disable some mediatekl custom warnings
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / xfs / xfs_aops.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
1da177e4
LT
19#include "xfs_log.h"
20#include "xfs_sb.h"
a844f451 21#include "xfs_ag.h"
1da177e4 22#include "xfs_trans.h"
1da177e4
LT
23#include "xfs_mount.h"
24#include "xfs_bmap_btree.h"
1da177e4
LT
25#include "xfs_dinode.h"
26#include "xfs_inode.h"
281627df 27#include "xfs_inode_item.h"
a844f451 28#include "xfs_alloc.h"
1da177e4 29#include "xfs_error.h"
1da177e4 30#include "xfs_iomap.h"
739bfb2a 31#include "xfs_vnodeops.h"
0b1b213f 32#include "xfs_trace.h"
3ed3a434 33#include "xfs_bmap.h"
a27bb332 34#include <linux/aio.h>
5a0e3ad6 35#include <linux/gfp.h>
1da177e4 36#include <linux/mpage.h>
10ce4444 37#include <linux/pagevec.h>
1da177e4
LT
38#include <linux/writeback.h>
39
0b1b213f 40void
f51623b2
NS
41xfs_count_page_state(
42 struct page *page,
43 int *delalloc,
f51623b2
NS
44 int *unwritten)
45{
46 struct buffer_head *bh, *head;
47
20cb52eb 48 *delalloc = *unwritten = 0;
f51623b2
NS
49
50 bh = head = page_buffers(page);
51 do {
20cb52eb 52 if (buffer_unwritten(bh))
f51623b2
NS
53 (*unwritten) = 1;
54 else if (buffer_delay(bh))
55 (*delalloc) = 1;
56 } while ((bh = bh->b_this_page) != head);
57}
58
6214ed44
CH
59STATIC struct block_device *
60xfs_find_bdev_for_inode(
046f1685 61 struct inode *inode)
6214ed44 62{
046f1685 63 struct xfs_inode *ip = XFS_I(inode);
6214ed44
CH
64 struct xfs_mount *mp = ip->i_mount;
65
71ddabb9 66 if (XFS_IS_REALTIME_INODE(ip))
6214ed44
CH
67 return mp->m_rtdev_targp->bt_bdev;
68 else
69 return mp->m_ddev_targp->bt_bdev;
70}
71
f6d6d4fc
CH
72/*
73 * We're now finished for good with this ioend structure.
74 * Update the page state via the associated buffer_heads,
75 * release holds on the inode and bio, and finally free
76 * up memory. Do not use the ioend after this.
77 */
0829c360
CH
78STATIC void
79xfs_destroy_ioend(
80 xfs_ioend_t *ioend)
81{
f6d6d4fc
CH
82 struct buffer_head *bh, *next;
83
84 for (bh = ioend->io_buffer_head; bh; bh = next) {
85 next = bh->b_private;
7d04a335 86 bh->b_end_io(bh, !ioend->io_error);
f6d6d4fc 87 }
583fa586 88
c859cdd1 89 if (ioend->io_iocb) {
4b05d09c 90 inode_dio_done(ioend->io_inode);
04f658ee
CH
91 if (ioend->io_isasync) {
92 aio_complete(ioend->io_iocb, ioend->io_error ?
93 ioend->io_error : ioend->io_result, 0);
94 }
c859cdd1 95 }
4a06fd26 96
0829c360
CH
97 mempool_free(ioend, xfs_ioend_pool);
98}
99
fc0063c4
CH
100/*
101 * Fast and loose check if this write could update the on-disk inode size.
102 */
103static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
104{
105 return ioend->io_offset + ioend->io_size >
106 XFS_I(ioend->io_inode)->i_d.di_size;
107}
108
281627df
CH
109STATIC int
110xfs_setfilesize_trans_alloc(
111 struct xfs_ioend *ioend)
112{
113 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
114 struct xfs_trans *tp;
115 int error;
116
117 tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
118
119 error = xfs_trans_reserve(tp, 0, XFS_FSYNC_TS_LOG_RES(mp), 0, 0, 0);
120 if (error) {
121 xfs_trans_cancel(tp, 0);
122 return error;
123 }
124
125 ioend->io_append_trans = tp;
126
d9457dc0 127 /*
437a255a 128 * We may pass freeze protection with a transaction. So tell lockdep
d9457dc0
JK
129 * we released it.
130 */
131 rwsem_release(&ioend->io_inode->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
132 1, _THIS_IP_);
281627df
CH
133 /*
134 * We hand off the transaction to the completion thread now, so
135 * clear the flag here.
136 */
137 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
138 return 0;
139}
140
ba87ea69 141/*
2813d682 142 * Update on-disk file size now that data has been written to disk.
ba87ea69 143 */
281627df 144STATIC int
ba87ea69 145xfs_setfilesize(
aa6bf01d 146 struct xfs_ioend *ioend)
ba87ea69 147{
aa6bf01d 148 struct xfs_inode *ip = XFS_I(ioend->io_inode);
281627df 149 struct xfs_trans *tp = ioend->io_append_trans;
ba87ea69 150 xfs_fsize_t isize;
ba87ea69 151
281627df 152 /*
437a255a
DC
153 * The transaction may have been allocated in the I/O submission thread,
154 * thus we need to mark ourselves as beeing in a transaction manually.
155 * Similarly for freeze protection.
281627df
CH
156 */
157 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
437a255a
DC
158 rwsem_acquire_read(&VFS_I(ip)->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
159 0, 1, _THIS_IP_);
281627df 160
aa6bf01d 161 xfs_ilock(ip, XFS_ILOCK_EXCL);
6923e686 162 isize = xfs_new_eof(ip, ioend->io_offset + ioend->io_size);
281627df
CH
163 if (!isize) {
164 xfs_iunlock(ip, XFS_ILOCK_EXCL);
165 xfs_trans_cancel(tp, 0);
166 return 0;
ba87ea69
LM
167 }
168
281627df
CH
169 trace_xfs_setfilesize(ip, ioend->io_offset, ioend->io_size);
170
171 ip->i_d.di_size = isize;
172 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
173 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
174
175 return xfs_trans_commit(tp, 0);
77d7a0c2
DC
176}
177
178/*
209fb87a 179 * Schedule IO completion handling on the final put of an ioend.
fc0063c4
CH
180 *
181 * If there is no work to do we might as well call it a day and free the
182 * ioend right now.
77d7a0c2
DC
183 */
184STATIC void
185xfs_finish_ioend(
209fb87a 186 struct xfs_ioend *ioend)
77d7a0c2
DC
187{
188 if (atomic_dec_and_test(&ioend->io_remaining)) {
aa6bf01d
CH
189 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
190
0d882a36 191 if (ioend->io_type == XFS_IO_UNWRITTEN)
aa6bf01d 192 queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
437a255a
DC
193 else if (ioend->io_append_trans ||
194 (ioend->io_isdirect && xfs_ioend_is_append(ioend)))
aa6bf01d 195 queue_work(mp->m_data_workqueue, &ioend->io_work);
fc0063c4
CH
196 else
197 xfs_destroy_ioend(ioend);
77d7a0c2 198 }
ba87ea69
LM
199}
200
0829c360 201/*
5ec4fabb 202 * IO write completion.
f6d6d4fc
CH
203 */
204STATIC void
5ec4fabb 205xfs_end_io(
77d7a0c2 206 struct work_struct *work)
0829c360 207{
77d7a0c2
DC
208 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
209 struct xfs_inode *ip = XFS_I(ioend->io_inode);
69418932 210 int error = 0;
ba87ea69 211
04f658ee 212 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
810627d9 213 ioend->io_error = -EIO;
04f658ee
CH
214 goto done;
215 }
216 if (ioend->io_error)
217 goto done;
218
5ec4fabb
CH
219 /*
220 * For unwritten extents we need to issue transactions to convert a
221 * range to normal written extens after the data I/O has finished.
222 */
0d882a36 223 if (ioend->io_type == XFS_IO_UNWRITTEN) {
437a255a
DC
224 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
225 ioend->io_size);
226 } else if (ioend->io_isdirect && xfs_ioend_is_append(ioend)) {
281627df 227 /*
437a255a
DC
228 * For direct I/O we do not know if we need to allocate blocks
229 * or not so we can't preallocate an append transaction as that
230 * results in nested reservations and log space deadlocks. Hence
231 * allocate the transaction here. While this is sub-optimal and
232 * can block IO completion for some time, we're stuck with doing
233 * it this way until we can pass the ioend to the direct IO
234 * allocation callbacks and avoid nesting that way.
281627df 235 */
437a255a
DC
236 error = xfs_setfilesize_trans_alloc(ioend);
237 if (error)
04f658ee 238 goto done;
437a255a 239 error = xfs_setfilesize(ioend);
281627df
CH
240 } else if (ioend->io_append_trans) {
241 error = xfs_setfilesize(ioend);
84803fb7 242 } else {
281627df 243 ASSERT(!xfs_ioend_is_append(ioend));
5ec4fabb 244 }
ba87ea69 245
04f658ee 246done:
437a255a
DC
247 if (error)
248 ioend->io_error = -error;
aa6bf01d 249 xfs_destroy_ioend(ioend);
c626d174
DC
250}
251
209fb87a
CH
252/*
253 * Call IO completion handling in caller context on the final put of an ioend.
254 */
255STATIC void
256xfs_finish_ioend_sync(
257 struct xfs_ioend *ioend)
258{
259 if (atomic_dec_and_test(&ioend->io_remaining))
260 xfs_end_io(&ioend->io_work);
261}
262
0829c360
CH
263/*
264 * Allocate and initialise an IO completion structure.
265 * We need to track unwritten extent write completion here initially.
266 * We'll need to extend this for updating the ondisk inode size later
267 * (vs. incore size).
268 */
269STATIC xfs_ioend_t *
270xfs_alloc_ioend(
f6d6d4fc
CH
271 struct inode *inode,
272 unsigned int type)
0829c360
CH
273{
274 xfs_ioend_t *ioend;
275
276 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
277
278 /*
279 * Set the count to 1 initially, which will prevent an I/O
280 * completion callback from happening before we have started
281 * all the I/O from calling the completion routine too early.
282 */
283 atomic_set(&ioend->io_remaining, 1);
c859cdd1 284 ioend->io_isasync = 0;
281627df 285 ioend->io_isdirect = 0;
7d04a335 286 ioend->io_error = 0;
f6d6d4fc
CH
287 ioend->io_list = NULL;
288 ioend->io_type = type;
b677c210 289 ioend->io_inode = inode;
c1a073bd 290 ioend->io_buffer_head = NULL;
f6d6d4fc 291 ioend->io_buffer_tail = NULL;
0829c360
CH
292 ioend->io_offset = 0;
293 ioend->io_size = 0;
fb511f21
CH
294 ioend->io_iocb = NULL;
295 ioend->io_result = 0;
281627df 296 ioend->io_append_trans = NULL;
0829c360 297
5ec4fabb 298 INIT_WORK(&ioend->io_work, xfs_end_io);
0829c360
CH
299 return ioend;
300}
301
1da177e4
LT
302STATIC int
303xfs_map_blocks(
304 struct inode *inode,
305 loff_t offset,
207d0416 306 struct xfs_bmbt_irec *imap,
a206c817
CH
307 int type,
308 int nonblocking)
1da177e4 309{
a206c817
CH
310 struct xfs_inode *ip = XFS_I(inode);
311 struct xfs_mount *mp = ip->i_mount;
ed1e7b7e 312 ssize_t count = 1 << inode->i_blkbits;
a206c817
CH
313 xfs_fileoff_t offset_fsb, end_fsb;
314 int error = 0;
a206c817
CH
315 int bmapi_flags = XFS_BMAPI_ENTIRE;
316 int nimaps = 1;
317
318 if (XFS_FORCED_SHUTDOWN(mp))
319 return -XFS_ERROR(EIO);
320
0d882a36 321 if (type == XFS_IO_UNWRITTEN)
a206c817 322 bmapi_flags |= XFS_BMAPI_IGSTATE;
8ff2957d
CH
323
324 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
325 if (nonblocking)
326 return -XFS_ERROR(EAGAIN);
327 xfs_ilock(ip, XFS_ILOCK_SHARED);
a206c817
CH
328 }
329
8ff2957d
CH
330 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
331 (ip->i_df.if_flags & XFS_IFEXTENTS));
d2c28191 332 ASSERT(offset <= mp->m_super->s_maxbytes);
8ff2957d 333
d2c28191
DC
334 if (offset + count > mp->m_super->s_maxbytes)
335 count = mp->m_super->s_maxbytes - offset;
a206c817
CH
336 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
337 offset_fsb = XFS_B_TO_FSBT(mp, offset);
5c8ed202
DC
338 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
339 imap, &nimaps, bmapi_flags);
8ff2957d 340 xfs_iunlock(ip, XFS_ILOCK_SHARED);
a206c817 341
8ff2957d
CH
342 if (error)
343 return -XFS_ERROR(error);
a206c817 344
0d882a36 345 if (type == XFS_IO_DELALLOC &&
8ff2957d 346 (!nimaps || isnullstartblock(imap->br_startblock))) {
a206c817
CH
347 error = xfs_iomap_write_allocate(ip, offset, count, imap);
348 if (!error)
349 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
8ff2957d 350 return -XFS_ERROR(error);
a206c817
CH
351 }
352
8ff2957d 353#ifdef DEBUG
0d882a36 354 if (type == XFS_IO_UNWRITTEN) {
8ff2957d
CH
355 ASSERT(nimaps);
356 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
357 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
358 }
359#endif
360 if (nimaps)
361 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
362 return 0;
1da177e4
LT
363}
364
b8f82a4a 365STATIC int
558e6891 366xfs_imap_valid(
8699bb0a 367 struct inode *inode,
207d0416 368 struct xfs_bmbt_irec *imap,
558e6891 369 xfs_off_t offset)
1da177e4 370{
558e6891 371 offset >>= inode->i_blkbits;
8699bb0a 372
558e6891
CH
373 return offset >= imap->br_startoff &&
374 offset < imap->br_startoff + imap->br_blockcount;
1da177e4
LT
375}
376
f6d6d4fc
CH
377/*
378 * BIO completion handler for buffered IO.
379 */
782e3b3b 380STATIC void
f6d6d4fc
CH
381xfs_end_bio(
382 struct bio *bio,
f6d6d4fc
CH
383 int error)
384{
385 xfs_ioend_t *ioend = bio->bi_private;
386
f6d6d4fc 387 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
7d04a335 388 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
f6d6d4fc
CH
389
390 /* Toss bio and pass work off to an xfsdatad thread */
f6d6d4fc
CH
391 bio->bi_private = NULL;
392 bio->bi_end_io = NULL;
f6d6d4fc 393 bio_put(bio);
7d04a335 394
209fb87a 395 xfs_finish_ioend(ioend);
f6d6d4fc
CH
396}
397
398STATIC void
399xfs_submit_ioend_bio(
06342cf8
CH
400 struct writeback_control *wbc,
401 xfs_ioend_t *ioend,
402 struct bio *bio)
f6d6d4fc
CH
403{
404 atomic_inc(&ioend->io_remaining);
f6d6d4fc
CH
405 bio->bi_private = ioend;
406 bio->bi_end_io = xfs_end_bio;
721a9602 407 submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
f6d6d4fc
CH
408}
409
410STATIC struct bio *
411xfs_alloc_ioend_bio(
412 struct buffer_head *bh)
413{
f6d6d4fc 414 int nvecs = bio_get_nr_vecs(bh->b_bdev);
221cb251 415 struct bio *bio = bio_alloc(GFP_NOIO, nvecs);
f6d6d4fc
CH
416
417 ASSERT(bio->bi_private == NULL);
418 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
419 bio->bi_bdev = bh->b_bdev;
f6d6d4fc
CH
420 return bio;
421}
422
423STATIC void
424xfs_start_buffer_writeback(
425 struct buffer_head *bh)
426{
427 ASSERT(buffer_mapped(bh));
428 ASSERT(buffer_locked(bh));
429 ASSERT(!buffer_delay(bh));
430 ASSERT(!buffer_unwritten(bh));
431
432 mark_buffer_async_write(bh);
433 set_buffer_uptodate(bh);
434 clear_buffer_dirty(bh);
435}
436
437STATIC void
438xfs_start_page_writeback(
439 struct page *page,
f6d6d4fc
CH
440 int clear_dirty,
441 int buffers)
442{
443 ASSERT(PageLocked(page));
444 ASSERT(!PageWriteback(page));
f6d6d4fc 445 if (clear_dirty)
92132021
DC
446 clear_page_dirty_for_io(page);
447 set_page_writeback(page);
f6d6d4fc 448 unlock_page(page);
1f7decf6
FW
449 /* If no buffers on the page are to be written, finish it here */
450 if (!buffers)
f6d6d4fc 451 end_page_writeback(page);
f6d6d4fc
CH
452}
453
454static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
455{
456 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
457}
458
459/*
d88992f6
DC
460 * Submit all of the bios for all of the ioends we have saved up, covering the
461 * initial writepage page and also any probed pages.
462 *
463 * Because we may have multiple ioends spanning a page, we need to start
464 * writeback on all the buffers before we submit them for I/O. If we mark the
465 * buffers as we got, then we can end up with a page that only has buffers
466 * marked async write and I/O complete on can occur before we mark the other
467 * buffers async write.
468 *
469 * The end result of this is that we trip a bug in end_page_writeback() because
470 * we call it twice for the one page as the code in end_buffer_async_write()
471 * assumes that all buffers on the page are started at the same time.
472 *
473 * The fix is two passes across the ioend list - one to start writeback on the
c41564b5 474 * buffer_heads, and then submit them for I/O on the second pass.
7bf7f352
DC
475 *
476 * If @fail is non-zero, it means that we have a situation where some part of
477 * the submission process has failed after we have marked paged for writeback
478 * and unlocked them. In this situation, we need to fail the ioend chain rather
479 * than submit it to IO. This typically only happens on a filesystem shutdown.
f6d6d4fc
CH
480 */
481STATIC void
482xfs_submit_ioend(
06342cf8 483 struct writeback_control *wbc,
7bf7f352
DC
484 xfs_ioend_t *ioend,
485 int fail)
f6d6d4fc 486{
d88992f6 487 xfs_ioend_t *head = ioend;
f6d6d4fc
CH
488 xfs_ioend_t *next;
489 struct buffer_head *bh;
490 struct bio *bio;
491 sector_t lastblock = 0;
492
d88992f6
DC
493 /* Pass 1 - start writeback */
494 do {
495 next = ioend->io_list;
221cb251 496 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
d88992f6 497 xfs_start_buffer_writeback(bh);
d88992f6
DC
498 } while ((ioend = next) != NULL);
499
500 /* Pass 2 - submit I/O */
501 ioend = head;
f6d6d4fc
CH
502 do {
503 next = ioend->io_list;
504 bio = NULL;
505
7bf7f352
DC
506 /*
507 * If we are failing the IO now, just mark the ioend with an
508 * error and finish it. This will run IO completion immediately
509 * as there is only one reference to the ioend at this point in
510 * time.
511 */
512 if (fail) {
513 ioend->io_error = -fail;
514 xfs_finish_ioend(ioend);
515 continue;
516 }
517
f6d6d4fc 518 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
f6d6d4fc
CH
519
520 if (!bio) {
521 retry:
522 bio = xfs_alloc_ioend_bio(bh);
523 } else if (bh->b_blocknr != lastblock + 1) {
06342cf8 524 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
525 goto retry;
526 }
527
528 if (bio_add_buffer(bio, bh) != bh->b_size) {
06342cf8 529 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
530 goto retry;
531 }
532
533 lastblock = bh->b_blocknr;
534 }
535 if (bio)
06342cf8 536 xfs_submit_ioend_bio(wbc, ioend, bio);
209fb87a 537 xfs_finish_ioend(ioend);
f6d6d4fc
CH
538 } while ((ioend = next) != NULL);
539}
540
541/*
542 * Cancel submission of all buffer_heads so far in this endio.
543 * Toss the endio too. Only ever called for the initial page
544 * in a writepage request, so only ever one page.
545 */
546STATIC void
547xfs_cancel_ioend(
548 xfs_ioend_t *ioend)
549{
550 xfs_ioend_t *next;
551 struct buffer_head *bh, *next_bh;
552
553 do {
554 next = ioend->io_list;
555 bh = ioend->io_buffer_head;
556 do {
557 next_bh = bh->b_private;
558 clear_buffer_async_write(bh);
559 unlock_buffer(bh);
560 } while ((bh = next_bh) != NULL);
561
f6d6d4fc
CH
562 mempool_free(ioend, xfs_ioend_pool);
563 } while ((ioend = next) != NULL);
564}
565
566/*
567 * Test to see if we've been building up a completion structure for
568 * earlier buffers -- if so, we try to append to this ioend if we
569 * can, otherwise we finish off any current ioend and start another.
570 * Return true if we've finished the given ioend.
571 */
572STATIC void
573xfs_add_to_ioend(
574 struct inode *inode,
575 struct buffer_head *bh,
7336cea8 576 xfs_off_t offset,
f6d6d4fc
CH
577 unsigned int type,
578 xfs_ioend_t **result,
579 int need_ioend)
580{
581 xfs_ioend_t *ioend = *result;
582
583 if (!ioend || need_ioend || type != ioend->io_type) {
584 xfs_ioend_t *previous = *result;
f6d6d4fc 585
f6d6d4fc
CH
586 ioend = xfs_alloc_ioend(inode, type);
587 ioend->io_offset = offset;
588 ioend->io_buffer_head = bh;
589 ioend->io_buffer_tail = bh;
590 if (previous)
591 previous->io_list = ioend;
592 *result = ioend;
593 } else {
594 ioend->io_buffer_tail->b_private = bh;
595 ioend->io_buffer_tail = bh;
596 }
597
598 bh->b_private = NULL;
599 ioend->io_size += bh->b_size;
600}
601
87cbc49c
NS
602STATIC void
603xfs_map_buffer(
046f1685 604 struct inode *inode,
87cbc49c 605 struct buffer_head *bh,
207d0416 606 struct xfs_bmbt_irec *imap,
046f1685 607 xfs_off_t offset)
87cbc49c
NS
608{
609 sector_t bn;
8699bb0a 610 struct xfs_mount *m = XFS_I(inode)->i_mount;
207d0416
CH
611 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
612 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
87cbc49c 613
207d0416
CH
614 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
615 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
87cbc49c 616
e513182d 617 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
8699bb0a 618 ((offset - iomap_offset) >> inode->i_blkbits);
87cbc49c 619
046f1685 620 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
87cbc49c
NS
621
622 bh->b_blocknr = bn;
623 set_buffer_mapped(bh);
624}
625
1da177e4
LT
626STATIC void
627xfs_map_at_offset(
046f1685 628 struct inode *inode,
1da177e4 629 struct buffer_head *bh,
207d0416 630 struct xfs_bmbt_irec *imap,
046f1685 631 xfs_off_t offset)
1da177e4 632{
207d0416
CH
633 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
634 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
1da177e4 635
207d0416 636 xfs_map_buffer(inode, bh, imap, offset);
1da177e4
LT
637 set_buffer_mapped(bh);
638 clear_buffer_delay(bh);
f6d6d4fc 639 clear_buffer_unwritten(bh);
1da177e4
LT
640}
641
1da177e4 642/*
10ce4444
CH
643 * Test if a given page is suitable for writing as part of an unwritten
644 * or delayed allocate extent.
1da177e4 645 */
10ce4444 646STATIC int
6ffc4db5 647xfs_check_page_type(
10ce4444 648 struct page *page,
f6d6d4fc 649 unsigned int type)
1da177e4 650{
1da177e4 651 if (PageWriteback(page))
10ce4444 652 return 0;
1da177e4
LT
653
654 if (page->mapping && page_has_buffers(page)) {
655 struct buffer_head *bh, *head;
656 int acceptable = 0;
657
658 bh = head = page_buffers(page);
659 do {
f6d6d4fc 660 if (buffer_unwritten(bh))
0d882a36 661 acceptable += (type == XFS_IO_UNWRITTEN);
f6d6d4fc 662 else if (buffer_delay(bh))
0d882a36 663 acceptable += (type == XFS_IO_DELALLOC);
2ddee844 664 else if (buffer_dirty(bh) && buffer_mapped(bh))
0d882a36 665 acceptable += (type == XFS_IO_OVERWRITE);
f6d6d4fc 666 else
1da177e4 667 break;
1da177e4
LT
668 } while ((bh = bh->b_this_page) != head);
669
670 if (acceptable)
10ce4444 671 return 1;
1da177e4
LT
672 }
673
10ce4444 674 return 0;
1da177e4
LT
675}
676
1da177e4
LT
677/*
678 * Allocate & map buffers for page given the extent map. Write it out.
679 * except for the original page of a writepage, this is called on
680 * delalloc/unwritten pages only, for the original page it is possible
681 * that the page has no mapping at all.
682 */
f6d6d4fc 683STATIC int
1da177e4
LT
684xfs_convert_page(
685 struct inode *inode,
686 struct page *page,
10ce4444 687 loff_t tindex,
207d0416 688 struct xfs_bmbt_irec *imap,
f6d6d4fc 689 xfs_ioend_t **ioendp,
2fa24f92 690 struct writeback_control *wbc)
1da177e4 691{
f6d6d4fc 692 struct buffer_head *bh, *head;
9260dc6b
CH
693 xfs_off_t end_offset;
694 unsigned long p_offset;
f6d6d4fc 695 unsigned int type;
24e17b5f 696 int len, page_dirty;
f6d6d4fc 697 int count = 0, done = 0, uptodate = 1;
9260dc6b 698 xfs_off_t offset = page_offset(page);
1da177e4 699
10ce4444
CH
700 if (page->index != tindex)
701 goto fail;
529ae9aa 702 if (!trylock_page(page))
10ce4444
CH
703 goto fail;
704 if (PageWriteback(page))
705 goto fail_unlock_page;
706 if (page->mapping != inode->i_mapping)
707 goto fail_unlock_page;
6ffc4db5 708 if (!xfs_check_page_type(page, (*ioendp)->io_type))
10ce4444
CH
709 goto fail_unlock_page;
710
24e17b5f
NS
711 /*
712 * page_dirty is initially a count of buffers on the page before
c41564b5 713 * EOF and is decremented as we move each into a cleanable state.
9260dc6b
CH
714 *
715 * Derivation:
716 *
717 * End offset is the highest offset that this page should represent.
718 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
719 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
720 * hence give us the correct page_dirty count. On any other page,
721 * it will be zero and in that case we need page_dirty to be the
722 * count of buffers on the page.
24e17b5f 723 */
9260dc6b
CH
724 end_offset = min_t(unsigned long long,
725 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
726 i_size_read(inode));
727
480d7467
DC
728 /*
729 * If the current map does not span the entire page we are about to try
730 * to write, then give up. The only way we can write a page that spans
731 * multiple mappings in a single writeback iteration is via the
732 * xfs_vm_writepage() function. Data integrity writeback requires the
733 * entire page to be written in a single attempt, otherwise the part of
734 * the page we don't write here doesn't get written as part of the data
735 * integrity sync.
736 *
737 * For normal writeback, we also don't attempt to write partial pages
738 * here as it simply means that write_cache_pages() will see it under
739 * writeback and ignore the page until some point in the future, at
740 * which time this will be the only page in the file that needs
741 * writeback. Hence for more optimal IO patterns, we should always
742 * avoid partial page writeback due to multiple mappings on a page here.
743 */
744 if (!xfs_imap_valid(inode, imap, end_offset))
745 goto fail_unlock_page;
746
24e17b5f 747 len = 1 << inode->i_blkbits;
9260dc6b
CH
748 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
749 PAGE_CACHE_SIZE);
750 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
751 page_dirty = p_offset / len;
24e17b5f 752
1da177e4
LT
753 bh = head = page_buffers(page);
754 do {
9260dc6b 755 if (offset >= end_offset)
1da177e4 756 break;
f6d6d4fc
CH
757 if (!buffer_uptodate(bh))
758 uptodate = 0;
759 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
760 done = 1;
1da177e4 761 continue;
f6d6d4fc
CH
762 }
763
2fa24f92
CH
764 if (buffer_unwritten(bh) || buffer_delay(bh) ||
765 buffer_mapped(bh)) {
9260dc6b 766 if (buffer_unwritten(bh))
0d882a36 767 type = XFS_IO_UNWRITTEN;
2fa24f92 768 else if (buffer_delay(bh))
0d882a36 769 type = XFS_IO_DELALLOC;
2fa24f92 770 else
0d882a36 771 type = XFS_IO_OVERWRITE;
9260dc6b 772
558e6891 773 if (!xfs_imap_valid(inode, imap, offset)) {
f6d6d4fc 774 done = 1;
9260dc6b
CH
775 continue;
776 }
777
ecff71e6 778 lock_buffer(bh);
0d882a36 779 if (type != XFS_IO_OVERWRITE)
2fa24f92 780 xfs_map_at_offset(inode, bh, imap, offset);
89f3b363
CH
781 xfs_add_to_ioend(inode, bh, offset, type,
782 ioendp, done);
783
9260dc6b
CH
784 page_dirty--;
785 count++;
786 } else {
2fa24f92 787 done = 1;
1da177e4 788 }
7336cea8 789 } while (offset += len, (bh = bh->b_this_page) != head);
1da177e4 790
f6d6d4fc
CH
791 if (uptodate && bh == head)
792 SetPageUptodate(page);
793
89f3b363 794 if (count) {
efceab1d
DC
795 if (--wbc->nr_to_write <= 0 &&
796 wbc->sync_mode == WB_SYNC_NONE)
89f3b363 797 done = 1;
1da177e4 798 }
89f3b363 799 xfs_start_page_writeback(page, !page_dirty, count);
f6d6d4fc
CH
800
801 return done;
10ce4444
CH
802 fail_unlock_page:
803 unlock_page(page);
804 fail:
805 return 1;
1da177e4
LT
806}
807
808/*
809 * Convert & write out a cluster of pages in the same extent as defined
810 * by mp and following the start page.
811 */
812STATIC void
813xfs_cluster_write(
814 struct inode *inode,
815 pgoff_t tindex,
207d0416 816 struct xfs_bmbt_irec *imap,
f6d6d4fc 817 xfs_ioend_t **ioendp,
1da177e4 818 struct writeback_control *wbc,
1da177e4
LT
819 pgoff_t tlast)
820{
10ce4444
CH
821 struct pagevec pvec;
822 int done = 0, i;
1da177e4 823
10ce4444
CH
824 pagevec_init(&pvec, 0);
825 while (!done && tindex <= tlast) {
826 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
827
828 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
1da177e4 829 break;
10ce4444
CH
830
831 for (i = 0; i < pagevec_count(&pvec); i++) {
832 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
2fa24f92 833 imap, ioendp, wbc);
10ce4444
CH
834 if (done)
835 break;
836 }
837
838 pagevec_release(&pvec);
839 cond_resched();
1da177e4
LT
840 }
841}
842
3ed3a434
DC
843STATIC void
844xfs_vm_invalidatepage(
845 struct page *page,
846 unsigned long offset)
847{
848 trace_xfs_invalidatepage(page->mapping->host, page, offset);
849 block_invalidatepage(page, offset);
850}
851
852/*
853 * If the page has delalloc buffers on it, we need to punch them out before we
854 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
855 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
856 * is done on that same region - the delalloc extent is returned when none is
857 * supposed to be there.
858 *
859 * We prevent this by truncating away the delalloc regions on the page before
860 * invalidating it. Because they are delalloc, we can do this without needing a
861 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
862 * truncation without a transaction as there is no space left for block
863 * reservation (typically why we see a ENOSPC in writeback).
864 *
865 * This is not a performance critical path, so for now just do the punching a
866 * buffer head at a time.
867 */
868STATIC void
869xfs_aops_discard_page(
870 struct page *page)
871{
872 struct inode *inode = page->mapping->host;
873 struct xfs_inode *ip = XFS_I(inode);
874 struct buffer_head *bh, *head;
875 loff_t offset = page_offset(page);
3ed3a434 876
0d882a36 877 if (!xfs_check_page_type(page, XFS_IO_DELALLOC))
3ed3a434
DC
878 goto out_invalidate;
879
e8c3753c
DC
880 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
881 goto out_invalidate;
882
4f10700a 883 xfs_alert(ip->i_mount,
3ed3a434
DC
884 "page discard on page %p, inode 0x%llx, offset %llu.",
885 page, ip->i_ino, offset);
886
887 xfs_ilock(ip, XFS_ILOCK_EXCL);
888 bh = head = page_buffers(page);
889 do {
3ed3a434 890 int error;
c726de44 891 xfs_fileoff_t start_fsb;
3ed3a434
DC
892
893 if (!buffer_delay(bh))
894 goto next_buffer;
895
c726de44
DC
896 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
897 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
3ed3a434
DC
898 if (error) {
899 /* something screwed, just bail */
e8c3753c 900 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
4f10700a 901 xfs_alert(ip->i_mount,
3ed3a434 902 "page discard unable to remove delalloc mapping.");
e8c3753c 903 }
3ed3a434
DC
904 break;
905 }
906next_buffer:
c726de44 907 offset += 1 << inode->i_blkbits;
3ed3a434
DC
908
909 } while ((bh = bh->b_this_page) != head);
910
911 xfs_iunlock(ip, XFS_ILOCK_EXCL);
912out_invalidate:
913 xfs_vm_invalidatepage(page, 0);
914 return;
915}
916
1da177e4 917/*
89f3b363
CH
918 * Write out a dirty page.
919 *
920 * For delalloc space on the page we need to allocate space and flush it.
921 * For unwritten space on the page we need to start the conversion to
922 * regular allocated space.
89f3b363 923 * For any other dirty buffer heads on the page we should flush them.
1da177e4 924 */
1da177e4 925STATIC int
89f3b363
CH
926xfs_vm_writepage(
927 struct page *page,
928 struct writeback_control *wbc)
1da177e4 929{
89f3b363 930 struct inode *inode = page->mapping->host;
f6d6d4fc 931 struct buffer_head *bh, *head;
207d0416 932 struct xfs_bmbt_irec imap;
f6d6d4fc 933 xfs_ioend_t *ioend = NULL, *iohead = NULL;
1da177e4 934 loff_t offset;
f6d6d4fc 935 unsigned int type;
1da177e4 936 __uint64_t end_offset;
bd1556a1 937 pgoff_t end_index, last_index;
ed1e7b7e 938 ssize_t len;
a206c817 939 int err, imap_valid = 0, uptodate = 1;
89f3b363 940 int count = 0;
a206c817 941 int nonblocking = 0;
89f3b363
CH
942
943 trace_xfs_writepage(inode, page, 0);
944
20cb52eb
CH
945 ASSERT(page_has_buffers(page));
946
89f3b363
CH
947 /*
948 * Refuse to write the page out if we are called from reclaim context.
949 *
d4f7a5cb
CH
950 * This avoids stack overflows when called from deeply used stacks in
951 * random callers for direct reclaim or memcg reclaim. We explicitly
952 * allow reclaim from kswapd as the stack usage there is relatively low.
89f3b363 953 *
94054fa3
MG
954 * This should never happen except in the case of a VM regression so
955 * warn about it.
89f3b363 956 */
94054fa3
MG
957 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
958 PF_MEMALLOC))
b5420f23 959 goto redirty;
1da177e4 960
89f3b363 961 /*
680a647b
CH
962 * Given that we do not allow direct reclaim to call us, we should
963 * never be called while in a filesystem transaction.
89f3b363 964 */
680a647b 965 if (WARN_ON(current->flags & PF_FSTRANS))
b5420f23 966 goto redirty;
89f3b363 967
1da177e4
LT
968 /* Is this page beyond the end of the file? */
969 offset = i_size_read(inode);
970 end_index = offset >> PAGE_CACHE_SHIFT;
971 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
972 if (page->index >= end_index) {
6b7a03f0
CH
973 unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1);
974
975 /*
ff9a28f6
JK
976 * Skip the page if it is fully outside i_size, e.g. due to a
977 * truncate operation that is in progress. We must redirty the
978 * page so that reclaim stops reclaiming it. Otherwise
979 * xfs_vm_releasepage() is called on it and gets confused.
6b7a03f0 980 */
ff9a28f6
JK
981 if (page->index >= end_index + 1 || offset_into_page == 0)
982 goto redirty;
6b7a03f0
CH
983
984 /*
985 * The page straddles i_size. It must be zeroed out on each
986 * and every writepage invocation because it may be mmapped.
987 * "A file is mapped in multiples of the page size. For a file
988 * that is not a multiple of the page size, the remaining
989 * memory is zeroed when mapped, and writes to that region are
990 * not written out to the file."
991 */
992 zero_user_segment(page, offset_into_page, PAGE_CACHE_SIZE);
1da177e4
LT
993 }
994
f6d6d4fc 995 end_offset = min_t(unsigned long long,
20cb52eb
CH
996 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
997 offset);
24e17b5f 998 len = 1 << inode->i_blkbits;
24e17b5f 999
24e17b5f 1000 bh = head = page_buffers(page);
f6d6d4fc 1001 offset = page_offset(page);
0d882a36 1002 type = XFS_IO_OVERWRITE;
a206c817 1003
dbcdde3e 1004 if (wbc->sync_mode == WB_SYNC_NONE)
a206c817 1005 nonblocking = 1;
f6d6d4fc 1006
1da177e4 1007 do {
6ac7248e
CH
1008 int new_ioend = 0;
1009
1da177e4
LT
1010 if (offset >= end_offset)
1011 break;
1012 if (!buffer_uptodate(bh))
1013 uptodate = 0;
1da177e4 1014
3d9b02e3 1015 /*
ece413f5
CH
1016 * set_page_dirty dirties all buffers in a page, independent
1017 * of their state. The dirty state however is entirely
1018 * meaningless for holes (!mapped && uptodate), so skip
1019 * buffers covering holes here.
3d9b02e3
ES
1020 */
1021 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
3d9b02e3
ES
1022 imap_valid = 0;
1023 continue;
1024 }
1025
aeea1b1f 1026 if (buffer_unwritten(bh)) {
0d882a36
AR
1027 if (type != XFS_IO_UNWRITTEN) {
1028 type = XFS_IO_UNWRITTEN;
aeea1b1f 1029 imap_valid = 0;
1da177e4 1030 }
aeea1b1f 1031 } else if (buffer_delay(bh)) {
0d882a36
AR
1032 if (type != XFS_IO_DELALLOC) {
1033 type = XFS_IO_DELALLOC;
aeea1b1f 1034 imap_valid = 0;
1da177e4 1035 }
89f3b363 1036 } else if (buffer_uptodate(bh)) {
0d882a36
AR
1037 if (type != XFS_IO_OVERWRITE) {
1038 type = XFS_IO_OVERWRITE;
85da94c6
CH
1039 imap_valid = 0;
1040 }
aeea1b1f 1041 } else {
7d0fa3ec 1042 if (PageUptodate(page))
aeea1b1f 1043 ASSERT(buffer_mapped(bh));
7d0fa3ec
AR
1044 /*
1045 * This buffer is not uptodate and will not be
1046 * written to disk. Ensure that we will put any
1047 * subsequent writeable buffers into a new
1048 * ioend.
1049 */
1050 imap_valid = 0;
aeea1b1f
CH
1051 continue;
1052 }
d5cb48aa 1053
aeea1b1f
CH
1054 if (imap_valid)
1055 imap_valid = xfs_imap_valid(inode, &imap, offset);
1056 if (!imap_valid) {
1057 /*
1058 * If we didn't have a valid mapping then we need to
1059 * put the new mapping into a separate ioend structure.
1060 * This ensures non-contiguous extents always have
1061 * separate ioends, which is particularly important
1062 * for unwritten extent conversion at I/O completion
1063 * time.
1064 */
1065 new_ioend = 1;
1066 err = xfs_map_blocks(inode, offset, &imap, type,
1067 nonblocking);
1068 if (err)
1069 goto error;
1070 imap_valid = xfs_imap_valid(inode, &imap, offset);
1071 }
1072 if (imap_valid) {
ecff71e6 1073 lock_buffer(bh);
0d882a36 1074 if (type != XFS_IO_OVERWRITE)
aeea1b1f
CH
1075 xfs_map_at_offset(inode, bh, &imap, offset);
1076 xfs_add_to_ioend(inode, bh, offset, type, &ioend,
1077 new_ioend);
1078 count++;
1da177e4 1079 }
f6d6d4fc
CH
1080
1081 if (!iohead)
1082 iohead = ioend;
1083
1084 } while (offset += len, ((bh = bh->b_this_page) != head));
1da177e4
LT
1085
1086 if (uptodate && bh == head)
1087 SetPageUptodate(page);
1088
89f3b363 1089 xfs_start_page_writeback(page, 1, count);
1da177e4 1090
7bf7f352
DC
1091 /* if there is no IO to be submitted for this page, we are done */
1092 if (!ioend)
1093 return 0;
1094
1095 ASSERT(iohead);
1096
1097 /*
1098 * Any errors from this point onwards need tobe reported through the IO
1099 * completion path as we have marked the initial page as under writeback
1100 * and unlocked it.
1101 */
1102 if (imap_valid) {
bd1556a1
CH
1103 xfs_off_t end_index;
1104
1105 end_index = imap.br_startoff + imap.br_blockcount;
1106
1107 /* to bytes */
1108 end_index <<= inode->i_blkbits;
1109
1110 /* to pages */
1111 end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1112
1113 /* check against file size */
1114 if (end_index > last_index)
1115 end_index = last_index;
8699bb0a 1116
207d0416 1117 xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
2fa24f92 1118 wbc, end_index);
1da177e4
LT
1119 }
1120
281627df 1121
7bf7f352
DC
1122 /*
1123 * Reserve log space if we might write beyond the on-disk inode size.
1124 */
1125 err = 0;
1126 if (ioend->io_type != XFS_IO_UNWRITTEN && xfs_ioend_is_append(ioend))
1127 err = xfs_setfilesize_trans_alloc(ioend);
1128
1129 xfs_submit_ioend(wbc, iohead, err);
f6d6d4fc 1130
89f3b363 1131 return 0;
1da177e4
LT
1132
1133error:
f6d6d4fc
CH
1134 if (iohead)
1135 xfs_cancel_ioend(iohead);
1da177e4 1136
b5420f23
CH
1137 if (err == -EAGAIN)
1138 goto redirty;
1139
20cb52eb 1140 xfs_aops_discard_page(page);
89f3b363
CH
1141 ClearPageUptodate(page);
1142 unlock_page(page);
1da177e4 1143 return err;
f51623b2 1144
b5420f23 1145redirty:
f51623b2
NS
1146 redirty_page_for_writepage(wbc, page);
1147 unlock_page(page);
1148 return 0;
f51623b2
NS
1149}
1150
7d4fb40a
NS
1151STATIC int
1152xfs_vm_writepages(
1153 struct address_space *mapping,
1154 struct writeback_control *wbc)
1155{
b3aea4ed 1156 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
7d4fb40a
NS
1157 return generic_writepages(mapping, wbc);
1158}
1159
f51623b2
NS
1160/*
1161 * Called to move a page into cleanable state - and from there
89f3b363 1162 * to be released. The page should already be clean. We always
f51623b2
NS
1163 * have buffer heads in this call.
1164 *
89f3b363 1165 * Returns 1 if the page is ok to release, 0 otherwise.
f51623b2
NS
1166 */
1167STATIC int
238f4c54 1168xfs_vm_releasepage(
f51623b2
NS
1169 struct page *page,
1170 gfp_t gfp_mask)
1171{
20cb52eb 1172 int delalloc, unwritten;
f51623b2 1173
89f3b363 1174 trace_xfs_releasepage(page->mapping->host, page, 0);
238f4c54 1175
20cb52eb 1176 xfs_count_page_state(page, &delalloc, &unwritten);
f51623b2 1177
89f3b363 1178 if (WARN_ON(delalloc))
f51623b2 1179 return 0;
89f3b363 1180 if (WARN_ON(unwritten))
f51623b2
NS
1181 return 0;
1182
f51623b2
NS
1183 return try_to_free_buffers(page);
1184}
1185
1da177e4 1186STATIC int
c2536668 1187__xfs_get_blocks(
1da177e4
LT
1188 struct inode *inode,
1189 sector_t iblock,
1da177e4
LT
1190 struct buffer_head *bh_result,
1191 int create,
f2bde9b8 1192 int direct)
1da177e4 1193{
a206c817
CH
1194 struct xfs_inode *ip = XFS_I(inode);
1195 struct xfs_mount *mp = ip->i_mount;
1196 xfs_fileoff_t offset_fsb, end_fsb;
1197 int error = 0;
1198 int lockmode = 0;
207d0416 1199 struct xfs_bmbt_irec imap;
a206c817 1200 int nimaps = 1;
fdc7ed75
NS
1201 xfs_off_t offset;
1202 ssize_t size;
207d0416 1203 int new = 0;
a206c817
CH
1204
1205 if (XFS_FORCED_SHUTDOWN(mp))
1206 return -XFS_ERROR(EIO);
1da177e4 1207
fdc7ed75 1208 offset = (xfs_off_t)iblock << inode->i_blkbits;
c2536668
NS
1209 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1210 size = bh_result->b_size;
364f358a
LM
1211
1212 if (!create && direct && offset >= i_size_read(inode))
1213 return 0;
1214
507630b2
DC
1215 /*
1216 * Direct I/O is usually done on preallocated files, so try getting
1217 * a block mapping without an exclusive lock first. For buffered
1218 * writes we already have the exclusive iolock anyway, so avoiding
1219 * a lock roundtrip here by taking the ilock exclusive from the
1220 * beginning is a useful micro optimization.
1221 */
1222 if (create && !direct) {
a206c817
CH
1223 lockmode = XFS_ILOCK_EXCL;
1224 xfs_ilock(ip, lockmode);
1225 } else {
1226 lockmode = xfs_ilock_map_shared(ip);
1227 }
f2bde9b8 1228
d2c28191
DC
1229 ASSERT(offset <= mp->m_super->s_maxbytes);
1230 if (offset + size > mp->m_super->s_maxbytes)
1231 size = mp->m_super->s_maxbytes - offset;
a206c817
CH
1232 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1233 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1234
5c8ed202
DC
1235 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1236 &imap, &nimaps, XFS_BMAPI_ENTIRE);
1da177e4 1237 if (error)
a206c817
CH
1238 goto out_unlock;
1239
1240 if (create &&
1241 (!nimaps ||
1242 (imap.br_startblock == HOLESTARTBLOCK ||
1243 imap.br_startblock == DELAYSTARTBLOCK))) {
aff3a9ed 1244 if (direct || xfs_get_extsz_hint(ip)) {
507630b2
DC
1245 /*
1246 * Drop the ilock in preparation for starting the block
1247 * allocation transaction. It will be retaken
1248 * exclusively inside xfs_iomap_write_direct for the
1249 * actual allocation.
1250 */
1251 xfs_iunlock(ip, lockmode);
a206c817
CH
1252 error = xfs_iomap_write_direct(ip, offset, size,
1253 &imap, nimaps);
507630b2
DC
1254 if (error)
1255 return -error;
d3bc815a 1256 new = 1;
a206c817 1257 } else {
507630b2
DC
1258 /*
1259 * Delalloc reservations do not require a transaction,
d3bc815a
DC
1260 * we can go on without dropping the lock here. If we
1261 * are allocating a new delalloc block, make sure that
1262 * we set the new flag so that we mark the buffer new so
1263 * that we know that it is newly allocated if the write
1264 * fails.
507630b2 1265 */
d3bc815a
DC
1266 if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
1267 new = 1;
a206c817 1268 error = xfs_iomap_write_delay(ip, offset, size, &imap);
507630b2
DC
1269 if (error)
1270 goto out_unlock;
1271
1272 xfs_iunlock(ip, lockmode);
a206c817 1273 }
a206c817
CH
1274
1275 trace_xfs_get_blocks_alloc(ip, offset, size, 0, &imap);
1276 } else if (nimaps) {
1277 trace_xfs_get_blocks_found(ip, offset, size, 0, &imap);
507630b2 1278 xfs_iunlock(ip, lockmode);
a206c817
CH
1279 } else {
1280 trace_xfs_get_blocks_notfound(ip, offset, size);
1281 goto out_unlock;
1282 }
1da177e4 1283
207d0416
CH
1284 if (imap.br_startblock != HOLESTARTBLOCK &&
1285 imap.br_startblock != DELAYSTARTBLOCK) {
87cbc49c
NS
1286 /*
1287 * For unwritten extents do not report a disk address on
1da177e4
LT
1288 * the read case (treat as if we're reading into a hole).
1289 */
207d0416
CH
1290 if (create || !ISUNWRITTEN(&imap))
1291 xfs_map_buffer(inode, bh_result, &imap, offset);
1292 if (create && ISUNWRITTEN(&imap)) {
1da177e4
LT
1293 if (direct)
1294 bh_result->b_private = inode;
1295 set_buffer_unwritten(bh_result);
1da177e4
LT
1296 }
1297 }
1298
c2536668
NS
1299 /*
1300 * If this is a realtime file, data may be on a different device.
1301 * to that pointed to from the buffer_head b_bdev currently.
1302 */
046f1685 1303 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1da177e4 1304
c2536668 1305 /*
549054af
DC
1306 * If we previously allocated a block out beyond eof and we are now
1307 * coming back to use it then we will need to flag it as new even if it
1308 * has a disk address.
1309 *
1310 * With sub-block writes into unwritten extents we also need to mark
1311 * the buffer as new so that the unwritten parts of the buffer gets
1312 * correctly zeroed.
1da177e4
LT
1313 */
1314 if (create &&
1315 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
549054af 1316 (offset >= i_size_read(inode)) ||
207d0416 1317 (new || ISUNWRITTEN(&imap))))
1da177e4 1318 set_buffer_new(bh_result);
1da177e4 1319
207d0416 1320 if (imap.br_startblock == DELAYSTARTBLOCK) {
1da177e4
LT
1321 BUG_ON(direct);
1322 if (create) {
1323 set_buffer_uptodate(bh_result);
1324 set_buffer_mapped(bh_result);
1325 set_buffer_delay(bh_result);
1326 }
1327 }
1328
2b8f12b7
CH
1329 /*
1330 * If this is O_DIRECT or the mpage code calling tell them how large
1331 * the mapping is, so that we can avoid repeated get_blocks calls.
1332 */
c2536668 1333 if (direct || size > (1 << inode->i_blkbits)) {
2b8f12b7
CH
1334 xfs_off_t mapping_size;
1335
1336 mapping_size = imap.br_startoff + imap.br_blockcount - iblock;
1337 mapping_size <<= inode->i_blkbits;
1338
1339 ASSERT(mapping_size > 0);
1340 if (mapping_size > size)
1341 mapping_size = size;
1342 if (mapping_size > LONG_MAX)
1343 mapping_size = LONG_MAX;
1344
1345 bh_result->b_size = mapping_size;
1da177e4
LT
1346 }
1347
1348 return 0;
a206c817
CH
1349
1350out_unlock:
1351 xfs_iunlock(ip, lockmode);
1352 return -error;
1da177e4
LT
1353}
1354
1355int
c2536668 1356xfs_get_blocks(
1da177e4
LT
1357 struct inode *inode,
1358 sector_t iblock,
1359 struct buffer_head *bh_result,
1360 int create)
1361{
f2bde9b8 1362 return __xfs_get_blocks(inode, iblock, bh_result, create, 0);
1da177e4
LT
1363}
1364
1365STATIC int
e4c573bb 1366xfs_get_blocks_direct(
1da177e4
LT
1367 struct inode *inode,
1368 sector_t iblock,
1da177e4
LT
1369 struct buffer_head *bh_result,
1370 int create)
1371{
f2bde9b8 1372 return __xfs_get_blocks(inode, iblock, bh_result, create, 1);
1da177e4
LT
1373}
1374
209fb87a
CH
1375/*
1376 * Complete a direct I/O write request.
1377 *
1378 * If the private argument is non-NULL __xfs_get_blocks signals us that we
1379 * need to issue a transaction to convert the range from unwritten to written
1380 * extents. In case this is regular synchronous I/O we just call xfs_end_io
25985edc 1381 * to do this and we are done. But in case this was a successful AIO
209fb87a
CH
1382 * request this handler is called from interrupt context, from which we
1383 * can't start transactions. In that case offload the I/O completion to
1384 * the workqueues we also use for buffered I/O completion.
1385 */
f0973863 1386STATIC void
209fb87a
CH
1387xfs_end_io_direct_write(
1388 struct kiocb *iocb,
1389 loff_t offset,
1390 ssize_t size,
1391 void *private,
1392 int ret,
1393 bool is_async)
f0973863 1394{
209fb87a 1395 struct xfs_ioend *ioend = iocb->private;
f0973863 1396
2813d682
CH
1397 /*
1398 * While the generic direct I/O code updates the inode size, it does
1399 * so only after the end_io handler is called, which means our
1400 * end_io handler thinks the on-disk size is outside the in-core
1401 * size. To prevent this just update it a little bit earlier here.
1402 */
1403 if (offset + size > i_size_read(ioend->io_inode))
1404 i_size_write(ioend->io_inode, offset + size);
1405
f0973863 1406 /*
209fb87a
CH
1407 * blockdev_direct_IO can return an error even after the I/O
1408 * completion handler was called. Thus we need to protect
1409 * against double-freeing.
f0973863 1410 */
209fb87a
CH
1411 iocb->private = NULL;
1412
ba87ea69
LM
1413 ioend->io_offset = offset;
1414 ioend->io_size = size;
c859cdd1
CH
1415 ioend->io_iocb = iocb;
1416 ioend->io_result = ret;
209fb87a 1417 if (private && size > 0)
0d882a36 1418 ioend->io_type = XFS_IO_UNWRITTEN;
209fb87a
CH
1419
1420 if (is_async) {
c859cdd1 1421 ioend->io_isasync = 1;
209fb87a 1422 xfs_finish_ioend(ioend);
f0973863 1423 } else {
209fb87a 1424 xfs_finish_ioend_sync(ioend);
f0973863 1425 }
f0973863
CH
1426}
1427
1da177e4 1428STATIC ssize_t
e4c573bb 1429xfs_vm_direct_IO(
1da177e4
LT
1430 int rw,
1431 struct kiocb *iocb,
1432 const struct iovec *iov,
1433 loff_t offset,
1434 unsigned long nr_segs)
1435{
209fb87a
CH
1436 struct inode *inode = iocb->ki_filp->f_mapping->host;
1437 struct block_device *bdev = xfs_find_bdev_for_inode(inode);
281627df 1438 struct xfs_ioend *ioend = NULL;
209fb87a
CH
1439 ssize_t ret;
1440
1441 if (rw & WRITE) {
281627df
CH
1442 size_t size = iov_length(iov, nr_segs);
1443
1444 /*
437a255a
DC
1445 * We cannot preallocate a size update transaction here as we
1446 * don't know whether allocation is necessary or not. Hence we
1447 * can only tell IO completion that one is necessary if we are
1448 * not doing unwritten extent conversion.
281627df 1449 */
0d882a36 1450 iocb->private = ioend = xfs_alloc_ioend(inode, XFS_IO_DIRECT);
437a255a 1451 if (offset + size > XFS_I(inode)->i_d.di_size)
281627df 1452 ioend->io_isdirect = 1;
209fb87a 1453
eafdc7d1
CH
1454 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1455 offset, nr_segs,
1456 xfs_get_blocks_direct,
1457 xfs_end_io_direct_write, NULL, 0);
209fb87a 1458 if (ret != -EIOCBQUEUED && iocb->private)
437a255a 1459 goto out_destroy_ioend;
209fb87a 1460 } else {
eafdc7d1
CH
1461 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1462 offset, nr_segs,
1463 xfs_get_blocks_direct,
1464 NULL, NULL, 0);
209fb87a 1465 }
f0973863 1466
f0973863 1467 return ret;
281627df 1468
281627df
CH
1469out_destroy_ioend:
1470 xfs_destroy_ioend(ioend);
1471 return ret;
1da177e4
LT
1472}
1473
d3bc815a
DC
1474/*
1475 * Punch out the delalloc blocks we have already allocated.
1476 *
1477 * Don't bother with xfs_setattr given that nothing can have made it to disk yet
1478 * as the page is still locked at this point.
1479 */
1480STATIC void
1481xfs_vm_kill_delalloc_range(
1482 struct inode *inode,
1483 loff_t start,
1484 loff_t end)
1485{
1486 struct xfs_inode *ip = XFS_I(inode);
1487 xfs_fileoff_t start_fsb;
1488 xfs_fileoff_t end_fsb;
1489 int error;
1490
1491 start_fsb = XFS_B_TO_FSB(ip->i_mount, start);
1492 end_fsb = XFS_B_TO_FSB(ip->i_mount, end);
1493 if (end_fsb <= start_fsb)
1494 return;
1495
1496 xfs_ilock(ip, XFS_ILOCK_EXCL);
1497 error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1498 end_fsb - start_fsb);
1499 if (error) {
1500 /* something screwed, just bail */
1501 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1502 xfs_alert(ip->i_mount,
1503 "xfs_vm_write_failed: unable to clean up ino %lld",
1504 ip->i_ino);
1505 }
1506 }
1507 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1508}
1509
fa9b227e
CH
1510STATIC void
1511xfs_vm_write_failed(
d3bc815a
DC
1512 struct inode *inode,
1513 struct page *page,
1514 loff_t pos,
1515 unsigned len)
fa9b227e 1516{
d3bc815a
DC
1517 loff_t block_offset = pos & PAGE_MASK;
1518 loff_t block_start;
1519 loff_t block_end;
1520 loff_t from = pos & (PAGE_CACHE_SIZE - 1);
1521 loff_t to = from + len;
1522 struct buffer_head *bh, *head;
fa9b227e 1523
d3bc815a 1524 ASSERT(block_offset + from == pos);
c726de44 1525
d3bc815a
DC
1526 head = page_buffers(page);
1527 block_start = 0;
1528 for (bh = head; bh != head || !block_start;
1529 bh = bh->b_this_page, block_start = block_end,
1530 block_offset += bh->b_size) {
1531 block_end = block_start + bh->b_size;
c726de44 1532
d3bc815a
DC
1533 /* skip buffers before the write */
1534 if (block_end <= from)
1535 continue;
1536
1537 /* if the buffer is after the write, we're done */
1538 if (block_start >= to)
1539 break;
1540
1541 if (!buffer_delay(bh))
1542 continue;
1543
1544 if (!buffer_new(bh) && block_offset < i_size_read(inode))
1545 continue;
1546
1547 xfs_vm_kill_delalloc_range(inode, block_offset,
1548 block_offset + bh->b_size);
fa9b227e 1549 }
d3bc815a 1550
fa9b227e
CH
1551}
1552
d3bc815a
DC
1553/*
1554 * This used to call block_write_begin(), but it unlocks and releases the page
1555 * on error, and we need that page to be able to punch stale delalloc blocks out
1556 * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
1557 * the appropriate point.
1558 */
f51623b2 1559STATIC int
d79689c7 1560xfs_vm_write_begin(
f51623b2 1561 struct file *file,
d79689c7
NP
1562 struct address_space *mapping,
1563 loff_t pos,
1564 unsigned len,
1565 unsigned flags,
1566 struct page **pagep,
1567 void **fsdata)
f51623b2 1568{
d3bc815a
DC
1569 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1570 struct page *page;
1571 int status;
155130a4 1572
d3bc815a
DC
1573 ASSERT(len <= PAGE_CACHE_SIZE);
1574
1575 page = grab_cache_page_write_begin(mapping, index,
1576 flags | AOP_FLAG_NOFS);
1577 if (!page)
1578 return -ENOMEM;
1579
1580 status = __block_write_begin(page, pos, len, xfs_get_blocks);
1581 if (unlikely(status)) {
1582 struct inode *inode = mapping->host;
1583
1584 xfs_vm_write_failed(inode, page, pos, len);
1585 unlock_page(page);
1586
1587 if (pos + len > i_size_read(inode))
1588 truncate_pagecache(inode, pos + len, i_size_read(inode));
1589
1590 page_cache_release(page);
1591 page = NULL;
1592 }
1593
1594 *pagep = page;
1595 return status;
fa9b227e
CH
1596}
1597
d3bc815a
DC
1598/*
1599 * On failure, we only need to kill delalloc blocks beyond EOF because they
1600 * will never be written. For blocks within EOF, generic_write_end() zeros them
1601 * so they are safe to leave alone and be written with all the other valid data.
1602 */
fa9b227e
CH
1603STATIC int
1604xfs_vm_write_end(
1605 struct file *file,
1606 struct address_space *mapping,
1607 loff_t pos,
1608 unsigned len,
1609 unsigned copied,
1610 struct page *page,
1611 void *fsdata)
1612{
1613 int ret;
155130a4 1614
d3bc815a
DC
1615 ASSERT(len <= PAGE_CACHE_SIZE);
1616
fa9b227e 1617 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
d3bc815a
DC
1618 if (unlikely(ret < len)) {
1619 struct inode *inode = mapping->host;
1620 size_t isize = i_size_read(inode);
1621 loff_t to = pos + len;
1622
1623 if (to > isize) {
1624 truncate_pagecache(inode, to, isize);
1625 xfs_vm_kill_delalloc_range(inode, isize, to);
1626 }
1627 }
155130a4 1628 return ret;
f51623b2 1629}
1da177e4
LT
1630
1631STATIC sector_t
e4c573bb 1632xfs_vm_bmap(
1da177e4
LT
1633 struct address_space *mapping,
1634 sector_t block)
1635{
1636 struct inode *inode = (struct inode *)mapping->host;
739bfb2a 1637 struct xfs_inode *ip = XFS_I(inode);
1da177e4 1638
cca28fb8 1639 trace_xfs_vm_bmap(XFS_I(inode));
126468b1 1640 xfs_ilock(ip, XFS_IOLOCK_SHARED);
4bc1ea6b 1641 filemap_write_and_wait(mapping);
126468b1 1642 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
c2536668 1643 return generic_block_bmap(mapping, block, xfs_get_blocks);
1da177e4
LT
1644}
1645
1646STATIC int
e4c573bb 1647xfs_vm_readpage(
1da177e4
LT
1648 struct file *unused,
1649 struct page *page)
1650{
c2536668 1651 return mpage_readpage(page, xfs_get_blocks);
1da177e4
LT
1652}
1653
1654STATIC int
e4c573bb 1655xfs_vm_readpages(
1da177e4
LT
1656 struct file *unused,
1657 struct address_space *mapping,
1658 struct list_head *pages,
1659 unsigned nr_pages)
1660{
c2536668 1661 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1da177e4
LT
1662}
1663
f5e54d6e 1664const struct address_space_operations xfs_address_space_operations = {
e4c573bb
NS
1665 .readpage = xfs_vm_readpage,
1666 .readpages = xfs_vm_readpages,
1667 .writepage = xfs_vm_writepage,
7d4fb40a 1668 .writepages = xfs_vm_writepages,
238f4c54
NS
1669 .releasepage = xfs_vm_releasepage,
1670 .invalidatepage = xfs_vm_invalidatepage,
d79689c7 1671 .write_begin = xfs_vm_write_begin,
fa9b227e 1672 .write_end = xfs_vm_write_end,
e4c573bb
NS
1673 .bmap = xfs_vm_bmap,
1674 .direct_IO = xfs_vm_direct_IO,
e965f963 1675 .migratepage = buffer_migrate_page,
bddaafa1 1676 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 1677 .error_remove_page = generic_error_remove_page,
1da177e4 1678};