xfs: move I/O type flags into xfs_aops.c
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / xfs / linux-2.6 / xfs_aops.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_bit.h"
1da177e4 20#include "xfs_log.h"
a844f451 21#include "xfs_inum.h"
1da177e4 22#include "xfs_sb.h"
a844f451 23#include "xfs_ag.h"
1da177e4
LT
24#include "xfs_dir2.h"
25#include "xfs_trans.h"
26#include "xfs_dmapi.h"
27#include "xfs_mount.h"
28#include "xfs_bmap_btree.h"
29#include "xfs_alloc_btree.h"
30#include "xfs_ialloc_btree.h"
1da177e4 31#include "xfs_dir2_sf.h"
a844f451 32#include "xfs_attr_sf.h"
1da177e4
LT
33#include "xfs_dinode.h"
34#include "xfs_inode.h"
a844f451
NS
35#include "xfs_alloc.h"
36#include "xfs_btree.h"
1da177e4
LT
37#include "xfs_error.h"
38#include "xfs_rw.h"
39#include "xfs_iomap.h"
739bfb2a 40#include "xfs_vnodeops.h"
0b1b213f 41#include "xfs_trace.h"
3ed3a434 42#include "xfs_bmap.h"
5a0e3ad6 43#include <linux/gfp.h>
1da177e4 44#include <linux/mpage.h>
10ce4444 45#include <linux/pagevec.h>
1da177e4
LT
46#include <linux/writeback.h>
47
34a52c6c
CH
48/*
49 * Types of I/O for bmap clustering and I/O completion tracking.
50 */
51enum {
52 IO_READ, /* mapping for a read */
53 IO_DELAY, /* mapping covers delalloc region */
54 IO_UNWRITTEN, /* mapping covers allocated but uninitialized data */
55 IO_NEW /* just allocated */
56};
25e41b3d
CH
57
58/*
59 * Prime number of hash buckets since address is used as the key.
60 */
61#define NVSYNC 37
62#define to_ioend_wq(v) (&xfs_ioend_wq[((unsigned long)v) % NVSYNC])
63static wait_queue_head_t xfs_ioend_wq[NVSYNC];
64
65void __init
66xfs_ioend_init(void)
67{
68 int i;
69
70 for (i = 0; i < NVSYNC; i++)
71 init_waitqueue_head(&xfs_ioend_wq[i]);
72}
73
74void
75xfs_ioend_wait(
76 xfs_inode_t *ip)
77{
78 wait_queue_head_t *wq = to_ioend_wq(ip);
79
80 wait_event(*wq, (atomic_read(&ip->i_iocount) == 0));
81}
82
83STATIC void
84xfs_ioend_wake(
85 xfs_inode_t *ip)
86{
87 if (atomic_dec_and_test(&ip->i_iocount))
88 wake_up(to_ioend_wq(ip));
89}
90
0b1b213f 91void
f51623b2
NS
92xfs_count_page_state(
93 struct page *page,
94 int *delalloc,
95 int *unmapped,
96 int *unwritten)
97{
98 struct buffer_head *bh, *head;
99
100 *delalloc = *unmapped = *unwritten = 0;
101
102 bh = head = page_buffers(page);
103 do {
104 if (buffer_uptodate(bh) && !buffer_mapped(bh))
105 (*unmapped) = 1;
f51623b2
NS
106 else if (buffer_unwritten(bh))
107 (*unwritten) = 1;
108 else if (buffer_delay(bh))
109 (*delalloc) = 1;
110 } while ((bh = bh->b_this_page) != head);
111}
112
6214ed44
CH
113STATIC struct block_device *
114xfs_find_bdev_for_inode(
046f1685 115 struct inode *inode)
6214ed44 116{
046f1685 117 struct xfs_inode *ip = XFS_I(inode);
6214ed44
CH
118 struct xfs_mount *mp = ip->i_mount;
119
71ddabb9 120 if (XFS_IS_REALTIME_INODE(ip))
6214ed44
CH
121 return mp->m_rtdev_targp->bt_bdev;
122 else
123 return mp->m_ddev_targp->bt_bdev;
124}
125
f6d6d4fc
CH
126/*
127 * We're now finished for good with this ioend structure.
128 * Update the page state via the associated buffer_heads,
129 * release holds on the inode and bio, and finally free
130 * up memory. Do not use the ioend after this.
131 */
0829c360
CH
132STATIC void
133xfs_destroy_ioend(
134 xfs_ioend_t *ioend)
135{
f6d6d4fc 136 struct buffer_head *bh, *next;
583fa586 137 struct xfs_inode *ip = XFS_I(ioend->io_inode);
f6d6d4fc
CH
138
139 for (bh = ioend->io_buffer_head; bh; bh = next) {
140 next = bh->b_private;
7d04a335 141 bh->b_end_io(bh, !ioend->io_error);
f6d6d4fc 142 }
583fa586
CH
143
144 /*
145 * Volume managers supporting multiple paths can send back ENODEV
146 * when the final path disappears. In this case continuing to fill
147 * the page cache with dirty data which cannot be written out is
148 * evil, so prevent that.
149 */
150 if (unlikely(ioend->io_error == -ENODEV)) {
151 xfs_do_force_shutdown(ip->i_mount, SHUTDOWN_DEVICE_REQ,
152 __FILE__, __LINE__);
b677c210 153 }
583fa586 154
25e41b3d 155 xfs_ioend_wake(ip);
0829c360
CH
156 mempool_free(ioend, xfs_ioend_pool);
157}
158
932640e8
DC
159/*
160 * If the end of the current ioend is beyond the current EOF,
161 * return the new EOF value, otherwise zero.
162 */
163STATIC xfs_fsize_t
164xfs_ioend_new_eof(
165 xfs_ioend_t *ioend)
166{
167 xfs_inode_t *ip = XFS_I(ioend->io_inode);
168 xfs_fsize_t isize;
169 xfs_fsize_t bsize;
170
171 bsize = ioend->io_offset + ioend->io_size;
172 isize = MAX(ip->i_size, ip->i_new_size);
173 isize = MIN(isize, bsize);
174 return isize > ip->i_d.di_size ? isize : 0;
175}
176
ba87ea69 177/*
77d7a0c2
DC
178 * Update on-disk file size now that data has been written to disk. The
179 * current in-memory file size is i_size. If a write is beyond eof i_new_size
180 * will be the intended file size until i_size is updated. If this write does
181 * not extend all the way to the valid file size then restrict this update to
182 * the end of the write.
183 *
184 * This function does not block as blocking on the inode lock in IO completion
185 * can lead to IO completion order dependency deadlocks.. If it can't get the
186 * inode ilock it will return EAGAIN. Callers must handle this.
ba87ea69 187 */
77d7a0c2 188STATIC int
ba87ea69
LM
189xfs_setfilesize(
190 xfs_ioend_t *ioend)
191{
b677c210 192 xfs_inode_t *ip = XFS_I(ioend->io_inode);
ba87ea69 193 xfs_fsize_t isize;
ba87ea69 194
ba87ea69 195 ASSERT((ip->i_d.di_mode & S_IFMT) == S_IFREG);
34a52c6c 196 ASSERT(ioend->io_type != IO_READ);
ba87ea69
LM
197
198 if (unlikely(ioend->io_error))
77d7a0c2
DC
199 return 0;
200
201 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
202 return EAGAIN;
ba87ea69 203
932640e8
DC
204 isize = xfs_ioend_new_eof(ioend);
205 if (isize) {
ba87ea69 206 ip->i_d.di_size = isize;
66d834ea 207 xfs_mark_inode_dirty(ip);
ba87ea69
LM
208 }
209
210 xfs_iunlock(ip, XFS_ILOCK_EXCL);
77d7a0c2
DC
211 return 0;
212}
213
214/*
215 * Schedule IO completion handling on a xfsdatad if this was
216 * the final hold on this ioend. If we are asked to wait,
217 * flush the workqueue.
218 */
219STATIC void
220xfs_finish_ioend(
221 xfs_ioend_t *ioend,
222 int wait)
223{
224 if (atomic_dec_and_test(&ioend->io_remaining)) {
225 struct workqueue_struct *wq;
226
34a52c6c 227 wq = (ioend->io_type == IO_UNWRITTEN) ?
77d7a0c2
DC
228 xfsconvertd_workqueue : xfsdatad_workqueue;
229 queue_work(wq, &ioend->io_work);
230 if (wait)
231 flush_workqueue(wq);
232 }
ba87ea69
LM
233}
234
0829c360 235/*
5ec4fabb 236 * IO write completion.
f6d6d4fc
CH
237 */
238STATIC void
5ec4fabb 239xfs_end_io(
77d7a0c2 240 struct work_struct *work)
0829c360 241{
77d7a0c2
DC
242 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
243 struct xfs_inode *ip = XFS_I(ioend->io_inode);
69418932 244 int error = 0;
ba87ea69 245
5ec4fabb
CH
246 /*
247 * For unwritten extents we need to issue transactions to convert a
248 * range to normal written extens after the data I/O has finished.
249 */
34a52c6c 250 if (ioend->io_type == IO_UNWRITTEN &&
5ec4fabb 251 likely(!ioend->io_error && !XFS_FORCED_SHUTDOWN(ip->i_mount))) {
5ec4fabb
CH
252
253 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
254 ioend->io_size);
255 if (error)
256 ioend->io_error = error;
257 }
ba87ea69 258
5ec4fabb
CH
259 /*
260 * We might have to update the on-disk file size after extending
261 * writes.
262 */
34a52c6c 263 if (ioend->io_type != IO_READ) {
77d7a0c2
DC
264 error = xfs_setfilesize(ioend);
265 ASSERT(!error || error == EAGAIN);
c626d174 266 }
77d7a0c2
DC
267
268 /*
269 * If we didn't complete processing of the ioend, requeue it to the
270 * tail of the workqueue for another attempt later. Otherwise destroy
271 * it.
272 */
273 if (error == EAGAIN) {
274 atomic_inc(&ioend->io_remaining);
275 xfs_finish_ioend(ioend, 0);
276 /* ensure we don't spin on blocked ioends */
277 delay(1);
278 } else
279 xfs_destroy_ioend(ioend);
c626d174
DC
280}
281
0829c360
CH
282/*
283 * Allocate and initialise an IO completion structure.
284 * We need to track unwritten extent write completion here initially.
285 * We'll need to extend this for updating the ondisk inode size later
286 * (vs. incore size).
287 */
288STATIC xfs_ioend_t *
289xfs_alloc_ioend(
f6d6d4fc
CH
290 struct inode *inode,
291 unsigned int type)
0829c360
CH
292{
293 xfs_ioend_t *ioend;
294
295 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
296
297 /*
298 * Set the count to 1 initially, which will prevent an I/O
299 * completion callback from happening before we have started
300 * all the I/O from calling the completion routine too early.
301 */
302 atomic_set(&ioend->io_remaining, 1);
7d04a335 303 ioend->io_error = 0;
f6d6d4fc
CH
304 ioend->io_list = NULL;
305 ioend->io_type = type;
b677c210 306 ioend->io_inode = inode;
c1a073bd 307 ioend->io_buffer_head = NULL;
f6d6d4fc 308 ioend->io_buffer_tail = NULL;
b677c210 309 atomic_inc(&XFS_I(ioend->io_inode)->i_iocount);
0829c360
CH
310 ioend->io_offset = 0;
311 ioend->io_size = 0;
312
5ec4fabb 313 INIT_WORK(&ioend->io_work, xfs_end_io);
0829c360
CH
314 return ioend;
315}
316
1da177e4
LT
317STATIC int
318xfs_map_blocks(
319 struct inode *inode,
320 loff_t offset,
321 ssize_t count,
207d0416 322 struct xfs_bmbt_irec *imap,
1da177e4
LT
323 int flags)
324{
6bd16ff2 325 int nmaps = 1;
207d0416 326 int new = 0;
6bd16ff2 327
207d0416 328 return -xfs_iomap(XFS_I(inode), offset, count, flags, imap, &nmaps, &new);
1da177e4
LT
329}
330
b8f82a4a 331STATIC int
1defeac9 332xfs_iomap_valid(
8699bb0a 333 struct inode *inode,
207d0416 334 struct xfs_bmbt_irec *imap,
1defeac9 335 loff_t offset)
1da177e4 336{
8699bb0a 337 struct xfs_mount *mp = XFS_I(inode)->i_mount;
207d0416
CH
338 xfs_off_t iomap_offset = XFS_FSB_TO_B(mp, imap->br_startoff);
339 xfs_off_t iomap_bsize = XFS_FSB_TO_B(mp, imap->br_blockcount);
8699bb0a
CH
340
341 return offset >= iomap_offset &&
342 offset < iomap_offset + iomap_bsize;
1da177e4
LT
343}
344
f6d6d4fc
CH
345/*
346 * BIO completion handler for buffered IO.
347 */
782e3b3b 348STATIC void
f6d6d4fc
CH
349xfs_end_bio(
350 struct bio *bio,
f6d6d4fc
CH
351 int error)
352{
353 xfs_ioend_t *ioend = bio->bi_private;
354
f6d6d4fc 355 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
7d04a335 356 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
f6d6d4fc
CH
357
358 /* Toss bio and pass work off to an xfsdatad thread */
f6d6d4fc
CH
359 bio->bi_private = NULL;
360 bio->bi_end_io = NULL;
f6d6d4fc 361 bio_put(bio);
7d04a335 362
e927af90 363 xfs_finish_ioend(ioend, 0);
f6d6d4fc
CH
364}
365
366STATIC void
367xfs_submit_ioend_bio(
06342cf8
CH
368 struct writeback_control *wbc,
369 xfs_ioend_t *ioend,
370 struct bio *bio)
f6d6d4fc
CH
371{
372 atomic_inc(&ioend->io_remaining);
f6d6d4fc
CH
373 bio->bi_private = ioend;
374 bio->bi_end_io = xfs_end_bio;
375
932640e8
DC
376 /*
377 * If the I/O is beyond EOF we mark the inode dirty immediately
378 * but don't update the inode size until I/O completion.
379 */
380 if (xfs_ioend_new_eof(ioend))
66d834ea 381 xfs_mark_inode_dirty(XFS_I(ioend->io_inode));
932640e8 382
06342cf8
CH
383 submit_bio(wbc->sync_mode == WB_SYNC_ALL ?
384 WRITE_SYNC_PLUG : WRITE, bio);
f6d6d4fc
CH
385 ASSERT(!bio_flagged(bio, BIO_EOPNOTSUPP));
386 bio_put(bio);
387}
388
389STATIC struct bio *
390xfs_alloc_ioend_bio(
391 struct buffer_head *bh)
392{
393 struct bio *bio;
394 int nvecs = bio_get_nr_vecs(bh->b_bdev);
395
396 do {
397 bio = bio_alloc(GFP_NOIO, nvecs);
398 nvecs >>= 1;
399 } while (!bio);
400
401 ASSERT(bio->bi_private == NULL);
402 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
403 bio->bi_bdev = bh->b_bdev;
404 bio_get(bio);
405 return bio;
406}
407
408STATIC void
409xfs_start_buffer_writeback(
410 struct buffer_head *bh)
411{
412 ASSERT(buffer_mapped(bh));
413 ASSERT(buffer_locked(bh));
414 ASSERT(!buffer_delay(bh));
415 ASSERT(!buffer_unwritten(bh));
416
417 mark_buffer_async_write(bh);
418 set_buffer_uptodate(bh);
419 clear_buffer_dirty(bh);
420}
421
422STATIC void
423xfs_start_page_writeback(
424 struct page *page,
f6d6d4fc
CH
425 int clear_dirty,
426 int buffers)
427{
428 ASSERT(PageLocked(page));
429 ASSERT(!PageWriteback(page));
f6d6d4fc 430 if (clear_dirty)
92132021
DC
431 clear_page_dirty_for_io(page);
432 set_page_writeback(page);
f6d6d4fc 433 unlock_page(page);
1f7decf6
FW
434 /* If no buffers on the page are to be written, finish it here */
435 if (!buffers)
f6d6d4fc 436 end_page_writeback(page);
f6d6d4fc
CH
437}
438
439static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
440{
441 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
442}
443
444/*
d88992f6
DC
445 * Submit all of the bios for all of the ioends we have saved up, covering the
446 * initial writepage page and also any probed pages.
447 *
448 * Because we may have multiple ioends spanning a page, we need to start
449 * writeback on all the buffers before we submit them for I/O. If we mark the
450 * buffers as we got, then we can end up with a page that only has buffers
451 * marked async write and I/O complete on can occur before we mark the other
452 * buffers async write.
453 *
454 * The end result of this is that we trip a bug in end_page_writeback() because
455 * we call it twice for the one page as the code in end_buffer_async_write()
456 * assumes that all buffers on the page are started at the same time.
457 *
458 * The fix is two passes across the ioend list - one to start writeback on the
c41564b5 459 * buffer_heads, and then submit them for I/O on the second pass.
f6d6d4fc
CH
460 */
461STATIC void
462xfs_submit_ioend(
06342cf8 463 struct writeback_control *wbc,
f6d6d4fc
CH
464 xfs_ioend_t *ioend)
465{
d88992f6 466 xfs_ioend_t *head = ioend;
f6d6d4fc
CH
467 xfs_ioend_t *next;
468 struct buffer_head *bh;
469 struct bio *bio;
470 sector_t lastblock = 0;
471
d88992f6
DC
472 /* Pass 1 - start writeback */
473 do {
474 next = ioend->io_list;
475 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
476 xfs_start_buffer_writeback(bh);
477 }
478 } while ((ioend = next) != NULL);
479
480 /* Pass 2 - submit I/O */
481 ioend = head;
f6d6d4fc
CH
482 do {
483 next = ioend->io_list;
484 bio = NULL;
485
486 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
f6d6d4fc
CH
487
488 if (!bio) {
489 retry:
490 bio = xfs_alloc_ioend_bio(bh);
491 } else if (bh->b_blocknr != lastblock + 1) {
06342cf8 492 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
493 goto retry;
494 }
495
496 if (bio_add_buffer(bio, bh) != bh->b_size) {
06342cf8 497 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
498 goto retry;
499 }
500
501 lastblock = bh->b_blocknr;
502 }
503 if (bio)
06342cf8 504 xfs_submit_ioend_bio(wbc, ioend, bio);
e927af90 505 xfs_finish_ioend(ioend, 0);
f6d6d4fc
CH
506 } while ((ioend = next) != NULL);
507}
508
509/*
510 * Cancel submission of all buffer_heads so far in this endio.
511 * Toss the endio too. Only ever called for the initial page
512 * in a writepage request, so only ever one page.
513 */
514STATIC void
515xfs_cancel_ioend(
516 xfs_ioend_t *ioend)
517{
518 xfs_ioend_t *next;
519 struct buffer_head *bh, *next_bh;
520
521 do {
522 next = ioend->io_list;
523 bh = ioend->io_buffer_head;
524 do {
525 next_bh = bh->b_private;
526 clear_buffer_async_write(bh);
527 unlock_buffer(bh);
528 } while ((bh = next_bh) != NULL);
529
25e41b3d 530 xfs_ioend_wake(XFS_I(ioend->io_inode));
f6d6d4fc
CH
531 mempool_free(ioend, xfs_ioend_pool);
532 } while ((ioend = next) != NULL);
533}
534
535/*
536 * Test to see if we've been building up a completion structure for
537 * earlier buffers -- if so, we try to append to this ioend if we
538 * can, otherwise we finish off any current ioend and start another.
539 * Return true if we've finished the given ioend.
540 */
541STATIC void
542xfs_add_to_ioend(
543 struct inode *inode,
544 struct buffer_head *bh,
7336cea8 545 xfs_off_t offset,
f6d6d4fc
CH
546 unsigned int type,
547 xfs_ioend_t **result,
548 int need_ioend)
549{
550 xfs_ioend_t *ioend = *result;
551
552 if (!ioend || need_ioend || type != ioend->io_type) {
553 xfs_ioend_t *previous = *result;
f6d6d4fc 554
f6d6d4fc
CH
555 ioend = xfs_alloc_ioend(inode, type);
556 ioend->io_offset = offset;
557 ioend->io_buffer_head = bh;
558 ioend->io_buffer_tail = bh;
559 if (previous)
560 previous->io_list = ioend;
561 *result = ioend;
562 } else {
563 ioend->io_buffer_tail->b_private = bh;
564 ioend->io_buffer_tail = bh;
565 }
566
567 bh->b_private = NULL;
568 ioend->io_size += bh->b_size;
569}
570
87cbc49c
NS
571STATIC void
572xfs_map_buffer(
046f1685 573 struct inode *inode,
87cbc49c 574 struct buffer_head *bh,
207d0416 575 struct xfs_bmbt_irec *imap,
046f1685 576 xfs_off_t offset)
87cbc49c
NS
577{
578 sector_t bn;
8699bb0a 579 struct xfs_mount *m = XFS_I(inode)->i_mount;
207d0416
CH
580 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
581 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
87cbc49c 582
207d0416
CH
583 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
584 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
87cbc49c 585
e513182d 586 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
8699bb0a 587 ((offset - iomap_offset) >> inode->i_blkbits);
87cbc49c 588
046f1685 589 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
87cbc49c
NS
590
591 bh->b_blocknr = bn;
592 set_buffer_mapped(bh);
593}
594
1da177e4
LT
595STATIC void
596xfs_map_at_offset(
046f1685 597 struct inode *inode,
1da177e4 598 struct buffer_head *bh,
207d0416 599 struct xfs_bmbt_irec *imap,
046f1685 600 xfs_off_t offset)
1da177e4 601{
207d0416
CH
602 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
603 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
1da177e4
LT
604
605 lock_buffer(bh);
207d0416 606 xfs_map_buffer(inode, bh, imap, offset);
046f1685 607 bh->b_bdev = xfs_find_bdev_for_inode(inode);
1da177e4
LT
608 set_buffer_mapped(bh);
609 clear_buffer_delay(bh);
f6d6d4fc 610 clear_buffer_unwritten(bh);
1da177e4
LT
611}
612
613/*
6c4fe19f 614 * Look for a page at index that is suitable for clustering.
1da177e4
LT
615 */
616STATIC unsigned int
6c4fe19f 617xfs_probe_page(
10ce4444 618 struct page *page,
6c4fe19f
CH
619 unsigned int pg_offset,
620 int mapped)
1da177e4 621{
1da177e4
LT
622 int ret = 0;
623
1da177e4 624 if (PageWriteback(page))
10ce4444 625 return 0;
1da177e4
LT
626
627 if (page->mapping && PageDirty(page)) {
628 if (page_has_buffers(page)) {
629 struct buffer_head *bh, *head;
630
631 bh = head = page_buffers(page);
632 do {
6c4fe19f
CH
633 if (!buffer_uptodate(bh))
634 break;
635 if (mapped != buffer_mapped(bh))
1da177e4
LT
636 break;
637 ret += bh->b_size;
638 if (ret >= pg_offset)
639 break;
640 } while ((bh = bh->b_this_page) != head);
641 } else
6c4fe19f 642 ret = mapped ? 0 : PAGE_CACHE_SIZE;
1da177e4
LT
643 }
644
1da177e4
LT
645 return ret;
646}
647
f6d6d4fc 648STATIC size_t
6c4fe19f 649xfs_probe_cluster(
1da177e4
LT
650 struct inode *inode,
651 struct page *startpage,
652 struct buffer_head *bh,
6c4fe19f
CH
653 struct buffer_head *head,
654 int mapped)
1da177e4 655{
10ce4444 656 struct pagevec pvec;
1da177e4 657 pgoff_t tindex, tlast, tloff;
10ce4444
CH
658 size_t total = 0;
659 int done = 0, i;
1da177e4
LT
660
661 /* First sum forwards in this page */
662 do {
2353e8e9 663 if (!buffer_uptodate(bh) || (mapped != buffer_mapped(bh)))
10ce4444 664 return total;
1da177e4
LT
665 total += bh->b_size;
666 } while ((bh = bh->b_this_page) != head);
667
10ce4444
CH
668 /* if we reached the end of the page, sum forwards in following pages */
669 tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT;
670 tindex = startpage->index + 1;
671
672 /* Prune this back to avoid pathological behavior */
673 tloff = min(tlast, startpage->index + 64);
674
675 pagevec_init(&pvec, 0);
676 while (!done && tindex <= tloff) {
677 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
678
679 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
680 break;
681
682 for (i = 0; i < pagevec_count(&pvec); i++) {
683 struct page *page = pvec.pages[i];
265c1fac 684 size_t pg_offset, pg_len = 0;
10ce4444
CH
685
686 if (tindex == tlast) {
687 pg_offset =
688 i_size_read(inode) & (PAGE_CACHE_SIZE - 1);
1defeac9
CH
689 if (!pg_offset) {
690 done = 1;
10ce4444 691 break;
1defeac9 692 }
10ce4444
CH
693 } else
694 pg_offset = PAGE_CACHE_SIZE;
695
529ae9aa 696 if (page->index == tindex && trylock_page(page)) {
265c1fac 697 pg_len = xfs_probe_page(page, pg_offset, mapped);
10ce4444
CH
698 unlock_page(page);
699 }
700
265c1fac 701 if (!pg_len) {
10ce4444
CH
702 done = 1;
703 break;
704 }
705
265c1fac 706 total += pg_len;
1defeac9 707 tindex++;
1da177e4 708 }
10ce4444
CH
709
710 pagevec_release(&pvec);
711 cond_resched();
1da177e4 712 }
10ce4444 713
1da177e4
LT
714 return total;
715}
716
717/*
10ce4444
CH
718 * Test if a given page is suitable for writing as part of an unwritten
719 * or delayed allocate extent.
1da177e4 720 */
10ce4444
CH
721STATIC int
722xfs_is_delayed_page(
723 struct page *page,
f6d6d4fc 724 unsigned int type)
1da177e4 725{
1da177e4 726 if (PageWriteback(page))
10ce4444 727 return 0;
1da177e4
LT
728
729 if (page->mapping && page_has_buffers(page)) {
730 struct buffer_head *bh, *head;
731 int acceptable = 0;
732
733 bh = head = page_buffers(page);
734 do {
f6d6d4fc 735 if (buffer_unwritten(bh))
34a52c6c 736 acceptable = (type == IO_UNWRITTEN);
f6d6d4fc 737 else if (buffer_delay(bh))
34a52c6c 738 acceptable = (type == IO_DELAY);
2ddee844 739 else if (buffer_dirty(bh) && buffer_mapped(bh))
34a52c6c 740 acceptable = (type == IO_NEW);
f6d6d4fc 741 else
1da177e4 742 break;
1da177e4
LT
743 } while ((bh = bh->b_this_page) != head);
744
745 if (acceptable)
10ce4444 746 return 1;
1da177e4
LT
747 }
748
10ce4444 749 return 0;
1da177e4
LT
750}
751
1da177e4
LT
752/*
753 * Allocate & map buffers for page given the extent map. Write it out.
754 * except for the original page of a writepage, this is called on
755 * delalloc/unwritten pages only, for the original page it is possible
756 * that the page has no mapping at all.
757 */
f6d6d4fc 758STATIC int
1da177e4
LT
759xfs_convert_page(
760 struct inode *inode,
761 struct page *page,
10ce4444 762 loff_t tindex,
207d0416 763 struct xfs_bmbt_irec *imap,
f6d6d4fc 764 xfs_ioend_t **ioendp,
1da177e4 765 struct writeback_control *wbc,
1da177e4
LT
766 int startio,
767 int all_bh)
768{
f6d6d4fc 769 struct buffer_head *bh, *head;
9260dc6b
CH
770 xfs_off_t end_offset;
771 unsigned long p_offset;
f6d6d4fc 772 unsigned int type;
24e17b5f 773 int len, page_dirty;
f6d6d4fc 774 int count = 0, done = 0, uptodate = 1;
9260dc6b 775 xfs_off_t offset = page_offset(page);
1da177e4 776
10ce4444
CH
777 if (page->index != tindex)
778 goto fail;
529ae9aa 779 if (!trylock_page(page))
10ce4444
CH
780 goto fail;
781 if (PageWriteback(page))
782 goto fail_unlock_page;
783 if (page->mapping != inode->i_mapping)
784 goto fail_unlock_page;
785 if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
786 goto fail_unlock_page;
787
24e17b5f
NS
788 /*
789 * page_dirty is initially a count of buffers on the page before
c41564b5 790 * EOF and is decremented as we move each into a cleanable state.
9260dc6b
CH
791 *
792 * Derivation:
793 *
794 * End offset is the highest offset that this page should represent.
795 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
796 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
797 * hence give us the correct page_dirty count. On any other page,
798 * it will be zero and in that case we need page_dirty to be the
799 * count of buffers on the page.
24e17b5f 800 */
9260dc6b
CH
801 end_offset = min_t(unsigned long long,
802 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
803 i_size_read(inode));
804
24e17b5f 805 len = 1 << inode->i_blkbits;
9260dc6b
CH
806 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
807 PAGE_CACHE_SIZE);
808 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
809 page_dirty = p_offset / len;
24e17b5f 810
1da177e4
LT
811 bh = head = page_buffers(page);
812 do {
9260dc6b 813 if (offset >= end_offset)
1da177e4 814 break;
f6d6d4fc
CH
815 if (!buffer_uptodate(bh))
816 uptodate = 0;
817 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
818 done = 1;
1da177e4 819 continue;
f6d6d4fc
CH
820 }
821
9260dc6b
CH
822 if (buffer_unwritten(bh) || buffer_delay(bh)) {
823 if (buffer_unwritten(bh))
34a52c6c 824 type = IO_UNWRITTEN;
9260dc6b 825 else
34a52c6c 826 type = IO_DELAY;
9260dc6b 827
207d0416 828 if (!xfs_iomap_valid(inode, imap, offset)) {
f6d6d4fc 829 done = 1;
9260dc6b
CH
830 continue;
831 }
832
207d0416
CH
833 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
834 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
9260dc6b 835
207d0416 836 xfs_map_at_offset(inode, bh, imap, offset);
9260dc6b 837 if (startio) {
7336cea8 838 xfs_add_to_ioend(inode, bh, offset,
9260dc6b
CH
839 type, ioendp, done);
840 } else {
841 set_buffer_dirty(bh);
842 unlock_buffer(bh);
843 mark_buffer_dirty(bh);
844 }
845 page_dirty--;
846 count++;
847 } else {
34a52c6c 848 type = IO_NEW;
9260dc6b 849 if (buffer_mapped(bh) && all_bh && startio) {
1da177e4 850 lock_buffer(bh);
7336cea8 851 xfs_add_to_ioend(inode, bh, offset,
f6d6d4fc
CH
852 type, ioendp, done);
853 count++;
24e17b5f 854 page_dirty--;
9260dc6b
CH
855 } else {
856 done = 1;
1da177e4 857 }
1da177e4 858 }
7336cea8 859 } while (offset += len, (bh = bh->b_this_page) != head);
1da177e4 860
f6d6d4fc
CH
861 if (uptodate && bh == head)
862 SetPageUptodate(page);
863
864 if (startio) {
f5e596bb 865 if (count) {
9fddaca2 866 wbc->nr_to_write--;
0d99519e 867 if (wbc->nr_to_write <= 0)
f5e596bb 868 done = 1;
f5e596bb 869 }
b41759cf 870 xfs_start_page_writeback(page, !page_dirty, count);
1da177e4 871 }
f6d6d4fc
CH
872
873 return done;
10ce4444
CH
874 fail_unlock_page:
875 unlock_page(page);
876 fail:
877 return 1;
1da177e4
LT
878}
879
880/*
881 * Convert & write out a cluster of pages in the same extent as defined
882 * by mp and following the start page.
883 */
884STATIC void
885xfs_cluster_write(
886 struct inode *inode,
887 pgoff_t tindex,
207d0416 888 struct xfs_bmbt_irec *imap,
f6d6d4fc 889 xfs_ioend_t **ioendp,
1da177e4
LT
890 struct writeback_control *wbc,
891 int startio,
892 int all_bh,
893 pgoff_t tlast)
894{
10ce4444
CH
895 struct pagevec pvec;
896 int done = 0, i;
1da177e4 897
10ce4444
CH
898 pagevec_init(&pvec, 0);
899 while (!done && tindex <= tlast) {
900 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
901
902 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
1da177e4 903 break;
10ce4444
CH
904
905 for (i = 0; i < pagevec_count(&pvec); i++) {
906 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
207d0416 907 imap, ioendp, wbc, startio, all_bh);
10ce4444
CH
908 if (done)
909 break;
910 }
911
912 pagevec_release(&pvec);
913 cond_resched();
1da177e4
LT
914 }
915}
916
3ed3a434
DC
917STATIC void
918xfs_vm_invalidatepage(
919 struct page *page,
920 unsigned long offset)
921{
922 trace_xfs_invalidatepage(page->mapping->host, page, offset);
923 block_invalidatepage(page, offset);
924}
925
926/*
927 * If the page has delalloc buffers on it, we need to punch them out before we
928 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
929 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
930 * is done on that same region - the delalloc extent is returned when none is
931 * supposed to be there.
932 *
933 * We prevent this by truncating away the delalloc regions on the page before
934 * invalidating it. Because they are delalloc, we can do this without needing a
935 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
936 * truncation without a transaction as there is no space left for block
937 * reservation (typically why we see a ENOSPC in writeback).
938 *
939 * This is not a performance critical path, so for now just do the punching a
940 * buffer head at a time.
941 */
942STATIC void
943xfs_aops_discard_page(
944 struct page *page)
945{
946 struct inode *inode = page->mapping->host;
947 struct xfs_inode *ip = XFS_I(inode);
948 struct buffer_head *bh, *head;
949 loff_t offset = page_offset(page);
950 ssize_t len = 1 << inode->i_blkbits;
951
34a52c6c 952 if (!xfs_is_delayed_page(page, IO_DELAY))
3ed3a434
DC
953 goto out_invalidate;
954
e8c3753c
DC
955 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
956 goto out_invalidate;
957
3ed3a434
DC
958 xfs_fs_cmn_err(CE_ALERT, ip->i_mount,
959 "page discard on page %p, inode 0x%llx, offset %llu.",
960 page, ip->i_ino, offset);
961
962 xfs_ilock(ip, XFS_ILOCK_EXCL);
963 bh = head = page_buffers(page);
964 do {
965 int done;
966 xfs_fileoff_t offset_fsb;
967 xfs_bmbt_irec_t imap;
968 int nimaps = 1;
969 int error;
970 xfs_fsblock_t firstblock;
971 xfs_bmap_free_t flist;
972
973 if (!buffer_delay(bh))
974 goto next_buffer;
975
976 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
977
978 /*
979 * Map the range first and check that it is a delalloc extent
980 * before trying to unmap the range. Otherwise we will be
981 * trying to remove a real extent (which requires a
982 * transaction) or a hole, which is probably a bad idea...
983 */
984 error = xfs_bmapi(NULL, ip, offset_fsb, 1,
985 XFS_BMAPI_ENTIRE, NULL, 0, &imap,
986 &nimaps, NULL, NULL);
987
988 if (error) {
989 /* something screwed, just bail */
e8c3753c
DC
990 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
991 xfs_fs_cmn_err(CE_ALERT, ip->i_mount,
992 "page discard failed delalloc mapping lookup.");
993 }
3ed3a434
DC
994 break;
995 }
996 if (!nimaps) {
997 /* nothing there */
998 goto next_buffer;
999 }
1000 if (imap.br_startblock != DELAYSTARTBLOCK) {
1001 /* been converted, ignore */
1002 goto next_buffer;
1003 }
1004 WARN_ON(imap.br_blockcount == 0);
1005
1006 /*
1007 * Note: while we initialise the firstblock/flist pair, they
1008 * should never be used because blocks should never be
1009 * allocated or freed for a delalloc extent and hence we need
1010 * don't cancel or finish them after the xfs_bunmapi() call.
1011 */
1012 xfs_bmap_init(&flist, &firstblock);
1013 error = xfs_bunmapi(NULL, ip, offset_fsb, 1, 0, 1, &firstblock,
1014 &flist, NULL, &done);
1015
1016 ASSERT(!flist.xbf_count && !flist.xbf_first);
1017 if (error) {
1018 /* something screwed, just bail */
e8c3753c
DC
1019 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1020 xfs_fs_cmn_err(CE_ALERT, ip->i_mount,
3ed3a434 1021 "page discard unable to remove delalloc mapping.");
e8c3753c 1022 }
3ed3a434
DC
1023 break;
1024 }
1025next_buffer:
1026 offset += len;
1027
1028 } while ((bh = bh->b_this_page) != head);
1029
1030 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1031out_invalidate:
1032 xfs_vm_invalidatepage(page, 0);
1033 return;
1034}
1035
1da177e4
LT
1036/*
1037 * Calling this without startio set means we are being asked to make a dirty
1038 * page ready for freeing it's buffers. When called with startio set then
1039 * we are coming from writepage.
1040 *
1041 * When called with startio set it is important that we write the WHOLE
1042 * page if possible.
1043 * The bh->b_state's cannot know if any of the blocks or which block for
1044 * that matter are dirty due to mmap writes, and therefore bh uptodate is
c41564b5 1045 * only valid if the page itself isn't completely uptodate. Some layers
1da177e4
LT
1046 * may clear the page dirty flag prior to calling write page, under the
1047 * assumption the entire page will be written out; by not writing out the
1048 * whole page the page can be reused before all valid dirty data is
1049 * written out. Note: in the case of a page that has been dirty'd by
1050 * mapwrite and but partially setup by block_prepare_write the
1051 * bh->b_states's will not agree and only ones setup by BPW/BCW will have
1052 * valid state, thus the whole page must be written out thing.
1053 */
1054
1055STATIC int
1056xfs_page_state_convert(
1057 struct inode *inode,
1058 struct page *page,
1059 struct writeback_control *wbc,
1060 int startio,
1061 int unmapped) /* also implies page uptodate */
1062{
f6d6d4fc 1063 struct buffer_head *bh, *head;
207d0416 1064 struct xfs_bmbt_irec imap;
f6d6d4fc 1065 xfs_ioend_t *ioend = NULL, *iohead = NULL;
1da177e4
LT
1066 loff_t offset;
1067 unsigned long p_offset = 0;
f6d6d4fc 1068 unsigned int type;
1da177e4
LT
1069 __uint64_t end_offset;
1070 pgoff_t end_index, last_index, tlast;
d5cb48aa
CH
1071 ssize_t size, len;
1072 int flags, err, iomap_valid = 0, uptodate = 1;
8272145c
NS
1073 int page_dirty, count = 0;
1074 int trylock = 0;
6c4fe19f 1075 int all_bh = unmapped;
1da177e4 1076
8272145c
NS
1077 if (startio) {
1078 if (wbc->sync_mode == WB_SYNC_NONE && wbc->nonblocking)
1079 trylock |= BMAPI_TRYLOCK;
1080 }
3ba0815a 1081
1da177e4
LT
1082 /* Is this page beyond the end of the file? */
1083 offset = i_size_read(inode);
1084 end_index = offset >> PAGE_CACHE_SHIFT;
1085 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
1086 if (page->index >= end_index) {
1087 if ((page->index >= end_index + 1) ||
1088 !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
19d5bcf3
NS
1089 if (startio)
1090 unlock_page(page);
1091 return 0;
1da177e4
LT
1092 }
1093 }
1094
1da177e4 1095 /*
24e17b5f 1096 * page_dirty is initially a count of buffers on the page before
c41564b5 1097 * EOF and is decremented as we move each into a cleanable state.
f6d6d4fc
CH
1098 *
1099 * Derivation:
1100 *
1101 * End offset is the highest offset that this page should represent.
1102 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
1103 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
1104 * hence give us the correct page_dirty count. On any other page,
1105 * it will be zero and in that case we need page_dirty to be the
1106 * count of buffers on the page.
1107 */
1108 end_offset = min_t(unsigned long long,
1109 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, offset);
24e17b5f 1110 len = 1 << inode->i_blkbits;
f6d6d4fc
CH
1111 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
1112 PAGE_CACHE_SIZE);
1113 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
24e17b5f
NS
1114 page_dirty = p_offset / len;
1115
24e17b5f 1116 bh = head = page_buffers(page);
f6d6d4fc 1117 offset = page_offset(page);
df3c7244 1118 flags = BMAPI_READ;
34a52c6c 1119 type = IO_NEW;
f6d6d4fc 1120
f6d6d4fc 1121 /* TODO: cleanup count and page_dirty */
1da177e4
LT
1122
1123 do {
1124 if (offset >= end_offset)
1125 break;
1126 if (!buffer_uptodate(bh))
1127 uptodate = 0;
f6d6d4fc 1128 if (!(PageUptodate(page) || buffer_uptodate(bh)) && !startio) {
1defeac9
CH
1129 /*
1130 * the iomap is actually still valid, but the ioend
1131 * isn't. shouldn't happen too often.
1132 */
1133 iomap_valid = 0;
1da177e4 1134 continue;
f6d6d4fc 1135 }
1da177e4 1136
1defeac9 1137 if (iomap_valid)
207d0416 1138 iomap_valid = xfs_iomap_valid(inode, &imap, offset);
1da177e4
LT
1139
1140 /*
1141 * First case, map an unwritten extent and prepare for
1142 * extent state conversion transaction on completion.
f6d6d4fc 1143 *
1da177e4
LT
1144 * Second case, allocate space for a delalloc buffer.
1145 * We can return EAGAIN here in the release page case.
d5cb48aa
CH
1146 *
1147 * Third case, an unmapped buffer was found, and we are
1148 * in a path where we need to write the whole page out.
df3c7244 1149 */
d5cb48aa
CH
1150 if (buffer_unwritten(bh) || buffer_delay(bh) ||
1151 ((buffer_uptodate(bh) || PageUptodate(page)) &&
1152 !buffer_mapped(bh) && (unmapped || startio))) {
effd120e
DC
1153 int new_ioend = 0;
1154
df3c7244 1155 /*
6c4fe19f
CH
1156 * Make sure we don't use a read-only iomap
1157 */
df3c7244 1158 if (flags == BMAPI_READ)
6c4fe19f
CH
1159 iomap_valid = 0;
1160
f6d6d4fc 1161 if (buffer_unwritten(bh)) {
34a52c6c 1162 type = IO_UNWRITTEN;
8272145c 1163 flags = BMAPI_WRITE | BMAPI_IGNSTATE;
d5cb48aa 1164 } else if (buffer_delay(bh)) {
34a52c6c 1165 type = IO_DELAY;
8272145c 1166 flags = BMAPI_ALLOCATE | trylock;
d5cb48aa 1167 } else {
34a52c6c 1168 type = IO_NEW;
8272145c 1169 flags = BMAPI_WRITE | BMAPI_MMAP;
f6d6d4fc
CH
1170 }
1171
1defeac9 1172 if (!iomap_valid) {
effd120e
DC
1173 /*
1174 * if we didn't have a valid mapping then we
1175 * need to ensure that we put the new mapping
1176 * in a new ioend structure. This needs to be
1177 * done to ensure that the ioends correctly
1178 * reflect the block mappings at io completion
1179 * for unwritten extent conversion.
1180 */
1181 new_ioend = 1;
34a52c6c 1182 if (type == IO_NEW) {
6c4fe19f
CH
1183 size = xfs_probe_cluster(inode,
1184 page, bh, head, 0);
d5cb48aa
CH
1185 } else {
1186 size = len;
1187 }
1188
1189 err = xfs_map_blocks(inode, offset, size,
207d0416 1190 &imap, flags);
f6d6d4fc 1191 if (err)
1da177e4 1192 goto error;
207d0416 1193 iomap_valid = xfs_iomap_valid(inode, &imap, offset);
1da177e4 1194 }
1defeac9 1195 if (iomap_valid) {
207d0416 1196 xfs_map_at_offset(inode, bh, &imap, offset);
1da177e4 1197 if (startio) {
7336cea8 1198 xfs_add_to_ioend(inode, bh, offset,
1defeac9 1199 type, &ioend,
effd120e 1200 new_ioend);
1da177e4
LT
1201 } else {
1202 set_buffer_dirty(bh);
1203 unlock_buffer(bh);
1204 mark_buffer_dirty(bh);
1205 }
1206 page_dirty--;
f6d6d4fc 1207 count++;
1da177e4 1208 }
d5cb48aa 1209 } else if (buffer_uptodate(bh) && startio) {
6c4fe19f
CH
1210 /*
1211 * we got here because the buffer is already mapped.
1212 * That means it must already have extents allocated
1213 * underneath it. Map the extent by reading it.
1214 */
df3c7244 1215 if (!iomap_valid || flags != BMAPI_READ) {
6c4fe19f
CH
1216 flags = BMAPI_READ;
1217 size = xfs_probe_cluster(inode, page, bh,
1218 head, 1);
1219 err = xfs_map_blocks(inode, offset, size,
207d0416 1220 &imap, flags);
6c4fe19f
CH
1221 if (err)
1222 goto error;
207d0416 1223 iomap_valid = xfs_iomap_valid(inode, &imap, offset);
6c4fe19f 1224 }
d5cb48aa 1225
df3c7244 1226 /*
34a52c6c 1227 * We set the type to IO_NEW in case we are doing a
df3c7244
DC
1228 * small write at EOF that is extending the file but
1229 * without needing an allocation. We need to update the
1230 * file size on I/O completion in this case so it is
1231 * the same case as having just allocated a new extent
1232 * that we are writing into for the first time.
1233 */
34a52c6c 1234 type = IO_NEW;
ca5de404 1235 if (trylock_buffer(bh)) {
d5cb48aa 1236 ASSERT(buffer_mapped(bh));
6c4fe19f
CH
1237 if (iomap_valid)
1238 all_bh = 1;
7336cea8 1239 xfs_add_to_ioend(inode, bh, offset, type,
d5cb48aa
CH
1240 &ioend, !iomap_valid);
1241 page_dirty--;
1242 count++;
f6d6d4fc 1243 } else {
1defeac9 1244 iomap_valid = 0;
1da177e4 1245 }
d5cb48aa
CH
1246 } else if ((buffer_uptodate(bh) || PageUptodate(page)) &&
1247 (unmapped || startio)) {
1248 iomap_valid = 0;
1da177e4 1249 }
f6d6d4fc
CH
1250
1251 if (!iohead)
1252 iohead = ioend;
1253
1254 } while (offset += len, ((bh = bh->b_this_page) != head));
1da177e4
LT
1255
1256 if (uptodate && bh == head)
1257 SetPageUptodate(page);
1258
f6d6d4fc 1259 if (startio)
b41759cf 1260 xfs_start_page_writeback(page, 1, count);
1da177e4 1261
1defeac9 1262 if (ioend && iomap_valid) {
8699bb0a 1263 struct xfs_mount *m = XFS_I(inode)->i_mount;
207d0416
CH
1264 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap.br_startoff);
1265 xfs_off_t iomap_bsize = XFS_FSB_TO_B(m, imap.br_blockcount);
8699bb0a
CH
1266
1267 offset = (iomap_offset + iomap_bsize - 1) >>
1da177e4 1268 PAGE_CACHE_SHIFT;
775bf6c9 1269 tlast = min_t(pgoff_t, offset, last_index);
207d0416 1270 xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
6c4fe19f 1271 wbc, startio, all_bh, tlast);
1da177e4
LT
1272 }
1273
f6d6d4fc 1274 if (iohead)
06342cf8 1275 xfs_submit_ioend(wbc, iohead);
f6d6d4fc 1276
1da177e4
LT
1277 return page_dirty;
1278
1279error:
f6d6d4fc
CH
1280 if (iohead)
1281 xfs_cancel_ioend(iohead);
1da177e4
LT
1282
1283 /*
1284 * If it's delalloc and we have nowhere to put it,
1285 * throw it away, unless the lower layers told
1286 * us to try again.
1287 */
1288 if (err != -EAGAIN) {
f6d6d4fc 1289 if (!unmapped)
3ed3a434 1290 xfs_aops_discard_page(page);
1da177e4
LT
1291 ClearPageUptodate(page);
1292 }
1293 return err;
1294}
1295
f51623b2
NS
1296/*
1297 * writepage: Called from one of two places:
1298 *
1299 * 1. we are flushing a delalloc buffer head.
1300 *
1301 * 2. we are writing out a dirty page. Typically the page dirty
1302 * state is cleared before we get here. In this case is it
1303 * conceivable we have no buffer heads.
1304 *
1305 * For delalloc space on the page we need to allocate space and
1306 * flush it. For unmapped buffer heads on the page we should
1307 * allocate space if the page is uptodate. For any other dirty
1308 * buffer heads on the page we should flush them.
1309 *
1310 * If we detect that a transaction would be required to flush
1311 * the page, we have to check the process flags first, if we
1312 * are already in a transaction or disk I/O during allocations
1313 * is off, we need to fail the writepage and redirty the page.
1314 */
1315
1316STATIC int
e4c573bb 1317xfs_vm_writepage(
f51623b2
NS
1318 struct page *page,
1319 struct writeback_control *wbc)
1320{
1321 int error;
1322 int need_trans;
1323 int delalloc, unmapped, unwritten;
1324 struct inode *inode = page->mapping->host;
1325
0b1b213f 1326 trace_xfs_writepage(inode, page, 0);
f51623b2
NS
1327
1328 /*
1329 * We need a transaction if:
1330 * 1. There are delalloc buffers on the page
1331 * 2. The page is uptodate and we have unmapped buffers
1332 * 3. The page is uptodate and we have no buffers
1333 * 4. There are unwritten buffers on the page
1334 */
1335
1336 if (!page_has_buffers(page)) {
1337 unmapped = 1;
1338 need_trans = 1;
1339 } else {
1340 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1341 if (!PageUptodate(page))
1342 unmapped = 0;
1343 need_trans = delalloc + unmapped + unwritten;
1344 }
1345
1346 /*
1347 * If we need a transaction and the process flags say
1348 * we are already in a transaction, or no IO is allowed
1349 * then mark the page dirty again and leave the page
1350 * as is.
1351 */
59c1b082 1352 if (current_test_flags(PF_FSTRANS) && need_trans)
f51623b2
NS
1353 goto out_fail;
1354
1355 /*
1356 * Delay hooking up buffer heads until we have
1357 * made our go/no-go decision.
1358 */
1359 if (!page_has_buffers(page))
1360 create_empty_buffers(page, 1 << inode->i_blkbits, 0);
1361
c8a4051c
ES
1362
1363 /*
1364 * VM calculation for nr_to_write seems off. Bump it way
1365 * up, this gets simple streaming writes zippy again.
1366 * To be reviewed again after Jens' writeback changes.
1367 */
1368 wbc->nr_to_write *= 4;
1369
f51623b2
NS
1370 /*
1371 * Convert delayed allocate, unwritten or unmapped space
1372 * to real space and flush out to disk.
1373 */
1374 error = xfs_page_state_convert(inode, page, wbc, 1, unmapped);
1375 if (error == -EAGAIN)
1376 goto out_fail;
1377 if (unlikely(error < 0))
1378 goto out_unlock;
1379
1380 return 0;
1381
1382out_fail:
1383 redirty_page_for_writepage(wbc, page);
1384 unlock_page(page);
1385 return 0;
1386out_unlock:
1387 unlock_page(page);
1388 return error;
1389}
1390
7d4fb40a
NS
1391STATIC int
1392xfs_vm_writepages(
1393 struct address_space *mapping,
1394 struct writeback_control *wbc)
1395{
b3aea4ed 1396 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
7d4fb40a
NS
1397 return generic_writepages(mapping, wbc);
1398}
1399
f51623b2
NS
1400/*
1401 * Called to move a page into cleanable state - and from there
1402 * to be released. Possibly the page is already clean. We always
1403 * have buffer heads in this call.
1404 *
1405 * Returns 0 if the page is ok to release, 1 otherwise.
1406 *
1407 * Possible scenarios are:
1408 *
1409 * 1. We are being called to release a page which has been written
1410 * to via regular I/O. buffer heads will be dirty and possibly
1411 * delalloc. If no delalloc buffer heads in this case then we
1412 * can just return zero.
1413 *
1414 * 2. We are called to release a page which has been written via
1415 * mmap, all we need to do is ensure there is no delalloc
1416 * state in the buffer heads, if not we can let the caller
1417 * free them and we should come back later via writepage.
1418 */
1419STATIC int
238f4c54 1420xfs_vm_releasepage(
f51623b2
NS
1421 struct page *page,
1422 gfp_t gfp_mask)
1423{
1424 struct inode *inode = page->mapping->host;
1425 int dirty, delalloc, unmapped, unwritten;
1426 struct writeback_control wbc = {
1427 .sync_mode = WB_SYNC_ALL,
1428 .nr_to_write = 1,
1429 };
1430
0b1b213f 1431 trace_xfs_releasepage(inode, page, 0);
f51623b2 1432
238f4c54
NS
1433 if (!page_has_buffers(page))
1434 return 0;
1435
f51623b2
NS
1436 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1437 if (!delalloc && !unwritten)
1438 goto free_buffers;
1439
1440 if (!(gfp_mask & __GFP_FS))
1441 return 0;
1442
1443 /* If we are already inside a transaction or the thread cannot
1444 * do I/O, we cannot release this page.
1445 */
59c1b082 1446 if (current_test_flags(PF_FSTRANS))
f51623b2
NS
1447 return 0;
1448
1449 /*
1450 * Convert delalloc space to real space, do not flush the
1451 * data out to disk, that will be done by the caller.
1452 * Never need to allocate space here - we will always
1453 * come back to writepage in that case.
1454 */
1455 dirty = xfs_page_state_convert(inode, page, &wbc, 0, 0);
1456 if (dirty == 0 && !unwritten)
1457 goto free_buffers;
1458 return 0;
1459
1460free_buffers:
1461 return try_to_free_buffers(page);
1462}
1463
1da177e4 1464STATIC int
c2536668 1465__xfs_get_blocks(
1da177e4
LT
1466 struct inode *inode,
1467 sector_t iblock,
1da177e4
LT
1468 struct buffer_head *bh_result,
1469 int create,
1470 int direct,
1471 bmapi_flags_t flags)
1472{
207d0416 1473 struct xfs_bmbt_irec imap;
fdc7ed75
NS
1474 xfs_off_t offset;
1475 ssize_t size;
207d0416
CH
1476 int nimap = 1;
1477 int new = 0;
1da177e4 1478 int error;
1da177e4 1479
fdc7ed75 1480 offset = (xfs_off_t)iblock << inode->i_blkbits;
c2536668
NS
1481 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1482 size = bh_result->b_size;
364f358a
LM
1483
1484 if (!create && direct && offset >= i_size_read(inode))
1485 return 0;
1486
541d7d3c 1487 error = xfs_iomap(XFS_I(inode), offset, size,
207d0416 1488 create ? flags : BMAPI_READ, &imap, &nimap, &new);
1da177e4
LT
1489 if (error)
1490 return -error;
207d0416 1491 if (nimap == 0)
1da177e4
LT
1492 return 0;
1493
207d0416
CH
1494 if (imap.br_startblock != HOLESTARTBLOCK &&
1495 imap.br_startblock != DELAYSTARTBLOCK) {
87cbc49c
NS
1496 /*
1497 * For unwritten extents do not report a disk address on
1da177e4
LT
1498 * the read case (treat as if we're reading into a hole).
1499 */
207d0416
CH
1500 if (create || !ISUNWRITTEN(&imap))
1501 xfs_map_buffer(inode, bh_result, &imap, offset);
1502 if (create && ISUNWRITTEN(&imap)) {
1da177e4
LT
1503 if (direct)
1504 bh_result->b_private = inode;
1505 set_buffer_unwritten(bh_result);
1da177e4
LT
1506 }
1507 }
1508
c2536668
NS
1509 /*
1510 * If this is a realtime file, data may be on a different device.
1511 * to that pointed to from the buffer_head b_bdev currently.
1512 */
046f1685 1513 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1da177e4 1514
c2536668 1515 /*
549054af
DC
1516 * If we previously allocated a block out beyond eof and we are now
1517 * coming back to use it then we will need to flag it as new even if it
1518 * has a disk address.
1519 *
1520 * With sub-block writes into unwritten extents we also need to mark
1521 * the buffer as new so that the unwritten parts of the buffer gets
1522 * correctly zeroed.
1da177e4
LT
1523 */
1524 if (create &&
1525 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
549054af 1526 (offset >= i_size_read(inode)) ||
207d0416 1527 (new || ISUNWRITTEN(&imap))))
1da177e4 1528 set_buffer_new(bh_result);
1da177e4 1529
207d0416 1530 if (imap.br_startblock == DELAYSTARTBLOCK) {
1da177e4
LT
1531 BUG_ON(direct);
1532 if (create) {
1533 set_buffer_uptodate(bh_result);
1534 set_buffer_mapped(bh_result);
1535 set_buffer_delay(bh_result);
1536 }
1537 }
1538
c2536668 1539 if (direct || size > (1 << inode->i_blkbits)) {
8699bb0a 1540 struct xfs_mount *mp = XFS_I(inode)->i_mount;
207d0416 1541 xfs_off_t iomap_offset = XFS_FSB_TO_B(mp, imap.br_startoff);
8699bb0a 1542 xfs_off_t iomap_delta = offset - iomap_offset;
207d0416 1543 xfs_off_t iomap_bsize = XFS_FSB_TO_B(mp, imap.br_blockcount);
9563b3d8 1544
8699bb0a 1545 ASSERT(iomap_bsize - iomap_delta > 0);
fdc7ed75 1546 offset = min_t(xfs_off_t,
8699bb0a 1547 iomap_bsize - iomap_delta, size);
c2536668 1548 bh_result->b_size = (ssize_t)min_t(xfs_off_t, LONG_MAX, offset);
1da177e4
LT
1549 }
1550
1551 return 0;
1552}
1553
1554int
c2536668 1555xfs_get_blocks(
1da177e4
LT
1556 struct inode *inode,
1557 sector_t iblock,
1558 struct buffer_head *bh_result,
1559 int create)
1560{
c2536668 1561 return __xfs_get_blocks(inode, iblock,
fa30bd05 1562 bh_result, create, 0, BMAPI_WRITE);
1da177e4
LT
1563}
1564
1565STATIC int
e4c573bb 1566xfs_get_blocks_direct(
1da177e4
LT
1567 struct inode *inode,
1568 sector_t iblock,
1da177e4
LT
1569 struct buffer_head *bh_result,
1570 int create)
1571{
c2536668 1572 return __xfs_get_blocks(inode, iblock,
1d8fa7a2 1573 bh_result, create, 1, BMAPI_WRITE|BMAPI_DIRECT);
1da177e4
LT
1574}
1575
f0973863 1576STATIC void
e4c573bb 1577xfs_end_io_direct(
f0973863
CH
1578 struct kiocb *iocb,
1579 loff_t offset,
1580 ssize_t size,
1581 void *private)
1582{
1583 xfs_ioend_t *ioend = iocb->private;
1584
1585 /*
1586 * Non-NULL private data means we need to issue a transaction to
1587 * convert a range from unwritten to written extents. This needs
c41564b5 1588 * to happen from process context but aio+dio I/O completion
f0973863 1589 * happens from irq context so we need to defer it to a workqueue.
c41564b5 1590 * This is not necessary for synchronous direct I/O, but we do
f0973863
CH
1591 * it anyway to keep the code uniform and simpler.
1592 *
e927af90
DC
1593 * Well, if only it were that simple. Because synchronous direct I/O
1594 * requires extent conversion to occur *before* we return to userspace,
1595 * we have to wait for extent conversion to complete. Look at the
1596 * iocb that has been passed to us to determine if this is AIO or
1597 * not. If it is synchronous, tell xfs_finish_ioend() to kick the
1598 * workqueue and wait for it to complete.
1599 *
f0973863
CH
1600 * The core direct I/O code might be changed to always call the
1601 * completion handler in the future, in which case all this can
1602 * go away.
1603 */
ba87ea69
LM
1604 ioend->io_offset = offset;
1605 ioend->io_size = size;
34a52c6c 1606 if (ioend->io_type == IO_READ) {
e927af90 1607 xfs_finish_ioend(ioend, 0);
ba87ea69 1608 } else if (private && size > 0) {
e927af90 1609 xfs_finish_ioend(ioend, is_sync_kiocb(iocb));
f0973863 1610 } else {
ba87ea69
LM
1611 /*
1612 * A direct I/O write ioend starts it's life in unwritten
1613 * state in case they map an unwritten extent. This write
1614 * didn't map an unwritten extent so switch it's completion
1615 * handler.
1616 */
34a52c6c 1617 ioend->io_type = IO_NEW;
e927af90 1618 xfs_finish_ioend(ioend, 0);
f0973863
CH
1619 }
1620
1621 /*
c41564b5 1622 * blockdev_direct_IO can return an error even after the I/O
f0973863
CH
1623 * completion handler was called. Thus we need to protect
1624 * against double-freeing.
1625 */
1626 iocb->private = NULL;
1627}
1628
1da177e4 1629STATIC ssize_t
e4c573bb 1630xfs_vm_direct_IO(
1da177e4
LT
1631 int rw,
1632 struct kiocb *iocb,
1633 const struct iovec *iov,
1634 loff_t offset,
1635 unsigned long nr_segs)
1636{
1637 struct file *file = iocb->ki_filp;
1638 struct inode *inode = file->f_mapping->host;
6214ed44 1639 struct block_device *bdev;
f0973863 1640 ssize_t ret;
1da177e4 1641
046f1685 1642 bdev = xfs_find_bdev_for_inode(inode);
1da177e4 1643
5fe878ae 1644 iocb->private = xfs_alloc_ioend(inode, rw == WRITE ?
34a52c6c 1645 IO_UNWRITTEN : IO_READ);
5fe878ae
CH
1646
1647 ret = blockdev_direct_IO_no_locking(rw, iocb, inode, bdev, iov,
1648 offset, nr_segs,
1649 xfs_get_blocks_direct,
1650 xfs_end_io_direct);
f0973863 1651
8459d86a 1652 if (unlikely(ret != -EIOCBQUEUED && iocb->private))
f0973863
CH
1653 xfs_destroy_ioend(iocb->private);
1654 return ret;
1da177e4
LT
1655}
1656
f51623b2 1657STATIC int
d79689c7 1658xfs_vm_write_begin(
f51623b2 1659 struct file *file,
d79689c7
NP
1660 struct address_space *mapping,
1661 loff_t pos,
1662 unsigned len,
1663 unsigned flags,
1664 struct page **pagep,
1665 void **fsdata)
f51623b2 1666{
d79689c7
NP
1667 *pagep = NULL;
1668 return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1669 xfs_get_blocks);
f51623b2 1670}
1da177e4
LT
1671
1672STATIC sector_t
e4c573bb 1673xfs_vm_bmap(
1da177e4
LT
1674 struct address_space *mapping,
1675 sector_t block)
1676{
1677 struct inode *inode = (struct inode *)mapping->host;
739bfb2a 1678 struct xfs_inode *ip = XFS_I(inode);
1da177e4 1679
cf441eeb 1680 xfs_itrace_entry(XFS_I(inode));
126468b1 1681 xfs_ilock(ip, XFS_IOLOCK_SHARED);
739bfb2a 1682 xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF);
126468b1 1683 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
c2536668 1684 return generic_block_bmap(mapping, block, xfs_get_blocks);
1da177e4
LT
1685}
1686
1687STATIC int
e4c573bb 1688xfs_vm_readpage(
1da177e4
LT
1689 struct file *unused,
1690 struct page *page)
1691{
c2536668 1692 return mpage_readpage(page, xfs_get_blocks);
1da177e4
LT
1693}
1694
1695STATIC int
e4c573bb 1696xfs_vm_readpages(
1da177e4
LT
1697 struct file *unused,
1698 struct address_space *mapping,
1699 struct list_head *pages,
1700 unsigned nr_pages)
1701{
c2536668 1702 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1da177e4
LT
1703}
1704
f5e54d6e 1705const struct address_space_operations xfs_address_space_operations = {
e4c573bb
NS
1706 .readpage = xfs_vm_readpage,
1707 .readpages = xfs_vm_readpages,
1708 .writepage = xfs_vm_writepage,
7d4fb40a 1709 .writepages = xfs_vm_writepages,
1da177e4 1710 .sync_page = block_sync_page,
238f4c54
NS
1711 .releasepage = xfs_vm_releasepage,
1712 .invalidatepage = xfs_vm_invalidatepage,
d79689c7
NP
1713 .write_begin = xfs_vm_write_begin,
1714 .write_end = generic_write_end,
e4c573bb
NS
1715 .bmap = xfs_vm_bmap,
1716 .direct_IO = xfs_vm_direct_IO,
e965f963 1717 .migratepage = buffer_migrate_page,
bddaafa1 1718 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 1719 .error_remove_page = generic_error_remove_page,
1da177e4 1720};