore, we do another pass with one
4836 * less node in the count. This will push zone_movable_pfn[nid] further
4837 * along on the nodes that still have memory until kernelcore is
4838 * satisified
4839 */
4840 usable_nodes--;
4841 if (usable_nodes && required_kernelcore > usable_nodes)
4842 goto restart;
4843
4844 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4845 for (nid = 0; nid < MAX_NUMNODES; nid++)
4846 zone_movable_pfn[nid] =
4847 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd
YL
4848
4849out:
4850 /* restore the node_state */
4851 node_states[N_HIGH_MEMORY] = saved_node_state;
2a1e274a
MG
4852}
4853
37b07e41 4854/* Any regular memory on that node ? */
4ed7e022 4855static void __init check_for_regular_memory(pg_data_t *pgdat)
37b07e41
LS
4856{
4857#ifdef CONFIG_HIGHMEM
4858 enum zone_type zone_type;
4859
4860 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4861 struct zone *zone = &pgdat->node_zones[zone_type];
d0048b0e 4862 if (zone->present_pages) {
37b07e41 4863 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
d0048b0e
BL
4864 break;
4865 }
37b07e41
LS
4866 }
4867#endif
4868}
4869
c713216d
MG
4870/**
4871 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 4872 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4873 *
4874 * This will call free_area_init_node() for each active node in the system.
4875 * Using the page ranges provided by add_active_range(), the size of each
4876 * zone in each node and their holes is calculated. If the maximum PFN
4877 * between two adjacent zones match, it is assumed that the zone is empty.
4878 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4879 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4880 * starts where the previous one ended. For example, ZONE_DMA32 starts
4881 * at arch_max_dma_pfn.
4882 */
4883void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4884{
c13291a5
TH
4885 unsigned long start_pfn, end_pfn;
4886 int i, nid;
a6af2bc3 4887
c713216d
MG
4888 /* Record where the zone boundaries are */
4889 memset(arch_zone_lowest_possible_pfn, 0,
4890 sizeof(arch_zone_lowest_possible_pfn));
4891 memset(arch_zone_highest_possible_pfn, 0,
4892 sizeof(arch_zone_highest_possible_pfn));
4893 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4894 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4895 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4896 if (i == ZONE_MOVABLE)
4897 continue;
c713216d
MG
4898 arch_zone_lowest_possible_pfn[i] =
4899 arch_zone_highest_possible_pfn[i-1];
4900 arch_zone_highest_possible_pfn[i] =
4901 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4902 }
2a1e274a
MG
4903 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4904 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4905
4906 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4907 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 4908 find_zone_movable_pfns_for_nodes();
c713216d 4909
c713216d 4910 /* Print out the zone ranges */
a62e2f4f 4911 printk("Zone ranges:\n");
2a1e274a
MG
4912 for (i = 0; i < MAX_NR_ZONES; i++) {
4913 if (i == ZONE_MOVABLE)
4914 continue;
155cbfc8 4915 printk(KERN_CONT " %-8s ", zone_names[i]);
72f0ba02
DR
4916 if (arch_zone_lowest_possible_pfn[i] ==
4917 arch_zone_highest_possible_pfn[i])
155cbfc8 4918 printk(KERN_CONT "empty\n");
72f0ba02 4919 else
a62e2f4f
BH
4920 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
4921 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
4922 (arch_zone_highest_possible_pfn[i]
4923 << PAGE_SHIFT) - 1);
2a1e274a
MG
4924 }
4925
4926 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
a62e2f4f 4927 printk("Movable zone start for each node\n");
2a1e274a
MG
4928 for (i = 0; i < MAX_NUMNODES; i++) {
4929 if (zone_movable_pfn[i])
a62e2f4f
BH
4930 printk(" Node %d: %#010lx\n", i,
4931 zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 4932 }
c713216d
MG
4933
4934 /* Print out the early_node_map[] */
a62e2f4f 4935 printk("Early memory node ranges\n");
c13291a5 4936 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
a62e2f4f
BH
4937 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
4938 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
4939
4940 /* Initialise every node */
708614e6 4941 mminit_verify_pageflags_layout();
8ef82866 4942 setup_nr_node_ids();
c713216d
MG
4943 for_each_online_node(nid) {
4944 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4945 free_area_init_node(nid, NULL,
c713216d 4946 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4947
4948 /* Any memory on that node */
4949 if (pgdat->node_present_pages)
4950 node_set_state(nid, N_HIGH_MEMORY);
4951 check_for_regular_memory(pgdat);
c713216d
MG
4952 }
4953}
2a1e274a 4954
7e63efef 4955static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
4956{
4957 unsigned long long coremem;
4958 if (!p)
4959 return -EINVAL;
4960
4961 coremem = memparse(p, &p);
7e63efef 4962 *core = coremem >> PAGE_SHIFT;
2a1e274a 4963
7e63efef 4964 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
4965 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4966
4967 return 0;
4968}
ed7ed365 4969
7e63efef
MG
4970/*
4971 * kernelcore=size sets the amount of memory for use for allocations that
4972 * cannot be reclaimed or migrated.
4973 */
4974static int __init cmdline_parse_kernelcore(char *p)
4975{
4976 return cmdline_parse_core(p, &required_kernelcore);
4977}
4978
4979/*
4980 * movablecore=size sets the amount of memory for use for allocations that
4981 * can be reclaimed or migrated.
4982 */
4983static int __init cmdline_parse_movablecore(char *p)
4984{
4985 return cmdline_parse_core(p, &required_movablecore);
4986}
4987
ed7ed365 4988early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 4989early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 4990
0ee332c1 4991#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4992
0e0b864e 4993/**
88ca3b94
RD
4994 * set_dma_reserve - set the specified number of pages reserved in the first zone
4995 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
4996 *
4997 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4998 * In the DMA zone, a significant percentage may be consumed by kernel image
4999 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
5000 * function may optionally be used to account for unfreeable pages in the
5001 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5002 * smaller per-cpu batchsize.
0e0b864e
MG
5003 */
5004void __init set_dma_reserve(unsigned long new_dma_reserve)
5005{
5006 dma_reserve = new_dma_reserve;
5007}
5008
1da177e4
LT
5009void __init free_area_init(unsigned long *zones_size)
5010{
9109fb7b 5011 free_area_init_node(0, zones_size,
1da177e4
LT
5012 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5013}
1da177e4 5014
1da177e4
LT
5015static int page_alloc_cpu_notify(struct notifier_block *self,
5016 unsigned long action, void *hcpu)
5017{
5018 int cpu = (unsigned long)hcpu;
1da177e4 5019
8bb78442 5020 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 5021 lru_add_drain_cpu(cpu);
9f8f2172
CL
5022 drain_pages(cpu);
5023
5024 /*
5025 * Spill the event counters of the dead processor
5026 * into the current processors event counters.
5027 * This artificially elevates the count of the current
5028 * processor.
5029 */
f8891e5e 5030 vm_events_fold_cpu(cpu);
9f8f2172
CL
5031
5032 /*
5033 * Zero the differential counters of the dead processor
5034 * so that the vm statistics are consistent.
5035 *
5036 * This is only okay since the processor is dead and cannot
5037 * race with what we are doing.
5038 */
2244b95a 5039 refresh_cpu_vm_stats(cpu);
1da177e4
LT
5040 }
5041 return NOTIFY_OK;
5042}
1da177e4
LT
5043
5044void __init page_alloc_init(void)
5045{
5046 hotcpu_notifier(page_alloc_cpu_notify, 0);
5047}
5048
cb45b0e9
HA
5049/*
5050 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5051 * or min_free_kbytes changes.
5052 */
5053static void calculate_totalreserve_pages(void)
5054{
5055 struct pglist_data *pgdat;
5056 unsigned long reserve_pages = 0;
2f6726e5 5057 enum zone_type i, j;
cb45b0e9
HA
5058
5059 for_each_online_pgdat(pgdat) {
5060 for (i = 0; i < MAX_NR_ZONES; i++) {
5061 struct zone *zone = pgdat->node_zones + i;
5062 unsigned long max = 0;
5063
5064 /* Find valid and maximum lowmem_reserve in the zone */
5065 for (j = i; j < MAX_NR_ZONES; j++) {
5066 if (zone->lowmem_reserve[j] > max)
5067 max = zone->lowmem_reserve[j];
5068 }
5069
41858966
MG
5070 /* we treat the high watermark as reserved pages. */
5071 max += high_wmark_pages(zone);
cb45b0e9
HA
5072
5073 if (max > zone->present_pages)
5074 max = zone->present_pages;
5075 reserve_pages += max;
ab8fabd4
JW
5076 /*
5077 * Lowmem reserves are not available to
5078 * GFP_HIGHUSER page cache allocations and
5079 * kswapd tries to balance zones to their high
5080 * watermark. As a result, neither should be
5081 * regarded as dirtyable memory, to prevent a
5082 * situation where reclaim has to clean pages
5083 * in order to balance the zones.
5084 */
5085 zone->dirty_balance_reserve = max;
cb45b0e9
HA
5086 }
5087 }
ab8fabd4 5088 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
5089 totalreserve_pages = reserve_pages;
5090}
5091
1da177e4
LT
5092/*
5093 * setup_per_zone_lowmem_reserve - called whenever
5094 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5095 * has a correct pages reserved value, so an adequate number of
5096 * pages are left in the zone after a successful __alloc_pages().
5097 */
5098static void setup_per_zone_lowmem_reserve(void)
5099{
5100 struct pglist_data *pgdat;
2f6726e5 5101 enum zone_type j, idx;
1da177e4 5102
ec936fc5 5103 for_each_online_pgdat(pgdat) {
1da177e4
LT
5104 for (j = 0; j < MAX_NR_ZONES; j++) {
5105 struct zone *zone = pgdat->node_zones + j;
5106 unsigned long present_pages = zone->present_pages;
5107
5108 zone->lowmem_reserve[j] = 0;
5109
2f6726e5
CL
5110 idx = j;
5111 while (idx) {
1da177e4
LT
5112 struct zone *lower_zone;
5113
2f6726e5
CL
5114 idx--;
5115
1da177e4
LT
5116 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5117 sysctl_lowmem_reserve_ratio[idx] = 1;
5118
5119 lower_zone = pgdat->node_zones + idx;
5120 lower_zone->lowmem_reserve[j] = present_pages /
5121 sysctl_lowmem_reserve_ratio[idx];
5122 present_pages += lower_zone->present_pages;
5123 }
5124 }
5125 }
cb45b0e9
HA
5126
5127 /* update totalreserve_pages */
5128 calculate_totalreserve_pages();
1da177e4
LT
5129}
5130
cfd3da1e 5131static void __setup_per_zone_wmarks(void)
1da177e4
LT
5132{
5133 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5134 unsigned long lowmem_pages = 0;
5135 struct zone *zone;
5136 unsigned long flags;
5137
5138 /* Calculate total number of !ZONE_HIGHMEM pages */
5139 for_each_zone(zone) {
5140 if (!is_highmem(zone))
5141 lowmem_pages += zone->present_pages;
5142 }
5143
5144 for_each_zone(zone) {
ac924c60
AM
5145 u64 tmp;
5146
1125b4e3 5147 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
5148 tmp = (u64)pages_min * zone->present_pages;
5149 do_div(tmp, lowmem_pages);
1da177e4
LT
5150 if (is_highmem(zone)) {
5151 /*
669ed175
NP
5152 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5153 * need highmem pages, so cap pages_min to a small
5154 * value here.
5155 *
41858966 5156 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
5157 * deltas controls asynch page reclaim, and so should
5158 * not be capped for highmem.
1da177e4
LT
5159 */
5160 int min_pages;
5161
5162 min_pages = zone->present_pages / 1024;
5163 if (min_pages < SWAP_CLUSTER_MAX)
5164 min_pages = SWAP_CLUSTER_MAX;
5165 if (min_pages > 128)
5166 min_pages = 128;
41858966 5167 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5168 } else {
669ed175
NP
5169 /*
5170 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5171 * proportionate to the zone's size.
5172 */
41858966 5173 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5174 }
5175
41858966
MG
5176 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5177 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9
MS
5178
5179 zone->watermark[WMARK_MIN] += cma_wmark_pages(zone);
5180 zone->watermark[WMARK_LOW] += cma_wmark_pages(zone);
5181 zone->watermark[WMARK_HIGH] += cma_wmark_pages(zone);
5182
56fd56b8 5183 setup_zone_migrate_reserve(zone);
1125b4e3 5184 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5185 }
cb45b0e9
HA
5186
5187 /* update totalreserve_pages */
5188 calculate_totalreserve_pages();
1da177e4
LT
5189}
5190
cfd3da1e
MG
5191/**
5192 * setup_per_zone_wmarks - called when min_free_kbytes changes
5193 * or when memory is hot-{added|removed}
5194 *
5195 * Ensures that the watermark[min,low,high] values for each zone are set
5196 * correctly with respect to min_free_kbytes.
5197 */
5198void setup_per_zone_wmarks(void)
5199{
5200 mutex_lock(&zonelists_mutex);
5201 __setup_per_zone_wmarks();
5202 mutex_unlock(&zonelists_mutex);
5203}
5204
55a4462a 5205/*
556adecb
RR
5206 * The inactive anon list should be small enough that the VM never has to
5207 * do too much work, but large enough that each inactive page has a chance
5208 * to be referenced again before it is swapped out.
5209 *
5210 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5211 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5212 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5213 * the anonymous pages are kept on the inactive list.
5214 *
5215 * total target max
5216 * memory ratio inactive anon
5217 * -------------------------------------
5218 * 10MB 1 5MB
5219 * 100MB 1 50MB
5220 * 1GB 3 250MB
5221 * 10GB 10 0.9GB
5222 * 100GB 31 3GB
5223 * 1TB 101 10GB
5224 * 10TB 320 32GB
5225 */
1b79acc9 5226static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5227{
96cb4df5 5228 unsigned int gb, ratio;
556adecb 5229
96cb4df5
MK
5230 /* Zone size in gigabytes */
5231 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5232 if (gb)
556adecb 5233 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5234 else
5235 ratio = 1;
556adecb 5236
96cb4df5
MK
5237 zone->inactive_ratio = ratio;
5238}
556adecb 5239
839a4fcc 5240static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5241{
5242 struct zone *zone;
5243
5244 for_each_zone(zone)
5245 calculate_zone_inactive_ratio(zone);
556adecb
RR
5246}
5247
1da177e4
LT
5248/*
5249 * Initialise min_free_kbytes.
5250 *
5251 * For small machines we want it small (128k min). For large machines
5252 * we want it large (64MB max). But it is not linear, because network
5253 * bandwidth does not increase linearly with machine size. We use
5254 *
5255 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5256 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5257 *
5258 * which yields
5259 *
5260 * 16MB: 512k
5261 * 32MB: 724k
5262 * 64MB: 1024k
5263 * 128MB: 1448k
5264 * 256MB: 2048k
5265 * 512MB: 2896k
5266 * 1024MB: 4096k
5267 * 2048MB: 5792k
5268 * 4096MB: 8192k
5269 * 8192MB: 11584k
5270 * 16384MB: 16384k
5271 */
1b79acc9 5272int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5273{
5274 unsigned long lowmem_kbytes;
5275
5276 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5277
5278 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5279 if (min_free_kbytes < 128)
5280 min_free_kbytes = 128;
5281 if (min_free_kbytes > 65536)
5282 min_free_kbytes = 65536;
bc75d33f 5283 setup_per_zone_wmarks();
a6cccdc3 5284 refresh_zone_stat_thresholds();
1da177e4 5285 setup_per_zone_lowmem_reserve();
556adecb 5286 setup_per_zone_inactive_ratio();
1da177e4
LT
5287 return 0;
5288}
bc75d33f 5289module_init(init_per_zone_wmark_min)
1da177e4
LT
5290
5291/*
5292 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5293 * that we can call two helper functions whenever min_free_kbytes
5294 * changes.
5295 */
5296int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 5297 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5298{
8d65af78 5299 proc_dointvec(table, write, buffer, length, ppos);
3b1d92c5 5300 if (write)
bc75d33f 5301 setup_per_zone_wmarks();
1da177e4
LT
5302 return 0;
5303}
5304
9614634f
CL
5305#ifdef CONFIG_NUMA
5306int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5307 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5308{
5309 struct zone *zone;
5310 int rc;
5311
8d65af78 5312 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5313 if (rc)
5314 return rc;
5315
5316 for_each_zone(zone)
8417bba4 5317 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
5318 sysctl_min_unmapped_ratio) / 100;
5319 return 0;
5320}
0ff38490
CL
5321
5322int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5323 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5324{
5325 struct zone *zone;
5326 int rc;
5327
8d65af78 5328 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5329 if (rc)
5330 return rc;
5331
5332 for_each_zone(zone)
5333 zone->min_slab_pages = (zone->present_pages *
5334 sysctl_min_slab_ratio) / 100;
5335 return 0;
5336}
9614634f
CL
5337#endif
5338
1da177e4
LT
5339/*
5340 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5341 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5342 * whenever sysctl_lowmem_reserve_ratio changes.
5343 *
5344 * The reserve ratio obviously has absolutely no relation with the
41858966 5345 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5346 * if in function of the boot time zone sizes.
5347 */
5348int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5349 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5350{
8d65af78 5351 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5352 setup_per_zone_lowmem_reserve();
5353 return 0;
5354}
5355
8ad4b1fb
RS
5356/*
5357 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5358 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5359 * can have before it gets flushed back to buddy allocator.
5360 */
5361
5362int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 5363 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5364{
5365 struct zone *zone;
5366 unsigned int cpu;
5367 int ret;
5368
8d65af78 5369 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
93278814 5370 if (!write || (ret < 0))
8ad4b1fb 5371 return ret;
364df0eb 5372 for_each_populated_zone(zone) {
99dcc3e5 5373 for_each_possible_cpu(cpu) {
8ad4b1fb
RS
5374 unsigned long high;
5375 high = zone->present_pages / percpu_pagelist_fraction;
99dcc3e5
CL
5376 setup_pagelist_highmark(
5377 per_cpu_ptr(zone->pageset, cpu), high);
8ad4b1fb
RS
5378 }
5379 }
5380 return 0;
5381}
5382
f034b5d4 5383int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5384
5385#ifdef CONFIG_NUMA
5386static int __init set_hashdist(char *str)
5387{
5388 if (!str)
5389 return 0;
5390 hashdist = simple_strtoul(str, &str, 0);
5391 return 1;
5392}
5393__setup("hashdist=", set_hashdist);
5394#endif
5395
5396/*
5397 * allocate a large system hash table from bootmem
5398 * - it is assumed that the hash table must contain an exact power-of-2
5399 * quantity of entries
5400 * - limit is the number of hash buckets, not the total allocation size
5401 */
5402void *__init alloc_large_system_hash(const char *tablename,
5403 unsigned long bucketsize,
5404 unsigned long numentries,
5405 int scale,
5406 int flags,
5407 unsigned int *_hash_shift,
5408 unsigned int *_hash_mask,
31fe62b9
TB
5409 unsigned long low_limit,
5410 unsigned long high_limit)
1da177e4 5411{
31fe62b9 5412 unsigned long long max = high_limit;
1da177e4
LT
5413 unsigned long log2qty, size;
5414 void *table = NULL;
5415
5416 /* allow the kernel cmdline to have a say */
5417 if (!numentries) {
5418 /* round applicable memory size up to nearest megabyte */
04903664 5419 numentries = nr_kernel_pages;
1da177e4
LT
5420 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5421 numentries >>= 20 - PAGE_SHIFT;
5422 numentries <<= 20 - PAGE_SHIFT;
5423
5424 /* limit to 1 bucket per 2^scale bytes of low memory */
5425 if (scale > PAGE_SHIFT)
5426 numentries >>= (scale - PAGE_SHIFT);
5427 else
5428 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5429
5430 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5431 if (unlikely(flags & HASH_SMALL)) {
5432 /* Makes no sense without HASH_EARLY */
5433 WARN_ON(!(flags & HASH_EARLY));
5434 if (!(numentries >> *_hash_shift)) {
5435 numentries = 1UL << *_hash_shift;
5436 BUG_ON(!numentries);
5437 }
5438 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5439 numentries = PAGE_SIZE / bucketsize;
1da177e4 5440 }
6e692ed3 5441 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5442
5443 /* limit allocation size to 1/16 total memory by default */
5444 if (max == 0) {
5445 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5446 do_div(max, bucketsize);
5447 }
074b8517 5448 max = min(max, 0x80000000ULL);
1da177e4 5449
31fe62b9
TB
5450 if (numentries < low_limit)
5451 numentries = low_limit;
1da177e4
LT
5452 if (numentries > max)
5453 numentries = max;
5454
f0d1b0b3 5455 log2qty = ilog2(numentries);
1da177e4
LT
5456
5457 do {
5458 size = bucketsize << log2qty;
5459 if (flags & HASH_EARLY)
74768ed8 5460 table = alloc_bootmem_nopanic(size);
1da177e4
LT
5461 else if (hashdist)
5462 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5463 else {
1037b83b
ED
5464 /*
5465 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5466 * some pages at the end of hash table which
5467 * alloc_pages_exact() automatically does
1037b83b 5468 */
264ef8a9 5469 if (get_order(size) < MAX_ORDER) {
a1dd268c 5470 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5471 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5472 }
1da177e4
LT
5473 }
5474 } while (!table && size > PAGE_SIZE && --log2qty);
5475
5476 if (!table)
5477 panic("Failed to allocate %s hash table\n", tablename);
5478
f241e660 5479 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 5480 tablename,
f241e660 5481 (1UL << log2qty),
f0d1b0b3 5482 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5483 size);
5484
5485 if (_hash_shift)
5486 *_hash_shift = log2qty;
5487 if (_hash_mask)
5488 *_hash_mask = (1 << log2qty) - 1;
5489
5490 return table;
5491}
a117e66e 5492
835c134e
MG
5493/* Return a pointer to the bitmap storing bits affecting a block of pages */
5494static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5495 unsigned long pfn)
5496{
5497#ifdef CONFIG_SPARSEMEM
5498 return __pfn_to_section(pfn)->pageblock_flags;
5499#else
5500 return zone->pageblock_flags;
5501#endif /* CONFIG_SPARSEMEM */
5502}
5503
5504static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5505{
5506#ifdef CONFIG_SPARSEMEM
5507 pfn &= (PAGES_PER_SECTION-1);
d9c23400 5508 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5509#else
5510 pfn = pfn - zone->zone_start_pfn;
d9c23400 5511 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5512#endif /* CONFIG_SPARSEMEM */
5513}
5514
5515/**
d9c23400 5516 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
5517 * @page: The page within the block of interest
5518 * @start_bitidx: The first bit of interest to retrieve
5519 * @end_bitidx: The last bit of interest
5520 * returns pageblock_bits flags
5521 */
5522unsigned long get_pageblock_flags_group(struct page *page,
5523 int start_bitidx, int end_bitidx)
5524{
5525 struct zone *zone;
5526 unsigned long *bitmap;
5527 unsigned long pfn, bitidx;
5528 unsigned long flags = 0;
5529 unsigned long value = 1;
5530
5531 zone = page_zone(page);
5532 pfn = page_to_pfn(page);
5533 bitmap = get_pageblock_bitmap(zone, pfn);
5534 bitidx = pfn_to_bitidx(zone, pfn);
5535
5536 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5537 if (test_bit(bitidx + start_bitidx, bitmap))
5538 flags |= value;
6220ec78 5539
835c134e
MG
5540 return flags;
5541}
5542
5543/**
d9c23400 5544 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
5545 * @page: The page within the block of interest
5546 * @start_bitidx: The first bit of interest
5547 * @end_bitidx: The last bit of interest
5548 * @flags: The flags to set
5549 */
5550void set_pageblock_flags_group(struct page *page, unsigned long flags,
5551 int start_bitidx, int end_bitidx)
5552{
5553 struct zone *zone;
5554 unsigned long *bitmap;
5555 unsigned long pfn, bitidx;
5556 unsigned long value = 1;
5557
5558 zone = page_zone(page);
5559 pfn = page_to_pfn(page);
5560 bitmap = get_pageblock_bitmap(zone, pfn);
5561 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
5562 VM_BUG_ON(pfn < zone->zone_start_pfn);
5563 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
5564
5565 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5566 if (flags & value)
5567 __set_bit(bitidx + start_bitidx, bitmap);
5568 else
5569 __clear_bit(bitidx + start_bitidx, bitmap);
5570}
a5d76b54
KH
5571
5572/*
80934513
MK
5573 * This function checks whether pageblock includes unmovable pages or not.
5574 * If @count is not zero, it is okay to include less @count unmovable pages
5575 *
5576 * PageLRU check wihtout isolation or lru_lock could race so that
5577 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5578 * expect this function should be exact.
a5d76b54 5579 */
ee6f509c 5580bool has_unmovable_pages(struct zone *zone, struct page *page, int count)
49ac8255
KH
5581{
5582 unsigned long pfn, iter, found;
47118af0
MN
5583 int mt;
5584
49ac8255
KH
5585 /*
5586 * For avoiding noise data, lru_add_drain_all() should be called
80934513 5587 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
5588 */
5589 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 5590 return false;
47118af0
MN
5591 mt = get_pageblock_migratetype(page);
5592 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 5593 return false;
49ac8255
KH
5594
5595 pfn = page_to_pfn(page);
5596 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5597 unsigned long check = pfn + iter;
5598
29723fcc 5599 if (!pfn_valid_within(check))
49ac8255 5600 continue;
29723fcc 5601
49ac8255 5602 page = pfn_to_page(check);
97d255c8
MK
5603 /*
5604 * We can't use page_count without pin a page
5605 * because another CPU can free compound page.
5606 * This check already skips compound tails of THP
5607 * because their page->_count is zero at all time.
5608 */
5609 if (!atomic_read(&page->_count)) {
49ac8255
KH
5610 if (PageBuddy(page))
5611 iter += (1 << page_order(page)) - 1;
5612 continue;
5613 }
97d255c8 5614
49ac8255
KH
5615 if (!PageLRU(page))
5616 found++;
5617 /*
5618 * If there are RECLAIMABLE pages, we need to check it.
5619 * But now, memory offline itself doesn't call shrink_slab()
5620 * and it still to be fixed.
5621 */
5622 /*
5623 * If the page is not RAM, page_count()should be 0.
5624 * we don't need more check. This is an _used_ not-movable page.
5625 *
5626 * The problematic thing here is PG_reserved pages. PG_reserved
5627 * is set to both of a memory hole page and a _used_ kernel
5628 * page at boot.
5629 */
5630 if (found > count)
80934513 5631 return true;
49ac8255 5632 }
80934513 5633 return false;
49ac8255
KH
5634}
5635
5636bool is_pageblock_removable_nolock(struct page *page)
5637{
656a0706
MH
5638 struct zone *zone;
5639 unsigned long pfn;
687875fb
MH
5640
5641 /*
5642 * We have to be careful here because we are iterating over memory
5643 * sections which are not zone aware so we might end up outside of
5644 * the zone but still within the section.
656a0706
MH
5645 * We have to take care about the node as well. If the node is offline
5646 * its NODE_DATA will be NULL - see page_zone.
687875fb 5647 */
656a0706
MH
5648 if (!node_online(page_to_nid(page)))
5649 return false;
5650
5651 zone = page_zone(page);
5652 pfn = page_to_pfn(page);
5653 if (zone->zone_start_pfn > pfn ||
687875fb
MH
5654 zone->zone_start_pfn + zone->spanned_pages <= pfn)
5655 return false;
5656
ee6f509c 5657 return !has_unmovable_pages(zone, page, 0);
a5d76b54 5658}
0c0e6195 5659
041d3a8c
MN
5660#ifdef CONFIG_CMA
5661
5662static unsigned long pfn_max_align_down(unsigned long pfn)
5663{
5664 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5665 pageblock_nr_pages) - 1);
5666}
5667
5668static unsigned long pfn_max_align_up(unsigned long pfn)
5669{
5670 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5671 pageblock_nr_pages));
5672}
5673
5674static struct page *
5675__alloc_contig_migrate_alloc(struct page *page, unsigned long private,
5676 int **resultp)
5677{
6a6dccba
RV
5678 gfp_t gfp_mask = GFP_USER | __GFP_MOVABLE;
5679
5680 if (PageHighMem(page))
5681 gfp_mask |= __GFP_HIGHMEM;
5682
5683 return alloc_page(gfp_mask);
041d3a8c
MN
5684}
5685
5686/* [start, end) must belong to a single zone. */
5687static int __alloc_contig_migrate_range(unsigned long start, unsigned long end)
5688{
5689 /* This function is based on compact_zone() from compaction.c. */
5690
5691 unsigned long pfn = start;
5692 unsigned int tries = 0;
5693 int ret = 0;
5694
5695 struct compact_control cc = {
5696 .nr_migratepages = 0,
5697 .order = -1,
5698 .zone = page_zone(pfn_to_page(start)),
68e3e926 5699 .sync = true,
041d3a8c
MN
5700 };
5701 INIT_LIST_HEAD(&cc.migratepages);
5702
5703 migrate_prep_local();
5704
5705 while (pfn < end || !list_empty(&cc.migratepages)) {
5706 if (fatal_signal_pending(current)) {
5707 ret = -EINTR;
5708 break;
5709 }
5710
5711 if (list_empty(&cc.migratepages)) {
5712 cc.nr_migratepages = 0;
5713 pfn = isolate_migratepages_range(cc.zone, &cc,
5714 pfn, end);
5715 if (!pfn) {
5716 ret = -EINTR;
5717 break;
5718 }
5719 tries = 0;
5720 } else if (++tries == 5) {
5721 ret = ret < 0 ? ret : -EBUSY;
5722 break;
5723 }
5724
02c6de8d
MK
5725 reclaim_clean_pages_from_list(cc.zone, &cc.migratepages);
5726
041d3a8c
MN
5727 ret = migrate_pages(&cc.migratepages,
5728 __alloc_contig_migrate_alloc,
58f42fd5 5729 0, false, MIGRATE_SYNC);
041d3a8c
MN
5730 }
5731
5732 putback_lru_pages(&cc.migratepages);
5733 return ret > 0 ? 0 : ret;
5734}
5735
49f223a9
MS
5736/*
5737 * Update zone's cma pages counter used for watermark level calculation.
5738 */
5739static inline void __update_cma_watermarks(struct zone *zone, int count)
5740{
5741 unsigned long flags;
5742 spin_lock_irqsave(&zone->lock, flags);
5743 zone->min_cma_pages += count;
5744 spin_unlock_irqrestore(&zone->lock, flags);
5745 setup_per_zone_wmarks();
5746}
5747
5748/*
5749 * Trigger memory pressure bump to reclaim some pages in order to be able to
5750 * allocate 'count' pages in single page units. Does similar work as
5751 *__alloc_pages_slowpath() function.
5752 */
5753static int __reclaim_pages(struct zone *zone, gfp_t gfp_mask, int count)
5754{
5755 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5756 struct zonelist *zonelist = node_zonelist(0, gfp_mask);
5757 int did_some_progress = 0;
5758 int order = 1;
5759
5760 /*
5761 * Increase level of watermarks to force kswapd do his job
5762 * to stabilise at new watermark level.
5763 */
5764 __update_cma_watermarks(zone, count);
5765
5766 /* Obey watermarks as if the page was being allocated */
5767 while (!zone_watermark_ok(zone, 0, low_wmark_pages(zone), 0, 0)) {
5768 wake_all_kswapd(order, zonelist, high_zoneidx, zone_idx(zone));
5769
5770 did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
5771 NULL);
5772 if (!did_some_progress) {
5773 /* Exhausted what can be done so it's blamo time */
5774 out_of_memory(zonelist, gfp_mask, order, NULL, false);
5775 }
5776 }
5777
5778 /* Restore original watermark levels. */
5779 __update_cma_watermarks(zone, -count);
5780
5781 return count;
5782}
5783
041d3a8c
MN
5784/**
5785 * alloc_contig_range() -- tries to allocate given range of pages
5786 * @start: start PFN to allocate
5787 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
5788 * @migratetype: migratetype of the underlaying pageblocks (either
5789 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
5790 * in range must have the same migratetype and it must
5791 * be either of the two.
041d3a8c
MN
5792 *
5793 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5794 * aligned, however it's the caller's responsibility to guarantee that
5795 * we are the only thread that changes migrate type of pageblocks the
5796 * pages fall in.
5797 *
5798 * The PFN range must belong to a single zone.
5799 *
5800 * Returns zero on success or negative error code. On success all
5801 * pages which PFN is in [start, end) are allocated for the caller and
5802 * need to be freed with free_contig_range().
5803 */
0815f3d8
MN
5804int alloc_contig_range(unsigned long start, unsigned long end,
5805 unsigned migratetype)
041d3a8c
MN
5806{
5807 struct zone *zone = page_zone(pfn_to_page(start));
5808 unsigned long outer_start, outer_end;
5809 int ret = 0, order;
5810
5811 /*
5812 * What we do here is we mark all pageblocks in range as
5813 * MIGRATE_ISOLATE. Because pageblock and max order pages may
5814 * have different sizes, and due to the way page allocator
5815 * work, we align the range to biggest of the two pages so
5816 * that page allocator won't try to merge buddies from
5817 * different pageblocks and change MIGRATE_ISOLATE to some
5818 * other migration type.
5819 *
5820 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5821 * migrate the pages from an unaligned range (ie. pages that
5822 * we are interested in). This will put all the pages in
5823 * range back to page allocator as MIGRATE_ISOLATE.
5824 *
5825 * When this is done, we take the pages in range from page
5826 * allocator removing them from the buddy system. This way
5827 * page allocator will never consider using them.
5828 *
5829 * This lets us mark the pageblocks back as
5830 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5831 * aligned range but not in the unaligned, original range are
5832 * put back to page allocator so that buddy can use them.
5833 */
5834
5835 ret = start_isolate_page_range(pfn_max_align_down(start),
0815f3d8 5836 pfn_max_align_up(end), migratetype);
041d3a8c
MN
5837 if (ret)
5838 goto done;
5839
5840 ret = __alloc_contig_migrate_range(start, end);
5841 if (ret)
5842 goto done;
5843
5844 /*
5845 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5846 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
5847 * more, all pages in [start, end) are free in page allocator.
5848 * What we are going to do is to allocate all pages from
5849 * [start, end) (that is remove them from page allocator).
5850 *
5851 * The only problem is that pages at the beginning and at the
5852 * end of interesting range may be not aligned with pages that
5853 * page allocator holds, ie. they can be part of higher order
5854 * pages. Because of this, we reserve the bigger range and
5855 * once this is done free the pages we are not interested in.
5856 *
5857 * We don't have to hold zone->lock here because the pages are
5858 * isolated thus they won't get removed from buddy.
5859 */
5860
5861 lru_add_drain_all();
5862 drain_all_pages();
5863
5864 order = 0;
5865 outer_start = start;
5866 while (!PageBuddy(pfn_to_page(outer_start))) {
5867 if (++order >= MAX_ORDER) {
5868 ret = -EBUSY;
5869 goto done;
5870 }
5871 outer_start &= ~0UL << order;
5872 }
5873
5874 /* Make sure the range is really isolated. */
5875 if (test_pages_isolated(outer_start, end)) {
5876 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
5877 outer_start, end);
5878 ret = -EBUSY;
5879 goto done;
5880 }
5881
49f223a9
MS
5882 /*
5883 * Reclaim enough pages to make sure that contiguous allocation
5884 * will not starve the system.
5885 */
5886 __reclaim_pages(zone, GFP_HIGHUSER_MOVABLE, end-start);
5887
5888 /* Grab isolated pages from freelists. */
041d3a8c
MN
5889 outer_end = isolate_freepages_range(outer_start, end);
5890 if (!outer_end) {
5891 ret = -EBUSY;
5892 goto done;
5893 }
5894
5895 /* Free head and tail (if any) */
5896 if (start != outer_start)
5897 free_contig_range(outer_start, start - outer_start);
5898 if (end != outer_end)
5899 free_contig_range(end, outer_end - end);
5900
5901done:
5902 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 5903 pfn_max_align_up(end), migratetype);
041d3a8c
MN
5904 return ret;
5905}
5906
5907void free_contig_range(unsigned long pfn, unsigned nr_pages)
5908{
5909 for (; nr_pages--; ++pfn)
5910 __free_page(pfn_to_page(pfn));
5911}
5912#endif
5913
4ed7e022
JL
5914#ifdef CONFIG_MEMORY_HOTPLUG
5915static int __meminit __zone_pcp_update(void *data)
5916{
5917 struct zone *zone = data;
5918 int cpu;
5919 unsigned long batch = zone_batchsize(zone), flags;
5920
5921 for_each_possible_cpu(cpu) {
5922 struct per_cpu_pageset *pset;
5923 struct per_cpu_pages *pcp;
5924
5925 pset = per_cpu_ptr(zone->pageset, cpu);
5926 pcp = &pset->pcp;
5927
5928 local_irq_save(flags);
5929 if (pcp->count > 0)
5930 free_pcppages_bulk(zone, pcp->count, pcp);
5931 setup_pageset(pset, batch);
5932 local_irq_restore(flags);
5933 }
5934 return 0;
5935}
5936
5937void __meminit zone_pcp_update(struct zone *zone)
5938{
5939 stop_machine(__zone_pcp_update, zone, NULL);
5940}
5941#endif
5942
0c0e6195 5943#ifdef CONFIG_MEMORY_HOTREMOVE
340175b7
JL
5944void zone_pcp_reset(struct zone *zone)
5945{
5946 unsigned long flags;
5947
5948 /* avoid races with drain_pages() */
5949 local_irq_save(flags);
5950 if (zone->pageset != &boot_pageset) {
5951 free_percpu(zone->pageset);
5952 zone->pageset = &boot_pageset;
5953 }
5954 local_irq_restore(flags);
5955}
5956
0c0e6195
KH
5957/*
5958 * All pages in the range must be isolated before calling this.
5959 */
5960void
5961__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5962{
5963 struct page *page;
5964 struct zone *zone;
5965 int order, i;
5966 unsigned long pfn;
5967 unsigned long flags;
5968 /* find the first valid pfn */
5969 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5970 if (pfn_valid(pfn))
5971 break;
5972 if (pfn == end_pfn)
5973 return;
5974 zone = page_zone(pfn_to_page(pfn));
5975 spin_lock_irqsave(&zone->lock, flags);
5976 pfn = start_pfn;
5977 while (pfn < end_pfn) {
5978 if (!pfn_valid(pfn)) {
5979 pfn++;
5980 continue;
5981 }
5982 page = pfn_to_page(pfn);
5983 BUG_ON(page_count(page));
5984 BUG_ON(!PageBuddy(page));
5985 order = page_order(page);
5986#ifdef CONFIG_DEBUG_VM
5987 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5988 pfn, 1 << order, end_pfn);
5989#endif
5990 list_del(&page->lru);
5991 rmv_page_order(page);
5992 zone->free_area[order].nr_free--;
5993 __mod_zone_page_state(zone, NR_FREE_PAGES,
5994 - (1UL << order));
5995 for (i = 0; i < (1 << order); i++)
5996 SetPageReserved((page+i));
5997 pfn += (1 << order);
5998 }
5999 spin_unlock_irqrestore(&zone->lock, flags);
6000}
6001#endif
8d22ba1b
WF
6002
6003#ifdef CONFIG_MEMORY_FAILURE
6004bool is_free_buddy_page(struct page *page)
6005{
6006 struct zone *zone = page_zone(page);
6007 unsigned long pfn = page_to_pfn(page);
6008 unsigned long flags;
6009 int order;
6010
6011 spin_lock_irqsave(&zone->lock, flags);
6012 for (order = 0; order < MAX_ORDER; order++) {
6013 struct page *page_head = page - (pfn & ((1 << order) - 1));
6014
6015 if (PageBuddy(page_head) && page_order(page_head) >= order)
6016 break;
6017 }
6018 spin_unlock_irqrestore(&zone->lock, flags);
6019
6020 return order < MAX_ORDER;
6021}
6022#endif
718a3821 6023
51300cef 6024static const struct trace_print_flags pageflag_names[] = {
718a3821
WF
6025 {1UL << PG_locked, "locked" },
6026 {1UL << PG_error, "error" },
6027 {1UL << PG_referenced, "referenced" },
6028 {1UL << PG_uptodate, "uptodate" },
6029 {1UL << PG_dirty, "dirty" },
6030 {1UL << PG_lru, "lru" },
6031 {1UL << PG_active, "active" },
6032 {1UL << PG_slab, "slab" },
6033 {1UL << PG_owner_priv_1, "owner_priv_1" },
6034 {1UL << PG_arch_1, "arch_1" },
6035 {1UL << PG_reserved, "reserved" },
6036 {1UL << PG_private, "private" },
6037 {1UL << PG_private_2, "private_2" },
6038 {1UL << PG_writeback, "writeback" },
6039#ifdef CONFIG_PAGEFLAGS_EXTENDED
6040 {1UL << PG_head, "head" },
6041 {1UL << PG_tail, "tail" },
6042#else
6043 {1UL << PG_compound, "compound" },
6044#endif
6045 {1UL << PG_swapcache, "swapcache" },
6046 {1UL << PG_mappedtodisk, "mappedtodisk" },
6047 {1UL << PG_reclaim, "reclaim" },
718a3821
WF
6048 {1UL << PG_swapbacked, "swapbacked" },
6049 {1UL << PG_unevictable, "unevictable" },
6050#ifdef CONFIG_MMU
6051 {1UL << PG_mlocked, "mlocked" },
6052#endif
6053#ifdef CONFIG_ARCH_USES_PG_UNCACHED
6054 {1UL << PG_uncached, "uncached" },
6055#endif
6056#ifdef CONFIG_MEMORY_FAILURE
6057 {1UL << PG_hwpoison, "hwpoison" },
be9cd873
GS
6058#endif
6059#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6060 {1UL << PG_compound_lock, "compound_lock" },
718a3821 6061#endif
718a3821
WF
6062};
6063
6064static void dump_page_flags(unsigned long flags)
6065{
6066 const char *delim = "";
6067 unsigned long mask;
6068 int i;
6069
51300cef 6070 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
acc50c11 6071
718a3821
WF
6072 printk(KERN_ALERT "page flags: %#lx(", flags);
6073
6074 /* remove zone id */
6075 flags &= (1UL << NR_PAGEFLAGS) - 1;
6076
51300cef 6077 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
718a3821
WF
6078
6079 mask = pageflag_names[i].mask;
6080 if ((flags & mask) != mask)
6081 continue;
6082
6083 flags &= ~mask;
6084 printk("%s%s", delim, pageflag_names[i].name);
6085 delim = "|";
6086 }
6087
6088 /* check for left over flags */
6089 if (flags)
6090 printk("%s%#lx", delim, flags);
6091
6092 printk(")\n");
6093}
6094
6095void dump_page(struct page *page)
6096{
6097 printk(KERN_ALERT
6098 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
4e9f64c4 6099 page, atomic_read(&page->_count), page_mapcount(page),
718a3821
WF
6100 page->mapping, page->index);
6101 dump_page_flags(page->flags);
f212ad7c 6102 mem_cgroup_print_bad_page(page);
718a3821 6103}