mm: cma: discard clean pages during contiguous allocation instead of migration
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
52d4b9ac 51#include <linux/page_cgroup.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
718a3821 56#include <linux/ftrace_event.h>
f212ad7c 57#include <linux/memcontrol.h>
268bb0ce 58#include <linux/prefetch.h>
041d3a8c 59#include <linux/migrate.h>
c0a32fc5 60#include <linux/page-debug-flags.h>
1da177e4
LT
61
62#include <asm/tlbflush.h>
ac924c60 63#include <asm/div64.h>
1da177e4
LT
64#include "internal.h"
65
72812019
LS
66#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
67DEFINE_PER_CPU(int, numa_node);
68EXPORT_PER_CPU_SYMBOL(numa_node);
69#endif
70
7aac7898
LS
71#ifdef CONFIG_HAVE_MEMORYLESS_NODES
72/*
73 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
74 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
75 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
76 * defined in <linux/topology.h>.
77 */
78DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
79EXPORT_PER_CPU_SYMBOL(_numa_mem_);
80#endif
81
1da177e4 82/*
13808910 83 * Array of node states.
1da177e4 84 */
13808910
CL
85nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
86 [N_POSSIBLE] = NODE_MASK_ALL,
87 [N_ONLINE] = { { [0] = 1UL } },
88#ifndef CONFIG_NUMA
89 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
90#ifdef CONFIG_HIGHMEM
91 [N_HIGH_MEMORY] = { { [0] = 1UL } },
92#endif
93 [N_CPU] = { { [0] = 1UL } },
94#endif /* NUMA */
95};
96EXPORT_SYMBOL(node_states);
97
6c231b7b 98unsigned long totalram_pages __read_mostly;
cb45b0e9 99unsigned long totalreserve_pages __read_mostly;
ab8fabd4
JW
100/*
101 * When calculating the number of globally allowed dirty pages, there
102 * is a certain number of per-zone reserves that should not be
103 * considered dirtyable memory. This is the sum of those reserves
104 * over all existing zones that contribute dirtyable memory.
105 */
106unsigned long dirty_balance_reserve __read_mostly;
107
1b76b02f 108int percpu_pagelist_fraction;
dcce284a 109gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 110
452aa699
RW
111#ifdef CONFIG_PM_SLEEP
112/*
113 * The following functions are used by the suspend/hibernate code to temporarily
114 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
115 * while devices are suspended. To avoid races with the suspend/hibernate code,
116 * they should always be called with pm_mutex held (gfp_allowed_mask also should
117 * only be modified with pm_mutex held, unless the suspend/hibernate code is
118 * guaranteed not to run in parallel with that modification).
119 */
c9e664f1
RW
120
121static gfp_t saved_gfp_mask;
122
123void pm_restore_gfp_mask(void)
452aa699
RW
124{
125 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
126 if (saved_gfp_mask) {
127 gfp_allowed_mask = saved_gfp_mask;
128 saved_gfp_mask = 0;
129 }
452aa699
RW
130}
131
c9e664f1 132void pm_restrict_gfp_mask(void)
452aa699 133{
452aa699 134 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
135 WARN_ON(saved_gfp_mask);
136 saved_gfp_mask = gfp_allowed_mask;
137 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 138}
f90ac398
MG
139
140bool pm_suspended_storage(void)
141{
142 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
143 return false;
144 return true;
145}
452aa699
RW
146#endif /* CONFIG_PM_SLEEP */
147
d9c23400
MG
148#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
149int pageblock_order __read_mostly;
150#endif
151
d98c7a09 152static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 153
1da177e4
LT
154/*
155 * results with 256, 32 in the lowmem_reserve sysctl:
156 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
157 * 1G machine -> (16M dma, 784M normal, 224M high)
158 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
159 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
160 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
161 *
162 * TBD: should special case ZONE_DMA32 machines here - in those we normally
163 * don't need any ZONE_NORMAL reservation
1da177e4 164 */
2f1b6248 165int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 166#ifdef CONFIG_ZONE_DMA
2f1b6248 167 256,
4b51d669 168#endif
fb0e7942 169#ifdef CONFIG_ZONE_DMA32
2f1b6248 170 256,
fb0e7942 171#endif
e53ef38d 172#ifdef CONFIG_HIGHMEM
2a1e274a 173 32,
e53ef38d 174#endif
2a1e274a 175 32,
2f1b6248 176};
1da177e4
LT
177
178EXPORT_SYMBOL(totalram_pages);
1da177e4 179
15ad7cdc 180static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 181#ifdef CONFIG_ZONE_DMA
2f1b6248 182 "DMA",
4b51d669 183#endif
fb0e7942 184#ifdef CONFIG_ZONE_DMA32
2f1b6248 185 "DMA32",
fb0e7942 186#endif
2f1b6248 187 "Normal",
e53ef38d 188#ifdef CONFIG_HIGHMEM
2a1e274a 189 "HighMem",
e53ef38d 190#endif
2a1e274a 191 "Movable",
2f1b6248
CL
192};
193
1da177e4
LT
194int min_free_kbytes = 1024;
195
2c85f51d
JB
196static unsigned long __meminitdata nr_kernel_pages;
197static unsigned long __meminitdata nr_all_pages;
a3142c8e 198static unsigned long __meminitdata dma_reserve;
1da177e4 199
0ee332c1
TH
200#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
201static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
202static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
203static unsigned long __initdata required_kernelcore;
204static unsigned long __initdata required_movablecore;
205static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
206
207/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
208int movable_zone;
209EXPORT_SYMBOL(movable_zone);
210#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 211
418508c1
MS
212#if MAX_NUMNODES > 1
213int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 214int nr_online_nodes __read_mostly = 1;
418508c1 215EXPORT_SYMBOL(nr_node_ids);
62bc62a8 216EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
217#endif
218
9ef9acb0
MG
219int page_group_by_mobility_disabled __read_mostly;
220
702d1a6e
MK
221/*
222 * NOTE:
223 * Don't use set_pageblock_migratetype(page, MIGRATE_ISOLATE) directly.
224 * Instead, use {un}set_pageblock_isolate.
225 */
ee6f509c 226void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 227{
49255c61
MG
228
229 if (unlikely(page_group_by_mobility_disabled))
230 migratetype = MIGRATE_UNMOVABLE;
231
b2a0ac88
MG
232 set_pageblock_flags_group(page, (unsigned long)migratetype,
233 PB_migrate, PB_migrate_end);
234}
235
7f33d49a
RW
236bool oom_killer_disabled __read_mostly;
237
13e7444b 238#ifdef CONFIG_DEBUG_VM
c6a57e19 239static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 240{
bdc8cb98
DH
241 int ret = 0;
242 unsigned seq;
243 unsigned long pfn = page_to_pfn(page);
c6a57e19 244
bdc8cb98
DH
245 do {
246 seq = zone_span_seqbegin(zone);
247 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
248 ret = 1;
249 else if (pfn < zone->zone_start_pfn)
250 ret = 1;
251 } while (zone_span_seqretry(zone, seq));
252
253 return ret;
c6a57e19
DH
254}
255
256static int page_is_consistent(struct zone *zone, struct page *page)
257{
14e07298 258 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 259 return 0;
1da177e4 260 if (zone != page_zone(page))
c6a57e19
DH
261 return 0;
262
263 return 1;
264}
265/*
266 * Temporary debugging check for pages not lying within a given zone.
267 */
268static int bad_range(struct zone *zone, struct page *page)
269{
270 if (page_outside_zone_boundaries(zone, page))
1da177e4 271 return 1;
c6a57e19
DH
272 if (!page_is_consistent(zone, page))
273 return 1;
274
1da177e4
LT
275 return 0;
276}
13e7444b
NP
277#else
278static inline int bad_range(struct zone *zone, struct page *page)
279{
280 return 0;
281}
282#endif
283
224abf92 284static void bad_page(struct page *page)
1da177e4 285{
d936cf9b
HD
286 static unsigned long resume;
287 static unsigned long nr_shown;
288 static unsigned long nr_unshown;
289
2a7684a2
WF
290 /* Don't complain about poisoned pages */
291 if (PageHWPoison(page)) {
ef2b4b95 292 reset_page_mapcount(page); /* remove PageBuddy */
2a7684a2
WF
293 return;
294 }
295
d936cf9b
HD
296 /*
297 * Allow a burst of 60 reports, then keep quiet for that minute;
298 * or allow a steady drip of one report per second.
299 */
300 if (nr_shown == 60) {
301 if (time_before(jiffies, resume)) {
302 nr_unshown++;
303 goto out;
304 }
305 if (nr_unshown) {
1e9e6365
HD
306 printk(KERN_ALERT
307 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
308 nr_unshown);
309 nr_unshown = 0;
310 }
311 nr_shown = 0;
312 }
313 if (nr_shown++ == 0)
314 resume = jiffies + 60 * HZ;
315
1e9e6365 316 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 317 current->comm, page_to_pfn(page));
718a3821 318 dump_page(page);
3dc14741 319
4f31888c 320 print_modules();
1da177e4 321 dump_stack();
d936cf9b 322out:
8cc3b392 323 /* Leave bad fields for debug, except PageBuddy could make trouble */
ef2b4b95 324 reset_page_mapcount(page); /* remove PageBuddy */
9f158333 325 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
326}
327
1da177e4
LT
328/*
329 * Higher-order pages are called "compound pages". They are structured thusly:
330 *
331 * The first PAGE_SIZE page is called the "head page".
332 *
333 * The remaining PAGE_SIZE pages are called "tail pages".
334 *
6416b9fa
WSH
335 * All pages have PG_compound set. All tail pages have their ->first_page
336 * pointing at the head page.
1da177e4 337 *
41d78ba5
HD
338 * The first tail page's ->lru.next holds the address of the compound page's
339 * put_page() function. Its ->lru.prev holds the order of allocation.
340 * This usage means that zero-order pages may not be compound.
1da177e4 341 */
d98c7a09
HD
342
343static void free_compound_page(struct page *page)
344{
d85f3385 345 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
346}
347
01ad1c08 348void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
349{
350 int i;
351 int nr_pages = 1 << order;
352
353 set_compound_page_dtor(page, free_compound_page);
354 set_compound_order(page, order);
355 __SetPageHead(page);
356 for (i = 1; i < nr_pages; i++) {
357 struct page *p = page + i;
18229df5 358 __SetPageTail(p);
58a84aa9 359 set_page_count(p, 0);
18229df5
AW
360 p->first_page = page;
361 }
362}
363
59ff4216 364/* update __split_huge_page_refcount if you change this function */
8cc3b392 365static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
366{
367 int i;
368 int nr_pages = 1 << order;
8cc3b392 369 int bad = 0;
1da177e4 370
8cc3b392
HD
371 if (unlikely(compound_order(page) != order) ||
372 unlikely(!PageHead(page))) {
224abf92 373 bad_page(page);
8cc3b392
HD
374 bad++;
375 }
1da177e4 376
6d777953 377 __ClearPageHead(page);
8cc3b392 378
18229df5
AW
379 for (i = 1; i < nr_pages; i++) {
380 struct page *p = page + i;
1da177e4 381
e713a21d 382 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 383 bad_page(page);
8cc3b392
HD
384 bad++;
385 }
d85f3385 386 __ClearPageTail(p);
1da177e4 387 }
8cc3b392
HD
388
389 return bad;
1da177e4 390}
1da177e4 391
17cf4406
NP
392static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
393{
394 int i;
395
6626c5d5
AM
396 /*
397 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
398 * and __GFP_HIGHMEM from hard or soft interrupt context.
399 */
725d704e 400 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
401 for (i = 0; i < (1 << order); i++)
402 clear_highpage(page + i);
403}
404
c0a32fc5
SG
405#ifdef CONFIG_DEBUG_PAGEALLOC
406unsigned int _debug_guardpage_minorder;
407
408static int __init debug_guardpage_minorder_setup(char *buf)
409{
410 unsigned long res;
411
412 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
413 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
414 return 0;
415 }
416 _debug_guardpage_minorder = res;
417 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
418 return 0;
419}
420__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
421
422static inline void set_page_guard_flag(struct page *page)
423{
424 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
425}
426
427static inline void clear_page_guard_flag(struct page *page)
428{
429 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
430}
431#else
432static inline void set_page_guard_flag(struct page *page) { }
433static inline void clear_page_guard_flag(struct page *page) { }
434#endif
435
6aa3001b
AM
436static inline void set_page_order(struct page *page, int order)
437{
4c21e2f2 438 set_page_private(page, order);
676165a8 439 __SetPageBuddy(page);
1da177e4
LT
440}
441
442static inline void rmv_page_order(struct page *page)
443{
676165a8 444 __ClearPageBuddy(page);
4c21e2f2 445 set_page_private(page, 0);
1da177e4
LT
446}
447
448/*
449 * Locate the struct page for both the matching buddy in our
450 * pair (buddy1) and the combined O(n+1) page they form (page).
451 *
452 * 1) Any buddy B1 will have an order O twin B2 which satisfies
453 * the following equation:
454 * B2 = B1 ^ (1 << O)
455 * For example, if the starting buddy (buddy2) is #8 its order
456 * 1 buddy is #10:
457 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
458 *
459 * 2) Any buddy B will have an order O+1 parent P which
460 * satisfies the following equation:
461 * P = B & ~(1 << O)
462 *
d6e05edc 463 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4 464 */
1da177e4 465static inline unsigned long
43506fad 466__find_buddy_index(unsigned long page_idx, unsigned int order)
1da177e4 467{
43506fad 468 return page_idx ^ (1 << order);
1da177e4
LT
469}
470
471/*
472 * This function checks whether a page is free && is the buddy
473 * we can do coalesce a page and its buddy if
13e7444b 474 * (a) the buddy is not in a hole &&
676165a8 475 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
476 * (c) a page and its buddy have the same order &&
477 * (d) a page and its buddy are in the same zone.
676165a8 478 *
5f24ce5f
AA
479 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
480 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
1da177e4 481 *
676165a8 482 * For recording page's order, we use page_private(page).
1da177e4 483 */
cb2b95e1
AW
484static inline int page_is_buddy(struct page *page, struct page *buddy,
485 int order)
1da177e4 486{
14e07298 487 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 488 return 0;
13e7444b 489
cb2b95e1
AW
490 if (page_zone_id(page) != page_zone_id(buddy))
491 return 0;
492
c0a32fc5
SG
493 if (page_is_guard(buddy) && page_order(buddy) == order) {
494 VM_BUG_ON(page_count(buddy) != 0);
495 return 1;
496 }
497
cb2b95e1 498 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 499 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 500 return 1;
676165a8 501 }
6aa3001b 502 return 0;
1da177e4
LT
503}
504
505/*
506 * Freeing function for a buddy system allocator.
507 *
508 * The concept of a buddy system is to maintain direct-mapped table
509 * (containing bit values) for memory blocks of various "orders".
510 * The bottom level table contains the map for the smallest allocatable
511 * units of memory (here, pages), and each level above it describes
512 * pairs of units from the levels below, hence, "buddies".
513 * At a high level, all that happens here is marking the table entry
514 * at the bottom level available, and propagating the changes upward
515 * as necessary, plus some accounting needed to play nicely with other
516 * parts of the VM system.
517 * At each level, we keep a list of pages, which are heads of continuous
5f24ce5f 518 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
4c21e2f2 519 * order is recorded in page_private(page) field.
1da177e4 520 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
521 * other. That is, if we allocate a small block, and both were
522 * free, the remainder of the region must be split into blocks.
1da177e4 523 * If a block is freed, and its buddy is also free, then this
5f63b720 524 * triggers coalescing into a block of larger size.
1da177e4
LT
525 *
526 * -- wli
527 */
528
48db57f8 529static inline void __free_one_page(struct page *page,
ed0ae21d
MG
530 struct zone *zone, unsigned int order,
531 int migratetype)
1da177e4
LT
532{
533 unsigned long page_idx;
6dda9d55 534 unsigned long combined_idx;
43506fad 535 unsigned long uninitialized_var(buddy_idx);
6dda9d55 536 struct page *buddy;
1da177e4 537
224abf92 538 if (unlikely(PageCompound(page)))
8cc3b392
HD
539 if (unlikely(destroy_compound_page(page, order)))
540 return;
1da177e4 541
ed0ae21d
MG
542 VM_BUG_ON(migratetype == -1);
543
1da177e4
LT
544 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
545
f2260e6b 546 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 547 VM_BUG_ON(bad_range(zone, page));
1da177e4 548
1da177e4 549 while (order < MAX_ORDER-1) {
43506fad
KC
550 buddy_idx = __find_buddy_index(page_idx, order);
551 buddy = page + (buddy_idx - page_idx);
cb2b95e1 552 if (!page_is_buddy(page, buddy, order))
3c82d0ce 553 break;
c0a32fc5
SG
554 /*
555 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
556 * merge with it and move up one order.
557 */
558 if (page_is_guard(buddy)) {
559 clear_page_guard_flag(buddy);
560 set_page_private(page, 0);
561 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
562 } else {
563 list_del(&buddy->lru);
564 zone->free_area[order].nr_free--;
565 rmv_page_order(buddy);
566 }
43506fad 567 combined_idx = buddy_idx & page_idx;
1da177e4
LT
568 page = page + (combined_idx - page_idx);
569 page_idx = combined_idx;
570 order++;
571 }
572 set_page_order(page, order);
6dda9d55
CZ
573
574 /*
575 * If this is not the largest possible page, check if the buddy
576 * of the next-highest order is free. If it is, it's possible
577 * that pages are being freed that will coalesce soon. In case,
578 * that is happening, add the free page to the tail of the list
579 * so it's less likely to be used soon and more likely to be merged
580 * as a higher order page
581 */
b7f50cfa 582 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 583 struct page *higher_page, *higher_buddy;
43506fad
KC
584 combined_idx = buddy_idx & page_idx;
585 higher_page = page + (combined_idx - page_idx);
586 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 587 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
588 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
589 list_add_tail(&page->lru,
590 &zone->free_area[order].free_list[migratetype]);
591 goto out;
592 }
593 }
594
595 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
596out:
1da177e4
LT
597 zone->free_area[order].nr_free++;
598}
599
092cead6
KM
600/*
601 * free_page_mlock() -- clean up attempts to free and mlocked() page.
602 * Page should not be on lru, so no need to fix that up.
603 * free_pages_check() will verify...
604 */
605static inline void free_page_mlock(struct page *page)
606{
092cead6
KM
607 __dec_zone_page_state(page, NR_MLOCK);
608 __count_vm_event(UNEVICTABLE_MLOCKFREED);
609}
092cead6 610
224abf92 611static inline int free_pages_check(struct page *page)
1da177e4 612{
92be2e33
NP
613 if (unlikely(page_mapcount(page) |
614 (page->mapping != NULL) |
a3af9c38 615 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
616 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
617 (mem_cgroup_bad_page_check(page)))) {
224abf92 618 bad_page(page);
79f4b7bf 619 return 1;
8cc3b392 620 }
79f4b7bf
HD
621 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
622 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
623 return 0;
1da177e4
LT
624}
625
626/*
5f8dcc21 627 * Frees a number of pages from the PCP lists
1da177e4 628 * Assumes all pages on list are in same zone, and of same order.
207f36ee 629 * count is the number of pages to free.
1da177e4
LT
630 *
631 * If the zone was previously in an "all pages pinned" state then look to
632 * see if this freeing clears that state.
633 *
634 * And clear the zone's pages_scanned counter, to hold off the "all pages are
635 * pinned" detection logic.
636 */
5f8dcc21
MG
637static void free_pcppages_bulk(struct zone *zone, int count,
638 struct per_cpu_pages *pcp)
1da177e4 639{
5f8dcc21 640 int migratetype = 0;
a6f9edd6 641 int batch_free = 0;
72853e29 642 int to_free = count;
5f8dcc21 643
c54ad30c 644 spin_lock(&zone->lock);
93e4a89a 645 zone->all_unreclaimable = 0;
1da177e4 646 zone->pages_scanned = 0;
f2260e6b 647
72853e29 648 while (to_free) {
48db57f8 649 struct page *page;
5f8dcc21
MG
650 struct list_head *list;
651
652 /*
a6f9edd6
MG
653 * Remove pages from lists in a round-robin fashion. A
654 * batch_free count is maintained that is incremented when an
655 * empty list is encountered. This is so more pages are freed
656 * off fuller lists instead of spinning excessively around empty
657 * lists
5f8dcc21
MG
658 */
659 do {
a6f9edd6 660 batch_free++;
5f8dcc21
MG
661 if (++migratetype == MIGRATE_PCPTYPES)
662 migratetype = 0;
663 list = &pcp->lists[migratetype];
664 } while (list_empty(list));
48db57f8 665
1d16871d
NK
666 /* This is the only non-empty list. Free them all. */
667 if (batch_free == MIGRATE_PCPTYPES)
668 batch_free = to_free;
669
a6f9edd6
MG
670 do {
671 page = list_entry(list->prev, struct page, lru);
672 /* must delete as __free_one_page list manipulates */
673 list_del(&page->lru);
a7016235
HD
674 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
675 __free_one_page(page, zone, 0, page_private(page));
676 trace_mm_page_pcpu_drain(page, 0, page_private(page));
72853e29 677 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 678 }
72853e29 679 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
c54ad30c 680 spin_unlock(&zone->lock);
1da177e4
LT
681}
682
ed0ae21d
MG
683static void free_one_page(struct zone *zone, struct page *page, int order,
684 int migratetype)
1da177e4 685{
006d22d9 686 spin_lock(&zone->lock);
93e4a89a 687 zone->all_unreclaimable = 0;
006d22d9 688 zone->pages_scanned = 0;
f2260e6b 689
ed0ae21d 690 __free_one_page(page, zone, order, migratetype);
72853e29 691 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
006d22d9 692 spin_unlock(&zone->lock);
48db57f8
NP
693}
694
ec95f53a 695static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 696{
1da177e4 697 int i;
8cc3b392 698 int bad = 0;
1da177e4 699
b413d48a 700 trace_mm_page_free(page, order);
b1eeab67
VN
701 kmemcheck_free_shadow(page, order);
702
8dd60a3a
AA
703 if (PageAnon(page))
704 page->mapping = NULL;
705 for (i = 0; i < (1 << order); i++)
706 bad += free_pages_check(page + i);
8cc3b392 707 if (bad)
ec95f53a 708 return false;
689bcebf 709
3ac7fe5a 710 if (!PageHighMem(page)) {
9858db50 711 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
712 debug_check_no_obj_freed(page_address(page),
713 PAGE_SIZE << order);
714 }
dafb1367 715 arch_free_page(page, order);
48db57f8 716 kernel_map_pages(page, 1 << order, 0);
dafb1367 717
ec95f53a
KM
718 return true;
719}
720
721static void __free_pages_ok(struct page *page, unsigned int order)
722{
723 unsigned long flags;
724 int wasMlocked = __TestClearPageMlocked(page);
725
726 if (!free_pages_prepare(page, order))
727 return;
728
c54ad30c 729 local_irq_save(flags);
c277331d 730 if (unlikely(wasMlocked))
da456f14 731 free_page_mlock(page);
f8891e5e 732 __count_vm_events(PGFREE, 1 << order);
ed0ae21d
MG
733 free_one_page(page_zone(page), page, order,
734 get_pageblock_migratetype(page));
c54ad30c 735 local_irq_restore(flags);
1da177e4
LT
736}
737
af370fb8 738void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8 739{
c3993076
JW
740 unsigned int nr_pages = 1 << order;
741 unsigned int loop;
a226f6c8 742
c3993076
JW
743 prefetchw(page);
744 for (loop = 0; loop < nr_pages; loop++) {
745 struct page *p = &page[loop];
746
747 if (loop + 1 < nr_pages)
748 prefetchw(p + 1);
749 __ClearPageReserved(p);
750 set_page_count(p, 0);
a226f6c8 751 }
c3993076
JW
752
753 set_page_refcounted(page);
754 __free_pages(page, order);
a226f6c8
DH
755}
756
47118af0
MN
757#ifdef CONFIG_CMA
758/* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
759void __init init_cma_reserved_pageblock(struct page *page)
760{
761 unsigned i = pageblock_nr_pages;
762 struct page *p = page;
763
764 do {
765 __ClearPageReserved(p);
766 set_page_count(p, 0);
767 } while (++p, --i);
768
769 set_page_refcounted(page);
770 set_pageblock_migratetype(page, MIGRATE_CMA);
771 __free_pages(page, pageblock_order);
772 totalram_pages += pageblock_nr_pages;
773}
774#endif
1da177e4
LT
775
776/*
777 * The order of subdivision here is critical for the IO subsystem.
778 * Please do not alter this order without good reasons and regression
779 * testing. Specifically, as large blocks of memory are subdivided,
780 * the order in which smaller blocks are delivered depends on the order
781 * they're subdivided in this function. This is the primary factor
782 * influencing the order in which pages are delivered to the IO
783 * subsystem according to empirical testing, and this is also justified
784 * by considering the behavior of a buddy system containing a single
785 * large block of memory acted on by a series of small allocations.
786 * This behavior is a critical factor in sglist merging's success.
787 *
788 * -- wli
789 */
085cc7d5 790static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
791 int low, int high, struct free_area *area,
792 int migratetype)
1da177e4
LT
793{
794 unsigned long size = 1 << high;
795
796 while (high > low) {
797 area--;
798 high--;
799 size >>= 1;
725d704e 800 VM_BUG_ON(bad_range(zone, &page[size]));
c0a32fc5
SG
801
802#ifdef CONFIG_DEBUG_PAGEALLOC
803 if (high < debug_guardpage_minorder()) {
804 /*
805 * Mark as guard pages (or page), that will allow to
806 * merge back to allocator when buddy will be freed.
807 * Corresponding page table entries will not be touched,
808 * pages will stay not present in virtual address space
809 */
810 INIT_LIST_HEAD(&page[size].lru);
811 set_page_guard_flag(&page[size]);
812 set_page_private(&page[size], high);
813 /* Guard pages are not available for any usage */
814 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << high));
815 continue;
816 }
817#endif
b2a0ac88 818 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
819 area->nr_free++;
820 set_page_order(&page[size], high);
821 }
1da177e4
LT
822}
823
1da177e4
LT
824/*
825 * This page is about to be returned from the page allocator
826 */
2a7684a2 827static inline int check_new_page(struct page *page)
1da177e4 828{
92be2e33
NP
829 if (unlikely(page_mapcount(page) |
830 (page->mapping != NULL) |
a3af9c38 831 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
832 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
833 (mem_cgroup_bad_page_check(page)))) {
224abf92 834 bad_page(page);
689bcebf 835 return 1;
8cc3b392 836 }
2a7684a2
WF
837 return 0;
838}
839
840static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
841{
842 int i;
843
844 for (i = 0; i < (1 << order); i++) {
845 struct page *p = page + i;
846 if (unlikely(check_new_page(p)))
847 return 1;
848 }
689bcebf 849
4c21e2f2 850 set_page_private(page, 0);
7835e98b 851 set_page_refcounted(page);
cc102509
NP
852
853 arch_alloc_page(page, order);
1da177e4 854 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
855
856 if (gfp_flags & __GFP_ZERO)
857 prep_zero_page(page, order, gfp_flags);
858
859 if (order && (gfp_flags & __GFP_COMP))
860 prep_compound_page(page, order);
861
689bcebf 862 return 0;
1da177e4
LT
863}
864
56fd56b8
MG
865/*
866 * Go through the free lists for the given migratetype and remove
867 * the smallest available page from the freelists
868 */
728ec980
MG
869static inline
870struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
871 int migratetype)
872{
873 unsigned int current_order;
874 struct free_area * area;
875 struct page *page;
876
877 /* Find a page of the appropriate size in the preferred list */
878 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
879 area = &(zone->free_area[current_order]);
880 if (list_empty(&area->free_list[migratetype]))
881 continue;
882
883 page = list_entry(area->free_list[migratetype].next,
884 struct page, lru);
885 list_del(&page->lru);
886 rmv_page_order(page);
887 area->nr_free--;
56fd56b8
MG
888 expand(zone, page, order, current_order, area, migratetype);
889 return page;
890 }
891
892 return NULL;
893}
894
895
b2a0ac88
MG
896/*
897 * This array describes the order lists are fallen back to when
898 * the free lists for the desirable migrate type are depleted
899 */
47118af0
MN
900static int fallbacks[MIGRATE_TYPES][4] = {
901 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
902 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
903#ifdef CONFIG_CMA
904 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
905 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
906#else
907 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
908#endif
6d4a4916
MN
909 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
910 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
911};
912
c361be55
MG
913/*
914 * Move the free pages in a range to the free lists of the requested type.
d9c23400 915 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
916 * boundary. If alignment is required, use move_freepages_block()
917 */
b69a7288
AB
918static int move_freepages(struct zone *zone,
919 struct page *start_page, struct page *end_page,
920 int migratetype)
c361be55
MG
921{
922 struct page *page;
923 unsigned long order;
d100313f 924 int pages_moved = 0;
c361be55
MG
925
926#ifndef CONFIG_HOLES_IN_ZONE
927 /*
928 * page_zone is not safe to call in this context when
929 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
930 * anyway as we check zone boundaries in move_freepages_block().
931 * Remove at a later date when no bug reports exist related to
ac0e5b7a 932 * grouping pages by mobility
c361be55
MG
933 */
934 BUG_ON(page_zone(start_page) != page_zone(end_page));
935#endif
936
937 for (page = start_page; page <= end_page;) {
344c790e
AL
938 /* Make sure we are not inadvertently changing nodes */
939 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
940
c361be55
MG
941 if (!pfn_valid_within(page_to_pfn(page))) {
942 page++;
943 continue;
944 }
945
946 if (!PageBuddy(page)) {
947 page++;
948 continue;
949 }
950
951 order = page_order(page);
84be48d8
KS
952 list_move(&page->lru,
953 &zone->free_area[order].free_list[migratetype]);
c361be55 954 page += 1 << order;
d100313f 955 pages_moved += 1 << order;
c361be55
MG
956 }
957
d100313f 958 return pages_moved;
c361be55
MG
959}
960
ee6f509c 961int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 962 int migratetype)
c361be55
MG
963{
964 unsigned long start_pfn, end_pfn;
965 struct page *start_page, *end_page;
966
967 start_pfn = page_to_pfn(page);
d9c23400 968 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 969 start_page = pfn_to_page(start_pfn);
d9c23400
MG
970 end_page = start_page + pageblock_nr_pages - 1;
971 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
972
973 /* Do not cross zone boundaries */
974 if (start_pfn < zone->zone_start_pfn)
975 start_page = page;
976 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
977 return 0;
978
979 return move_freepages(zone, start_page, end_page, migratetype);
980}
981
2f66a68f
MG
982static void change_pageblock_range(struct page *pageblock_page,
983 int start_order, int migratetype)
984{
985 int nr_pageblocks = 1 << (start_order - pageblock_order);
986
987 while (nr_pageblocks--) {
988 set_pageblock_migratetype(pageblock_page, migratetype);
989 pageblock_page += pageblock_nr_pages;
990 }
991}
992
b2a0ac88 993/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
994static inline struct page *
995__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
996{
997 struct free_area * area;
998 int current_order;
999 struct page *page;
1000 int migratetype, i;
1001
1002 /* Find the largest possible block of pages in the other list */
1003 for (current_order = MAX_ORDER-1; current_order >= order;
1004 --current_order) {
6d4a4916 1005 for (i = 0;; i++) {
b2a0ac88
MG
1006 migratetype = fallbacks[start_migratetype][i];
1007
56fd56b8
MG
1008 /* MIGRATE_RESERVE handled later if necessary */
1009 if (migratetype == MIGRATE_RESERVE)
6d4a4916 1010 break;
e010487d 1011
b2a0ac88
MG
1012 area = &(zone->free_area[current_order]);
1013 if (list_empty(&area->free_list[migratetype]))
1014 continue;
1015
1016 page = list_entry(area->free_list[migratetype].next,
1017 struct page, lru);
1018 area->nr_free--;
1019
1020 /*
c361be55 1021 * If breaking a large block of pages, move all free
46dafbca
MG
1022 * pages to the preferred allocation list. If falling
1023 * back for a reclaimable kernel allocation, be more
25985edc 1024 * aggressive about taking ownership of free pages
47118af0
MN
1025 *
1026 * On the other hand, never change migration
1027 * type of MIGRATE_CMA pageblocks nor move CMA
1028 * pages on different free lists. We don't
1029 * want unmovable pages to be allocated from
1030 * MIGRATE_CMA areas.
b2a0ac88 1031 */
47118af0
MN
1032 if (!is_migrate_cma(migratetype) &&
1033 (unlikely(current_order >= pageblock_order / 2) ||
1034 start_migratetype == MIGRATE_RECLAIMABLE ||
1035 page_group_by_mobility_disabled)) {
1036 int pages;
46dafbca
MG
1037 pages = move_freepages_block(zone, page,
1038 start_migratetype);
1039
1040 /* Claim the whole block if over half of it is free */
dd5d241e
MG
1041 if (pages >= (1 << (pageblock_order-1)) ||
1042 page_group_by_mobility_disabled)
46dafbca
MG
1043 set_pageblock_migratetype(page,
1044 start_migratetype);
1045
b2a0ac88 1046 migratetype = start_migratetype;
c361be55 1047 }
b2a0ac88
MG
1048
1049 /* Remove the page from the freelists */
1050 list_del(&page->lru);
1051 rmv_page_order(page);
b2a0ac88 1052
2f66a68f 1053 /* Take ownership for orders >= pageblock_order */
47118af0
MN
1054 if (current_order >= pageblock_order &&
1055 !is_migrate_cma(migratetype))
2f66a68f 1056 change_pageblock_range(page, current_order,
b2a0ac88
MG
1057 start_migratetype);
1058
47118af0
MN
1059 expand(zone, page, order, current_order, area,
1060 is_migrate_cma(migratetype)
1061 ? migratetype : start_migratetype);
e0fff1bd
MG
1062
1063 trace_mm_page_alloc_extfrag(page, order, current_order,
1064 start_migratetype, migratetype);
1065
b2a0ac88
MG
1066 return page;
1067 }
1068 }
1069
728ec980 1070 return NULL;
b2a0ac88
MG
1071}
1072
56fd56b8 1073/*
1da177e4
LT
1074 * Do the hard work of removing an element from the buddy allocator.
1075 * Call me with the zone->lock already held.
1076 */
b2a0ac88
MG
1077static struct page *__rmqueue(struct zone *zone, unsigned int order,
1078 int migratetype)
1da177e4 1079{
1da177e4
LT
1080 struct page *page;
1081
728ec980 1082retry_reserve:
56fd56b8 1083 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1084
728ec980 1085 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 1086 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1087
728ec980
MG
1088 /*
1089 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1090 * is used because __rmqueue_smallest is an inline function
1091 * and we want just one call site
1092 */
1093 if (!page) {
1094 migratetype = MIGRATE_RESERVE;
1095 goto retry_reserve;
1096 }
1097 }
1098
0d3d062a 1099 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1100 return page;
1da177e4
LT
1101}
1102
5f63b720 1103/*
1da177e4
LT
1104 * Obtain a specified number of elements from the buddy allocator, all under
1105 * a single hold of the lock, for efficiency. Add them to the supplied list.
1106 * Returns the number of new pages which were placed at *list.
1107 */
5f63b720 1108static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1109 unsigned long count, struct list_head *list,
e084b2d9 1110 int migratetype, int cold)
1da177e4 1111{
47118af0 1112 int mt = migratetype, i;
5f63b720 1113
c54ad30c 1114 spin_lock(&zone->lock);
1da177e4 1115 for (i = 0; i < count; ++i) {
b2a0ac88 1116 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1117 if (unlikely(page == NULL))
1da177e4 1118 break;
81eabcbe
MG
1119
1120 /*
1121 * Split buddy pages returned by expand() are received here
1122 * in physical page order. The page is added to the callers and
1123 * list and the list head then moves forward. From the callers
1124 * perspective, the linked list is ordered by page number in
1125 * some conditions. This is useful for IO devices that can
1126 * merge IO requests if the physical pages are ordered
1127 * properly.
1128 */
e084b2d9
MG
1129 if (likely(cold == 0))
1130 list_add(&page->lru, list);
1131 else
1132 list_add_tail(&page->lru, list);
47118af0
MN
1133 if (IS_ENABLED(CONFIG_CMA)) {
1134 mt = get_pageblock_migratetype(page);
1135 if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
1136 mt = migratetype;
1137 }
1138 set_page_private(page, mt);
81eabcbe 1139 list = &page->lru;
1da177e4 1140 }
f2260e6b 1141 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1142 spin_unlock(&zone->lock);
085cc7d5 1143 return i;
1da177e4
LT
1144}
1145
4ae7c039 1146#ifdef CONFIG_NUMA
8fce4d8e 1147/*
4037d452
CL
1148 * Called from the vmstat counter updater to drain pagesets of this
1149 * currently executing processor on remote nodes after they have
1150 * expired.
1151 *
879336c3
CL
1152 * Note that this function must be called with the thread pinned to
1153 * a single processor.
8fce4d8e 1154 */
4037d452 1155void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1156{
4ae7c039 1157 unsigned long flags;
4037d452 1158 int to_drain;
4ae7c039 1159
4037d452
CL
1160 local_irq_save(flags);
1161 if (pcp->count >= pcp->batch)
1162 to_drain = pcp->batch;
1163 else
1164 to_drain = pcp->count;
2a13515c
KM
1165 if (to_drain > 0) {
1166 free_pcppages_bulk(zone, to_drain, pcp);
1167 pcp->count -= to_drain;
1168 }
4037d452 1169 local_irq_restore(flags);
4ae7c039
CL
1170}
1171#endif
1172
9f8f2172
CL
1173/*
1174 * Drain pages of the indicated processor.
1175 *
1176 * The processor must either be the current processor and the
1177 * thread pinned to the current processor or a processor that
1178 * is not online.
1179 */
1180static void drain_pages(unsigned int cpu)
1da177e4 1181{
c54ad30c 1182 unsigned long flags;
1da177e4 1183 struct zone *zone;
1da177e4 1184
ee99c71c 1185 for_each_populated_zone(zone) {
1da177e4 1186 struct per_cpu_pageset *pset;
3dfa5721 1187 struct per_cpu_pages *pcp;
1da177e4 1188
99dcc3e5
CL
1189 local_irq_save(flags);
1190 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1191
1192 pcp = &pset->pcp;
2ff754fa
DR
1193 if (pcp->count) {
1194 free_pcppages_bulk(zone, pcp->count, pcp);
1195 pcp->count = 0;
1196 }
3dfa5721 1197 local_irq_restore(flags);
1da177e4
LT
1198 }
1199}
1da177e4 1200
9f8f2172
CL
1201/*
1202 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1203 */
1204void drain_local_pages(void *arg)
1205{
1206 drain_pages(smp_processor_id());
1207}
1208
1209/*
74046494
GBY
1210 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1211 *
1212 * Note that this code is protected against sending an IPI to an offline
1213 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1214 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1215 * nothing keeps CPUs from showing up after we populated the cpumask and
1216 * before the call to on_each_cpu_mask().
9f8f2172
CL
1217 */
1218void drain_all_pages(void)
1219{
74046494
GBY
1220 int cpu;
1221 struct per_cpu_pageset *pcp;
1222 struct zone *zone;
1223
1224 /*
1225 * Allocate in the BSS so we wont require allocation in
1226 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1227 */
1228 static cpumask_t cpus_with_pcps;
1229
1230 /*
1231 * We don't care about racing with CPU hotplug event
1232 * as offline notification will cause the notified
1233 * cpu to drain that CPU pcps and on_each_cpu_mask
1234 * disables preemption as part of its processing
1235 */
1236 for_each_online_cpu(cpu) {
1237 bool has_pcps = false;
1238 for_each_populated_zone(zone) {
1239 pcp = per_cpu_ptr(zone->pageset, cpu);
1240 if (pcp->pcp.count) {
1241 has_pcps = true;
1242 break;
1243 }
1244 }
1245 if (has_pcps)
1246 cpumask_set_cpu(cpu, &cpus_with_pcps);
1247 else
1248 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1249 }
1250 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
9f8f2172
CL
1251}
1252
296699de 1253#ifdef CONFIG_HIBERNATION
1da177e4
LT
1254
1255void mark_free_pages(struct zone *zone)
1256{
f623f0db
RW
1257 unsigned long pfn, max_zone_pfn;
1258 unsigned long flags;
b2a0ac88 1259 int order, t;
1da177e4
LT
1260 struct list_head *curr;
1261
1262 if (!zone->spanned_pages)
1263 return;
1264
1265 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
1266
1267 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1268 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1269 if (pfn_valid(pfn)) {
1270 struct page *page = pfn_to_page(pfn);
1271
7be98234
RW
1272 if (!swsusp_page_is_forbidden(page))
1273 swsusp_unset_page_free(page);
f623f0db 1274 }
1da177e4 1275
b2a0ac88
MG
1276 for_each_migratetype_order(order, t) {
1277 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1278 unsigned long i;
1da177e4 1279
f623f0db
RW
1280 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1281 for (i = 0; i < (1UL << order); i++)
7be98234 1282 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1283 }
b2a0ac88 1284 }
1da177e4
LT
1285 spin_unlock_irqrestore(&zone->lock, flags);
1286}
e2c55dc8 1287#endif /* CONFIG_PM */
1da177e4 1288
1da177e4
LT
1289/*
1290 * Free a 0-order page
fc91668e 1291 * cold == 1 ? free a cold page : free a hot page
1da177e4 1292 */
fc91668e 1293void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1294{
1295 struct zone *zone = page_zone(page);
1296 struct per_cpu_pages *pcp;
1297 unsigned long flags;
5f8dcc21 1298 int migratetype;
451ea25d 1299 int wasMlocked = __TestClearPageMlocked(page);
1da177e4 1300
ec95f53a 1301 if (!free_pages_prepare(page, 0))
689bcebf
HD
1302 return;
1303
5f8dcc21
MG
1304 migratetype = get_pageblock_migratetype(page);
1305 set_page_private(page, migratetype);
1da177e4 1306 local_irq_save(flags);
c277331d 1307 if (unlikely(wasMlocked))
da456f14 1308 free_page_mlock(page);
f8891e5e 1309 __count_vm_event(PGFREE);
da456f14 1310
5f8dcc21
MG
1311 /*
1312 * We only track unmovable, reclaimable and movable on pcp lists.
1313 * Free ISOLATE pages back to the allocator because they are being
1314 * offlined but treat RESERVE as movable pages so we can get those
1315 * areas back if necessary. Otherwise, we may have to free
1316 * excessively into the page allocator
1317 */
1318 if (migratetype >= MIGRATE_PCPTYPES) {
1319 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1320 free_one_page(zone, page, 0, migratetype);
1321 goto out;
1322 }
1323 migratetype = MIGRATE_MOVABLE;
1324 }
1325
99dcc3e5 1326 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1327 if (cold)
5f8dcc21 1328 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1329 else
5f8dcc21 1330 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1331 pcp->count++;
48db57f8 1332 if (pcp->count >= pcp->high) {
5f8dcc21 1333 free_pcppages_bulk(zone, pcp->batch, pcp);
48db57f8
NP
1334 pcp->count -= pcp->batch;
1335 }
5f8dcc21
MG
1336
1337out:
1da177e4 1338 local_irq_restore(flags);
1da177e4
LT
1339}
1340
cc59850e
KK
1341/*
1342 * Free a list of 0-order pages
1343 */
1344void free_hot_cold_page_list(struct list_head *list, int cold)
1345{
1346 struct page *page, *next;
1347
1348 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1349 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1350 free_hot_cold_page(page, cold);
1351 }
1352}
1353
8dfcc9ba
NP
1354/*
1355 * split_page takes a non-compound higher-order page, and splits it into
1356 * n (1<<order) sub-pages: page[0..n]
1357 * Each sub-page must be freed individually.
1358 *
1359 * Note: this is probably too low level an operation for use in drivers.
1360 * Please consult with lkml before using this in your driver.
1361 */
1362void split_page(struct page *page, unsigned int order)
1363{
1364 int i;
1365
725d704e
NP
1366 VM_BUG_ON(PageCompound(page));
1367 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1368
1369#ifdef CONFIG_KMEMCHECK
1370 /*
1371 * Split shadow pages too, because free(page[0]) would
1372 * otherwise free the whole shadow.
1373 */
1374 if (kmemcheck_page_is_tracked(page))
1375 split_page(virt_to_page(page[0].shadow), order);
1376#endif
1377
7835e98b
NP
1378 for (i = 1; i < (1 << order); i++)
1379 set_page_refcounted(page + i);
8dfcc9ba 1380}
8dfcc9ba 1381
748446bb 1382/*
1fb3f8ca
MG
1383 * Similar to the split_page family of functions except that the page
1384 * required at the given order and being isolated now to prevent races
1385 * with parallel allocators
748446bb 1386 */
1fb3f8ca 1387int capture_free_page(struct page *page, int alloc_order, int migratetype)
748446bb
MG
1388{
1389 unsigned int order;
1390 unsigned long watermark;
1391 struct zone *zone;
1392
1393 BUG_ON(!PageBuddy(page));
1394
1395 zone = page_zone(page);
1396 order = page_order(page);
1397
1398 /* Obey watermarks as if the page was being allocated */
1399 watermark = low_wmark_pages(zone) + (1 << order);
1400 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1401 return 0;
1402
1403 /* Remove page from free list */
1404 list_del(&page->lru);
1405 zone->free_area[order].nr_free--;
1406 rmv_page_order(page);
1407 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1408
1fb3f8ca
MG
1409 if (alloc_order != order)
1410 expand(zone, page, alloc_order, order,
1411 &zone->free_area[order], migratetype);
748446bb 1412
1fb3f8ca 1413 /* Set the pageblock if the captured page is at least a pageblock */
748446bb
MG
1414 if (order >= pageblock_order - 1) {
1415 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
1416 for (; page < endpage; page += pageblock_nr_pages) {
1417 int mt = get_pageblock_migratetype(page);
1418 if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
1419 set_pageblock_migratetype(page,
1420 MIGRATE_MOVABLE);
1421 }
748446bb
MG
1422 }
1423
1fb3f8ca
MG
1424 return 1UL << order;
1425}
1426
1427/*
1428 * Similar to split_page except the page is already free. As this is only
1429 * being used for migration, the migratetype of the block also changes.
1430 * As this is called with interrupts disabled, the caller is responsible
1431 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1432 * are enabled.
1433 *
1434 * Note: this is probably too low level an operation for use in drivers.
1435 * Please consult with lkml before using this in your driver.
1436 */
1437int split_free_page(struct page *page)
1438{
1439 unsigned int order;
1440 int nr_pages;
1441
1442 BUG_ON(!PageBuddy(page));
1443 order = page_order(page);
1444
1445 nr_pages = capture_free_page(page, order, 0);
1446 if (!nr_pages)
1447 return 0;
1448
1449 /* Split into individual pages */
1450 set_page_refcounted(page);
1451 split_page(page, order);
1452 return nr_pages;
748446bb
MG
1453}
1454
1da177e4
LT
1455/*
1456 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1457 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1458 * or two.
1459 */
0a15c3e9
MG
1460static inline
1461struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1462 struct zone *zone, int order, gfp_t gfp_flags,
1463 int migratetype)
1da177e4
LT
1464{
1465 unsigned long flags;
689bcebf 1466 struct page *page;
1da177e4
LT
1467 int cold = !!(gfp_flags & __GFP_COLD);
1468
689bcebf 1469again:
48db57f8 1470 if (likely(order == 0)) {
1da177e4 1471 struct per_cpu_pages *pcp;
5f8dcc21 1472 struct list_head *list;
1da177e4 1473
1da177e4 1474 local_irq_save(flags);
99dcc3e5
CL
1475 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1476 list = &pcp->lists[migratetype];
5f8dcc21 1477 if (list_empty(list)) {
535131e6 1478 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1479 pcp->batch, list,
e084b2d9 1480 migratetype, cold);
5f8dcc21 1481 if (unlikely(list_empty(list)))
6fb332fa 1482 goto failed;
535131e6 1483 }
b92a6edd 1484
5f8dcc21
MG
1485 if (cold)
1486 page = list_entry(list->prev, struct page, lru);
1487 else
1488 page = list_entry(list->next, struct page, lru);
1489
b92a6edd
MG
1490 list_del(&page->lru);
1491 pcp->count--;
7fb1d9fc 1492 } else {
dab48dab
AM
1493 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1494 /*
1495 * __GFP_NOFAIL is not to be used in new code.
1496 *
1497 * All __GFP_NOFAIL callers should be fixed so that they
1498 * properly detect and handle allocation failures.
1499 *
1500 * We most definitely don't want callers attempting to
4923abf9 1501 * allocate greater than order-1 page units with
dab48dab
AM
1502 * __GFP_NOFAIL.
1503 */
4923abf9 1504 WARN_ON_ONCE(order > 1);
dab48dab 1505 }
1da177e4 1506 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1507 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1508 spin_unlock(&zone->lock);
1509 if (!page)
1510 goto failed;
6ccf80eb 1511 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1da177e4
LT
1512 }
1513
f8891e5e 1514 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1515 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1516 local_irq_restore(flags);
1da177e4 1517
725d704e 1518 VM_BUG_ON(bad_range(zone, page));
17cf4406 1519 if (prep_new_page(page, order, gfp_flags))
a74609fa 1520 goto again;
1da177e4 1521 return page;
a74609fa
NP
1522
1523failed:
1524 local_irq_restore(flags);
a74609fa 1525 return NULL;
1da177e4
LT
1526}
1527
41858966
MG
1528/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1529#define ALLOC_WMARK_MIN WMARK_MIN
1530#define ALLOC_WMARK_LOW WMARK_LOW
1531#define ALLOC_WMARK_HIGH WMARK_HIGH
1532#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1533
1534/* Mask to get the watermark bits */
1535#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1536
3148890b
NP
1537#define ALLOC_HARDER 0x10 /* try to alloc harder */
1538#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1539#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 1540
933e312e
AM
1541#ifdef CONFIG_FAIL_PAGE_ALLOC
1542
b2588c4b 1543static struct {
933e312e
AM
1544 struct fault_attr attr;
1545
1546 u32 ignore_gfp_highmem;
1547 u32 ignore_gfp_wait;
54114994 1548 u32 min_order;
933e312e
AM
1549} fail_page_alloc = {
1550 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1551 .ignore_gfp_wait = 1,
1552 .ignore_gfp_highmem = 1,
54114994 1553 .min_order = 1,
933e312e
AM
1554};
1555
1556static int __init setup_fail_page_alloc(char *str)
1557{
1558 return setup_fault_attr(&fail_page_alloc.attr, str);
1559}
1560__setup("fail_page_alloc=", setup_fail_page_alloc);
1561
deaf386e 1562static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1563{
54114994 1564 if (order < fail_page_alloc.min_order)
deaf386e 1565 return false;
933e312e 1566 if (gfp_mask & __GFP_NOFAIL)
deaf386e 1567 return false;
933e312e 1568 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 1569 return false;
933e312e 1570 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 1571 return false;
933e312e
AM
1572
1573 return should_fail(&fail_page_alloc.attr, 1 << order);
1574}
1575
1576#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1577
1578static int __init fail_page_alloc_debugfs(void)
1579{
f4ae40a6 1580 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1581 struct dentry *dir;
933e312e 1582
dd48c085
AM
1583 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1584 &fail_page_alloc.attr);
1585 if (IS_ERR(dir))
1586 return PTR_ERR(dir);
933e312e 1587
b2588c4b
AM
1588 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1589 &fail_page_alloc.ignore_gfp_wait))
1590 goto fail;
1591 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1592 &fail_page_alloc.ignore_gfp_highmem))
1593 goto fail;
1594 if (!debugfs_create_u32("min-order", mode, dir,
1595 &fail_page_alloc.min_order))
1596 goto fail;
1597
1598 return 0;
1599fail:
dd48c085 1600 debugfs_remove_recursive(dir);
933e312e 1601
b2588c4b 1602 return -ENOMEM;
933e312e
AM
1603}
1604
1605late_initcall(fail_page_alloc_debugfs);
1606
1607#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1608
1609#else /* CONFIG_FAIL_PAGE_ALLOC */
1610
deaf386e 1611static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1612{
deaf386e 1613 return false;
933e312e
AM
1614}
1615
1616#endif /* CONFIG_FAIL_PAGE_ALLOC */
1617
1da177e4 1618/*
88f5acf8 1619 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1620 * of the allocation.
1621 */
88f5acf8
MG
1622static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1623 int classzone_idx, int alloc_flags, long free_pages)
1da177e4
LT
1624{
1625 /* free_pages my go negative - that's OK */
d23ad423 1626 long min = mark;
2cfed075 1627 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1da177e4
LT
1628 int o;
1629
df0a6daa 1630 free_pages -= (1 << order) - 1;
7fb1d9fc 1631 if (alloc_flags & ALLOC_HIGH)
1da177e4 1632 min -= min / 2;
7fb1d9fc 1633 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1634 min -= min / 4;
1635
2cfed075 1636 if (free_pages <= min + lowmem_reserve)
88f5acf8 1637 return false;
1da177e4
LT
1638 for (o = 0; o < order; o++) {
1639 /* At the next order, this order's pages become unavailable */
1640 free_pages -= z->free_area[o].nr_free << o;
1641
1642 /* Require fewer higher order pages to be free */
1643 min >>= 1;
1644
1645 if (free_pages <= min)
88f5acf8 1646 return false;
1da177e4 1647 }
88f5acf8
MG
1648 return true;
1649}
1650
702d1a6e
MK
1651#ifdef CONFIG_MEMORY_ISOLATION
1652static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1653{
1654 if (unlikely(zone->nr_pageblock_isolate))
1655 return zone->nr_pageblock_isolate * pageblock_nr_pages;
1656 return 0;
1657}
1658#else
1659static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1660{
1661 return 0;
1662}
1663#endif
1664
88f5acf8
MG
1665bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1666 int classzone_idx, int alloc_flags)
1667{
1668 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1669 zone_page_state(z, NR_FREE_PAGES));
1670}
1671
1672bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1673 int classzone_idx, int alloc_flags)
1674{
1675 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1676
1677 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1678 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1679
702d1a6e
MK
1680 /*
1681 * If the zone has MIGRATE_ISOLATE type free pages, we should consider
1682 * it. nr_zone_isolate_freepages is never accurate so kswapd might not
1683 * sleep although it could do so. But this is more desirable for memory
1684 * hotplug than sleeping which can cause a livelock in the direct
1685 * reclaim path.
1686 */
1687 free_pages -= nr_zone_isolate_freepages(z);
88f5acf8
MG
1688 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1689 free_pages);
1da177e4
LT
1690}
1691
9276b1bc
PJ
1692#ifdef CONFIG_NUMA
1693/*
1694 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1695 * skip over zones that are not allowed by the cpuset, or that have
1696 * been recently (in last second) found to be nearly full. See further
1697 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1698 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1699 *
1700 * If the zonelist cache is present in the passed in zonelist, then
1701 * returns a pointer to the allowed node mask (either the current
37b07e41 1702 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1703 *
1704 * If the zonelist cache is not available for this zonelist, does
1705 * nothing and returns NULL.
1706 *
1707 * If the fullzones BITMAP in the zonelist cache is stale (more than
1708 * a second since last zap'd) then we zap it out (clear its bits.)
1709 *
1710 * We hold off even calling zlc_setup, until after we've checked the
1711 * first zone in the zonelist, on the theory that most allocations will
1712 * be satisfied from that first zone, so best to examine that zone as
1713 * quickly as we can.
1714 */
1715static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1716{
1717 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1718 nodemask_t *allowednodes; /* zonelist_cache approximation */
1719
1720 zlc = zonelist->zlcache_ptr;
1721 if (!zlc)
1722 return NULL;
1723
f05111f5 1724 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1725 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1726 zlc->last_full_zap = jiffies;
1727 }
1728
1729 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1730 &cpuset_current_mems_allowed :
37b07e41 1731 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1732 return allowednodes;
1733}
1734
1735/*
1736 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1737 * if it is worth looking at further for free memory:
1738 * 1) Check that the zone isn't thought to be full (doesn't have its
1739 * bit set in the zonelist_cache fullzones BITMAP).
1740 * 2) Check that the zones node (obtained from the zonelist_cache
1741 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1742 * Return true (non-zero) if zone is worth looking at further, or
1743 * else return false (zero) if it is not.
1744 *
1745 * This check -ignores- the distinction between various watermarks,
1746 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1747 * found to be full for any variation of these watermarks, it will
1748 * be considered full for up to one second by all requests, unless
1749 * we are so low on memory on all allowed nodes that we are forced
1750 * into the second scan of the zonelist.
1751 *
1752 * In the second scan we ignore this zonelist cache and exactly
1753 * apply the watermarks to all zones, even it is slower to do so.
1754 * We are low on memory in the second scan, and should leave no stone
1755 * unturned looking for a free page.
1756 */
dd1a239f 1757static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1758 nodemask_t *allowednodes)
1759{
1760 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1761 int i; /* index of *z in zonelist zones */
1762 int n; /* node that zone *z is on */
1763
1764 zlc = zonelist->zlcache_ptr;
1765 if (!zlc)
1766 return 1;
1767
dd1a239f 1768 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1769 n = zlc->z_to_n[i];
1770
1771 /* This zone is worth trying if it is allowed but not full */
1772 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1773}
1774
1775/*
1776 * Given 'z' scanning a zonelist, set the corresponding bit in
1777 * zlc->fullzones, so that subsequent attempts to allocate a page
1778 * from that zone don't waste time re-examining it.
1779 */
dd1a239f 1780static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1781{
1782 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1783 int i; /* index of *z in zonelist zones */
1784
1785 zlc = zonelist->zlcache_ptr;
1786 if (!zlc)
1787 return;
1788
dd1a239f 1789 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1790
1791 set_bit(i, zlc->fullzones);
1792}
1793
76d3fbf8
MG
1794/*
1795 * clear all zones full, called after direct reclaim makes progress so that
1796 * a zone that was recently full is not skipped over for up to a second
1797 */
1798static void zlc_clear_zones_full(struct zonelist *zonelist)
1799{
1800 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1801
1802 zlc = zonelist->zlcache_ptr;
1803 if (!zlc)
1804 return;
1805
1806 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1807}
1808
9276b1bc
PJ
1809#else /* CONFIG_NUMA */
1810
1811static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1812{
1813 return NULL;
1814}
1815
dd1a239f 1816static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1817 nodemask_t *allowednodes)
1818{
1819 return 1;
1820}
1821
dd1a239f 1822static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1823{
1824}
76d3fbf8
MG
1825
1826static void zlc_clear_zones_full(struct zonelist *zonelist)
1827{
1828}
9276b1bc
PJ
1829#endif /* CONFIG_NUMA */
1830
7fb1d9fc 1831/*
0798e519 1832 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1833 * a page.
1834 */
1835static struct page *
19770b32 1836get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1837 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1838 struct zone *preferred_zone, int migratetype)
753ee728 1839{
dd1a239f 1840 struct zoneref *z;
7fb1d9fc 1841 struct page *page = NULL;
54a6eb5c 1842 int classzone_idx;
5117f45d 1843 struct zone *zone;
9276b1bc
PJ
1844 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1845 int zlc_active = 0; /* set if using zonelist_cache */
1846 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1847
19770b32 1848 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1849zonelist_scan:
7fb1d9fc 1850 /*
9276b1bc 1851 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1852 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1853 */
19770b32
MG
1854 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1855 high_zoneidx, nodemask) {
9276b1bc
PJ
1856 if (NUMA_BUILD && zlc_active &&
1857 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1858 continue;
7fb1d9fc 1859 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1860 !cpuset_zone_allowed_softwall(zone, gfp_mask))
cd38b115 1861 continue;
a756cf59
JW
1862 /*
1863 * When allocating a page cache page for writing, we
1864 * want to get it from a zone that is within its dirty
1865 * limit, such that no single zone holds more than its
1866 * proportional share of globally allowed dirty pages.
1867 * The dirty limits take into account the zone's
1868 * lowmem reserves and high watermark so that kswapd
1869 * should be able to balance it without having to
1870 * write pages from its LRU list.
1871 *
1872 * This may look like it could increase pressure on
1873 * lower zones by failing allocations in higher zones
1874 * before they are full. But the pages that do spill
1875 * over are limited as the lower zones are protected
1876 * by this very same mechanism. It should not become
1877 * a practical burden to them.
1878 *
1879 * XXX: For now, allow allocations to potentially
1880 * exceed the per-zone dirty limit in the slowpath
1881 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1882 * which is important when on a NUMA setup the allowed
1883 * zones are together not big enough to reach the
1884 * global limit. The proper fix for these situations
1885 * will require awareness of zones in the
1886 * dirty-throttling and the flusher threads.
1887 */
1888 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1889 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1890 goto this_zone_full;
7fb1d9fc 1891
41858966 1892 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1893 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1894 unsigned long mark;
fa5e084e
MG
1895 int ret;
1896
41858966 1897 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
fa5e084e
MG
1898 if (zone_watermark_ok(zone, order, mark,
1899 classzone_idx, alloc_flags))
1900 goto try_this_zone;
1901
cd38b115
MG
1902 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1903 /*
1904 * we do zlc_setup if there are multiple nodes
1905 * and before considering the first zone allowed
1906 * by the cpuset.
1907 */
1908 allowednodes = zlc_setup(zonelist, alloc_flags);
1909 zlc_active = 1;
1910 did_zlc_setup = 1;
1911 }
1912
fa5e084e
MG
1913 if (zone_reclaim_mode == 0)
1914 goto this_zone_full;
1915
cd38b115
MG
1916 /*
1917 * As we may have just activated ZLC, check if the first
1918 * eligible zone has failed zone_reclaim recently.
1919 */
1920 if (NUMA_BUILD && zlc_active &&
1921 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1922 continue;
1923
fa5e084e
MG
1924 ret = zone_reclaim(zone, gfp_mask, order);
1925 switch (ret) {
1926 case ZONE_RECLAIM_NOSCAN:
1927 /* did not scan */
cd38b115 1928 continue;
fa5e084e
MG
1929 case ZONE_RECLAIM_FULL:
1930 /* scanned but unreclaimable */
cd38b115 1931 continue;
fa5e084e
MG
1932 default:
1933 /* did we reclaim enough */
1934 if (!zone_watermark_ok(zone, order, mark,
1935 classzone_idx, alloc_flags))
9276b1bc 1936 goto this_zone_full;
0798e519 1937 }
7fb1d9fc
RS
1938 }
1939
fa5e084e 1940try_this_zone:
3dd28266
MG
1941 page = buffered_rmqueue(preferred_zone, zone, order,
1942 gfp_mask, migratetype);
0798e519 1943 if (page)
7fb1d9fc 1944 break;
9276b1bc
PJ
1945this_zone_full:
1946 if (NUMA_BUILD)
1947 zlc_mark_zone_full(zonelist, z);
54a6eb5c 1948 }
9276b1bc
PJ
1949
1950 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1951 /* Disable zlc cache for second zonelist scan */
1952 zlc_active = 0;
1953 goto zonelist_scan;
1954 }
b121186a
AS
1955
1956 if (page)
1957 /*
1958 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1959 * necessary to allocate the page. The expectation is
1960 * that the caller is taking steps that will free more
1961 * memory. The caller should avoid the page being used
1962 * for !PFMEMALLOC purposes.
1963 */
1964 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1965
7fb1d9fc 1966 return page;
753ee728
MH
1967}
1968
29423e77
DR
1969/*
1970 * Large machines with many possible nodes should not always dump per-node
1971 * meminfo in irq context.
1972 */
1973static inline bool should_suppress_show_mem(void)
1974{
1975 bool ret = false;
1976
1977#if NODES_SHIFT > 8
1978 ret = in_interrupt();
1979#endif
1980 return ret;
1981}
1982
a238ab5b
DH
1983static DEFINE_RATELIMIT_STATE(nopage_rs,
1984 DEFAULT_RATELIMIT_INTERVAL,
1985 DEFAULT_RATELIMIT_BURST);
1986
1987void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1988{
a238ab5b
DH
1989 unsigned int filter = SHOW_MEM_FILTER_NODES;
1990
c0a32fc5
SG
1991 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
1992 debug_guardpage_minorder() > 0)
a238ab5b
DH
1993 return;
1994
1995 /*
1996 * This documents exceptions given to allocations in certain
1997 * contexts that are allowed to allocate outside current's set
1998 * of allowed nodes.
1999 */
2000 if (!(gfp_mask & __GFP_NOMEMALLOC))
2001 if (test_thread_flag(TIF_MEMDIE) ||
2002 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2003 filter &= ~SHOW_MEM_FILTER_NODES;
2004 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2005 filter &= ~SHOW_MEM_FILTER_NODES;
2006
2007 if (fmt) {
3ee9a4f0
JP
2008 struct va_format vaf;
2009 va_list args;
2010
a238ab5b 2011 va_start(args, fmt);
3ee9a4f0
JP
2012
2013 vaf.fmt = fmt;
2014 vaf.va = &args;
2015
2016 pr_warn("%pV", &vaf);
2017
a238ab5b
DH
2018 va_end(args);
2019 }
2020
3ee9a4f0
JP
2021 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2022 current->comm, order, gfp_mask);
a238ab5b
DH
2023
2024 dump_stack();
2025 if (!should_suppress_show_mem())
2026 show_mem(filter);
2027}
2028
11e33f6a
MG
2029static inline int
2030should_alloc_retry(gfp_t gfp_mask, unsigned int order,
f90ac398 2031 unsigned long did_some_progress,
11e33f6a 2032 unsigned long pages_reclaimed)
1da177e4 2033{
11e33f6a
MG
2034 /* Do not loop if specifically requested */
2035 if (gfp_mask & __GFP_NORETRY)
2036 return 0;
1da177e4 2037
f90ac398
MG
2038 /* Always retry if specifically requested */
2039 if (gfp_mask & __GFP_NOFAIL)
2040 return 1;
2041
2042 /*
2043 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2044 * making forward progress without invoking OOM. Suspend also disables
2045 * storage devices so kswapd will not help. Bail if we are suspending.
2046 */
2047 if (!did_some_progress && pm_suspended_storage())
2048 return 0;
2049
11e33f6a
MG
2050 /*
2051 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2052 * means __GFP_NOFAIL, but that may not be true in other
2053 * implementations.
2054 */
2055 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2056 return 1;
2057
2058 /*
2059 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2060 * specified, then we retry until we no longer reclaim any pages
2061 * (above), or we've reclaimed an order of pages at least as
2062 * large as the allocation's order. In both cases, if the
2063 * allocation still fails, we stop retrying.
2064 */
2065 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2066 return 1;
cf40bd16 2067
11e33f6a
MG
2068 return 0;
2069}
933e312e 2070
11e33f6a
MG
2071static inline struct page *
2072__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2073 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2074 nodemask_t *nodemask, struct zone *preferred_zone,
2075 int migratetype)
11e33f6a
MG
2076{
2077 struct page *page;
2078
2079 /* Acquire the OOM killer lock for the zones in zonelist */
ff321fea 2080 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
11e33f6a 2081 schedule_timeout_uninterruptible(1);
1da177e4
LT
2082 return NULL;
2083 }
6b1de916 2084
11e33f6a
MG
2085 /*
2086 * Go through the zonelist yet one more time, keep very high watermark
2087 * here, this is only to catch a parallel oom killing, we must fail if
2088 * we're still under heavy pressure.
2089 */
2090 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2091 order, zonelist, high_zoneidx,
5117f45d 2092 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 2093 preferred_zone, migratetype);
7fb1d9fc 2094 if (page)
11e33f6a
MG
2095 goto out;
2096
4365a567
KH
2097 if (!(gfp_mask & __GFP_NOFAIL)) {
2098 /* The OOM killer will not help higher order allocs */
2099 if (order > PAGE_ALLOC_COSTLY_ORDER)
2100 goto out;
03668b3c
DR
2101 /* The OOM killer does not needlessly kill tasks for lowmem */
2102 if (high_zoneidx < ZONE_NORMAL)
2103 goto out;
4365a567
KH
2104 /*
2105 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2106 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2107 * The caller should handle page allocation failure by itself if
2108 * it specifies __GFP_THISNODE.
2109 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2110 */
2111 if (gfp_mask & __GFP_THISNODE)
2112 goto out;
2113 }
11e33f6a 2114 /* Exhausted what can be done so it's blamo time */
08ab9b10 2115 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
11e33f6a
MG
2116
2117out:
2118 clear_zonelist_oom(zonelist, gfp_mask);
2119 return page;
2120}
2121
56de7263
MG
2122#ifdef CONFIG_COMPACTION
2123/* Try memory compaction for high-order allocations before reclaim */
2124static struct page *
2125__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2126 struct zonelist *zonelist, enum zone_type high_zoneidx,
2127 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2128 int migratetype, bool sync_migration,
c67fe375 2129 bool *contended_compaction, bool *deferred_compaction,
66199712 2130 unsigned long *did_some_progress)
56de7263 2131{
1fb3f8ca 2132 struct page *page = NULL;
56de7263 2133
66199712 2134 if (!order)
56de7263
MG
2135 return NULL;
2136
aff62249 2137 if (compaction_deferred(preferred_zone, order)) {
66199712
MG
2138 *deferred_compaction = true;
2139 return NULL;
2140 }
2141
c06b1fca 2142 current->flags |= PF_MEMALLOC;
56de7263 2143 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
c67fe375 2144 nodemask, sync_migration,
1fb3f8ca 2145 contended_compaction, &page);
c06b1fca 2146 current->flags &= ~PF_MEMALLOC;
56de7263 2147
1fb3f8ca
MG
2148 /* If compaction captured a page, prep and use it */
2149 if (page) {
2150 prep_new_page(page, order, gfp_mask);
2151 goto got_page;
2152 }
2153
2154 if (*did_some_progress != COMPACT_SKIPPED) {
56de7263
MG
2155 /* Page migration frees to the PCP lists but we want merging */
2156 drain_pages(get_cpu());
2157 put_cpu();
2158
2159 page = get_page_from_freelist(gfp_mask, nodemask,
2160 order, zonelist, high_zoneidx,
cfd19c5a
MG
2161 alloc_flags & ~ALLOC_NO_WATERMARKS,
2162 preferred_zone, migratetype);
56de7263 2163 if (page) {
1fb3f8ca 2164got_page:
4f92e258
MG
2165 preferred_zone->compact_considered = 0;
2166 preferred_zone->compact_defer_shift = 0;
aff62249
RR
2167 if (order >= preferred_zone->compact_order_failed)
2168 preferred_zone->compact_order_failed = order + 1;
56de7263
MG
2169 count_vm_event(COMPACTSUCCESS);
2170 return page;
2171 }
2172
2173 /*
2174 * It's bad if compaction run occurs and fails.
2175 * The most likely reason is that pages exist,
2176 * but not enough to satisfy watermarks.
2177 */
2178 count_vm_event(COMPACTFAIL);
66199712
MG
2179
2180 /*
2181 * As async compaction considers a subset of pageblocks, only
2182 * defer if the failure was a sync compaction failure.
2183 */
2184 if (sync_migration)
aff62249 2185 defer_compaction(preferred_zone, order);
56de7263
MG
2186
2187 cond_resched();
2188 }
2189
2190 return NULL;
2191}
2192#else
2193static inline struct page *
2194__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2195 struct zonelist *zonelist, enum zone_type high_zoneidx,
2196 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2197 int migratetype, bool sync_migration,
c67fe375 2198 bool *contended_compaction, bool *deferred_compaction,
66199712 2199 unsigned long *did_some_progress)
56de7263
MG
2200{
2201 return NULL;
2202}
2203#endif /* CONFIG_COMPACTION */
2204
bba90710
MS
2205/* Perform direct synchronous page reclaim */
2206static int
2207__perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2208 nodemask_t *nodemask)
11e33f6a 2209{
11e33f6a 2210 struct reclaim_state reclaim_state;
bba90710 2211 int progress;
11e33f6a
MG
2212
2213 cond_resched();
2214
2215 /* We now go into synchronous reclaim */
2216 cpuset_memory_pressure_bump();
c06b1fca 2217 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2218 lockdep_set_current_reclaim_state(gfp_mask);
2219 reclaim_state.reclaimed_slab = 0;
c06b1fca 2220 current->reclaim_state = &reclaim_state;
11e33f6a 2221
bba90710 2222 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
11e33f6a 2223
c06b1fca 2224 current->reclaim_state = NULL;
11e33f6a 2225 lockdep_clear_current_reclaim_state();
c06b1fca 2226 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2227
2228 cond_resched();
2229
bba90710
MS
2230 return progress;
2231}
2232
2233/* The really slow allocator path where we enter direct reclaim */
2234static inline struct page *
2235__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2236 struct zonelist *zonelist, enum zone_type high_zoneidx,
2237 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2238 int migratetype, unsigned long *did_some_progress)
2239{
2240 struct page *page = NULL;
2241 bool drained = false;
2242
2243 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2244 nodemask);
9ee493ce
MG
2245 if (unlikely(!(*did_some_progress)))
2246 return NULL;
11e33f6a 2247
76d3fbf8
MG
2248 /* After successful reclaim, reconsider all zones for allocation */
2249 if (NUMA_BUILD)
2250 zlc_clear_zones_full(zonelist);
2251
9ee493ce
MG
2252retry:
2253 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2254 zonelist, high_zoneidx,
cfd19c5a
MG
2255 alloc_flags & ~ALLOC_NO_WATERMARKS,
2256 preferred_zone, migratetype);
9ee493ce
MG
2257
2258 /*
2259 * If an allocation failed after direct reclaim, it could be because
2260 * pages are pinned on the per-cpu lists. Drain them and try again
2261 */
2262 if (!page && !drained) {
2263 drain_all_pages();
2264 drained = true;
2265 goto retry;
2266 }
2267
11e33f6a
MG
2268 return page;
2269}
2270
1da177e4 2271/*
11e33f6a
MG
2272 * This is called in the allocator slow-path if the allocation request is of
2273 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2274 */
11e33f6a
MG
2275static inline struct page *
2276__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2277 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2278 nodemask_t *nodemask, struct zone *preferred_zone,
2279 int migratetype)
11e33f6a
MG
2280{
2281 struct page *page;
2282
2283 do {
2284 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2285 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 2286 preferred_zone, migratetype);
11e33f6a
MG
2287
2288 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 2289 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
2290 } while (!page && (gfp_mask & __GFP_NOFAIL));
2291
2292 return page;
2293}
2294
2295static inline
2296void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
99504748
MG
2297 enum zone_type high_zoneidx,
2298 enum zone_type classzone_idx)
1da177e4 2299{
dd1a239f
MG
2300 struct zoneref *z;
2301 struct zone *zone;
1da177e4 2302
11e33f6a 2303 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
99504748 2304 wakeup_kswapd(zone, order, classzone_idx);
11e33f6a 2305}
cf40bd16 2306
341ce06f
PZ
2307static inline int
2308gfp_to_alloc_flags(gfp_t gfp_mask)
2309{
341ce06f
PZ
2310 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2311 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 2312
a56f57ff 2313 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2314 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2315
341ce06f
PZ
2316 /*
2317 * The caller may dip into page reserves a bit more if the caller
2318 * cannot run direct reclaim, or if the caller has realtime scheduling
2319 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2320 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2321 */
e6223a3b 2322 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2323
341ce06f 2324 if (!wait) {
5c3240d9
AA
2325 /*
2326 * Not worth trying to allocate harder for
2327 * __GFP_NOMEMALLOC even if it can't schedule.
2328 */
2329 if (!(gfp_mask & __GFP_NOMEMALLOC))
2330 alloc_flags |= ALLOC_HARDER;
523b9458 2331 /*
341ce06f
PZ
2332 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2333 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 2334 */
341ce06f 2335 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2336 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2337 alloc_flags |= ALLOC_HARDER;
2338
b37f1dd0
MG
2339 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2340 if (gfp_mask & __GFP_MEMALLOC)
2341 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2342 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2343 alloc_flags |= ALLOC_NO_WATERMARKS;
2344 else if (!in_interrupt() &&
2345 ((current->flags & PF_MEMALLOC) ||
2346 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2347 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2348 }
6b1de916 2349
341ce06f
PZ
2350 return alloc_flags;
2351}
2352
072bb0aa
MG
2353bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2354{
b37f1dd0 2355 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2356}
2357
11e33f6a
MG
2358static inline struct page *
2359__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2360 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2361 nodemask_t *nodemask, struct zone *preferred_zone,
2362 int migratetype)
11e33f6a
MG
2363{
2364 const gfp_t wait = gfp_mask & __GFP_WAIT;
2365 struct page *page = NULL;
2366 int alloc_flags;
2367 unsigned long pages_reclaimed = 0;
2368 unsigned long did_some_progress;
77f1fe6b 2369 bool sync_migration = false;
66199712 2370 bool deferred_compaction = false;
c67fe375 2371 bool contended_compaction = false;
1da177e4 2372
72807a74
MG
2373 /*
2374 * In the slowpath, we sanity check order to avoid ever trying to
2375 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2376 * be using allocators in order of preference for an area that is
2377 * too large.
2378 */
1fc28b70
MG
2379 if (order >= MAX_ORDER) {
2380 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2381 return NULL;
1fc28b70 2382 }
1da177e4 2383
952f3b51
CL
2384 /*
2385 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2386 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2387 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2388 * using a larger set of nodes after it has established that the
2389 * allowed per node queues are empty and that nodes are
2390 * over allocated.
2391 */
2392 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2393 goto nopage;
2394
cc4a6851 2395restart:
c6543459
RR
2396 wake_all_kswapd(order, zonelist, high_zoneidx,
2397 zone_idx(preferred_zone));
1da177e4 2398
9bf2229f 2399 /*
7fb1d9fc
RS
2400 * OK, we're below the kswapd watermark and have kicked background
2401 * reclaim. Now things get more complex, so set up alloc_flags according
2402 * to how we want to proceed.
9bf2229f 2403 */
341ce06f 2404 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2405
f33261d7
DR
2406 /*
2407 * Find the true preferred zone if the allocation is unconstrained by
2408 * cpusets.
2409 */
2410 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2411 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2412 &preferred_zone);
2413
cfa54a0f 2414rebalance:
341ce06f 2415 /* This is the last chance, in general, before the goto nopage. */
19770b32 2416 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
2417 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2418 preferred_zone, migratetype);
7fb1d9fc
RS
2419 if (page)
2420 goto got_pg;
1da177e4 2421
11e33f6a 2422 /* Allocate without watermarks if the context allows */
341ce06f 2423 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
2424 /*
2425 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2426 * the allocation is high priority and these type of
2427 * allocations are system rather than user orientated
2428 */
2429 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2430
341ce06f
PZ
2431 page = __alloc_pages_high_priority(gfp_mask, order,
2432 zonelist, high_zoneidx, nodemask,
2433 preferred_zone, migratetype);
cfd19c5a 2434 if (page) {
341ce06f 2435 goto got_pg;
cfd19c5a 2436 }
1da177e4
LT
2437 }
2438
2439 /* Atomic allocations - we can't balance anything */
2440 if (!wait)
2441 goto nopage;
2442
341ce06f 2443 /* Avoid recursion of direct reclaim */
c06b1fca 2444 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2445 goto nopage;
2446
6583bb64
DR
2447 /* Avoid allocations with no watermarks from looping endlessly */
2448 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2449 goto nopage;
2450
77f1fe6b
MG
2451 /*
2452 * Try direct compaction. The first pass is asynchronous. Subsequent
2453 * attempts after direct reclaim are synchronous
2454 */
56de7263
MG
2455 page = __alloc_pages_direct_compact(gfp_mask, order,
2456 zonelist, high_zoneidx,
2457 nodemask,
2458 alloc_flags, preferred_zone,
66199712 2459 migratetype, sync_migration,
c67fe375 2460 &contended_compaction,
66199712
MG
2461 &deferred_compaction,
2462 &did_some_progress);
56de7263
MG
2463 if (page)
2464 goto got_pg;
c6a140bf 2465 sync_migration = true;
56de7263 2466
66199712
MG
2467 /*
2468 * If compaction is deferred for high-order allocations, it is because
2469 * sync compaction recently failed. In this is the case and the caller
c67fe375
MG
2470 * requested a movable allocation that does not heavily disrupt the
2471 * system then fail the allocation instead of entering direct reclaim.
66199712 2472 */
c67fe375 2473 if ((deferred_compaction || contended_compaction) &&
c6543459 2474 (gfp_mask & (__GFP_MOVABLE|__GFP_REPEAT)) == __GFP_MOVABLE)
66199712
MG
2475 goto nopage;
2476
11e33f6a
MG
2477 /* Try direct reclaim and then allocating */
2478 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2479 zonelist, high_zoneidx,
2480 nodemask,
5117f45d 2481 alloc_flags, preferred_zone,
3dd28266 2482 migratetype, &did_some_progress);
11e33f6a
MG
2483 if (page)
2484 goto got_pg;
1da177e4 2485
e33c3b5e 2486 /*
11e33f6a
MG
2487 * If we failed to make any progress reclaiming, then we are
2488 * running out of options and have to consider going OOM
e33c3b5e 2489 */
11e33f6a
MG
2490 if (!did_some_progress) {
2491 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
2492 if (oom_killer_disabled)
2493 goto nopage;
29fd66d2
DR
2494 /* Coredumps can quickly deplete all memory reserves */
2495 if ((current->flags & PF_DUMPCORE) &&
2496 !(gfp_mask & __GFP_NOFAIL))
2497 goto nopage;
11e33f6a
MG
2498 page = __alloc_pages_may_oom(gfp_mask, order,
2499 zonelist, high_zoneidx,
3dd28266
MG
2500 nodemask, preferred_zone,
2501 migratetype);
11e33f6a
MG
2502 if (page)
2503 goto got_pg;
1da177e4 2504
03668b3c
DR
2505 if (!(gfp_mask & __GFP_NOFAIL)) {
2506 /*
2507 * The oom killer is not called for high-order
2508 * allocations that may fail, so if no progress
2509 * is being made, there are no other options and
2510 * retrying is unlikely to help.
2511 */
2512 if (order > PAGE_ALLOC_COSTLY_ORDER)
2513 goto nopage;
2514 /*
2515 * The oom killer is not called for lowmem
2516 * allocations to prevent needlessly killing
2517 * innocent tasks.
2518 */
2519 if (high_zoneidx < ZONE_NORMAL)
2520 goto nopage;
2521 }
e2c55dc8 2522
ff0ceb9d
DR
2523 goto restart;
2524 }
1da177e4
LT
2525 }
2526
11e33f6a 2527 /* Check if we should retry the allocation */
a41f24ea 2528 pages_reclaimed += did_some_progress;
f90ac398
MG
2529 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2530 pages_reclaimed)) {
11e33f6a 2531 /* Wait for some write requests to complete then retry */
0e093d99 2532 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2533 goto rebalance;
3e7d3449
MG
2534 } else {
2535 /*
2536 * High-order allocations do not necessarily loop after
2537 * direct reclaim and reclaim/compaction depends on compaction
2538 * being called after reclaim so call directly if necessary
2539 */
2540 page = __alloc_pages_direct_compact(gfp_mask, order,
2541 zonelist, high_zoneidx,
2542 nodemask,
2543 alloc_flags, preferred_zone,
66199712 2544 migratetype, sync_migration,
c67fe375 2545 &contended_compaction,
66199712
MG
2546 &deferred_compaction,
2547 &did_some_progress);
3e7d3449
MG
2548 if (page)
2549 goto got_pg;
1da177e4
LT
2550 }
2551
2552nopage:
a238ab5b 2553 warn_alloc_failed(gfp_mask, order, NULL);
b1eeab67 2554 return page;
1da177e4 2555got_pg:
b1eeab67
VN
2556 if (kmemcheck_enabled)
2557 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
11e33f6a 2558
072bb0aa 2559 return page;
1da177e4 2560}
11e33f6a
MG
2561
2562/*
2563 * This is the 'heart' of the zoned buddy allocator.
2564 */
2565struct page *
2566__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2567 struct zonelist *zonelist, nodemask_t *nodemask)
2568{
2569 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2570 struct zone *preferred_zone;
cc9a6c87 2571 struct page *page = NULL;
3dd28266 2572 int migratetype = allocflags_to_migratetype(gfp_mask);
cc9a6c87 2573 unsigned int cpuset_mems_cookie;
11e33f6a 2574
dcce284a
BH
2575 gfp_mask &= gfp_allowed_mask;
2576
11e33f6a
MG
2577 lockdep_trace_alloc(gfp_mask);
2578
2579 might_sleep_if(gfp_mask & __GFP_WAIT);
2580
2581 if (should_fail_alloc_page(gfp_mask, order))
2582 return NULL;
2583
2584 /*
2585 * Check the zones suitable for the gfp_mask contain at least one
2586 * valid zone. It's possible to have an empty zonelist as a result
2587 * of GFP_THISNODE and a memoryless node
2588 */
2589 if (unlikely(!zonelist->_zonerefs->zone))
2590 return NULL;
2591
cc9a6c87
MG
2592retry_cpuset:
2593 cpuset_mems_cookie = get_mems_allowed();
2594
5117f45d 2595 /* The preferred zone is used for statistics later */
f33261d7
DR
2596 first_zones_zonelist(zonelist, high_zoneidx,
2597 nodemask ? : &cpuset_current_mems_allowed,
2598 &preferred_zone);
cc9a6c87
MG
2599 if (!preferred_zone)
2600 goto out;
5117f45d
MG
2601
2602 /* First allocation attempt */
11e33f6a 2603 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
5117f45d 2604 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
3dd28266 2605 preferred_zone, migratetype);
11e33f6a
MG
2606 if (unlikely(!page))
2607 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2608 zonelist, high_zoneidx, nodemask,
3dd28266 2609 preferred_zone, migratetype);
11e33f6a 2610
4b4f278c 2611 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
cc9a6c87
MG
2612
2613out:
2614 /*
2615 * When updating a task's mems_allowed, it is possible to race with
2616 * parallel threads in such a way that an allocation can fail while
2617 * the mask is being updated. If a page allocation is about to fail,
2618 * check if the cpuset changed during allocation and if so, retry.
2619 */
2620 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2621 goto retry_cpuset;
2622
11e33f6a 2623 return page;
1da177e4 2624}
d239171e 2625EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2626
2627/*
2628 * Common helper functions.
2629 */
920c7a5d 2630unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2631{
945a1113
AM
2632 struct page *page;
2633
2634 /*
2635 * __get_free_pages() returns a 32-bit address, which cannot represent
2636 * a highmem page
2637 */
2638 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2639
1da177e4
LT
2640 page = alloc_pages(gfp_mask, order);
2641 if (!page)
2642 return 0;
2643 return (unsigned long) page_address(page);
2644}
1da177e4
LT
2645EXPORT_SYMBOL(__get_free_pages);
2646
920c7a5d 2647unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2648{
945a1113 2649 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2650}
1da177e4
LT
2651EXPORT_SYMBOL(get_zeroed_page);
2652
920c7a5d 2653void __free_pages(struct page *page, unsigned int order)
1da177e4 2654{
b5810039 2655 if (put_page_testzero(page)) {
1da177e4 2656 if (order == 0)
fc91668e 2657 free_hot_cold_page(page, 0);
1da177e4
LT
2658 else
2659 __free_pages_ok(page, order);
2660 }
2661}
2662
2663EXPORT_SYMBOL(__free_pages);
2664
920c7a5d 2665void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2666{
2667 if (addr != 0) {
725d704e 2668 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2669 __free_pages(virt_to_page((void *)addr), order);
2670 }
2671}
2672
2673EXPORT_SYMBOL(free_pages);
2674
ee85c2e1
AK
2675static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2676{
2677 if (addr) {
2678 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2679 unsigned long used = addr + PAGE_ALIGN(size);
2680
2681 split_page(virt_to_page((void *)addr), order);
2682 while (used < alloc_end) {
2683 free_page(used);
2684 used += PAGE_SIZE;
2685 }
2686 }
2687 return (void *)addr;
2688}
2689
2be0ffe2
TT
2690/**
2691 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2692 * @size: the number of bytes to allocate
2693 * @gfp_mask: GFP flags for the allocation
2694 *
2695 * This function is similar to alloc_pages(), except that it allocates the
2696 * minimum number of pages to satisfy the request. alloc_pages() can only
2697 * allocate memory in power-of-two pages.
2698 *
2699 * This function is also limited by MAX_ORDER.
2700 *
2701 * Memory allocated by this function must be released by free_pages_exact().
2702 */
2703void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2704{
2705 unsigned int order = get_order(size);
2706 unsigned long addr;
2707
2708 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 2709 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
2710}
2711EXPORT_SYMBOL(alloc_pages_exact);
2712
ee85c2e1
AK
2713/**
2714 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2715 * pages on a node.
b5e6ab58 2716 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
2717 * @size: the number of bytes to allocate
2718 * @gfp_mask: GFP flags for the allocation
2719 *
2720 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2721 * back.
2722 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2723 * but is not exact.
2724 */
2725void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2726{
2727 unsigned order = get_order(size);
2728 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2729 if (!p)
2730 return NULL;
2731 return make_alloc_exact((unsigned long)page_address(p), order, size);
2732}
2733EXPORT_SYMBOL(alloc_pages_exact_nid);
2734
2be0ffe2
TT
2735/**
2736 * free_pages_exact - release memory allocated via alloc_pages_exact()
2737 * @virt: the value returned by alloc_pages_exact.
2738 * @size: size of allocation, same value as passed to alloc_pages_exact().
2739 *
2740 * Release the memory allocated by a previous call to alloc_pages_exact.
2741 */
2742void free_pages_exact(void *virt, size_t size)
2743{
2744 unsigned long addr = (unsigned long)virt;
2745 unsigned long end = addr + PAGE_ALIGN(size);
2746
2747 while (addr < end) {
2748 free_page(addr);
2749 addr += PAGE_SIZE;
2750 }
2751}
2752EXPORT_SYMBOL(free_pages_exact);
2753
1da177e4
LT
2754static unsigned int nr_free_zone_pages(int offset)
2755{
dd1a239f 2756 struct zoneref *z;
54a6eb5c
MG
2757 struct zone *zone;
2758
e310fd43 2759 /* Just pick one node, since fallback list is circular */
1da177e4
LT
2760 unsigned int sum = 0;
2761
0e88460d 2762 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2763
54a6eb5c 2764 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43 2765 unsigned long size = zone->present_pages;
41858966 2766 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2767 if (size > high)
2768 sum += size - high;
1da177e4
LT
2769 }
2770
2771 return sum;
2772}
2773
2774/*
2775 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2776 */
2777unsigned int nr_free_buffer_pages(void)
2778{
af4ca457 2779 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2780}
c2f1a551 2781EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
2782
2783/*
2784 * Amount of free RAM allocatable within all zones
2785 */
2786unsigned int nr_free_pagecache_pages(void)
2787{
2a1e274a 2788 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2789}
08e0f6a9
CL
2790
2791static inline void show_node(struct zone *zone)
1da177e4 2792{
08e0f6a9 2793 if (NUMA_BUILD)
25ba77c1 2794 printk("Node %d ", zone_to_nid(zone));
1da177e4 2795}
1da177e4 2796
1da177e4
LT
2797void si_meminfo(struct sysinfo *val)
2798{
2799 val->totalram = totalram_pages;
2800 val->sharedram = 0;
d23ad423 2801 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2802 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2803 val->totalhigh = totalhigh_pages;
2804 val->freehigh = nr_free_highpages();
1da177e4
LT
2805 val->mem_unit = PAGE_SIZE;
2806}
2807
2808EXPORT_SYMBOL(si_meminfo);
2809
2810#ifdef CONFIG_NUMA
2811void si_meminfo_node(struct sysinfo *val, int nid)
2812{
2813 pg_data_t *pgdat = NODE_DATA(nid);
2814
2815 val->totalram = pgdat->node_present_pages;
d23ad423 2816 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2817#ifdef CONFIG_HIGHMEM
1da177e4 2818 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
2819 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2820 NR_FREE_PAGES);
98d2b0eb
CL
2821#else
2822 val->totalhigh = 0;
2823 val->freehigh = 0;
2824#endif
1da177e4
LT
2825 val->mem_unit = PAGE_SIZE;
2826}
2827#endif
2828
ddd588b5 2829/*
7bf02ea2
DR
2830 * Determine whether the node should be displayed or not, depending on whether
2831 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 2832 */
7bf02ea2 2833bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
2834{
2835 bool ret = false;
cc9a6c87 2836 unsigned int cpuset_mems_cookie;
ddd588b5
DR
2837
2838 if (!(flags & SHOW_MEM_FILTER_NODES))
2839 goto out;
2840
cc9a6c87
MG
2841 do {
2842 cpuset_mems_cookie = get_mems_allowed();
2843 ret = !node_isset(nid, cpuset_current_mems_allowed);
2844 } while (!put_mems_allowed(cpuset_mems_cookie));
ddd588b5
DR
2845out:
2846 return ret;
2847}
2848
1da177e4
LT
2849#define K(x) ((x) << (PAGE_SHIFT-10))
2850
2851/*
2852 * Show free area list (used inside shift_scroll-lock stuff)
2853 * We also calculate the percentage fragmentation. We do this by counting the
2854 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
2855 * Suppresses nodes that are not allowed by current's cpuset if
2856 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 2857 */
7bf02ea2 2858void show_free_areas(unsigned int filter)
1da177e4 2859{
c7241913 2860 int cpu;
1da177e4
LT
2861 struct zone *zone;
2862
ee99c71c 2863 for_each_populated_zone(zone) {
7bf02ea2 2864 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2865 continue;
c7241913
JS
2866 show_node(zone);
2867 printk("%s per-cpu:\n", zone->name);
1da177e4 2868
6b482c67 2869 for_each_online_cpu(cpu) {
1da177e4
LT
2870 struct per_cpu_pageset *pageset;
2871
99dcc3e5 2872 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2873
3dfa5721
CL
2874 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2875 cpu, pageset->pcp.high,
2876 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2877 }
2878 }
2879
a731286d
KM
2880 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2881 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 2882 " unevictable:%lu"
b76146ed 2883 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 2884 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4b02108a 2885 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
4f98a2fe 2886 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 2887 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
2888 global_page_state(NR_ISOLATED_ANON),
2889 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 2890 global_page_state(NR_INACTIVE_FILE),
a731286d 2891 global_page_state(NR_ISOLATED_FILE),
7b854121 2892 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 2893 global_page_state(NR_FILE_DIRTY),
ce866b34 2894 global_page_state(NR_WRITEBACK),
fd39fc85 2895 global_page_state(NR_UNSTABLE_NFS),
d23ad423 2896 global_page_state(NR_FREE_PAGES),
3701b033
KM
2897 global_page_state(NR_SLAB_RECLAIMABLE),
2898 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2899 global_page_state(NR_FILE_MAPPED),
4b02108a 2900 global_page_state(NR_SHMEM),
a25700a5
AM
2901 global_page_state(NR_PAGETABLE),
2902 global_page_state(NR_BOUNCE));
1da177e4 2903
ee99c71c 2904 for_each_populated_zone(zone) {
1da177e4
LT
2905 int i;
2906
7bf02ea2 2907 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2908 continue;
1da177e4
LT
2909 show_node(zone);
2910 printk("%s"
2911 " free:%lukB"
2912 " min:%lukB"
2913 " low:%lukB"
2914 " high:%lukB"
4f98a2fe
RR
2915 " active_anon:%lukB"
2916 " inactive_anon:%lukB"
2917 " active_file:%lukB"
2918 " inactive_file:%lukB"
7b854121 2919 " unevictable:%lukB"
a731286d
KM
2920 " isolated(anon):%lukB"
2921 " isolated(file):%lukB"
1da177e4 2922 " present:%lukB"
4a0aa73f
KM
2923 " mlocked:%lukB"
2924 " dirty:%lukB"
2925 " writeback:%lukB"
2926 " mapped:%lukB"
4b02108a 2927 " shmem:%lukB"
4a0aa73f
KM
2928 " slab_reclaimable:%lukB"
2929 " slab_unreclaimable:%lukB"
c6a7f572 2930 " kernel_stack:%lukB"
4a0aa73f
KM
2931 " pagetables:%lukB"
2932 " unstable:%lukB"
2933 " bounce:%lukB"
2934 " writeback_tmp:%lukB"
1da177e4
LT
2935 " pages_scanned:%lu"
2936 " all_unreclaimable? %s"
2937 "\n",
2938 zone->name,
88f5acf8 2939 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
2940 K(min_wmark_pages(zone)),
2941 K(low_wmark_pages(zone)),
2942 K(high_wmark_pages(zone)),
4f98a2fe
RR
2943 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2944 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2945 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2946 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 2947 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
2948 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2949 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 2950 K(zone->present_pages),
4a0aa73f
KM
2951 K(zone_page_state(zone, NR_MLOCK)),
2952 K(zone_page_state(zone, NR_FILE_DIRTY)),
2953 K(zone_page_state(zone, NR_WRITEBACK)),
2954 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 2955 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
2956 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2957 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
2958 zone_page_state(zone, NR_KERNEL_STACK) *
2959 THREAD_SIZE / 1024,
4a0aa73f
KM
2960 K(zone_page_state(zone, NR_PAGETABLE)),
2961 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2962 K(zone_page_state(zone, NR_BOUNCE)),
2963 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 2964 zone->pages_scanned,
93e4a89a 2965 (zone->all_unreclaimable ? "yes" : "no")
1da177e4
LT
2966 );
2967 printk("lowmem_reserve[]:");
2968 for (i = 0; i < MAX_NR_ZONES; i++)
2969 printk(" %lu", zone->lowmem_reserve[i]);
2970 printk("\n");
2971 }
2972
ee99c71c 2973 for_each_populated_zone(zone) {
8f9de51a 2974 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4 2975
7bf02ea2 2976 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2977 continue;
1da177e4
LT
2978 show_node(zone);
2979 printk("%s: ", zone->name);
1da177e4
LT
2980
2981 spin_lock_irqsave(&zone->lock, flags);
2982 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
2983 nr[order] = zone->free_area[order].nr_free;
2984 total += nr[order] << order;
1da177e4
LT
2985 }
2986 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
2987 for (order = 0; order < MAX_ORDER; order++)
2988 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
2989 printk("= %lukB\n", K(total));
2990 }
2991
e6f3602d
LW
2992 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2993
1da177e4
LT
2994 show_swap_cache_info();
2995}
2996
19770b32
MG
2997static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2998{
2999 zoneref->zone = zone;
3000 zoneref->zone_idx = zone_idx(zone);
3001}
3002
1da177e4
LT
3003/*
3004 * Builds allocation fallback zone lists.
1a93205b
CL
3005 *
3006 * Add all populated zones of a node to the zonelist.
1da177e4 3007 */
f0c0b2b8
KH
3008static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3009 int nr_zones, enum zone_type zone_type)
1da177e4 3010{
1a93205b
CL
3011 struct zone *zone;
3012
98d2b0eb 3013 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 3014 zone_type++;
02a68a5e
CL
3015
3016 do {
2f6726e5 3017 zone_type--;
070f8032 3018 zone = pgdat->node_zones + zone_type;
1a93205b 3019 if (populated_zone(zone)) {
dd1a239f
MG
3020 zoneref_set_zone(zone,
3021 &zonelist->_zonerefs[nr_zones++]);
070f8032 3022 check_highest_zone(zone_type);
1da177e4 3023 }
02a68a5e 3024
2f6726e5 3025 } while (zone_type);
070f8032 3026 return nr_zones;
1da177e4
LT
3027}
3028
f0c0b2b8
KH
3029
3030/*
3031 * zonelist_order:
3032 * 0 = automatic detection of better ordering.
3033 * 1 = order by ([node] distance, -zonetype)
3034 * 2 = order by (-zonetype, [node] distance)
3035 *
3036 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3037 * the same zonelist. So only NUMA can configure this param.
3038 */
3039#define ZONELIST_ORDER_DEFAULT 0
3040#define ZONELIST_ORDER_NODE 1
3041#define ZONELIST_ORDER_ZONE 2
3042
3043/* zonelist order in the kernel.
3044 * set_zonelist_order() will set this to NODE or ZONE.
3045 */
3046static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3047static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3048
3049
1da177e4 3050#ifdef CONFIG_NUMA
f0c0b2b8
KH
3051/* The value user specified ....changed by config */
3052static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3053/* string for sysctl */
3054#define NUMA_ZONELIST_ORDER_LEN 16
3055char numa_zonelist_order[16] = "default";
3056
3057/*
3058 * interface for configure zonelist ordering.
3059 * command line option "numa_zonelist_order"
3060 * = "[dD]efault - default, automatic configuration.
3061 * = "[nN]ode - order by node locality, then by zone within node
3062 * = "[zZ]one - order by zone, then by locality within zone
3063 */
3064
3065static int __parse_numa_zonelist_order(char *s)
3066{
3067 if (*s == 'd' || *s == 'D') {
3068 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3069 } else if (*s == 'n' || *s == 'N') {
3070 user_zonelist_order = ZONELIST_ORDER_NODE;
3071 } else if (*s == 'z' || *s == 'Z') {
3072 user_zonelist_order = ZONELIST_ORDER_ZONE;
3073 } else {
3074 printk(KERN_WARNING
3075 "Ignoring invalid numa_zonelist_order value: "
3076 "%s\n", s);
3077 return -EINVAL;
3078 }
3079 return 0;
3080}
3081
3082static __init int setup_numa_zonelist_order(char *s)
3083{
ecb256f8
VL
3084 int ret;
3085
3086 if (!s)
3087 return 0;
3088
3089 ret = __parse_numa_zonelist_order(s);
3090 if (ret == 0)
3091 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3092
3093 return ret;
f0c0b2b8
KH
3094}
3095early_param("numa_zonelist_order", setup_numa_zonelist_order);
3096
3097/*
3098 * sysctl handler for numa_zonelist_order
3099 */
3100int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 3101 void __user *buffer, size_t *length,
f0c0b2b8
KH
3102 loff_t *ppos)
3103{
3104 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3105 int ret;
443c6f14 3106 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3107
443c6f14 3108 mutex_lock(&zl_order_mutex);
f0c0b2b8 3109 if (write)
443c6f14 3110 strcpy(saved_string, (char*)table->data);
8d65af78 3111 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3112 if (ret)
443c6f14 3113 goto out;
f0c0b2b8
KH
3114 if (write) {
3115 int oldval = user_zonelist_order;
3116 if (__parse_numa_zonelist_order((char*)table->data)) {
3117 /*
3118 * bogus value. restore saved string
3119 */
3120 strncpy((char*)table->data, saved_string,
3121 NUMA_ZONELIST_ORDER_LEN);
3122 user_zonelist_order = oldval;
4eaf3f64
HL
3123 } else if (oldval != user_zonelist_order) {
3124 mutex_lock(&zonelists_mutex);
9adb62a5 3125 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3126 mutex_unlock(&zonelists_mutex);
3127 }
f0c0b2b8 3128 }
443c6f14
AK
3129out:
3130 mutex_unlock(&zl_order_mutex);
3131 return ret;
f0c0b2b8
KH
3132}
3133
3134
62bc62a8 3135#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3136static int node_load[MAX_NUMNODES];
3137
1da177e4 3138/**
4dc3b16b 3139 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3140 * @node: node whose fallback list we're appending
3141 * @used_node_mask: nodemask_t of already used nodes
3142 *
3143 * We use a number of factors to determine which is the next node that should
3144 * appear on a given node's fallback list. The node should not have appeared
3145 * already in @node's fallback list, and it should be the next closest node
3146 * according to the distance array (which contains arbitrary distance values
3147 * from each node to each node in the system), and should also prefer nodes
3148 * with no CPUs, since presumably they'll have very little allocation pressure
3149 * on them otherwise.
3150 * It returns -1 if no node is found.
3151 */
f0c0b2b8 3152static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3153{
4cf808eb 3154 int n, val;
1da177e4
LT
3155 int min_val = INT_MAX;
3156 int best_node = -1;
a70f7302 3157 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3158
4cf808eb
LT
3159 /* Use the local node if we haven't already */
3160 if (!node_isset(node, *used_node_mask)) {
3161 node_set(node, *used_node_mask);
3162 return node;
3163 }
1da177e4 3164
37b07e41 3165 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
3166
3167 /* Don't want a node to appear more than once */
3168 if (node_isset(n, *used_node_mask))
3169 continue;
3170
1da177e4
LT
3171 /* Use the distance array to find the distance */
3172 val = node_distance(node, n);
3173
4cf808eb
LT
3174 /* Penalize nodes under us ("prefer the next node") */
3175 val += (n < node);
3176
1da177e4 3177 /* Give preference to headless and unused nodes */
a70f7302
RR
3178 tmp = cpumask_of_node(n);
3179 if (!cpumask_empty(tmp))
1da177e4
LT
3180 val += PENALTY_FOR_NODE_WITH_CPUS;
3181
3182 /* Slight preference for less loaded node */
3183 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3184 val += node_load[n];
3185
3186 if (val < min_val) {
3187 min_val = val;
3188 best_node = n;
3189 }
3190 }
3191
3192 if (best_node >= 0)
3193 node_set(best_node, *used_node_mask);
3194
3195 return best_node;
3196}
3197
f0c0b2b8
KH
3198
3199/*
3200 * Build zonelists ordered by node and zones within node.
3201 * This results in maximum locality--normal zone overflows into local
3202 * DMA zone, if any--but risks exhausting DMA zone.
3203 */
3204static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 3205{
f0c0b2b8 3206 int j;
1da177e4 3207 struct zonelist *zonelist;
f0c0b2b8 3208
54a6eb5c 3209 zonelist = &pgdat->node_zonelists[0];
dd1a239f 3210 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
3211 ;
3212 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3213 MAX_NR_ZONES - 1);
dd1a239f
MG
3214 zonelist->_zonerefs[j].zone = NULL;
3215 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
3216}
3217
523b9458
CL
3218/*
3219 * Build gfp_thisnode zonelists
3220 */
3221static void build_thisnode_zonelists(pg_data_t *pgdat)
3222{
523b9458
CL
3223 int j;
3224 struct zonelist *zonelist;
3225
54a6eb5c
MG
3226 zonelist = &pgdat->node_zonelists[1];
3227 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
3228 zonelist->_zonerefs[j].zone = NULL;
3229 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3230}
3231
f0c0b2b8
KH
3232/*
3233 * Build zonelists ordered by zone and nodes within zones.
3234 * This results in conserving DMA zone[s] until all Normal memory is
3235 * exhausted, but results in overflowing to remote node while memory
3236 * may still exist in local DMA zone.
3237 */
3238static int node_order[MAX_NUMNODES];
3239
3240static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3241{
f0c0b2b8
KH
3242 int pos, j, node;
3243 int zone_type; /* needs to be signed */
3244 struct zone *z;
3245 struct zonelist *zonelist;
3246
54a6eb5c
MG
3247 zonelist = &pgdat->node_zonelists[0];
3248 pos = 0;
3249 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3250 for (j = 0; j < nr_nodes; j++) {
3251 node = node_order[j];
3252 z = &NODE_DATA(node)->node_zones[zone_type];
3253 if (populated_zone(z)) {
dd1a239f
MG
3254 zoneref_set_zone(z,
3255 &zonelist->_zonerefs[pos++]);
54a6eb5c 3256 check_highest_zone(zone_type);
f0c0b2b8
KH
3257 }
3258 }
f0c0b2b8 3259 }
dd1a239f
MG
3260 zonelist->_zonerefs[pos].zone = NULL;
3261 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3262}
3263
3264static int default_zonelist_order(void)
3265{
3266 int nid, zone_type;
3267 unsigned long low_kmem_size,total_size;
3268 struct zone *z;
3269 int average_size;
3270 /*
88393161 3271 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
3272 * If they are really small and used heavily, the system can fall
3273 * into OOM very easily.
e325c90f 3274 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
3275 */
3276 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3277 low_kmem_size = 0;
3278 total_size = 0;
3279 for_each_online_node(nid) {
3280 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3281 z = &NODE_DATA(nid)->node_zones[zone_type];
3282 if (populated_zone(z)) {
3283 if (zone_type < ZONE_NORMAL)
3284 low_kmem_size += z->present_pages;
3285 total_size += z->present_pages;
e325c90f
DR
3286 } else if (zone_type == ZONE_NORMAL) {
3287 /*
3288 * If any node has only lowmem, then node order
3289 * is preferred to allow kernel allocations
3290 * locally; otherwise, they can easily infringe
3291 * on other nodes when there is an abundance of
3292 * lowmem available to allocate from.
3293 */
3294 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
3295 }
3296 }
3297 }
3298 if (!low_kmem_size || /* there are no DMA area. */
3299 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3300 return ZONELIST_ORDER_NODE;
3301 /*
3302 * look into each node's config.
3303 * If there is a node whose DMA/DMA32 memory is very big area on
3304 * local memory, NODE_ORDER may be suitable.
3305 */
37b07e41
LS
3306 average_size = total_size /
3307 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
3308 for_each_online_node(nid) {
3309 low_kmem_size = 0;
3310 total_size = 0;
3311 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3312 z = &NODE_DATA(nid)->node_zones[zone_type];
3313 if (populated_zone(z)) {
3314 if (zone_type < ZONE_NORMAL)
3315 low_kmem_size += z->present_pages;
3316 total_size += z->present_pages;
3317 }
3318 }
3319 if (low_kmem_size &&
3320 total_size > average_size && /* ignore small node */
3321 low_kmem_size > total_size * 70/100)
3322 return ZONELIST_ORDER_NODE;
3323 }
3324 return ZONELIST_ORDER_ZONE;
3325}
3326
3327static void set_zonelist_order(void)
3328{
3329 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3330 current_zonelist_order = default_zonelist_order();
3331 else
3332 current_zonelist_order = user_zonelist_order;
3333}
3334
3335static void build_zonelists(pg_data_t *pgdat)
3336{
3337 int j, node, load;
3338 enum zone_type i;
1da177e4 3339 nodemask_t used_mask;
f0c0b2b8
KH
3340 int local_node, prev_node;
3341 struct zonelist *zonelist;
3342 int order = current_zonelist_order;
1da177e4
LT
3343
3344 /* initialize zonelists */
523b9458 3345 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3346 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3347 zonelist->_zonerefs[0].zone = NULL;
3348 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3349 }
3350
3351 /* NUMA-aware ordering of nodes */
3352 local_node = pgdat->node_id;
62bc62a8 3353 load = nr_online_nodes;
1da177e4
LT
3354 prev_node = local_node;
3355 nodes_clear(used_mask);
f0c0b2b8 3356
f0c0b2b8
KH
3357 memset(node_order, 0, sizeof(node_order));
3358 j = 0;
3359
1da177e4 3360 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
3361 int distance = node_distance(local_node, node);
3362
3363 /*
3364 * If another node is sufficiently far away then it is better
3365 * to reclaim pages in a zone before going off node.
3366 */
3367 if (distance > RECLAIM_DISTANCE)
3368 zone_reclaim_mode = 1;
3369
1da177e4
LT
3370 /*
3371 * We don't want to pressure a particular node.
3372 * So adding penalty to the first node in same
3373 * distance group to make it round-robin.
3374 */
9eeff239 3375 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
3376 node_load[node] = load;
3377
1da177e4
LT
3378 prev_node = node;
3379 load--;
f0c0b2b8
KH
3380 if (order == ZONELIST_ORDER_NODE)
3381 build_zonelists_in_node_order(pgdat, node);
3382 else
3383 node_order[j++] = node; /* remember order */
3384 }
1da177e4 3385
f0c0b2b8
KH
3386 if (order == ZONELIST_ORDER_ZONE) {
3387 /* calculate node order -- i.e., DMA last! */
3388 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3389 }
523b9458
CL
3390
3391 build_thisnode_zonelists(pgdat);
1da177e4
LT
3392}
3393
9276b1bc 3394/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3395static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3396{
54a6eb5c
MG
3397 struct zonelist *zonelist;
3398 struct zonelist_cache *zlc;
dd1a239f 3399 struct zoneref *z;
9276b1bc 3400
54a6eb5c
MG
3401 zonelist = &pgdat->node_zonelists[0];
3402 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3403 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3404 for (z = zonelist->_zonerefs; z->zone; z++)
3405 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3406}
3407
7aac7898
LS
3408#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3409/*
3410 * Return node id of node used for "local" allocations.
3411 * I.e., first node id of first zone in arg node's generic zonelist.
3412 * Used for initializing percpu 'numa_mem', which is used primarily
3413 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3414 */
3415int local_memory_node(int node)
3416{
3417 struct zone *zone;
3418
3419 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3420 gfp_zone(GFP_KERNEL),
3421 NULL,
3422 &zone);
3423 return zone->node;
3424}
3425#endif
f0c0b2b8 3426
1da177e4
LT
3427#else /* CONFIG_NUMA */
3428
f0c0b2b8
KH
3429static void set_zonelist_order(void)
3430{
3431 current_zonelist_order = ZONELIST_ORDER_ZONE;
3432}
3433
3434static void build_zonelists(pg_data_t *pgdat)
1da177e4 3435{
19655d34 3436 int node, local_node;
54a6eb5c
MG
3437 enum zone_type j;
3438 struct zonelist *zonelist;
1da177e4
LT
3439
3440 local_node = pgdat->node_id;
1da177e4 3441
54a6eb5c
MG
3442 zonelist = &pgdat->node_zonelists[0];
3443 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 3444
54a6eb5c
MG
3445 /*
3446 * Now we build the zonelist so that it contains the zones
3447 * of all the other nodes.
3448 * We don't want to pressure a particular node, so when
3449 * building the zones for node N, we make sure that the
3450 * zones coming right after the local ones are those from
3451 * node N+1 (modulo N)
3452 */
3453 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3454 if (!node_online(node))
3455 continue;
3456 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3457 MAX_NR_ZONES - 1);
1da177e4 3458 }
54a6eb5c
MG
3459 for (node = 0; node < local_node; node++) {
3460 if (!node_online(node))
3461 continue;
3462 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3463 MAX_NR_ZONES - 1);
3464 }
3465
dd1a239f
MG
3466 zonelist->_zonerefs[j].zone = NULL;
3467 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3468}
3469
9276b1bc 3470/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3471static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3472{
54a6eb5c 3473 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3474}
3475
1da177e4
LT
3476#endif /* CONFIG_NUMA */
3477
99dcc3e5
CL
3478/*
3479 * Boot pageset table. One per cpu which is going to be used for all
3480 * zones and all nodes. The parameters will be set in such a way
3481 * that an item put on a list will immediately be handed over to
3482 * the buddy list. This is safe since pageset manipulation is done
3483 * with interrupts disabled.
3484 *
3485 * The boot_pagesets must be kept even after bootup is complete for
3486 * unused processors and/or zones. They do play a role for bootstrapping
3487 * hotplugged processors.
3488 *
3489 * zoneinfo_show() and maybe other functions do
3490 * not check if the processor is online before following the pageset pointer.
3491 * Other parts of the kernel may not check if the zone is available.
3492 */
3493static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3494static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3495static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3496
4eaf3f64
HL
3497/*
3498 * Global mutex to protect against size modification of zonelists
3499 * as well as to serialize pageset setup for the new populated zone.
3500 */
3501DEFINE_MUTEX(zonelists_mutex);
3502
9b1a4d38 3503/* return values int ....just for stop_machine() */
4ed7e022 3504static int __build_all_zonelists(void *data)
1da177e4 3505{
6811378e 3506 int nid;
99dcc3e5 3507 int cpu;
9adb62a5 3508 pg_data_t *self = data;
9276b1bc 3509
7f9cfb31
BL
3510#ifdef CONFIG_NUMA
3511 memset(node_load, 0, sizeof(node_load));
3512#endif
9adb62a5
JL
3513
3514 if (self && !node_online(self->node_id)) {
3515 build_zonelists(self);
3516 build_zonelist_cache(self);
3517 }
3518
9276b1bc 3519 for_each_online_node(nid) {
7ea1530a
CL
3520 pg_data_t *pgdat = NODE_DATA(nid);
3521
3522 build_zonelists(pgdat);
3523 build_zonelist_cache(pgdat);
9276b1bc 3524 }
99dcc3e5
CL
3525
3526 /*
3527 * Initialize the boot_pagesets that are going to be used
3528 * for bootstrapping processors. The real pagesets for
3529 * each zone will be allocated later when the per cpu
3530 * allocator is available.
3531 *
3532 * boot_pagesets are used also for bootstrapping offline
3533 * cpus if the system is already booted because the pagesets
3534 * are needed to initialize allocators on a specific cpu too.
3535 * F.e. the percpu allocator needs the page allocator which
3536 * needs the percpu allocator in order to allocate its pagesets
3537 * (a chicken-egg dilemma).
3538 */
7aac7898 3539 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3540 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3541
7aac7898
LS
3542#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3543 /*
3544 * We now know the "local memory node" for each node--
3545 * i.e., the node of the first zone in the generic zonelist.
3546 * Set up numa_mem percpu variable for on-line cpus. During
3547 * boot, only the boot cpu should be on-line; we'll init the
3548 * secondary cpus' numa_mem as they come on-line. During
3549 * node/memory hotplug, we'll fixup all on-line cpus.
3550 */
3551 if (cpu_online(cpu))
3552 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3553#endif
3554 }
3555
6811378e
YG
3556 return 0;
3557}
3558
4eaf3f64
HL
3559/*
3560 * Called with zonelists_mutex held always
3561 * unless system_state == SYSTEM_BOOTING.
3562 */
9adb62a5 3563void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 3564{
f0c0b2b8
KH
3565 set_zonelist_order();
3566
6811378e 3567 if (system_state == SYSTEM_BOOTING) {
423b41d7 3568 __build_all_zonelists(NULL);
68ad8df4 3569 mminit_verify_zonelist();
6811378e
YG
3570 cpuset_init_current_mems_allowed();
3571 } else {
183ff22b 3572 /* we have to stop all cpus to guarantee there is no user
6811378e 3573 of zonelist */
e9959f0f 3574#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
3575 if (zone)
3576 setup_zone_pageset(zone);
e9959f0f 3577#endif
9adb62a5 3578 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
3579 /* cpuset refresh routine should be here */
3580 }
bd1e22b8 3581 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3582 /*
3583 * Disable grouping by mobility if the number of pages in the
3584 * system is too low to allow the mechanism to work. It would be
3585 * more accurate, but expensive to check per-zone. This check is
3586 * made on memory-hotadd so a system can start with mobility
3587 * disabled and enable it later
3588 */
d9c23400 3589 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3590 page_group_by_mobility_disabled = 1;
3591 else
3592 page_group_by_mobility_disabled = 0;
3593
3594 printk("Built %i zonelists in %s order, mobility grouping %s. "
3595 "Total pages: %ld\n",
62bc62a8 3596 nr_online_nodes,
f0c0b2b8 3597 zonelist_order_name[current_zonelist_order],
9ef9acb0 3598 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3599 vm_total_pages);
3600#ifdef CONFIG_NUMA
3601 printk("Policy zone: %s\n", zone_names[policy_zone]);
3602#endif
1da177e4
LT
3603}
3604
3605/*
3606 * Helper functions to size the waitqueue hash table.
3607 * Essentially these want to choose hash table sizes sufficiently
3608 * large so that collisions trying to wait on pages are rare.
3609 * But in fact, the number of active page waitqueues on typical
3610 * systems is ridiculously low, less than 200. So this is even
3611 * conservative, even though it seems large.
3612 *
3613 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3614 * waitqueues, i.e. the size of the waitq table given the number of pages.
3615 */
3616#define PAGES_PER_WAITQUEUE 256
3617
cca448fe 3618#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3619static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3620{
3621 unsigned long size = 1;
3622
3623 pages /= PAGES_PER_WAITQUEUE;
3624
3625 while (size < pages)
3626 size <<= 1;
3627
3628 /*
3629 * Once we have dozens or even hundreds of threads sleeping
3630 * on IO we've got bigger problems than wait queue collision.
3631 * Limit the size of the wait table to a reasonable size.
3632 */
3633 size = min(size, 4096UL);
3634
3635 return max(size, 4UL);
3636}
cca448fe
YG
3637#else
3638/*
3639 * A zone's size might be changed by hot-add, so it is not possible to determine
3640 * a suitable size for its wait_table. So we use the maximum size now.
3641 *
3642 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3643 *
3644 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3645 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3646 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3647 *
3648 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3649 * or more by the traditional way. (See above). It equals:
3650 *
3651 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3652 * ia64(16K page size) : = ( 8G + 4M)byte.
3653 * powerpc (64K page size) : = (32G +16M)byte.
3654 */
3655static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3656{
3657 return 4096UL;
3658}
3659#endif
1da177e4
LT
3660
3661/*
3662 * This is an integer logarithm so that shifts can be used later
3663 * to extract the more random high bits from the multiplicative
3664 * hash function before the remainder is taken.
3665 */
3666static inline unsigned long wait_table_bits(unsigned long size)
3667{
3668 return ffz(~size);
3669}
3670
3671#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3672
6d3163ce
AH
3673/*
3674 * Check if a pageblock contains reserved pages
3675 */
3676static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3677{
3678 unsigned long pfn;
3679
3680 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3681 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3682 return 1;
3683 }
3684 return 0;
3685}
3686
56fd56b8 3687/*
d9c23400 3688 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3689 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3690 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3691 * higher will lead to a bigger reserve which will get freed as contiguous
3692 * blocks as reclaim kicks in
3693 */
3694static void setup_zone_migrate_reserve(struct zone *zone)
3695{
6d3163ce 3696 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 3697 struct page *page;
78986a67
MG
3698 unsigned long block_migratetype;
3699 int reserve;
56fd56b8 3700
d0215638
MH
3701 /*
3702 * Get the start pfn, end pfn and the number of blocks to reserve
3703 * We have to be careful to be aligned to pageblock_nr_pages to
3704 * make sure that we always check pfn_valid for the first page in
3705 * the block.
3706 */
56fd56b8
MG
3707 start_pfn = zone->zone_start_pfn;
3708 end_pfn = start_pfn + zone->spanned_pages;
d0215638 3709 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 3710 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3711 pageblock_order;
56fd56b8 3712
78986a67
MG
3713 /*
3714 * Reserve blocks are generally in place to help high-order atomic
3715 * allocations that are short-lived. A min_free_kbytes value that
3716 * would result in more than 2 reserve blocks for atomic allocations
3717 * is assumed to be in place to help anti-fragmentation for the
3718 * future allocation of hugepages at runtime.
3719 */
3720 reserve = min(2, reserve);
3721
d9c23400 3722 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
3723 if (!pfn_valid(pfn))
3724 continue;
3725 page = pfn_to_page(pfn);
3726
344c790e
AL
3727 /* Watch out for overlapping nodes */
3728 if (page_to_nid(page) != zone_to_nid(zone))
3729 continue;
3730
56fd56b8
MG
3731 block_migratetype = get_pageblock_migratetype(page);
3732
938929f1
MG
3733 /* Only test what is necessary when the reserves are not met */
3734 if (reserve > 0) {
3735 /*
3736 * Blocks with reserved pages will never free, skip
3737 * them.
3738 */
3739 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3740 if (pageblock_is_reserved(pfn, block_end_pfn))
3741 continue;
56fd56b8 3742
938929f1
MG
3743 /* If this block is reserved, account for it */
3744 if (block_migratetype == MIGRATE_RESERVE) {
3745 reserve--;
3746 continue;
3747 }
3748
3749 /* Suitable for reserving if this block is movable */
3750 if (block_migratetype == MIGRATE_MOVABLE) {
3751 set_pageblock_migratetype(page,
3752 MIGRATE_RESERVE);
3753 move_freepages_block(zone, page,
3754 MIGRATE_RESERVE);
3755 reserve--;
3756 continue;
3757 }
56fd56b8
MG
3758 }
3759
3760 /*
3761 * If the reserve is met and this is a previous reserved block,
3762 * take it back
3763 */
3764 if (block_migratetype == MIGRATE_RESERVE) {
3765 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3766 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3767 }
3768 }
3769}
ac0e5b7a 3770
1da177e4
LT
3771/*
3772 * Initially all pages are reserved - free ones are freed
3773 * up by free_all_bootmem() once the early boot process is
3774 * done. Non-atomic initialization, single-pass.
3775 */
c09b4240 3776void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 3777 unsigned long start_pfn, enum memmap_context context)
1da177e4 3778{
1da177e4 3779 struct page *page;
29751f69
AW
3780 unsigned long end_pfn = start_pfn + size;
3781 unsigned long pfn;
86051ca5 3782 struct zone *z;
1da177e4 3783
22b31eec
HD
3784 if (highest_memmap_pfn < end_pfn - 1)
3785 highest_memmap_pfn = end_pfn - 1;
3786
86051ca5 3787 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 3788 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
3789 /*
3790 * There can be holes in boot-time mem_map[]s
3791 * handed to this function. They do not
3792 * exist on hotplugged memory.
3793 */
3794 if (context == MEMMAP_EARLY) {
3795 if (!early_pfn_valid(pfn))
3796 continue;
3797 if (!early_pfn_in_nid(pfn, nid))
3798 continue;
3799 }
d41dee36
AW
3800 page = pfn_to_page(pfn);
3801 set_page_links(page, zone, nid, pfn);
708614e6 3802 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 3803 init_page_count(page);
1da177e4
LT
3804 reset_page_mapcount(page);
3805 SetPageReserved(page);
b2a0ac88
MG
3806 /*
3807 * Mark the block movable so that blocks are reserved for
3808 * movable at startup. This will force kernel allocations
3809 * to reserve their blocks rather than leaking throughout
3810 * the address space during boot when many long-lived
56fd56b8
MG
3811 * kernel allocations are made. Later some blocks near
3812 * the start are marked MIGRATE_RESERVE by
3813 * setup_zone_migrate_reserve()
86051ca5
KH
3814 *
3815 * bitmap is created for zone's valid pfn range. but memmap
3816 * can be created for invalid pages (for alignment)
3817 * check here not to call set_pageblock_migratetype() against
3818 * pfn out of zone.
b2a0ac88 3819 */
86051ca5
KH
3820 if ((z->zone_start_pfn <= pfn)
3821 && (pfn < z->zone_start_pfn + z->spanned_pages)
3822 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 3823 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 3824
1da177e4
LT
3825 INIT_LIST_HEAD(&page->lru);
3826#ifdef WANT_PAGE_VIRTUAL
3827 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3828 if (!is_highmem_idx(zone))
3212c6be 3829 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 3830#endif
1da177e4
LT
3831 }
3832}
3833
1e548deb 3834static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 3835{
b2a0ac88
MG
3836 int order, t;
3837 for_each_migratetype_order(order, t) {
3838 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
3839 zone->free_area[order].nr_free = 0;
3840 }
3841}
3842
3843#ifndef __HAVE_ARCH_MEMMAP_INIT
3844#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 3845 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
3846#endif
3847
4ed7e022 3848static int __meminit zone_batchsize(struct zone *zone)
e7c8d5c9 3849{
3a6be87f 3850#ifdef CONFIG_MMU
e7c8d5c9
CL
3851 int batch;
3852
3853 /*
3854 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 3855 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
3856 *
3857 * OK, so we don't know how big the cache is. So guess.
3858 */
3859 batch = zone->present_pages / 1024;
ba56e91c
SR
3860 if (batch * PAGE_SIZE > 512 * 1024)
3861 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
3862 batch /= 4; /* We effectively *= 4 below */
3863 if (batch < 1)
3864 batch = 1;
3865
3866 /*
0ceaacc9
NP
3867 * Clamp the batch to a 2^n - 1 value. Having a power
3868 * of 2 value was found to be more likely to have
3869 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 3870 *
0ceaacc9
NP
3871 * For example if 2 tasks are alternately allocating
3872 * batches of pages, one task can end up with a lot
3873 * of pages of one half of the possible page colors
3874 * and the other with pages of the other colors.
e7c8d5c9 3875 */
9155203a 3876 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 3877
e7c8d5c9 3878 return batch;
3a6be87f
DH
3879
3880#else
3881 /* The deferral and batching of frees should be suppressed under NOMMU
3882 * conditions.
3883 *
3884 * The problem is that NOMMU needs to be able to allocate large chunks
3885 * of contiguous memory as there's no hardware page translation to
3886 * assemble apparent contiguous memory from discontiguous pages.
3887 *
3888 * Queueing large contiguous runs of pages for batching, however,
3889 * causes the pages to actually be freed in smaller chunks. As there
3890 * can be a significant delay between the individual batches being
3891 * recycled, this leads to the once large chunks of space being
3892 * fragmented and becoming unavailable for high-order allocations.
3893 */
3894 return 0;
3895#endif
e7c8d5c9
CL
3896}
3897
b69a7288 3898static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
3899{
3900 struct per_cpu_pages *pcp;
5f8dcc21 3901 int migratetype;
2caaad41 3902
1c6fe946
MD
3903 memset(p, 0, sizeof(*p));
3904
3dfa5721 3905 pcp = &p->pcp;
2caaad41 3906 pcp->count = 0;
2caaad41
CL
3907 pcp->high = 6 * batch;
3908 pcp->batch = max(1UL, 1 * batch);
5f8dcc21
MG
3909 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3910 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
3911}
3912
8ad4b1fb
RS
3913/*
3914 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3915 * to the value high for the pageset p.
3916 */
3917
3918static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3919 unsigned long high)
3920{
3921 struct per_cpu_pages *pcp;
3922
3dfa5721 3923 pcp = &p->pcp;
8ad4b1fb
RS
3924 pcp->high = high;
3925 pcp->batch = max(1UL, high/4);
3926 if ((high/4) > (PAGE_SHIFT * 8))
3927 pcp->batch = PAGE_SHIFT * 8;
3928}
3929
4ed7e022 3930static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
3931{
3932 int cpu;
3933
3934 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3935
3936 for_each_possible_cpu(cpu) {
3937 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3938
3939 setup_pageset(pcp, zone_batchsize(zone));
3940
3941 if (percpu_pagelist_fraction)
3942 setup_pagelist_highmark(pcp,
3943 (zone->present_pages /
3944 percpu_pagelist_fraction));
3945 }
3946}
3947
2caaad41 3948/*
99dcc3e5
CL
3949 * Allocate per cpu pagesets and initialize them.
3950 * Before this call only boot pagesets were available.
e7c8d5c9 3951 */
99dcc3e5 3952void __init setup_per_cpu_pageset(void)
e7c8d5c9 3953{
99dcc3e5 3954 struct zone *zone;
e7c8d5c9 3955
319774e2
WF
3956 for_each_populated_zone(zone)
3957 setup_zone_pageset(zone);
e7c8d5c9
CL
3958}
3959
577a32f6 3960static noinline __init_refok
cca448fe 3961int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
3962{
3963 int i;
3964 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 3965 size_t alloc_size;
ed8ece2e
DH
3966
3967 /*
3968 * The per-page waitqueue mechanism uses hashed waitqueues
3969 * per zone.
3970 */
02b694de
YG
3971 zone->wait_table_hash_nr_entries =
3972 wait_table_hash_nr_entries(zone_size_pages);
3973 zone->wait_table_bits =
3974 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
3975 alloc_size = zone->wait_table_hash_nr_entries
3976 * sizeof(wait_queue_head_t);
3977
cd94b9db 3978 if (!slab_is_available()) {
cca448fe 3979 zone->wait_table = (wait_queue_head_t *)
8f389a99 3980 alloc_bootmem_node_nopanic(pgdat, alloc_size);
cca448fe
YG
3981 } else {
3982 /*
3983 * This case means that a zone whose size was 0 gets new memory
3984 * via memory hot-add.
3985 * But it may be the case that a new node was hot-added. In
3986 * this case vmalloc() will not be able to use this new node's
3987 * memory - this wait_table must be initialized to use this new
3988 * node itself as well.
3989 * To use this new node's memory, further consideration will be
3990 * necessary.
3991 */
8691f3a7 3992 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
3993 }
3994 if (!zone->wait_table)
3995 return -ENOMEM;
ed8ece2e 3996
02b694de 3997 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 3998 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
3999
4000 return 0;
ed8ece2e
DH
4001}
4002
c09b4240 4003static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4004{
99dcc3e5
CL
4005 /*
4006 * per cpu subsystem is not up at this point. The following code
4007 * relies on the ability of the linker to provide the
4008 * offset of a (static) per cpu variable into the per cpu area.
4009 */
4010 zone->pageset = &boot_pageset;
ed8ece2e 4011
f5335c0f 4012 if (zone->present_pages)
99dcc3e5
CL
4013 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4014 zone->name, zone->present_pages,
4015 zone_batchsize(zone));
ed8ece2e
DH
4016}
4017
4ed7e022 4018int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4019 unsigned long zone_start_pfn,
a2f3aa02
DH
4020 unsigned long size,
4021 enum memmap_context context)
ed8ece2e
DH
4022{
4023 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4024 int ret;
4025 ret = zone_wait_table_init(zone, size);
4026 if (ret)
4027 return ret;
ed8ece2e
DH
4028 pgdat->nr_zones = zone_idx(zone) + 1;
4029
ed8ece2e
DH
4030 zone->zone_start_pfn = zone_start_pfn;
4031
708614e6
MG
4032 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4033 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4034 pgdat->node_id,
4035 (unsigned long)zone_idx(zone),
4036 zone_start_pfn, (zone_start_pfn + size));
4037
1e548deb 4038 zone_init_free_lists(zone);
718127cc
YG
4039
4040 return 0;
ed8ece2e
DH
4041}
4042
0ee332c1 4043#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
4044#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4045/*
4046 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4047 * Architectures may implement their own version but if add_active_range()
4048 * was used and there are no special requirements, this is a convenient
4049 * alternative
4050 */
f2dbcfa7 4051int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 4052{
c13291a5
TH
4053 unsigned long start_pfn, end_pfn;
4054 int i, nid;
c713216d 4055
c13291a5 4056 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
c713216d 4057 if (start_pfn <= pfn && pfn < end_pfn)
c13291a5 4058 return nid;
cc2559bc
KH
4059 /* This is a memory hole */
4060 return -1;
c713216d
MG
4061}
4062#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4063
f2dbcfa7
KH
4064int __meminit early_pfn_to_nid(unsigned long pfn)
4065{
cc2559bc
KH
4066 int nid;
4067
4068 nid = __early_pfn_to_nid(pfn);
4069 if (nid >= 0)
4070 return nid;
4071 /* just returns 0 */
4072 return 0;
f2dbcfa7
KH
4073}
4074
cc2559bc
KH
4075#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4076bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4077{
4078 int nid;
4079
4080 nid = __early_pfn_to_nid(pfn);
4081 if (nid >= 0 && nid != node)
4082 return false;
4083 return true;
4084}
4085#endif
f2dbcfa7 4086
c713216d
MG
4087/**
4088 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
4089 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4090 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
4091 *
4092 * If an architecture guarantees that all ranges registered with
4093 * add_active_ranges() contain no holes and may be freed, this
4094 * this function may be used instead of calling free_bootmem() manually.
4095 */
c13291a5 4096void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4097{
c13291a5
TH
4098 unsigned long start_pfn, end_pfn;
4099 int i, this_nid;
edbe7d23 4100
c13291a5
TH
4101 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4102 start_pfn = min(start_pfn, max_low_pfn);
4103 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4104
c13291a5
TH
4105 if (start_pfn < end_pfn)
4106 free_bootmem_node(NODE_DATA(this_nid),
4107 PFN_PHYS(start_pfn),
4108 (end_pfn - start_pfn) << PAGE_SHIFT);
edbe7d23 4109 }
edbe7d23 4110}
edbe7d23 4111
c713216d
MG
4112/**
4113 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4114 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
4115 *
4116 * If an architecture guarantees that all ranges registered with
4117 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 4118 * function may be used instead of calling memory_present() manually.
c713216d
MG
4119 */
4120void __init sparse_memory_present_with_active_regions(int nid)
4121{
c13291a5
TH
4122 unsigned long start_pfn, end_pfn;
4123 int i, this_nid;
c713216d 4124
c13291a5
TH
4125 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4126 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4127}
4128
4129/**
4130 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4131 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4132 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4133 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4134 *
4135 * It returns the start and end page frame of a node based on information
4136 * provided by an arch calling add_active_range(). If called for a node
4137 * with no available memory, a warning is printed and the start and end
88ca3b94 4138 * PFNs will be 0.
c713216d 4139 */
a3142c8e 4140void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4141 unsigned long *start_pfn, unsigned long *end_pfn)
4142{
c13291a5 4143 unsigned long this_start_pfn, this_end_pfn;
c713216d 4144 int i;
c13291a5 4145
c713216d
MG
4146 *start_pfn = -1UL;
4147 *end_pfn = 0;
4148
c13291a5
TH
4149 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4150 *start_pfn = min(*start_pfn, this_start_pfn);
4151 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4152 }
4153
633c0666 4154 if (*start_pfn == -1UL)
c713216d 4155 *start_pfn = 0;
c713216d
MG
4156}
4157
2a1e274a
MG
4158/*
4159 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4160 * assumption is made that zones within a node are ordered in monotonic
4161 * increasing memory addresses so that the "highest" populated zone is used
4162 */
b69a7288 4163static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4164{
4165 int zone_index;
4166 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4167 if (zone_index == ZONE_MOVABLE)
4168 continue;
4169
4170 if (arch_zone_highest_possible_pfn[zone_index] >
4171 arch_zone_lowest_possible_pfn[zone_index])
4172 break;
4173 }
4174
4175 VM_BUG_ON(zone_index == -1);
4176 movable_zone = zone_index;
4177}
4178
4179/*
4180 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4181 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4182 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4183 * in each node depending on the size of each node and how evenly kernelcore
4184 * is distributed. This helper function adjusts the zone ranges
4185 * provided by the architecture for a given node by using the end of the
4186 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4187 * zones within a node are in order of monotonic increases memory addresses
4188 */
b69a7288 4189static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4190 unsigned long zone_type,
4191 unsigned long node_start_pfn,
4192 unsigned long node_end_pfn,
4193 unsigned long *zone_start_pfn,
4194 unsigned long *zone_end_pfn)
4195{
4196 /* Only adjust if ZONE_MOVABLE is on this node */
4197 if (zone_movable_pfn[nid]) {
4198 /* Size ZONE_MOVABLE */
4199 if (zone_type == ZONE_MOVABLE) {
4200 *zone_start_pfn = zone_movable_pfn[nid];
4201 *zone_end_pfn = min(node_end_pfn,
4202 arch_zone_highest_possible_pfn[movable_zone]);
4203
4204 /* Adjust for ZONE_MOVABLE starting within this range */
4205 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4206 *zone_end_pfn > zone_movable_pfn[nid]) {
4207 *zone_end_pfn = zone_movable_pfn[nid];
4208
4209 /* Check if this whole range is within ZONE_MOVABLE */
4210 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4211 *zone_start_pfn = *zone_end_pfn;
4212 }
4213}
4214
c713216d
MG
4215/*
4216 * Return the number of pages a zone spans in a node, including holes
4217 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4218 */
6ea6e688 4219static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4220 unsigned long zone_type,
4221 unsigned long *ignored)
4222{
4223 unsigned long node_start_pfn, node_end_pfn;
4224 unsigned long zone_start_pfn, zone_end_pfn;
4225
4226 /* Get the start and end of the node and zone */
4227 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4228 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4229 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4230 adjust_zone_range_for_zone_movable(nid, zone_type,
4231 node_start_pfn, node_end_pfn,
4232 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4233
4234 /* Check that this node has pages within the zone's required range */
4235 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4236 return 0;
4237
4238 /* Move the zone boundaries inside the node if necessary */
4239 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4240 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4241
4242 /* Return the spanned pages */
4243 return zone_end_pfn - zone_start_pfn;
4244}
4245
4246/*
4247 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4248 * then all holes in the requested range will be accounted for.
c713216d 4249 */
32996250 4250unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4251 unsigned long range_start_pfn,
4252 unsigned long range_end_pfn)
4253{
96e907d1
TH
4254 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4255 unsigned long start_pfn, end_pfn;
4256 int i;
c713216d 4257
96e907d1
TH
4258 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4259 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4260 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4261 nr_absent -= end_pfn - start_pfn;
c713216d 4262 }
96e907d1 4263 return nr_absent;
c713216d
MG
4264}
4265
4266/**
4267 * absent_pages_in_range - Return number of page frames in holes within a range
4268 * @start_pfn: The start PFN to start searching for holes
4269 * @end_pfn: The end PFN to stop searching for holes
4270 *
88ca3b94 4271 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4272 */
4273unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4274 unsigned long end_pfn)
4275{
4276 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4277}
4278
4279/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4280static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4281 unsigned long zone_type,
4282 unsigned long *ignored)
4283{
96e907d1
TH
4284 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4285 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4286 unsigned long node_start_pfn, node_end_pfn;
4287 unsigned long zone_start_pfn, zone_end_pfn;
4288
4289 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
96e907d1
TH
4290 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4291 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4292
2a1e274a
MG
4293 adjust_zone_range_for_zone_movable(nid, zone_type,
4294 node_start_pfn, node_end_pfn,
4295 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4296 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4297}
0e0b864e 4298
0ee332c1 4299#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4300static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4301 unsigned long zone_type,
4302 unsigned long *zones_size)
4303{
4304 return zones_size[zone_type];
4305}
4306
6ea6e688 4307static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4308 unsigned long zone_type,
4309 unsigned long *zholes_size)
4310{
4311 if (!zholes_size)
4312 return 0;
4313
4314 return zholes_size[zone_type];
4315}
0e0b864e 4316
0ee332c1 4317#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4318
a3142c8e 4319static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
4320 unsigned long *zones_size, unsigned long *zholes_size)
4321{
4322 unsigned long realtotalpages, totalpages = 0;
4323 enum zone_type i;
4324
4325 for (i = 0; i < MAX_NR_ZONES; i++)
4326 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4327 zones_size);
4328 pgdat->node_spanned_pages = totalpages;
4329
4330 realtotalpages = totalpages;
4331 for (i = 0; i < MAX_NR_ZONES; i++)
4332 realtotalpages -=
4333 zone_absent_pages_in_node(pgdat->node_id, i,
4334 zholes_size);
4335 pgdat->node_present_pages = realtotalpages;
4336 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4337 realtotalpages);
4338}
4339
835c134e
MG
4340#ifndef CONFIG_SPARSEMEM
4341/*
4342 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4343 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4344 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4345 * round what is now in bits to nearest long in bits, then return it in
4346 * bytes.
4347 */
4348static unsigned long __init usemap_size(unsigned long zonesize)
4349{
4350 unsigned long usemapsize;
4351
d9c23400
MG
4352 usemapsize = roundup(zonesize, pageblock_nr_pages);
4353 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4354 usemapsize *= NR_PAGEBLOCK_BITS;
4355 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4356
4357 return usemapsize / 8;
4358}
4359
4360static void __init setup_usemap(struct pglist_data *pgdat,
4361 struct zone *zone, unsigned long zonesize)
4362{
4363 unsigned long usemapsize = usemap_size(zonesize);
4364 zone->pageblock_flags = NULL;
58a01a45 4365 if (usemapsize)
8f389a99
YL
4366 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4367 usemapsize);
835c134e
MG
4368}
4369#else
fa9f90be 4370static inline void setup_usemap(struct pglist_data *pgdat,
835c134e
MG
4371 struct zone *zone, unsigned long zonesize) {}
4372#endif /* CONFIG_SPARSEMEM */
4373
d9c23400 4374#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 4375
d9c23400 4376/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
ca57df79 4377void __init set_pageblock_order(void)
d9c23400 4378{
955c1cd7
AM
4379 unsigned int order;
4380
d9c23400
MG
4381 /* Check that pageblock_nr_pages has not already been setup */
4382 if (pageblock_order)
4383 return;
4384
955c1cd7
AM
4385 if (HPAGE_SHIFT > PAGE_SHIFT)
4386 order = HUGETLB_PAGE_ORDER;
4387 else
4388 order = MAX_ORDER - 1;
4389
d9c23400
MG
4390 /*
4391 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
4392 * This value may be variable depending on boot parameters on IA64 and
4393 * powerpc.
d9c23400
MG
4394 */
4395 pageblock_order = order;
4396}
4397#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4398
ba72cb8c
MG
4399/*
4400 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
4401 * is unused as pageblock_order is set at compile-time. See
4402 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4403 * the kernel config
ba72cb8c 4404 */
ca57df79 4405void __init set_pageblock_order(void)
ba72cb8c 4406{
ba72cb8c 4407}
d9c23400
MG
4408
4409#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4410
1da177e4
LT
4411/*
4412 * Set up the zone data structures:
4413 * - mark all pages reserved
4414 * - mark all memory queues empty
4415 * - clear the memory bitmaps
6527af5d
MK
4416 *
4417 * NOTE: pgdat should get zeroed by caller.
1da177e4 4418 */
b5a0e011 4419static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
4420 unsigned long *zones_size, unsigned long *zholes_size)
4421{
2f1b6248 4422 enum zone_type j;
ed8ece2e 4423 int nid = pgdat->node_id;
1da177e4 4424 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4425 int ret;
1da177e4 4426
208d54e5 4427 pgdat_resize_init(pgdat);
1da177e4 4428 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 4429 init_waitqueue_head(&pgdat->pfmemalloc_wait);
52d4b9ac 4430 pgdat_page_cgroup_init(pgdat);
5f63b720 4431
1da177e4
LT
4432 for (j = 0; j < MAX_NR_ZONES; j++) {
4433 struct zone *zone = pgdat->node_zones + j;
0e0b864e 4434 unsigned long size, realsize, memmap_pages;
1da177e4 4435
c713216d
MG
4436 size = zone_spanned_pages_in_node(nid, j, zones_size);
4437 realsize = size - zone_absent_pages_in_node(nid, j,
4438 zholes_size);
1da177e4 4439
0e0b864e
MG
4440 /*
4441 * Adjust realsize so that it accounts for how much memory
4442 * is used by this zone for memmap. This affects the watermark
4443 * and per-cpu initialisations
4444 */
f7232154
JW
4445 memmap_pages =
4446 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
4447 if (realsize >= memmap_pages) {
4448 realsize -= memmap_pages;
5594c8c8
YL
4449 if (memmap_pages)
4450 printk(KERN_DEBUG
4451 " %s zone: %lu pages used for memmap\n",
4452 zone_names[j], memmap_pages);
0e0b864e
MG
4453 } else
4454 printk(KERN_WARNING
4455 " %s zone: %lu pages exceeds realsize %lu\n",
4456 zone_names[j], memmap_pages, realsize);
4457
6267276f
CL
4458 /* Account for reserved pages */
4459 if (j == 0 && realsize > dma_reserve) {
0e0b864e 4460 realsize -= dma_reserve;
d903ef9f 4461 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4462 zone_names[0], dma_reserve);
0e0b864e
MG
4463 }
4464
98d2b0eb 4465 if (!is_highmem_idx(j))
1da177e4
LT
4466 nr_kernel_pages += realsize;
4467 nr_all_pages += realsize;
4468
4469 zone->spanned_pages = size;
4470 zone->present_pages = realsize;
7db8889a
RR
4471#if defined CONFIG_COMPACTION || defined CONFIG_CMA
4472 zone->compact_cached_free_pfn = zone->zone_start_pfn +
4473 zone->spanned_pages;
4474 zone->compact_cached_free_pfn &= ~(pageblock_nr_pages-1);
4475#endif
9614634f 4476#ifdef CONFIG_NUMA
d5f541ed 4477 zone->node = nid;
8417bba4 4478 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 4479 / 100;
0ff38490 4480 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 4481#endif
1da177e4
LT
4482 zone->name = zone_names[j];
4483 spin_lock_init(&zone->lock);
4484 spin_lock_init(&zone->lru_lock);
bdc8cb98 4485 zone_seqlock_init(zone);
1da177e4 4486 zone->zone_pgdat = pgdat;
1da177e4 4487
ed8ece2e 4488 zone_pcp_init(zone);
7f5e86c2 4489 lruvec_init(&zone->lruvec, zone);
1da177e4
LT
4490 if (!size)
4491 continue;
4492
955c1cd7 4493 set_pageblock_order();
835c134e 4494 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
4495 ret = init_currently_empty_zone(zone, zone_start_pfn,
4496 size, MEMMAP_EARLY);
718127cc 4497 BUG_ON(ret);
76cdd58e 4498 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4499 zone_start_pfn += size;
1da177e4
LT
4500 }
4501}
4502
577a32f6 4503static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4504{
1da177e4
LT
4505 /* Skip empty nodes */
4506 if (!pgdat->node_spanned_pages)
4507 return;
4508
d41dee36 4509#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4510 /* ia64 gets its own node_mem_map, before this, without bootmem */
4511 if (!pgdat->node_mem_map) {
e984bb43 4512 unsigned long size, start, end;
d41dee36
AW
4513 struct page *map;
4514
e984bb43
BP
4515 /*
4516 * The zone's endpoints aren't required to be MAX_ORDER
4517 * aligned but the node_mem_map endpoints must be in order
4518 * for the buddy allocator to function correctly.
4519 */
4520 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4521 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4522 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4523 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4524 map = alloc_remap(pgdat->node_id, size);
4525 if (!map)
8f389a99 4526 map = alloc_bootmem_node_nopanic(pgdat, size);
e984bb43 4527 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4528 }
12d810c1 4529#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4530 /*
4531 * With no DISCONTIG, the global mem_map is just set as node 0's
4532 */
c713216d 4533 if (pgdat == NODE_DATA(0)) {
1da177e4 4534 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 4535#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4536 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4537 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 4538#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4539 }
1da177e4 4540#endif
d41dee36 4541#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4542}
4543
9109fb7b
JW
4544void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4545 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4546{
9109fb7b
JW
4547 pg_data_t *pgdat = NODE_DATA(nid);
4548
88fdf75d 4549 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 4550 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 4551
1da177e4
LT
4552 pgdat->node_id = nid;
4553 pgdat->node_start_pfn = node_start_pfn;
c713216d 4554 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
4555
4556 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4557#ifdef CONFIG_FLAT_NODE_MEM_MAP
4558 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4559 nid, (unsigned long)pgdat,
4560 (unsigned long)pgdat->node_mem_map);
4561#endif
1da177e4
LT
4562
4563 free_area_init_core(pgdat, zones_size, zholes_size);
4564}
4565
0ee332c1 4566#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
4567
4568#if MAX_NUMNODES > 1
4569/*
4570 * Figure out the number of possible node ids.
4571 */
4572static void __init setup_nr_node_ids(void)
4573{
4574 unsigned int node;
4575 unsigned int highest = 0;
4576
4577 for_each_node_mask(node, node_possible_map)
4578 highest = node;
4579 nr_node_ids = highest + 1;
4580}
4581#else
4582static inline void setup_nr_node_ids(void)
4583{
4584}
4585#endif
4586
1e01979c
TH
4587/**
4588 * node_map_pfn_alignment - determine the maximum internode alignment
4589 *
4590 * This function should be called after node map is populated and sorted.
4591 * It calculates the maximum power of two alignment which can distinguish
4592 * all the nodes.
4593 *
4594 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4595 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4596 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4597 * shifted, 1GiB is enough and this function will indicate so.
4598 *
4599 * This is used to test whether pfn -> nid mapping of the chosen memory
4600 * model has fine enough granularity to avoid incorrect mapping for the
4601 * populated node map.
4602 *
4603 * Returns the determined alignment in pfn's. 0 if there is no alignment
4604 * requirement (single node).
4605 */
4606unsigned long __init node_map_pfn_alignment(void)
4607{
4608 unsigned long accl_mask = 0, last_end = 0;
c13291a5 4609 unsigned long start, end, mask;
1e01979c 4610 int last_nid = -1;
c13291a5 4611 int i, nid;
1e01979c 4612
c13291a5 4613 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
4614 if (!start || last_nid < 0 || last_nid == nid) {
4615 last_nid = nid;
4616 last_end = end;
4617 continue;
4618 }
4619
4620 /*
4621 * Start with a mask granular enough to pin-point to the
4622 * start pfn and tick off bits one-by-one until it becomes
4623 * too coarse to separate the current node from the last.
4624 */
4625 mask = ~((1 << __ffs(start)) - 1);
4626 while (mask && last_end <= (start & (mask << 1)))
4627 mask <<= 1;
4628
4629 /* accumulate all internode masks */
4630 accl_mask |= mask;
4631 }
4632
4633 /* convert mask to number of pages */
4634 return ~accl_mask + 1;
4635}
4636
a6af2bc3 4637/* Find the lowest pfn for a node */
b69a7288 4638static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 4639{
a6af2bc3 4640 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
4641 unsigned long start_pfn;
4642 int i;
1abbfb41 4643
c13291a5
TH
4644 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4645 min_pfn = min(min_pfn, start_pfn);
c713216d 4646
a6af2bc3
MG
4647 if (min_pfn == ULONG_MAX) {
4648 printk(KERN_WARNING
2bc0d261 4649 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4650 return 0;
4651 }
4652
4653 return min_pfn;
c713216d
MG
4654}
4655
4656/**
4657 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4658 *
4659 * It returns the minimum PFN based on information provided via
88ca3b94 4660 * add_active_range().
c713216d
MG
4661 */
4662unsigned long __init find_min_pfn_with_active_regions(void)
4663{
4664 return find_min_pfn_for_node(MAX_NUMNODES);
4665}
4666
37b07e41
LS
4667/*
4668 * early_calculate_totalpages()
4669 * Sum pages in active regions for movable zone.
4670 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4671 */
484f51f8 4672static unsigned long __init early_calculate_totalpages(void)
7e63efef 4673{
7e63efef 4674 unsigned long totalpages = 0;
c13291a5
TH
4675 unsigned long start_pfn, end_pfn;
4676 int i, nid;
4677
4678 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4679 unsigned long pages = end_pfn - start_pfn;
7e63efef 4680
37b07e41
LS
4681 totalpages += pages;
4682 if (pages)
c13291a5 4683 node_set_state(nid, N_HIGH_MEMORY);
37b07e41
LS
4684 }
4685 return totalpages;
7e63efef
MG
4686}
4687
2a1e274a
MG
4688/*
4689 * Find the PFN the Movable zone begins in each node. Kernel memory
4690 * is spread evenly between nodes as long as the nodes have enough
4691 * memory. When they don't, some nodes will have more kernelcore than
4692 * others
4693 */
b224ef85 4694static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
4695{
4696 int i, nid;
4697 unsigned long usable_startpfn;
4698 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd
YL
4699 /* save the state before borrow the nodemask */
4700 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
37b07e41
LS
4701 unsigned long totalpages = early_calculate_totalpages();
4702 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 4703
7e63efef
MG
4704 /*
4705 * If movablecore was specified, calculate what size of
4706 * kernelcore that corresponds so that memory usable for
4707 * any allocation type is evenly spread. If both kernelcore
4708 * and movablecore are specified, then the value of kernelcore
4709 * will be used for required_kernelcore if it's greater than
4710 * what movablecore would have allowed.
4711 */
4712 if (required_movablecore) {
7e63efef
MG
4713 unsigned long corepages;
4714
4715 /*
4716 * Round-up so that ZONE_MOVABLE is at least as large as what
4717 * was requested by the user
4718 */
4719 required_movablecore =
4720 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4721 corepages = totalpages - required_movablecore;
4722
4723 required_kernelcore = max(required_kernelcore, corepages);
4724 }
4725
2a1e274a
MG
4726 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4727 if (!required_kernelcore)
66918dcd 4728 goto out;
2a1e274a
MG
4729
4730 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4731 find_usable_zone_for_movable();
4732 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4733
4734restart:
4735 /* Spread kernelcore memory as evenly as possible throughout nodes */
4736 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 4737 for_each_node_state(nid, N_HIGH_MEMORY) {
c13291a5
TH
4738 unsigned long start_pfn, end_pfn;
4739
2a1e274a
MG
4740 /*
4741 * Recalculate kernelcore_node if the division per node
4742 * now exceeds what is necessary to satisfy the requested
4743 * amount of memory for the kernel
4744 */
4745 if (required_kernelcore < kernelcore_node)
4746 kernelcore_node = required_kernelcore / usable_nodes;
4747
4748 /*
4749 * As the map is walked, we track how much memory is usable
4750 * by the kernel using kernelcore_remaining. When it is
4751 * 0, the rest of the node is usable by ZONE_MOVABLE
4752 */
4753 kernelcore_remaining = kernelcore_node;
4754
4755 /* Go through each range of PFNs within this node */
c13291a5 4756 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
4757 unsigned long size_pages;
4758
c13291a5 4759 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
4760 if (start_pfn >= end_pfn)
4761 continue;
4762
4763 /* Account for what is only usable for kernelcore */
4764 if (start_pfn < usable_startpfn) {
4765 unsigned long kernel_pages;
4766 kernel_pages = min(end_pfn, usable_startpfn)
4767 - start_pfn;
4768
4769 kernelcore_remaining -= min(kernel_pages,
4770 kernelcore_remaining);
4771 required_kernelcore -= min(kernel_pages,
4772 required_kernelcore);
4773
4774 /* Continue if range is now fully accounted */
4775 if (end_pfn <= usable_startpfn) {
4776
4777 /*
4778 * Push zone_movable_pfn to the end so
4779 * that if we have to rebalance
4780 * kernelcore across nodes, we will
4781 * not double account here
4782 */
4783 zone_movable_pfn[nid] = end_pfn;
4784 continue;
4785 }
4786 start_pfn = usable_startpfn;
4787 }
4788
4789 /*
4790 * The usable PFN range for ZONE_MOVABLE is from
4791 * start_pfn->end_pfn. Calculate size_pages as the
4792 * number of pages used as kernelcore
4793 */
4794 size_pages = end_pfn - start_pfn;
4795 if (size_pages > kernelcore_remaining)
4796 size_pages = kernelcore_remaining;
4797 zone_movable_pfn[nid] = start_pfn + size_pages;
4798
4799 /*
4800 * Some kernelcore has been met, update counts and
4801 * break if the kernelcore for this node has been
4802 * satisified
4803 */
4804 required_kernelcore -= min(required_kernelcore,
4805 size_pages);
4806 kernelcore_remaining -= size_pages;
4807 if (!kernelcore_remaining)
4808 break;
4809 }
4810 }
4811
4812 /*
4813 * If there is still required_kernelcore, we do another pass with one
4814 * less node in the count. This will push zone_movable_pfn[nid] further
4815 * along on the nodes that still have memory until kernelcore is
4816 * satisified
4817 */
4818 usable_nodes--;
4819 if (usable_nodes && required_kernelcore > usable_nodes)
4820 goto restart;
4821
4822 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4823 for (nid = 0; nid < MAX_NUMNODES; nid++)
4824 zone_movable_pfn[nid] =
4825 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd
YL
4826
4827out:
4828 /* restore the node_state */
4829 node_states[N_HIGH_MEMORY] = saved_node_state;
2a1e274a
MG
4830}
4831
37b07e41 4832/* Any regular memory on that node ? */
4ed7e022 4833static void __init check_for_regular_memory(pg_data_t *pgdat)
37b07e41
LS
4834{
4835#ifdef CONFIG_HIGHMEM
4836 enum zone_type zone_type;
4837
4838 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4839 struct zone *zone = &pgdat->node_zones[zone_type];
d0048b0e 4840 if (zone->present_pages) {
37b07e41 4841 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
d0048b0e
BL
4842 break;
4843 }
37b07e41
LS
4844 }
4845#endif
4846}
4847
c713216d
MG
4848/**
4849 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 4850 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4851 *
4852 * This will call free_area_init_node() for each active node in the system.
4853 * Using the page ranges provided by add_active_range(), the size of each
4854 * zone in each node and their holes is calculated. If the maximum PFN
4855 * between two adjacent zones match, it is assumed that the zone is empty.
4856 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4857 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4858 * starts where the previous one ended. For example, ZONE_DMA32 starts
4859 * at arch_max_dma_pfn.
4860 */
4861void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4862{
c13291a5
TH
4863 unsigned long start_pfn, end_pfn;
4864 int i, nid;
a6af2bc3 4865
c713216d
MG
4866 /* Record where the zone boundaries are */
4867 memset(arch_zone_lowest_possible_pfn, 0,
4868 sizeof(arch_zone_lowest_possible_pfn));
4869 memset(arch_zone_highest_possible_pfn, 0,
4870 sizeof(arch_zone_highest_possible_pfn));
4871 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4872 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4873 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4874 if (i == ZONE_MOVABLE)
4875 continue;
c713216d
MG
4876 arch_zone_lowest_possible_pfn[i] =
4877 arch_zone_highest_possible_pfn[i-1];
4878 arch_zone_highest_possible_pfn[i] =
4879 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4880 }
2a1e274a
MG
4881 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4882 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4883
4884 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4885 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 4886 find_zone_movable_pfns_for_nodes();
c713216d 4887
c713216d 4888 /* Print out the zone ranges */
a62e2f4f 4889 printk("Zone ranges:\n");
2a1e274a
MG
4890 for (i = 0; i < MAX_NR_ZONES; i++) {
4891 if (i == ZONE_MOVABLE)
4892 continue;
155cbfc8 4893 printk(KERN_CONT " %-8s ", zone_names[i]);
72f0ba02
DR
4894 if (arch_zone_lowest_possible_pfn[i] ==
4895 arch_zone_highest_possible_pfn[i])
155cbfc8 4896 printk(KERN_CONT "empty\n");
72f0ba02 4897 else
a62e2f4f
BH
4898 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
4899 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
4900 (arch_zone_highest_possible_pfn[i]
4901 << PAGE_SHIFT) - 1);
2a1e274a
MG
4902 }
4903
4904 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
a62e2f4f 4905 printk("Movable zone start for each node\n");
2a1e274a
MG
4906 for (i = 0; i < MAX_NUMNODES; i++) {
4907 if (zone_movable_pfn[i])
a62e2f4f
BH
4908 printk(" Node %d: %#010lx\n", i,
4909 zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 4910 }
c713216d
MG
4911
4912 /* Print out the early_node_map[] */
a62e2f4f 4913 printk("Early memory node ranges\n");
c13291a5 4914 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
a62e2f4f
BH
4915 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
4916 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
4917
4918 /* Initialise every node */
708614e6 4919 mminit_verify_pageflags_layout();
8ef82866 4920 setup_nr_node_ids();
c713216d
MG
4921 for_each_online_node(nid) {
4922 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4923 free_area_init_node(nid, NULL,
c713216d 4924 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4925
4926 /* Any memory on that node */
4927 if (pgdat->node_present_pages)
4928 node_set_state(nid, N_HIGH_MEMORY);
4929 check_for_regular_memory(pgdat);
c713216d
MG
4930 }
4931}
2a1e274a 4932
7e63efef 4933static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
4934{
4935 unsigned long long coremem;
4936 if (!p)
4937 return -EINVAL;
4938
4939 coremem = memparse(p, &p);
7e63efef 4940 *core = coremem >> PAGE_SHIFT;
2a1e274a 4941
7e63efef 4942 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
4943 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4944
4945 return 0;
4946}
ed7ed365 4947
7e63efef
MG
4948/*
4949 * kernelcore=size sets the amount of memory for use for allocations that
4950 * cannot be reclaimed or migrated.
4951 */
4952static int __init cmdline_parse_kernelcore(char *p)
4953{
4954 return cmdline_parse_core(p, &required_kernelcore);
4955}
4956
4957/*
4958 * movablecore=size sets the amount of memory for use for allocations that
4959 * can be reclaimed or migrated.
4960 */
4961static int __init cmdline_parse_movablecore(char *p)
4962{
4963 return cmdline_parse_core(p, &required_movablecore);
4964}
4965
ed7ed365 4966early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 4967early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 4968
0ee332c1 4969#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4970
0e0b864e 4971/**
88ca3b94
RD
4972 * set_dma_reserve - set the specified number of pages reserved in the first zone
4973 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
4974 *
4975 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4976 * In the DMA zone, a significant percentage may be consumed by kernel image
4977 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
4978 * function may optionally be used to account for unfreeable pages in the
4979 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4980 * smaller per-cpu batchsize.
0e0b864e
MG
4981 */
4982void __init set_dma_reserve(unsigned long new_dma_reserve)
4983{
4984 dma_reserve = new_dma_reserve;
4985}
4986
1da177e4
LT
4987void __init free_area_init(unsigned long *zones_size)
4988{
9109fb7b 4989 free_area_init_node(0, zones_size,
1da177e4
LT
4990 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4991}
1da177e4 4992
1da177e4
LT
4993static int page_alloc_cpu_notify(struct notifier_block *self,
4994 unsigned long action, void *hcpu)
4995{
4996 int cpu = (unsigned long)hcpu;
1da177e4 4997
8bb78442 4998 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 4999 lru_add_drain_cpu(cpu);
9f8f2172
CL
5000 drain_pages(cpu);
5001
5002 /*
5003 * Spill the event counters of the dead processor
5004 * into the current processors event counters.
5005 * This artificially elevates the count of the current
5006 * processor.
5007 */
f8891e5e 5008 vm_events_fold_cpu(cpu);
9f8f2172
CL
5009
5010 /*
5011 * Zero the differential counters of the dead processor
5012 * so that the vm statistics are consistent.
5013 *
5014 * This is only okay since the processor is dead and cannot
5015 * race with what we are doing.
5016 */
2244b95a 5017 refresh_cpu_vm_stats(cpu);
1da177e4
LT
5018 }
5019 return NOTIFY_OK;
5020}
1da177e4
LT
5021
5022void __init page_alloc_init(void)
5023{
5024 hotcpu_notifier(page_alloc_cpu_notify, 0);
5025}
5026
cb45b0e9
HA
5027/*
5028 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5029 * or min_free_kbytes changes.
5030 */
5031static void calculate_totalreserve_pages(void)
5032{
5033 struct pglist_data *pgdat;
5034 unsigned long reserve_pages = 0;
2f6726e5 5035 enum zone_type i, j;
cb45b0e9
HA
5036
5037 for_each_online_pgdat(pgdat) {
5038 for (i = 0; i < MAX_NR_ZONES; i++) {
5039 struct zone *zone = pgdat->node_zones + i;
5040 unsigned long max = 0;
5041
5042 /* Find valid and maximum lowmem_reserve in the zone */
5043 for (j = i; j < MAX_NR_ZONES; j++) {
5044 if (zone->lowmem_reserve[j] > max)
5045 max = zone->lowmem_reserve[j];
5046 }
5047
41858966
MG
5048 /* we treat the high watermark as reserved pages. */
5049 max += high_wmark_pages(zone);
cb45b0e9
HA
5050
5051 if (max > zone->present_pages)
5052 max = zone->present_pages;
5053 reserve_pages += max;
ab8fabd4
JW
5054 /*
5055 * Lowmem reserves are not available to
5056 * GFP_HIGHUSER page cache allocations and
5057 * kswapd tries to balance zones to their high
5058 * watermark. As a result, neither should be
5059 * regarded as dirtyable memory, to prevent a
5060 * situation where reclaim has to clean pages
5061 * in order to balance the zones.
5062 */
5063 zone->dirty_balance_reserve = max;
cb45b0e9
HA
5064 }
5065 }
ab8fabd4 5066 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
5067 totalreserve_pages = reserve_pages;
5068}
5069
1da177e4
LT
5070/*
5071 * setup_per_zone_lowmem_reserve - called whenever
5072 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5073 * has a correct pages reserved value, so an adequate number of
5074 * pages are left in the zone after a successful __alloc_pages().
5075 */
5076static void setup_per_zone_lowmem_reserve(void)
5077{
5078 struct pglist_data *pgdat;
2f6726e5 5079 enum zone_type j, idx;
1da177e4 5080
ec936fc5 5081 for_each_online_pgdat(pgdat) {
1da177e4
LT
5082 for (j = 0; j < MAX_NR_ZONES; j++) {
5083 struct zone *zone = pgdat->node_zones + j;
5084 unsigned long present_pages = zone->present_pages;
5085
5086 zone->lowmem_reserve[j] = 0;
5087
2f6726e5
CL
5088 idx = j;
5089 while (idx) {
1da177e4
LT
5090 struct zone *lower_zone;
5091
2f6726e5
CL
5092 idx--;
5093
1da177e4
LT
5094 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5095 sysctl_lowmem_reserve_ratio[idx] = 1;
5096
5097 lower_zone = pgdat->node_zones + idx;
5098 lower_zone->lowmem_reserve[j] = present_pages /
5099 sysctl_lowmem_reserve_ratio[idx];
5100 present_pages += lower_zone->present_pages;
5101 }
5102 }
5103 }
cb45b0e9
HA
5104
5105 /* update totalreserve_pages */
5106 calculate_totalreserve_pages();
1da177e4
LT
5107}
5108
cfd3da1e 5109static void __setup_per_zone_wmarks(void)
1da177e4
LT
5110{
5111 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5112 unsigned long lowmem_pages = 0;
5113 struct zone *zone;
5114 unsigned long flags;
5115
5116 /* Calculate total number of !ZONE_HIGHMEM pages */
5117 for_each_zone(zone) {
5118 if (!is_highmem(zone))
5119 lowmem_pages += zone->present_pages;
5120 }
5121
5122 for_each_zone(zone) {
ac924c60
AM
5123 u64 tmp;
5124
1125b4e3 5125 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
5126 tmp = (u64)pages_min * zone->present_pages;
5127 do_div(tmp, lowmem_pages);
1da177e4
LT
5128 if (is_highmem(zone)) {
5129 /*
669ed175
NP
5130 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5131 * need highmem pages, so cap pages_min to a small
5132 * value here.
5133 *
41858966 5134 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
5135 * deltas controls asynch page reclaim, and so should
5136 * not be capped for highmem.
1da177e4
LT
5137 */
5138 int min_pages;
5139
5140 min_pages = zone->present_pages / 1024;
5141 if (min_pages < SWAP_CLUSTER_MAX)
5142 min_pages = SWAP_CLUSTER_MAX;
5143 if (min_pages > 128)
5144 min_pages = 128;
41858966 5145 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5146 } else {
669ed175
NP
5147 /*
5148 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5149 * proportionate to the zone's size.
5150 */
41858966 5151 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5152 }
5153
41858966
MG
5154 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5155 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9
MS
5156
5157 zone->watermark[WMARK_MIN] += cma_wmark_pages(zone);
5158 zone->watermark[WMARK_LOW] += cma_wmark_pages(zone);
5159 zone->watermark[WMARK_HIGH] += cma_wmark_pages(zone);
5160
56fd56b8 5161 setup_zone_migrate_reserve(zone);
1125b4e3 5162 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5163 }
cb45b0e9
HA
5164
5165 /* update totalreserve_pages */
5166 calculate_totalreserve_pages();
1da177e4
LT
5167}
5168
cfd3da1e
MG
5169/**
5170 * setup_per_zone_wmarks - called when min_free_kbytes changes
5171 * or when memory is hot-{added|removed}
5172 *
5173 * Ensures that the watermark[min,low,high] values for each zone are set
5174 * correctly with respect to min_free_kbytes.
5175 */
5176void setup_per_zone_wmarks(void)
5177{
5178 mutex_lock(&zonelists_mutex);
5179 __setup_per_zone_wmarks();
5180 mutex_unlock(&zonelists_mutex);
5181}
5182
55a4462a 5183/*
556adecb
RR
5184 * The inactive anon list should be small enough that the VM never has to
5185 * do too much work, but large enough that each inactive page has a chance
5186 * to be referenced again before it is swapped out.
5187 *
5188 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5189 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5190 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5191 * the anonymous pages are kept on the inactive list.
5192 *
5193 * total target max
5194 * memory ratio inactive anon
5195 * -------------------------------------
5196 * 10MB 1 5MB
5197 * 100MB 1 50MB
5198 * 1GB 3 250MB
5199 * 10GB 10 0.9GB
5200 * 100GB 31 3GB
5201 * 1TB 101 10GB
5202 * 10TB 320 32GB
5203 */
1b79acc9 5204static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5205{
96cb4df5 5206 unsigned int gb, ratio;
556adecb 5207
96cb4df5
MK
5208 /* Zone size in gigabytes */
5209 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5210 if (gb)
556adecb 5211 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5212 else
5213 ratio = 1;
556adecb 5214
96cb4df5
MK
5215 zone->inactive_ratio = ratio;
5216}
556adecb 5217
839a4fcc 5218static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5219{
5220 struct zone *zone;
5221
5222 for_each_zone(zone)
5223 calculate_zone_inactive_ratio(zone);
556adecb
RR
5224}
5225
1da177e4
LT
5226/*
5227 * Initialise min_free_kbytes.
5228 *
5229 * For small machines we want it small (128k min). For large machines
5230 * we want it large (64MB max). But it is not linear, because network
5231 * bandwidth does not increase linearly with machine size. We use
5232 *
5233 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5234 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5235 *
5236 * which yields
5237 *
5238 * 16MB: 512k
5239 * 32MB: 724k
5240 * 64MB: 1024k
5241 * 128MB: 1448k
5242 * 256MB: 2048k
5243 * 512MB: 2896k
5244 * 1024MB: 4096k
5245 * 2048MB: 5792k
5246 * 4096MB: 8192k
5247 * 8192MB: 11584k
5248 * 16384MB: 16384k
5249 */
1b79acc9 5250int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5251{
5252 unsigned long lowmem_kbytes;
5253
5254 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5255
5256 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5257 if (min_free_kbytes < 128)
5258 min_free_kbytes = 128;
5259 if (min_free_kbytes > 65536)
5260 min_free_kbytes = 65536;
bc75d33f 5261 setup_per_zone_wmarks();
a6cccdc3 5262 refresh_zone_stat_thresholds();
1da177e4 5263 setup_per_zone_lowmem_reserve();
556adecb 5264 setup_per_zone_inactive_ratio();
1da177e4
LT
5265 return 0;
5266}
bc75d33f 5267module_init(init_per_zone_wmark_min)
1da177e4
LT
5268
5269/*
5270 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5271 * that we can call two helper functions whenever min_free_kbytes
5272 * changes.
5273 */
5274int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 5275 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5276{
8d65af78 5277 proc_dointvec(table, write, buffer, length, ppos);
3b1d92c5 5278 if (write)
bc75d33f 5279 setup_per_zone_wmarks();
1da177e4
LT
5280 return 0;
5281}
5282
9614634f
CL
5283#ifdef CONFIG_NUMA
5284int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5285 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5286{
5287 struct zone *zone;
5288 int rc;
5289
8d65af78 5290 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5291 if (rc)
5292 return rc;
5293
5294 for_each_zone(zone)
8417bba4 5295 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
5296 sysctl_min_unmapped_ratio) / 100;
5297 return 0;
5298}
0ff38490
CL
5299
5300int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5301 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5302{
5303 struct zone *zone;
5304 int rc;
5305
8d65af78 5306 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5307 if (rc)
5308 return rc;
5309
5310 for_each_zone(zone)
5311 zone->min_slab_pages = (zone->present_pages *
5312 sysctl_min_slab_ratio) / 100;
5313 return 0;
5314}
9614634f
CL
5315#endif
5316
1da177e4
LT
5317/*
5318 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5319 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5320 * whenever sysctl_lowmem_reserve_ratio changes.
5321 *
5322 * The reserve ratio obviously has absolutely no relation with the
41858966 5323 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5324 * if in function of the boot time zone sizes.
5325 */
5326int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5327 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5328{
8d65af78 5329 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5330 setup_per_zone_lowmem_reserve();
5331 return 0;
5332}
5333
8ad4b1fb
RS
5334/*
5335 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5336 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5337 * can have before it gets flushed back to buddy allocator.
5338 */
5339
5340int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 5341 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5342{
5343 struct zone *zone;
5344 unsigned int cpu;
5345 int ret;
5346
8d65af78 5347 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
93278814 5348 if (!write || (ret < 0))
8ad4b1fb 5349 return ret;
364df0eb 5350 for_each_populated_zone(zone) {
99dcc3e5 5351 for_each_possible_cpu(cpu) {
8ad4b1fb
RS
5352 unsigned long high;
5353 high = zone->present_pages / percpu_pagelist_fraction;
99dcc3e5
CL
5354 setup_pagelist_highmark(
5355 per_cpu_ptr(zone->pageset, cpu), high);
8ad4b1fb
RS
5356 }
5357 }
5358 return 0;
5359}
5360
f034b5d4 5361int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5362
5363#ifdef CONFIG_NUMA
5364static int __init set_hashdist(char *str)
5365{
5366 if (!str)
5367 return 0;
5368 hashdist = simple_strtoul(str, &str, 0);
5369 return 1;
5370}
5371__setup("hashdist=", set_hashdist);
5372#endif
5373
5374/*
5375 * allocate a large system hash table from bootmem
5376 * - it is assumed that the hash table must contain an exact power-of-2
5377 * quantity of entries
5378 * - limit is the number of hash buckets, not the total allocation size
5379 */
5380void *__init alloc_large_system_hash(const char *tablename,
5381 unsigned long bucketsize,
5382 unsigned long numentries,
5383 int scale,
5384 int flags,
5385 unsigned int *_hash_shift,
5386 unsigned int *_hash_mask,
31fe62b9
TB
5387 unsigned long low_limit,
5388 unsigned long high_limit)
1da177e4 5389{
31fe62b9 5390 unsigned long long max = high_limit;
1da177e4
LT
5391 unsigned long log2qty, size;
5392 void *table = NULL;
5393
5394 /* allow the kernel cmdline to have a say */
5395 if (!numentries) {
5396 /* round applicable memory size up to nearest megabyte */
04903664 5397 numentries = nr_kernel_pages;
1da177e4
LT
5398 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5399 numentries >>= 20 - PAGE_SHIFT;
5400 numentries <<= 20 - PAGE_SHIFT;
5401
5402 /* limit to 1 bucket per 2^scale bytes of low memory */
5403 if (scale > PAGE_SHIFT)
5404 numentries >>= (scale - PAGE_SHIFT);
5405 else
5406 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5407
5408 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5409 if (unlikely(flags & HASH_SMALL)) {
5410 /* Makes no sense without HASH_EARLY */
5411 WARN_ON(!(flags & HASH_EARLY));
5412 if (!(numentries >> *_hash_shift)) {
5413 numentries = 1UL << *_hash_shift;
5414 BUG_ON(!numentries);
5415 }
5416 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5417 numentries = PAGE_SIZE / bucketsize;
1da177e4 5418 }
6e692ed3 5419 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5420
5421 /* limit allocation size to 1/16 total memory by default */
5422 if (max == 0) {
5423 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5424 do_div(max, bucketsize);
5425 }
074b8517 5426 max = min(max, 0x80000000ULL);
1da177e4 5427
31fe62b9
TB
5428 if (numentries < low_limit)
5429 numentries = low_limit;
1da177e4
LT
5430 if (numentries > max)
5431 numentries = max;
5432
f0d1b0b3 5433 log2qty = ilog2(numentries);
1da177e4
LT
5434
5435 do {
5436 size = bucketsize << log2qty;
5437 if (flags & HASH_EARLY)
74768ed8 5438 table = alloc_bootmem_nopanic(size);
1da177e4
LT
5439 else if (hashdist)
5440 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5441 else {
1037b83b
ED
5442 /*
5443 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5444 * some pages at the end of hash table which
5445 * alloc_pages_exact() automatically does
1037b83b 5446 */
264ef8a9 5447 if (get_order(size) < MAX_ORDER) {
a1dd268c 5448 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5449 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5450 }
1da177e4
LT
5451 }
5452 } while (!table && size > PAGE_SIZE && --log2qty);
5453
5454 if (!table)
5455 panic("Failed to allocate %s hash table\n", tablename);
5456
f241e660 5457 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 5458 tablename,
f241e660 5459 (1UL << log2qty),
f0d1b0b3 5460 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5461 size);
5462
5463 if (_hash_shift)
5464 *_hash_shift = log2qty;
5465 if (_hash_mask)
5466 *_hash_mask = (1 << log2qty) - 1;
5467
5468 return table;
5469}
a117e66e 5470
835c134e
MG
5471/* Return a pointer to the bitmap storing bits affecting a block of pages */
5472static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5473 unsigned long pfn)
5474{
5475#ifdef CONFIG_SPARSEMEM
5476 return __pfn_to_section(pfn)->pageblock_flags;
5477#else
5478 return zone->pageblock_flags;
5479#endif /* CONFIG_SPARSEMEM */
5480}
5481
5482static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5483{
5484#ifdef CONFIG_SPARSEMEM
5485 pfn &= (PAGES_PER_SECTION-1);
d9c23400 5486 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5487#else
5488 pfn = pfn - zone->zone_start_pfn;
d9c23400 5489 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5490#endif /* CONFIG_SPARSEMEM */
5491}
5492
5493/**
d9c23400 5494 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
5495 * @page: The page within the block of interest
5496 * @start_bitidx: The first bit of interest to retrieve
5497 * @end_bitidx: The last bit of interest
5498 * returns pageblock_bits flags
5499 */
5500unsigned long get_pageblock_flags_group(struct page *page,
5501 int start_bitidx, int end_bitidx)
5502{
5503 struct zone *zone;
5504 unsigned long *bitmap;
5505 unsigned long pfn, bitidx;
5506 unsigned long flags = 0;
5507 unsigned long value = 1;
5508
5509 zone = page_zone(page);
5510 pfn = page_to_pfn(page);
5511 bitmap = get_pageblock_bitmap(zone, pfn);
5512 bitidx = pfn_to_bitidx(zone, pfn);
5513
5514 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5515 if (test_bit(bitidx + start_bitidx, bitmap))
5516 flags |= value;
6220ec78 5517
835c134e
MG
5518 return flags;
5519}
5520
5521/**
d9c23400 5522 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
5523 * @page: The page within the block of interest
5524 * @start_bitidx: The first bit of interest
5525 * @end_bitidx: The last bit of interest
5526 * @flags: The flags to set
5527 */
5528void set_pageblock_flags_group(struct page *page, unsigned long flags,
5529 int start_bitidx, int end_bitidx)
5530{
5531 struct zone *zone;
5532 unsigned long *bitmap;
5533 unsigned long pfn, bitidx;
5534 unsigned long value = 1;
5535
5536 zone = page_zone(page);
5537 pfn = page_to_pfn(page);
5538 bitmap = get_pageblock_bitmap(zone, pfn);
5539 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
5540 VM_BUG_ON(pfn < zone->zone_start_pfn);
5541 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
5542
5543 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5544 if (flags & value)
5545 __set_bit(bitidx + start_bitidx, bitmap);
5546 else
5547 __clear_bit(bitidx + start_bitidx, bitmap);
5548}
a5d76b54
KH
5549
5550/*
80934513
MK
5551 * This function checks whether pageblock includes unmovable pages or not.
5552 * If @count is not zero, it is okay to include less @count unmovable pages
5553 *
5554 * PageLRU check wihtout isolation or lru_lock could race so that
5555 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5556 * expect this function should be exact.
a5d76b54 5557 */
ee6f509c 5558bool has_unmovable_pages(struct zone *zone, struct page *page, int count)
49ac8255
KH
5559{
5560 unsigned long pfn, iter, found;
47118af0
MN
5561 int mt;
5562
49ac8255
KH
5563 /*
5564 * For avoiding noise data, lru_add_drain_all() should be called
80934513 5565 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
5566 */
5567 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 5568 return false;
47118af0
MN
5569 mt = get_pageblock_migratetype(page);
5570 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 5571 return false;
49ac8255
KH
5572
5573 pfn = page_to_pfn(page);
5574 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5575 unsigned long check = pfn + iter;
5576
29723fcc 5577 if (!pfn_valid_within(check))
49ac8255 5578 continue;
29723fcc 5579
49ac8255 5580 page = pfn_to_page(check);
97d255c8
MK
5581 /*
5582 * We can't use page_count without pin a page
5583 * because another CPU can free compound page.
5584 * This check already skips compound tails of THP
5585 * because their page->_count is zero at all time.
5586 */
5587 if (!atomic_read(&page->_count)) {
49ac8255
KH
5588 if (PageBuddy(page))
5589 iter += (1 << page_order(page)) - 1;
5590 continue;
5591 }
97d255c8 5592
49ac8255
KH
5593 if (!PageLRU(page))
5594 found++;
5595 /*
5596 * If there are RECLAIMABLE pages, we need to check it.
5597 * But now, memory offline itself doesn't call shrink_slab()
5598 * and it still to be fixed.
5599 */
5600 /*
5601 * If the page is not RAM, page_count()should be 0.
5602 * we don't need more check. This is an _used_ not-movable page.
5603 *
5604 * The problematic thing here is PG_reserved pages. PG_reserved
5605 * is set to both of a memory hole page and a _used_ kernel
5606 * page at boot.
5607 */
5608 if (found > count)
80934513 5609 return true;
49ac8255 5610 }
80934513 5611 return false;
49ac8255
KH
5612}
5613
5614bool is_pageblock_removable_nolock(struct page *page)
5615{
656a0706
MH
5616 struct zone *zone;
5617 unsigned long pfn;
687875fb
MH
5618
5619 /*
5620 * We have to be careful here because we are iterating over memory
5621 * sections which are not zone aware so we might end up outside of
5622 * the zone but still within the section.
656a0706
MH
5623 * We have to take care about the node as well. If the node is offline
5624 * its NODE_DATA will be NULL - see page_zone.
687875fb 5625 */
656a0706
MH
5626 if (!node_online(page_to_nid(page)))
5627 return false;
5628
5629 zone = page_zone(page);
5630 pfn = page_to_pfn(page);
5631 if (zone->zone_start_pfn > pfn ||
687875fb
MH
5632 zone->zone_start_pfn + zone->spanned_pages <= pfn)
5633 return false;
5634
ee6f509c 5635 return !has_unmovable_pages(zone, page, 0);
a5d76b54 5636}
0c0e6195 5637
041d3a8c
MN
5638#ifdef CONFIG_CMA
5639
5640static unsigned long pfn_max_align_down(unsigned long pfn)
5641{
5642 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5643 pageblock_nr_pages) - 1);
5644}
5645
5646static unsigned long pfn_max_align_up(unsigned long pfn)
5647{
5648 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5649 pageblock_nr_pages));
5650}
5651
5652static struct page *
5653__alloc_contig_migrate_alloc(struct page *page, unsigned long private,
5654 int **resultp)
5655{
6a6dccba
RV
5656 gfp_t gfp_mask = GFP_USER | __GFP_MOVABLE;
5657
5658 if (PageHighMem(page))
5659 gfp_mask |= __GFP_HIGHMEM;
5660
5661 return alloc_page(gfp_mask);
041d3a8c
MN
5662}
5663
5664/* [start, end) must belong to a single zone. */
5665static int __alloc_contig_migrate_range(unsigned long start, unsigned long end)
5666{
5667 /* This function is based on compact_zone() from compaction.c. */
5668
5669 unsigned long pfn = start;
5670 unsigned int tries = 0;
5671 int ret = 0;
5672
5673 struct compact_control cc = {
5674 .nr_migratepages = 0,
5675 .order = -1,
5676 .zone = page_zone(pfn_to_page(start)),
68e3e926 5677 .sync = true,
041d3a8c
MN
5678 };
5679 INIT_LIST_HEAD(&cc.migratepages);
5680
5681 migrate_prep_local();
5682
5683 while (pfn < end || !list_empty(&cc.migratepages)) {
5684 if (fatal_signal_pending(current)) {
5685 ret = -EINTR;
5686 break;
5687 }
5688
5689 if (list_empty(&cc.migratepages)) {
5690 cc.nr_migratepages = 0;
5691 pfn = isolate_migratepages_range(cc.zone, &cc,
5692 pfn, end);
5693 if (!pfn) {
5694 ret = -EINTR;
5695 break;
5696 }
5697 tries = 0;
5698 } else if (++tries == 5) {
5699 ret = ret < 0 ? ret : -EBUSY;
5700 break;
5701 }
5702
02c6de8d
MK
5703 reclaim_clean_pages_from_list(cc.zone, &cc.migratepages);
5704
041d3a8c
MN
5705 ret = migrate_pages(&cc.migratepages,
5706 __alloc_contig_migrate_alloc,
58f42fd5 5707 0, false, MIGRATE_SYNC);
041d3a8c
MN
5708 }
5709
5710 putback_lru_pages(&cc.migratepages);
5711 return ret > 0 ? 0 : ret;
5712}
5713
49f223a9
MS
5714/*
5715 * Update zone's cma pages counter used for watermark level calculation.
5716 */
5717static inline void __update_cma_watermarks(struct zone *zone, int count)
5718{
5719 unsigned long flags;
5720 spin_lock_irqsave(&zone->lock, flags);
5721 zone->min_cma_pages += count;
5722 spin_unlock_irqrestore(&zone->lock, flags);
5723 setup_per_zone_wmarks();
5724}
5725
5726/*
5727 * Trigger memory pressure bump to reclaim some pages in order to be able to
5728 * allocate 'count' pages in single page units. Does similar work as
5729 *__alloc_pages_slowpath() function.
5730 */
5731static int __reclaim_pages(struct zone *zone, gfp_t gfp_mask, int count)
5732{
5733 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5734 struct zonelist *zonelist = node_zonelist(0, gfp_mask);
5735 int did_some_progress = 0;
5736 int order = 1;
5737
5738 /*
5739 * Increase level of watermarks to force kswapd do his job
5740 * to stabilise at new watermark level.
5741 */
5742 __update_cma_watermarks(zone, count);
5743
5744 /* Obey watermarks as if the page was being allocated */
5745 while (!zone_watermark_ok(zone, 0, low_wmark_pages(zone), 0, 0)) {
5746 wake_all_kswapd(order, zonelist, high_zoneidx, zone_idx(zone));
5747
5748 did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
5749 NULL);
5750 if (!did_some_progress) {
5751 /* Exhausted what can be done so it's blamo time */
5752 out_of_memory(zonelist, gfp_mask, order, NULL, false);
5753 }
5754 }
5755
5756 /* Restore original watermark levels. */
5757 __update_cma_watermarks(zone, -count);
5758
5759 return count;
5760}
5761
041d3a8c
MN
5762/**
5763 * alloc_contig_range() -- tries to allocate given range of pages
5764 * @start: start PFN to allocate
5765 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
5766 * @migratetype: migratetype of the underlaying pageblocks (either
5767 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
5768 * in range must have the same migratetype and it must
5769 * be either of the two.
041d3a8c
MN
5770 *
5771 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5772 * aligned, however it's the caller's responsibility to guarantee that
5773 * we are the only thread that changes migrate type of pageblocks the
5774 * pages fall in.
5775 *
5776 * The PFN range must belong to a single zone.
5777 *
5778 * Returns zero on success or negative error code. On success all
5779 * pages which PFN is in [start, end) are allocated for the caller and
5780 * need to be freed with free_contig_range().
5781 */
0815f3d8
MN
5782int alloc_contig_range(unsigned long start, unsigned long end,
5783 unsigned migratetype)
041d3a8c
MN
5784{
5785 struct zone *zone = page_zone(pfn_to_page(start));
5786 unsigned long outer_start, outer_end;
5787 int ret = 0, order;
5788
5789 /*
5790 * What we do here is we mark all pageblocks in range as
5791 * MIGRATE_ISOLATE. Because pageblock and max order pages may
5792 * have different sizes, and due to the way page allocator
5793 * work, we align the range to biggest of the two pages so
5794 * that page allocator won't try to merge buddies from
5795 * different pageblocks and change MIGRATE_ISOLATE to some
5796 * other migration type.
5797 *
5798 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5799 * migrate the pages from an unaligned range (ie. pages that
5800 * we are interested in). This will put all the pages in
5801 * range back to page allocator as MIGRATE_ISOLATE.
5802 *
5803 * When this is done, we take the pages in range from page
5804 * allocator removing them from the buddy system. This way
5805 * page allocator will never consider using them.
5806 *
5807 * This lets us mark the pageblocks back as
5808 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5809 * aligned range but not in the unaligned, original range are
5810 * put back to page allocator so that buddy can use them.
5811 */
5812
5813 ret = start_isolate_page_range(pfn_max_align_down(start),
0815f3d8 5814 pfn_max_align_up(end), migratetype);
041d3a8c
MN
5815 if (ret)
5816 goto done;
5817
5818 ret = __alloc_contig_migrate_range(start, end);
5819 if (ret)
5820 goto done;
5821
5822 /*
5823 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5824 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
5825 * more, all pages in [start, end) are free in page allocator.
5826 * What we are going to do is to allocate all pages from
5827 * [start, end) (that is remove them from page allocator).
5828 *
5829 * The only problem is that pages at the beginning and at the
5830 * end of interesting range may be not aligned with pages that
5831 * page allocator holds, ie. they can be part of higher order
5832 * pages. Because of this, we reserve the bigger range and
5833 * once this is done free the pages we are not interested in.
5834 *
5835 * We don't have to hold zone->lock here because the pages are
5836 * isolated thus they won't get removed from buddy.
5837 */
5838
5839 lru_add_drain_all();
5840 drain_all_pages();
5841
5842 order = 0;
5843 outer_start = start;
5844 while (!PageBuddy(pfn_to_page(outer_start))) {
5845 if (++order >= MAX_ORDER) {
5846 ret = -EBUSY;
5847 goto done;
5848 }
5849 outer_start &= ~0UL << order;
5850 }
5851
5852 /* Make sure the range is really isolated. */
5853 if (test_pages_isolated(outer_start, end)) {
5854 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
5855 outer_start, end);
5856 ret = -EBUSY;
5857 goto done;
5858 }
5859
49f223a9
MS
5860 /*
5861 * Reclaim enough pages to make sure that contiguous allocation
5862 * will not starve the system.
5863 */
5864 __reclaim_pages(zone, GFP_HIGHUSER_MOVABLE, end-start);
5865
5866 /* Grab isolated pages from freelists. */
041d3a8c
MN
5867 outer_end = isolate_freepages_range(outer_start, end);
5868 if (!outer_end) {
5869 ret = -EBUSY;
5870 goto done;
5871 }
5872
5873 /* Free head and tail (if any) */
5874 if (start != outer_start)
5875 free_contig_range(outer_start, start - outer_start);
5876 if (end != outer_end)
5877 free_contig_range(end, outer_end - end);
5878
5879done:
5880 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 5881 pfn_max_align_up(end), migratetype);
041d3a8c
MN
5882 return ret;
5883}
5884
5885void free_contig_range(unsigned long pfn, unsigned nr_pages)
5886{
5887 for (; nr_pages--; ++pfn)
5888 __free_page(pfn_to_page(pfn));
5889}
5890#endif
5891
4ed7e022
JL
5892#ifdef CONFIG_MEMORY_HOTPLUG
5893static int __meminit __zone_pcp_update(void *data)
5894{
5895 struct zone *zone = data;
5896 int cpu;
5897 unsigned long batch = zone_batchsize(zone), flags;
5898
5899 for_each_possible_cpu(cpu) {
5900 struct per_cpu_pageset *pset;
5901 struct per_cpu_pages *pcp;
5902
5903 pset = per_cpu_ptr(zone->pageset, cpu);
5904 pcp = &pset->pcp;
5905
5906 local_irq_save(flags);
5907 if (pcp->count > 0)
5908 free_pcppages_bulk(zone, pcp->count, pcp);
5909 setup_pageset(pset, batch);
5910 local_irq_restore(flags);
5911 }
5912 return 0;
5913}
5914
5915void __meminit zone_pcp_update(struct zone *zone)
5916{
5917 stop_machine(__zone_pcp_update, zone, NULL);
5918}
5919#endif
5920
0c0e6195 5921#ifdef CONFIG_MEMORY_HOTREMOVE
340175b7
JL
5922void zone_pcp_reset(struct zone *zone)
5923{
5924 unsigned long flags;
5925
5926 /* avoid races with drain_pages() */
5927 local_irq_save(flags);
5928 if (zone->pageset != &boot_pageset) {
5929 free_percpu(zone->pageset);
5930 zone->pageset = &boot_pageset;
5931 }
5932 local_irq_restore(flags);
5933}
5934
0c0e6195
KH
5935/*
5936 * All pages in the range must be isolated before calling this.
5937 */
5938void
5939__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5940{
5941 struct page *page;
5942 struct zone *zone;
5943 int order, i;
5944 unsigned long pfn;
5945 unsigned long flags;
5946 /* find the first valid pfn */
5947 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5948 if (pfn_valid(pfn))
5949 break;
5950 if (pfn == end_pfn)
5951 return;
5952 zone = page_zone(pfn_to_page(pfn));
5953 spin_lock_irqsave(&zone->lock, flags);
5954 pfn = start_pfn;
5955 while (pfn < end_pfn) {
5956 if (!pfn_valid(pfn)) {
5957 pfn++;
5958 continue;
5959 }
5960 page = pfn_to_page(pfn);
5961 BUG_ON(page_count(page));
5962 BUG_ON(!PageBuddy(page));
5963 order = page_order(page);
5964#ifdef CONFIG_DEBUG_VM
5965 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5966 pfn, 1 << order, end_pfn);
5967#endif
5968 list_del(&page->lru);
5969 rmv_page_order(page);
5970 zone->free_area[order].nr_free--;
5971 __mod_zone_page_state(zone, NR_FREE_PAGES,
5972 - (1UL << order));
5973 for (i = 0; i < (1 << order); i++)
5974 SetPageReserved((page+i));
5975 pfn += (1 << order);
5976 }
5977 spin_unlock_irqrestore(&zone->lock, flags);
5978}
5979#endif
8d22ba1b
WF
5980
5981#ifdef CONFIG_MEMORY_FAILURE
5982bool is_free_buddy_page(struct page *page)
5983{
5984 struct zone *zone = page_zone(page);
5985 unsigned long pfn = page_to_pfn(page);
5986 unsigned long flags;
5987 int order;
5988
5989 spin_lock_irqsave(&zone->lock, flags);
5990 for (order = 0; order < MAX_ORDER; order++) {
5991 struct page *page_head = page - (pfn & ((1 << order) - 1));
5992
5993 if (PageBuddy(page_head) && page_order(page_head) >= order)
5994 break;
5995 }
5996 spin_unlock_irqrestore(&zone->lock, flags);
5997
5998 return order < MAX_ORDER;
5999}
6000#endif
718a3821 6001
51300cef 6002static const struct trace_print_flags pageflag_names[] = {
718a3821
WF
6003 {1UL << PG_locked, "locked" },
6004 {1UL << PG_error, "error" },
6005 {1UL << PG_referenced, "referenced" },
6006 {1UL << PG_uptodate, "uptodate" },
6007 {1UL << PG_dirty, "dirty" },
6008 {1UL << PG_lru, "lru" },
6009 {1UL << PG_active, "active" },
6010 {1UL << PG_slab, "slab" },
6011 {1UL << PG_owner_priv_1, "owner_priv_1" },
6012 {1UL << PG_arch_1, "arch_1" },
6013 {1UL << PG_reserved, "reserved" },
6014 {1UL << PG_private, "private" },
6015 {1UL << PG_private_2, "private_2" },
6016 {1UL << PG_writeback, "writeback" },
6017#ifdef CONFIG_PAGEFLAGS_EXTENDED
6018 {1UL << PG_head, "head" },
6019 {1UL << PG_tail, "tail" },
6020#else
6021 {1UL << PG_compound, "compound" },
6022#endif
6023 {1UL << PG_swapcache, "swapcache" },
6024 {1UL << PG_mappedtodisk, "mappedtodisk" },
6025 {1UL << PG_reclaim, "reclaim" },
718a3821
WF
6026 {1UL << PG_swapbacked, "swapbacked" },
6027 {1UL << PG_unevictable, "unevictable" },
6028#ifdef CONFIG_MMU
6029 {1UL << PG_mlocked, "mlocked" },
6030#endif
6031#ifdef CONFIG_ARCH_USES_PG_UNCACHED
6032 {1UL << PG_uncached, "uncached" },
6033#endif
6034#ifdef CONFIG_MEMORY_FAILURE
6035 {1UL << PG_hwpoison, "hwpoison" },
be9cd873
GS
6036#endif
6037#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6038 {1UL << PG_compound_lock, "compound_lock" },
718a3821 6039#endif
718a3821
WF
6040};
6041
6042static void dump_page_flags(unsigned long flags)
6043{
6044 const char *delim = "";
6045 unsigned long mask;
6046 int i;
6047
51300cef 6048 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
acc50c11 6049
718a3821
WF
6050 printk(KERN_ALERT "page flags: %#lx(", flags);
6051
6052 /* remove zone id */
6053 flags &= (1UL << NR_PAGEFLAGS) - 1;
6054
51300cef 6055 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
718a3821
WF
6056
6057 mask = pageflag_names[i].mask;
6058 if ((flags & mask) != mask)
6059 continue;
6060
6061 flags &= ~mask;
6062 printk("%s%s", delim, pageflag_names[i].name);
6063 delim = "|";
6064 }
6065
6066 /* check for left over flags */
6067 if (flags)
6068 printk("%s%#lx", delim, flags);
6069
6070 printk(")\n");
6071}
6072
6073void dump_page(struct page *page)
6074{
6075 printk(KERN_ALERT
6076 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
4e9f64c4 6077 page, atomic_read(&page->_count), page_mapcount(page),
718a3821
WF
6078 page->mapping, page->index);
6079 dump_page_flags(page->flags);
f212ad7c 6080 mem_cgroup_print_bad_page(page);
718a3821 6081}