[PATCH] memory hotplug locking: node_size_lock
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/config.h>
18#include <linux/stddef.h>
19#include <linux/mm.h>
20#include <linux/swap.h>
21#include <linux/interrupt.h>
22#include <linux/pagemap.h>
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
9f158333 25#include <linux/kernel.h>
1da177e4
LT
26#include <linux/module.h>
27#include <linux/suspend.h>
28#include <linux/pagevec.h>
29#include <linux/blkdev.h>
30#include <linux/slab.h>
31#include <linux/notifier.h>
32#include <linux/topology.h>
33#include <linux/sysctl.h>
34#include <linux/cpu.h>
35#include <linux/cpuset.h>
36#include <linux/nodemask.h>
37#include <linux/vmalloc.h>
38
39#include <asm/tlbflush.h>
40#include "internal.h"
41
42/*
43 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
44 * initializer cleaner
45 */
c3d8c141 46nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
7223a93a 47EXPORT_SYMBOL(node_online_map);
c3d8c141 48nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
7223a93a 49EXPORT_SYMBOL(node_possible_map);
c3d8c141 50struct pglist_data *pgdat_list __read_mostly;
6c231b7b
RT
51unsigned long totalram_pages __read_mostly;
52unsigned long totalhigh_pages __read_mostly;
1da177e4
LT
53long nr_swap_pages;
54
55/*
56 * results with 256, 32 in the lowmem_reserve sysctl:
57 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
58 * 1G machine -> (16M dma, 784M normal, 224M high)
59 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
60 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
61 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
62 */
63int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 32 };
64
65EXPORT_SYMBOL(totalram_pages);
66EXPORT_SYMBOL(nr_swap_pages);
67
68/*
69 * Used by page_zone() to look up the address of the struct zone whose
70 * id is encoded in the upper bits of page->flags
71 */
c3d8c141 72struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
1da177e4
LT
73EXPORT_SYMBOL(zone_table);
74
75static char *zone_names[MAX_NR_ZONES] = { "DMA", "Normal", "HighMem" };
76int min_free_kbytes = 1024;
77
78unsigned long __initdata nr_kernel_pages;
79unsigned long __initdata nr_all_pages;
80
c6a57e19 81static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4
LT
82{
83 if (page_to_pfn(page) >= zone->zone_start_pfn + zone->spanned_pages)
84 return 1;
85 if (page_to_pfn(page) < zone->zone_start_pfn)
86 return 1;
c6a57e19
DH
87
88 return 0;
89}
90
91static int page_is_consistent(struct zone *zone, struct page *page)
92{
1da177e4
LT
93#ifdef CONFIG_HOLES_IN_ZONE
94 if (!pfn_valid(page_to_pfn(page)))
c6a57e19 95 return 0;
1da177e4
LT
96#endif
97 if (zone != page_zone(page))
c6a57e19
DH
98 return 0;
99
100 return 1;
101}
102/*
103 * Temporary debugging check for pages not lying within a given zone.
104 */
105static int bad_range(struct zone *zone, struct page *page)
106{
107 if (page_outside_zone_boundaries(zone, page))
1da177e4 108 return 1;
c6a57e19
DH
109 if (!page_is_consistent(zone, page))
110 return 1;
111
1da177e4
LT
112 return 0;
113}
114
115static void bad_page(const char *function, struct page *page)
116{
117 printk(KERN_EMERG "Bad page state at %s (in process '%s', page %p)\n",
118 function, current->comm, page);
119 printk(KERN_EMERG "flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
120 (int)(2*sizeof(page_flags_t)), (unsigned long)page->flags,
121 page->mapping, page_mapcount(page), page_count(page));
122 printk(KERN_EMERG "Backtrace:\n");
123 dump_stack();
124 printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n");
334795ec
HD
125 page->flags &= ~(1 << PG_lru |
126 1 << PG_private |
1da177e4 127 1 << PG_locked |
1da177e4
LT
128 1 << PG_active |
129 1 << PG_dirty |
334795ec
HD
130 1 << PG_reclaim |
131 1 << PG_slab |
1da177e4 132 1 << PG_swapcache |
b5810039
NP
133 1 << PG_writeback |
134 1 << PG_reserved );
1da177e4
LT
135 set_page_count(page, 0);
136 reset_page_mapcount(page);
137 page->mapping = NULL;
9f158333 138 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
139}
140
141#ifndef CONFIG_HUGETLB_PAGE
142#define prep_compound_page(page, order) do { } while (0)
143#define destroy_compound_page(page, order) do { } while (0)
144#else
145/*
146 * Higher-order pages are called "compound pages". They are structured thusly:
147 *
148 * The first PAGE_SIZE page is called the "head page".
149 *
150 * The remaining PAGE_SIZE pages are called "tail pages".
151 *
152 * All pages have PG_compound set. All pages have their ->private pointing at
153 * the head page (even the head page has this).
154 *
155 * The first tail page's ->mapping, if non-zero, holds the address of the
156 * compound page's put_page() function.
157 *
158 * The order of the allocation is stored in the first tail page's ->index
159 * This is only for debug at present. This usage means that zero-order pages
160 * may not be compound.
161 */
162static void prep_compound_page(struct page *page, unsigned long order)
163{
164 int i;
165 int nr_pages = 1 << order;
166
167 page[1].mapping = NULL;
168 page[1].index = order;
169 for (i = 0; i < nr_pages; i++) {
170 struct page *p = page + i;
171
172 SetPageCompound(p);
4c21e2f2 173 set_page_private(p, (unsigned long)page);
1da177e4
LT
174 }
175}
176
177static void destroy_compound_page(struct page *page, unsigned long order)
178{
179 int i;
180 int nr_pages = 1 << order;
181
182 if (!PageCompound(page))
183 return;
184
185 if (page[1].index != order)
186 bad_page(__FUNCTION__, page);
187
188 for (i = 0; i < nr_pages; i++) {
189 struct page *p = page + i;
190
191 if (!PageCompound(p))
192 bad_page(__FUNCTION__, page);
4c21e2f2 193 if (page_private(p) != (unsigned long)page)
1da177e4
LT
194 bad_page(__FUNCTION__, page);
195 ClearPageCompound(p);
196 }
197}
198#endif /* CONFIG_HUGETLB_PAGE */
199
200/*
201 * function for dealing with page's order in buddy system.
202 * zone->lock is already acquired when we use these.
203 * So, we don't need atomic page->flags operations here.
204 */
205static inline unsigned long page_order(struct page *page) {
4c21e2f2 206 return page_private(page);
1da177e4
LT
207}
208
209static inline void set_page_order(struct page *page, int order) {
4c21e2f2 210 set_page_private(page, order);
1da177e4
LT
211 __SetPagePrivate(page);
212}
213
214static inline void rmv_page_order(struct page *page)
215{
216 __ClearPagePrivate(page);
4c21e2f2 217 set_page_private(page, 0);
1da177e4
LT
218}
219
220/*
221 * Locate the struct page for both the matching buddy in our
222 * pair (buddy1) and the combined O(n+1) page they form (page).
223 *
224 * 1) Any buddy B1 will have an order O twin B2 which satisfies
225 * the following equation:
226 * B2 = B1 ^ (1 << O)
227 * For example, if the starting buddy (buddy2) is #8 its order
228 * 1 buddy is #10:
229 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
230 *
231 * 2) Any buddy B will have an order O+1 parent P which
232 * satisfies the following equation:
233 * P = B & ~(1 << O)
234 *
235 * Assumption: *_mem_map is contigious at least up to MAX_ORDER
236 */
237static inline struct page *
238__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
239{
240 unsigned long buddy_idx = page_idx ^ (1 << order);
241
242 return page + (buddy_idx - page_idx);
243}
244
245static inline unsigned long
246__find_combined_index(unsigned long page_idx, unsigned int order)
247{
248 return (page_idx & ~(1 << order));
249}
250
251/*
252 * This function checks whether a page is free && is the buddy
253 * we can do coalesce a page and its buddy if
254 * (a) the buddy is free &&
255 * (b) the buddy is on the buddy system &&
256 * (c) a page and its buddy have the same order.
4c21e2f2 257 * for recording page's order, we use page_private(page) and PG_private.
1da177e4
LT
258 *
259 */
260static inline int page_is_buddy(struct page *page, int order)
261{
262 if (PagePrivate(page) &&
263 (page_order(page) == order) &&
1da177e4
LT
264 page_count(page) == 0)
265 return 1;
266 return 0;
267}
268
269/*
270 * Freeing function for a buddy system allocator.
271 *
272 * The concept of a buddy system is to maintain direct-mapped table
273 * (containing bit values) for memory blocks of various "orders".
274 * The bottom level table contains the map for the smallest allocatable
275 * units of memory (here, pages), and each level above it describes
276 * pairs of units from the levels below, hence, "buddies".
277 * At a high level, all that happens here is marking the table entry
278 * at the bottom level available, and propagating the changes upward
279 * as necessary, plus some accounting needed to play nicely with other
280 * parts of the VM system.
281 * At each level, we keep a list of pages, which are heads of continuous
282 * free pages of length of (1 << order) and marked with PG_Private.Page's
4c21e2f2 283 * order is recorded in page_private(page) field.
1da177e4
LT
284 * So when we are allocating or freeing one, we can derive the state of the
285 * other. That is, if we allocate a small block, and both were
286 * free, the remainder of the region must be split into blocks.
287 * If a block is freed, and its buddy is also free, then this
288 * triggers coalescing into a block of larger size.
289 *
290 * -- wli
291 */
292
293static inline void __free_pages_bulk (struct page *page,
294 struct zone *zone, unsigned int order)
295{
296 unsigned long page_idx;
297 int order_size = 1 << order;
298
299 if (unlikely(order))
300 destroy_compound_page(page, order);
301
302 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
303
304 BUG_ON(page_idx & (order_size - 1));
305 BUG_ON(bad_range(zone, page));
306
307 zone->free_pages += order_size;
308 while (order < MAX_ORDER-1) {
309 unsigned long combined_idx;
310 struct free_area *area;
311 struct page *buddy;
312
313 combined_idx = __find_combined_index(page_idx, order);
314 buddy = __page_find_buddy(page, page_idx, order);
315
316 if (bad_range(zone, buddy))
317 break;
318 if (!page_is_buddy(buddy, order))
319 break; /* Move the buddy up one level. */
320 list_del(&buddy->lru);
321 area = zone->free_area + order;
322 area->nr_free--;
323 rmv_page_order(buddy);
324 page = page + (combined_idx - page_idx);
325 page_idx = combined_idx;
326 order++;
327 }
328 set_page_order(page, order);
329 list_add(&page->lru, &zone->free_area[order].free_list);
330 zone->free_area[order].nr_free++;
331}
332
333static inline void free_pages_check(const char *function, struct page *page)
334{
335 if ( page_mapcount(page) ||
336 page->mapping != NULL ||
337 page_count(page) != 0 ||
338 (page->flags & (
339 1 << PG_lru |
340 1 << PG_private |
341 1 << PG_locked |
342 1 << PG_active |
343 1 << PG_reclaim |
344 1 << PG_slab |
345 1 << PG_swapcache |
b5810039
NP
346 1 << PG_writeback |
347 1 << PG_reserved )))
1da177e4
LT
348 bad_page(function, page);
349 if (PageDirty(page))
242e5468 350 __ClearPageDirty(page);
1da177e4
LT
351}
352
353/*
354 * Frees a list of pages.
355 * Assumes all pages on list are in same zone, and of same order.
207f36ee 356 * count is the number of pages to free.
1da177e4
LT
357 *
358 * If the zone was previously in an "all pages pinned" state then look to
359 * see if this freeing clears that state.
360 *
361 * And clear the zone's pages_scanned counter, to hold off the "all pages are
362 * pinned" detection logic.
363 */
364static int
365free_pages_bulk(struct zone *zone, int count,
366 struct list_head *list, unsigned int order)
367{
368 unsigned long flags;
369 struct page *page = NULL;
370 int ret = 0;
371
372 spin_lock_irqsave(&zone->lock, flags);
373 zone->all_unreclaimable = 0;
374 zone->pages_scanned = 0;
375 while (!list_empty(list) && count--) {
376 page = list_entry(list->prev, struct page, lru);
377 /* have to delete it as __free_pages_bulk list manipulates */
378 list_del(&page->lru);
379 __free_pages_bulk(page, zone, order);
380 ret++;
381 }
382 spin_unlock_irqrestore(&zone->lock, flags);
383 return ret;
384}
385
386void __free_pages_ok(struct page *page, unsigned int order)
387{
388 LIST_HEAD(list);
389 int i;
390
391 arch_free_page(page, order);
392
393 mod_page_state(pgfree, 1 << order);
394
395#ifndef CONFIG_MMU
396 if (order > 0)
397 for (i = 1 ; i < (1 << order) ; ++i)
398 __put_page(page + i);
399#endif
400
401 for (i = 0 ; i < (1 << order) ; ++i)
402 free_pages_check(__FUNCTION__, page + i);
403 list_add(&page->lru, &list);
404 kernel_map_pages(page, 1<<order, 0);
405 free_pages_bulk(page_zone(page), 1, &list, order);
406}
407
408
409/*
410 * The order of subdivision here is critical for the IO subsystem.
411 * Please do not alter this order without good reasons and regression
412 * testing. Specifically, as large blocks of memory are subdivided,
413 * the order in which smaller blocks are delivered depends on the order
414 * they're subdivided in this function. This is the primary factor
415 * influencing the order in which pages are delivered to the IO
416 * subsystem according to empirical testing, and this is also justified
417 * by considering the behavior of a buddy system containing a single
418 * large block of memory acted on by a series of small allocations.
419 * This behavior is a critical factor in sglist merging's success.
420 *
421 * -- wli
422 */
423static inline struct page *
424expand(struct zone *zone, struct page *page,
425 int low, int high, struct free_area *area)
426{
427 unsigned long size = 1 << high;
428
429 while (high > low) {
430 area--;
431 high--;
432 size >>= 1;
433 BUG_ON(bad_range(zone, &page[size]));
434 list_add(&page[size].lru, &area->free_list);
435 area->nr_free++;
436 set_page_order(&page[size], high);
437 }
438 return page;
439}
440
441void set_page_refs(struct page *page, int order)
442{
443#ifdef CONFIG_MMU
444 set_page_count(page, 1);
445#else
446 int i;
447
448 /*
449 * We need to reference all the pages for this order, otherwise if
450 * anyone accesses one of the pages with (get/put) it will be freed.
451 * - eg: access_process_vm()
452 */
453 for (i = 0; i < (1 << order); i++)
454 set_page_count(page + i, 1);
455#endif /* CONFIG_MMU */
456}
457
458/*
459 * This page is about to be returned from the page allocator
460 */
461static void prep_new_page(struct page *page, int order)
462{
334795ec
HD
463 if ( page_mapcount(page) ||
464 page->mapping != NULL ||
465 page_count(page) != 0 ||
466 (page->flags & (
467 1 << PG_lru |
1da177e4
LT
468 1 << PG_private |
469 1 << PG_locked |
1da177e4
LT
470 1 << PG_active |
471 1 << PG_dirty |
472 1 << PG_reclaim |
334795ec 473 1 << PG_slab |
1da177e4 474 1 << PG_swapcache |
b5810039
NP
475 1 << PG_writeback |
476 1 << PG_reserved )))
1da177e4
LT
477 bad_page(__FUNCTION__, page);
478
479 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
480 1 << PG_referenced | 1 << PG_arch_1 |
481 1 << PG_checked | 1 << PG_mappedtodisk);
4c21e2f2 482 set_page_private(page, 0);
1da177e4
LT
483 set_page_refs(page, order);
484 kernel_map_pages(page, 1 << order, 1);
485}
486
487/*
488 * Do the hard work of removing an element from the buddy allocator.
489 * Call me with the zone->lock already held.
490 */
491static struct page *__rmqueue(struct zone *zone, unsigned int order)
492{
493 struct free_area * area;
494 unsigned int current_order;
495 struct page *page;
496
497 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
498 area = zone->free_area + current_order;
499 if (list_empty(&area->free_list))
500 continue;
501
502 page = list_entry(area->free_list.next, struct page, lru);
503 list_del(&page->lru);
504 rmv_page_order(page);
505 area->nr_free--;
506 zone->free_pages -= 1UL << order;
507 return expand(zone, page, order, current_order, area);
508 }
509
510 return NULL;
511}
512
513/*
514 * Obtain a specified number of elements from the buddy allocator, all under
515 * a single hold of the lock, for efficiency. Add them to the supplied list.
516 * Returns the number of new pages which were placed at *list.
517 */
518static int rmqueue_bulk(struct zone *zone, unsigned int order,
519 unsigned long count, struct list_head *list)
520{
521 unsigned long flags;
522 int i;
523 int allocated = 0;
524 struct page *page;
525
526 spin_lock_irqsave(&zone->lock, flags);
527 for (i = 0; i < count; ++i) {
528 page = __rmqueue(zone, order);
529 if (page == NULL)
530 break;
531 allocated++;
532 list_add_tail(&page->lru, list);
533 }
534 spin_unlock_irqrestore(&zone->lock, flags);
535 return allocated;
536}
537
4ae7c039
CL
538#ifdef CONFIG_NUMA
539/* Called from the slab reaper to drain remote pagesets */
540void drain_remote_pages(void)
541{
542 struct zone *zone;
543 int i;
544 unsigned long flags;
545
546 local_irq_save(flags);
547 for_each_zone(zone) {
548 struct per_cpu_pageset *pset;
549
550 /* Do not drain local pagesets */
551 if (zone->zone_pgdat->node_id == numa_node_id())
552 continue;
553
554 pset = zone->pageset[smp_processor_id()];
555 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
556 struct per_cpu_pages *pcp;
557
558 pcp = &pset->pcp[i];
559 if (pcp->count)
560 pcp->count -= free_pages_bulk(zone, pcp->count,
561 &pcp->list, 0);
562 }
563 }
564 local_irq_restore(flags);
565}
566#endif
567
1da177e4
LT
568#if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
569static void __drain_pages(unsigned int cpu)
570{
571 struct zone *zone;
572 int i;
573
574 for_each_zone(zone) {
575 struct per_cpu_pageset *pset;
576
e7c8d5c9 577 pset = zone_pcp(zone, cpu);
1da177e4
LT
578 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
579 struct per_cpu_pages *pcp;
580
581 pcp = &pset->pcp[i];
582 pcp->count -= free_pages_bulk(zone, pcp->count,
583 &pcp->list, 0);
584 }
585 }
586}
587#endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
588
589#ifdef CONFIG_PM
590
591void mark_free_pages(struct zone *zone)
592{
593 unsigned long zone_pfn, flags;
594 int order;
595 struct list_head *curr;
596
597 if (!zone->spanned_pages)
598 return;
599
600 spin_lock_irqsave(&zone->lock, flags);
601 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
602 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
603
604 for (order = MAX_ORDER - 1; order >= 0; --order)
605 list_for_each(curr, &zone->free_area[order].free_list) {
606 unsigned long start_pfn, i;
607
608 start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
609
610 for (i=0; i < (1<<order); i++)
611 SetPageNosaveFree(pfn_to_page(start_pfn+i));
612 }
613 spin_unlock_irqrestore(&zone->lock, flags);
614}
615
616/*
617 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
618 */
619void drain_local_pages(void)
620{
621 unsigned long flags;
622
623 local_irq_save(flags);
624 __drain_pages(smp_processor_id());
625 local_irq_restore(flags);
626}
627#endif /* CONFIG_PM */
628
629static void zone_statistics(struct zonelist *zonelist, struct zone *z)
630{
631#ifdef CONFIG_NUMA
632 unsigned long flags;
633 int cpu;
634 pg_data_t *pg = z->zone_pgdat;
635 pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
636 struct per_cpu_pageset *p;
637
638 local_irq_save(flags);
639 cpu = smp_processor_id();
e7c8d5c9 640 p = zone_pcp(z,cpu);
1da177e4 641 if (pg == orig) {
e7c8d5c9 642 p->numa_hit++;
1da177e4
LT
643 } else {
644 p->numa_miss++;
e7c8d5c9 645 zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
1da177e4
LT
646 }
647 if (pg == NODE_DATA(numa_node_id()))
648 p->local_node++;
649 else
650 p->other_node++;
651 local_irq_restore(flags);
652#endif
653}
654
655/*
656 * Free a 0-order page
657 */
658static void FASTCALL(free_hot_cold_page(struct page *page, int cold));
659static void fastcall free_hot_cold_page(struct page *page, int cold)
660{
661 struct zone *zone = page_zone(page);
662 struct per_cpu_pages *pcp;
663 unsigned long flags;
664
665 arch_free_page(page, 0);
666
667 kernel_map_pages(page, 1, 0);
668 inc_page_state(pgfree);
669 if (PageAnon(page))
670 page->mapping = NULL;
671 free_pages_check(__FUNCTION__, page);
e7c8d5c9 672 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
1da177e4 673 local_irq_save(flags);
1da177e4
LT
674 list_add(&page->lru, &pcp->list);
675 pcp->count++;
2caaad41
CL
676 if (pcp->count >= pcp->high)
677 pcp->count -= free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1da177e4
LT
678 local_irq_restore(flags);
679 put_cpu();
680}
681
682void fastcall free_hot_page(struct page *page)
683{
684 free_hot_cold_page(page, 0);
685}
686
687void fastcall free_cold_page(struct page *page)
688{
689 free_hot_cold_page(page, 1);
690}
691
dd0fc66f 692static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
1da177e4
LT
693{
694 int i;
695
696 BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
697 for(i = 0; i < (1 << order); i++)
698 clear_highpage(page + i);
699}
700
701/*
702 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
703 * we cheat by calling it from here, in the order > 0 path. Saves a branch
704 * or two.
705 */
706static struct page *
dd0fc66f 707buffered_rmqueue(struct zone *zone, int order, gfp_t gfp_flags)
1da177e4
LT
708{
709 unsigned long flags;
710 struct page *page = NULL;
711 int cold = !!(gfp_flags & __GFP_COLD);
712
713 if (order == 0) {
714 struct per_cpu_pages *pcp;
715
e7c8d5c9 716 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
1da177e4
LT
717 local_irq_save(flags);
718 if (pcp->count <= pcp->low)
719 pcp->count += rmqueue_bulk(zone, 0,
720 pcp->batch, &pcp->list);
721 if (pcp->count) {
722 page = list_entry(pcp->list.next, struct page, lru);
723 list_del(&page->lru);
724 pcp->count--;
725 }
726 local_irq_restore(flags);
727 put_cpu();
728 }
729
730 if (page == NULL) {
731 spin_lock_irqsave(&zone->lock, flags);
732 page = __rmqueue(zone, order);
733 spin_unlock_irqrestore(&zone->lock, flags);
734 }
735
736 if (page != NULL) {
737 BUG_ON(bad_range(zone, page));
738 mod_page_state_zone(zone, pgalloc, 1 << order);
739 prep_new_page(page, order);
740
741 if (gfp_flags & __GFP_ZERO)
742 prep_zero_page(page, order, gfp_flags);
743
744 if (order && (gfp_flags & __GFP_COMP))
745 prep_compound_page(page, order);
746 }
747 return page;
748}
749
750/*
751 * Return 1 if free pages are above 'mark'. This takes into account the order
752 * of the allocation.
753 */
754int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
260b2367 755 int classzone_idx, int can_try_harder, gfp_t gfp_high)
1da177e4
LT
756{
757 /* free_pages my go negative - that's OK */
758 long min = mark, free_pages = z->free_pages - (1 << order) + 1;
759 int o;
760
761 if (gfp_high)
762 min -= min / 2;
763 if (can_try_harder)
764 min -= min / 4;
765
766 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
767 return 0;
768 for (o = 0; o < order; o++) {
769 /* At the next order, this order's pages become unavailable */
770 free_pages -= z->free_area[o].nr_free << o;
771
772 /* Require fewer higher order pages to be free */
773 min >>= 1;
774
775 if (free_pages <= min)
776 return 0;
777 }
778 return 1;
779}
780
753ee728 781static inline int
dd0fc66f 782should_reclaim_zone(struct zone *z, gfp_t gfp_mask)
753ee728
MH
783{
784 if (!z->reclaim_pages)
785 return 0;
0c35bbad
MH
786 if (gfp_mask & __GFP_NORECLAIM)
787 return 0;
753ee728
MH
788 return 1;
789}
790
1da177e4
LT
791/*
792 * This is the 'heart' of the zoned buddy allocator.
793 */
794struct page * fastcall
dd0fc66f 795__alloc_pages(gfp_t gfp_mask, unsigned int order,
1da177e4
LT
796 struct zonelist *zonelist)
797{
260b2367 798 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4
LT
799 struct zone **zones, *z;
800 struct page *page;
801 struct reclaim_state reclaim_state;
802 struct task_struct *p = current;
803 int i;
804 int classzone_idx;
805 int do_retry;
806 int can_try_harder;
807 int did_some_progress;
808
809 might_sleep_if(wait);
810
811 /*
812 * The caller may dip into page reserves a bit more if the caller
813 * cannot run direct reclaim, or is the caller has realtime scheduling
814 * policy
815 */
816 can_try_harder = (unlikely(rt_task(p)) && !in_interrupt()) || !wait;
817
818 zones = zonelist->zones; /* the list of zones suitable for gfp_mask */
819
820 if (unlikely(zones[0] == NULL)) {
821 /* Should this ever happen?? */
822 return NULL;
823 }
824
825 classzone_idx = zone_idx(zones[0]);
826
753ee728 827restart:
9bf2229f
PJ
828 /*
829 * Go through the zonelist once, looking for a zone with enough free.
830 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
831 */
1da177e4 832 for (i = 0; (z = zones[i]) != NULL; i++) {
753ee728 833 int do_reclaim = should_reclaim_zone(z, gfp_mask);
1da177e4 834
9bf2229f 835 if (!cpuset_zone_allowed(z, __GFP_HARDWALL))
1da177e4
LT
836 continue;
837
753ee728
MH
838 /*
839 * If the zone is to attempt early page reclaim then this loop
840 * will try to reclaim pages and check the watermark a second
841 * time before giving up and falling back to the next zone.
842 */
843zone_reclaim_retry:
844 if (!zone_watermark_ok(z, order, z->pages_low,
845 classzone_idx, 0, 0)) {
846 if (!do_reclaim)
847 continue;
848 else {
849 zone_reclaim(z, gfp_mask, order);
850 /* Only try reclaim once */
851 do_reclaim = 0;
852 goto zone_reclaim_retry;
853 }
854 }
855
1da177e4
LT
856 page = buffered_rmqueue(z, order, gfp_mask);
857 if (page)
858 goto got_pg;
859 }
860
861 for (i = 0; (z = zones[i]) != NULL; i++)
862 wakeup_kswapd(z, order);
863
864 /*
865 * Go through the zonelist again. Let __GFP_HIGH and allocations
866 * coming from realtime tasks to go deeper into reserves
867 *
868 * This is the last chance, in general, before the goto nopage.
869 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
9bf2229f 870 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1da177e4
LT
871 */
872 for (i = 0; (z = zones[i]) != NULL; i++) {
873 if (!zone_watermark_ok(z, order, z->pages_min,
874 classzone_idx, can_try_harder,
875 gfp_mask & __GFP_HIGH))
876 continue;
877
9bf2229f 878 if (wait && !cpuset_zone_allowed(z, gfp_mask))
1da177e4
LT
879 continue;
880
881 page = buffered_rmqueue(z, order, gfp_mask);
882 if (page)
883 goto got_pg;
884 }
885
886 /* This allocation should allow future memory freeing. */
b84a35be
NP
887
888 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
889 && !in_interrupt()) {
890 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
891 /* go through the zonelist yet again, ignoring mins */
892 for (i = 0; (z = zones[i]) != NULL; i++) {
9bf2229f 893 if (!cpuset_zone_allowed(z, gfp_mask))
b84a35be
NP
894 continue;
895 page = buffered_rmqueue(z, order, gfp_mask);
896 if (page)
897 goto got_pg;
898 }
1da177e4
LT
899 }
900 goto nopage;
901 }
902
903 /* Atomic allocations - we can't balance anything */
904 if (!wait)
905 goto nopage;
906
907rebalance:
908 cond_resched();
909
910 /* We now go into synchronous reclaim */
911 p->flags |= PF_MEMALLOC;
912 reclaim_state.reclaimed_slab = 0;
913 p->reclaim_state = &reclaim_state;
914
1ad539b2 915 did_some_progress = try_to_free_pages(zones, gfp_mask);
1da177e4
LT
916
917 p->reclaim_state = NULL;
918 p->flags &= ~PF_MEMALLOC;
919
920 cond_resched();
921
922 if (likely(did_some_progress)) {
1da177e4
LT
923 for (i = 0; (z = zones[i]) != NULL; i++) {
924 if (!zone_watermark_ok(z, order, z->pages_min,
925 classzone_idx, can_try_harder,
926 gfp_mask & __GFP_HIGH))
927 continue;
928
9bf2229f 929 if (!cpuset_zone_allowed(z, gfp_mask))
1da177e4
LT
930 continue;
931
932 page = buffered_rmqueue(z, order, gfp_mask);
933 if (page)
934 goto got_pg;
935 }
936 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
937 /*
938 * Go through the zonelist yet one more time, keep
939 * very high watermark here, this is only to catch
940 * a parallel oom killing, we must fail if we're still
941 * under heavy pressure.
942 */
943 for (i = 0; (z = zones[i]) != NULL; i++) {
944 if (!zone_watermark_ok(z, order, z->pages_high,
945 classzone_idx, 0, 0))
946 continue;
947
9bf2229f 948 if (!cpuset_zone_allowed(z, __GFP_HARDWALL))
1da177e4
LT
949 continue;
950
951 page = buffered_rmqueue(z, order, gfp_mask);
952 if (page)
953 goto got_pg;
954 }
955
79b9ce31 956 out_of_memory(gfp_mask, order);
1da177e4
LT
957 goto restart;
958 }
959
960 /*
961 * Don't let big-order allocations loop unless the caller explicitly
962 * requests that. Wait for some write requests to complete then retry.
963 *
964 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
965 * <= 3, but that may not be true in other implementations.
966 */
967 do_retry = 0;
968 if (!(gfp_mask & __GFP_NORETRY)) {
969 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
970 do_retry = 1;
971 if (gfp_mask & __GFP_NOFAIL)
972 do_retry = 1;
973 }
974 if (do_retry) {
975 blk_congestion_wait(WRITE, HZ/50);
976 goto rebalance;
977 }
978
979nopage:
980 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
981 printk(KERN_WARNING "%s: page allocation failure."
982 " order:%d, mode:0x%x\n",
983 p->comm, order, gfp_mask);
984 dump_stack();
578c2fd6 985 show_mem();
1da177e4
LT
986 }
987 return NULL;
988got_pg:
989 zone_statistics(zonelist, z);
990 return page;
991}
992
993EXPORT_SYMBOL(__alloc_pages);
994
995/*
996 * Common helper functions.
997 */
dd0fc66f 998fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4
LT
999{
1000 struct page * page;
1001 page = alloc_pages(gfp_mask, order);
1002 if (!page)
1003 return 0;
1004 return (unsigned long) page_address(page);
1005}
1006
1007EXPORT_SYMBOL(__get_free_pages);
1008
dd0fc66f 1009fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4
LT
1010{
1011 struct page * page;
1012
1013 /*
1014 * get_zeroed_page() returns a 32-bit address, which cannot represent
1015 * a highmem page
1016 */
260b2367 1017 BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1da177e4
LT
1018
1019 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1020 if (page)
1021 return (unsigned long) page_address(page);
1022 return 0;
1023}
1024
1025EXPORT_SYMBOL(get_zeroed_page);
1026
1027void __pagevec_free(struct pagevec *pvec)
1028{
1029 int i = pagevec_count(pvec);
1030
1031 while (--i >= 0)
1032 free_hot_cold_page(pvec->pages[i], pvec->cold);
1033}
1034
1035fastcall void __free_pages(struct page *page, unsigned int order)
1036{
b5810039 1037 if (put_page_testzero(page)) {
1da177e4
LT
1038 if (order == 0)
1039 free_hot_page(page);
1040 else
1041 __free_pages_ok(page, order);
1042 }
1043}
1044
1045EXPORT_SYMBOL(__free_pages);
1046
1047fastcall void free_pages(unsigned long addr, unsigned int order)
1048{
1049 if (addr != 0) {
1050 BUG_ON(!virt_addr_valid((void *)addr));
1051 __free_pages(virt_to_page((void *)addr), order);
1052 }
1053}
1054
1055EXPORT_SYMBOL(free_pages);
1056
1057/*
1058 * Total amount of free (allocatable) RAM:
1059 */
1060unsigned int nr_free_pages(void)
1061{
1062 unsigned int sum = 0;
1063 struct zone *zone;
1064
1065 for_each_zone(zone)
1066 sum += zone->free_pages;
1067
1068 return sum;
1069}
1070
1071EXPORT_SYMBOL(nr_free_pages);
1072
1073#ifdef CONFIG_NUMA
1074unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1075{
1076 unsigned int i, sum = 0;
1077
1078 for (i = 0; i < MAX_NR_ZONES; i++)
1079 sum += pgdat->node_zones[i].free_pages;
1080
1081 return sum;
1082}
1083#endif
1084
1085static unsigned int nr_free_zone_pages(int offset)
1086{
e310fd43
MB
1087 /* Just pick one node, since fallback list is circular */
1088 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1da177e4
LT
1089 unsigned int sum = 0;
1090
e310fd43
MB
1091 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1092 struct zone **zonep = zonelist->zones;
1093 struct zone *zone;
1da177e4 1094
e310fd43
MB
1095 for (zone = *zonep++; zone; zone = *zonep++) {
1096 unsigned long size = zone->present_pages;
1097 unsigned long high = zone->pages_high;
1098 if (size > high)
1099 sum += size - high;
1da177e4
LT
1100 }
1101
1102 return sum;
1103}
1104
1105/*
1106 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1107 */
1108unsigned int nr_free_buffer_pages(void)
1109{
af4ca457 1110 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4
LT
1111}
1112
1113/*
1114 * Amount of free RAM allocatable within all zones
1115 */
1116unsigned int nr_free_pagecache_pages(void)
1117{
af4ca457 1118 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1da177e4
LT
1119}
1120
1121#ifdef CONFIG_HIGHMEM
1122unsigned int nr_free_highpages (void)
1123{
1124 pg_data_t *pgdat;
1125 unsigned int pages = 0;
1126
1127 for_each_pgdat(pgdat)
1128 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1129
1130 return pages;
1131}
1132#endif
1133
1134#ifdef CONFIG_NUMA
1135static void show_node(struct zone *zone)
1136{
1137 printk("Node %d ", zone->zone_pgdat->node_id);
1138}
1139#else
1140#define show_node(zone) do { } while (0)
1141#endif
1142
1143/*
1144 * Accumulate the page_state information across all CPUs.
1145 * The result is unavoidably approximate - it can change
1146 * during and after execution of this function.
1147 */
1148static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1149
1150atomic_t nr_pagecache = ATOMIC_INIT(0);
1151EXPORT_SYMBOL(nr_pagecache);
1152#ifdef CONFIG_SMP
1153DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1154#endif
1155
c07e02db 1156void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask)
1da177e4
LT
1157{
1158 int cpu = 0;
1159
1160 memset(ret, 0, sizeof(*ret));
c07e02db 1161 cpus_and(*cpumask, *cpumask, cpu_online_map);
1da177e4 1162
c07e02db 1163 cpu = first_cpu(*cpumask);
1da177e4
LT
1164 while (cpu < NR_CPUS) {
1165 unsigned long *in, *out, off;
1166
1167 in = (unsigned long *)&per_cpu(page_states, cpu);
1168
c07e02db 1169 cpu = next_cpu(cpu, *cpumask);
1da177e4
LT
1170
1171 if (cpu < NR_CPUS)
1172 prefetch(&per_cpu(page_states, cpu));
1173
1174 out = (unsigned long *)ret;
1175 for (off = 0; off < nr; off++)
1176 *out++ += *in++;
1177 }
1178}
1179
c07e02db
MH
1180void get_page_state_node(struct page_state *ret, int node)
1181{
1182 int nr;
1183 cpumask_t mask = node_to_cpumask(node);
1184
1185 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1186 nr /= sizeof(unsigned long);
1187
1188 __get_page_state(ret, nr+1, &mask);
1189}
1190
1da177e4
LT
1191void get_page_state(struct page_state *ret)
1192{
1193 int nr;
c07e02db 1194 cpumask_t mask = CPU_MASK_ALL;
1da177e4
LT
1195
1196 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1197 nr /= sizeof(unsigned long);
1198
c07e02db 1199 __get_page_state(ret, nr + 1, &mask);
1da177e4
LT
1200}
1201
1202void get_full_page_state(struct page_state *ret)
1203{
c07e02db
MH
1204 cpumask_t mask = CPU_MASK_ALL;
1205
1206 __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask);
1da177e4
LT
1207}
1208
c2f29ea1 1209unsigned long __read_page_state(unsigned long offset)
1da177e4
LT
1210{
1211 unsigned long ret = 0;
1212 int cpu;
1213
1214 for_each_online_cpu(cpu) {
1215 unsigned long in;
1216
1217 in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1218 ret += *((unsigned long *)in);
1219 }
1220 return ret;
1221}
1222
83e5d8f7 1223void __mod_page_state(unsigned long offset, unsigned long delta)
1da177e4
LT
1224{
1225 unsigned long flags;
1226 void* ptr;
1227
1228 local_irq_save(flags);
1229 ptr = &__get_cpu_var(page_states);
1230 *(unsigned long*)(ptr + offset) += delta;
1231 local_irq_restore(flags);
1232}
1233
1234EXPORT_SYMBOL(__mod_page_state);
1235
1236void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1237 unsigned long *free, struct pglist_data *pgdat)
1238{
1239 struct zone *zones = pgdat->node_zones;
1240 int i;
1241
1242 *active = 0;
1243 *inactive = 0;
1244 *free = 0;
1245 for (i = 0; i < MAX_NR_ZONES; i++) {
1246 *active += zones[i].nr_active;
1247 *inactive += zones[i].nr_inactive;
1248 *free += zones[i].free_pages;
1249 }
1250}
1251
1252void get_zone_counts(unsigned long *active,
1253 unsigned long *inactive, unsigned long *free)
1254{
1255 struct pglist_data *pgdat;
1256
1257 *active = 0;
1258 *inactive = 0;
1259 *free = 0;
1260 for_each_pgdat(pgdat) {
1261 unsigned long l, m, n;
1262 __get_zone_counts(&l, &m, &n, pgdat);
1263 *active += l;
1264 *inactive += m;
1265 *free += n;
1266 }
1267}
1268
1269void si_meminfo(struct sysinfo *val)
1270{
1271 val->totalram = totalram_pages;
1272 val->sharedram = 0;
1273 val->freeram = nr_free_pages();
1274 val->bufferram = nr_blockdev_pages();
1275#ifdef CONFIG_HIGHMEM
1276 val->totalhigh = totalhigh_pages;
1277 val->freehigh = nr_free_highpages();
1278#else
1279 val->totalhigh = 0;
1280 val->freehigh = 0;
1281#endif
1282 val->mem_unit = PAGE_SIZE;
1283}
1284
1285EXPORT_SYMBOL(si_meminfo);
1286
1287#ifdef CONFIG_NUMA
1288void si_meminfo_node(struct sysinfo *val, int nid)
1289{
1290 pg_data_t *pgdat = NODE_DATA(nid);
1291
1292 val->totalram = pgdat->node_present_pages;
1293 val->freeram = nr_free_pages_pgdat(pgdat);
1294 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1295 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1296 val->mem_unit = PAGE_SIZE;
1297}
1298#endif
1299
1300#define K(x) ((x) << (PAGE_SHIFT-10))
1301
1302/*
1303 * Show free area list (used inside shift_scroll-lock stuff)
1304 * We also calculate the percentage fragmentation. We do this by counting the
1305 * memory on each free list with the exception of the first item on the list.
1306 */
1307void show_free_areas(void)
1308{
1309 struct page_state ps;
1310 int cpu, temperature;
1311 unsigned long active;
1312 unsigned long inactive;
1313 unsigned long free;
1314 struct zone *zone;
1315
1316 for_each_zone(zone) {
1317 show_node(zone);
1318 printk("%s per-cpu:", zone->name);
1319
1320 if (!zone->present_pages) {
1321 printk(" empty\n");
1322 continue;
1323 } else
1324 printk("\n");
1325
1326 for (cpu = 0; cpu < NR_CPUS; ++cpu) {
1327 struct per_cpu_pageset *pageset;
1328
1329 if (!cpu_possible(cpu))
1330 continue;
1331
e7c8d5c9 1332 pageset = zone_pcp(zone, cpu);
1da177e4
LT
1333
1334 for (temperature = 0; temperature < 2; temperature++)
4ae7c039 1335 printk("cpu %d %s: low %d, high %d, batch %d used:%d\n",
1da177e4
LT
1336 cpu,
1337 temperature ? "cold" : "hot",
1338 pageset->pcp[temperature].low,
1339 pageset->pcp[temperature].high,
4ae7c039
CL
1340 pageset->pcp[temperature].batch,
1341 pageset->pcp[temperature].count);
1da177e4
LT
1342 }
1343 }
1344
1345 get_page_state(&ps);
1346 get_zone_counts(&active, &inactive, &free);
1347
c0d62219 1348 printk("Free pages: %11ukB (%ukB HighMem)\n",
1da177e4
LT
1349 K(nr_free_pages()),
1350 K(nr_free_highpages()));
1351
1352 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1353 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1354 active,
1355 inactive,
1356 ps.nr_dirty,
1357 ps.nr_writeback,
1358 ps.nr_unstable,
1359 nr_free_pages(),
1360 ps.nr_slab,
1361 ps.nr_mapped,
1362 ps.nr_page_table_pages);
1363
1364 for_each_zone(zone) {
1365 int i;
1366
1367 show_node(zone);
1368 printk("%s"
1369 " free:%lukB"
1370 " min:%lukB"
1371 " low:%lukB"
1372 " high:%lukB"
1373 " active:%lukB"
1374 " inactive:%lukB"
1375 " present:%lukB"
1376 " pages_scanned:%lu"
1377 " all_unreclaimable? %s"
1378 "\n",
1379 zone->name,
1380 K(zone->free_pages),
1381 K(zone->pages_min),
1382 K(zone->pages_low),
1383 K(zone->pages_high),
1384 K(zone->nr_active),
1385 K(zone->nr_inactive),
1386 K(zone->present_pages),
1387 zone->pages_scanned,
1388 (zone->all_unreclaimable ? "yes" : "no")
1389 );
1390 printk("lowmem_reserve[]:");
1391 for (i = 0; i < MAX_NR_ZONES; i++)
1392 printk(" %lu", zone->lowmem_reserve[i]);
1393 printk("\n");
1394 }
1395
1396 for_each_zone(zone) {
1397 unsigned long nr, flags, order, total = 0;
1398
1399 show_node(zone);
1400 printk("%s: ", zone->name);
1401 if (!zone->present_pages) {
1402 printk("empty\n");
1403 continue;
1404 }
1405
1406 spin_lock_irqsave(&zone->lock, flags);
1407 for (order = 0; order < MAX_ORDER; order++) {
1408 nr = zone->free_area[order].nr_free;
1409 total += nr << order;
1410 printk("%lu*%lukB ", nr, K(1UL) << order);
1411 }
1412 spin_unlock_irqrestore(&zone->lock, flags);
1413 printk("= %lukB\n", K(total));
1414 }
1415
1416 show_swap_cache_info();
1417}
1418
1419/*
1420 * Builds allocation fallback zone lists.
1421 */
1422static int __init build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, int j, int k)
1423{
1424 switch (k) {
1425 struct zone *zone;
1426 default:
1427 BUG();
1428 case ZONE_HIGHMEM:
1429 zone = pgdat->node_zones + ZONE_HIGHMEM;
1430 if (zone->present_pages) {
1431#ifndef CONFIG_HIGHMEM
1432 BUG();
1433#endif
1434 zonelist->zones[j++] = zone;
1435 }
1436 case ZONE_NORMAL:
1437 zone = pgdat->node_zones + ZONE_NORMAL;
1438 if (zone->present_pages)
1439 zonelist->zones[j++] = zone;
1440 case ZONE_DMA:
1441 zone = pgdat->node_zones + ZONE_DMA;
1442 if (zone->present_pages)
1443 zonelist->zones[j++] = zone;
1444 }
1445
1446 return j;
1447}
1448
260b2367
AV
1449static inline int highest_zone(int zone_bits)
1450{
1451 int res = ZONE_NORMAL;
1452 if (zone_bits & (__force int)__GFP_HIGHMEM)
1453 res = ZONE_HIGHMEM;
1454 if (zone_bits & (__force int)__GFP_DMA)
1455 res = ZONE_DMA;
1456 return res;
1457}
1458
1da177e4
LT
1459#ifdef CONFIG_NUMA
1460#define MAX_NODE_LOAD (num_online_nodes())
1461static int __initdata node_load[MAX_NUMNODES];
1462/**
4dc3b16b 1463 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
1464 * @node: node whose fallback list we're appending
1465 * @used_node_mask: nodemask_t of already used nodes
1466 *
1467 * We use a number of factors to determine which is the next node that should
1468 * appear on a given node's fallback list. The node should not have appeared
1469 * already in @node's fallback list, and it should be the next closest node
1470 * according to the distance array (which contains arbitrary distance values
1471 * from each node to each node in the system), and should also prefer nodes
1472 * with no CPUs, since presumably they'll have very little allocation pressure
1473 * on them otherwise.
1474 * It returns -1 if no node is found.
1475 */
1476static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1477{
1478 int i, n, val;
1479 int min_val = INT_MAX;
1480 int best_node = -1;
1481
1482 for_each_online_node(i) {
1483 cpumask_t tmp;
1484
1485 /* Start from local node */
1486 n = (node+i) % num_online_nodes();
1487
1488 /* Don't want a node to appear more than once */
1489 if (node_isset(n, *used_node_mask))
1490 continue;
1491
1492 /* Use the local node if we haven't already */
1493 if (!node_isset(node, *used_node_mask)) {
1494 best_node = node;
1495 break;
1496 }
1497
1498 /* Use the distance array to find the distance */
1499 val = node_distance(node, n);
1500
1501 /* Give preference to headless and unused nodes */
1502 tmp = node_to_cpumask(n);
1503 if (!cpus_empty(tmp))
1504 val += PENALTY_FOR_NODE_WITH_CPUS;
1505
1506 /* Slight preference for less loaded node */
1507 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1508 val += node_load[n];
1509
1510 if (val < min_val) {
1511 min_val = val;
1512 best_node = n;
1513 }
1514 }
1515
1516 if (best_node >= 0)
1517 node_set(best_node, *used_node_mask);
1518
1519 return best_node;
1520}
1521
1522static void __init build_zonelists(pg_data_t *pgdat)
1523{
1524 int i, j, k, node, local_node;
1525 int prev_node, load;
1526 struct zonelist *zonelist;
1527 nodemask_t used_mask;
1528
1529 /* initialize zonelists */
1530 for (i = 0; i < GFP_ZONETYPES; i++) {
1531 zonelist = pgdat->node_zonelists + i;
1532 zonelist->zones[0] = NULL;
1533 }
1534
1535 /* NUMA-aware ordering of nodes */
1536 local_node = pgdat->node_id;
1537 load = num_online_nodes();
1538 prev_node = local_node;
1539 nodes_clear(used_mask);
1540 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1541 /*
1542 * We don't want to pressure a particular node.
1543 * So adding penalty to the first node in same
1544 * distance group to make it round-robin.
1545 */
1546 if (node_distance(local_node, node) !=
1547 node_distance(local_node, prev_node))
1548 node_load[node] += load;
1549 prev_node = node;
1550 load--;
1551 for (i = 0; i < GFP_ZONETYPES; i++) {
1552 zonelist = pgdat->node_zonelists + i;
1553 for (j = 0; zonelist->zones[j] != NULL; j++);
1554
260b2367 1555 k = highest_zone(i);
1da177e4
LT
1556
1557 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1558 zonelist->zones[j] = NULL;
1559 }
1560 }
1561}
1562
1563#else /* CONFIG_NUMA */
1564
1565static void __init build_zonelists(pg_data_t *pgdat)
1566{
1567 int i, j, k, node, local_node;
1568
1569 local_node = pgdat->node_id;
1570 for (i = 0; i < GFP_ZONETYPES; i++) {
1571 struct zonelist *zonelist;
1572
1573 zonelist = pgdat->node_zonelists + i;
1574
1575 j = 0;
260b2367 1576 k = highest_zone(i);
1da177e4
LT
1577 j = build_zonelists_node(pgdat, zonelist, j, k);
1578 /*
1579 * Now we build the zonelist so that it contains the zones
1580 * of all the other nodes.
1581 * We don't want to pressure a particular node, so when
1582 * building the zones for node N, we make sure that the
1583 * zones coming right after the local ones are those from
1584 * node N+1 (modulo N)
1585 */
1586 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1587 if (!node_online(node))
1588 continue;
1589 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1590 }
1591 for (node = 0; node < local_node; node++) {
1592 if (!node_online(node))
1593 continue;
1594 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1595 }
1596
1597 zonelist->zones[j] = NULL;
1598 }
1599}
1600
1601#endif /* CONFIG_NUMA */
1602
1603void __init build_all_zonelists(void)
1604{
1605 int i;
1606
1607 for_each_online_node(i)
1608 build_zonelists(NODE_DATA(i));
1609 printk("Built %i zonelists\n", num_online_nodes());
1610 cpuset_init_current_mems_allowed();
1611}
1612
1613/*
1614 * Helper functions to size the waitqueue hash table.
1615 * Essentially these want to choose hash table sizes sufficiently
1616 * large so that collisions trying to wait on pages are rare.
1617 * But in fact, the number of active page waitqueues on typical
1618 * systems is ridiculously low, less than 200. So this is even
1619 * conservative, even though it seems large.
1620 *
1621 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1622 * waitqueues, i.e. the size of the waitq table given the number of pages.
1623 */
1624#define PAGES_PER_WAITQUEUE 256
1625
1626static inline unsigned long wait_table_size(unsigned long pages)
1627{
1628 unsigned long size = 1;
1629
1630 pages /= PAGES_PER_WAITQUEUE;
1631
1632 while (size < pages)
1633 size <<= 1;
1634
1635 /*
1636 * Once we have dozens or even hundreds of threads sleeping
1637 * on IO we've got bigger problems than wait queue collision.
1638 * Limit the size of the wait table to a reasonable size.
1639 */
1640 size = min(size, 4096UL);
1641
1642 return max(size, 4UL);
1643}
1644
1645/*
1646 * This is an integer logarithm so that shifts can be used later
1647 * to extract the more random high bits from the multiplicative
1648 * hash function before the remainder is taken.
1649 */
1650static inline unsigned long wait_table_bits(unsigned long size)
1651{
1652 return ffz(~size);
1653}
1654
1655#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1656
1657static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1658 unsigned long *zones_size, unsigned long *zholes_size)
1659{
1660 unsigned long realtotalpages, totalpages = 0;
1661 int i;
1662
1663 for (i = 0; i < MAX_NR_ZONES; i++)
1664 totalpages += zones_size[i];
1665 pgdat->node_spanned_pages = totalpages;
1666
1667 realtotalpages = totalpages;
1668 if (zholes_size)
1669 for (i = 0; i < MAX_NR_ZONES; i++)
1670 realtotalpages -= zholes_size[i];
1671 pgdat->node_present_pages = realtotalpages;
1672 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1673}
1674
1675
1676/*
1677 * Initially all pages are reserved - free ones are freed
1678 * up by free_all_bootmem() once the early boot process is
1679 * done. Non-atomic initialization, single-pass.
1680 */
1681void __init memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1682 unsigned long start_pfn)
1683{
1da177e4 1684 struct page *page;
29751f69
AW
1685 unsigned long end_pfn = start_pfn + size;
1686 unsigned long pfn;
1da177e4 1687
d41dee36
AW
1688 for (pfn = start_pfn; pfn < end_pfn; pfn++, page++) {
1689 if (!early_pfn_valid(pfn))
1690 continue;
641c7673
AW
1691 if (!early_pfn_in_nid(pfn, nid))
1692 continue;
d41dee36
AW
1693 page = pfn_to_page(pfn);
1694 set_page_links(page, zone, nid, pfn);
b5810039 1695 set_page_count(page, 1);
1da177e4
LT
1696 reset_page_mapcount(page);
1697 SetPageReserved(page);
1698 INIT_LIST_HEAD(&page->lru);
1699#ifdef WANT_PAGE_VIRTUAL
1700 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1701 if (!is_highmem_idx(zone))
3212c6be 1702 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 1703#endif
1da177e4
LT
1704 }
1705}
1706
1707void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1708 unsigned long size)
1709{
1710 int order;
1711 for (order = 0; order < MAX_ORDER ; order++) {
1712 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1713 zone->free_area[order].nr_free = 0;
1714 }
1715}
1716
d41dee36
AW
1717#define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
1718void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1719 unsigned long size)
1720{
1721 unsigned long snum = pfn_to_section_nr(pfn);
1722 unsigned long end = pfn_to_section_nr(pfn + size);
1723
1724 if (FLAGS_HAS_NODE)
1725 zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1726 else
1727 for (; snum <= end; snum++)
1728 zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1729}
1730
1da177e4
LT
1731#ifndef __HAVE_ARCH_MEMMAP_INIT
1732#define memmap_init(size, nid, zone, start_pfn) \
1733 memmap_init_zone((size), (nid), (zone), (start_pfn))
1734#endif
1735
e7c8d5c9
CL
1736static int __devinit zone_batchsize(struct zone *zone)
1737{
1738 int batch;
1739
1740 /*
1741 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 1742 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
1743 *
1744 * OK, so we don't know how big the cache is. So guess.
1745 */
1746 batch = zone->present_pages / 1024;
ba56e91c
SR
1747 if (batch * PAGE_SIZE > 512 * 1024)
1748 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
1749 batch /= 4; /* We effectively *= 4 below */
1750 if (batch < 1)
1751 batch = 1;
1752
1753 /*
ba56e91c
SR
1754 * We will be trying to allcoate bigger chunks of contiguous
1755 * memory of the order of fls(batch). This should result in
1756 * better cache coloring.
e7c8d5c9 1757 *
ba56e91c 1758 * A sanity check also to ensure that batch is still in limits.
e7c8d5c9 1759 */
ba56e91c
SR
1760 batch = (1 << fls(batch + batch/2));
1761
1762 if (fls(batch) >= (PAGE_SHIFT + MAX_ORDER - 2))
1763 batch = PAGE_SHIFT + ((MAX_ORDER - 1 - PAGE_SHIFT)/2);
1764
e7c8d5c9
CL
1765 return batch;
1766}
1767
2caaad41
CL
1768inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1769{
1770 struct per_cpu_pages *pcp;
1771
1c6fe946
MD
1772 memset(p, 0, sizeof(*p));
1773
2caaad41
CL
1774 pcp = &p->pcp[0]; /* hot */
1775 pcp->count = 0;
e46a5e28 1776 pcp->low = 0;
2caaad41
CL
1777 pcp->high = 6 * batch;
1778 pcp->batch = max(1UL, 1 * batch);
1779 INIT_LIST_HEAD(&pcp->list);
1780
1781 pcp = &p->pcp[1]; /* cold*/
1782 pcp->count = 0;
1783 pcp->low = 0;
1784 pcp->high = 2 * batch;
e46a5e28 1785 pcp->batch = max(1UL, batch/2);
2caaad41
CL
1786 INIT_LIST_HEAD(&pcp->list);
1787}
1788
e7c8d5c9
CL
1789#ifdef CONFIG_NUMA
1790/*
2caaad41
CL
1791 * Boot pageset table. One per cpu which is going to be used for all
1792 * zones and all nodes. The parameters will be set in such a way
1793 * that an item put on a list will immediately be handed over to
1794 * the buddy list. This is safe since pageset manipulation is done
1795 * with interrupts disabled.
1796 *
1797 * Some NUMA counter updates may also be caught by the boot pagesets.
b7c84c6a
CL
1798 *
1799 * The boot_pagesets must be kept even after bootup is complete for
1800 * unused processors and/or zones. They do play a role for bootstrapping
1801 * hotplugged processors.
1802 *
1803 * zoneinfo_show() and maybe other functions do
1804 * not check if the processor is online before following the pageset pointer.
1805 * Other parts of the kernel may not check if the zone is available.
2caaad41
CL
1806 */
1807static struct per_cpu_pageset
b7c84c6a 1808 boot_pageset[NR_CPUS];
2caaad41
CL
1809
1810/*
1811 * Dynamically allocate memory for the
e7c8d5c9
CL
1812 * per cpu pageset array in struct zone.
1813 */
1814static int __devinit process_zones(int cpu)
1815{
1816 struct zone *zone, *dzone;
e7c8d5c9
CL
1817
1818 for_each_zone(zone) {
e7c8d5c9 1819
2caaad41 1820 zone->pageset[cpu] = kmalloc_node(sizeof(struct per_cpu_pageset),
e7c8d5c9 1821 GFP_KERNEL, cpu_to_node(cpu));
2caaad41 1822 if (!zone->pageset[cpu])
e7c8d5c9 1823 goto bad;
e7c8d5c9 1824
2caaad41 1825 setup_pageset(zone->pageset[cpu], zone_batchsize(zone));
e7c8d5c9
CL
1826 }
1827
1828 return 0;
1829bad:
1830 for_each_zone(dzone) {
1831 if (dzone == zone)
1832 break;
1833 kfree(dzone->pageset[cpu]);
1834 dzone->pageset[cpu] = NULL;
1835 }
1836 return -ENOMEM;
1837}
1838
1839static inline void free_zone_pagesets(int cpu)
1840{
1841#ifdef CONFIG_NUMA
1842 struct zone *zone;
1843
1844 for_each_zone(zone) {
1845 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1846
1847 zone_pcp(zone, cpu) = NULL;
1848 kfree(pset);
1849 }
1850#endif
1851}
1852
1853static int __devinit pageset_cpuup_callback(struct notifier_block *nfb,
1854 unsigned long action,
1855 void *hcpu)
1856{
1857 int cpu = (long)hcpu;
1858 int ret = NOTIFY_OK;
1859
1860 switch (action) {
1861 case CPU_UP_PREPARE:
1862 if (process_zones(cpu))
1863 ret = NOTIFY_BAD;
1864 break;
1865#ifdef CONFIG_HOTPLUG_CPU
1866 case CPU_DEAD:
1867 free_zone_pagesets(cpu);
1868 break;
1869#endif
1870 default:
1871 break;
1872 }
1873 return ret;
1874}
1875
1876static struct notifier_block pageset_notifier =
1877 { &pageset_cpuup_callback, NULL, 0 };
1878
1879void __init setup_per_cpu_pageset()
1880{
1881 int err;
1882
1883 /* Initialize per_cpu_pageset for cpu 0.
1884 * A cpuup callback will do this for every cpu
1885 * as it comes online
1886 */
1887 err = process_zones(smp_processor_id());
1888 BUG_ON(err);
1889 register_cpu_notifier(&pageset_notifier);
1890}
1891
1892#endif
1893
ed8ece2e
DH
1894static __devinit
1895void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
1896{
1897 int i;
1898 struct pglist_data *pgdat = zone->zone_pgdat;
1899
1900 /*
1901 * The per-page waitqueue mechanism uses hashed waitqueues
1902 * per zone.
1903 */
1904 zone->wait_table_size = wait_table_size(zone_size_pages);
1905 zone->wait_table_bits = wait_table_bits(zone->wait_table_size);
1906 zone->wait_table = (wait_queue_head_t *)
1907 alloc_bootmem_node(pgdat, zone->wait_table_size
1908 * sizeof(wait_queue_head_t));
1909
1910 for(i = 0; i < zone->wait_table_size; ++i)
1911 init_waitqueue_head(zone->wait_table + i);
1912}
1913
1914static __devinit void zone_pcp_init(struct zone *zone)
1915{
1916 int cpu;
1917 unsigned long batch = zone_batchsize(zone);
1918
1919 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1920#ifdef CONFIG_NUMA
1921 /* Early boot. Slab allocator not functional yet */
1922 zone->pageset[cpu] = &boot_pageset[cpu];
1923 setup_pageset(&boot_pageset[cpu],0);
1924#else
1925 setup_pageset(zone_pcp(zone,cpu), batch);
1926#endif
1927 }
1928 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
1929 zone->name, zone->present_pages, batch);
1930}
1931
1932static __devinit void init_currently_empty_zone(struct zone *zone,
1933 unsigned long zone_start_pfn, unsigned long size)
1934{
1935 struct pglist_data *pgdat = zone->zone_pgdat;
1936
1937 zone_wait_table_init(zone, size);
1938 pgdat->nr_zones = zone_idx(zone) + 1;
1939
1940 zone->zone_mem_map = pfn_to_page(zone_start_pfn);
1941 zone->zone_start_pfn = zone_start_pfn;
1942
1943 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
1944
1945 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
1946}
1947
1da177e4
LT
1948/*
1949 * Set up the zone data structures:
1950 * - mark all pages reserved
1951 * - mark all memory queues empty
1952 * - clear the memory bitmaps
1953 */
1954static void __init free_area_init_core(struct pglist_data *pgdat,
1955 unsigned long *zones_size, unsigned long *zholes_size)
1956{
ed8ece2e
DH
1957 unsigned long j;
1958 int nid = pgdat->node_id;
1da177e4
LT
1959 unsigned long zone_start_pfn = pgdat->node_start_pfn;
1960
208d54e5 1961 pgdat_resize_init(pgdat);
1da177e4
LT
1962 pgdat->nr_zones = 0;
1963 init_waitqueue_head(&pgdat->kswapd_wait);
1964 pgdat->kswapd_max_order = 0;
1965
1966 for (j = 0; j < MAX_NR_ZONES; j++) {
1967 struct zone *zone = pgdat->node_zones + j;
1968 unsigned long size, realsize;
1da177e4 1969
1da177e4
LT
1970 realsize = size = zones_size[j];
1971 if (zholes_size)
1972 realsize -= zholes_size[j];
1973
1974 if (j == ZONE_DMA || j == ZONE_NORMAL)
1975 nr_kernel_pages += realsize;
1976 nr_all_pages += realsize;
1977
1978 zone->spanned_pages = size;
1979 zone->present_pages = realsize;
1980 zone->name = zone_names[j];
1981 spin_lock_init(&zone->lock);
1982 spin_lock_init(&zone->lru_lock);
1983 zone->zone_pgdat = pgdat;
1984 zone->free_pages = 0;
1985
1986 zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
1987
ed8ece2e 1988 zone_pcp_init(zone);
1da177e4
LT
1989 INIT_LIST_HEAD(&zone->active_list);
1990 INIT_LIST_HEAD(&zone->inactive_list);
1991 zone->nr_scan_active = 0;
1992 zone->nr_scan_inactive = 0;
1993 zone->nr_active = 0;
1994 zone->nr_inactive = 0;
53e9a615 1995 atomic_set(&zone->reclaim_in_progress, 0);
1da177e4
LT
1996 if (!size)
1997 continue;
1998
d41dee36 1999 zonetable_add(zone, nid, j, zone_start_pfn, size);
ed8ece2e 2000 init_currently_empty_zone(zone, zone_start_pfn, size);
1da177e4 2001 zone_start_pfn += size;
1da177e4
LT
2002 }
2003}
2004
2005static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2006{
1da177e4
LT
2007 /* Skip empty nodes */
2008 if (!pgdat->node_spanned_pages)
2009 return;
2010
d41dee36 2011#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
2012 /* ia64 gets its own node_mem_map, before this, without bootmem */
2013 if (!pgdat->node_mem_map) {
d41dee36
AW
2014 unsigned long size;
2015 struct page *map;
2016
1da177e4 2017 size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
6f167ec7
DH
2018 map = alloc_remap(pgdat->node_id, size);
2019 if (!map)
2020 map = alloc_bootmem_node(pgdat, size);
2021 pgdat->node_mem_map = map;
1da177e4 2022 }
d41dee36 2023#ifdef CONFIG_FLATMEM
1da177e4
LT
2024 /*
2025 * With no DISCONTIG, the global mem_map is just set as node 0's
2026 */
2027 if (pgdat == NODE_DATA(0))
2028 mem_map = NODE_DATA(0)->node_mem_map;
2029#endif
d41dee36 2030#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
2031}
2032
2033void __init free_area_init_node(int nid, struct pglist_data *pgdat,
2034 unsigned long *zones_size, unsigned long node_start_pfn,
2035 unsigned long *zholes_size)
2036{
2037 pgdat->node_id = nid;
2038 pgdat->node_start_pfn = node_start_pfn;
2039 calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2040
2041 alloc_node_mem_map(pgdat);
2042
2043 free_area_init_core(pgdat, zones_size, zholes_size);
2044}
2045
93b7504e 2046#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
2047static bootmem_data_t contig_bootmem_data;
2048struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2049
2050EXPORT_SYMBOL(contig_page_data);
93b7504e 2051#endif
1da177e4
LT
2052
2053void __init free_area_init(unsigned long *zones_size)
2054{
93b7504e 2055 free_area_init_node(0, NODE_DATA(0), zones_size,
1da177e4
LT
2056 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2057}
1da177e4
LT
2058
2059#ifdef CONFIG_PROC_FS
2060
2061#include <linux/seq_file.h>
2062
2063static void *frag_start(struct seq_file *m, loff_t *pos)
2064{
2065 pg_data_t *pgdat;
2066 loff_t node = *pos;
2067
2068 for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
2069 --node;
2070
2071 return pgdat;
2072}
2073
2074static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
2075{
2076 pg_data_t *pgdat = (pg_data_t *)arg;
2077
2078 (*pos)++;
2079 return pgdat->pgdat_next;
2080}
2081
2082static void frag_stop(struct seq_file *m, void *arg)
2083{
2084}
2085
2086/*
2087 * This walks the free areas for each zone.
2088 */
2089static int frag_show(struct seq_file *m, void *arg)
2090{
2091 pg_data_t *pgdat = (pg_data_t *)arg;
2092 struct zone *zone;
2093 struct zone *node_zones = pgdat->node_zones;
2094 unsigned long flags;
2095 int order;
2096
2097 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2098 if (!zone->present_pages)
2099 continue;
2100
2101 spin_lock_irqsave(&zone->lock, flags);
2102 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
2103 for (order = 0; order < MAX_ORDER; ++order)
2104 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
2105 spin_unlock_irqrestore(&zone->lock, flags);
2106 seq_putc(m, '\n');
2107 }
2108 return 0;
2109}
2110
2111struct seq_operations fragmentation_op = {
2112 .start = frag_start,
2113 .next = frag_next,
2114 .stop = frag_stop,
2115 .show = frag_show,
2116};
2117
295ab934
ND
2118/*
2119 * Output information about zones in @pgdat.
2120 */
2121static int zoneinfo_show(struct seq_file *m, void *arg)
2122{
2123 pg_data_t *pgdat = arg;
2124 struct zone *zone;
2125 struct zone *node_zones = pgdat->node_zones;
2126 unsigned long flags;
2127
2128 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
2129 int i;
2130
2131 if (!zone->present_pages)
2132 continue;
2133
2134 spin_lock_irqsave(&zone->lock, flags);
2135 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
2136 seq_printf(m,
2137 "\n pages free %lu"
2138 "\n min %lu"
2139 "\n low %lu"
2140 "\n high %lu"
2141 "\n active %lu"
2142 "\n inactive %lu"
2143 "\n scanned %lu (a: %lu i: %lu)"
2144 "\n spanned %lu"
2145 "\n present %lu",
2146 zone->free_pages,
2147 zone->pages_min,
2148 zone->pages_low,
2149 zone->pages_high,
2150 zone->nr_active,
2151 zone->nr_inactive,
2152 zone->pages_scanned,
2153 zone->nr_scan_active, zone->nr_scan_inactive,
2154 zone->spanned_pages,
2155 zone->present_pages);
2156 seq_printf(m,
2157 "\n protection: (%lu",
2158 zone->lowmem_reserve[0]);
2159 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
2160 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
2161 seq_printf(m,
2162 ")"
2163 "\n pagesets");
2164 for (i = 0; i < ARRAY_SIZE(zone->pageset); i++) {
2165 struct per_cpu_pageset *pageset;
2166 int j;
2167
e7c8d5c9 2168 pageset = zone_pcp(zone, i);
295ab934
ND
2169 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2170 if (pageset->pcp[j].count)
2171 break;
2172 }
2173 if (j == ARRAY_SIZE(pageset->pcp))
2174 continue;
2175 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2176 seq_printf(m,
2177 "\n cpu: %i pcp: %i"
2178 "\n count: %i"
2179 "\n low: %i"
2180 "\n high: %i"
2181 "\n batch: %i",
2182 i, j,
2183 pageset->pcp[j].count,
2184 pageset->pcp[j].low,
2185 pageset->pcp[j].high,
2186 pageset->pcp[j].batch);
2187 }
2188#ifdef CONFIG_NUMA
2189 seq_printf(m,
2190 "\n numa_hit: %lu"
2191 "\n numa_miss: %lu"
2192 "\n numa_foreign: %lu"
2193 "\n interleave_hit: %lu"
2194 "\n local_node: %lu"
2195 "\n other_node: %lu",
2196 pageset->numa_hit,
2197 pageset->numa_miss,
2198 pageset->numa_foreign,
2199 pageset->interleave_hit,
2200 pageset->local_node,
2201 pageset->other_node);
2202#endif
2203 }
2204 seq_printf(m,
2205 "\n all_unreclaimable: %u"
2206 "\n prev_priority: %i"
2207 "\n temp_priority: %i"
2208 "\n start_pfn: %lu",
2209 zone->all_unreclaimable,
2210 zone->prev_priority,
2211 zone->temp_priority,
2212 zone->zone_start_pfn);
2213 spin_unlock_irqrestore(&zone->lock, flags);
2214 seq_putc(m, '\n');
2215 }
2216 return 0;
2217}
2218
2219struct seq_operations zoneinfo_op = {
2220 .start = frag_start, /* iterate over all zones. The same as in
2221 * fragmentation. */
2222 .next = frag_next,
2223 .stop = frag_stop,
2224 .show = zoneinfo_show,
2225};
2226
1da177e4
LT
2227static char *vmstat_text[] = {
2228 "nr_dirty",
2229 "nr_writeback",
2230 "nr_unstable",
2231 "nr_page_table_pages",
2232 "nr_mapped",
2233 "nr_slab",
2234
2235 "pgpgin",
2236 "pgpgout",
2237 "pswpin",
2238 "pswpout",
2239 "pgalloc_high",
2240
2241 "pgalloc_normal",
2242 "pgalloc_dma",
2243 "pgfree",
2244 "pgactivate",
2245 "pgdeactivate",
2246
2247 "pgfault",
2248 "pgmajfault",
2249 "pgrefill_high",
2250 "pgrefill_normal",
2251 "pgrefill_dma",
2252
2253 "pgsteal_high",
2254 "pgsteal_normal",
2255 "pgsteal_dma",
2256 "pgscan_kswapd_high",
2257 "pgscan_kswapd_normal",
2258
2259 "pgscan_kswapd_dma",
2260 "pgscan_direct_high",
2261 "pgscan_direct_normal",
2262 "pgscan_direct_dma",
2263 "pginodesteal",
2264
2265 "slabs_scanned",
2266 "kswapd_steal",
2267 "kswapd_inodesteal",
2268 "pageoutrun",
2269 "allocstall",
2270
2271 "pgrotated",
edfbe2b0 2272 "nr_bounce",
1da177e4
LT
2273};
2274
2275static void *vmstat_start(struct seq_file *m, loff_t *pos)
2276{
2277 struct page_state *ps;
2278
2279 if (*pos >= ARRAY_SIZE(vmstat_text))
2280 return NULL;
2281
2282 ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2283 m->private = ps;
2284 if (!ps)
2285 return ERR_PTR(-ENOMEM);
2286 get_full_page_state(ps);
2287 ps->pgpgin /= 2; /* sectors -> kbytes */
2288 ps->pgpgout /= 2;
2289 return (unsigned long *)ps + *pos;
2290}
2291
2292static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2293{
2294 (*pos)++;
2295 if (*pos >= ARRAY_SIZE(vmstat_text))
2296 return NULL;
2297 return (unsigned long *)m->private + *pos;
2298}
2299
2300static int vmstat_show(struct seq_file *m, void *arg)
2301{
2302 unsigned long *l = arg;
2303 unsigned long off = l - (unsigned long *)m->private;
2304
2305 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2306 return 0;
2307}
2308
2309static void vmstat_stop(struct seq_file *m, void *arg)
2310{
2311 kfree(m->private);
2312 m->private = NULL;
2313}
2314
2315struct seq_operations vmstat_op = {
2316 .start = vmstat_start,
2317 .next = vmstat_next,
2318 .stop = vmstat_stop,
2319 .show = vmstat_show,
2320};
2321
2322#endif /* CONFIG_PROC_FS */
2323
2324#ifdef CONFIG_HOTPLUG_CPU
2325static int page_alloc_cpu_notify(struct notifier_block *self,
2326 unsigned long action, void *hcpu)
2327{
2328 int cpu = (unsigned long)hcpu;
2329 long *count;
2330 unsigned long *src, *dest;
2331
2332 if (action == CPU_DEAD) {
2333 int i;
2334
2335 /* Drain local pagecache count. */
2336 count = &per_cpu(nr_pagecache_local, cpu);
2337 atomic_add(*count, &nr_pagecache);
2338 *count = 0;
2339 local_irq_disable();
2340 __drain_pages(cpu);
2341
2342 /* Add dead cpu's page_states to our own. */
2343 dest = (unsigned long *)&__get_cpu_var(page_states);
2344 src = (unsigned long *)&per_cpu(page_states, cpu);
2345
2346 for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2347 i++) {
2348 dest[i] += src[i];
2349 src[i] = 0;
2350 }
2351
2352 local_irq_enable();
2353 }
2354 return NOTIFY_OK;
2355}
2356#endif /* CONFIG_HOTPLUG_CPU */
2357
2358void __init page_alloc_init(void)
2359{
2360 hotcpu_notifier(page_alloc_cpu_notify, 0);
2361}
2362
2363/*
2364 * setup_per_zone_lowmem_reserve - called whenever
2365 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2366 * has a correct pages reserved value, so an adequate number of
2367 * pages are left in the zone after a successful __alloc_pages().
2368 */
2369static void setup_per_zone_lowmem_reserve(void)
2370{
2371 struct pglist_data *pgdat;
2372 int j, idx;
2373
2374 for_each_pgdat(pgdat) {
2375 for (j = 0; j < MAX_NR_ZONES; j++) {
2376 struct zone *zone = pgdat->node_zones + j;
2377 unsigned long present_pages = zone->present_pages;
2378
2379 zone->lowmem_reserve[j] = 0;
2380
2381 for (idx = j-1; idx >= 0; idx--) {
2382 struct zone *lower_zone;
2383
2384 if (sysctl_lowmem_reserve_ratio[idx] < 1)
2385 sysctl_lowmem_reserve_ratio[idx] = 1;
2386
2387 lower_zone = pgdat->node_zones + idx;
2388 lower_zone->lowmem_reserve[j] = present_pages /
2389 sysctl_lowmem_reserve_ratio[idx];
2390 present_pages += lower_zone->present_pages;
2391 }
2392 }
2393 }
2394}
2395
2396/*
2397 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2398 * that the pages_{min,low,high} values for each zone are set correctly
2399 * with respect to min_free_kbytes.
2400 */
2401static void setup_per_zone_pages_min(void)
2402{
2403 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2404 unsigned long lowmem_pages = 0;
2405 struct zone *zone;
2406 unsigned long flags;
2407
2408 /* Calculate total number of !ZONE_HIGHMEM pages */
2409 for_each_zone(zone) {
2410 if (!is_highmem(zone))
2411 lowmem_pages += zone->present_pages;
2412 }
2413
2414 for_each_zone(zone) {
2415 spin_lock_irqsave(&zone->lru_lock, flags);
2416 if (is_highmem(zone)) {
2417 /*
2418 * Often, highmem doesn't need to reserve any pages.
2419 * But the pages_min/low/high values are also used for
2420 * batching up page reclaim activity so we need a
2421 * decent value here.
2422 */
2423 int min_pages;
2424
2425 min_pages = zone->present_pages / 1024;
2426 if (min_pages < SWAP_CLUSTER_MAX)
2427 min_pages = SWAP_CLUSTER_MAX;
2428 if (min_pages > 128)
2429 min_pages = 128;
2430 zone->pages_min = min_pages;
2431 } else {
295ab934 2432 /* if it's a lowmem zone, reserve a number of pages
1da177e4
LT
2433 * proportionate to the zone's size.
2434 */
295ab934 2435 zone->pages_min = (pages_min * zone->present_pages) /
1da177e4
LT
2436 lowmem_pages;
2437 }
2438
2439 /*
2440 * When interpreting these watermarks, just keep in mind that:
2441 * zone->pages_min == (zone->pages_min * 4) / 4;
2442 */
2443 zone->pages_low = (zone->pages_min * 5) / 4;
2444 zone->pages_high = (zone->pages_min * 6) / 4;
2445 spin_unlock_irqrestore(&zone->lru_lock, flags);
2446 }
2447}
2448
2449/*
2450 * Initialise min_free_kbytes.
2451 *
2452 * For small machines we want it small (128k min). For large machines
2453 * we want it large (64MB max). But it is not linear, because network
2454 * bandwidth does not increase linearly with machine size. We use
2455 *
2456 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2457 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2458 *
2459 * which yields
2460 *
2461 * 16MB: 512k
2462 * 32MB: 724k
2463 * 64MB: 1024k
2464 * 128MB: 1448k
2465 * 256MB: 2048k
2466 * 512MB: 2896k
2467 * 1024MB: 4096k
2468 * 2048MB: 5792k
2469 * 4096MB: 8192k
2470 * 8192MB: 11584k
2471 * 16384MB: 16384k
2472 */
2473static int __init init_per_zone_pages_min(void)
2474{
2475 unsigned long lowmem_kbytes;
2476
2477 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2478
2479 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2480 if (min_free_kbytes < 128)
2481 min_free_kbytes = 128;
2482 if (min_free_kbytes > 65536)
2483 min_free_kbytes = 65536;
2484 setup_per_zone_pages_min();
2485 setup_per_zone_lowmem_reserve();
2486 return 0;
2487}
2488module_init(init_per_zone_pages_min)
2489
2490/*
2491 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2492 * that we can call two helper functions whenever min_free_kbytes
2493 * changes.
2494 */
2495int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2496 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2497{
2498 proc_dointvec(table, write, file, buffer, length, ppos);
2499 setup_per_zone_pages_min();
2500 return 0;
2501}
2502
2503/*
2504 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2505 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2506 * whenever sysctl_lowmem_reserve_ratio changes.
2507 *
2508 * The reserve ratio obviously has absolutely no relation with the
2509 * pages_min watermarks. The lowmem reserve ratio can only make sense
2510 * if in function of the boot time zone sizes.
2511 */
2512int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2513 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2514{
2515 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2516 setup_per_zone_lowmem_reserve();
2517 return 0;
2518}
2519
2520__initdata int hashdist = HASHDIST_DEFAULT;
2521
2522#ifdef CONFIG_NUMA
2523static int __init set_hashdist(char *str)
2524{
2525 if (!str)
2526 return 0;
2527 hashdist = simple_strtoul(str, &str, 0);
2528 return 1;
2529}
2530__setup("hashdist=", set_hashdist);
2531#endif
2532
2533/*
2534 * allocate a large system hash table from bootmem
2535 * - it is assumed that the hash table must contain an exact power-of-2
2536 * quantity of entries
2537 * - limit is the number of hash buckets, not the total allocation size
2538 */
2539void *__init alloc_large_system_hash(const char *tablename,
2540 unsigned long bucketsize,
2541 unsigned long numentries,
2542 int scale,
2543 int flags,
2544 unsigned int *_hash_shift,
2545 unsigned int *_hash_mask,
2546 unsigned long limit)
2547{
2548 unsigned long long max = limit;
2549 unsigned long log2qty, size;
2550 void *table = NULL;
2551
2552 /* allow the kernel cmdline to have a say */
2553 if (!numentries) {
2554 /* round applicable memory size up to nearest megabyte */
2555 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2556 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2557 numentries >>= 20 - PAGE_SHIFT;
2558 numentries <<= 20 - PAGE_SHIFT;
2559
2560 /* limit to 1 bucket per 2^scale bytes of low memory */
2561 if (scale > PAGE_SHIFT)
2562 numentries >>= (scale - PAGE_SHIFT);
2563 else
2564 numentries <<= (PAGE_SHIFT - scale);
2565 }
2566 /* rounded up to nearest power of 2 in size */
2567 numentries = 1UL << (long_log2(numentries) + 1);
2568
2569 /* limit allocation size to 1/16 total memory by default */
2570 if (max == 0) {
2571 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2572 do_div(max, bucketsize);
2573 }
2574
2575 if (numentries > max)
2576 numentries = max;
2577
2578 log2qty = long_log2(numentries);
2579
2580 do {
2581 size = bucketsize << log2qty;
2582 if (flags & HASH_EARLY)
2583 table = alloc_bootmem(size);
2584 else if (hashdist)
2585 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2586 else {
2587 unsigned long order;
2588 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2589 ;
2590 table = (void*) __get_free_pages(GFP_ATOMIC, order);
2591 }
2592 } while (!table && size > PAGE_SIZE && --log2qty);
2593
2594 if (!table)
2595 panic("Failed to allocate %s hash table\n", tablename);
2596
2597 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2598 tablename,
2599 (1U << log2qty),
2600 long_log2(size) - PAGE_SHIFT,
2601 size);
2602
2603 if (_hash_shift)
2604 *_hash_shift = log2qty;
2605 if (_hash_mask)
2606 *_hash_mask = (1 << log2qty) - 1;
2607
2608 return table;
2609}