[PATCH] ZVC: Support NR_SLAB_RECLAIMABLE / NR_SLAB_UNRECLAIMABLE
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/bootmem.h>
23#include <linux/compiler.h>
9f158333 24#include <linux/kernel.h>
1da177e4
LT
25#include <linux/module.h>
26#include <linux/suspend.h>
27#include <linux/pagevec.h>
28#include <linux/blkdev.h>
29#include <linux/slab.h>
30#include <linux/notifier.h>
31#include <linux/topology.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
bdc8cb98 35#include <linux/memory_hotplug.h>
1da177e4
LT
36#include <linux/nodemask.h>
37#include <linux/vmalloc.h>
4be38e35 38#include <linux/mempolicy.h>
6811378e 39#include <linux/stop_machine.h>
1da177e4
LT
40
41#include <asm/tlbflush.h>
ac924c60 42#include <asm/div64.h>
1da177e4
LT
43#include "internal.h"
44
45/*
46 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
47 * initializer cleaner
48 */
c3d8c141 49nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
7223a93a 50EXPORT_SYMBOL(node_online_map);
c3d8c141 51nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
7223a93a 52EXPORT_SYMBOL(node_possible_map);
6c231b7b 53unsigned long totalram_pages __read_mostly;
cb45b0e9 54unsigned long totalreserve_pages __read_mostly;
1da177e4 55long nr_swap_pages;
8ad4b1fb 56int percpu_pagelist_fraction;
1da177e4 57
d98c7a09 58static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 59
1da177e4
LT
60/*
61 * results with 256, 32 in the lowmem_reserve sysctl:
62 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
63 * 1G machine -> (16M dma, 784M normal, 224M high)
64 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
65 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
66 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
67 *
68 * TBD: should special case ZONE_DMA32 machines here - in those we normally
69 * don't need any ZONE_NORMAL reservation
1da177e4 70 */
2f1b6248
CL
71int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
72 256,
fb0e7942 73#ifdef CONFIG_ZONE_DMA32
2f1b6248 74 256,
fb0e7942 75#endif
e53ef38d 76#ifdef CONFIG_HIGHMEM
2f1b6248 77 32
e53ef38d 78#endif
2f1b6248 79};
1da177e4
LT
80
81EXPORT_SYMBOL(totalram_pages);
1da177e4
LT
82
83/*
84 * Used by page_zone() to look up the address of the struct zone whose
85 * id is encoded in the upper bits of page->flags
86 */
c3d8c141 87struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
1da177e4
LT
88EXPORT_SYMBOL(zone_table);
89
2f1b6248
CL
90static char *zone_names[MAX_NR_ZONES] = {
91 "DMA",
fb0e7942 92#ifdef CONFIG_ZONE_DMA32
2f1b6248 93 "DMA32",
fb0e7942 94#endif
2f1b6248 95 "Normal",
e53ef38d 96#ifdef CONFIG_HIGHMEM
2f1b6248 97 "HighMem"
e53ef38d 98#endif
2f1b6248
CL
99};
100
1da177e4
LT
101int min_free_kbytes = 1024;
102
86356ab1
YG
103unsigned long __meminitdata nr_kernel_pages;
104unsigned long __meminitdata nr_all_pages;
1da177e4 105
13e7444b 106#ifdef CONFIG_DEBUG_VM
c6a57e19 107static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 108{
bdc8cb98
DH
109 int ret = 0;
110 unsigned seq;
111 unsigned long pfn = page_to_pfn(page);
c6a57e19 112
bdc8cb98
DH
113 do {
114 seq = zone_span_seqbegin(zone);
115 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
116 ret = 1;
117 else if (pfn < zone->zone_start_pfn)
118 ret = 1;
119 } while (zone_span_seqretry(zone, seq));
120
121 return ret;
c6a57e19
DH
122}
123
124static int page_is_consistent(struct zone *zone, struct page *page)
125{
1da177e4
LT
126#ifdef CONFIG_HOLES_IN_ZONE
127 if (!pfn_valid(page_to_pfn(page)))
c6a57e19 128 return 0;
1da177e4
LT
129#endif
130 if (zone != page_zone(page))
c6a57e19
DH
131 return 0;
132
133 return 1;
134}
135/*
136 * Temporary debugging check for pages not lying within a given zone.
137 */
138static int bad_range(struct zone *zone, struct page *page)
139{
140 if (page_outside_zone_boundaries(zone, page))
1da177e4 141 return 1;
c6a57e19
DH
142 if (!page_is_consistent(zone, page))
143 return 1;
144
1da177e4
LT
145 return 0;
146}
13e7444b
NP
147#else
148static inline int bad_range(struct zone *zone, struct page *page)
149{
150 return 0;
151}
152#endif
153
224abf92 154static void bad_page(struct page *page)
1da177e4 155{
224abf92 156 printk(KERN_EMERG "Bad page state in process '%s'\n"
7365f3d1
HD
157 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
158 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
159 KERN_EMERG "Backtrace:\n",
224abf92
NP
160 current->comm, page, (int)(2*sizeof(unsigned long)),
161 (unsigned long)page->flags, page->mapping,
162 page_mapcount(page), page_count(page));
1da177e4 163 dump_stack();
334795ec
HD
164 page->flags &= ~(1 << PG_lru |
165 1 << PG_private |
1da177e4 166 1 << PG_locked |
1da177e4
LT
167 1 << PG_active |
168 1 << PG_dirty |
334795ec
HD
169 1 << PG_reclaim |
170 1 << PG_slab |
1da177e4 171 1 << PG_swapcache |
676165a8
NP
172 1 << PG_writeback |
173 1 << PG_buddy );
1da177e4
LT
174 set_page_count(page, 0);
175 reset_page_mapcount(page);
176 page->mapping = NULL;
9f158333 177 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
178}
179
1da177e4
LT
180/*
181 * Higher-order pages are called "compound pages". They are structured thusly:
182 *
183 * The first PAGE_SIZE page is called the "head page".
184 *
185 * The remaining PAGE_SIZE pages are called "tail pages".
186 *
187 * All pages have PG_compound set. All pages have their ->private pointing at
188 * the head page (even the head page has this).
189 *
41d78ba5
HD
190 * The first tail page's ->lru.next holds the address of the compound page's
191 * put_page() function. Its ->lru.prev holds the order of allocation.
192 * This usage means that zero-order pages may not be compound.
1da177e4 193 */
d98c7a09
HD
194
195static void free_compound_page(struct page *page)
196{
197 __free_pages_ok(page, (unsigned long)page[1].lru.prev);
198}
199
1da177e4
LT
200static void prep_compound_page(struct page *page, unsigned long order)
201{
202 int i;
203 int nr_pages = 1 << order;
204
d98c7a09 205 page[1].lru.next = (void *)free_compound_page; /* set dtor */
41d78ba5 206 page[1].lru.prev = (void *)order;
1da177e4
LT
207 for (i = 0; i < nr_pages; i++) {
208 struct page *p = page + i;
209
5e9dace8 210 __SetPageCompound(p);
4c21e2f2 211 set_page_private(p, (unsigned long)page);
1da177e4
LT
212 }
213}
214
215static void destroy_compound_page(struct page *page, unsigned long order)
216{
217 int i;
218 int nr_pages = 1 << order;
219
41d78ba5 220 if (unlikely((unsigned long)page[1].lru.prev != order))
224abf92 221 bad_page(page);
1da177e4
LT
222
223 for (i = 0; i < nr_pages; i++) {
224 struct page *p = page + i;
225
224abf92
NP
226 if (unlikely(!PageCompound(p) |
227 (page_private(p) != (unsigned long)page)))
228 bad_page(page);
5e9dace8 229 __ClearPageCompound(p);
1da177e4
LT
230 }
231}
1da177e4 232
17cf4406
NP
233static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
234{
235 int i;
236
725d704e 237 VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
6626c5d5
AM
238 /*
239 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
240 * and __GFP_HIGHMEM from hard or soft interrupt context.
241 */
725d704e 242 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
243 for (i = 0; i < (1 << order); i++)
244 clear_highpage(page + i);
245}
246
1da177e4
LT
247/*
248 * function for dealing with page's order in buddy system.
249 * zone->lock is already acquired when we use these.
250 * So, we don't need atomic page->flags operations here.
251 */
6aa3001b
AM
252static inline unsigned long page_order(struct page *page)
253{
4c21e2f2 254 return page_private(page);
1da177e4
LT
255}
256
6aa3001b
AM
257static inline void set_page_order(struct page *page, int order)
258{
4c21e2f2 259 set_page_private(page, order);
676165a8 260 __SetPageBuddy(page);
1da177e4
LT
261}
262
263static inline void rmv_page_order(struct page *page)
264{
676165a8 265 __ClearPageBuddy(page);
4c21e2f2 266 set_page_private(page, 0);
1da177e4
LT
267}
268
269/*
270 * Locate the struct page for both the matching buddy in our
271 * pair (buddy1) and the combined O(n+1) page they form (page).
272 *
273 * 1) Any buddy B1 will have an order O twin B2 which satisfies
274 * the following equation:
275 * B2 = B1 ^ (1 << O)
276 * For example, if the starting buddy (buddy2) is #8 its order
277 * 1 buddy is #10:
278 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
279 *
280 * 2) Any buddy B will have an order O+1 parent P which
281 * satisfies the following equation:
282 * P = B & ~(1 << O)
283 *
d6e05edc 284 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4
LT
285 */
286static inline struct page *
287__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
288{
289 unsigned long buddy_idx = page_idx ^ (1 << order);
290
291 return page + (buddy_idx - page_idx);
292}
293
294static inline unsigned long
295__find_combined_index(unsigned long page_idx, unsigned int order)
296{
297 return (page_idx & ~(1 << order));
298}
299
300/*
301 * This function checks whether a page is free && is the buddy
302 * we can do coalesce a page and its buddy if
13e7444b 303 * (a) the buddy is not in a hole &&
676165a8 304 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
305 * (c) a page and its buddy have the same order &&
306 * (d) a page and its buddy are in the same zone.
676165a8
NP
307 *
308 * For recording whether a page is in the buddy system, we use PG_buddy.
309 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
1da177e4 310 *
676165a8 311 * For recording page's order, we use page_private(page).
1da177e4 312 */
cb2b95e1
AW
313static inline int page_is_buddy(struct page *page, struct page *buddy,
314 int order)
1da177e4 315{
13e7444b 316#ifdef CONFIG_HOLES_IN_ZONE
cb2b95e1 317 if (!pfn_valid(page_to_pfn(buddy)))
13e7444b
NP
318 return 0;
319#endif
320
cb2b95e1
AW
321 if (page_zone_id(page) != page_zone_id(buddy))
322 return 0;
323
324 if (PageBuddy(buddy) && page_order(buddy) == order) {
325 BUG_ON(page_count(buddy) != 0);
6aa3001b 326 return 1;
676165a8 327 }
6aa3001b 328 return 0;
1da177e4
LT
329}
330
331/*
332 * Freeing function for a buddy system allocator.
333 *
334 * The concept of a buddy system is to maintain direct-mapped table
335 * (containing bit values) for memory blocks of various "orders".
336 * The bottom level table contains the map for the smallest allocatable
337 * units of memory (here, pages), and each level above it describes
338 * pairs of units from the levels below, hence, "buddies".
339 * At a high level, all that happens here is marking the table entry
340 * at the bottom level available, and propagating the changes upward
341 * as necessary, plus some accounting needed to play nicely with other
342 * parts of the VM system.
343 * At each level, we keep a list of pages, which are heads of continuous
676165a8 344 * free pages of length of (1 << order) and marked with PG_buddy. Page's
4c21e2f2 345 * order is recorded in page_private(page) field.
1da177e4
LT
346 * So when we are allocating or freeing one, we can derive the state of the
347 * other. That is, if we allocate a small block, and both were
348 * free, the remainder of the region must be split into blocks.
349 * If a block is freed, and its buddy is also free, then this
350 * triggers coalescing into a block of larger size.
351 *
352 * -- wli
353 */
354
48db57f8 355static inline void __free_one_page(struct page *page,
1da177e4
LT
356 struct zone *zone, unsigned int order)
357{
358 unsigned long page_idx;
359 int order_size = 1 << order;
360
224abf92 361 if (unlikely(PageCompound(page)))
1da177e4
LT
362 destroy_compound_page(page, order);
363
364 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
365
725d704e
NP
366 VM_BUG_ON(page_idx & (order_size - 1));
367 VM_BUG_ON(bad_range(zone, page));
1da177e4
LT
368
369 zone->free_pages += order_size;
370 while (order < MAX_ORDER-1) {
371 unsigned long combined_idx;
372 struct free_area *area;
373 struct page *buddy;
374
1da177e4 375 buddy = __page_find_buddy(page, page_idx, order);
cb2b95e1 376 if (!page_is_buddy(page, buddy, order))
1da177e4 377 break; /* Move the buddy up one level. */
13e7444b 378
1da177e4
LT
379 list_del(&buddy->lru);
380 area = zone->free_area + order;
381 area->nr_free--;
382 rmv_page_order(buddy);
13e7444b 383 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
384 page = page + (combined_idx - page_idx);
385 page_idx = combined_idx;
386 order++;
387 }
388 set_page_order(page, order);
389 list_add(&page->lru, &zone->free_area[order].free_list);
390 zone->free_area[order].nr_free++;
391}
392
224abf92 393static inline int free_pages_check(struct page *page)
1da177e4 394{
92be2e33
NP
395 if (unlikely(page_mapcount(page) |
396 (page->mapping != NULL) |
397 (page_count(page) != 0) |
1da177e4
LT
398 (page->flags & (
399 1 << PG_lru |
400 1 << PG_private |
401 1 << PG_locked |
402 1 << PG_active |
403 1 << PG_reclaim |
404 1 << PG_slab |
405 1 << PG_swapcache |
b5810039 406 1 << PG_writeback |
676165a8
NP
407 1 << PG_reserved |
408 1 << PG_buddy ))))
224abf92 409 bad_page(page);
1da177e4 410 if (PageDirty(page))
242e5468 411 __ClearPageDirty(page);
689bcebf
HD
412 /*
413 * For now, we report if PG_reserved was found set, but do not
414 * clear it, and do not free the page. But we shall soon need
415 * to do more, for when the ZERO_PAGE count wraps negative.
416 */
417 return PageReserved(page);
1da177e4
LT
418}
419
420/*
421 * Frees a list of pages.
422 * Assumes all pages on list are in same zone, and of same order.
207f36ee 423 * count is the number of pages to free.
1da177e4
LT
424 *
425 * If the zone was previously in an "all pages pinned" state then look to
426 * see if this freeing clears that state.
427 *
428 * And clear the zone's pages_scanned counter, to hold off the "all pages are
429 * pinned" detection logic.
430 */
48db57f8
NP
431static void free_pages_bulk(struct zone *zone, int count,
432 struct list_head *list, int order)
1da177e4 433{
c54ad30c 434 spin_lock(&zone->lock);
1da177e4
LT
435 zone->all_unreclaimable = 0;
436 zone->pages_scanned = 0;
48db57f8
NP
437 while (count--) {
438 struct page *page;
439
725d704e 440 VM_BUG_ON(list_empty(list));
1da177e4 441 page = list_entry(list->prev, struct page, lru);
48db57f8 442 /* have to delete it as __free_one_page list manipulates */
1da177e4 443 list_del(&page->lru);
48db57f8 444 __free_one_page(page, zone, order);
1da177e4 445 }
c54ad30c 446 spin_unlock(&zone->lock);
1da177e4
LT
447}
448
48db57f8 449static void free_one_page(struct zone *zone, struct page *page, int order)
1da177e4 450{
006d22d9
CL
451 spin_lock(&zone->lock);
452 zone->all_unreclaimable = 0;
453 zone->pages_scanned = 0;
454 __free_one_page(page, zone ,order);
455 spin_unlock(&zone->lock);
48db57f8
NP
456}
457
458static void __free_pages_ok(struct page *page, unsigned int order)
459{
460 unsigned long flags;
1da177e4 461 int i;
689bcebf 462 int reserved = 0;
1da177e4
LT
463
464 arch_free_page(page, order);
de5097c2 465 if (!PageHighMem(page))
f9b8404c
IM
466 debug_check_no_locks_freed(page_address(page),
467 PAGE_SIZE<<order);
1da177e4 468
1da177e4 469 for (i = 0 ; i < (1 << order) ; ++i)
224abf92 470 reserved += free_pages_check(page + i);
689bcebf
HD
471 if (reserved)
472 return;
473
48db57f8 474 kernel_map_pages(page, 1 << order, 0);
c54ad30c 475 local_irq_save(flags);
f8891e5e 476 __count_vm_events(PGFREE, 1 << order);
48db57f8 477 free_one_page(page_zone(page), page, order);
c54ad30c 478 local_irq_restore(flags);
1da177e4
LT
479}
480
a226f6c8
DH
481/*
482 * permit the bootmem allocator to evade page validation on high-order frees
483 */
484void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
485{
486 if (order == 0) {
487 __ClearPageReserved(page);
488 set_page_count(page, 0);
7835e98b 489 set_page_refcounted(page);
545b1ea9 490 __free_page(page);
a226f6c8 491 } else {
a226f6c8
DH
492 int loop;
493
545b1ea9 494 prefetchw(page);
a226f6c8
DH
495 for (loop = 0; loop < BITS_PER_LONG; loop++) {
496 struct page *p = &page[loop];
497
545b1ea9
NP
498 if (loop + 1 < BITS_PER_LONG)
499 prefetchw(p + 1);
a226f6c8
DH
500 __ClearPageReserved(p);
501 set_page_count(p, 0);
502 }
503
7835e98b 504 set_page_refcounted(page);
545b1ea9 505 __free_pages(page, order);
a226f6c8
DH
506 }
507}
508
1da177e4
LT
509
510/*
511 * The order of subdivision here is critical for the IO subsystem.
512 * Please do not alter this order without good reasons and regression
513 * testing. Specifically, as large blocks of memory are subdivided,
514 * the order in which smaller blocks are delivered depends on the order
515 * they're subdivided in this function. This is the primary factor
516 * influencing the order in which pages are delivered to the IO
517 * subsystem according to empirical testing, and this is also justified
518 * by considering the behavior of a buddy system containing a single
519 * large block of memory acted on by a series of small allocations.
520 * This behavior is a critical factor in sglist merging's success.
521 *
522 * -- wli
523 */
085cc7d5 524static inline void expand(struct zone *zone, struct page *page,
1da177e4
LT
525 int low, int high, struct free_area *area)
526{
527 unsigned long size = 1 << high;
528
529 while (high > low) {
530 area--;
531 high--;
532 size >>= 1;
725d704e 533 VM_BUG_ON(bad_range(zone, &page[size]));
1da177e4
LT
534 list_add(&page[size].lru, &area->free_list);
535 area->nr_free++;
536 set_page_order(&page[size], high);
537 }
1da177e4
LT
538}
539
1da177e4
LT
540/*
541 * This page is about to be returned from the page allocator
542 */
17cf4406 543static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
1da177e4 544{
92be2e33
NP
545 if (unlikely(page_mapcount(page) |
546 (page->mapping != NULL) |
547 (page_count(page) != 0) |
334795ec
HD
548 (page->flags & (
549 1 << PG_lru |
1da177e4
LT
550 1 << PG_private |
551 1 << PG_locked |
1da177e4
LT
552 1 << PG_active |
553 1 << PG_dirty |
554 1 << PG_reclaim |
334795ec 555 1 << PG_slab |
1da177e4 556 1 << PG_swapcache |
b5810039 557 1 << PG_writeback |
676165a8
NP
558 1 << PG_reserved |
559 1 << PG_buddy ))))
224abf92 560 bad_page(page);
1da177e4 561
689bcebf
HD
562 /*
563 * For now, we report if PG_reserved was found set, but do not
564 * clear it, and do not allocate the page: as a safety net.
565 */
566 if (PageReserved(page))
567 return 1;
568
1da177e4
LT
569 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
570 1 << PG_referenced | 1 << PG_arch_1 |
571 1 << PG_checked | 1 << PG_mappedtodisk);
4c21e2f2 572 set_page_private(page, 0);
7835e98b 573 set_page_refcounted(page);
1da177e4 574 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
575
576 if (gfp_flags & __GFP_ZERO)
577 prep_zero_page(page, order, gfp_flags);
578
579 if (order && (gfp_flags & __GFP_COMP))
580 prep_compound_page(page, order);
581
689bcebf 582 return 0;
1da177e4
LT
583}
584
585/*
586 * Do the hard work of removing an element from the buddy allocator.
587 * Call me with the zone->lock already held.
588 */
589static struct page *__rmqueue(struct zone *zone, unsigned int order)
590{
591 struct free_area * area;
592 unsigned int current_order;
593 struct page *page;
594
595 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
596 area = zone->free_area + current_order;
597 if (list_empty(&area->free_list))
598 continue;
599
600 page = list_entry(area->free_list.next, struct page, lru);
601 list_del(&page->lru);
602 rmv_page_order(page);
603 area->nr_free--;
604 zone->free_pages -= 1UL << order;
085cc7d5
NP
605 expand(zone, page, order, current_order, area);
606 return page;
1da177e4
LT
607 }
608
609 return NULL;
610}
611
612/*
613 * Obtain a specified number of elements from the buddy allocator, all under
614 * a single hold of the lock, for efficiency. Add them to the supplied list.
615 * Returns the number of new pages which were placed at *list.
616 */
617static int rmqueue_bulk(struct zone *zone, unsigned int order,
618 unsigned long count, struct list_head *list)
619{
1da177e4 620 int i;
1da177e4 621
c54ad30c 622 spin_lock(&zone->lock);
1da177e4 623 for (i = 0; i < count; ++i) {
085cc7d5
NP
624 struct page *page = __rmqueue(zone, order);
625 if (unlikely(page == NULL))
1da177e4 626 break;
1da177e4
LT
627 list_add_tail(&page->lru, list);
628 }
c54ad30c 629 spin_unlock(&zone->lock);
085cc7d5 630 return i;
1da177e4
LT
631}
632
4ae7c039 633#ifdef CONFIG_NUMA
8fce4d8e
CL
634/*
635 * Called from the slab reaper to drain pagesets on a particular node that
39bbcb8f 636 * belongs to the currently executing processor.
879336c3
CL
637 * Note that this function must be called with the thread pinned to
638 * a single processor.
8fce4d8e
CL
639 */
640void drain_node_pages(int nodeid)
4ae7c039 641{
2f6726e5
CL
642 int i;
643 enum zone_type z;
4ae7c039
CL
644 unsigned long flags;
645
8fce4d8e
CL
646 for (z = 0; z < MAX_NR_ZONES; z++) {
647 struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
4ae7c039
CL
648 struct per_cpu_pageset *pset;
649
39bbcb8f
CL
650 if (!populated_zone(zone))
651 continue;
652
23316bc8 653 pset = zone_pcp(zone, smp_processor_id());
4ae7c039
CL
654 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
655 struct per_cpu_pages *pcp;
656
657 pcp = &pset->pcp[i];
879336c3
CL
658 if (pcp->count) {
659 local_irq_save(flags);
660 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
661 pcp->count = 0;
662 local_irq_restore(flags);
663 }
4ae7c039
CL
664 }
665 }
4ae7c039
CL
666}
667#endif
668
1da177e4
LT
669#if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
670static void __drain_pages(unsigned int cpu)
671{
c54ad30c 672 unsigned long flags;
1da177e4
LT
673 struct zone *zone;
674 int i;
675
676 for_each_zone(zone) {
677 struct per_cpu_pageset *pset;
678
e7c8d5c9 679 pset = zone_pcp(zone, cpu);
1da177e4
LT
680 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
681 struct per_cpu_pages *pcp;
682
683 pcp = &pset->pcp[i];
c54ad30c 684 local_irq_save(flags);
48db57f8
NP
685 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
686 pcp->count = 0;
c54ad30c 687 local_irq_restore(flags);
1da177e4
LT
688 }
689 }
690}
691#endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
692
693#ifdef CONFIG_PM
694
695void mark_free_pages(struct zone *zone)
696{
697 unsigned long zone_pfn, flags;
698 int order;
699 struct list_head *curr;
700
701 if (!zone->spanned_pages)
702 return;
703
704 spin_lock_irqsave(&zone->lock, flags);
705 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
706 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
707
708 for (order = MAX_ORDER - 1; order >= 0; --order)
709 list_for_each(curr, &zone->free_area[order].free_list) {
710 unsigned long start_pfn, i;
711
712 start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
713
714 for (i=0; i < (1<<order); i++)
715 SetPageNosaveFree(pfn_to_page(start_pfn+i));
716 }
717 spin_unlock_irqrestore(&zone->lock, flags);
718}
719
720/*
721 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
722 */
723void drain_local_pages(void)
724{
725 unsigned long flags;
726
727 local_irq_save(flags);
728 __drain_pages(smp_processor_id());
729 local_irq_restore(flags);
730}
731#endif /* CONFIG_PM */
732
1da177e4
LT
733/*
734 * Free a 0-order page
735 */
1da177e4
LT
736static void fastcall free_hot_cold_page(struct page *page, int cold)
737{
738 struct zone *zone = page_zone(page);
739 struct per_cpu_pages *pcp;
740 unsigned long flags;
741
742 arch_free_page(page, 0);
743
1da177e4
LT
744 if (PageAnon(page))
745 page->mapping = NULL;
224abf92 746 if (free_pages_check(page))
689bcebf
HD
747 return;
748
689bcebf
HD
749 kernel_map_pages(page, 1, 0);
750
e7c8d5c9 751 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
1da177e4 752 local_irq_save(flags);
f8891e5e 753 __count_vm_event(PGFREE);
1da177e4
LT
754 list_add(&page->lru, &pcp->list);
755 pcp->count++;
48db57f8
NP
756 if (pcp->count >= pcp->high) {
757 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
758 pcp->count -= pcp->batch;
759 }
1da177e4
LT
760 local_irq_restore(flags);
761 put_cpu();
762}
763
764void fastcall free_hot_page(struct page *page)
765{
766 free_hot_cold_page(page, 0);
767}
768
769void fastcall free_cold_page(struct page *page)
770{
771 free_hot_cold_page(page, 1);
772}
773
8dfcc9ba
NP
774/*
775 * split_page takes a non-compound higher-order page, and splits it into
776 * n (1<<order) sub-pages: page[0..n]
777 * Each sub-page must be freed individually.
778 *
779 * Note: this is probably too low level an operation for use in drivers.
780 * Please consult with lkml before using this in your driver.
781 */
782void split_page(struct page *page, unsigned int order)
783{
784 int i;
785
725d704e
NP
786 VM_BUG_ON(PageCompound(page));
787 VM_BUG_ON(!page_count(page));
7835e98b
NP
788 for (i = 1; i < (1 << order); i++)
789 set_page_refcounted(page + i);
8dfcc9ba 790}
8dfcc9ba 791
1da177e4
LT
792/*
793 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
794 * we cheat by calling it from here, in the order > 0 path. Saves a branch
795 * or two.
796 */
a74609fa
NP
797static struct page *buffered_rmqueue(struct zonelist *zonelist,
798 struct zone *zone, int order, gfp_t gfp_flags)
1da177e4
LT
799{
800 unsigned long flags;
689bcebf 801 struct page *page;
1da177e4 802 int cold = !!(gfp_flags & __GFP_COLD);
a74609fa 803 int cpu;
1da177e4 804
689bcebf 805again:
a74609fa 806 cpu = get_cpu();
48db57f8 807 if (likely(order == 0)) {
1da177e4
LT
808 struct per_cpu_pages *pcp;
809
a74609fa 810 pcp = &zone_pcp(zone, cpu)->pcp[cold];
1da177e4 811 local_irq_save(flags);
a74609fa 812 if (!pcp->count) {
1da177e4
LT
813 pcp->count += rmqueue_bulk(zone, 0,
814 pcp->batch, &pcp->list);
a74609fa
NP
815 if (unlikely(!pcp->count))
816 goto failed;
1da177e4 817 }
a74609fa
NP
818 page = list_entry(pcp->list.next, struct page, lru);
819 list_del(&page->lru);
820 pcp->count--;
7fb1d9fc 821 } else {
1da177e4
LT
822 spin_lock_irqsave(&zone->lock, flags);
823 page = __rmqueue(zone, order);
a74609fa
NP
824 spin_unlock(&zone->lock);
825 if (!page)
826 goto failed;
1da177e4
LT
827 }
828
f8891e5e 829 __count_zone_vm_events(PGALLOC, zone, 1 << order);
ca889e6c 830 zone_statistics(zonelist, zone);
a74609fa
NP
831 local_irq_restore(flags);
832 put_cpu();
1da177e4 833
725d704e 834 VM_BUG_ON(bad_range(zone, page));
17cf4406 835 if (prep_new_page(page, order, gfp_flags))
a74609fa 836 goto again;
1da177e4 837 return page;
a74609fa
NP
838
839failed:
840 local_irq_restore(flags);
841 put_cpu();
842 return NULL;
1da177e4
LT
843}
844
7fb1d9fc 845#define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
3148890b
NP
846#define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
847#define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
848#define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
849#define ALLOC_HARDER 0x10 /* try to alloc harder */
850#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
851#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 852
1da177e4
LT
853/*
854 * Return 1 if free pages are above 'mark'. This takes into account the order
855 * of the allocation.
856 */
857int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 858 int classzone_idx, int alloc_flags)
1da177e4
LT
859{
860 /* free_pages my go negative - that's OK */
861 long min = mark, free_pages = z->free_pages - (1 << order) + 1;
862 int o;
863
7fb1d9fc 864 if (alloc_flags & ALLOC_HIGH)
1da177e4 865 min -= min / 2;
7fb1d9fc 866 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
867 min -= min / 4;
868
869 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
870 return 0;
871 for (o = 0; o < order; o++) {
872 /* At the next order, this order's pages become unavailable */
873 free_pages -= z->free_area[o].nr_free << o;
874
875 /* Require fewer higher order pages to be free */
876 min >>= 1;
877
878 if (free_pages <= min)
879 return 0;
880 }
881 return 1;
882}
883
7fb1d9fc
RS
884/*
885 * get_page_from_freeliest goes through the zonelist trying to allocate
886 * a page.
887 */
888static struct page *
889get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
890 struct zonelist *zonelist, int alloc_flags)
753ee728 891{
7fb1d9fc
RS
892 struct zone **z = zonelist->zones;
893 struct page *page = NULL;
894 int classzone_idx = zone_idx(*z);
1192d526 895 struct zone *zone;
7fb1d9fc
RS
896
897 /*
898 * Go through the zonelist once, looking for a zone with enough free.
899 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
900 */
901 do {
1192d526 902 zone = *z;
9b819d20 903 if (unlikely((gfp_mask & __GFP_THISNODE) &&
1192d526 904 zone->zone_pgdat != zonelist->zones[0]->zone_pgdat))
9b819d20 905 break;
7fb1d9fc 906 if ((alloc_flags & ALLOC_CPUSET) &&
1192d526 907 !cpuset_zone_allowed(zone, gfp_mask))
7fb1d9fc
RS
908 continue;
909
910 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b
NP
911 unsigned long mark;
912 if (alloc_flags & ALLOC_WMARK_MIN)
1192d526 913 mark = zone->pages_min;
3148890b 914 else if (alloc_flags & ALLOC_WMARK_LOW)
1192d526 915 mark = zone->pages_low;
3148890b 916 else
1192d526
CL
917 mark = zone->pages_high;
918 if (!zone_watermark_ok(zone , order, mark,
7fb1d9fc 919 classzone_idx, alloc_flags))
9eeff239 920 if (!zone_reclaim_mode ||
1192d526 921 !zone_reclaim(zone, gfp_mask, order))
9eeff239 922 continue;
7fb1d9fc
RS
923 }
924
1192d526 925 page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
7fb1d9fc 926 if (page) {
7fb1d9fc
RS
927 break;
928 }
929 } while (*(++z) != NULL);
930 return page;
753ee728
MH
931}
932
1da177e4
LT
933/*
934 * This is the 'heart' of the zoned buddy allocator.
935 */
936struct page * fastcall
dd0fc66f 937__alloc_pages(gfp_t gfp_mask, unsigned int order,
1da177e4
LT
938 struct zonelist *zonelist)
939{
260b2367 940 const gfp_t wait = gfp_mask & __GFP_WAIT;
7fb1d9fc 941 struct zone **z;
1da177e4
LT
942 struct page *page;
943 struct reclaim_state reclaim_state;
944 struct task_struct *p = current;
1da177e4 945 int do_retry;
7fb1d9fc 946 int alloc_flags;
1da177e4
LT
947 int did_some_progress;
948
949 might_sleep_if(wait);
950
6b1de916 951restart:
7fb1d9fc 952 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1da177e4 953
7fb1d9fc 954 if (unlikely(*z == NULL)) {
1da177e4
LT
955 /* Should this ever happen?? */
956 return NULL;
957 }
6b1de916 958
7fb1d9fc 959 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 960 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
7fb1d9fc
RS
961 if (page)
962 goto got_pg;
1da177e4 963
6b1de916 964 do {
43b0bc00 965 wakeup_kswapd(*z, order);
6b1de916 966 } while (*(++z));
1da177e4 967
9bf2229f 968 /*
7fb1d9fc
RS
969 * OK, we're below the kswapd watermark and have kicked background
970 * reclaim. Now things get more complex, so set up alloc_flags according
971 * to how we want to proceed.
972 *
973 * The caller may dip into page reserves a bit more if the caller
974 * cannot run direct reclaim, or if the caller has realtime scheduling
4eac915d
PJ
975 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
976 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
9bf2229f 977 */
3148890b 978 alloc_flags = ALLOC_WMARK_MIN;
7fb1d9fc
RS
979 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
980 alloc_flags |= ALLOC_HARDER;
981 if (gfp_mask & __GFP_HIGH)
982 alloc_flags |= ALLOC_HIGH;
bdd804f4
PJ
983 if (wait)
984 alloc_flags |= ALLOC_CPUSET;
1da177e4
LT
985
986 /*
987 * Go through the zonelist again. Let __GFP_HIGH and allocations
7fb1d9fc 988 * coming from realtime tasks go deeper into reserves.
1da177e4
LT
989 *
990 * This is the last chance, in general, before the goto nopage.
991 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
9bf2229f 992 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1da177e4 993 */
7fb1d9fc
RS
994 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
995 if (page)
996 goto got_pg;
1da177e4
LT
997
998 /* This allocation should allow future memory freeing. */
b84a35be
NP
999
1000 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1001 && !in_interrupt()) {
1002 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
885036d3 1003nofail_alloc:
b84a35be 1004 /* go through the zonelist yet again, ignoring mins */
7fb1d9fc 1005 page = get_page_from_freelist(gfp_mask, order,
47f3a867 1006 zonelist, ALLOC_NO_WATERMARKS);
7fb1d9fc
RS
1007 if (page)
1008 goto got_pg;
885036d3
KK
1009 if (gfp_mask & __GFP_NOFAIL) {
1010 blk_congestion_wait(WRITE, HZ/50);
1011 goto nofail_alloc;
1012 }
1da177e4
LT
1013 }
1014 goto nopage;
1015 }
1016
1017 /* Atomic allocations - we can't balance anything */
1018 if (!wait)
1019 goto nopage;
1020
1021rebalance:
1022 cond_resched();
1023
1024 /* We now go into synchronous reclaim */
3e0d98b9 1025 cpuset_memory_pressure_bump();
1da177e4
LT
1026 p->flags |= PF_MEMALLOC;
1027 reclaim_state.reclaimed_slab = 0;
1028 p->reclaim_state = &reclaim_state;
1029
7fb1d9fc 1030 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1da177e4
LT
1031
1032 p->reclaim_state = NULL;
1033 p->flags &= ~PF_MEMALLOC;
1034
1035 cond_resched();
1036
1037 if (likely(did_some_progress)) {
7fb1d9fc
RS
1038 page = get_page_from_freelist(gfp_mask, order,
1039 zonelist, alloc_flags);
1040 if (page)
1041 goto got_pg;
1da177e4
LT
1042 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1043 /*
1044 * Go through the zonelist yet one more time, keep
1045 * very high watermark here, this is only to catch
1046 * a parallel oom killing, we must fail if we're still
1047 * under heavy pressure.
1048 */
7fb1d9fc 1049 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 1050 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
7fb1d9fc
RS
1051 if (page)
1052 goto got_pg;
1da177e4 1053
9b0f8b04 1054 out_of_memory(zonelist, gfp_mask, order);
1da177e4
LT
1055 goto restart;
1056 }
1057
1058 /*
1059 * Don't let big-order allocations loop unless the caller explicitly
1060 * requests that. Wait for some write requests to complete then retry.
1061 *
1062 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1063 * <= 3, but that may not be true in other implementations.
1064 */
1065 do_retry = 0;
1066 if (!(gfp_mask & __GFP_NORETRY)) {
1067 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1068 do_retry = 1;
1069 if (gfp_mask & __GFP_NOFAIL)
1070 do_retry = 1;
1071 }
1072 if (do_retry) {
1073 blk_congestion_wait(WRITE, HZ/50);
1074 goto rebalance;
1075 }
1076
1077nopage:
1078 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1079 printk(KERN_WARNING "%s: page allocation failure."
1080 " order:%d, mode:0x%x\n",
1081 p->comm, order, gfp_mask);
1082 dump_stack();
578c2fd6 1083 show_mem();
1da177e4 1084 }
1da177e4 1085got_pg:
1da177e4
LT
1086 return page;
1087}
1088
1089EXPORT_SYMBOL(__alloc_pages);
1090
1091/*
1092 * Common helper functions.
1093 */
dd0fc66f 1094fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4
LT
1095{
1096 struct page * page;
1097 page = alloc_pages(gfp_mask, order);
1098 if (!page)
1099 return 0;
1100 return (unsigned long) page_address(page);
1101}
1102
1103EXPORT_SYMBOL(__get_free_pages);
1104
dd0fc66f 1105fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4
LT
1106{
1107 struct page * page;
1108
1109 /*
1110 * get_zeroed_page() returns a 32-bit address, which cannot represent
1111 * a highmem page
1112 */
725d704e 1113 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1da177e4
LT
1114
1115 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1116 if (page)
1117 return (unsigned long) page_address(page);
1118 return 0;
1119}
1120
1121EXPORT_SYMBOL(get_zeroed_page);
1122
1123void __pagevec_free(struct pagevec *pvec)
1124{
1125 int i = pagevec_count(pvec);
1126
1127 while (--i >= 0)
1128 free_hot_cold_page(pvec->pages[i], pvec->cold);
1129}
1130
1131fastcall void __free_pages(struct page *page, unsigned int order)
1132{
b5810039 1133 if (put_page_testzero(page)) {
1da177e4
LT
1134 if (order == 0)
1135 free_hot_page(page);
1136 else
1137 __free_pages_ok(page, order);
1138 }
1139}
1140
1141EXPORT_SYMBOL(__free_pages);
1142
1143fastcall void free_pages(unsigned long addr, unsigned int order)
1144{
1145 if (addr != 0) {
725d704e 1146 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
1147 __free_pages(virt_to_page((void *)addr), order);
1148 }
1149}
1150
1151EXPORT_SYMBOL(free_pages);
1152
1153/*
1154 * Total amount of free (allocatable) RAM:
1155 */
1156unsigned int nr_free_pages(void)
1157{
1158 unsigned int sum = 0;
1159 struct zone *zone;
1160
1161 for_each_zone(zone)
1162 sum += zone->free_pages;
1163
1164 return sum;
1165}
1166
1167EXPORT_SYMBOL(nr_free_pages);
1168
1169#ifdef CONFIG_NUMA
1170unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1171{
2f6726e5
CL
1172 unsigned int sum = 0;
1173 enum zone_type i;
1da177e4
LT
1174
1175 for (i = 0; i < MAX_NR_ZONES; i++)
1176 sum += pgdat->node_zones[i].free_pages;
1177
1178 return sum;
1179}
1180#endif
1181
1182static unsigned int nr_free_zone_pages(int offset)
1183{
e310fd43
MB
1184 /* Just pick one node, since fallback list is circular */
1185 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1da177e4
LT
1186 unsigned int sum = 0;
1187
e310fd43
MB
1188 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1189 struct zone **zonep = zonelist->zones;
1190 struct zone *zone;
1da177e4 1191
e310fd43
MB
1192 for (zone = *zonep++; zone; zone = *zonep++) {
1193 unsigned long size = zone->present_pages;
1194 unsigned long high = zone->pages_high;
1195 if (size > high)
1196 sum += size - high;
1da177e4
LT
1197 }
1198
1199 return sum;
1200}
1201
1202/*
1203 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1204 */
1205unsigned int nr_free_buffer_pages(void)
1206{
af4ca457 1207 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4
LT
1208}
1209
1210/*
1211 * Amount of free RAM allocatable within all zones
1212 */
1213unsigned int nr_free_pagecache_pages(void)
1214{
af4ca457 1215 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1da177e4 1216}
1da177e4
LT
1217#ifdef CONFIG_NUMA
1218static void show_node(struct zone *zone)
1219{
1220 printk("Node %d ", zone->zone_pgdat->node_id);
1221}
1222#else
1223#define show_node(zone) do { } while (0)
1224#endif
1225
1da177e4
LT
1226void si_meminfo(struct sysinfo *val)
1227{
1228 val->totalram = totalram_pages;
1229 val->sharedram = 0;
1230 val->freeram = nr_free_pages();
1231 val->bufferram = nr_blockdev_pages();
1da177e4
LT
1232 val->totalhigh = totalhigh_pages;
1233 val->freehigh = nr_free_highpages();
1da177e4
LT
1234 val->mem_unit = PAGE_SIZE;
1235}
1236
1237EXPORT_SYMBOL(si_meminfo);
1238
1239#ifdef CONFIG_NUMA
1240void si_meminfo_node(struct sysinfo *val, int nid)
1241{
1242 pg_data_t *pgdat = NODE_DATA(nid);
1243
1244 val->totalram = pgdat->node_present_pages;
1245 val->freeram = nr_free_pages_pgdat(pgdat);
98d2b0eb 1246#ifdef CONFIG_HIGHMEM
1da177e4
LT
1247 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1248 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
98d2b0eb
CL
1249#else
1250 val->totalhigh = 0;
1251 val->freehigh = 0;
1252#endif
1da177e4
LT
1253 val->mem_unit = PAGE_SIZE;
1254}
1255#endif
1256
1257#define K(x) ((x) << (PAGE_SHIFT-10))
1258
1259/*
1260 * Show free area list (used inside shift_scroll-lock stuff)
1261 * We also calculate the percentage fragmentation. We do this by counting the
1262 * memory on each free list with the exception of the first item on the list.
1263 */
1264void show_free_areas(void)
1265{
1da177e4
LT
1266 int cpu, temperature;
1267 unsigned long active;
1268 unsigned long inactive;
1269 unsigned long free;
1270 struct zone *zone;
1271
1272 for_each_zone(zone) {
1273 show_node(zone);
1274 printk("%s per-cpu:", zone->name);
1275
f3fe6512 1276 if (!populated_zone(zone)) {
1da177e4
LT
1277 printk(" empty\n");
1278 continue;
1279 } else
1280 printk("\n");
1281
6b482c67 1282 for_each_online_cpu(cpu) {
1da177e4
LT
1283 struct per_cpu_pageset *pageset;
1284
e7c8d5c9 1285 pageset = zone_pcp(zone, cpu);
1da177e4
LT
1286
1287 for (temperature = 0; temperature < 2; temperature++)
2d92c5c9 1288 printk("cpu %d %s: high %d, batch %d used:%d\n",
1da177e4
LT
1289 cpu,
1290 temperature ? "cold" : "hot",
1da177e4 1291 pageset->pcp[temperature].high,
4ae7c039
CL
1292 pageset->pcp[temperature].batch,
1293 pageset->pcp[temperature].count);
1da177e4
LT
1294 }
1295 }
1296
1da177e4
LT
1297 get_zone_counts(&active, &inactive, &free);
1298
1da177e4
LT
1299 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1300 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1301 active,
1302 inactive,
b1e7a8fd 1303 global_page_state(NR_FILE_DIRTY),
ce866b34 1304 global_page_state(NR_WRITEBACK),
fd39fc85 1305 global_page_state(NR_UNSTABLE_NFS),
1da177e4 1306 nr_free_pages(),
972d1a7b
CL
1307 global_page_state(NR_SLAB_RECLAIMABLE) +
1308 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 1309 global_page_state(NR_FILE_MAPPED),
df849a15 1310 global_page_state(NR_PAGETABLE));
1da177e4
LT
1311
1312 for_each_zone(zone) {
1313 int i;
1314
1315 show_node(zone);
1316 printk("%s"
1317 " free:%lukB"
1318 " min:%lukB"
1319 " low:%lukB"
1320 " high:%lukB"
1321 " active:%lukB"
1322 " inactive:%lukB"
1323 " present:%lukB"
1324 " pages_scanned:%lu"
1325 " all_unreclaimable? %s"
1326 "\n",
1327 zone->name,
1328 K(zone->free_pages),
1329 K(zone->pages_min),
1330 K(zone->pages_low),
1331 K(zone->pages_high),
1332 K(zone->nr_active),
1333 K(zone->nr_inactive),
1334 K(zone->present_pages),
1335 zone->pages_scanned,
1336 (zone->all_unreclaimable ? "yes" : "no")
1337 );
1338 printk("lowmem_reserve[]:");
1339 for (i = 0; i < MAX_NR_ZONES; i++)
1340 printk(" %lu", zone->lowmem_reserve[i]);
1341 printk("\n");
1342 }
1343
1344 for_each_zone(zone) {
8f9de51a 1345 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4
LT
1346
1347 show_node(zone);
1348 printk("%s: ", zone->name);
f3fe6512 1349 if (!populated_zone(zone)) {
1da177e4
LT
1350 printk("empty\n");
1351 continue;
1352 }
1353
1354 spin_lock_irqsave(&zone->lock, flags);
1355 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
1356 nr[order] = zone->free_area[order].nr_free;
1357 total += nr[order] << order;
1da177e4
LT
1358 }
1359 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
1360 for (order = 0; order < MAX_ORDER; order++)
1361 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
1362 printk("= %lukB\n", K(total));
1363 }
1364
1365 show_swap_cache_info();
1366}
1367
1368/*
1369 * Builds allocation fallback zone lists.
1a93205b
CL
1370 *
1371 * Add all populated zones of a node to the zonelist.
1da177e4 1372 */
86356ab1 1373static int __meminit build_zonelists_node(pg_data_t *pgdat,
2f6726e5 1374 struct zonelist *zonelist, int nr_zones, enum zone_type zone_type)
1da177e4 1375{
1a93205b
CL
1376 struct zone *zone;
1377
98d2b0eb 1378 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 1379 zone_type++;
02a68a5e
CL
1380
1381 do {
2f6726e5 1382 zone_type--;
070f8032 1383 zone = pgdat->node_zones + zone_type;
1a93205b 1384 if (populated_zone(zone)) {
070f8032
CL
1385 zonelist->zones[nr_zones++] = zone;
1386 check_highest_zone(zone_type);
1da177e4 1387 }
02a68a5e 1388
2f6726e5 1389 } while (zone_type);
070f8032 1390 return nr_zones;
1da177e4
LT
1391}
1392
1393#ifdef CONFIG_NUMA
1394#define MAX_NODE_LOAD (num_online_nodes())
86356ab1 1395static int __meminitdata node_load[MAX_NUMNODES];
1da177e4 1396/**
4dc3b16b 1397 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
1398 * @node: node whose fallback list we're appending
1399 * @used_node_mask: nodemask_t of already used nodes
1400 *
1401 * We use a number of factors to determine which is the next node that should
1402 * appear on a given node's fallback list. The node should not have appeared
1403 * already in @node's fallback list, and it should be the next closest node
1404 * according to the distance array (which contains arbitrary distance values
1405 * from each node to each node in the system), and should also prefer nodes
1406 * with no CPUs, since presumably they'll have very little allocation pressure
1407 * on them otherwise.
1408 * It returns -1 if no node is found.
1409 */
86356ab1 1410static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 1411{
4cf808eb 1412 int n, val;
1da177e4
LT
1413 int min_val = INT_MAX;
1414 int best_node = -1;
1415
4cf808eb
LT
1416 /* Use the local node if we haven't already */
1417 if (!node_isset(node, *used_node_mask)) {
1418 node_set(node, *used_node_mask);
1419 return node;
1420 }
1da177e4 1421
4cf808eb
LT
1422 for_each_online_node(n) {
1423 cpumask_t tmp;
1da177e4
LT
1424
1425 /* Don't want a node to appear more than once */
1426 if (node_isset(n, *used_node_mask))
1427 continue;
1428
1da177e4
LT
1429 /* Use the distance array to find the distance */
1430 val = node_distance(node, n);
1431
4cf808eb
LT
1432 /* Penalize nodes under us ("prefer the next node") */
1433 val += (n < node);
1434
1da177e4
LT
1435 /* Give preference to headless and unused nodes */
1436 tmp = node_to_cpumask(n);
1437 if (!cpus_empty(tmp))
1438 val += PENALTY_FOR_NODE_WITH_CPUS;
1439
1440 /* Slight preference for less loaded node */
1441 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1442 val += node_load[n];
1443
1444 if (val < min_val) {
1445 min_val = val;
1446 best_node = n;
1447 }
1448 }
1449
1450 if (best_node >= 0)
1451 node_set(best_node, *used_node_mask);
1452
1453 return best_node;
1454}
1455
86356ab1 1456static void __meminit build_zonelists(pg_data_t *pgdat)
1da177e4 1457{
19655d34
CL
1458 int j, node, local_node;
1459 enum zone_type i;
1da177e4
LT
1460 int prev_node, load;
1461 struct zonelist *zonelist;
1462 nodemask_t used_mask;
1463
1464 /* initialize zonelists */
19655d34 1465 for (i = 0; i < MAX_NR_ZONES; i++) {
1da177e4
LT
1466 zonelist = pgdat->node_zonelists + i;
1467 zonelist->zones[0] = NULL;
1468 }
1469
1470 /* NUMA-aware ordering of nodes */
1471 local_node = pgdat->node_id;
1472 load = num_online_nodes();
1473 prev_node = local_node;
1474 nodes_clear(used_mask);
1475 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
1476 int distance = node_distance(local_node, node);
1477
1478 /*
1479 * If another node is sufficiently far away then it is better
1480 * to reclaim pages in a zone before going off node.
1481 */
1482 if (distance > RECLAIM_DISTANCE)
1483 zone_reclaim_mode = 1;
1484
1da177e4
LT
1485 /*
1486 * We don't want to pressure a particular node.
1487 * So adding penalty to the first node in same
1488 * distance group to make it round-robin.
1489 */
9eeff239
CL
1490
1491 if (distance != node_distance(local_node, prev_node))
1da177e4
LT
1492 node_load[node] += load;
1493 prev_node = node;
1494 load--;
19655d34 1495 for (i = 0; i < MAX_NR_ZONES; i++) {
1da177e4
LT
1496 zonelist = pgdat->node_zonelists + i;
1497 for (j = 0; zonelist->zones[j] != NULL; j++);
1498
19655d34 1499 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1da177e4
LT
1500 zonelist->zones[j] = NULL;
1501 }
1502 }
1503}
1504
1505#else /* CONFIG_NUMA */
1506
86356ab1 1507static void __meminit build_zonelists(pg_data_t *pgdat)
1da177e4 1508{
19655d34
CL
1509 int node, local_node;
1510 enum zone_type i,j;
1da177e4
LT
1511
1512 local_node = pgdat->node_id;
19655d34 1513 for (i = 0; i < MAX_NR_ZONES; i++) {
1da177e4
LT
1514 struct zonelist *zonelist;
1515
1516 zonelist = pgdat->node_zonelists + i;
1517
19655d34 1518 j = build_zonelists_node(pgdat, zonelist, 0, i);
1da177e4
LT
1519 /*
1520 * Now we build the zonelist so that it contains the zones
1521 * of all the other nodes.
1522 * We don't want to pressure a particular node, so when
1523 * building the zones for node N, we make sure that the
1524 * zones coming right after the local ones are those from
1525 * node N+1 (modulo N)
1526 */
1527 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1528 if (!node_online(node))
1529 continue;
19655d34 1530 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1da177e4
LT
1531 }
1532 for (node = 0; node < local_node; node++) {
1533 if (!node_online(node))
1534 continue;
19655d34 1535 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1da177e4
LT
1536 }
1537
1538 zonelist->zones[j] = NULL;
1539 }
1540}
1541
1542#endif /* CONFIG_NUMA */
1543
6811378e
YG
1544/* return values int ....just for stop_machine_run() */
1545static int __meminit __build_all_zonelists(void *dummy)
1da177e4 1546{
6811378e
YG
1547 int nid;
1548 for_each_online_node(nid)
1549 build_zonelists(NODE_DATA(nid));
1550 return 0;
1551}
1552
1553void __meminit build_all_zonelists(void)
1554{
1555 if (system_state == SYSTEM_BOOTING) {
1556 __build_all_zonelists(0);
1557 cpuset_init_current_mems_allowed();
1558 } else {
1559 /* we have to stop all cpus to guaranntee there is no user
1560 of zonelist */
1561 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
1562 /* cpuset refresh routine should be here */
1563 }
bd1e22b8
AM
1564 vm_total_pages = nr_free_pagecache_pages();
1565 printk("Built %i zonelists. Total pages: %ld\n",
1566 num_online_nodes(), vm_total_pages);
1da177e4
LT
1567}
1568
1569/*
1570 * Helper functions to size the waitqueue hash table.
1571 * Essentially these want to choose hash table sizes sufficiently
1572 * large so that collisions trying to wait on pages are rare.
1573 * But in fact, the number of active page waitqueues on typical
1574 * systems is ridiculously low, less than 200. So this is even
1575 * conservative, even though it seems large.
1576 *
1577 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1578 * waitqueues, i.e. the size of the waitq table given the number of pages.
1579 */
1580#define PAGES_PER_WAITQUEUE 256
1581
cca448fe 1582#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 1583static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
1584{
1585 unsigned long size = 1;
1586
1587 pages /= PAGES_PER_WAITQUEUE;
1588
1589 while (size < pages)
1590 size <<= 1;
1591
1592 /*
1593 * Once we have dozens or even hundreds of threads sleeping
1594 * on IO we've got bigger problems than wait queue collision.
1595 * Limit the size of the wait table to a reasonable size.
1596 */
1597 size = min(size, 4096UL);
1598
1599 return max(size, 4UL);
1600}
cca448fe
YG
1601#else
1602/*
1603 * A zone's size might be changed by hot-add, so it is not possible to determine
1604 * a suitable size for its wait_table. So we use the maximum size now.
1605 *
1606 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
1607 *
1608 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
1609 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
1610 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
1611 *
1612 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
1613 * or more by the traditional way. (See above). It equals:
1614 *
1615 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
1616 * ia64(16K page size) : = ( 8G + 4M)byte.
1617 * powerpc (64K page size) : = (32G +16M)byte.
1618 */
1619static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1620{
1621 return 4096UL;
1622}
1623#endif
1da177e4
LT
1624
1625/*
1626 * This is an integer logarithm so that shifts can be used later
1627 * to extract the more random high bits from the multiplicative
1628 * hash function before the remainder is taken.
1629 */
1630static inline unsigned long wait_table_bits(unsigned long size)
1631{
1632 return ffz(~size);
1633}
1634
1635#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1636
1637static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1638 unsigned long *zones_size, unsigned long *zholes_size)
1639{
1640 unsigned long realtotalpages, totalpages = 0;
2f6726e5 1641 enum zone_type i;
1da177e4
LT
1642
1643 for (i = 0; i < MAX_NR_ZONES; i++)
1644 totalpages += zones_size[i];
1645 pgdat->node_spanned_pages = totalpages;
1646
1647 realtotalpages = totalpages;
1648 if (zholes_size)
1649 for (i = 0; i < MAX_NR_ZONES; i++)
1650 realtotalpages -= zholes_size[i];
1651 pgdat->node_present_pages = realtotalpages;
1652 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1653}
1654
1655
1656/*
1657 * Initially all pages are reserved - free ones are freed
1658 * up by free_all_bootmem() once the early boot process is
1659 * done. Non-atomic initialization, single-pass.
1660 */
c09b4240 1661void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1da177e4
LT
1662 unsigned long start_pfn)
1663{
1da177e4 1664 struct page *page;
29751f69
AW
1665 unsigned long end_pfn = start_pfn + size;
1666 unsigned long pfn;
1da177e4 1667
cbe8dd4a 1668 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
d41dee36
AW
1669 if (!early_pfn_valid(pfn))
1670 continue;
1671 page = pfn_to_page(pfn);
1672 set_page_links(page, zone, nid, pfn);
7835e98b 1673 init_page_count(page);
1da177e4
LT
1674 reset_page_mapcount(page);
1675 SetPageReserved(page);
1676 INIT_LIST_HEAD(&page->lru);
1677#ifdef WANT_PAGE_VIRTUAL
1678 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1679 if (!is_highmem_idx(zone))
3212c6be 1680 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 1681#endif
1da177e4
LT
1682 }
1683}
1684
1685void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1686 unsigned long size)
1687{
1688 int order;
1689 for (order = 0; order < MAX_ORDER ; order++) {
1690 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1691 zone->free_area[order].nr_free = 0;
1692 }
1693}
1694
d41dee36 1695#define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
2f1b6248
CL
1696void zonetable_add(struct zone *zone, int nid, enum zone_type zid,
1697 unsigned long pfn, unsigned long size)
d41dee36
AW
1698{
1699 unsigned long snum = pfn_to_section_nr(pfn);
1700 unsigned long end = pfn_to_section_nr(pfn + size);
1701
1702 if (FLAGS_HAS_NODE)
1703 zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1704 else
1705 for (; snum <= end; snum++)
1706 zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1707}
1708
1da177e4
LT
1709#ifndef __HAVE_ARCH_MEMMAP_INIT
1710#define memmap_init(size, nid, zone, start_pfn) \
1711 memmap_init_zone((size), (nid), (zone), (start_pfn))
1712#endif
1713
6292d9aa 1714static int __cpuinit zone_batchsize(struct zone *zone)
e7c8d5c9
CL
1715{
1716 int batch;
1717
1718 /*
1719 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 1720 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
1721 *
1722 * OK, so we don't know how big the cache is. So guess.
1723 */
1724 batch = zone->present_pages / 1024;
ba56e91c
SR
1725 if (batch * PAGE_SIZE > 512 * 1024)
1726 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
1727 batch /= 4; /* We effectively *= 4 below */
1728 if (batch < 1)
1729 batch = 1;
1730
1731 /*
0ceaacc9
NP
1732 * Clamp the batch to a 2^n - 1 value. Having a power
1733 * of 2 value was found to be more likely to have
1734 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 1735 *
0ceaacc9
NP
1736 * For example if 2 tasks are alternately allocating
1737 * batches of pages, one task can end up with a lot
1738 * of pages of one half of the possible page colors
1739 * and the other with pages of the other colors.
e7c8d5c9 1740 */
0ceaacc9 1741 batch = (1 << (fls(batch + batch/2)-1)) - 1;
ba56e91c 1742
e7c8d5c9
CL
1743 return batch;
1744}
1745
2caaad41
CL
1746inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1747{
1748 struct per_cpu_pages *pcp;
1749
1c6fe946
MD
1750 memset(p, 0, sizeof(*p));
1751
2caaad41
CL
1752 pcp = &p->pcp[0]; /* hot */
1753 pcp->count = 0;
2caaad41
CL
1754 pcp->high = 6 * batch;
1755 pcp->batch = max(1UL, 1 * batch);
1756 INIT_LIST_HEAD(&pcp->list);
1757
1758 pcp = &p->pcp[1]; /* cold*/
1759 pcp->count = 0;
2caaad41 1760 pcp->high = 2 * batch;
e46a5e28 1761 pcp->batch = max(1UL, batch/2);
2caaad41
CL
1762 INIT_LIST_HEAD(&pcp->list);
1763}
1764
8ad4b1fb
RS
1765/*
1766 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1767 * to the value high for the pageset p.
1768 */
1769
1770static void setup_pagelist_highmark(struct per_cpu_pageset *p,
1771 unsigned long high)
1772{
1773 struct per_cpu_pages *pcp;
1774
1775 pcp = &p->pcp[0]; /* hot list */
1776 pcp->high = high;
1777 pcp->batch = max(1UL, high/4);
1778 if ((high/4) > (PAGE_SHIFT * 8))
1779 pcp->batch = PAGE_SHIFT * 8;
1780}
1781
1782
e7c8d5c9
CL
1783#ifdef CONFIG_NUMA
1784/*
2caaad41
CL
1785 * Boot pageset table. One per cpu which is going to be used for all
1786 * zones and all nodes. The parameters will be set in such a way
1787 * that an item put on a list will immediately be handed over to
1788 * the buddy list. This is safe since pageset manipulation is done
1789 * with interrupts disabled.
1790 *
1791 * Some NUMA counter updates may also be caught by the boot pagesets.
b7c84c6a
CL
1792 *
1793 * The boot_pagesets must be kept even after bootup is complete for
1794 * unused processors and/or zones. They do play a role for bootstrapping
1795 * hotplugged processors.
1796 *
1797 * zoneinfo_show() and maybe other functions do
1798 * not check if the processor is online before following the pageset pointer.
1799 * Other parts of the kernel may not check if the zone is available.
2caaad41 1800 */
88a2a4ac 1801static struct per_cpu_pageset boot_pageset[NR_CPUS];
2caaad41
CL
1802
1803/*
1804 * Dynamically allocate memory for the
e7c8d5c9
CL
1805 * per cpu pageset array in struct zone.
1806 */
6292d9aa 1807static int __cpuinit process_zones(int cpu)
e7c8d5c9
CL
1808{
1809 struct zone *zone, *dzone;
e7c8d5c9
CL
1810
1811 for_each_zone(zone) {
e7c8d5c9 1812
23316bc8 1813 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
e7c8d5c9 1814 GFP_KERNEL, cpu_to_node(cpu));
23316bc8 1815 if (!zone_pcp(zone, cpu))
e7c8d5c9 1816 goto bad;
e7c8d5c9 1817
23316bc8 1818 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
8ad4b1fb
RS
1819
1820 if (percpu_pagelist_fraction)
1821 setup_pagelist_highmark(zone_pcp(zone, cpu),
1822 (zone->present_pages / percpu_pagelist_fraction));
e7c8d5c9
CL
1823 }
1824
1825 return 0;
1826bad:
1827 for_each_zone(dzone) {
1828 if (dzone == zone)
1829 break;
23316bc8
NP
1830 kfree(zone_pcp(dzone, cpu));
1831 zone_pcp(dzone, cpu) = NULL;
e7c8d5c9
CL
1832 }
1833 return -ENOMEM;
1834}
1835
1836static inline void free_zone_pagesets(int cpu)
1837{
e7c8d5c9
CL
1838 struct zone *zone;
1839
1840 for_each_zone(zone) {
1841 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1842
f3ef9ead
DR
1843 /* Free per_cpu_pageset if it is slab allocated */
1844 if (pset != &boot_pageset[cpu])
1845 kfree(pset);
e7c8d5c9 1846 zone_pcp(zone, cpu) = NULL;
e7c8d5c9 1847 }
e7c8d5c9
CL
1848}
1849
9c7b216d 1850static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
e7c8d5c9
CL
1851 unsigned long action,
1852 void *hcpu)
1853{
1854 int cpu = (long)hcpu;
1855 int ret = NOTIFY_OK;
1856
1857 switch (action) {
1858 case CPU_UP_PREPARE:
1859 if (process_zones(cpu))
1860 ret = NOTIFY_BAD;
1861 break;
b0d41693 1862 case CPU_UP_CANCELED:
e7c8d5c9
CL
1863 case CPU_DEAD:
1864 free_zone_pagesets(cpu);
1865 break;
e7c8d5c9
CL
1866 default:
1867 break;
1868 }
1869 return ret;
1870}
1871
74b85f37 1872static struct notifier_block __cpuinitdata pageset_notifier =
e7c8d5c9
CL
1873 { &pageset_cpuup_callback, NULL, 0 };
1874
78d9955b 1875void __init setup_per_cpu_pageset(void)
e7c8d5c9
CL
1876{
1877 int err;
1878
1879 /* Initialize per_cpu_pageset for cpu 0.
1880 * A cpuup callback will do this for every cpu
1881 * as it comes online
1882 */
1883 err = process_zones(smp_processor_id());
1884 BUG_ON(err);
1885 register_cpu_notifier(&pageset_notifier);
1886}
1887
1888#endif
1889
c09b4240 1890static __meminit
cca448fe 1891int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
1892{
1893 int i;
1894 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 1895 size_t alloc_size;
ed8ece2e
DH
1896
1897 /*
1898 * The per-page waitqueue mechanism uses hashed waitqueues
1899 * per zone.
1900 */
02b694de
YG
1901 zone->wait_table_hash_nr_entries =
1902 wait_table_hash_nr_entries(zone_size_pages);
1903 zone->wait_table_bits =
1904 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
1905 alloc_size = zone->wait_table_hash_nr_entries
1906 * sizeof(wait_queue_head_t);
1907
1908 if (system_state == SYSTEM_BOOTING) {
1909 zone->wait_table = (wait_queue_head_t *)
1910 alloc_bootmem_node(pgdat, alloc_size);
1911 } else {
1912 /*
1913 * This case means that a zone whose size was 0 gets new memory
1914 * via memory hot-add.
1915 * But it may be the case that a new node was hot-added. In
1916 * this case vmalloc() will not be able to use this new node's
1917 * memory - this wait_table must be initialized to use this new
1918 * node itself as well.
1919 * To use this new node's memory, further consideration will be
1920 * necessary.
1921 */
1922 zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
1923 }
1924 if (!zone->wait_table)
1925 return -ENOMEM;
ed8ece2e 1926
02b694de 1927 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 1928 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
1929
1930 return 0;
ed8ece2e
DH
1931}
1932
c09b4240 1933static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e
DH
1934{
1935 int cpu;
1936 unsigned long batch = zone_batchsize(zone);
1937
1938 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1939#ifdef CONFIG_NUMA
1940 /* Early boot. Slab allocator not functional yet */
23316bc8 1941 zone_pcp(zone, cpu) = &boot_pageset[cpu];
ed8ece2e
DH
1942 setup_pageset(&boot_pageset[cpu],0);
1943#else
1944 setup_pageset(zone_pcp(zone,cpu), batch);
1945#endif
1946 }
f5335c0f
AB
1947 if (zone->present_pages)
1948 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
1949 zone->name, zone->present_pages, batch);
ed8ece2e
DH
1950}
1951
718127cc
YG
1952__meminit int init_currently_empty_zone(struct zone *zone,
1953 unsigned long zone_start_pfn,
1954 unsigned long size)
ed8ece2e
DH
1955{
1956 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
1957 int ret;
1958 ret = zone_wait_table_init(zone, size);
1959 if (ret)
1960 return ret;
ed8ece2e
DH
1961 pgdat->nr_zones = zone_idx(zone) + 1;
1962
ed8ece2e
DH
1963 zone->zone_start_pfn = zone_start_pfn;
1964
1965 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
1966
1967 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
718127cc
YG
1968
1969 return 0;
ed8ece2e
DH
1970}
1971
1da177e4
LT
1972/*
1973 * Set up the zone data structures:
1974 * - mark all pages reserved
1975 * - mark all memory queues empty
1976 * - clear the memory bitmaps
1977 */
86356ab1 1978static void __meminit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
1979 unsigned long *zones_size, unsigned long *zholes_size)
1980{
2f1b6248 1981 enum zone_type j;
ed8ece2e 1982 int nid = pgdat->node_id;
1da177e4 1983 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 1984 int ret;
1da177e4 1985
208d54e5 1986 pgdat_resize_init(pgdat);
1da177e4
LT
1987 pgdat->nr_zones = 0;
1988 init_waitqueue_head(&pgdat->kswapd_wait);
1989 pgdat->kswapd_max_order = 0;
1990
1991 for (j = 0; j < MAX_NR_ZONES; j++) {
1992 struct zone *zone = pgdat->node_zones + j;
1993 unsigned long size, realsize;
1da177e4 1994
1da177e4
LT
1995 realsize = size = zones_size[j];
1996 if (zholes_size)
1997 realsize -= zholes_size[j];
1998
98d2b0eb 1999 if (!is_highmem_idx(j))
1da177e4
LT
2000 nr_kernel_pages += realsize;
2001 nr_all_pages += realsize;
2002
2003 zone->spanned_pages = size;
2004 zone->present_pages = realsize;
9614634f 2005#ifdef CONFIG_NUMA
8417bba4 2006 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f
CL
2007 / 100;
2008#endif
1da177e4
LT
2009 zone->name = zone_names[j];
2010 spin_lock_init(&zone->lock);
2011 spin_lock_init(&zone->lru_lock);
bdc8cb98 2012 zone_seqlock_init(zone);
1da177e4
LT
2013 zone->zone_pgdat = pgdat;
2014 zone->free_pages = 0;
2015
2016 zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2017
ed8ece2e 2018 zone_pcp_init(zone);
1da177e4
LT
2019 INIT_LIST_HEAD(&zone->active_list);
2020 INIT_LIST_HEAD(&zone->inactive_list);
2021 zone->nr_scan_active = 0;
2022 zone->nr_scan_inactive = 0;
2023 zone->nr_active = 0;
2024 zone->nr_inactive = 0;
2244b95a 2025 zap_zone_vm_stats(zone);
53e9a615 2026 atomic_set(&zone->reclaim_in_progress, 0);
1da177e4
LT
2027 if (!size)
2028 continue;
2029
d41dee36 2030 zonetable_add(zone, nid, j, zone_start_pfn, size);
718127cc
YG
2031 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
2032 BUG_ON(ret);
1da177e4 2033 zone_start_pfn += size;
1da177e4
LT
2034 }
2035}
2036
2037static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2038{
1da177e4
LT
2039 /* Skip empty nodes */
2040 if (!pgdat->node_spanned_pages)
2041 return;
2042
d41dee36 2043#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
2044 /* ia64 gets its own node_mem_map, before this, without bootmem */
2045 if (!pgdat->node_mem_map) {
e984bb43 2046 unsigned long size, start, end;
d41dee36
AW
2047 struct page *map;
2048
e984bb43
BP
2049 /*
2050 * The zone's endpoints aren't required to be MAX_ORDER
2051 * aligned but the node_mem_map endpoints must be in order
2052 * for the buddy allocator to function correctly.
2053 */
2054 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
2055 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
2056 end = ALIGN(end, MAX_ORDER_NR_PAGES);
2057 size = (end - start) * sizeof(struct page);
6f167ec7
DH
2058 map = alloc_remap(pgdat->node_id, size);
2059 if (!map)
2060 map = alloc_bootmem_node(pgdat, size);
e984bb43 2061 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 2062 }
d41dee36 2063#ifdef CONFIG_FLATMEM
1da177e4
LT
2064 /*
2065 * With no DISCONTIG, the global mem_map is just set as node 0's
2066 */
2067 if (pgdat == NODE_DATA(0))
2068 mem_map = NODE_DATA(0)->node_mem_map;
2069#endif
d41dee36 2070#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
2071}
2072
86356ab1 2073void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
1da177e4
LT
2074 unsigned long *zones_size, unsigned long node_start_pfn,
2075 unsigned long *zholes_size)
2076{
2077 pgdat->node_id = nid;
2078 pgdat->node_start_pfn = node_start_pfn;
2079 calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2080
2081 alloc_node_mem_map(pgdat);
2082
2083 free_area_init_core(pgdat, zones_size, zholes_size);
2084}
2085
93b7504e 2086#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
2087static bootmem_data_t contig_bootmem_data;
2088struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2089
2090EXPORT_SYMBOL(contig_page_data);
93b7504e 2091#endif
1da177e4
LT
2092
2093void __init free_area_init(unsigned long *zones_size)
2094{
93b7504e 2095 free_area_init_node(0, NODE_DATA(0), zones_size,
1da177e4
LT
2096 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2097}
1da177e4 2098
1da177e4
LT
2099#ifdef CONFIG_HOTPLUG_CPU
2100static int page_alloc_cpu_notify(struct notifier_block *self,
2101 unsigned long action, void *hcpu)
2102{
2103 int cpu = (unsigned long)hcpu;
1da177e4
LT
2104
2105 if (action == CPU_DEAD) {
1da177e4
LT
2106 local_irq_disable();
2107 __drain_pages(cpu);
f8891e5e 2108 vm_events_fold_cpu(cpu);
1da177e4 2109 local_irq_enable();
2244b95a 2110 refresh_cpu_vm_stats(cpu);
1da177e4
LT
2111 }
2112 return NOTIFY_OK;
2113}
2114#endif /* CONFIG_HOTPLUG_CPU */
2115
2116void __init page_alloc_init(void)
2117{
2118 hotcpu_notifier(page_alloc_cpu_notify, 0);
2119}
2120
cb45b0e9
HA
2121/*
2122 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
2123 * or min_free_kbytes changes.
2124 */
2125static void calculate_totalreserve_pages(void)
2126{
2127 struct pglist_data *pgdat;
2128 unsigned long reserve_pages = 0;
2f6726e5 2129 enum zone_type i, j;
cb45b0e9
HA
2130
2131 for_each_online_pgdat(pgdat) {
2132 for (i = 0; i < MAX_NR_ZONES; i++) {
2133 struct zone *zone = pgdat->node_zones + i;
2134 unsigned long max = 0;
2135
2136 /* Find valid and maximum lowmem_reserve in the zone */
2137 for (j = i; j < MAX_NR_ZONES; j++) {
2138 if (zone->lowmem_reserve[j] > max)
2139 max = zone->lowmem_reserve[j];
2140 }
2141
2142 /* we treat pages_high as reserved pages. */
2143 max += zone->pages_high;
2144
2145 if (max > zone->present_pages)
2146 max = zone->present_pages;
2147 reserve_pages += max;
2148 }
2149 }
2150 totalreserve_pages = reserve_pages;
2151}
2152
1da177e4
LT
2153/*
2154 * setup_per_zone_lowmem_reserve - called whenever
2155 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2156 * has a correct pages reserved value, so an adequate number of
2157 * pages are left in the zone after a successful __alloc_pages().
2158 */
2159static void setup_per_zone_lowmem_reserve(void)
2160{
2161 struct pglist_data *pgdat;
2f6726e5 2162 enum zone_type j, idx;
1da177e4 2163
ec936fc5 2164 for_each_online_pgdat(pgdat) {
1da177e4
LT
2165 for (j = 0; j < MAX_NR_ZONES; j++) {
2166 struct zone *zone = pgdat->node_zones + j;
2167 unsigned long present_pages = zone->present_pages;
2168
2169 zone->lowmem_reserve[j] = 0;
2170
2f6726e5
CL
2171 idx = j;
2172 while (idx) {
1da177e4
LT
2173 struct zone *lower_zone;
2174
2f6726e5
CL
2175 idx--;
2176
1da177e4
LT
2177 if (sysctl_lowmem_reserve_ratio[idx] < 1)
2178 sysctl_lowmem_reserve_ratio[idx] = 1;
2179
2180 lower_zone = pgdat->node_zones + idx;
2181 lower_zone->lowmem_reserve[j] = present_pages /
2182 sysctl_lowmem_reserve_ratio[idx];
2183 present_pages += lower_zone->present_pages;
2184 }
2185 }
2186 }
cb45b0e9
HA
2187
2188 /* update totalreserve_pages */
2189 calculate_totalreserve_pages();
1da177e4
LT
2190}
2191
2192/*
2193 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2194 * that the pages_{min,low,high} values for each zone are set correctly
2195 * with respect to min_free_kbytes.
2196 */
3947be19 2197void setup_per_zone_pages_min(void)
1da177e4
LT
2198{
2199 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2200 unsigned long lowmem_pages = 0;
2201 struct zone *zone;
2202 unsigned long flags;
2203
2204 /* Calculate total number of !ZONE_HIGHMEM pages */
2205 for_each_zone(zone) {
2206 if (!is_highmem(zone))
2207 lowmem_pages += zone->present_pages;
2208 }
2209
2210 for_each_zone(zone) {
ac924c60
AM
2211 u64 tmp;
2212
1da177e4 2213 spin_lock_irqsave(&zone->lru_lock, flags);
ac924c60
AM
2214 tmp = (u64)pages_min * zone->present_pages;
2215 do_div(tmp, lowmem_pages);
1da177e4
LT
2216 if (is_highmem(zone)) {
2217 /*
669ed175
NP
2218 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2219 * need highmem pages, so cap pages_min to a small
2220 * value here.
2221 *
2222 * The (pages_high-pages_low) and (pages_low-pages_min)
2223 * deltas controls asynch page reclaim, and so should
2224 * not be capped for highmem.
1da177e4
LT
2225 */
2226 int min_pages;
2227
2228 min_pages = zone->present_pages / 1024;
2229 if (min_pages < SWAP_CLUSTER_MAX)
2230 min_pages = SWAP_CLUSTER_MAX;
2231 if (min_pages > 128)
2232 min_pages = 128;
2233 zone->pages_min = min_pages;
2234 } else {
669ed175
NP
2235 /*
2236 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
2237 * proportionate to the zone's size.
2238 */
669ed175 2239 zone->pages_min = tmp;
1da177e4
LT
2240 }
2241
ac924c60
AM
2242 zone->pages_low = zone->pages_min + (tmp >> 2);
2243 zone->pages_high = zone->pages_min + (tmp >> 1);
1da177e4
LT
2244 spin_unlock_irqrestore(&zone->lru_lock, flags);
2245 }
cb45b0e9
HA
2246
2247 /* update totalreserve_pages */
2248 calculate_totalreserve_pages();
1da177e4
LT
2249}
2250
2251/*
2252 * Initialise min_free_kbytes.
2253 *
2254 * For small machines we want it small (128k min). For large machines
2255 * we want it large (64MB max). But it is not linear, because network
2256 * bandwidth does not increase linearly with machine size. We use
2257 *
2258 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2259 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2260 *
2261 * which yields
2262 *
2263 * 16MB: 512k
2264 * 32MB: 724k
2265 * 64MB: 1024k
2266 * 128MB: 1448k
2267 * 256MB: 2048k
2268 * 512MB: 2896k
2269 * 1024MB: 4096k
2270 * 2048MB: 5792k
2271 * 4096MB: 8192k
2272 * 8192MB: 11584k
2273 * 16384MB: 16384k
2274 */
2275static int __init init_per_zone_pages_min(void)
2276{
2277 unsigned long lowmem_kbytes;
2278
2279 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2280
2281 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2282 if (min_free_kbytes < 128)
2283 min_free_kbytes = 128;
2284 if (min_free_kbytes > 65536)
2285 min_free_kbytes = 65536;
2286 setup_per_zone_pages_min();
2287 setup_per_zone_lowmem_reserve();
2288 return 0;
2289}
2290module_init(init_per_zone_pages_min)
2291
2292/*
2293 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2294 * that we can call two helper functions whenever min_free_kbytes
2295 * changes.
2296 */
2297int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2298 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2299{
2300 proc_dointvec(table, write, file, buffer, length, ppos);
2301 setup_per_zone_pages_min();
2302 return 0;
2303}
2304
9614634f
CL
2305#ifdef CONFIG_NUMA
2306int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
2307 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2308{
2309 struct zone *zone;
2310 int rc;
2311
2312 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2313 if (rc)
2314 return rc;
2315
2316 for_each_zone(zone)
8417bba4 2317 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
2318 sysctl_min_unmapped_ratio) / 100;
2319 return 0;
2320}
2321#endif
2322
1da177e4
LT
2323/*
2324 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2325 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2326 * whenever sysctl_lowmem_reserve_ratio changes.
2327 *
2328 * The reserve ratio obviously has absolutely no relation with the
2329 * pages_min watermarks. The lowmem reserve ratio can only make sense
2330 * if in function of the boot time zone sizes.
2331 */
2332int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2333 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2334{
2335 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2336 setup_per_zone_lowmem_reserve();
2337 return 0;
2338}
2339
8ad4b1fb
RS
2340/*
2341 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2342 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
2343 * can have before it gets flushed back to buddy allocator.
2344 */
2345
2346int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
2347 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2348{
2349 struct zone *zone;
2350 unsigned int cpu;
2351 int ret;
2352
2353 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2354 if (!write || (ret == -EINVAL))
2355 return ret;
2356 for_each_zone(zone) {
2357 for_each_online_cpu(cpu) {
2358 unsigned long high;
2359 high = zone->present_pages / percpu_pagelist_fraction;
2360 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
2361 }
2362 }
2363 return 0;
2364}
2365
f034b5d4 2366int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
2367
2368#ifdef CONFIG_NUMA
2369static int __init set_hashdist(char *str)
2370{
2371 if (!str)
2372 return 0;
2373 hashdist = simple_strtoul(str, &str, 0);
2374 return 1;
2375}
2376__setup("hashdist=", set_hashdist);
2377#endif
2378
2379/*
2380 * allocate a large system hash table from bootmem
2381 * - it is assumed that the hash table must contain an exact power-of-2
2382 * quantity of entries
2383 * - limit is the number of hash buckets, not the total allocation size
2384 */
2385void *__init alloc_large_system_hash(const char *tablename,
2386 unsigned long bucketsize,
2387 unsigned long numentries,
2388 int scale,
2389 int flags,
2390 unsigned int *_hash_shift,
2391 unsigned int *_hash_mask,
2392 unsigned long limit)
2393{
2394 unsigned long long max = limit;
2395 unsigned long log2qty, size;
2396 void *table = NULL;
2397
2398 /* allow the kernel cmdline to have a say */
2399 if (!numentries) {
2400 /* round applicable memory size up to nearest megabyte */
2401 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2402 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2403 numentries >>= 20 - PAGE_SHIFT;
2404 numentries <<= 20 - PAGE_SHIFT;
2405
2406 /* limit to 1 bucket per 2^scale bytes of low memory */
2407 if (scale > PAGE_SHIFT)
2408 numentries >>= (scale - PAGE_SHIFT);
2409 else
2410 numentries <<= (PAGE_SHIFT - scale);
2411 }
6e692ed3 2412 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
2413
2414 /* limit allocation size to 1/16 total memory by default */
2415 if (max == 0) {
2416 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2417 do_div(max, bucketsize);
2418 }
2419
2420 if (numentries > max)
2421 numentries = max;
2422
2423 log2qty = long_log2(numentries);
2424
2425 do {
2426 size = bucketsize << log2qty;
2427 if (flags & HASH_EARLY)
2428 table = alloc_bootmem(size);
2429 else if (hashdist)
2430 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2431 else {
2432 unsigned long order;
2433 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2434 ;
2435 table = (void*) __get_free_pages(GFP_ATOMIC, order);
2436 }
2437 } while (!table && size > PAGE_SIZE && --log2qty);
2438
2439 if (!table)
2440 panic("Failed to allocate %s hash table\n", tablename);
2441
2442 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2443 tablename,
2444 (1U << log2qty),
2445 long_log2(size) - PAGE_SHIFT,
2446 size);
2447
2448 if (_hash_shift)
2449 *_hash_shift = log2qty;
2450 if (_hash_mask)
2451 *_hash_mask = (1 << log2qty) - 1;
2452
2453 return table;
2454}
a117e66e
KH
2455
2456#ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
a117e66e
KH
2457struct page *pfn_to_page(unsigned long pfn)
2458{
67de6482 2459 return __pfn_to_page(pfn);
a117e66e
KH
2460}
2461unsigned long page_to_pfn(struct page *page)
2462{
67de6482 2463 return __page_to_pfn(page);
a117e66e 2464}
a117e66e
KH
2465EXPORT_SYMBOL(pfn_to_page);
2466EXPORT_SYMBOL(page_to_pfn);
2467#endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */