mm: vmscan: reclaim order-0 and use compaction instead of lumpy reclaim
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
5a3135c2 33#include <linux/oom.h>
1da177e4
LT
34#include <linux/notifier.h>
35#include <linux/topology.h>
36#include <linux/sysctl.h>
37#include <linux/cpu.h>
38#include <linux/cpuset.h>
bdc8cb98 39#include <linux/memory_hotplug.h>
1da177e4
LT
40#include <linux/nodemask.h>
41#include <linux/vmalloc.h>
4be38e35 42#include <linux/mempolicy.h>
6811378e 43#include <linux/stop_machine.h>
c713216d
MG
44#include <linux/sort.h>
45#include <linux/pfn.h>
3fcfab16 46#include <linux/backing-dev.h>
933e312e 47#include <linux/fault-inject.h>
a5d76b54 48#include <linux/page-isolation.h>
52d4b9ac 49#include <linux/page_cgroup.h>
3ac7fe5a 50#include <linux/debugobjects.h>
dbb1f81c 51#include <linux/kmemleak.h>
925cc71e 52#include <linux/memory.h>
56de7263 53#include <linux/compaction.h>
0d3d062a 54#include <trace/events/kmem.h>
718a3821 55#include <linux/ftrace_event.h>
1da177e4
LT
56
57#include <asm/tlbflush.h>
ac924c60 58#include <asm/div64.h>
1da177e4
LT
59#include "internal.h"
60
72812019
LS
61#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
62DEFINE_PER_CPU(int, numa_node);
63EXPORT_PER_CPU_SYMBOL(numa_node);
64#endif
65
7aac7898
LS
66#ifdef CONFIG_HAVE_MEMORYLESS_NODES
67/*
68 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
69 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
70 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
71 * defined in <linux/topology.h>.
72 */
73DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
74EXPORT_PER_CPU_SYMBOL(_numa_mem_);
75#endif
76
1da177e4 77/*
13808910 78 * Array of node states.
1da177e4 79 */
13808910
CL
80nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
81 [N_POSSIBLE] = NODE_MASK_ALL,
82 [N_ONLINE] = { { [0] = 1UL } },
83#ifndef CONFIG_NUMA
84 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
85#ifdef CONFIG_HIGHMEM
86 [N_HIGH_MEMORY] = { { [0] = 1UL } },
87#endif
88 [N_CPU] = { { [0] = 1UL } },
89#endif /* NUMA */
90};
91EXPORT_SYMBOL(node_states);
92
6c231b7b 93unsigned long totalram_pages __read_mostly;
cb45b0e9 94unsigned long totalreserve_pages __read_mostly;
8ad4b1fb 95int percpu_pagelist_fraction;
dcce284a 96gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 97
452aa699
RW
98#ifdef CONFIG_PM_SLEEP
99/*
100 * The following functions are used by the suspend/hibernate code to temporarily
101 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
102 * while devices are suspended. To avoid races with the suspend/hibernate code,
103 * they should always be called with pm_mutex held (gfp_allowed_mask also should
104 * only be modified with pm_mutex held, unless the suspend/hibernate code is
105 * guaranteed not to run in parallel with that modification).
106 */
c9e664f1
RW
107
108static gfp_t saved_gfp_mask;
109
110void pm_restore_gfp_mask(void)
452aa699
RW
111{
112 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
113 if (saved_gfp_mask) {
114 gfp_allowed_mask = saved_gfp_mask;
115 saved_gfp_mask = 0;
116 }
452aa699
RW
117}
118
c9e664f1 119void pm_restrict_gfp_mask(void)
452aa699 120{
452aa699 121 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
122 WARN_ON(saved_gfp_mask);
123 saved_gfp_mask = gfp_allowed_mask;
124 gfp_allowed_mask &= ~GFP_IOFS;
452aa699
RW
125}
126#endif /* CONFIG_PM_SLEEP */
127
d9c23400
MG
128#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
129int pageblock_order __read_mostly;
130#endif
131
d98c7a09 132static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 133
1da177e4
LT
134/*
135 * results with 256, 32 in the lowmem_reserve sysctl:
136 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
137 * 1G machine -> (16M dma, 784M normal, 224M high)
138 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
139 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
140 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
141 *
142 * TBD: should special case ZONE_DMA32 machines here - in those we normally
143 * don't need any ZONE_NORMAL reservation
1da177e4 144 */
2f1b6248 145int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 146#ifdef CONFIG_ZONE_DMA
2f1b6248 147 256,
4b51d669 148#endif
fb0e7942 149#ifdef CONFIG_ZONE_DMA32
2f1b6248 150 256,
fb0e7942 151#endif
e53ef38d 152#ifdef CONFIG_HIGHMEM
2a1e274a 153 32,
e53ef38d 154#endif
2a1e274a 155 32,
2f1b6248 156};
1da177e4
LT
157
158EXPORT_SYMBOL(totalram_pages);
1da177e4 159
15ad7cdc 160static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 161#ifdef CONFIG_ZONE_DMA
2f1b6248 162 "DMA",
4b51d669 163#endif
fb0e7942 164#ifdef CONFIG_ZONE_DMA32
2f1b6248 165 "DMA32",
fb0e7942 166#endif
2f1b6248 167 "Normal",
e53ef38d 168#ifdef CONFIG_HIGHMEM
2a1e274a 169 "HighMem",
e53ef38d 170#endif
2a1e274a 171 "Movable",
2f1b6248
CL
172};
173
1da177e4
LT
174int min_free_kbytes = 1024;
175
2c85f51d
JB
176static unsigned long __meminitdata nr_kernel_pages;
177static unsigned long __meminitdata nr_all_pages;
a3142c8e 178static unsigned long __meminitdata dma_reserve;
1da177e4 179
c713216d
MG
180#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
181 /*
183ff22b 182 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
c713216d
MG
183 * ranges of memory (RAM) that may be registered with add_active_range().
184 * Ranges passed to add_active_range() will be merged if possible
185 * so the number of times add_active_range() can be called is
186 * related to the number of nodes and the number of holes
187 */
188 #ifdef CONFIG_MAX_ACTIVE_REGIONS
189 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
190 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
191 #else
192 #if MAX_NUMNODES >= 32
193 /* If there can be many nodes, allow up to 50 holes per node */
194 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
195 #else
196 /* By default, allow up to 256 distinct regions */
197 #define MAX_ACTIVE_REGIONS 256
198 #endif
199 #endif
200
98011f56
JB
201 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
202 static int __meminitdata nr_nodemap_entries;
203 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
204 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
b69a7288 205 static unsigned long __initdata required_kernelcore;
484f51f8 206 static unsigned long __initdata required_movablecore;
b69a7288 207 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
2a1e274a
MG
208
209 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
210 int movable_zone;
211 EXPORT_SYMBOL(movable_zone);
c713216d
MG
212#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
213
418508c1
MS
214#if MAX_NUMNODES > 1
215int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 216int nr_online_nodes __read_mostly = 1;
418508c1 217EXPORT_SYMBOL(nr_node_ids);
62bc62a8 218EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
219#endif
220
9ef9acb0
MG
221int page_group_by_mobility_disabled __read_mostly;
222
b2a0ac88
MG
223static void set_pageblock_migratetype(struct page *page, int migratetype)
224{
49255c61
MG
225
226 if (unlikely(page_group_by_mobility_disabled))
227 migratetype = MIGRATE_UNMOVABLE;
228
b2a0ac88
MG
229 set_pageblock_flags_group(page, (unsigned long)migratetype,
230 PB_migrate, PB_migrate_end);
231}
232
7f33d49a
RW
233bool oom_killer_disabled __read_mostly;
234
13e7444b 235#ifdef CONFIG_DEBUG_VM
c6a57e19 236static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 237{
bdc8cb98
DH
238 int ret = 0;
239 unsigned seq;
240 unsigned long pfn = page_to_pfn(page);
c6a57e19 241
bdc8cb98
DH
242 do {
243 seq = zone_span_seqbegin(zone);
244 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
245 ret = 1;
246 else if (pfn < zone->zone_start_pfn)
247 ret = 1;
248 } while (zone_span_seqretry(zone, seq));
249
250 return ret;
c6a57e19
DH
251}
252
253static int page_is_consistent(struct zone *zone, struct page *page)
254{
14e07298 255 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 256 return 0;
1da177e4 257 if (zone != page_zone(page))
c6a57e19
DH
258 return 0;
259
260 return 1;
261}
262/*
263 * Temporary debugging check for pages not lying within a given zone.
264 */
265static int bad_range(struct zone *zone, struct page *page)
266{
267 if (page_outside_zone_boundaries(zone, page))
1da177e4 268 return 1;
c6a57e19
DH
269 if (!page_is_consistent(zone, page))
270 return 1;
271
1da177e4
LT
272 return 0;
273}
13e7444b
NP
274#else
275static inline int bad_range(struct zone *zone, struct page *page)
276{
277 return 0;
278}
279#endif
280
224abf92 281static void bad_page(struct page *page)
1da177e4 282{
d936cf9b
HD
283 static unsigned long resume;
284 static unsigned long nr_shown;
285 static unsigned long nr_unshown;
286
2a7684a2
WF
287 /* Don't complain about poisoned pages */
288 if (PageHWPoison(page)) {
289 __ClearPageBuddy(page);
290 return;
291 }
292
d936cf9b
HD
293 /*
294 * Allow a burst of 60 reports, then keep quiet for that minute;
295 * or allow a steady drip of one report per second.
296 */
297 if (nr_shown == 60) {
298 if (time_before(jiffies, resume)) {
299 nr_unshown++;
300 goto out;
301 }
302 if (nr_unshown) {
1e9e6365
HD
303 printk(KERN_ALERT
304 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
305 nr_unshown);
306 nr_unshown = 0;
307 }
308 nr_shown = 0;
309 }
310 if (nr_shown++ == 0)
311 resume = jiffies + 60 * HZ;
312
1e9e6365 313 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 314 current->comm, page_to_pfn(page));
718a3821 315 dump_page(page);
3dc14741 316
1da177e4 317 dump_stack();
d936cf9b 318out:
8cc3b392
HD
319 /* Leave bad fields for debug, except PageBuddy could make trouble */
320 __ClearPageBuddy(page);
9f158333 321 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
322}
323
1da177e4
LT
324/*
325 * Higher-order pages are called "compound pages". They are structured thusly:
326 *
327 * The first PAGE_SIZE page is called the "head page".
328 *
329 * The remaining PAGE_SIZE pages are called "tail pages".
330 *
331 * All pages have PG_compound set. All pages have their ->private pointing at
332 * the head page (even the head page has this).
333 *
41d78ba5
HD
334 * The first tail page's ->lru.next holds the address of the compound page's
335 * put_page() function. Its ->lru.prev holds the order of allocation.
336 * This usage means that zero-order pages may not be compound.
1da177e4 337 */
d98c7a09
HD
338
339static void free_compound_page(struct page *page)
340{
d85f3385 341 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
342}
343
01ad1c08 344void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
345{
346 int i;
347 int nr_pages = 1 << order;
348
349 set_compound_page_dtor(page, free_compound_page);
350 set_compound_order(page, order);
351 __SetPageHead(page);
352 for (i = 1; i < nr_pages; i++) {
353 struct page *p = page + i;
354
355 __SetPageTail(p);
356 p->first_page = page;
357 }
358}
359
8cc3b392 360static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
361{
362 int i;
363 int nr_pages = 1 << order;
8cc3b392 364 int bad = 0;
1da177e4 365
8cc3b392
HD
366 if (unlikely(compound_order(page) != order) ||
367 unlikely(!PageHead(page))) {
224abf92 368 bad_page(page);
8cc3b392
HD
369 bad++;
370 }
1da177e4 371
6d777953 372 __ClearPageHead(page);
8cc3b392 373
18229df5
AW
374 for (i = 1; i < nr_pages; i++) {
375 struct page *p = page + i;
1da177e4 376
e713a21d 377 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 378 bad_page(page);
8cc3b392
HD
379 bad++;
380 }
d85f3385 381 __ClearPageTail(p);
1da177e4 382 }
8cc3b392
HD
383
384 return bad;
1da177e4 385}
1da177e4 386
17cf4406
NP
387static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
388{
389 int i;
390
6626c5d5
AM
391 /*
392 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
393 * and __GFP_HIGHMEM from hard or soft interrupt context.
394 */
725d704e 395 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
396 for (i = 0; i < (1 << order); i++)
397 clear_highpage(page + i);
398}
399
6aa3001b
AM
400static inline void set_page_order(struct page *page, int order)
401{
4c21e2f2 402 set_page_private(page, order);
676165a8 403 __SetPageBuddy(page);
1da177e4
LT
404}
405
406static inline void rmv_page_order(struct page *page)
407{
676165a8 408 __ClearPageBuddy(page);
4c21e2f2 409 set_page_private(page, 0);
1da177e4
LT
410}
411
412/*
413 * Locate the struct page for both the matching buddy in our
414 * pair (buddy1) and the combined O(n+1) page they form (page).
415 *
416 * 1) Any buddy B1 will have an order O twin B2 which satisfies
417 * the following equation:
418 * B2 = B1 ^ (1 << O)
419 * For example, if the starting buddy (buddy2) is #8 its order
420 * 1 buddy is #10:
421 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
422 *
423 * 2) Any buddy B will have an order O+1 parent P which
424 * satisfies the following equation:
425 * P = B & ~(1 << O)
426 *
d6e05edc 427 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4
LT
428 */
429static inline struct page *
430__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
431{
432 unsigned long buddy_idx = page_idx ^ (1 << order);
433
434 return page + (buddy_idx - page_idx);
435}
436
437static inline unsigned long
438__find_combined_index(unsigned long page_idx, unsigned int order)
439{
440 return (page_idx & ~(1 << order));
441}
442
443/*
444 * This function checks whether a page is free && is the buddy
445 * we can do coalesce a page and its buddy if
13e7444b 446 * (a) the buddy is not in a hole &&
676165a8 447 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
448 * (c) a page and its buddy have the same order &&
449 * (d) a page and its buddy are in the same zone.
676165a8
NP
450 *
451 * For recording whether a page is in the buddy system, we use PG_buddy.
452 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
1da177e4 453 *
676165a8 454 * For recording page's order, we use page_private(page).
1da177e4 455 */
cb2b95e1
AW
456static inline int page_is_buddy(struct page *page, struct page *buddy,
457 int order)
1da177e4 458{
14e07298 459 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 460 return 0;
13e7444b 461
cb2b95e1
AW
462 if (page_zone_id(page) != page_zone_id(buddy))
463 return 0;
464
465 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 466 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 467 return 1;
676165a8 468 }
6aa3001b 469 return 0;
1da177e4
LT
470}
471
472/*
473 * Freeing function for a buddy system allocator.
474 *
475 * The concept of a buddy system is to maintain direct-mapped table
476 * (containing bit values) for memory blocks of various "orders".
477 * The bottom level table contains the map for the smallest allocatable
478 * units of memory (here, pages), and each level above it describes
479 * pairs of units from the levels below, hence, "buddies".
480 * At a high level, all that happens here is marking the table entry
481 * at the bottom level available, and propagating the changes upward
482 * as necessary, plus some accounting needed to play nicely with other
483 * parts of the VM system.
484 * At each level, we keep a list of pages, which are heads of continuous
676165a8 485 * free pages of length of (1 << order) and marked with PG_buddy. Page's
4c21e2f2 486 * order is recorded in page_private(page) field.
1da177e4
LT
487 * So when we are allocating or freeing one, we can derive the state of the
488 * other. That is, if we allocate a small block, and both were
489 * free, the remainder of the region must be split into blocks.
490 * If a block is freed, and its buddy is also free, then this
491 * triggers coalescing into a block of larger size.
492 *
493 * -- wli
494 */
495
48db57f8 496static inline void __free_one_page(struct page *page,
ed0ae21d
MG
497 struct zone *zone, unsigned int order,
498 int migratetype)
1da177e4
LT
499{
500 unsigned long page_idx;
6dda9d55
CZ
501 unsigned long combined_idx;
502 struct page *buddy;
1da177e4 503
224abf92 504 if (unlikely(PageCompound(page)))
8cc3b392
HD
505 if (unlikely(destroy_compound_page(page, order)))
506 return;
1da177e4 507
ed0ae21d
MG
508 VM_BUG_ON(migratetype == -1);
509
1da177e4
LT
510 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
511
f2260e6b 512 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 513 VM_BUG_ON(bad_range(zone, page));
1da177e4 514
1da177e4 515 while (order < MAX_ORDER-1) {
1da177e4 516 buddy = __page_find_buddy(page, page_idx, order);
cb2b95e1 517 if (!page_is_buddy(page, buddy, order))
3c82d0ce 518 break;
13e7444b 519
3c82d0ce 520 /* Our buddy is free, merge with it and move up one order. */
1da177e4 521 list_del(&buddy->lru);
b2a0ac88 522 zone->free_area[order].nr_free--;
1da177e4 523 rmv_page_order(buddy);
13e7444b 524 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
525 page = page + (combined_idx - page_idx);
526 page_idx = combined_idx;
527 order++;
528 }
529 set_page_order(page, order);
6dda9d55
CZ
530
531 /*
532 * If this is not the largest possible page, check if the buddy
533 * of the next-highest order is free. If it is, it's possible
534 * that pages are being freed that will coalesce soon. In case,
535 * that is happening, add the free page to the tail of the list
536 * so it's less likely to be used soon and more likely to be merged
537 * as a higher order page
538 */
b7f50cfa 539 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55
CZ
540 struct page *higher_page, *higher_buddy;
541 combined_idx = __find_combined_index(page_idx, order);
542 higher_page = page + combined_idx - page_idx;
543 higher_buddy = __page_find_buddy(higher_page, combined_idx, order + 1);
544 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
545 list_add_tail(&page->lru,
546 &zone->free_area[order].free_list[migratetype]);
547 goto out;
548 }
549 }
550
551 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
552out:
1da177e4
LT
553 zone->free_area[order].nr_free++;
554}
555
092cead6
KM
556/*
557 * free_page_mlock() -- clean up attempts to free and mlocked() page.
558 * Page should not be on lru, so no need to fix that up.
559 * free_pages_check() will verify...
560 */
561static inline void free_page_mlock(struct page *page)
562{
092cead6
KM
563 __dec_zone_page_state(page, NR_MLOCK);
564 __count_vm_event(UNEVICTABLE_MLOCKFREED);
565}
092cead6 566
224abf92 567static inline int free_pages_check(struct page *page)
1da177e4 568{
92be2e33
NP
569 if (unlikely(page_mapcount(page) |
570 (page->mapping != NULL) |
a3af9c38 571 (atomic_read(&page->_count) != 0) |
8cc3b392 572 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
224abf92 573 bad_page(page);
79f4b7bf 574 return 1;
8cc3b392 575 }
79f4b7bf
HD
576 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
577 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
578 return 0;
1da177e4
LT
579}
580
581/*
5f8dcc21 582 * Frees a number of pages from the PCP lists
1da177e4 583 * Assumes all pages on list are in same zone, and of same order.
207f36ee 584 * count is the number of pages to free.
1da177e4
LT
585 *
586 * If the zone was previously in an "all pages pinned" state then look to
587 * see if this freeing clears that state.
588 *
589 * And clear the zone's pages_scanned counter, to hold off the "all pages are
590 * pinned" detection logic.
591 */
5f8dcc21
MG
592static void free_pcppages_bulk(struct zone *zone, int count,
593 struct per_cpu_pages *pcp)
1da177e4 594{
5f8dcc21 595 int migratetype = 0;
a6f9edd6 596 int batch_free = 0;
72853e29 597 int to_free = count;
5f8dcc21 598
c54ad30c 599 spin_lock(&zone->lock);
93e4a89a 600 zone->all_unreclaimable = 0;
1da177e4 601 zone->pages_scanned = 0;
f2260e6b 602
72853e29 603 while (to_free) {
48db57f8 604 struct page *page;
5f8dcc21
MG
605 struct list_head *list;
606
607 /*
a6f9edd6
MG
608 * Remove pages from lists in a round-robin fashion. A
609 * batch_free count is maintained that is incremented when an
610 * empty list is encountered. This is so more pages are freed
611 * off fuller lists instead of spinning excessively around empty
612 * lists
5f8dcc21
MG
613 */
614 do {
a6f9edd6 615 batch_free++;
5f8dcc21
MG
616 if (++migratetype == MIGRATE_PCPTYPES)
617 migratetype = 0;
618 list = &pcp->lists[migratetype];
619 } while (list_empty(list));
48db57f8 620
a6f9edd6
MG
621 do {
622 page = list_entry(list->prev, struct page, lru);
623 /* must delete as __free_one_page list manipulates */
624 list_del(&page->lru);
a7016235
HD
625 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
626 __free_one_page(page, zone, 0, page_private(page));
627 trace_mm_page_pcpu_drain(page, 0, page_private(page));
72853e29 628 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 629 }
72853e29 630 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
c54ad30c 631 spin_unlock(&zone->lock);
1da177e4
LT
632}
633
ed0ae21d
MG
634static void free_one_page(struct zone *zone, struct page *page, int order,
635 int migratetype)
1da177e4 636{
006d22d9 637 spin_lock(&zone->lock);
93e4a89a 638 zone->all_unreclaimable = 0;
006d22d9 639 zone->pages_scanned = 0;
f2260e6b 640
ed0ae21d 641 __free_one_page(page, zone, order, migratetype);
72853e29 642 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
006d22d9 643 spin_unlock(&zone->lock);
48db57f8
NP
644}
645
ec95f53a 646static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 647{
1da177e4 648 int i;
8cc3b392 649 int bad = 0;
1da177e4 650
f650316c 651 trace_mm_page_free_direct(page, order);
b1eeab67
VN
652 kmemcheck_free_shadow(page, order);
653
ec95f53a
KM
654 for (i = 0; i < (1 << order); i++) {
655 struct page *pg = page + i;
656
657 if (PageAnon(pg))
658 pg->mapping = NULL;
659 bad += free_pages_check(pg);
660 }
8cc3b392 661 if (bad)
ec95f53a 662 return false;
689bcebf 663
3ac7fe5a 664 if (!PageHighMem(page)) {
9858db50 665 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
666 debug_check_no_obj_freed(page_address(page),
667 PAGE_SIZE << order);
668 }
dafb1367 669 arch_free_page(page, order);
48db57f8 670 kernel_map_pages(page, 1 << order, 0);
dafb1367 671
ec95f53a
KM
672 return true;
673}
674
675static void __free_pages_ok(struct page *page, unsigned int order)
676{
677 unsigned long flags;
678 int wasMlocked = __TestClearPageMlocked(page);
679
680 if (!free_pages_prepare(page, order))
681 return;
682
c54ad30c 683 local_irq_save(flags);
c277331d 684 if (unlikely(wasMlocked))
da456f14 685 free_page_mlock(page);
f8891e5e 686 __count_vm_events(PGFREE, 1 << order);
ed0ae21d
MG
687 free_one_page(page_zone(page), page, order,
688 get_pageblock_migratetype(page));
c54ad30c 689 local_irq_restore(flags);
1da177e4
LT
690}
691
a226f6c8
DH
692/*
693 * permit the bootmem allocator to evade page validation on high-order frees
694 */
af370fb8 695void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8
DH
696{
697 if (order == 0) {
698 __ClearPageReserved(page);
699 set_page_count(page, 0);
7835e98b 700 set_page_refcounted(page);
545b1ea9 701 __free_page(page);
a226f6c8 702 } else {
a226f6c8
DH
703 int loop;
704
545b1ea9 705 prefetchw(page);
a226f6c8
DH
706 for (loop = 0; loop < BITS_PER_LONG; loop++) {
707 struct page *p = &page[loop];
708
545b1ea9
NP
709 if (loop + 1 < BITS_PER_LONG)
710 prefetchw(p + 1);
a226f6c8
DH
711 __ClearPageReserved(p);
712 set_page_count(p, 0);
713 }
714
7835e98b 715 set_page_refcounted(page);
545b1ea9 716 __free_pages(page, order);
a226f6c8
DH
717 }
718}
719
1da177e4
LT
720
721/*
722 * The order of subdivision here is critical for the IO subsystem.
723 * Please do not alter this order without good reasons and regression
724 * testing. Specifically, as large blocks of memory are subdivided,
725 * the order in which smaller blocks are delivered depends on the order
726 * they're subdivided in this function. This is the primary factor
727 * influencing the order in which pages are delivered to the IO
728 * subsystem according to empirical testing, and this is also justified
729 * by considering the behavior of a buddy system containing a single
730 * large block of memory acted on by a series of small allocations.
731 * This behavior is a critical factor in sglist merging's success.
732 *
733 * -- wli
734 */
085cc7d5 735static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
736 int low, int high, struct free_area *area,
737 int migratetype)
1da177e4
LT
738{
739 unsigned long size = 1 << high;
740
741 while (high > low) {
742 area--;
743 high--;
744 size >>= 1;
725d704e 745 VM_BUG_ON(bad_range(zone, &page[size]));
b2a0ac88 746 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
747 area->nr_free++;
748 set_page_order(&page[size], high);
749 }
1da177e4
LT
750}
751
1da177e4
LT
752/*
753 * This page is about to be returned from the page allocator
754 */
2a7684a2 755static inline int check_new_page(struct page *page)
1da177e4 756{
92be2e33
NP
757 if (unlikely(page_mapcount(page) |
758 (page->mapping != NULL) |
a3af9c38 759 (atomic_read(&page->_count) != 0) |
8cc3b392 760 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
224abf92 761 bad_page(page);
689bcebf 762 return 1;
8cc3b392 763 }
2a7684a2
WF
764 return 0;
765}
766
767static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
768{
769 int i;
770
771 for (i = 0; i < (1 << order); i++) {
772 struct page *p = page + i;
773 if (unlikely(check_new_page(p)))
774 return 1;
775 }
689bcebf 776
4c21e2f2 777 set_page_private(page, 0);
7835e98b 778 set_page_refcounted(page);
cc102509
NP
779
780 arch_alloc_page(page, order);
1da177e4 781 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
782
783 if (gfp_flags & __GFP_ZERO)
784 prep_zero_page(page, order, gfp_flags);
785
786 if (order && (gfp_flags & __GFP_COMP))
787 prep_compound_page(page, order);
788
689bcebf 789 return 0;
1da177e4
LT
790}
791
56fd56b8
MG
792/*
793 * Go through the free lists for the given migratetype and remove
794 * the smallest available page from the freelists
795 */
728ec980
MG
796static inline
797struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
798 int migratetype)
799{
800 unsigned int current_order;
801 struct free_area * area;
802 struct page *page;
803
804 /* Find a page of the appropriate size in the preferred list */
805 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
806 area = &(zone->free_area[current_order]);
807 if (list_empty(&area->free_list[migratetype]))
808 continue;
809
810 page = list_entry(area->free_list[migratetype].next,
811 struct page, lru);
812 list_del(&page->lru);
813 rmv_page_order(page);
814 area->nr_free--;
56fd56b8
MG
815 expand(zone, page, order, current_order, area, migratetype);
816 return page;
817 }
818
819 return NULL;
820}
821
822
b2a0ac88
MG
823/*
824 * This array describes the order lists are fallen back to when
825 * the free lists for the desirable migrate type are depleted
826 */
827static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
64c5e135
MG
828 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
829 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
830 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
831 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
832};
833
c361be55
MG
834/*
835 * Move the free pages in a range to the free lists of the requested type.
d9c23400 836 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
837 * boundary. If alignment is required, use move_freepages_block()
838 */
b69a7288
AB
839static int move_freepages(struct zone *zone,
840 struct page *start_page, struct page *end_page,
841 int migratetype)
c361be55
MG
842{
843 struct page *page;
844 unsigned long order;
d100313f 845 int pages_moved = 0;
c361be55
MG
846
847#ifndef CONFIG_HOLES_IN_ZONE
848 /*
849 * page_zone is not safe to call in this context when
850 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
851 * anyway as we check zone boundaries in move_freepages_block().
852 * Remove at a later date when no bug reports exist related to
ac0e5b7a 853 * grouping pages by mobility
c361be55
MG
854 */
855 BUG_ON(page_zone(start_page) != page_zone(end_page));
856#endif
857
858 for (page = start_page; page <= end_page;) {
344c790e
AL
859 /* Make sure we are not inadvertently changing nodes */
860 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
861
c361be55
MG
862 if (!pfn_valid_within(page_to_pfn(page))) {
863 page++;
864 continue;
865 }
866
867 if (!PageBuddy(page)) {
868 page++;
869 continue;
870 }
871
872 order = page_order(page);
873 list_del(&page->lru);
874 list_add(&page->lru,
875 &zone->free_area[order].free_list[migratetype]);
876 page += 1 << order;
d100313f 877 pages_moved += 1 << order;
c361be55
MG
878 }
879
d100313f 880 return pages_moved;
c361be55
MG
881}
882
b69a7288
AB
883static int move_freepages_block(struct zone *zone, struct page *page,
884 int migratetype)
c361be55
MG
885{
886 unsigned long start_pfn, end_pfn;
887 struct page *start_page, *end_page;
888
889 start_pfn = page_to_pfn(page);
d9c23400 890 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 891 start_page = pfn_to_page(start_pfn);
d9c23400
MG
892 end_page = start_page + pageblock_nr_pages - 1;
893 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
894
895 /* Do not cross zone boundaries */
896 if (start_pfn < zone->zone_start_pfn)
897 start_page = page;
898 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
899 return 0;
900
901 return move_freepages(zone, start_page, end_page, migratetype);
902}
903
2f66a68f
MG
904static void change_pageblock_range(struct page *pageblock_page,
905 int start_order, int migratetype)
906{
907 int nr_pageblocks = 1 << (start_order - pageblock_order);
908
909 while (nr_pageblocks--) {
910 set_pageblock_migratetype(pageblock_page, migratetype);
911 pageblock_page += pageblock_nr_pages;
912 }
913}
914
b2a0ac88 915/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
916static inline struct page *
917__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
918{
919 struct free_area * area;
920 int current_order;
921 struct page *page;
922 int migratetype, i;
923
924 /* Find the largest possible block of pages in the other list */
925 for (current_order = MAX_ORDER-1; current_order >= order;
926 --current_order) {
927 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
928 migratetype = fallbacks[start_migratetype][i];
929
56fd56b8
MG
930 /* MIGRATE_RESERVE handled later if necessary */
931 if (migratetype == MIGRATE_RESERVE)
932 continue;
e010487d 933
b2a0ac88
MG
934 area = &(zone->free_area[current_order]);
935 if (list_empty(&area->free_list[migratetype]))
936 continue;
937
938 page = list_entry(area->free_list[migratetype].next,
939 struct page, lru);
940 area->nr_free--;
941
942 /*
c361be55 943 * If breaking a large block of pages, move all free
46dafbca
MG
944 * pages to the preferred allocation list. If falling
945 * back for a reclaimable kernel allocation, be more
946 * agressive about taking ownership of free pages
b2a0ac88 947 */
d9c23400 948 if (unlikely(current_order >= (pageblock_order >> 1)) ||
dd5d241e
MG
949 start_migratetype == MIGRATE_RECLAIMABLE ||
950 page_group_by_mobility_disabled) {
46dafbca
MG
951 unsigned long pages;
952 pages = move_freepages_block(zone, page,
953 start_migratetype);
954
955 /* Claim the whole block if over half of it is free */
dd5d241e
MG
956 if (pages >= (1 << (pageblock_order-1)) ||
957 page_group_by_mobility_disabled)
46dafbca
MG
958 set_pageblock_migratetype(page,
959 start_migratetype);
960
b2a0ac88 961 migratetype = start_migratetype;
c361be55 962 }
b2a0ac88
MG
963
964 /* Remove the page from the freelists */
965 list_del(&page->lru);
966 rmv_page_order(page);
b2a0ac88 967
2f66a68f
MG
968 /* Take ownership for orders >= pageblock_order */
969 if (current_order >= pageblock_order)
970 change_pageblock_range(page, current_order,
b2a0ac88
MG
971 start_migratetype);
972
973 expand(zone, page, order, current_order, area, migratetype);
e0fff1bd
MG
974
975 trace_mm_page_alloc_extfrag(page, order, current_order,
976 start_migratetype, migratetype);
977
b2a0ac88
MG
978 return page;
979 }
980 }
981
728ec980 982 return NULL;
b2a0ac88
MG
983}
984
56fd56b8 985/*
1da177e4
LT
986 * Do the hard work of removing an element from the buddy allocator.
987 * Call me with the zone->lock already held.
988 */
b2a0ac88
MG
989static struct page *__rmqueue(struct zone *zone, unsigned int order,
990 int migratetype)
1da177e4 991{
1da177e4
LT
992 struct page *page;
993
728ec980 994retry_reserve:
56fd56b8 995 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 996
728ec980 997 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 998 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 999
728ec980
MG
1000 /*
1001 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1002 * is used because __rmqueue_smallest is an inline function
1003 * and we want just one call site
1004 */
1005 if (!page) {
1006 migratetype = MIGRATE_RESERVE;
1007 goto retry_reserve;
1008 }
1009 }
1010
0d3d062a 1011 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1012 return page;
1da177e4
LT
1013}
1014
1015/*
1016 * Obtain a specified number of elements from the buddy allocator, all under
1017 * a single hold of the lock, for efficiency. Add them to the supplied list.
1018 * Returns the number of new pages which were placed at *list.
1019 */
1020static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1021 unsigned long count, struct list_head *list,
e084b2d9 1022 int migratetype, int cold)
1da177e4 1023{
1da177e4 1024 int i;
1da177e4 1025
c54ad30c 1026 spin_lock(&zone->lock);
1da177e4 1027 for (i = 0; i < count; ++i) {
b2a0ac88 1028 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1029 if (unlikely(page == NULL))
1da177e4 1030 break;
81eabcbe
MG
1031
1032 /*
1033 * Split buddy pages returned by expand() are received here
1034 * in physical page order. The page is added to the callers and
1035 * list and the list head then moves forward. From the callers
1036 * perspective, the linked list is ordered by page number in
1037 * some conditions. This is useful for IO devices that can
1038 * merge IO requests if the physical pages are ordered
1039 * properly.
1040 */
e084b2d9
MG
1041 if (likely(cold == 0))
1042 list_add(&page->lru, list);
1043 else
1044 list_add_tail(&page->lru, list);
535131e6 1045 set_page_private(page, migratetype);
81eabcbe 1046 list = &page->lru;
1da177e4 1047 }
f2260e6b 1048 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1049 spin_unlock(&zone->lock);
085cc7d5 1050 return i;
1da177e4
LT
1051}
1052
4ae7c039 1053#ifdef CONFIG_NUMA
8fce4d8e 1054/*
4037d452
CL
1055 * Called from the vmstat counter updater to drain pagesets of this
1056 * currently executing processor on remote nodes after they have
1057 * expired.
1058 *
879336c3
CL
1059 * Note that this function must be called with the thread pinned to
1060 * a single processor.
8fce4d8e 1061 */
4037d452 1062void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1063{
4ae7c039 1064 unsigned long flags;
4037d452 1065 int to_drain;
4ae7c039 1066
4037d452
CL
1067 local_irq_save(flags);
1068 if (pcp->count >= pcp->batch)
1069 to_drain = pcp->batch;
1070 else
1071 to_drain = pcp->count;
5f8dcc21 1072 free_pcppages_bulk(zone, to_drain, pcp);
4037d452
CL
1073 pcp->count -= to_drain;
1074 local_irq_restore(flags);
4ae7c039
CL
1075}
1076#endif
1077
9f8f2172
CL
1078/*
1079 * Drain pages of the indicated processor.
1080 *
1081 * The processor must either be the current processor and the
1082 * thread pinned to the current processor or a processor that
1083 * is not online.
1084 */
1085static void drain_pages(unsigned int cpu)
1da177e4 1086{
c54ad30c 1087 unsigned long flags;
1da177e4 1088 struct zone *zone;
1da177e4 1089
ee99c71c 1090 for_each_populated_zone(zone) {
1da177e4 1091 struct per_cpu_pageset *pset;
3dfa5721 1092 struct per_cpu_pages *pcp;
1da177e4 1093
99dcc3e5
CL
1094 local_irq_save(flags);
1095 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1096
1097 pcp = &pset->pcp;
5f8dcc21 1098 free_pcppages_bulk(zone, pcp->count, pcp);
3dfa5721
CL
1099 pcp->count = 0;
1100 local_irq_restore(flags);
1da177e4
LT
1101 }
1102}
1da177e4 1103
9f8f2172
CL
1104/*
1105 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1106 */
1107void drain_local_pages(void *arg)
1108{
1109 drain_pages(smp_processor_id());
1110}
1111
1112/*
1113 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1114 */
1115void drain_all_pages(void)
1116{
15c8b6c1 1117 on_each_cpu(drain_local_pages, NULL, 1);
9f8f2172
CL
1118}
1119
296699de 1120#ifdef CONFIG_HIBERNATION
1da177e4
LT
1121
1122void mark_free_pages(struct zone *zone)
1123{
f623f0db
RW
1124 unsigned long pfn, max_zone_pfn;
1125 unsigned long flags;
b2a0ac88 1126 int order, t;
1da177e4
LT
1127 struct list_head *curr;
1128
1129 if (!zone->spanned_pages)
1130 return;
1131
1132 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
1133
1134 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1135 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1136 if (pfn_valid(pfn)) {
1137 struct page *page = pfn_to_page(pfn);
1138
7be98234
RW
1139 if (!swsusp_page_is_forbidden(page))
1140 swsusp_unset_page_free(page);
f623f0db 1141 }
1da177e4 1142
b2a0ac88
MG
1143 for_each_migratetype_order(order, t) {
1144 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1145 unsigned long i;
1da177e4 1146
f623f0db
RW
1147 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1148 for (i = 0; i < (1UL << order); i++)
7be98234 1149 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1150 }
b2a0ac88 1151 }
1da177e4
LT
1152 spin_unlock_irqrestore(&zone->lock, flags);
1153}
e2c55dc8 1154#endif /* CONFIG_PM */
1da177e4 1155
1da177e4
LT
1156/*
1157 * Free a 0-order page
fc91668e 1158 * cold == 1 ? free a cold page : free a hot page
1da177e4 1159 */
fc91668e 1160void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1161{
1162 struct zone *zone = page_zone(page);
1163 struct per_cpu_pages *pcp;
1164 unsigned long flags;
5f8dcc21 1165 int migratetype;
451ea25d 1166 int wasMlocked = __TestClearPageMlocked(page);
1da177e4 1167
ec95f53a 1168 if (!free_pages_prepare(page, 0))
689bcebf
HD
1169 return;
1170
5f8dcc21
MG
1171 migratetype = get_pageblock_migratetype(page);
1172 set_page_private(page, migratetype);
1da177e4 1173 local_irq_save(flags);
c277331d 1174 if (unlikely(wasMlocked))
da456f14 1175 free_page_mlock(page);
f8891e5e 1176 __count_vm_event(PGFREE);
da456f14 1177
5f8dcc21
MG
1178 /*
1179 * We only track unmovable, reclaimable and movable on pcp lists.
1180 * Free ISOLATE pages back to the allocator because they are being
1181 * offlined but treat RESERVE as movable pages so we can get those
1182 * areas back if necessary. Otherwise, we may have to free
1183 * excessively into the page allocator
1184 */
1185 if (migratetype >= MIGRATE_PCPTYPES) {
1186 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1187 free_one_page(zone, page, 0, migratetype);
1188 goto out;
1189 }
1190 migratetype = MIGRATE_MOVABLE;
1191 }
1192
99dcc3e5 1193 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1194 if (cold)
5f8dcc21 1195 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1196 else
5f8dcc21 1197 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1198 pcp->count++;
48db57f8 1199 if (pcp->count >= pcp->high) {
5f8dcc21 1200 free_pcppages_bulk(zone, pcp->batch, pcp);
48db57f8
NP
1201 pcp->count -= pcp->batch;
1202 }
5f8dcc21
MG
1203
1204out:
1da177e4 1205 local_irq_restore(flags);
1da177e4
LT
1206}
1207
8dfcc9ba
NP
1208/*
1209 * split_page takes a non-compound higher-order page, and splits it into
1210 * n (1<<order) sub-pages: page[0..n]
1211 * Each sub-page must be freed individually.
1212 *
1213 * Note: this is probably too low level an operation for use in drivers.
1214 * Please consult with lkml before using this in your driver.
1215 */
1216void split_page(struct page *page, unsigned int order)
1217{
1218 int i;
1219
725d704e
NP
1220 VM_BUG_ON(PageCompound(page));
1221 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1222
1223#ifdef CONFIG_KMEMCHECK
1224 /*
1225 * Split shadow pages too, because free(page[0]) would
1226 * otherwise free the whole shadow.
1227 */
1228 if (kmemcheck_page_is_tracked(page))
1229 split_page(virt_to_page(page[0].shadow), order);
1230#endif
1231
7835e98b
NP
1232 for (i = 1; i < (1 << order); i++)
1233 set_page_refcounted(page + i);
8dfcc9ba 1234}
8dfcc9ba 1235
748446bb
MG
1236/*
1237 * Similar to split_page except the page is already free. As this is only
1238 * being used for migration, the migratetype of the block also changes.
1239 * As this is called with interrupts disabled, the caller is responsible
1240 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1241 * are enabled.
1242 *
1243 * Note: this is probably too low level an operation for use in drivers.
1244 * Please consult with lkml before using this in your driver.
1245 */
1246int split_free_page(struct page *page)
1247{
1248 unsigned int order;
1249 unsigned long watermark;
1250 struct zone *zone;
1251
1252 BUG_ON(!PageBuddy(page));
1253
1254 zone = page_zone(page);
1255 order = page_order(page);
1256
1257 /* Obey watermarks as if the page was being allocated */
1258 watermark = low_wmark_pages(zone) + (1 << order);
1259 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1260 return 0;
1261
1262 /* Remove page from free list */
1263 list_del(&page->lru);
1264 zone->free_area[order].nr_free--;
1265 rmv_page_order(page);
1266 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1267
1268 /* Split into individual pages */
1269 set_page_refcounted(page);
1270 split_page(page, order);
1271
1272 if (order >= pageblock_order - 1) {
1273 struct page *endpage = page + (1 << order) - 1;
1274 for (; page < endpage; page += pageblock_nr_pages)
1275 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1276 }
1277
1278 return 1 << order;
1279}
1280
1da177e4
LT
1281/*
1282 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1283 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1284 * or two.
1285 */
0a15c3e9
MG
1286static inline
1287struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1288 struct zone *zone, int order, gfp_t gfp_flags,
1289 int migratetype)
1da177e4
LT
1290{
1291 unsigned long flags;
689bcebf 1292 struct page *page;
1da177e4
LT
1293 int cold = !!(gfp_flags & __GFP_COLD);
1294
689bcebf 1295again:
48db57f8 1296 if (likely(order == 0)) {
1da177e4 1297 struct per_cpu_pages *pcp;
5f8dcc21 1298 struct list_head *list;
1da177e4 1299
1da177e4 1300 local_irq_save(flags);
99dcc3e5
CL
1301 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1302 list = &pcp->lists[migratetype];
5f8dcc21 1303 if (list_empty(list)) {
535131e6 1304 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1305 pcp->batch, list,
e084b2d9 1306 migratetype, cold);
5f8dcc21 1307 if (unlikely(list_empty(list)))
6fb332fa 1308 goto failed;
535131e6 1309 }
b92a6edd 1310
5f8dcc21
MG
1311 if (cold)
1312 page = list_entry(list->prev, struct page, lru);
1313 else
1314 page = list_entry(list->next, struct page, lru);
1315
b92a6edd
MG
1316 list_del(&page->lru);
1317 pcp->count--;
7fb1d9fc 1318 } else {
dab48dab
AM
1319 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1320 /*
1321 * __GFP_NOFAIL is not to be used in new code.
1322 *
1323 * All __GFP_NOFAIL callers should be fixed so that they
1324 * properly detect and handle allocation failures.
1325 *
1326 * We most definitely don't want callers attempting to
4923abf9 1327 * allocate greater than order-1 page units with
dab48dab
AM
1328 * __GFP_NOFAIL.
1329 */
4923abf9 1330 WARN_ON_ONCE(order > 1);
dab48dab 1331 }
1da177e4 1332 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1333 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1334 spin_unlock(&zone->lock);
1335 if (!page)
1336 goto failed;
6ccf80eb 1337 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1da177e4
LT
1338 }
1339
f8891e5e 1340 __count_zone_vm_events(PGALLOC, zone, 1 << order);
18ea7e71 1341 zone_statistics(preferred_zone, zone);
a74609fa 1342 local_irq_restore(flags);
1da177e4 1343
725d704e 1344 VM_BUG_ON(bad_range(zone, page));
17cf4406 1345 if (prep_new_page(page, order, gfp_flags))
a74609fa 1346 goto again;
1da177e4 1347 return page;
a74609fa
NP
1348
1349failed:
1350 local_irq_restore(flags);
a74609fa 1351 return NULL;
1da177e4
LT
1352}
1353
41858966
MG
1354/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1355#define ALLOC_WMARK_MIN WMARK_MIN
1356#define ALLOC_WMARK_LOW WMARK_LOW
1357#define ALLOC_WMARK_HIGH WMARK_HIGH
1358#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1359
1360/* Mask to get the watermark bits */
1361#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1362
3148890b
NP
1363#define ALLOC_HARDER 0x10 /* try to alloc harder */
1364#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1365#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 1366
933e312e
AM
1367#ifdef CONFIG_FAIL_PAGE_ALLOC
1368
1369static struct fail_page_alloc_attr {
1370 struct fault_attr attr;
1371
1372 u32 ignore_gfp_highmem;
1373 u32 ignore_gfp_wait;
54114994 1374 u32 min_order;
933e312e
AM
1375
1376#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1377
1378 struct dentry *ignore_gfp_highmem_file;
1379 struct dentry *ignore_gfp_wait_file;
54114994 1380 struct dentry *min_order_file;
933e312e
AM
1381
1382#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1383
1384} fail_page_alloc = {
1385 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1386 .ignore_gfp_wait = 1,
1387 .ignore_gfp_highmem = 1,
54114994 1388 .min_order = 1,
933e312e
AM
1389};
1390
1391static int __init setup_fail_page_alloc(char *str)
1392{
1393 return setup_fault_attr(&fail_page_alloc.attr, str);
1394}
1395__setup("fail_page_alloc=", setup_fail_page_alloc);
1396
1397static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1398{
54114994
AM
1399 if (order < fail_page_alloc.min_order)
1400 return 0;
933e312e
AM
1401 if (gfp_mask & __GFP_NOFAIL)
1402 return 0;
1403 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1404 return 0;
1405 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1406 return 0;
1407
1408 return should_fail(&fail_page_alloc.attr, 1 << order);
1409}
1410
1411#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1412
1413static int __init fail_page_alloc_debugfs(void)
1414{
1415 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1416 struct dentry *dir;
1417 int err;
1418
1419 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1420 "fail_page_alloc");
1421 if (err)
1422 return err;
1423 dir = fail_page_alloc.attr.dentries.dir;
1424
1425 fail_page_alloc.ignore_gfp_wait_file =
1426 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1427 &fail_page_alloc.ignore_gfp_wait);
1428
1429 fail_page_alloc.ignore_gfp_highmem_file =
1430 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1431 &fail_page_alloc.ignore_gfp_highmem);
54114994
AM
1432 fail_page_alloc.min_order_file =
1433 debugfs_create_u32("min-order", mode, dir,
1434 &fail_page_alloc.min_order);
933e312e
AM
1435
1436 if (!fail_page_alloc.ignore_gfp_wait_file ||
54114994
AM
1437 !fail_page_alloc.ignore_gfp_highmem_file ||
1438 !fail_page_alloc.min_order_file) {
933e312e
AM
1439 err = -ENOMEM;
1440 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1441 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
54114994 1442 debugfs_remove(fail_page_alloc.min_order_file);
933e312e
AM
1443 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1444 }
1445
1446 return err;
1447}
1448
1449late_initcall(fail_page_alloc_debugfs);
1450
1451#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1452
1453#else /* CONFIG_FAIL_PAGE_ALLOC */
1454
1455static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1456{
1457 return 0;
1458}
1459
1460#endif /* CONFIG_FAIL_PAGE_ALLOC */
1461
1da177e4 1462/*
88f5acf8 1463 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1464 * of the allocation.
1465 */
88f5acf8
MG
1466static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1467 int classzone_idx, int alloc_flags, long free_pages)
1da177e4
LT
1468{
1469 /* free_pages my go negative - that's OK */
d23ad423 1470 long min = mark;
1da177e4
LT
1471 int o;
1472
88f5acf8 1473 free_pages -= (1 << order) + 1;
7fb1d9fc 1474 if (alloc_flags & ALLOC_HIGH)
1da177e4 1475 min -= min / 2;
7fb1d9fc 1476 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1477 min -= min / 4;
1478
1479 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 1480 return false;
1da177e4
LT
1481 for (o = 0; o < order; o++) {
1482 /* At the next order, this order's pages become unavailable */
1483 free_pages -= z->free_area[o].nr_free << o;
1484
1485 /* Require fewer higher order pages to be free */
1486 min >>= 1;
1487
1488 if (free_pages <= min)
88f5acf8 1489 return false;
1da177e4 1490 }
88f5acf8
MG
1491 return true;
1492}
1493
1494bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1495 int classzone_idx, int alloc_flags)
1496{
1497 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1498 zone_page_state(z, NR_FREE_PAGES));
1499}
1500
1501bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1502 int classzone_idx, int alloc_flags)
1503{
1504 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1505
1506 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1507 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1508
1509 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1510 free_pages);
1da177e4
LT
1511}
1512
9276b1bc
PJ
1513#ifdef CONFIG_NUMA
1514/*
1515 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1516 * skip over zones that are not allowed by the cpuset, or that have
1517 * been recently (in last second) found to be nearly full. See further
1518 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1519 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1520 *
1521 * If the zonelist cache is present in the passed in zonelist, then
1522 * returns a pointer to the allowed node mask (either the current
37b07e41 1523 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1524 *
1525 * If the zonelist cache is not available for this zonelist, does
1526 * nothing and returns NULL.
1527 *
1528 * If the fullzones BITMAP in the zonelist cache is stale (more than
1529 * a second since last zap'd) then we zap it out (clear its bits.)
1530 *
1531 * We hold off even calling zlc_setup, until after we've checked the
1532 * first zone in the zonelist, on the theory that most allocations will
1533 * be satisfied from that first zone, so best to examine that zone as
1534 * quickly as we can.
1535 */
1536static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1537{
1538 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1539 nodemask_t *allowednodes; /* zonelist_cache approximation */
1540
1541 zlc = zonelist->zlcache_ptr;
1542 if (!zlc)
1543 return NULL;
1544
f05111f5 1545 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1546 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1547 zlc->last_full_zap = jiffies;
1548 }
1549
1550 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1551 &cpuset_current_mems_allowed :
37b07e41 1552 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1553 return allowednodes;
1554}
1555
1556/*
1557 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1558 * if it is worth looking at further for free memory:
1559 * 1) Check that the zone isn't thought to be full (doesn't have its
1560 * bit set in the zonelist_cache fullzones BITMAP).
1561 * 2) Check that the zones node (obtained from the zonelist_cache
1562 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1563 * Return true (non-zero) if zone is worth looking at further, or
1564 * else return false (zero) if it is not.
1565 *
1566 * This check -ignores- the distinction between various watermarks,
1567 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1568 * found to be full for any variation of these watermarks, it will
1569 * be considered full for up to one second by all requests, unless
1570 * we are so low on memory on all allowed nodes that we are forced
1571 * into the second scan of the zonelist.
1572 *
1573 * In the second scan we ignore this zonelist cache and exactly
1574 * apply the watermarks to all zones, even it is slower to do so.
1575 * We are low on memory in the second scan, and should leave no stone
1576 * unturned looking for a free page.
1577 */
dd1a239f 1578static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1579 nodemask_t *allowednodes)
1580{
1581 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1582 int i; /* index of *z in zonelist zones */
1583 int n; /* node that zone *z is on */
1584
1585 zlc = zonelist->zlcache_ptr;
1586 if (!zlc)
1587 return 1;
1588
dd1a239f 1589 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1590 n = zlc->z_to_n[i];
1591
1592 /* This zone is worth trying if it is allowed but not full */
1593 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1594}
1595
1596/*
1597 * Given 'z' scanning a zonelist, set the corresponding bit in
1598 * zlc->fullzones, so that subsequent attempts to allocate a page
1599 * from that zone don't waste time re-examining it.
1600 */
dd1a239f 1601static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1602{
1603 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1604 int i; /* index of *z in zonelist zones */
1605
1606 zlc = zonelist->zlcache_ptr;
1607 if (!zlc)
1608 return;
1609
dd1a239f 1610 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1611
1612 set_bit(i, zlc->fullzones);
1613}
1614
1615#else /* CONFIG_NUMA */
1616
1617static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1618{
1619 return NULL;
1620}
1621
dd1a239f 1622static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1623 nodemask_t *allowednodes)
1624{
1625 return 1;
1626}
1627
dd1a239f 1628static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1629{
1630}
1631#endif /* CONFIG_NUMA */
1632
7fb1d9fc 1633/*
0798e519 1634 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1635 * a page.
1636 */
1637static struct page *
19770b32 1638get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1639 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1640 struct zone *preferred_zone, int migratetype)
753ee728 1641{
dd1a239f 1642 struct zoneref *z;
7fb1d9fc 1643 struct page *page = NULL;
54a6eb5c 1644 int classzone_idx;
5117f45d 1645 struct zone *zone;
9276b1bc
PJ
1646 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1647 int zlc_active = 0; /* set if using zonelist_cache */
1648 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1649
19770b32 1650 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1651zonelist_scan:
7fb1d9fc 1652 /*
9276b1bc 1653 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1654 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1655 */
19770b32
MG
1656 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1657 high_zoneidx, nodemask) {
9276b1bc
PJ
1658 if (NUMA_BUILD && zlc_active &&
1659 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1660 continue;
7fb1d9fc 1661 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1662 !cpuset_zone_allowed_softwall(zone, gfp_mask))
9276b1bc 1663 goto try_next_zone;
7fb1d9fc 1664
41858966 1665 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1666 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1667 unsigned long mark;
fa5e084e
MG
1668 int ret;
1669
41858966 1670 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
fa5e084e
MG
1671 if (zone_watermark_ok(zone, order, mark,
1672 classzone_idx, alloc_flags))
1673 goto try_this_zone;
1674
1675 if (zone_reclaim_mode == 0)
1676 goto this_zone_full;
1677
1678 ret = zone_reclaim(zone, gfp_mask, order);
1679 switch (ret) {
1680 case ZONE_RECLAIM_NOSCAN:
1681 /* did not scan */
1682 goto try_next_zone;
1683 case ZONE_RECLAIM_FULL:
1684 /* scanned but unreclaimable */
1685 goto this_zone_full;
1686 default:
1687 /* did we reclaim enough */
1688 if (!zone_watermark_ok(zone, order, mark,
1689 classzone_idx, alloc_flags))
9276b1bc 1690 goto this_zone_full;
0798e519 1691 }
7fb1d9fc
RS
1692 }
1693
fa5e084e 1694try_this_zone:
3dd28266
MG
1695 page = buffered_rmqueue(preferred_zone, zone, order,
1696 gfp_mask, migratetype);
0798e519 1697 if (page)
7fb1d9fc 1698 break;
9276b1bc
PJ
1699this_zone_full:
1700 if (NUMA_BUILD)
1701 zlc_mark_zone_full(zonelist, z);
1702try_next_zone:
62bc62a8 1703 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
d395b734
MG
1704 /*
1705 * we do zlc_setup after the first zone is tried but only
1706 * if there are multiple nodes make it worthwhile
1707 */
9276b1bc
PJ
1708 allowednodes = zlc_setup(zonelist, alloc_flags);
1709 zlc_active = 1;
1710 did_zlc_setup = 1;
1711 }
54a6eb5c 1712 }
9276b1bc
PJ
1713
1714 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1715 /* Disable zlc cache for second zonelist scan */
1716 zlc_active = 0;
1717 goto zonelist_scan;
1718 }
7fb1d9fc 1719 return page;
753ee728
MH
1720}
1721
11e33f6a
MG
1722static inline int
1723should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1724 unsigned long pages_reclaimed)
1da177e4 1725{
11e33f6a
MG
1726 /* Do not loop if specifically requested */
1727 if (gfp_mask & __GFP_NORETRY)
1728 return 0;
1da177e4 1729
11e33f6a
MG
1730 /*
1731 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1732 * means __GFP_NOFAIL, but that may not be true in other
1733 * implementations.
1734 */
1735 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1736 return 1;
1737
1738 /*
1739 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1740 * specified, then we retry until we no longer reclaim any pages
1741 * (above), or we've reclaimed an order of pages at least as
1742 * large as the allocation's order. In both cases, if the
1743 * allocation still fails, we stop retrying.
1744 */
1745 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1746 return 1;
cf40bd16 1747
11e33f6a
MG
1748 /*
1749 * Don't let big-order allocations loop unless the caller
1750 * explicitly requests that.
1751 */
1752 if (gfp_mask & __GFP_NOFAIL)
1753 return 1;
1da177e4 1754
11e33f6a
MG
1755 return 0;
1756}
933e312e 1757
11e33f6a
MG
1758static inline struct page *
1759__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1760 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1761 nodemask_t *nodemask, struct zone *preferred_zone,
1762 int migratetype)
11e33f6a
MG
1763{
1764 struct page *page;
1765
1766 /* Acquire the OOM killer lock for the zones in zonelist */
ff321fea 1767 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
11e33f6a 1768 schedule_timeout_uninterruptible(1);
1da177e4
LT
1769 return NULL;
1770 }
6b1de916 1771
11e33f6a
MG
1772 /*
1773 * Go through the zonelist yet one more time, keep very high watermark
1774 * here, this is only to catch a parallel oom killing, we must fail if
1775 * we're still under heavy pressure.
1776 */
1777 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1778 order, zonelist, high_zoneidx,
5117f45d 1779 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 1780 preferred_zone, migratetype);
7fb1d9fc 1781 if (page)
11e33f6a
MG
1782 goto out;
1783
4365a567
KH
1784 if (!(gfp_mask & __GFP_NOFAIL)) {
1785 /* The OOM killer will not help higher order allocs */
1786 if (order > PAGE_ALLOC_COSTLY_ORDER)
1787 goto out;
03668b3c
DR
1788 /* The OOM killer does not needlessly kill tasks for lowmem */
1789 if (high_zoneidx < ZONE_NORMAL)
1790 goto out;
4365a567
KH
1791 /*
1792 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1793 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1794 * The caller should handle page allocation failure by itself if
1795 * it specifies __GFP_THISNODE.
1796 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1797 */
1798 if (gfp_mask & __GFP_THISNODE)
1799 goto out;
1800 }
11e33f6a 1801 /* Exhausted what can be done so it's blamo time */
4365a567 1802 out_of_memory(zonelist, gfp_mask, order, nodemask);
11e33f6a
MG
1803
1804out:
1805 clear_zonelist_oom(zonelist, gfp_mask);
1806 return page;
1807}
1808
56de7263
MG
1809#ifdef CONFIG_COMPACTION
1810/* Try memory compaction for high-order allocations before reclaim */
1811static struct page *
1812__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1813 struct zonelist *zonelist, enum zone_type high_zoneidx,
1814 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1815 int migratetype, unsigned long *did_some_progress)
1816{
1817 struct page *page;
3e7d3449 1818 struct task_struct *tsk = current;
56de7263 1819
4f92e258 1820 if (!order || compaction_deferred(preferred_zone))
56de7263
MG
1821 return NULL;
1822
3e7d3449 1823 tsk->flags |= PF_MEMALLOC;
56de7263
MG
1824 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
1825 nodemask);
3e7d3449 1826 tsk->flags &= ~PF_MEMALLOC;
56de7263
MG
1827 if (*did_some_progress != COMPACT_SKIPPED) {
1828
1829 /* Page migration frees to the PCP lists but we want merging */
1830 drain_pages(get_cpu());
1831 put_cpu();
1832
1833 page = get_page_from_freelist(gfp_mask, nodemask,
1834 order, zonelist, high_zoneidx,
1835 alloc_flags, preferred_zone,
1836 migratetype);
1837 if (page) {
4f92e258
MG
1838 preferred_zone->compact_considered = 0;
1839 preferred_zone->compact_defer_shift = 0;
56de7263
MG
1840 count_vm_event(COMPACTSUCCESS);
1841 return page;
1842 }
1843
1844 /*
1845 * It's bad if compaction run occurs and fails.
1846 * The most likely reason is that pages exist,
1847 * but not enough to satisfy watermarks.
1848 */
1849 count_vm_event(COMPACTFAIL);
4f92e258 1850 defer_compaction(preferred_zone);
56de7263
MG
1851
1852 cond_resched();
1853 }
1854
1855 return NULL;
1856}
1857#else
1858static inline struct page *
1859__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1860 struct zonelist *zonelist, enum zone_type high_zoneidx,
1861 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1862 int migratetype, unsigned long *did_some_progress)
1863{
1864 return NULL;
1865}
1866#endif /* CONFIG_COMPACTION */
1867
11e33f6a
MG
1868/* The really slow allocator path where we enter direct reclaim */
1869static inline struct page *
1870__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1871 struct zonelist *zonelist, enum zone_type high_zoneidx,
5117f45d 1872 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
3dd28266 1873 int migratetype, unsigned long *did_some_progress)
11e33f6a
MG
1874{
1875 struct page *page = NULL;
1876 struct reclaim_state reclaim_state;
1877 struct task_struct *p = current;
9ee493ce 1878 bool drained = false;
11e33f6a
MG
1879
1880 cond_resched();
1881
1882 /* We now go into synchronous reclaim */
1883 cpuset_memory_pressure_bump();
11e33f6a
MG
1884 p->flags |= PF_MEMALLOC;
1885 lockdep_set_current_reclaim_state(gfp_mask);
1886 reclaim_state.reclaimed_slab = 0;
1887 p->reclaim_state = &reclaim_state;
1888
1889 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1890
1891 p->reclaim_state = NULL;
1892 lockdep_clear_current_reclaim_state();
1893 p->flags &= ~PF_MEMALLOC;
1894
1895 cond_resched();
1896
9ee493ce
MG
1897 if (unlikely(!(*did_some_progress)))
1898 return NULL;
11e33f6a 1899
9ee493ce
MG
1900retry:
1901 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1902 zonelist, high_zoneidx,
3dd28266
MG
1903 alloc_flags, preferred_zone,
1904 migratetype);
9ee493ce
MG
1905
1906 /*
1907 * If an allocation failed after direct reclaim, it could be because
1908 * pages are pinned on the per-cpu lists. Drain them and try again
1909 */
1910 if (!page && !drained) {
1911 drain_all_pages();
1912 drained = true;
1913 goto retry;
1914 }
1915
11e33f6a
MG
1916 return page;
1917}
1918
1da177e4 1919/*
11e33f6a
MG
1920 * This is called in the allocator slow-path if the allocation request is of
1921 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 1922 */
11e33f6a
MG
1923static inline struct page *
1924__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1925 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1926 nodemask_t *nodemask, struct zone *preferred_zone,
1927 int migratetype)
11e33f6a
MG
1928{
1929 struct page *page;
1930
1931 do {
1932 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1933 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 1934 preferred_zone, migratetype);
11e33f6a
MG
1935
1936 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 1937 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
1938 } while (!page && (gfp_mask & __GFP_NOFAIL));
1939
1940 return page;
1941}
1942
1943static inline
1944void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1945 enum zone_type high_zoneidx)
1da177e4 1946{
dd1a239f
MG
1947 struct zoneref *z;
1948 struct zone *zone;
1da177e4 1949
11e33f6a
MG
1950 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1951 wakeup_kswapd(zone, order);
1952}
cf40bd16 1953
341ce06f
PZ
1954static inline int
1955gfp_to_alloc_flags(gfp_t gfp_mask)
1956{
1957 struct task_struct *p = current;
1958 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1959 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 1960
a56f57ff 1961 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 1962 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 1963
341ce06f
PZ
1964 /*
1965 * The caller may dip into page reserves a bit more if the caller
1966 * cannot run direct reclaim, or if the caller has realtime scheduling
1967 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1968 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1969 */
e6223a3b 1970 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 1971
341ce06f
PZ
1972 if (!wait) {
1973 alloc_flags |= ALLOC_HARDER;
523b9458 1974 /*
341ce06f
PZ
1975 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1976 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 1977 */
341ce06f 1978 alloc_flags &= ~ALLOC_CPUSET;
9d0ed60f 1979 } else if (unlikely(rt_task(p)) && !in_interrupt())
341ce06f
PZ
1980 alloc_flags |= ALLOC_HARDER;
1981
1982 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1983 if (!in_interrupt() &&
1984 ((p->flags & PF_MEMALLOC) ||
1985 unlikely(test_thread_flag(TIF_MEMDIE))))
1986 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 1987 }
6b1de916 1988
341ce06f
PZ
1989 return alloc_flags;
1990}
1991
11e33f6a
MG
1992static inline struct page *
1993__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1994 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1995 nodemask_t *nodemask, struct zone *preferred_zone,
1996 int migratetype)
11e33f6a
MG
1997{
1998 const gfp_t wait = gfp_mask & __GFP_WAIT;
1999 struct page *page = NULL;
2000 int alloc_flags;
2001 unsigned long pages_reclaimed = 0;
2002 unsigned long did_some_progress;
2003 struct task_struct *p = current;
1da177e4 2004
72807a74
MG
2005 /*
2006 * In the slowpath, we sanity check order to avoid ever trying to
2007 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2008 * be using allocators in order of preference for an area that is
2009 * too large.
2010 */
1fc28b70
MG
2011 if (order >= MAX_ORDER) {
2012 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2013 return NULL;
1fc28b70 2014 }
1da177e4 2015
952f3b51
CL
2016 /*
2017 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2018 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2019 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2020 * using a larger set of nodes after it has established that the
2021 * allowed per node queues are empty and that nodes are
2022 * over allocated.
2023 */
2024 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2025 goto nopage;
2026
cc4a6851 2027restart:
11e33f6a 2028 wake_all_kswapd(order, zonelist, high_zoneidx);
1da177e4 2029
9bf2229f 2030 /*
7fb1d9fc
RS
2031 * OK, we're below the kswapd watermark and have kicked background
2032 * reclaim. Now things get more complex, so set up alloc_flags according
2033 * to how we want to proceed.
9bf2229f 2034 */
341ce06f 2035 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2036
341ce06f 2037 /* This is the last chance, in general, before the goto nopage. */
19770b32 2038 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
2039 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2040 preferred_zone, migratetype);
7fb1d9fc
RS
2041 if (page)
2042 goto got_pg;
1da177e4 2043
b43a57bb 2044rebalance:
11e33f6a 2045 /* Allocate without watermarks if the context allows */
341ce06f
PZ
2046 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2047 page = __alloc_pages_high_priority(gfp_mask, order,
2048 zonelist, high_zoneidx, nodemask,
2049 preferred_zone, migratetype);
2050 if (page)
2051 goto got_pg;
1da177e4
LT
2052 }
2053
2054 /* Atomic allocations - we can't balance anything */
2055 if (!wait)
2056 goto nopage;
2057
341ce06f
PZ
2058 /* Avoid recursion of direct reclaim */
2059 if (p->flags & PF_MEMALLOC)
2060 goto nopage;
2061
6583bb64
DR
2062 /* Avoid allocations with no watermarks from looping endlessly */
2063 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2064 goto nopage;
2065
56de7263
MG
2066 /* Try direct compaction */
2067 page = __alloc_pages_direct_compact(gfp_mask, order,
2068 zonelist, high_zoneidx,
2069 nodemask,
2070 alloc_flags, preferred_zone,
2071 migratetype, &did_some_progress);
2072 if (page)
2073 goto got_pg;
2074
11e33f6a
MG
2075 /* Try direct reclaim and then allocating */
2076 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2077 zonelist, high_zoneidx,
2078 nodemask,
5117f45d 2079 alloc_flags, preferred_zone,
3dd28266 2080 migratetype, &did_some_progress);
11e33f6a
MG
2081 if (page)
2082 goto got_pg;
1da177e4 2083
e33c3b5e 2084 /*
11e33f6a
MG
2085 * If we failed to make any progress reclaiming, then we are
2086 * running out of options and have to consider going OOM
e33c3b5e 2087 */
11e33f6a
MG
2088 if (!did_some_progress) {
2089 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
2090 if (oom_killer_disabled)
2091 goto nopage;
11e33f6a
MG
2092 page = __alloc_pages_may_oom(gfp_mask, order,
2093 zonelist, high_zoneidx,
3dd28266
MG
2094 nodemask, preferred_zone,
2095 migratetype);
11e33f6a
MG
2096 if (page)
2097 goto got_pg;
1da177e4 2098
03668b3c
DR
2099 if (!(gfp_mask & __GFP_NOFAIL)) {
2100 /*
2101 * The oom killer is not called for high-order
2102 * allocations that may fail, so if no progress
2103 * is being made, there are no other options and
2104 * retrying is unlikely to help.
2105 */
2106 if (order > PAGE_ALLOC_COSTLY_ORDER)
2107 goto nopage;
2108 /*
2109 * The oom killer is not called for lowmem
2110 * allocations to prevent needlessly killing
2111 * innocent tasks.
2112 */
2113 if (high_zoneidx < ZONE_NORMAL)
2114 goto nopage;
2115 }
e2c55dc8 2116
ff0ceb9d
DR
2117 goto restart;
2118 }
1da177e4
LT
2119 }
2120
11e33f6a 2121 /* Check if we should retry the allocation */
a41f24ea 2122 pages_reclaimed += did_some_progress;
11e33f6a
MG
2123 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2124 /* Wait for some write requests to complete then retry */
0e093d99 2125 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2126 goto rebalance;
3e7d3449
MG
2127 } else {
2128 /*
2129 * High-order allocations do not necessarily loop after
2130 * direct reclaim and reclaim/compaction depends on compaction
2131 * being called after reclaim so call directly if necessary
2132 */
2133 page = __alloc_pages_direct_compact(gfp_mask, order,
2134 zonelist, high_zoneidx,
2135 nodemask,
2136 alloc_flags, preferred_zone,
2137 migratetype, &did_some_progress);
2138 if (page)
2139 goto got_pg;
1da177e4
LT
2140 }
2141
2142nopage:
2143 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
2144 printk(KERN_WARNING "%s: page allocation failure."
2145 " order:%d, mode:0x%x\n",
2146 p->comm, order, gfp_mask);
2147 dump_stack();
578c2fd6 2148 show_mem();
1da177e4 2149 }
b1eeab67 2150 return page;
1da177e4 2151got_pg:
b1eeab67
VN
2152 if (kmemcheck_enabled)
2153 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1da177e4 2154 return page;
11e33f6a 2155
1da177e4 2156}
11e33f6a
MG
2157
2158/*
2159 * This is the 'heart' of the zoned buddy allocator.
2160 */
2161struct page *
2162__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2163 struct zonelist *zonelist, nodemask_t *nodemask)
2164{
2165 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2166 struct zone *preferred_zone;
11e33f6a 2167 struct page *page;
3dd28266 2168 int migratetype = allocflags_to_migratetype(gfp_mask);
11e33f6a 2169
dcce284a
BH
2170 gfp_mask &= gfp_allowed_mask;
2171
11e33f6a
MG
2172 lockdep_trace_alloc(gfp_mask);
2173
2174 might_sleep_if(gfp_mask & __GFP_WAIT);
2175
2176 if (should_fail_alloc_page(gfp_mask, order))
2177 return NULL;
2178
2179 /*
2180 * Check the zones suitable for the gfp_mask contain at least one
2181 * valid zone. It's possible to have an empty zonelist as a result
2182 * of GFP_THISNODE and a memoryless node
2183 */
2184 if (unlikely(!zonelist->_zonerefs->zone))
2185 return NULL;
2186
c0ff7453 2187 get_mems_allowed();
5117f45d
MG
2188 /* The preferred zone is used for statistics later */
2189 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
c0ff7453
MX
2190 if (!preferred_zone) {
2191 put_mems_allowed();
5117f45d 2192 return NULL;
c0ff7453 2193 }
5117f45d
MG
2194
2195 /* First allocation attempt */
11e33f6a 2196 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
5117f45d 2197 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
3dd28266 2198 preferred_zone, migratetype);
11e33f6a
MG
2199 if (unlikely(!page))
2200 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2201 zonelist, high_zoneidx, nodemask,
3dd28266 2202 preferred_zone, migratetype);
c0ff7453 2203 put_mems_allowed();
11e33f6a 2204
4b4f278c 2205 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
11e33f6a 2206 return page;
1da177e4 2207}
d239171e 2208EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2209
2210/*
2211 * Common helper functions.
2212 */
920c7a5d 2213unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2214{
945a1113
AM
2215 struct page *page;
2216
2217 /*
2218 * __get_free_pages() returns a 32-bit address, which cannot represent
2219 * a highmem page
2220 */
2221 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2222
1da177e4
LT
2223 page = alloc_pages(gfp_mask, order);
2224 if (!page)
2225 return 0;
2226 return (unsigned long) page_address(page);
2227}
1da177e4
LT
2228EXPORT_SYMBOL(__get_free_pages);
2229
920c7a5d 2230unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2231{
945a1113 2232 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2233}
1da177e4
LT
2234EXPORT_SYMBOL(get_zeroed_page);
2235
2236void __pagevec_free(struct pagevec *pvec)
2237{
2238 int i = pagevec_count(pvec);
2239
4b4f278c
MG
2240 while (--i >= 0) {
2241 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
1da177e4 2242 free_hot_cold_page(pvec->pages[i], pvec->cold);
4b4f278c 2243 }
1da177e4
LT
2244}
2245
920c7a5d 2246void __free_pages(struct page *page, unsigned int order)
1da177e4 2247{
b5810039 2248 if (put_page_testzero(page)) {
1da177e4 2249 if (order == 0)
fc91668e 2250 free_hot_cold_page(page, 0);
1da177e4
LT
2251 else
2252 __free_pages_ok(page, order);
2253 }
2254}
2255
2256EXPORT_SYMBOL(__free_pages);
2257
920c7a5d 2258void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2259{
2260 if (addr != 0) {
725d704e 2261 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2262 __free_pages(virt_to_page((void *)addr), order);
2263 }
2264}
2265
2266EXPORT_SYMBOL(free_pages);
2267
2be0ffe2
TT
2268/**
2269 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2270 * @size: the number of bytes to allocate
2271 * @gfp_mask: GFP flags for the allocation
2272 *
2273 * This function is similar to alloc_pages(), except that it allocates the
2274 * minimum number of pages to satisfy the request. alloc_pages() can only
2275 * allocate memory in power-of-two pages.
2276 *
2277 * This function is also limited by MAX_ORDER.
2278 *
2279 * Memory allocated by this function must be released by free_pages_exact().
2280 */
2281void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2282{
2283 unsigned int order = get_order(size);
2284 unsigned long addr;
2285
2286 addr = __get_free_pages(gfp_mask, order);
2287 if (addr) {
2288 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2289 unsigned long used = addr + PAGE_ALIGN(size);
2290
5bfd7560 2291 split_page(virt_to_page((void *)addr), order);
2be0ffe2
TT
2292 while (used < alloc_end) {
2293 free_page(used);
2294 used += PAGE_SIZE;
2295 }
2296 }
2297
2298 return (void *)addr;
2299}
2300EXPORT_SYMBOL(alloc_pages_exact);
2301
2302/**
2303 * free_pages_exact - release memory allocated via alloc_pages_exact()
2304 * @virt: the value returned by alloc_pages_exact.
2305 * @size: size of allocation, same value as passed to alloc_pages_exact().
2306 *
2307 * Release the memory allocated by a previous call to alloc_pages_exact.
2308 */
2309void free_pages_exact(void *virt, size_t size)
2310{
2311 unsigned long addr = (unsigned long)virt;
2312 unsigned long end = addr + PAGE_ALIGN(size);
2313
2314 while (addr < end) {
2315 free_page(addr);
2316 addr += PAGE_SIZE;
2317 }
2318}
2319EXPORT_SYMBOL(free_pages_exact);
2320
1da177e4
LT
2321static unsigned int nr_free_zone_pages(int offset)
2322{
dd1a239f 2323 struct zoneref *z;
54a6eb5c
MG
2324 struct zone *zone;
2325
e310fd43 2326 /* Just pick one node, since fallback list is circular */
1da177e4
LT
2327 unsigned int sum = 0;
2328
0e88460d 2329 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2330
54a6eb5c 2331 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43 2332 unsigned long size = zone->present_pages;
41858966 2333 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2334 if (size > high)
2335 sum += size - high;
1da177e4
LT
2336 }
2337
2338 return sum;
2339}
2340
2341/*
2342 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2343 */
2344unsigned int nr_free_buffer_pages(void)
2345{
af4ca457 2346 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2347}
c2f1a551 2348EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
2349
2350/*
2351 * Amount of free RAM allocatable within all zones
2352 */
2353unsigned int nr_free_pagecache_pages(void)
2354{
2a1e274a 2355 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2356}
08e0f6a9
CL
2357
2358static inline void show_node(struct zone *zone)
1da177e4 2359{
08e0f6a9 2360 if (NUMA_BUILD)
25ba77c1 2361 printk("Node %d ", zone_to_nid(zone));
1da177e4 2362}
1da177e4 2363
1da177e4
LT
2364void si_meminfo(struct sysinfo *val)
2365{
2366 val->totalram = totalram_pages;
2367 val->sharedram = 0;
d23ad423 2368 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2369 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2370 val->totalhigh = totalhigh_pages;
2371 val->freehigh = nr_free_highpages();
1da177e4
LT
2372 val->mem_unit = PAGE_SIZE;
2373}
2374
2375EXPORT_SYMBOL(si_meminfo);
2376
2377#ifdef CONFIG_NUMA
2378void si_meminfo_node(struct sysinfo *val, int nid)
2379{
2380 pg_data_t *pgdat = NODE_DATA(nid);
2381
2382 val->totalram = pgdat->node_present_pages;
d23ad423 2383 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2384#ifdef CONFIG_HIGHMEM
1da177e4 2385 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
2386 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2387 NR_FREE_PAGES);
98d2b0eb
CL
2388#else
2389 val->totalhigh = 0;
2390 val->freehigh = 0;
2391#endif
1da177e4
LT
2392 val->mem_unit = PAGE_SIZE;
2393}
2394#endif
2395
2396#define K(x) ((x) << (PAGE_SHIFT-10))
2397
2398/*
2399 * Show free area list (used inside shift_scroll-lock stuff)
2400 * We also calculate the percentage fragmentation. We do this by counting the
2401 * memory on each free list with the exception of the first item on the list.
2402 */
2403void show_free_areas(void)
2404{
c7241913 2405 int cpu;
1da177e4
LT
2406 struct zone *zone;
2407
ee99c71c 2408 for_each_populated_zone(zone) {
c7241913
JS
2409 show_node(zone);
2410 printk("%s per-cpu:\n", zone->name);
1da177e4 2411
6b482c67 2412 for_each_online_cpu(cpu) {
1da177e4
LT
2413 struct per_cpu_pageset *pageset;
2414
99dcc3e5 2415 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2416
3dfa5721
CL
2417 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2418 cpu, pageset->pcp.high,
2419 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2420 }
2421 }
2422
a731286d
KM
2423 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2424 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 2425 " unevictable:%lu"
b76146ed 2426 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 2427 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4b02108a 2428 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
4f98a2fe 2429 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 2430 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
2431 global_page_state(NR_ISOLATED_ANON),
2432 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 2433 global_page_state(NR_INACTIVE_FILE),
a731286d 2434 global_page_state(NR_ISOLATED_FILE),
7b854121 2435 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 2436 global_page_state(NR_FILE_DIRTY),
ce866b34 2437 global_page_state(NR_WRITEBACK),
fd39fc85 2438 global_page_state(NR_UNSTABLE_NFS),
d23ad423 2439 global_page_state(NR_FREE_PAGES),
3701b033
KM
2440 global_page_state(NR_SLAB_RECLAIMABLE),
2441 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2442 global_page_state(NR_FILE_MAPPED),
4b02108a 2443 global_page_state(NR_SHMEM),
a25700a5
AM
2444 global_page_state(NR_PAGETABLE),
2445 global_page_state(NR_BOUNCE));
1da177e4 2446
ee99c71c 2447 for_each_populated_zone(zone) {
1da177e4
LT
2448 int i;
2449
2450 show_node(zone);
2451 printk("%s"
2452 " free:%lukB"
2453 " min:%lukB"
2454 " low:%lukB"
2455 " high:%lukB"
4f98a2fe
RR
2456 " active_anon:%lukB"
2457 " inactive_anon:%lukB"
2458 " active_file:%lukB"
2459 " inactive_file:%lukB"
7b854121 2460 " unevictable:%lukB"
a731286d
KM
2461 " isolated(anon):%lukB"
2462 " isolated(file):%lukB"
1da177e4 2463 " present:%lukB"
4a0aa73f
KM
2464 " mlocked:%lukB"
2465 " dirty:%lukB"
2466 " writeback:%lukB"
2467 " mapped:%lukB"
4b02108a 2468 " shmem:%lukB"
4a0aa73f
KM
2469 " slab_reclaimable:%lukB"
2470 " slab_unreclaimable:%lukB"
c6a7f572 2471 " kernel_stack:%lukB"
4a0aa73f
KM
2472 " pagetables:%lukB"
2473 " unstable:%lukB"
2474 " bounce:%lukB"
2475 " writeback_tmp:%lukB"
1da177e4
LT
2476 " pages_scanned:%lu"
2477 " all_unreclaimable? %s"
2478 "\n",
2479 zone->name,
88f5acf8 2480 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
2481 K(min_wmark_pages(zone)),
2482 K(low_wmark_pages(zone)),
2483 K(high_wmark_pages(zone)),
4f98a2fe
RR
2484 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2485 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2486 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2487 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 2488 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
2489 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2490 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 2491 K(zone->present_pages),
4a0aa73f
KM
2492 K(zone_page_state(zone, NR_MLOCK)),
2493 K(zone_page_state(zone, NR_FILE_DIRTY)),
2494 K(zone_page_state(zone, NR_WRITEBACK)),
2495 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 2496 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
2497 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2498 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
2499 zone_page_state(zone, NR_KERNEL_STACK) *
2500 THREAD_SIZE / 1024,
4a0aa73f
KM
2501 K(zone_page_state(zone, NR_PAGETABLE)),
2502 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2503 K(zone_page_state(zone, NR_BOUNCE)),
2504 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 2505 zone->pages_scanned,
93e4a89a 2506 (zone->all_unreclaimable ? "yes" : "no")
1da177e4
LT
2507 );
2508 printk("lowmem_reserve[]:");
2509 for (i = 0; i < MAX_NR_ZONES; i++)
2510 printk(" %lu", zone->lowmem_reserve[i]);
2511 printk("\n");
2512 }
2513
ee99c71c 2514 for_each_populated_zone(zone) {
8f9de51a 2515 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4
LT
2516
2517 show_node(zone);
2518 printk("%s: ", zone->name);
1da177e4
LT
2519
2520 spin_lock_irqsave(&zone->lock, flags);
2521 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
2522 nr[order] = zone->free_area[order].nr_free;
2523 total += nr[order] << order;
1da177e4
LT
2524 }
2525 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
2526 for (order = 0; order < MAX_ORDER; order++)
2527 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
2528 printk("= %lukB\n", K(total));
2529 }
2530
e6f3602d
LW
2531 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2532
1da177e4
LT
2533 show_swap_cache_info();
2534}
2535
19770b32
MG
2536static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2537{
2538 zoneref->zone = zone;
2539 zoneref->zone_idx = zone_idx(zone);
2540}
2541
1da177e4
LT
2542/*
2543 * Builds allocation fallback zone lists.
1a93205b
CL
2544 *
2545 * Add all populated zones of a node to the zonelist.
1da177e4 2546 */
f0c0b2b8
KH
2547static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2548 int nr_zones, enum zone_type zone_type)
1da177e4 2549{
1a93205b
CL
2550 struct zone *zone;
2551
98d2b0eb 2552 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 2553 zone_type++;
02a68a5e
CL
2554
2555 do {
2f6726e5 2556 zone_type--;
070f8032 2557 zone = pgdat->node_zones + zone_type;
1a93205b 2558 if (populated_zone(zone)) {
dd1a239f
MG
2559 zoneref_set_zone(zone,
2560 &zonelist->_zonerefs[nr_zones++]);
070f8032 2561 check_highest_zone(zone_type);
1da177e4 2562 }
02a68a5e 2563
2f6726e5 2564 } while (zone_type);
070f8032 2565 return nr_zones;
1da177e4
LT
2566}
2567
f0c0b2b8
KH
2568
2569/*
2570 * zonelist_order:
2571 * 0 = automatic detection of better ordering.
2572 * 1 = order by ([node] distance, -zonetype)
2573 * 2 = order by (-zonetype, [node] distance)
2574 *
2575 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2576 * the same zonelist. So only NUMA can configure this param.
2577 */
2578#define ZONELIST_ORDER_DEFAULT 0
2579#define ZONELIST_ORDER_NODE 1
2580#define ZONELIST_ORDER_ZONE 2
2581
2582/* zonelist order in the kernel.
2583 * set_zonelist_order() will set this to NODE or ZONE.
2584 */
2585static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2586static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2587
2588
1da177e4 2589#ifdef CONFIG_NUMA
f0c0b2b8
KH
2590/* The value user specified ....changed by config */
2591static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2592/* string for sysctl */
2593#define NUMA_ZONELIST_ORDER_LEN 16
2594char numa_zonelist_order[16] = "default";
2595
2596/*
2597 * interface for configure zonelist ordering.
2598 * command line option "numa_zonelist_order"
2599 * = "[dD]efault - default, automatic configuration.
2600 * = "[nN]ode - order by node locality, then by zone within node
2601 * = "[zZ]one - order by zone, then by locality within zone
2602 */
2603
2604static int __parse_numa_zonelist_order(char *s)
2605{
2606 if (*s == 'd' || *s == 'D') {
2607 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2608 } else if (*s == 'n' || *s == 'N') {
2609 user_zonelist_order = ZONELIST_ORDER_NODE;
2610 } else if (*s == 'z' || *s == 'Z') {
2611 user_zonelist_order = ZONELIST_ORDER_ZONE;
2612 } else {
2613 printk(KERN_WARNING
2614 "Ignoring invalid numa_zonelist_order value: "
2615 "%s\n", s);
2616 return -EINVAL;
2617 }
2618 return 0;
2619}
2620
2621static __init int setup_numa_zonelist_order(char *s)
2622{
2623 if (s)
2624 return __parse_numa_zonelist_order(s);
2625 return 0;
2626}
2627early_param("numa_zonelist_order", setup_numa_zonelist_order);
2628
2629/*
2630 * sysctl handler for numa_zonelist_order
2631 */
2632int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 2633 void __user *buffer, size_t *length,
f0c0b2b8
KH
2634 loff_t *ppos)
2635{
2636 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2637 int ret;
443c6f14 2638 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 2639
443c6f14 2640 mutex_lock(&zl_order_mutex);
f0c0b2b8 2641 if (write)
443c6f14 2642 strcpy(saved_string, (char*)table->data);
8d65af78 2643 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 2644 if (ret)
443c6f14 2645 goto out;
f0c0b2b8
KH
2646 if (write) {
2647 int oldval = user_zonelist_order;
2648 if (__parse_numa_zonelist_order((char*)table->data)) {
2649 /*
2650 * bogus value. restore saved string
2651 */
2652 strncpy((char*)table->data, saved_string,
2653 NUMA_ZONELIST_ORDER_LEN);
2654 user_zonelist_order = oldval;
4eaf3f64
HL
2655 } else if (oldval != user_zonelist_order) {
2656 mutex_lock(&zonelists_mutex);
1f522509 2657 build_all_zonelists(NULL);
4eaf3f64
HL
2658 mutex_unlock(&zonelists_mutex);
2659 }
f0c0b2b8 2660 }
443c6f14
AK
2661out:
2662 mutex_unlock(&zl_order_mutex);
2663 return ret;
f0c0b2b8
KH
2664}
2665
2666
62bc62a8 2667#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
2668static int node_load[MAX_NUMNODES];
2669
1da177e4 2670/**
4dc3b16b 2671 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
2672 * @node: node whose fallback list we're appending
2673 * @used_node_mask: nodemask_t of already used nodes
2674 *
2675 * We use a number of factors to determine which is the next node that should
2676 * appear on a given node's fallback list. The node should not have appeared
2677 * already in @node's fallback list, and it should be the next closest node
2678 * according to the distance array (which contains arbitrary distance values
2679 * from each node to each node in the system), and should also prefer nodes
2680 * with no CPUs, since presumably they'll have very little allocation pressure
2681 * on them otherwise.
2682 * It returns -1 if no node is found.
2683 */
f0c0b2b8 2684static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 2685{
4cf808eb 2686 int n, val;
1da177e4
LT
2687 int min_val = INT_MAX;
2688 int best_node = -1;
a70f7302 2689 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 2690
4cf808eb
LT
2691 /* Use the local node if we haven't already */
2692 if (!node_isset(node, *used_node_mask)) {
2693 node_set(node, *used_node_mask);
2694 return node;
2695 }
1da177e4 2696
37b07e41 2697 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
2698
2699 /* Don't want a node to appear more than once */
2700 if (node_isset(n, *used_node_mask))
2701 continue;
2702
1da177e4
LT
2703 /* Use the distance array to find the distance */
2704 val = node_distance(node, n);
2705
4cf808eb
LT
2706 /* Penalize nodes under us ("prefer the next node") */
2707 val += (n < node);
2708
1da177e4 2709 /* Give preference to headless and unused nodes */
a70f7302
RR
2710 tmp = cpumask_of_node(n);
2711 if (!cpumask_empty(tmp))
1da177e4
LT
2712 val += PENALTY_FOR_NODE_WITH_CPUS;
2713
2714 /* Slight preference for less loaded node */
2715 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2716 val += node_load[n];
2717
2718 if (val < min_val) {
2719 min_val = val;
2720 best_node = n;
2721 }
2722 }
2723
2724 if (best_node >= 0)
2725 node_set(best_node, *used_node_mask);
2726
2727 return best_node;
2728}
2729
f0c0b2b8
KH
2730
2731/*
2732 * Build zonelists ordered by node and zones within node.
2733 * This results in maximum locality--normal zone overflows into local
2734 * DMA zone, if any--but risks exhausting DMA zone.
2735 */
2736static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 2737{
f0c0b2b8 2738 int j;
1da177e4 2739 struct zonelist *zonelist;
f0c0b2b8 2740
54a6eb5c 2741 zonelist = &pgdat->node_zonelists[0];
dd1a239f 2742 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
2743 ;
2744 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2745 MAX_NR_ZONES - 1);
dd1a239f
MG
2746 zonelist->_zonerefs[j].zone = NULL;
2747 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
2748}
2749
523b9458
CL
2750/*
2751 * Build gfp_thisnode zonelists
2752 */
2753static void build_thisnode_zonelists(pg_data_t *pgdat)
2754{
523b9458
CL
2755 int j;
2756 struct zonelist *zonelist;
2757
54a6eb5c
MG
2758 zonelist = &pgdat->node_zonelists[1];
2759 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
2760 zonelist->_zonerefs[j].zone = NULL;
2761 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
2762}
2763
f0c0b2b8
KH
2764/*
2765 * Build zonelists ordered by zone and nodes within zones.
2766 * This results in conserving DMA zone[s] until all Normal memory is
2767 * exhausted, but results in overflowing to remote node while memory
2768 * may still exist in local DMA zone.
2769 */
2770static int node_order[MAX_NUMNODES];
2771
2772static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2773{
f0c0b2b8
KH
2774 int pos, j, node;
2775 int zone_type; /* needs to be signed */
2776 struct zone *z;
2777 struct zonelist *zonelist;
2778
54a6eb5c
MG
2779 zonelist = &pgdat->node_zonelists[0];
2780 pos = 0;
2781 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2782 for (j = 0; j < nr_nodes; j++) {
2783 node = node_order[j];
2784 z = &NODE_DATA(node)->node_zones[zone_type];
2785 if (populated_zone(z)) {
dd1a239f
MG
2786 zoneref_set_zone(z,
2787 &zonelist->_zonerefs[pos++]);
54a6eb5c 2788 check_highest_zone(zone_type);
f0c0b2b8
KH
2789 }
2790 }
f0c0b2b8 2791 }
dd1a239f
MG
2792 zonelist->_zonerefs[pos].zone = NULL;
2793 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
2794}
2795
2796static int default_zonelist_order(void)
2797{
2798 int nid, zone_type;
2799 unsigned long low_kmem_size,total_size;
2800 struct zone *z;
2801 int average_size;
2802 /*
88393161 2803 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
2804 * If they are really small and used heavily, the system can fall
2805 * into OOM very easily.
e325c90f 2806 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
2807 */
2808 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2809 low_kmem_size = 0;
2810 total_size = 0;
2811 for_each_online_node(nid) {
2812 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2813 z = &NODE_DATA(nid)->node_zones[zone_type];
2814 if (populated_zone(z)) {
2815 if (zone_type < ZONE_NORMAL)
2816 low_kmem_size += z->present_pages;
2817 total_size += z->present_pages;
e325c90f
DR
2818 } else if (zone_type == ZONE_NORMAL) {
2819 /*
2820 * If any node has only lowmem, then node order
2821 * is preferred to allow kernel allocations
2822 * locally; otherwise, they can easily infringe
2823 * on other nodes when there is an abundance of
2824 * lowmem available to allocate from.
2825 */
2826 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
2827 }
2828 }
2829 }
2830 if (!low_kmem_size || /* there are no DMA area. */
2831 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2832 return ZONELIST_ORDER_NODE;
2833 /*
2834 * look into each node's config.
2835 * If there is a node whose DMA/DMA32 memory is very big area on
2836 * local memory, NODE_ORDER may be suitable.
2837 */
37b07e41
LS
2838 average_size = total_size /
2839 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
2840 for_each_online_node(nid) {
2841 low_kmem_size = 0;
2842 total_size = 0;
2843 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2844 z = &NODE_DATA(nid)->node_zones[zone_type];
2845 if (populated_zone(z)) {
2846 if (zone_type < ZONE_NORMAL)
2847 low_kmem_size += z->present_pages;
2848 total_size += z->present_pages;
2849 }
2850 }
2851 if (low_kmem_size &&
2852 total_size > average_size && /* ignore small node */
2853 low_kmem_size > total_size * 70/100)
2854 return ZONELIST_ORDER_NODE;
2855 }
2856 return ZONELIST_ORDER_ZONE;
2857}
2858
2859static void set_zonelist_order(void)
2860{
2861 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2862 current_zonelist_order = default_zonelist_order();
2863 else
2864 current_zonelist_order = user_zonelist_order;
2865}
2866
2867static void build_zonelists(pg_data_t *pgdat)
2868{
2869 int j, node, load;
2870 enum zone_type i;
1da177e4 2871 nodemask_t used_mask;
f0c0b2b8
KH
2872 int local_node, prev_node;
2873 struct zonelist *zonelist;
2874 int order = current_zonelist_order;
1da177e4
LT
2875
2876 /* initialize zonelists */
523b9458 2877 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 2878 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
2879 zonelist->_zonerefs[0].zone = NULL;
2880 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
2881 }
2882
2883 /* NUMA-aware ordering of nodes */
2884 local_node = pgdat->node_id;
62bc62a8 2885 load = nr_online_nodes;
1da177e4
LT
2886 prev_node = local_node;
2887 nodes_clear(used_mask);
f0c0b2b8 2888
f0c0b2b8
KH
2889 memset(node_order, 0, sizeof(node_order));
2890 j = 0;
2891
1da177e4 2892 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
2893 int distance = node_distance(local_node, node);
2894
2895 /*
2896 * If another node is sufficiently far away then it is better
2897 * to reclaim pages in a zone before going off node.
2898 */
2899 if (distance > RECLAIM_DISTANCE)
2900 zone_reclaim_mode = 1;
2901
1da177e4
LT
2902 /*
2903 * We don't want to pressure a particular node.
2904 * So adding penalty to the first node in same
2905 * distance group to make it round-robin.
2906 */
9eeff239 2907 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
2908 node_load[node] = load;
2909
1da177e4
LT
2910 prev_node = node;
2911 load--;
f0c0b2b8
KH
2912 if (order == ZONELIST_ORDER_NODE)
2913 build_zonelists_in_node_order(pgdat, node);
2914 else
2915 node_order[j++] = node; /* remember order */
2916 }
1da177e4 2917
f0c0b2b8
KH
2918 if (order == ZONELIST_ORDER_ZONE) {
2919 /* calculate node order -- i.e., DMA last! */
2920 build_zonelists_in_zone_order(pgdat, j);
1da177e4 2921 }
523b9458
CL
2922
2923 build_thisnode_zonelists(pgdat);
1da177e4
LT
2924}
2925
9276b1bc 2926/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 2927static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2928{
54a6eb5c
MG
2929 struct zonelist *zonelist;
2930 struct zonelist_cache *zlc;
dd1a239f 2931 struct zoneref *z;
9276b1bc 2932
54a6eb5c
MG
2933 zonelist = &pgdat->node_zonelists[0];
2934 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2935 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
2936 for (z = zonelist->_zonerefs; z->zone; z++)
2937 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
2938}
2939
7aac7898
LS
2940#ifdef CONFIG_HAVE_MEMORYLESS_NODES
2941/*
2942 * Return node id of node used for "local" allocations.
2943 * I.e., first node id of first zone in arg node's generic zonelist.
2944 * Used for initializing percpu 'numa_mem', which is used primarily
2945 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
2946 */
2947int local_memory_node(int node)
2948{
2949 struct zone *zone;
2950
2951 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
2952 gfp_zone(GFP_KERNEL),
2953 NULL,
2954 &zone);
2955 return zone->node;
2956}
2957#endif
f0c0b2b8 2958
1da177e4
LT
2959#else /* CONFIG_NUMA */
2960
f0c0b2b8
KH
2961static void set_zonelist_order(void)
2962{
2963 current_zonelist_order = ZONELIST_ORDER_ZONE;
2964}
2965
2966static void build_zonelists(pg_data_t *pgdat)
1da177e4 2967{
19655d34 2968 int node, local_node;
54a6eb5c
MG
2969 enum zone_type j;
2970 struct zonelist *zonelist;
1da177e4
LT
2971
2972 local_node = pgdat->node_id;
1da177e4 2973
54a6eb5c
MG
2974 zonelist = &pgdat->node_zonelists[0];
2975 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 2976
54a6eb5c
MG
2977 /*
2978 * Now we build the zonelist so that it contains the zones
2979 * of all the other nodes.
2980 * We don't want to pressure a particular node, so when
2981 * building the zones for node N, we make sure that the
2982 * zones coming right after the local ones are those from
2983 * node N+1 (modulo N)
2984 */
2985 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2986 if (!node_online(node))
2987 continue;
2988 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2989 MAX_NR_ZONES - 1);
1da177e4 2990 }
54a6eb5c
MG
2991 for (node = 0; node < local_node; node++) {
2992 if (!node_online(node))
2993 continue;
2994 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2995 MAX_NR_ZONES - 1);
2996 }
2997
dd1a239f
MG
2998 zonelist->_zonerefs[j].zone = NULL;
2999 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3000}
3001
9276b1bc 3002/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3003static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3004{
54a6eb5c 3005 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3006}
3007
1da177e4
LT
3008#endif /* CONFIG_NUMA */
3009
99dcc3e5
CL
3010/*
3011 * Boot pageset table. One per cpu which is going to be used for all
3012 * zones and all nodes. The parameters will be set in such a way
3013 * that an item put on a list will immediately be handed over to
3014 * the buddy list. This is safe since pageset manipulation is done
3015 * with interrupts disabled.
3016 *
3017 * The boot_pagesets must be kept even after bootup is complete for
3018 * unused processors and/or zones. They do play a role for bootstrapping
3019 * hotplugged processors.
3020 *
3021 * zoneinfo_show() and maybe other functions do
3022 * not check if the processor is online before following the pageset pointer.
3023 * Other parts of the kernel may not check if the zone is available.
3024 */
3025static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3026static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3027static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3028
4eaf3f64
HL
3029/*
3030 * Global mutex to protect against size modification of zonelists
3031 * as well as to serialize pageset setup for the new populated zone.
3032 */
3033DEFINE_MUTEX(zonelists_mutex);
3034
9b1a4d38 3035/* return values int ....just for stop_machine() */
1f522509 3036static __init_refok int __build_all_zonelists(void *data)
1da177e4 3037{
6811378e 3038 int nid;
99dcc3e5 3039 int cpu;
9276b1bc 3040
7f9cfb31
BL
3041#ifdef CONFIG_NUMA
3042 memset(node_load, 0, sizeof(node_load));
3043#endif
9276b1bc 3044 for_each_online_node(nid) {
7ea1530a
CL
3045 pg_data_t *pgdat = NODE_DATA(nid);
3046
3047 build_zonelists(pgdat);
3048 build_zonelist_cache(pgdat);
9276b1bc 3049 }
99dcc3e5
CL
3050
3051 /*
3052 * Initialize the boot_pagesets that are going to be used
3053 * for bootstrapping processors. The real pagesets for
3054 * each zone will be allocated later when the per cpu
3055 * allocator is available.
3056 *
3057 * boot_pagesets are used also for bootstrapping offline
3058 * cpus if the system is already booted because the pagesets
3059 * are needed to initialize allocators on a specific cpu too.
3060 * F.e. the percpu allocator needs the page allocator which
3061 * needs the percpu allocator in order to allocate its pagesets
3062 * (a chicken-egg dilemma).
3063 */
7aac7898 3064 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3065 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3066
7aac7898
LS
3067#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3068 /*
3069 * We now know the "local memory node" for each node--
3070 * i.e., the node of the first zone in the generic zonelist.
3071 * Set up numa_mem percpu variable for on-line cpus. During
3072 * boot, only the boot cpu should be on-line; we'll init the
3073 * secondary cpus' numa_mem as they come on-line. During
3074 * node/memory hotplug, we'll fixup all on-line cpus.
3075 */
3076 if (cpu_online(cpu))
3077 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3078#endif
3079 }
3080
6811378e
YG
3081 return 0;
3082}
3083
4eaf3f64
HL
3084/*
3085 * Called with zonelists_mutex held always
3086 * unless system_state == SYSTEM_BOOTING.
3087 */
1f522509 3088void build_all_zonelists(void *data)
6811378e 3089{
f0c0b2b8
KH
3090 set_zonelist_order();
3091
6811378e 3092 if (system_state == SYSTEM_BOOTING) {
423b41d7 3093 __build_all_zonelists(NULL);
68ad8df4 3094 mminit_verify_zonelist();
6811378e
YG
3095 cpuset_init_current_mems_allowed();
3096 } else {
183ff22b 3097 /* we have to stop all cpus to guarantee there is no user
6811378e 3098 of zonelist */
e9959f0f
KH
3099#ifdef CONFIG_MEMORY_HOTPLUG
3100 if (data)
3101 setup_zone_pageset((struct zone *)data);
3102#endif
3103 stop_machine(__build_all_zonelists, NULL, NULL);
6811378e
YG
3104 /* cpuset refresh routine should be here */
3105 }
bd1e22b8 3106 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3107 /*
3108 * Disable grouping by mobility if the number of pages in the
3109 * system is too low to allow the mechanism to work. It would be
3110 * more accurate, but expensive to check per-zone. This check is
3111 * made on memory-hotadd so a system can start with mobility
3112 * disabled and enable it later
3113 */
d9c23400 3114 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3115 page_group_by_mobility_disabled = 1;
3116 else
3117 page_group_by_mobility_disabled = 0;
3118
3119 printk("Built %i zonelists in %s order, mobility grouping %s. "
3120 "Total pages: %ld\n",
62bc62a8 3121 nr_online_nodes,
f0c0b2b8 3122 zonelist_order_name[current_zonelist_order],
9ef9acb0 3123 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3124 vm_total_pages);
3125#ifdef CONFIG_NUMA
3126 printk("Policy zone: %s\n", zone_names[policy_zone]);
3127#endif
1da177e4
LT
3128}
3129
3130/*
3131 * Helper functions to size the waitqueue hash table.
3132 * Essentially these want to choose hash table sizes sufficiently
3133 * large so that collisions trying to wait on pages are rare.
3134 * But in fact, the number of active page waitqueues on typical
3135 * systems is ridiculously low, less than 200. So this is even
3136 * conservative, even though it seems large.
3137 *
3138 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3139 * waitqueues, i.e. the size of the waitq table given the number of pages.
3140 */
3141#define PAGES_PER_WAITQUEUE 256
3142
cca448fe 3143#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3144static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3145{
3146 unsigned long size = 1;
3147
3148 pages /= PAGES_PER_WAITQUEUE;
3149
3150 while (size < pages)
3151 size <<= 1;
3152
3153 /*
3154 * Once we have dozens or even hundreds of threads sleeping
3155 * on IO we've got bigger problems than wait queue collision.
3156 * Limit the size of the wait table to a reasonable size.
3157 */
3158 size = min(size, 4096UL);
3159
3160 return max(size, 4UL);
3161}
cca448fe
YG
3162#else
3163/*
3164 * A zone's size might be changed by hot-add, so it is not possible to determine
3165 * a suitable size for its wait_table. So we use the maximum size now.
3166 *
3167 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3168 *
3169 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3170 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3171 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3172 *
3173 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3174 * or more by the traditional way. (See above). It equals:
3175 *
3176 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3177 * ia64(16K page size) : = ( 8G + 4M)byte.
3178 * powerpc (64K page size) : = (32G +16M)byte.
3179 */
3180static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3181{
3182 return 4096UL;
3183}
3184#endif
1da177e4
LT
3185
3186/*
3187 * This is an integer logarithm so that shifts can be used later
3188 * to extract the more random high bits from the multiplicative
3189 * hash function before the remainder is taken.
3190 */
3191static inline unsigned long wait_table_bits(unsigned long size)
3192{
3193 return ffz(~size);
3194}
3195
3196#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3197
56fd56b8 3198/*
d9c23400 3199 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3200 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3201 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3202 * higher will lead to a bigger reserve which will get freed as contiguous
3203 * blocks as reclaim kicks in
3204 */
3205static void setup_zone_migrate_reserve(struct zone *zone)
3206{
3207 unsigned long start_pfn, pfn, end_pfn;
3208 struct page *page;
78986a67
MG
3209 unsigned long block_migratetype;
3210 int reserve;
56fd56b8
MG
3211
3212 /* Get the start pfn, end pfn and the number of blocks to reserve */
3213 start_pfn = zone->zone_start_pfn;
3214 end_pfn = start_pfn + zone->spanned_pages;
41858966 3215 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3216 pageblock_order;
56fd56b8 3217
78986a67
MG
3218 /*
3219 * Reserve blocks are generally in place to help high-order atomic
3220 * allocations that are short-lived. A min_free_kbytes value that
3221 * would result in more than 2 reserve blocks for atomic allocations
3222 * is assumed to be in place to help anti-fragmentation for the
3223 * future allocation of hugepages at runtime.
3224 */
3225 reserve = min(2, reserve);
3226
d9c23400 3227 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
3228 if (!pfn_valid(pfn))
3229 continue;
3230 page = pfn_to_page(pfn);
3231
344c790e
AL
3232 /* Watch out for overlapping nodes */
3233 if (page_to_nid(page) != zone_to_nid(zone))
3234 continue;
3235
56fd56b8
MG
3236 /* Blocks with reserved pages will never free, skip them. */
3237 if (PageReserved(page))
3238 continue;
3239
3240 block_migratetype = get_pageblock_migratetype(page);
3241
3242 /* If this block is reserved, account for it */
3243 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3244 reserve--;
3245 continue;
3246 }
3247
3248 /* Suitable for reserving if this block is movable */
3249 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3250 set_pageblock_migratetype(page, MIGRATE_RESERVE);
3251 move_freepages_block(zone, page, MIGRATE_RESERVE);
3252 reserve--;
3253 continue;
3254 }
3255
3256 /*
3257 * If the reserve is met and this is a previous reserved block,
3258 * take it back
3259 */
3260 if (block_migratetype == MIGRATE_RESERVE) {
3261 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3262 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3263 }
3264 }
3265}
ac0e5b7a 3266
1da177e4
LT
3267/*
3268 * Initially all pages are reserved - free ones are freed
3269 * up by free_all_bootmem() once the early boot process is
3270 * done. Non-atomic initialization, single-pass.
3271 */
c09b4240 3272void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 3273 unsigned long start_pfn, enum memmap_context context)
1da177e4 3274{
1da177e4 3275 struct page *page;
29751f69
AW
3276 unsigned long end_pfn = start_pfn + size;
3277 unsigned long pfn;
86051ca5 3278 struct zone *z;
1da177e4 3279
22b31eec
HD
3280 if (highest_memmap_pfn < end_pfn - 1)
3281 highest_memmap_pfn = end_pfn - 1;
3282
86051ca5 3283 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 3284 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
3285 /*
3286 * There can be holes in boot-time mem_map[]s
3287 * handed to this function. They do not
3288 * exist on hotplugged memory.
3289 */
3290 if (context == MEMMAP_EARLY) {
3291 if (!early_pfn_valid(pfn))
3292 continue;
3293 if (!early_pfn_in_nid(pfn, nid))
3294 continue;
3295 }
d41dee36
AW
3296 page = pfn_to_page(pfn);
3297 set_page_links(page, zone, nid, pfn);
708614e6 3298 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 3299 init_page_count(page);
1da177e4
LT
3300 reset_page_mapcount(page);
3301 SetPageReserved(page);
b2a0ac88
MG
3302 /*
3303 * Mark the block movable so that blocks are reserved for
3304 * movable at startup. This will force kernel allocations
3305 * to reserve their blocks rather than leaking throughout
3306 * the address space during boot when many long-lived
56fd56b8
MG
3307 * kernel allocations are made. Later some blocks near
3308 * the start are marked MIGRATE_RESERVE by
3309 * setup_zone_migrate_reserve()
86051ca5
KH
3310 *
3311 * bitmap is created for zone's valid pfn range. but memmap
3312 * can be created for invalid pages (for alignment)
3313 * check here not to call set_pageblock_migratetype() against
3314 * pfn out of zone.
b2a0ac88 3315 */
86051ca5
KH
3316 if ((z->zone_start_pfn <= pfn)
3317 && (pfn < z->zone_start_pfn + z->spanned_pages)
3318 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 3319 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 3320
1da177e4
LT
3321 INIT_LIST_HEAD(&page->lru);
3322#ifdef WANT_PAGE_VIRTUAL
3323 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3324 if (!is_highmem_idx(zone))
3212c6be 3325 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 3326#endif
1da177e4
LT
3327 }
3328}
3329
1e548deb 3330static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 3331{
b2a0ac88
MG
3332 int order, t;
3333 for_each_migratetype_order(order, t) {
3334 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
3335 zone->free_area[order].nr_free = 0;
3336 }
3337}
3338
3339#ifndef __HAVE_ARCH_MEMMAP_INIT
3340#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 3341 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
3342#endif
3343
1d6f4e60 3344static int zone_batchsize(struct zone *zone)
e7c8d5c9 3345{
3a6be87f 3346#ifdef CONFIG_MMU
e7c8d5c9
CL
3347 int batch;
3348
3349 /*
3350 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 3351 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
3352 *
3353 * OK, so we don't know how big the cache is. So guess.
3354 */
3355 batch = zone->present_pages / 1024;
ba56e91c
SR
3356 if (batch * PAGE_SIZE > 512 * 1024)
3357 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
3358 batch /= 4; /* We effectively *= 4 below */
3359 if (batch < 1)
3360 batch = 1;
3361
3362 /*
0ceaacc9
NP
3363 * Clamp the batch to a 2^n - 1 value. Having a power
3364 * of 2 value was found to be more likely to have
3365 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 3366 *
0ceaacc9
NP
3367 * For example if 2 tasks are alternately allocating
3368 * batches of pages, one task can end up with a lot
3369 * of pages of one half of the possible page colors
3370 * and the other with pages of the other colors.
e7c8d5c9 3371 */
9155203a 3372 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 3373
e7c8d5c9 3374 return batch;
3a6be87f
DH
3375
3376#else
3377 /* The deferral and batching of frees should be suppressed under NOMMU
3378 * conditions.
3379 *
3380 * The problem is that NOMMU needs to be able to allocate large chunks
3381 * of contiguous memory as there's no hardware page translation to
3382 * assemble apparent contiguous memory from discontiguous pages.
3383 *
3384 * Queueing large contiguous runs of pages for batching, however,
3385 * causes the pages to actually be freed in smaller chunks. As there
3386 * can be a significant delay between the individual batches being
3387 * recycled, this leads to the once large chunks of space being
3388 * fragmented and becoming unavailable for high-order allocations.
3389 */
3390 return 0;
3391#endif
e7c8d5c9
CL
3392}
3393
b69a7288 3394static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
3395{
3396 struct per_cpu_pages *pcp;
5f8dcc21 3397 int migratetype;
2caaad41 3398
1c6fe946
MD
3399 memset(p, 0, sizeof(*p));
3400
3dfa5721 3401 pcp = &p->pcp;
2caaad41 3402 pcp->count = 0;
2caaad41
CL
3403 pcp->high = 6 * batch;
3404 pcp->batch = max(1UL, 1 * batch);
5f8dcc21
MG
3405 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3406 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
3407}
3408
8ad4b1fb
RS
3409/*
3410 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3411 * to the value high for the pageset p.
3412 */
3413
3414static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3415 unsigned long high)
3416{
3417 struct per_cpu_pages *pcp;
3418
3dfa5721 3419 pcp = &p->pcp;
8ad4b1fb
RS
3420 pcp->high = high;
3421 pcp->batch = max(1UL, high/4);
3422 if ((high/4) > (PAGE_SHIFT * 8))
3423 pcp->batch = PAGE_SHIFT * 8;
3424}
3425
319774e2
WF
3426static __meminit void setup_zone_pageset(struct zone *zone)
3427{
3428 int cpu;
3429
3430 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3431
3432 for_each_possible_cpu(cpu) {
3433 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3434
3435 setup_pageset(pcp, zone_batchsize(zone));
3436
3437 if (percpu_pagelist_fraction)
3438 setup_pagelist_highmark(pcp,
3439 (zone->present_pages /
3440 percpu_pagelist_fraction));
3441 }
3442}
3443
2caaad41 3444/*
99dcc3e5
CL
3445 * Allocate per cpu pagesets and initialize them.
3446 * Before this call only boot pagesets were available.
e7c8d5c9 3447 */
99dcc3e5 3448void __init setup_per_cpu_pageset(void)
e7c8d5c9 3449{
99dcc3e5 3450 struct zone *zone;
e7c8d5c9 3451
319774e2
WF
3452 for_each_populated_zone(zone)
3453 setup_zone_pageset(zone);
e7c8d5c9
CL
3454}
3455
577a32f6 3456static noinline __init_refok
cca448fe 3457int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
3458{
3459 int i;
3460 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 3461 size_t alloc_size;
ed8ece2e
DH
3462
3463 /*
3464 * The per-page waitqueue mechanism uses hashed waitqueues
3465 * per zone.
3466 */
02b694de
YG
3467 zone->wait_table_hash_nr_entries =
3468 wait_table_hash_nr_entries(zone_size_pages);
3469 zone->wait_table_bits =
3470 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
3471 alloc_size = zone->wait_table_hash_nr_entries
3472 * sizeof(wait_queue_head_t);
3473
cd94b9db 3474 if (!slab_is_available()) {
cca448fe
YG
3475 zone->wait_table = (wait_queue_head_t *)
3476 alloc_bootmem_node(pgdat, alloc_size);
3477 } else {
3478 /*
3479 * This case means that a zone whose size was 0 gets new memory
3480 * via memory hot-add.
3481 * But it may be the case that a new node was hot-added. In
3482 * this case vmalloc() will not be able to use this new node's
3483 * memory - this wait_table must be initialized to use this new
3484 * node itself as well.
3485 * To use this new node's memory, further consideration will be
3486 * necessary.
3487 */
8691f3a7 3488 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
3489 }
3490 if (!zone->wait_table)
3491 return -ENOMEM;
ed8ece2e 3492
02b694de 3493 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 3494 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
3495
3496 return 0;
ed8ece2e
DH
3497}
3498
112067f0
SL
3499static int __zone_pcp_update(void *data)
3500{
3501 struct zone *zone = data;
3502 int cpu;
3503 unsigned long batch = zone_batchsize(zone), flags;
3504
2d30a1f6 3505 for_each_possible_cpu(cpu) {
112067f0
SL
3506 struct per_cpu_pageset *pset;
3507 struct per_cpu_pages *pcp;
3508
99dcc3e5 3509 pset = per_cpu_ptr(zone->pageset, cpu);
112067f0
SL
3510 pcp = &pset->pcp;
3511
3512 local_irq_save(flags);
5f8dcc21 3513 free_pcppages_bulk(zone, pcp->count, pcp);
112067f0
SL
3514 setup_pageset(pset, batch);
3515 local_irq_restore(flags);
3516 }
3517 return 0;
3518}
3519
3520void zone_pcp_update(struct zone *zone)
3521{
3522 stop_machine(__zone_pcp_update, zone, NULL);
3523}
3524
c09b4240 3525static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 3526{
99dcc3e5
CL
3527 /*
3528 * per cpu subsystem is not up at this point. The following code
3529 * relies on the ability of the linker to provide the
3530 * offset of a (static) per cpu variable into the per cpu area.
3531 */
3532 zone->pageset = &boot_pageset;
ed8ece2e 3533
f5335c0f 3534 if (zone->present_pages)
99dcc3e5
CL
3535 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3536 zone->name, zone->present_pages,
3537 zone_batchsize(zone));
ed8ece2e
DH
3538}
3539
718127cc
YG
3540__meminit int init_currently_empty_zone(struct zone *zone,
3541 unsigned long zone_start_pfn,
a2f3aa02
DH
3542 unsigned long size,
3543 enum memmap_context context)
ed8ece2e
DH
3544{
3545 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
3546 int ret;
3547 ret = zone_wait_table_init(zone, size);
3548 if (ret)
3549 return ret;
ed8ece2e
DH
3550 pgdat->nr_zones = zone_idx(zone) + 1;
3551
ed8ece2e
DH
3552 zone->zone_start_pfn = zone_start_pfn;
3553
708614e6
MG
3554 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3555 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3556 pgdat->node_id,
3557 (unsigned long)zone_idx(zone),
3558 zone_start_pfn, (zone_start_pfn + size));
3559
1e548deb 3560 zone_init_free_lists(zone);
718127cc
YG
3561
3562 return 0;
ed8ece2e
DH
3563}
3564
c713216d
MG
3565#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3566/*
3567 * Basic iterator support. Return the first range of PFNs for a node
3568 * Note: nid == MAX_NUMNODES returns first region regardless of node
3569 */
a3142c8e 3570static int __meminit first_active_region_index_in_nid(int nid)
c713216d
MG
3571{
3572 int i;
3573
3574 for (i = 0; i < nr_nodemap_entries; i++)
3575 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3576 return i;
3577
3578 return -1;
3579}
3580
3581/*
3582 * Basic iterator support. Return the next active range of PFNs for a node
183ff22b 3583 * Note: nid == MAX_NUMNODES returns next region regardless of node
c713216d 3584 */
a3142c8e 3585static int __meminit next_active_region_index_in_nid(int index, int nid)
c713216d
MG
3586{
3587 for (index = index + 1; index < nr_nodemap_entries; index++)
3588 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3589 return index;
3590
3591 return -1;
3592}
3593
3594#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3595/*
3596 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3597 * Architectures may implement their own version but if add_active_range()
3598 * was used and there are no special requirements, this is a convenient
3599 * alternative
3600 */
f2dbcfa7 3601int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d
MG
3602{
3603 int i;
3604
3605 for (i = 0; i < nr_nodemap_entries; i++) {
3606 unsigned long start_pfn = early_node_map[i].start_pfn;
3607 unsigned long end_pfn = early_node_map[i].end_pfn;
3608
3609 if (start_pfn <= pfn && pfn < end_pfn)
3610 return early_node_map[i].nid;
3611 }
cc2559bc
KH
3612 /* This is a memory hole */
3613 return -1;
c713216d
MG
3614}
3615#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3616
f2dbcfa7
KH
3617int __meminit early_pfn_to_nid(unsigned long pfn)
3618{
cc2559bc
KH
3619 int nid;
3620
3621 nid = __early_pfn_to_nid(pfn);
3622 if (nid >= 0)
3623 return nid;
3624 /* just returns 0 */
3625 return 0;
f2dbcfa7
KH
3626}
3627
cc2559bc
KH
3628#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3629bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3630{
3631 int nid;
3632
3633 nid = __early_pfn_to_nid(pfn);
3634 if (nid >= 0 && nid != node)
3635 return false;
3636 return true;
3637}
3638#endif
f2dbcfa7 3639
c713216d
MG
3640/* Basic iterator support to walk early_node_map[] */
3641#define for_each_active_range_index_in_nid(i, nid) \
3642 for (i = first_active_region_index_in_nid(nid); i != -1; \
3643 i = next_active_region_index_in_nid(i, nid))
3644
3645/**
3646 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
3647 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3648 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
3649 *
3650 * If an architecture guarantees that all ranges registered with
3651 * add_active_ranges() contain no holes and may be freed, this
3652 * this function may be used instead of calling free_bootmem() manually.
3653 */
3654void __init free_bootmem_with_active_regions(int nid,
3655 unsigned long max_low_pfn)
3656{
3657 int i;
3658
3659 for_each_active_range_index_in_nid(i, nid) {
3660 unsigned long size_pages = 0;
3661 unsigned long end_pfn = early_node_map[i].end_pfn;
3662
3663 if (early_node_map[i].start_pfn >= max_low_pfn)
3664 continue;
3665
3666 if (end_pfn > max_low_pfn)
3667 end_pfn = max_low_pfn;
3668
3669 size_pages = end_pfn - early_node_map[i].start_pfn;
3670 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3671 PFN_PHYS(early_node_map[i].start_pfn),
3672 size_pages << PAGE_SHIFT);
3673 }
3674}
3675
edbe7d23
YL
3676#ifdef CONFIG_HAVE_MEMBLOCK
3677u64 __init find_memory_core_early(int nid, u64 size, u64 align,
3678 u64 goal, u64 limit)
3679{
3680 int i;
3681
3682 /* Need to go over early_node_map to find out good range for node */
3683 for_each_active_range_index_in_nid(i, nid) {
3684 u64 addr;
3685 u64 ei_start, ei_last;
3686 u64 final_start, final_end;
3687
3688 ei_last = early_node_map[i].end_pfn;
3689 ei_last <<= PAGE_SHIFT;
3690 ei_start = early_node_map[i].start_pfn;
3691 ei_start <<= PAGE_SHIFT;
3692
3693 final_start = max(ei_start, goal);
3694 final_end = min(ei_last, limit);
3695
3696 if (final_start >= final_end)
3697 continue;
3698
3699 addr = memblock_find_in_range(final_start, final_end, size, align);
3700
3701 if (addr == MEMBLOCK_ERROR)
3702 continue;
3703
3704 return addr;
3705 }
3706
3707 return MEMBLOCK_ERROR;
3708}
3709#endif
3710
08677214
YL
3711int __init add_from_early_node_map(struct range *range, int az,
3712 int nr_range, int nid)
3713{
3714 int i;
3715 u64 start, end;
3716
3717 /* need to go over early_node_map to find out good range for node */
3718 for_each_active_range_index_in_nid(i, nid) {
3719 start = early_node_map[i].start_pfn;
3720 end = early_node_map[i].end_pfn;
3721 nr_range = add_range(range, az, nr_range, start, end);
3722 }
3723 return nr_range;
3724}
3725
2ee78f7b 3726#ifdef CONFIG_NO_BOOTMEM
08677214
YL
3727void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
3728 u64 goal, u64 limit)
3729{
08677214 3730 void *ptr;
72d7c3b3 3731 u64 addr;
08677214 3732
72d7c3b3
YL
3733 if (limit > memblock.current_limit)
3734 limit = memblock.current_limit;
b8ab9f82 3735
72d7c3b3 3736 addr = find_memory_core_early(nid, size, align, goal, limit);
08677214 3737
72d7c3b3
YL
3738 if (addr == MEMBLOCK_ERROR)
3739 return NULL;
08677214 3740
72d7c3b3
YL
3741 ptr = phys_to_virt(addr);
3742 memset(ptr, 0, size);
3743 memblock_x86_reserve_range(addr, addr + size, "BOOTMEM");
3744 /*
3745 * The min_count is set to 0 so that bootmem allocated blocks
3746 * are never reported as leaks.
3747 */
3748 kmemleak_alloc(ptr, size, 0, 0);
3749 return ptr;
08677214 3750}
2ee78f7b 3751#endif
08677214
YL
3752
3753
b5bc6c0e
YL
3754void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3755{
3756 int i;
d52d53b8 3757 int ret;
b5bc6c0e 3758
d52d53b8
YL
3759 for_each_active_range_index_in_nid(i, nid) {
3760 ret = work_fn(early_node_map[i].start_pfn,
3761 early_node_map[i].end_pfn, data);
3762 if (ret)
3763 break;
3764 }
b5bc6c0e 3765}
c713216d
MG
3766/**
3767 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 3768 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
3769 *
3770 * If an architecture guarantees that all ranges registered with
3771 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 3772 * function may be used instead of calling memory_present() manually.
c713216d
MG
3773 */
3774void __init sparse_memory_present_with_active_regions(int nid)
3775{
3776 int i;
3777
3778 for_each_active_range_index_in_nid(i, nid)
3779 memory_present(early_node_map[i].nid,
3780 early_node_map[i].start_pfn,
3781 early_node_map[i].end_pfn);
3782}
3783
3784/**
3785 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
3786 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3787 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3788 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
3789 *
3790 * It returns the start and end page frame of a node based on information
3791 * provided by an arch calling add_active_range(). If called for a node
3792 * with no available memory, a warning is printed and the start and end
88ca3b94 3793 * PFNs will be 0.
c713216d 3794 */
a3142c8e 3795void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
3796 unsigned long *start_pfn, unsigned long *end_pfn)
3797{
3798 int i;
3799 *start_pfn = -1UL;
3800 *end_pfn = 0;
3801
3802 for_each_active_range_index_in_nid(i, nid) {
3803 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3804 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3805 }
3806
633c0666 3807 if (*start_pfn == -1UL)
c713216d 3808 *start_pfn = 0;
c713216d
MG
3809}
3810
2a1e274a
MG
3811/*
3812 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3813 * assumption is made that zones within a node are ordered in monotonic
3814 * increasing memory addresses so that the "highest" populated zone is used
3815 */
b69a7288 3816static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
3817{
3818 int zone_index;
3819 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3820 if (zone_index == ZONE_MOVABLE)
3821 continue;
3822
3823 if (arch_zone_highest_possible_pfn[zone_index] >
3824 arch_zone_lowest_possible_pfn[zone_index])
3825 break;
3826 }
3827
3828 VM_BUG_ON(zone_index == -1);
3829 movable_zone = zone_index;
3830}
3831
3832/*
3833 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3834 * because it is sized independant of architecture. Unlike the other zones,
3835 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3836 * in each node depending on the size of each node and how evenly kernelcore
3837 * is distributed. This helper function adjusts the zone ranges
3838 * provided by the architecture for a given node by using the end of the
3839 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3840 * zones within a node are in order of monotonic increases memory addresses
3841 */
b69a7288 3842static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
3843 unsigned long zone_type,
3844 unsigned long node_start_pfn,
3845 unsigned long node_end_pfn,
3846 unsigned long *zone_start_pfn,
3847 unsigned long *zone_end_pfn)
3848{
3849 /* Only adjust if ZONE_MOVABLE is on this node */
3850 if (zone_movable_pfn[nid]) {
3851 /* Size ZONE_MOVABLE */
3852 if (zone_type == ZONE_MOVABLE) {
3853 *zone_start_pfn = zone_movable_pfn[nid];
3854 *zone_end_pfn = min(node_end_pfn,
3855 arch_zone_highest_possible_pfn[movable_zone]);
3856
3857 /* Adjust for ZONE_MOVABLE starting within this range */
3858 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3859 *zone_end_pfn > zone_movable_pfn[nid]) {
3860 *zone_end_pfn = zone_movable_pfn[nid];
3861
3862 /* Check if this whole range is within ZONE_MOVABLE */
3863 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3864 *zone_start_pfn = *zone_end_pfn;
3865 }
3866}
3867
c713216d
MG
3868/*
3869 * Return the number of pages a zone spans in a node, including holes
3870 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3871 */
6ea6e688 3872static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3873 unsigned long zone_type,
3874 unsigned long *ignored)
3875{
3876 unsigned long node_start_pfn, node_end_pfn;
3877 unsigned long zone_start_pfn, zone_end_pfn;
3878
3879 /* Get the start and end of the node and zone */
3880 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3881 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3882 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
3883 adjust_zone_range_for_zone_movable(nid, zone_type,
3884 node_start_pfn, node_end_pfn,
3885 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
3886
3887 /* Check that this node has pages within the zone's required range */
3888 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3889 return 0;
3890
3891 /* Move the zone boundaries inside the node if necessary */
3892 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3893 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3894
3895 /* Return the spanned pages */
3896 return zone_end_pfn - zone_start_pfn;
3897}
3898
3899/*
3900 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 3901 * then all holes in the requested range will be accounted for.
c713216d 3902 */
32996250 3903unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
3904 unsigned long range_start_pfn,
3905 unsigned long range_end_pfn)
3906{
3907 int i = 0;
3908 unsigned long prev_end_pfn = 0, hole_pages = 0;
3909 unsigned long start_pfn;
3910
3911 /* Find the end_pfn of the first active range of pfns in the node */
3912 i = first_active_region_index_in_nid(nid);
3913 if (i == -1)
3914 return 0;
3915
b5445f95
MG
3916 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3917
9c7cd687
MG
3918 /* Account for ranges before physical memory on this node */
3919 if (early_node_map[i].start_pfn > range_start_pfn)
b5445f95 3920 hole_pages = prev_end_pfn - range_start_pfn;
c713216d
MG
3921
3922 /* Find all holes for the zone within the node */
3923 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3924
3925 /* No need to continue if prev_end_pfn is outside the zone */
3926 if (prev_end_pfn >= range_end_pfn)
3927 break;
3928
3929 /* Make sure the end of the zone is not within the hole */
3930 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3931 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3932
3933 /* Update the hole size cound and move on */
3934 if (start_pfn > range_start_pfn) {
3935 BUG_ON(prev_end_pfn > start_pfn);
3936 hole_pages += start_pfn - prev_end_pfn;
3937 }
3938 prev_end_pfn = early_node_map[i].end_pfn;
3939 }
3940
9c7cd687
MG
3941 /* Account for ranges past physical memory on this node */
3942 if (range_end_pfn > prev_end_pfn)
0c6cb974 3943 hole_pages += range_end_pfn -
9c7cd687
MG
3944 max(range_start_pfn, prev_end_pfn);
3945
c713216d
MG
3946 return hole_pages;
3947}
3948
3949/**
3950 * absent_pages_in_range - Return number of page frames in holes within a range
3951 * @start_pfn: The start PFN to start searching for holes
3952 * @end_pfn: The end PFN to stop searching for holes
3953 *
88ca3b94 3954 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
3955 */
3956unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3957 unsigned long end_pfn)
3958{
3959 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3960}
3961
3962/* Return the number of page frames in holes in a zone on a node */
6ea6e688 3963static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3964 unsigned long zone_type,
3965 unsigned long *ignored)
3966{
9c7cd687
MG
3967 unsigned long node_start_pfn, node_end_pfn;
3968 unsigned long zone_start_pfn, zone_end_pfn;
3969
3970 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3971 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3972 node_start_pfn);
3973 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3974 node_end_pfn);
3975
2a1e274a
MG
3976 adjust_zone_range_for_zone_movable(nid, zone_type,
3977 node_start_pfn, node_end_pfn,
3978 &zone_start_pfn, &zone_end_pfn);
9c7cd687 3979 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 3980}
0e0b864e 3981
c713216d 3982#else
6ea6e688 3983static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3984 unsigned long zone_type,
3985 unsigned long *zones_size)
3986{
3987 return zones_size[zone_type];
3988}
3989
6ea6e688 3990static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3991 unsigned long zone_type,
3992 unsigned long *zholes_size)
3993{
3994 if (!zholes_size)
3995 return 0;
3996
3997 return zholes_size[zone_type];
3998}
0e0b864e 3999
c713216d
MG
4000#endif
4001
a3142c8e 4002static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
4003 unsigned long *zones_size, unsigned long *zholes_size)
4004{
4005 unsigned long realtotalpages, totalpages = 0;
4006 enum zone_type i;
4007
4008 for (i = 0; i < MAX_NR_ZONES; i++)
4009 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4010 zones_size);
4011 pgdat->node_spanned_pages = totalpages;
4012
4013 realtotalpages = totalpages;
4014 for (i = 0; i < MAX_NR_ZONES; i++)
4015 realtotalpages -=
4016 zone_absent_pages_in_node(pgdat->node_id, i,
4017 zholes_size);
4018 pgdat->node_present_pages = realtotalpages;
4019 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4020 realtotalpages);
4021}
4022
835c134e
MG
4023#ifndef CONFIG_SPARSEMEM
4024/*
4025 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4026 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4027 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4028 * round what is now in bits to nearest long in bits, then return it in
4029 * bytes.
4030 */
4031static unsigned long __init usemap_size(unsigned long zonesize)
4032{
4033 unsigned long usemapsize;
4034
d9c23400
MG
4035 usemapsize = roundup(zonesize, pageblock_nr_pages);
4036 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4037 usemapsize *= NR_PAGEBLOCK_BITS;
4038 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4039
4040 return usemapsize / 8;
4041}
4042
4043static void __init setup_usemap(struct pglist_data *pgdat,
4044 struct zone *zone, unsigned long zonesize)
4045{
4046 unsigned long usemapsize = usemap_size(zonesize);
4047 zone->pageblock_flags = NULL;
58a01a45 4048 if (usemapsize)
835c134e 4049 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
835c134e
MG
4050}
4051#else
fa9f90be 4052static inline void setup_usemap(struct pglist_data *pgdat,
835c134e
MG
4053 struct zone *zone, unsigned long zonesize) {}
4054#endif /* CONFIG_SPARSEMEM */
4055
d9c23400 4056#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c
MG
4057
4058/* Return a sensible default order for the pageblock size. */
4059static inline int pageblock_default_order(void)
4060{
4061 if (HPAGE_SHIFT > PAGE_SHIFT)
4062 return HUGETLB_PAGE_ORDER;
4063
4064 return MAX_ORDER-1;
4065}
4066
d9c23400
MG
4067/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4068static inline void __init set_pageblock_order(unsigned int order)
4069{
4070 /* Check that pageblock_nr_pages has not already been setup */
4071 if (pageblock_order)
4072 return;
4073
4074 /*
4075 * Assume the largest contiguous order of interest is a huge page.
4076 * This value may be variable depending on boot parameters on IA64
4077 */
4078 pageblock_order = order;
4079}
4080#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4081
ba72cb8c
MG
4082/*
4083 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4084 * and pageblock_default_order() are unused as pageblock_order is set
4085 * at compile-time. See include/linux/pageblock-flags.h for the values of
4086 * pageblock_order based on the kernel config
4087 */
4088static inline int pageblock_default_order(unsigned int order)
4089{
4090 return MAX_ORDER-1;
4091}
d9c23400
MG
4092#define set_pageblock_order(x) do {} while (0)
4093
4094#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4095
1da177e4
LT
4096/*
4097 * Set up the zone data structures:
4098 * - mark all pages reserved
4099 * - mark all memory queues empty
4100 * - clear the memory bitmaps
4101 */
b5a0e011 4102static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
4103 unsigned long *zones_size, unsigned long *zholes_size)
4104{
2f1b6248 4105 enum zone_type j;
ed8ece2e 4106 int nid = pgdat->node_id;
1da177e4 4107 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4108 int ret;
1da177e4 4109
208d54e5 4110 pgdat_resize_init(pgdat);
1da177e4
LT
4111 pgdat->nr_zones = 0;
4112 init_waitqueue_head(&pgdat->kswapd_wait);
4113 pgdat->kswapd_max_order = 0;
52d4b9ac 4114 pgdat_page_cgroup_init(pgdat);
1da177e4
LT
4115
4116 for (j = 0; j < MAX_NR_ZONES; j++) {
4117 struct zone *zone = pgdat->node_zones + j;
0e0b864e 4118 unsigned long size, realsize, memmap_pages;
b69408e8 4119 enum lru_list l;
1da177e4 4120
c713216d
MG
4121 size = zone_spanned_pages_in_node(nid, j, zones_size);
4122 realsize = size - zone_absent_pages_in_node(nid, j,
4123 zholes_size);
1da177e4 4124
0e0b864e
MG
4125 /*
4126 * Adjust realsize so that it accounts for how much memory
4127 * is used by this zone for memmap. This affects the watermark
4128 * and per-cpu initialisations
4129 */
f7232154
JW
4130 memmap_pages =
4131 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
4132 if (realsize >= memmap_pages) {
4133 realsize -= memmap_pages;
5594c8c8
YL
4134 if (memmap_pages)
4135 printk(KERN_DEBUG
4136 " %s zone: %lu pages used for memmap\n",
4137 zone_names[j], memmap_pages);
0e0b864e
MG
4138 } else
4139 printk(KERN_WARNING
4140 " %s zone: %lu pages exceeds realsize %lu\n",
4141 zone_names[j], memmap_pages, realsize);
4142
6267276f
CL
4143 /* Account for reserved pages */
4144 if (j == 0 && realsize > dma_reserve) {
0e0b864e 4145 realsize -= dma_reserve;
d903ef9f 4146 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4147 zone_names[0], dma_reserve);
0e0b864e
MG
4148 }
4149
98d2b0eb 4150 if (!is_highmem_idx(j))
1da177e4
LT
4151 nr_kernel_pages += realsize;
4152 nr_all_pages += realsize;
4153
4154 zone->spanned_pages = size;
4155 zone->present_pages = realsize;
9614634f 4156#ifdef CONFIG_NUMA
d5f541ed 4157 zone->node = nid;
8417bba4 4158 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 4159 / 100;
0ff38490 4160 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 4161#endif
1da177e4
LT
4162 zone->name = zone_names[j];
4163 spin_lock_init(&zone->lock);
4164 spin_lock_init(&zone->lru_lock);
bdc8cb98 4165 zone_seqlock_init(zone);
1da177e4 4166 zone->zone_pgdat = pgdat;
1da177e4 4167
ed8ece2e 4168 zone_pcp_init(zone);
b69408e8
CL
4169 for_each_lru(l) {
4170 INIT_LIST_HEAD(&zone->lru[l].list);
f8629631 4171 zone->reclaim_stat.nr_saved_scan[l] = 0;
b69408e8 4172 }
6e901571
KM
4173 zone->reclaim_stat.recent_rotated[0] = 0;
4174 zone->reclaim_stat.recent_rotated[1] = 0;
4175 zone->reclaim_stat.recent_scanned[0] = 0;
4176 zone->reclaim_stat.recent_scanned[1] = 0;
2244b95a 4177 zap_zone_vm_stats(zone);
e815af95 4178 zone->flags = 0;
1da177e4
LT
4179 if (!size)
4180 continue;
4181
ba72cb8c 4182 set_pageblock_order(pageblock_default_order());
835c134e 4183 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
4184 ret = init_currently_empty_zone(zone, zone_start_pfn,
4185 size, MEMMAP_EARLY);
718127cc 4186 BUG_ON(ret);
76cdd58e 4187 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4188 zone_start_pfn += size;
1da177e4
LT
4189 }
4190}
4191
577a32f6 4192static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4193{
1da177e4
LT
4194 /* Skip empty nodes */
4195 if (!pgdat->node_spanned_pages)
4196 return;
4197
d41dee36 4198#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4199 /* ia64 gets its own node_mem_map, before this, without bootmem */
4200 if (!pgdat->node_mem_map) {
e984bb43 4201 unsigned long size, start, end;
d41dee36
AW
4202 struct page *map;
4203
e984bb43
BP
4204 /*
4205 * The zone's endpoints aren't required to be MAX_ORDER
4206 * aligned but the node_mem_map endpoints must be in order
4207 * for the buddy allocator to function correctly.
4208 */
4209 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4210 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4211 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4212 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4213 map = alloc_remap(pgdat->node_id, size);
4214 if (!map)
4215 map = alloc_bootmem_node(pgdat, size);
e984bb43 4216 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4217 }
12d810c1 4218#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4219 /*
4220 * With no DISCONTIG, the global mem_map is just set as node 0's
4221 */
c713216d 4222 if (pgdat == NODE_DATA(0)) {
1da177e4 4223 mem_map = NODE_DATA(0)->node_mem_map;
c713216d
MG
4224#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4225 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4226 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
c713216d
MG
4227#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4228 }
1da177e4 4229#endif
d41dee36 4230#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4231}
4232
9109fb7b
JW
4233void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4234 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4235{
9109fb7b
JW
4236 pg_data_t *pgdat = NODE_DATA(nid);
4237
1da177e4
LT
4238 pgdat->node_id = nid;
4239 pgdat->node_start_pfn = node_start_pfn;
c713216d 4240 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
4241
4242 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4243#ifdef CONFIG_FLAT_NODE_MEM_MAP
4244 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4245 nid, (unsigned long)pgdat,
4246 (unsigned long)pgdat->node_mem_map);
4247#endif
1da177e4
LT
4248
4249 free_area_init_core(pgdat, zones_size, zholes_size);
4250}
4251
c713216d 4252#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
418508c1
MS
4253
4254#if MAX_NUMNODES > 1
4255/*
4256 * Figure out the number of possible node ids.
4257 */
4258static void __init setup_nr_node_ids(void)
4259{
4260 unsigned int node;
4261 unsigned int highest = 0;
4262
4263 for_each_node_mask(node, node_possible_map)
4264 highest = node;
4265 nr_node_ids = highest + 1;
4266}
4267#else
4268static inline void setup_nr_node_ids(void)
4269{
4270}
4271#endif
4272
c713216d
MG
4273/**
4274 * add_active_range - Register a range of PFNs backed by physical memory
4275 * @nid: The node ID the range resides on
4276 * @start_pfn: The start PFN of the available physical memory
4277 * @end_pfn: The end PFN of the available physical memory
4278 *
4279 * These ranges are stored in an early_node_map[] and later used by
4280 * free_area_init_nodes() to calculate zone sizes and holes. If the
4281 * range spans a memory hole, it is up to the architecture to ensure
4282 * the memory is not freed by the bootmem allocator. If possible
4283 * the range being registered will be merged with existing ranges.
4284 */
4285void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4286 unsigned long end_pfn)
4287{
4288 int i;
4289
6b74ab97
MG
4290 mminit_dprintk(MMINIT_TRACE, "memory_register",
4291 "Entering add_active_range(%d, %#lx, %#lx) "
4292 "%d entries of %d used\n",
4293 nid, start_pfn, end_pfn,
4294 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
c713216d 4295
2dbb51c4
MG
4296 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4297
c713216d
MG
4298 /* Merge with existing active regions if possible */
4299 for (i = 0; i < nr_nodemap_entries; i++) {
4300 if (early_node_map[i].nid != nid)
4301 continue;
4302
4303 /* Skip if an existing region covers this new one */
4304 if (start_pfn >= early_node_map[i].start_pfn &&
4305 end_pfn <= early_node_map[i].end_pfn)
4306 return;
4307
4308 /* Merge forward if suitable */
4309 if (start_pfn <= early_node_map[i].end_pfn &&
4310 end_pfn > early_node_map[i].end_pfn) {
4311 early_node_map[i].end_pfn = end_pfn;
4312 return;
4313 }
4314
4315 /* Merge backward if suitable */
d2dbe08d 4316 if (start_pfn < early_node_map[i].start_pfn &&
c713216d
MG
4317 end_pfn >= early_node_map[i].start_pfn) {
4318 early_node_map[i].start_pfn = start_pfn;
4319 return;
4320 }
4321 }
4322
4323 /* Check that early_node_map is large enough */
4324 if (i >= MAX_ACTIVE_REGIONS) {
4325 printk(KERN_CRIT "More than %d memory regions, truncating\n",
4326 MAX_ACTIVE_REGIONS);
4327 return;
4328 }
4329
4330 early_node_map[i].nid = nid;
4331 early_node_map[i].start_pfn = start_pfn;
4332 early_node_map[i].end_pfn = end_pfn;
4333 nr_nodemap_entries = i + 1;
4334}
4335
4336/**
cc1050ba 4337 * remove_active_range - Shrink an existing registered range of PFNs
c713216d 4338 * @nid: The node id the range is on that should be shrunk
cc1050ba
YL
4339 * @start_pfn: The new PFN of the range
4340 * @end_pfn: The new PFN of the range
c713216d
MG
4341 *
4342 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
cc1a9d86
YL
4343 * The map is kept near the end physical page range that has already been
4344 * registered. This function allows an arch to shrink an existing registered
4345 * range.
c713216d 4346 */
cc1050ba
YL
4347void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4348 unsigned long end_pfn)
c713216d 4349{
cc1a9d86
YL
4350 int i, j;
4351 int removed = 0;
c713216d 4352
cc1050ba
YL
4353 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4354 nid, start_pfn, end_pfn);
4355
c713216d 4356 /* Find the old active region end and shrink */
cc1a9d86 4357 for_each_active_range_index_in_nid(i, nid) {
cc1050ba
YL
4358 if (early_node_map[i].start_pfn >= start_pfn &&
4359 early_node_map[i].end_pfn <= end_pfn) {
cc1a9d86 4360 /* clear it */
cc1050ba 4361 early_node_map[i].start_pfn = 0;
cc1a9d86
YL
4362 early_node_map[i].end_pfn = 0;
4363 removed = 1;
4364 continue;
4365 }
cc1050ba
YL
4366 if (early_node_map[i].start_pfn < start_pfn &&
4367 early_node_map[i].end_pfn > start_pfn) {
4368 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4369 early_node_map[i].end_pfn = start_pfn;
4370 if (temp_end_pfn > end_pfn)
4371 add_active_range(nid, end_pfn, temp_end_pfn);
4372 continue;
4373 }
4374 if (early_node_map[i].start_pfn >= start_pfn &&
4375 early_node_map[i].end_pfn > end_pfn &&
4376 early_node_map[i].start_pfn < end_pfn) {
4377 early_node_map[i].start_pfn = end_pfn;
cc1a9d86 4378 continue;
c713216d 4379 }
cc1a9d86
YL
4380 }
4381
4382 if (!removed)
4383 return;
4384
4385 /* remove the blank ones */
4386 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4387 if (early_node_map[i].nid != nid)
4388 continue;
4389 if (early_node_map[i].end_pfn)
4390 continue;
4391 /* we found it, get rid of it */
4392 for (j = i; j < nr_nodemap_entries - 1; j++)
4393 memcpy(&early_node_map[j], &early_node_map[j+1],
4394 sizeof(early_node_map[j]));
4395 j = nr_nodemap_entries - 1;
4396 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4397 nr_nodemap_entries--;
4398 }
c713216d
MG
4399}
4400
4401/**
4402 * remove_all_active_ranges - Remove all currently registered regions
88ca3b94 4403 *
c713216d
MG
4404 * During discovery, it may be found that a table like SRAT is invalid
4405 * and an alternative discovery method must be used. This function removes
4406 * all currently registered regions.
4407 */
88ca3b94 4408void __init remove_all_active_ranges(void)
c713216d
MG
4409{
4410 memset(early_node_map, 0, sizeof(early_node_map));
4411 nr_nodemap_entries = 0;
4412}
4413
4414/* Compare two active node_active_regions */
4415static int __init cmp_node_active_region(const void *a, const void *b)
4416{
4417 struct node_active_region *arange = (struct node_active_region *)a;
4418 struct node_active_region *brange = (struct node_active_region *)b;
4419
4420 /* Done this way to avoid overflows */
4421 if (arange->start_pfn > brange->start_pfn)
4422 return 1;
4423 if (arange->start_pfn < brange->start_pfn)
4424 return -1;
4425
4426 return 0;
4427}
4428
4429/* sort the node_map by start_pfn */
32996250 4430void __init sort_node_map(void)
c713216d
MG
4431{
4432 sort(early_node_map, (size_t)nr_nodemap_entries,
4433 sizeof(struct node_active_region),
4434 cmp_node_active_region, NULL);
4435}
4436
a6af2bc3 4437/* Find the lowest pfn for a node */
b69a7288 4438static unsigned long __init find_min_pfn_for_node(int nid)
c713216d
MG
4439{
4440 int i;
a6af2bc3 4441 unsigned long min_pfn = ULONG_MAX;
1abbfb41 4442
c713216d
MG
4443 /* Assuming a sorted map, the first range found has the starting pfn */
4444 for_each_active_range_index_in_nid(i, nid)
a6af2bc3 4445 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
c713216d 4446
a6af2bc3
MG
4447 if (min_pfn == ULONG_MAX) {
4448 printk(KERN_WARNING
2bc0d261 4449 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4450 return 0;
4451 }
4452
4453 return min_pfn;
c713216d
MG
4454}
4455
4456/**
4457 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4458 *
4459 * It returns the minimum PFN based on information provided via
88ca3b94 4460 * add_active_range().
c713216d
MG
4461 */
4462unsigned long __init find_min_pfn_with_active_regions(void)
4463{
4464 return find_min_pfn_for_node(MAX_NUMNODES);
4465}
4466
37b07e41
LS
4467/*
4468 * early_calculate_totalpages()
4469 * Sum pages in active regions for movable zone.
4470 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4471 */
484f51f8 4472static unsigned long __init early_calculate_totalpages(void)
7e63efef
MG
4473{
4474 int i;
4475 unsigned long totalpages = 0;
4476
37b07e41
LS
4477 for (i = 0; i < nr_nodemap_entries; i++) {
4478 unsigned long pages = early_node_map[i].end_pfn -
7e63efef 4479 early_node_map[i].start_pfn;
37b07e41
LS
4480 totalpages += pages;
4481 if (pages)
4482 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4483 }
4484 return totalpages;
7e63efef
MG
4485}
4486
2a1e274a
MG
4487/*
4488 * Find the PFN the Movable zone begins in each node. Kernel memory
4489 * is spread evenly between nodes as long as the nodes have enough
4490 * memory. When they don't, some nodes will have more kernelcore than
4491 * others
4492 */
b69a7288 4493static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
2a1e274a
MG
4494{
4495 int i, nid;
4496 unsigned long usable_startpfn;
4497 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd
YL
4498 /* save the state before borrow the nodemask */
4499 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
37b07e41
LS
4500 unsigned long totalpages = early_calculate_totalpages();
4501 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 4502
7e63efef
MG
4503 /*
4504 * If movablecore was specified, calculate what size of
4505 * kernelcore that corresponds so that memory usable for
4506 * any allocation type is evenly spread. If both kernelcore
4507 * and movablecore are specified, then the value of kernelcore
4508 * will be used for required_kernelcore if it's greater than
4509 * what movablecore would have allowed.
4510 */
4511 if (required_movablecore) {
7e63efef
MG
4512 unsigned long corepages;
4513
4514 /*
4515 * Round-up so that ZONE_MOVABLE is at least as large as what
4516 * was requested by the user
4517 */
4518 required_movablecore =
4519 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4520 corepages = totalpages - required_movablecore;
4521
4522 required_kernelcore = max(required_kernelcore, corepages);
4523 }
4524
2a1e274a
MG
4525 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4526 if (!required_kernelcore)
66918dcd 4527 goto out;
2a1e274a
MG
4528
4529 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4530 find_usable_zone_for_movable();
4531 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4532
4533restart:
4534 /* Spread kernelcore memory as evenly as possible throughout nodes */
4535 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 4536 for_each_node_state(nid, N_HIGH_MEMORY) {
2a1e274a
MG
4537 /*
4538 * Recalculate kernelcore_node if the division per node
4539 * now exceeds what is necessary to satisfy the requested
4540 * amount of memory for the kernel
4541 */
4542 if (required_kernelcore < kernelcore_node)
4543 kernelcore_node = required_kernelcore / usable_nodes;
4544
4545 /*
4546 * As the map is walked, we track how much memory is usable
4547 * by the kernel using kernelcore_remaining. When it is
4548 * 0, the rest of the node is usable by ZONE_MOVABLE
4549 */
4550 kernelcore_remaining = kernelcore_node;
4551
4552 /* Go through each range of PFNs within this node */
4553 for_each_active_range_index_in_nid(i, nid) {
4554 unsigned long start_pfn, end_pfn;
4555 unsigned long size_pages;
4556
4557 start_pfn = max(early_node_map[i].start_pfn,
4558 zone_movable_pfn[nid]);
4559 end_pfn = early_node_map[i].end_pfn;
4560 if (start_pfn >= end_pfn)
4561 continue;
4562
4563 /* Account for what is only usable for kernelcore */
4564 if (start_pfn < usable_startpfn) {
4565 unsigned long kernel_pages;
4566 kernel_pages = min(end_pfn, usable_startpfn)
4567 - start_pfn;
4568
4569 kernelcore_remaining -= min(kernel_pages,
4570 kernelcore_remaining);
4571 required_kernelcore -= min(kernel_pages,
4572 required_kernelcore);
4573
4574 /* Continue if range is now fully accounted */
4575 if (end_pfn <= usable_startpfn) {
4576
4577 /*
4578 * Push zone_movable_pfn to the end so
4579 * that if we have to rebalance
4580 * kernelcore across nodes, we will
4581 * not double account here
4582 */
4583 zone_movable_pfn[nid] = end_pfn;
4584 continue;
4585 }
4586 start_pfn = usable_startpfn;
4587 }
4588
4589 /*
4590 * The usable PFN range for ZONE_MOVABLE is from
4591 * start_pfn->end_pfn. Calculate size_pages as the
4592 * number of pages used as kernelcore
4593 */
4594 size_pages = end_pfn - start_pfn;
4595 if (size_pages > kernelcore_remaining)
4596 size_pages = kernelcore_remaining;
4597 zone_movable_pfn[nid] = start_pfn + size_pages;
4598
4599 /*
4600 * Some kernelcore has been met, update counts and
4601 * break if the kernelcore for this node has been
4602 * satisified
4603 */
4604 required_kernelcore -= min(required_kernelcore,
4605 size_pages);
4606 kernelcore_remaining -= size_pages;
4607 if (!kernelcore_remaining)
4608 break;
4609 }
4610 }
4611
4612 /*
4613 * If there is still required_kernelcore, we do another pass with one
4614 * less node in the count. This will push zone_movable_pfn[nid] further
4615 * along on the nodes that still have memory until kernelcore is
4616 * satisified
4617 */
4618 usable_nodes--;
4619 if (usable_nodes && required_kernelcore > usable_nodes)
4620 goto restart;
4621
4622 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4623 for (nid = 0; nid < MAX_NUMNODES; nid++)
4624 zone_movable_pfn[nid] =
4625 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd
YL
4626
4627out:
4628 /* restore the node_state */
4629 node_states[N_HIGH_MEMORY] = saved_node_state;
2a1e274a
MG
4630}
4631
37b07e41
LS
4632/* Any regular memory on that node ? */
4633static void check_for_regular_memory(pg_data_t *pgdat)
4634{
4635#ifdef CONFIG_HIGHMEM
4636 enum zone_type zone_type;
4637
4638 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4639 struct zone *zone = &pgdat->node_zones[zone_type];
4640 if (zone->present_pages)
4641 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4642 }
4643#endif
4644}
4645
c713216d
MG
4646/**
4647 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 4648 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4649 *
4650 * This will call free_area_init_node() for each active node in the system.
4651 * Using the page ranges provided by add_active_range(), the size of each
4652 * zone in each node and their holes is calculated. If the maximum PFN
4653 * between two adjacent zones match, it is assumed that the zone is empty.
4654 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4655 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4656 * starts where the previous one ended. For example, ZONE_DMA32 starts
4657 * at arch_max_dma_pfn.
4658 */
4659void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4660{
4661 unsigned long nid;
db99100d 4662 int i;
c713216d 4663
a6af2bc3
MG
4664 /* Sort early_node_map as initialisation assumes it is sorted */
4665 sort_node_map();
4666
c713216d
MG
4667 /* Record where the zone boundaries are */
4668 memset(arch_zone_lowest_possible_pfn, 0,
4669 sizeof(arch_zone_lowest_possible_pfn));
4670 memset(arch_zone_highest_possible_pfn, 0,
4671 sizeof(arch_zone_highest_possible_pfn));
4672 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4673 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4674 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4675 if (i == ZONE_MOVABLE)
4676 continue;
c713216d
MG
4677 arch_zone_lowest_possible_pfn[i] =
4678 arch_zone_highest_possible_pfn[i-1];
4679 arch_zone_highest_possible_pfn[i] =
4680 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4681 }
2a1e274a
MG
4682 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4683 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4684
4685 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4686 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4687 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
c713216d 4688
c713216d
MG
4689 /* Print out the zone ranges */
4690 printk("Zone PFN ranges:\n");
2a1e274a
MG
4691 for (i = 0; i < MAX_NR_ZONES; i++) {
4692 if (i == ZONE_MOVABLE)
4693 continue;
72f0ba02
DR
4694 printk(" %-8s ", zone_names[i]);
4695 if (arch_zone_lowest_possible_pfn[i] ==
4696 arch_zone_highest_possible_pfn[i])
4697 printk("empty\n");
4698 else
4699 printk("%0#10lx -> %0#10lx\n",
c713216d
MG
4700 arch_zone_lowest_possible_pfn[i],
4701 arch_zone_highest_possible_pfn[i]);
2a1e274a
MG
4702 }
4703
4704 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4705 printk("Movable zone start PFN for each node\n");
4706 for (i = 0; i < MAX_NUMNODES; i++) {
4707 if (zone_movable_pfn[i])
4708 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4709 }
c713216d
MG
4710
4711 /* Print out the early_node_map[] */
4712 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4713 for (i = 0; i < nr_nodemap_entries; i++)
5dab8ec1 4714 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
c713216d
MG
4715 early_node_map[i].start_pfn,
4716 early_node_map[i].end_pfn);
4717
4718 /* Initialise every node */
708614e6 4719 mminit_verify_pageflags_layout();
8ef82866 4720 setup_nr_node_ids();
c713216d
MG
4721 for_each_online_node(nid) {
4722 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4723 free_area_init_node(nid, NULL,
c713216d 4724 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4725
4726 /* Any memory on that node */
4727 if (pgdat->node_present_pages)
4728 node_set_state(nid, N_HIGH_MEMORY);
4729 check_for_regular_memory(pgdat);
c713216d
MG
4730 }
4731}
2a1e274a 4732
7e63efef 4733static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
4734{
4735 unsigned long long coremem;
4736 if (!p)
4737 return -EINVAL;
4738
4739 coremem = memparse(p, &p);
7e63efef 4740 *core = coremem >> PAGE_SHIFT;
2a1e274a 4741
7e63efef 4742 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
4743 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4744
4745 return 0;
4746}
ed7ed365 4747
7e63efef
MG
4748/*
4749 * kernelcore=size sets the amount of memory for use for allocations that
4750 * cannot be reclaimed or migrated.
4751 */
4752static int __init cmdline_parse_kernelcore(char *p)
4753{
4754 return cmdline_parse_core(p, &required_kernelcore);
4755}
4756
4757/*
4758 * movablecore=size sets the amount of memory for use for allocations that
4759 * can be reclaimed or migrated.
4760 */
4761static int __init cmdline_parse_movablecore(char *p)
4762{
4763 return cmdline_parse_core(p, &required_movablecore);
4764}
4765
ed7ed365 4766early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 4767early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 4768
c713216d
MG
4769#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4770
0e0b864e 4771/**
88ca3b94
RD
4772 * set_dma_reserve - set the specified number of pages reserved in the first zone
4773 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
4774 *
4775 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4776 * In the DMA zone, a significant percentage may be consumed by kernel image
4777 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
4778 * function may optionally be used to account for unfreeable pages in the
4779 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4780 * smaller per-cpu batchsize.
0e0b864e
MG
4781 */
4782void __init set_dma_reserve(unsigned long new_dma_reserve)
4783{
4784 dma_reserve = new_dma_reserve;
4785}
4786
93b7504e 4787#ifndef CONFIG_NEED_MULTIPLE_NODES
08677214
YL
4788struct pglist_data __refdata contig_page_data = {
4789#ifndef CONFIG_NO_BOOTMEM
4790 .bdata = &bootmem_node_data[0]
4791#endif
4792 };
1da177e4 4793EXPORT_SYMBOL(contig_page_data);
93b7504e 4794#endif
1da177e4
LT
4795
4796void __init free_area_init(unsigned long *zones_size)
4797{
9109fb7b 4798 free_area_init_node(0, zones_size,
1da177e4
LT
4799 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4800}
1da177e4 4801
1da177e4
LT
4802static int page_alloc_cpu_notify(struct notifier_block *self,
4803 unsigned long action, void *hcpu)
4804{
4805 int cpu = (unsigned long)hcpu;
1da177e4 4806
8bb78442 4807 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
9f8f2172
CL
4808 drain_pages(cpu);
4809
4810 /*
4811 * Spill the event counters of the dead processor
4812 * into the current processors event counters.
4813 * This artificially elevates the count of the current
4814 * processor.
4815 */
f8891e5e 4816 vm_events_fold_cpu(cpu);
9f8f2172
CL
4817
4818 /*
4819 * Zero the differential counters of the dead processor
4820 * so that the vm statistics are consistent.
4821 *
4822 * This is only okay since the processor is dead and cannot
4823 * race with what we are doing.
4824 */
2244b95a 4825 refresh_cpu_vm_stats(cpu);
1da177e4
LT
4826 }
4827 return NOTIFY_OK;
4828}
1da177e4
LT
4829
4830void __init page_alloc_init(void)
4831{
4832 hotcpu_notifier(page_alloc_cpu_notify, 0);
4833}
4834
cb45b0e9
HA
4835/*
4836 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4837 * or min_free_kbytes changes.
4838 */
4839static void calculate_totalreserve_pages(void)
4840{
4841 struct pglist_data *pgdat;
4842 unsigned long reserve_pages = 0;
2f6726e5 4843 enum zone_type i, j;
cb45b0e9
HA
4844
4845 for_each_online_pgdat(pgdat) {
4846 for (i = 0; i < MAX_NR_ZONES; i++) {
4847 struct zone *zone = pgdat->node_zones + i;
4848 unsigned long max = 0;
4849
4850 /* Find valid and maximum lowmem_reserve in the zone */
4851 for (j = i; j < MAX_NR_ZONES; j++) {
4852 if (zone->lowmem_reserve[j] > max)
4853 max = zone->lowmem_reserve[j];
4854 }
4855
41858966
MG
4856 /* we treat the high watermark as reserved pages. */
4857 max += high_wmark_pages(zone);
cb45b0e9
HA
4858
4859 if (max > zone->present_pages)
4860 max = zone->present_pages;
4861 reserve_pages += max;
4862 }
4863 }
4864 totalreserve_pages = reserve_pages;
4865}
4866
1da177e4
LT
4867/*
4868 * setup_per_zone_lowmem_reserve - called whenever
4869 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4870 * has a correct pages reserved value, so an adequate number of
4871 * pages are left in the zone after a successful __alloc_pages().
4872 */
4873static void setup_per_zone_lowmem_reserve(void)
4874{
4875 struct pglist_data *pgdat;
2f6726e5 4876 enum zone_type j, idx;
1da177e4 4877
ec936fc5 4878 for_each_online_pgdat(pgdat) {
1da177e4
LT
4879 for (j = 0; j < MAX_NR_ZONES; j++) {
4880 struct zone *zone = pgdat->node_zones + j;
4881 unsigned long present_pages = zone->present_pages;
4882
4883 zone->lowmem_reserve[j] = 0;
4884
2f6726e5
CL
4885 idx = j;
4886 while (idx) {
1da177e4
LT
4887 struct zone *lower_zone;
4888
2f6726e5
CL
4889 idx--;
4890
1da177e4
LT
4891 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4892 sysctl_lowmem_reserve_ratio[idx] = 1;
4893
4894 lower_zone = pgdat->node_zones + idx;
4895 lower_zone->lowmem_reserve[j] = present_pages /
4896 sysctl_lowmem_reserve_ratio[idx];
4897 present_pages += lower_zone->present_pages;
4898 }
4899 }
4900 }
cb45b0e9
HA
4901
4902 /* update totalreserve_pages */
4903 calculate_totalreserve_pages();
1da177e4
LT
4904}
4905
88ca3b94 4906/**
bc75d33f 4907 * setup_per_zone_wmarks - called when min_free_kbytes changes
bce7394a 4908 * or when memory is hot-{added|removed}
88ca3b94 4909 *
bc75d33f
MK
4910 * Ensures that the watermark[min,low,high] values for each zone are set
4911 * correctly with respect to min_free_kbytes.
1da177e4 4912 */
bc75d33f 4913void setup_per_zone_wmarks(void)
1da177e4
LT
4914{
4915 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4916 unsigned long lowmem_pages = 0;
4917 struct zone *zone;
4918 unsigned long flags;
4919
4920 /* Calculate total number of !ZONE_HIGHMEM pages */
4921 for_each_zone(zone) {
4922 if (!is_highmem(zone))
4923 lowmem_pages += zone->present_pages;
4924 }
4925
4926 for_each_zone(zone) {
ac924c60
AM
4927 u64 tmp;
4928
1125b4e3 4929 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
4930 tmp = (u64)pages_min * zone->present_pages;
4931 do_div(tmp, lowmem_pages);
1da177e4
LT
4932 if (is_highmem(zone)) {
4933 /*
669ed175
NP
4934 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4935 * need highmem pages, so cap pages_min to a small
4936 * value here.
4937 *
41858966 4938 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
4939 * deltas controls asynch page reclaim, and so should
4940 * not be capped for highmem.
1da177e4
LT
4941 */
4942 int min_pages;
4943
4944 min_pages = zone->present_pages / 1024;
4945 if (min_pages < SWAP_CLUSTER_MAX)
4946 min_pages = SWAP_CLUSTER_MAX;
4947 if (min_pages > 128)
4948 min_pages = 128;
41858966 4949 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 4950 } else {
669ed175
NP
4951 /*
4952 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
4953 * proportionate to the zone's size.
4954 */
41858966 4955 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
4956 }
4957
41858966
MG
4958 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4959 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
56fd56b8 4960 setup_zone_migrate_reserve(zone);
1125b4e3 4961 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 4962 }
cb45b0e9
HA
4963
4964 /* update totalreserve_pages */
4965 calculate_totalreserve_pages();
1da177e4
LT
4966}
4967
55a4462a 4968/*
556adecb
RR
4969 * The inactive anon list should be small enough that the VM never has to
4970 * do too much work, but large enough that each inactive page has a chance
4971 * to be referenced again before it is swapped out.
4972 *
4973 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4974 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4975 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4976 * the anonymous pages are kept on the inactive list.
4977 *
4978 * total target max
4979 * memory ratio inactive anon
4980 * -------------------------------------
4981 * 10MB 1 5MB
4982 * 100MB 1 50MB
4983 * 1GB 3 250MB
4984 * 10GB 10 0.9GB
4985 * 100GB 31 3GB
4986 * 1TB 101 10GB
4987 * 10TB 320 32GB
4988 */
96cb4df5 4989void calculate_zone_inactive_ratio(struct zone *zone)
556adecb 4990{
96cb4df5 4991 unsigned int gb, ratio;
556adecb 4992
96cb4df5
MK
4993 /* Zone size in gigabytes */
4994 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4995 if (gb)
556adecb 4996 ratio = int_sqrt(10 * gb);
96cb4df5
MK
4997 else
4998 ratio = 1;
556adecb 4999
96cb4df5
MK
5000 zone->inactive_ratio = ratio;
5001}
556adecb 5002
96cb4df5
MK
5003static void __init setup_per_zone_inactive_ratio(void)
5004{
5005 struct zone *zone;
5006
5007 for_each_zone(zone)
5008 calculate_zone_inactive_ratio(zone);
556adecb
RR
5009}
5010
1da177e4
LT
5011/*
5012 * Initialise min_free_kbytes.
5013 *
5014 * For small machines we want it small (128k min). For large machines
5015 * we want it large (64MB max). But it is not linear, because network
5016 * bandwidth does not increase linearly with machine size. We use
5017 *
5018 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5019 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5020 *
5021 * which yields
5022 *
5023 * 16MB: 512k
5024 * 32MB: 724k
5025 * 64MB: 1024k
5026 * 128MB: 1448k
5027 * 256MB: 2048k
5028 * 512MB: 2896k
5029 * 1024MB: 4096k
5030 * 2048MB: 5792k
5031 * 4096MB: 8192k
5032 * 8192MB: 11584k
5033 * 16384MB: 16384k
5034 */
bc75d33f 5035static int __init init_per_zone_wmark_min(void)
1da177e4
LT
5036{
5037 unsigned long lowmem_kbytes;
5038
5039 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5040
5041 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5042 if (min_free_kbytes < 128)
5043 min_free_kbytes = 128;
5044 if (min_free_kbytes > 65536)
5045 min_free_kbytes = 65536;
bc75d33f 5046 setup_per_zone_wmarks();
1da177e4 5047 setup_per_zone_lowmem_reserve();
556adecb 5048 setup_per_zone_inactive_ratio();
1da177e4
LT
5049 return 0;
5050}
bc75d33f 5051module_init(init_per_zone_wmark_min)
1da177e4
LT
5052
5053/*
5054 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5055 * that we can call two helper functions whenever min_free_kbytes
5056 * changes.
5057 */
5058int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 5059 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5060{
8d65af78 5061 proc_dointvec(table, write, buffer, length, ppos);
3b1d92c5 5062 if (write)
bc75d33f 5063 setup_per_zone_wmarks();
1da177e4
LT
5064 return 0;
5065}
5066
9614634f
CL
5067#ifdef CONFIG_NUMA
5068int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5069 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5070{
5071 struct zone *zone;
5072 int rc;
5073
8d65af78 5074 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5075 if (rc)
5076 return rc;
5077
5078 for_each_zone(zone)
8417bba4 5079 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
5080 sysctl_min_unmapped_ratio) / 100;
5081 return 0;
5082}
0ff38490
CL
5083
5084int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5085 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5086{
5087 struct zone *zone;
5088 int rc;
5089
8d65af78 5090 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5091 if (rc)
5092 return rc;
5093
5094 for_each_zone(zone)
5095 zone->min_slab_pages = (zone->present_pages *
5096 sysctl_min_slab_ratio) / 100;
5097 return 0;
5098}
9614634f
CL
5099#endif
5100
1da177e4
LT
5101/*
5102 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5103 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5104 * whenever sysctl_lowmem_reserve_ratio changes.
5105 *
5106 * The reserve ratio obviously has absolutely no relation with the
41858966 5107 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5108 * if in function of the boot time zone sizes.
5109 */
5110int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5111 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5112{
8d65af78 5113 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5114 setup_per_zone_lowmem_reserve();
5115 return 0;
5116}
5117
8ad4b1fb
RS
5118/*
5119 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5120 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5121 * can have before it gets flushed back to buddy allocator.
5122 */
5123
5124int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 5125 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5126{
5127 struct zone *zone;
5128 unsigned int cpu;
5129 int ret;
5130
8d65af78 5131 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8ad4b1fb
RS
5132 if (!write || (ret == -EINVAL))
5133 return ret;
364df0eb 5134 for_each_populated_zone(zone) {
99dcc3e5 5135 for_each_possible_cpu(cpu) {
8ad4b1fb
RS
5136 unsigned long high;
5137 high = zone->present_pages / percpu_pagelist_fraction;
99dcc3e5
CL
5138 setup_pagelist_highmark(
5139 per_cpu_ptr(zone->pageset, cpu), high);
8ad4b1fb
RS
5140 }
5141 }
5142 return 0;
5143}
5144
f034b5d4 5145int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5146
5147#ifdef CONFIG_NUMA
5148static int __init set_hashdist(char *str)
5149{
5150 if (!str)
5151 return 0;
5152 hashdist = simple_strtoul(str, &str, 0);
5153 return 1;
5154}
5155__setup("hashdist=", set_hashdist);
5156#endif
5157
5158/*
5159 * allocate a large system hash table from bootmem
5160 * - it is assumed that the hash table must contain an exact power-of-2
5161 * quantity of entries
5162 * - limit is the number of hash buckets, not the total allocation size
5163 */
5164void *__init alloc_large_system_hash(const char *tablename,
5165 unsigned long bucketsize,
5166 unsigned long numentries,
5167 int scale,
5168 int flags,
5169 unsigned int *_hash_shift,
5170 unsigned int *_hash_mask,
5171 unsigned long limit)
5172{
5173 unsigned long long max = limit;
5174 unsigned long log2qty, size;
5175 void *table = NULL;
5176
5177 /* allow the kernel cmdline to have a say */
5178 if (!numentries) {
5179 /* round applicable memory size up to nearest megabyte */
04903664 5180 numentries = nr_kernel_pages;
1da177e4
LT
5181 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5182 numentries >>= 20 - PAGE_SHIFT;
5183 numentries <<= 20 - PAGE_SHIFT;
5184
5185 /* limit to 1 bucket per 2^scale bytes of low memory */
5186 if (scale > PAGE_SHIFT)
5187 numentries >>= (scale - PAGE_SHIFT);
5188 else
5189 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5190
5191 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5192 if (unlikely(flags & HASH_SMALL)) {
5193 /* Makes no sense without HASH_EARLY */
5194 WARN_ON(!(flags & HASH_EARLY));
5195 if (!(numentries >> *_hash_shift)) {
5196 numentries = 1UL << *_hash_shift;
5197 BUG_ON(!numentries);
5198 }
5199 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5200 numentries = PAGE_SIZE / bucketsize;
1da177e4 5201 }
6e692ed3 5202 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5203
5204 /* limit allocation size to 1/16 total memory by default */
5205 if (max == 0) {
5206 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5207 do_div(max, bucketsize);
5208 }
5209
5210 if (numentries > max)
5211 numentries = max;
5212
f0d1b0b3 5213 log2qty = ilog2(numentries);
1da177e4
LT
5214
5215 do {
5216 size = bucketsize << log2qty;
5217 if (flags & HASH_EARLY)
74768ed8 5218 table = alloc_bootmem_nopanic(size);
1da177e4
LT
5219 else if (hashdist)
5220 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5221 else {
1037b83b
ED
5222 /*
5223 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5224 * some pages at the end of hash table which
5225 * alloc_pages_exact() automatically does
1037b83b 5226 */
264ef8a9 5227 if (get_order(size) < MAX_ORDER) {
a1dd268c 5228 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5229 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5230 }
1da177e4
LT
5231 }
5232 } while (!table && size > PAGE_SIZE && --log2qty);
5233
5234 if (!table)
5235 panic("Failed to allocate %s hash table\n", tablename);
5236
f241e660 5237 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 5238 tablename,
f241e660 5239 (1UL << log2qty),
f0d1b0b3 5240 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5241 size);
5242
5243 if (_hash_shift)
5244 *_hash_shift = log2qty;
5245 if (_hash_mask)
5246 *_hash_mask = (1 << log2qty) - 1;
5247
5248 return table;
5249}
a117e66e 5250
835c134e
MG
5251/* Return a pointer to the bitmap storing bits affecting a block of pages */
5252static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5253 unsigned long pfn)
5254{
5255#ifdef CONFIG_SPARSEMEM
5256 return __pfn_to_section(pfn)->pageblock_flags;
5257#else
5258 return zone->pageblock_flags;
5259#endif /* CONFIG_SPARSEMEM */
5260}
5261
5262static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5263{
5264#ifdef CONFIG_SPARSEMEM
5265 pfn &= (PAGES_PER_SECTION-1);
d9c23400 5266 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5267#else
5268 pfn = pfn - zone->zone_start_pfn;
d9c23400 5269 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5270#endif /* CONFIG_SPARSEMEM */
5271}
5272
5273/**
d9c23400 5274 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
5275 * @page: The page within the block of interest
5276 * @start_bitidx: The first bit of interest to retrieve
5277 * @end_bitidx: The last bit of interest
5278 * returns pageblock_bits flags
5279 */
5280unsigned long get_pageblock_flags_group(struct page *page,
5281 int start_bitidx, int end_bitidx)
5282{
5283 struct zone *zone;
5284 unsigned long *bitmap;
5285 unsigned long pfn, bitidx;
5286 unsigned long flags = 0;
5287 unsigned long value = 1;
5288
5289 zone = page_zone(page);
5290 pfn = page_to_pfn(page);
5291 bitmap = get_pageblock_bitmap(zone, pfn);
5292 bitidx = pfn_to_bitidx(zone, pfn);
5293
5294 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5295 if (test_bit(bitidx + start_bitidx, bitmap))
5296 flags |= value;
6220ec78 5297
835c134e
MG
5298 return flags;
5299}
5300
5301/**
d9c23400 5302 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
5303 * @page: The page within the block of interest
5304 * @start_bitidx: The first bit of interest
5305 * @end_bitidx: The last bit of interest
5306 * @flags: The flags to set
5307 */
5308void set_pageblock_flags_group(struct page *page, unsigned long flags,
5309 int start_bitidx, int end_bitidx)
5310{
5311 struct zone *zone;
5312 unsigned long *bitmap;
5313 unsigned long pfn, bitidx;
5314 unsigned long value = 1;
5315
5316 zone = page_zone(page);
5317 pfn = page_to_pfn(page);
5318 bitmap = get_pageblock_bitmap(zone, pfn);
5319 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
5320 VM_BUG_ON(pfn < zone->zone_start_pfn);
5321 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
5322
5323 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5324 if (flags & value)
5325 __set_bit(bitidx + start_bitidx, bitmap);
5326 else
5327 __clear_bit(bitidx + start_bitidx, bitmap);
5328}
a5d76b54
KH
5329
5330/*
5331 * This is designed as sub function...plz see page_isolation.c also.
5332 * set/clear page block's type to be ISOLATE.
5333 * page allocater never alloc memory from ISOLATE block.
5334 */
5335
49ac8255
KH
5336static int
5337__count_immobile_pages(struct zone *zone, struct page *page, int count)
5338{
5339 unsigned long pfn, iter, found;
5340 /*
5341 * For avoiding noise data, lru_add_drain_all() should be called
5342 * If ZONE_MOVABLE, the zone never contains immobile pages
5343 */
5344 if (zone_idx(zone) == ZONE_MOVABLE)
5345 return true;
5346
5347 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
5348 return true;
5349
5350 pfn = page_to_pfn(page);
5351 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5352 unsigned long check = pfn + iter;
5353
5354 if (!pfn_valid_within(check)) {
5355 iter++;
5356 continue;
5357 }
5358 page = pfn_to_page(check);
5359 if (!page_count(page)) {
5360 if (PageBuddy(page))
5361 iter += (1 << page_order(page)) - 1;
5362 continue;
5363 }
5364 if (!PageLRU(page))
5365 found++;
5366 /*
5367 * If there are RECLAIMABLE pages, we need to check it.
5368 * But now, memory offline itself doesn't call shrink_slab()
5369 * and it still to be fixed.
5370 */
5371 /*
5372 * If the page is not RAM, page_count()should be 0.
5373 * we don't need more check. This is an _used_ not-movable page.
5374 *
5375 * The problematic thing here is PG_reserved pages. PG_reserved
5376 * is set to both of a memory hole page and a _used_ kernel
5377 * page at boot.
5378 */
5379 if (found > count)
5380 return false;
5381 }
5382 return true;
5383}
5384
5385bool is_pageblock_removable_nolock(struct page *page)
5386{
5387 struct zone *zone = page_zone(page);
5388 return __count_immobile_pages(zone, page, 0);
5389}
5390
a5d76b54
KH
5391int set_migratetype_isolate(struct page *page)
5392{
5393 struct zone *zone;
49ac8255 5394 unsigned long flags, pfn;
925cc71e
RJ
5395 struct memory_isolate_notify arg;
5396 int notifier_ret;
a5d76b54 5397 int ret = -EBUSY;
8e7e40d9 5398 int zone_idx;
a5d76b54
KH
5399
5400 zone = page_zone(page);
8e7e40d9 5401 zone_idx = zone_idx(zone);
925cc71e 5402
a5d76b54 5403 spin_lock_irqsave(&zone->lock, flags);
925cc71e
RJ
5404
5405 pfn = page_to_pfn(page);
5406 arg.start_pfn = pfn;
5407 arg.nr_pages = pageblock_nr_pages;
5408 arg.pages_found = 0;
5409
a5d76b54 5410 /*
925cc71e
RJ
5411 * It may be possible to isolate a pageblock even if the
5412 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5413 * notifier chain is used by balloon drivers to return the
5414 * number of pages in a range that are held by the balloon
5415 * driver to shrink memory. If all the pages are accounted for
5416 * by balloons, are free, or on the LRU, isolation can continue.
5417 * Later, for example, when memory hotplug notifier runs, these
5418 * pages reported as "can be isolated" should be isolated(freed)
5419 * by the balloon driver through the memory notifier chain.
a5d76b54 5420 */
925cc71e
RJ
5421 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5422 notifier_ret = notifier_to_errno(notifier_ret);
4b20477f 5423 if (notifier_ret)
a5d76b54 5424 goto out;
49ac8255
KH
5425 /*
5426 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5427 * We just check MOVABLE pages.
5428 */
5429 if (__count_immobile_pages(zone, page, arg.pages_found))
925cc71e
RJ
5430 ret = 0;
5431
49ac8255
KH
5432 /*
5433 * immobile means "not-on-lru" paes. If immobile is larger than
5434 * removable-by-driver pages reported by notifier, we'll fail.
5435 */
5436
a5d76b54 5437out:
925cc71e
RJ
5438 if (!ret) {
5439 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5440 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5441 }
5442
a5d76b54
KH
5443 spin_unlock_irqrestore(&zone->lock, flags);
5444 if (!ret)
9f8f2172 5445 drain_all_pages();
a5d76b54
KH
5446 return ret;
5447}
5448
5449void unset_migratetype_isolate(struct page *page)
5450{
5451 struct zone *zone;
5452 unsigned long flags;
5453 zone = page_zone(page);
5454 spin_lock_irqsave(&zone->lock, flags);
5455 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5456 goto out;
5457 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5458 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5459out:
5460 spin_unlock_irqrestore(&zone->lock, flags);
5461}
0c0e6195
KH
5462
5463#ifdef CONFIG_MEMORY_HOTREMOVE
5464/*
5465 * All pages in the range must be isolated before calling this.
5466 */
5467void
5468__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5469{
5470 struct page *page;
5471 struct zone *zone;
5472 int order, i;
5473 unsigned long pfn;
5474 unsigned long flags;
5475 /* find the first valid pfn */
5476 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5477 if (pfn_valid(pfn))
5478 break;
5479 if (pfn == end_pfn)
5480 return;
5481 zone = page_zone(pfn_to_page(pfn));
5482 spin_lock_irqsave(&zone->lock, flags);
5483 pfn = start_pfn;
5484 while (pfn < end_pfn) {
5485 if (!pfn_valid(pfn)) {
5486 pfn++;
5487 continue;
5488 }
5489 page = pfn_to_page(pfn);
5490 BUG_ON(page_count(page));
5491 BUG_ON(!PageBuddy(page));
5492 order = page_order(page);
5493#ifdef CONFIG_DEBUG_VM
5494 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5495 pfn, 1 << order, end_pfn);
5496#endif
5497 list_del(&page->lru);
5498 rmv_page_order(page);
5499 zone->free_area[order].nr_free--;
5500 __mod_zone_page_state(zone, NR_FREE_PAGES,
5501 - (1UL << order));
5502 for (i = 0; i < (1 << order); i++)
5503 SetPageReserved((page+i));
5504 pfn += (1 << order);
5505 }
5506 spin_unlock_irqrestore(&zone->lock, flags);
5507}
5508#endif
8d22ba1b
WF
5509
5510#ifdef CONFIG_MEMORY_FAILURE
5511bool is_free_buddy_page(struct page *page)
5512{
5513 struct zone *zone = page_zone(page);
5514 unsigned long pfn = page_to_pfn(page);
5515 unsigned long flags;
5516 int order;
5517
5518 spin_lock_irqsave(&zone->lock, flags);
5519 for (order = 0; order < MAX_ORDER; order++) {
5520 struct page *page_head = page - (pfn & ((1 << order) - 1));
5521
5522 if (PageBuddy(page_head) && page_order(page_head) >= order)
5523 break;
5524 }
5525 spin_unlock_irqrestore(&zone->lock, flags);
5526
5527 return order < MAX_ORDER;
5528}
5529#endif
718a3821
WF
5530
5531static struct trace_print_flags pageflag_names[] = {
5532 {1UL << PG_locked, "locked" },
5533 {1UL << PG_error, "error" },
5534 {1UL << PG_referenced, "referenced" },
5535 {1UL << PG_uptodate, "uptodate" },
5536 {1UL << PG_dirty, "dirty" },
5537 {1UL << PG_lru, "lru" },
5538 {1UL << PG_active, "active" },
5539 {1UL << PG_slab, "slab" },
5540 {1UL << PG_owner_priv_1, "owner_priv_1" },
5541 {1UL << PG_arch_1, "arch_1" },
5542 {1UL << PG_reserved, "reserved" },
5543 {1UL << PG_private, "private" },
5544 {1UL << PG_private_2, "private_2" },
5545 {1UL << PG_writeback, "writeback" },
5546#ifdef CONFIG_PAGEFLAGS_EXTENDED
5547 {1UL << PG_head, "head" },
5548 {1UL << PG_tail, "tail" },
5549#else
5550 {1UL << PG_compound, "compound" },
5551#endif
5552 {1UL << PG_swapcache, "swapcache" },
5553 {1UL << PG_mappedtodisk, "mappedtodisk" },
5554 {1UL << PG_reclaim, "reclaim" },
5555 {1UL << PG_buddy, "buddy" },
5556 {1UL << PG_swapbacked, "swapbacked" },
5557 {1UL << PG_unevictable, "unevictable" },
5558#ifdef CONFIG_MMU
5559 {1UL << PG_mlocked, "mlocked" },
5560#endif
5561#ifdef CONFIG_ARCH_USES_PG_UNCACHED
5562 {1UL << PG_uncached, "uncached" },
5563#endif
5564#ifdef CONFIG_MEMORY_FAILURE
5565 {1UL << PG_hwpoison, "hwpoison" },
5566#endif
5567 {-1UL, NULL },
5568};
5569
5570static void dump_page_flags(unsigned long flags)
5571{
5572 const char *delim = "";
5573 unsigned long mask;
5574 int i;
5575
5576 printk(KERN_ALERT "page flags: %#lx(", flags);
5577
5578 /* remove zone id */
5579 flags &= (1UL << NR_PAGEFLAGS) - 1;
5580
5581 for (i = 0; pageflag_names[i].name && flags; i++) {
5582
5583 mask = pageflag_names[i].mask;
5584 if ((flags & mask) != mask)
5585 continue;
5586
5587 flags &= ~mask;
5588 printk("%s%s", delim, pageflag_names[i].name);
5589 delim = "|";
5590 }
5591
5592 /* check for left over flags */
5593 if (flags)
5594 printk("%s%#lx", delim, flags);
5595
5596 printk(")\n");
5597}
5598
5599void dump_page(struct page *page)
5600{
5601 printk(KERN_ALERT
5602 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5603 page, page_count(page), page_mapcount(page),
5604 page->mapping, page->index);
5605 dump_page_flags(page->flags);
5606}