xfs: introduce new logging API.
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / xfs / linux-2.6 / xfs_aops.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_bit.h"
1da177e4 20#include "xfs_log.h"
a844f451 21#include "xfs_inum.h"
1da177e4 22#include "xfs_sb.h"
a844f451 23#include "xfs_ag.h"
1da177e4 24#include "xfs_trans.h"
1da177e4
LT
25#include "xfs_mount.h"
26#include "xfs_bmap_btree.h"
1da177e4
LT
27#include "xfs_dinode.h"
28#include "xfs_inode.h"
a844f451 29#include "xfs_alloc.h"
1da177e4
LT
30#include "xfs_error.h"
31#include "xfs_rw.h"
32#include "xfs_iomap.h"
739bfb2a 33#include "xfs_vnodeops.h"
0b1b213f 34#include "xfs_trace.h"
3ed3a434 35#include "xfs_bmap.h"
5a0e3ad6 36#include <linux/gfp.h>
1da177e4 37#include <linux/mpage.h>
10ce4444 38#include <linux/pagevec.h>
1da177e4
LT
39#include <linux/writeback.h>
40
25e41b3d
CH
41
42/*
43 * Prime number of hash buckets since address is used as the key.
44 */
45#define NVSYNC 37
46#define to_ioend_wq(v) (&xfs_ioend_wq[((unsigned long)v) % NVSYNC])
47static wait_queue_head_t xfs_ioend_wq[NVSYNC];
48
49void __init
50xfs_ioend_init(void)
51{
52 int i;
53
54 for (i = 0; i < NVSYNC; i++)
55 init_waitqueue_head(&xfs_ioend_wq[i]);
56}
57
58void
59xfs_ioend_wait(
60 xfs_inode_t *ip)
61{
62 wait_queue_head_t *wq = to_ioend_wq(ip);
63
64 wait_event(*wq, (atomic_read(&ip->i_iocount) == 0));
65}
66
67STATIC void
68xfs_ioend_wake(
69 xfs_inode_t *ip)
70{
71 if (atomic_dec_and_test(&ip->i_iocount))
72 wake_up(to_ioend_wq(ip));
73}
74
0b1b213f 75void
f51623b2
NS
76xfs_count_page_state(
77 struct page *page,
78 int *delalloc,
f51623b2
NS
79 int *unwritten)
80{
81 struct buffer_head *bh, *head;
82
20cb52eb 83 *delalloc = *unwritten = 0;
f51623b2
NS
84
85 bh = head = page_buffers(page);
86 do {
20cb52eb 87 if (buffer_unwritten(bh))
f51623b2
NS
88 (*unwritten) = 1;
89 else if (buffer_delay(bh))
90 (*delalloc) = 1;
91 } while ((bh = bh->b_this_page) != head);
92}
93
6214ed44
CH
94STATIC struct block_device *
95xfs_find_bdev_for_inode(
046f1685 96 struct inode *inode)
6214ed44 97{
046f1685 98 struct xfs_inode *ip = XFS_I(inode);
6214ed44
CH
99 struct xfs_mount *mp = ip->i_mount;
100
71ddabb9 101 if (XFS_IS_REALTIME_INODE(ip))
6214ed44
CH
102 return mp->m_rtdev_targp->bt_bdev;
103 else
104 return mp->m_ddev_targp->bt_bdev;
105}
106
f6d6d4fc
CH
107/*
108 * We're now finished for good with this ioend structure.
109 * Update the page state via the associated buffer_heads,
110 * release holds on the inode and bio, and finally free
111 * up memory. Do not use the ioend after this.
112 */
0829c360
CH
113STATIC void
114xfs_destroy_ioend(
115 xfs_ioend_t *ioend)
116{
f6d6d4fc 117 struct buffer_head *bh, *next;
583fa586 118 struct xfs_inode *ip = XFS_I(ioend->io_inode);
f6d6d4fc
CH
119
120 for (bh = ioend->io_buffer_head; bh; bh = next) {
121 next = bh->b_private;
7d04a335 122 bh->b_end_io(bh, !ioend->io_error);
f6d6d4fc 123 }
583fa586
CH
124
125 /*
126 * Volume managers supporting multiple paths can send back ENODEV
127 * when the final path disappears. In this case continuing to fill
128 * the page cache with dirty data which cannot be written out is
129 * evil, so prevent that.
130 */
131 if (unlikely(ioend->io_error == -ENODEV)) {
132 xfs_do_force_shutdown(ip->i_mount, SHUTDOWN_DEVICE_REQ,
133 __FILE__, __LINE__);
b677c210 134 }
583fa586 135
25e41b3d 136 xfs_ioend_wake(ip);
0829c360
CH
137 mempool_free(ioend, xfs_ioend_pool);
138}
139
932640e8
DC
140/*
141 * If the end of the current ioend is beyond the current EOF,
142 * return the new EOF value, otherwise zero.
143 */
144STATIC xfs_fsize_t
145xfs_ioend_new_eof(
146 xfs_ioend_t *ioend)
147{
148 xfs_inode_t *ip = XFS_I(ioend->io_inode);
149 xfs_fsize_t isize;
150 xfs_fsize_t bsize;
151
152 bsize = ioend->io_offset + ioend->io_size;
153 isize = MAX(ip->i_size, ip->i_new_size);
154 isize = MIN(isize, bsize);
155 return isize > ip->i_d.di_size ? isize : 0;
156}
157
ba87ea69 158/*
77d7a0c2
DC
159 * Update on-disk file size now that data has been written to disk. The
160 * current in-memory file size is i_size. If a write is beyond eof i_new_size
161 * will be the intended file size until i_size is updated. If this write does
162 * not extend all the way to the valid file size then restrict this update to
163 * the end of the write.
164 *
165 * This function does not block as blocking on the inode lock in IO completion
166 * can lead to IO completion order dependency deadlocks.. If it can't get the
167 * inode ilock it will return EAGAIN. Callers must handle this.
ba87ea69 168 */
77d7a0c2 169STATIC int
ba87ea69
LM
170xfs_setfilesize(
171 xfs_ioend_t *ioend)
172{
b677c210 173 xfs_inode_t *ip = XFS_I(ioend->io_inode);
ba87ea69 174 xfs_fsize_t isize;
ba87ea69 175
ba87ea69 176 if (unlikely(ioend->io_error))
77d7a0c2
DC
177 return 0;
178
179 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
180 return EAGAIN;
ba87ea69 181
932640e8
DC
182 isize = xfs_ioend_new_eof(ioend);
183 if (isize) {
ba87ea69 184 ip->i_d.di_size = isize;
66d834ea 185 xfs_mark_inode_dirty(ip);
ba87ea69
LM
186 }
187
188 xfs_iunlock(ip, XFS_ILOCK_EXCL);
77d7a0c2
DC
189 return 0;
190}
191
192/*
209fb87a 193 * Schedule IO completion handling on the final put of an ioend.
77d7a0c2
DC
194 */
195STATIC void
196xfs_finish_ioend(
209fb87a 197 struct xfs_ioend *ioend)
77d7a0c2
DC
198{
199 if (atomic_dec_and_test(&ioend->io_remaining)) {
209fb87a
CH
200 if (ioend->io_type == IO_UNWRITTEN)
201 queue_work(xfsconvertd_workqueue, &ioend->io_work);
202 else
203 queue_work(xfsdatad_workqueue, &ioend->io_work);
77d7a0c2 204 }
ba87ea69
LM
205}
206
0829c360 207/*
5ec4fabb 208 * IO write completion.
f6d6d4fc
CH
209 */
210STATIC void
5ec4fabb 211xfs_end_io(
77d7a0c2 212 struct work_struct *work)
0829c360 213{
77d7a0c2
DC
214 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
215 struct xfs_inode *ip = XFS_I(ioend->io_inode);
69418932 216 int error = 0;
ba87ea69 217
5ec4fabb
CH
218 /*
219 * For unwritten extents we need to issue transactions to convert a
220 * range to normal written extens after the data I/O has finished.
221 */
34a52c6c 222 if (ioend->io_type == IO_UNWRITTEN &&
5ec4fabb 223 likely(!ioend->io_error && !XFS_FORCED_SHUTDOWN(ip->i_mount))) {
5ec4fabb
CH
224
225 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
226 ioend->io_size);
227 if (error)
228 ioend->io_error = error;
229 }
ba87ea69 230
5ec4fabb
CH
231 /*
232 * We might have to update the on-disk file size after extending
233 * writes.
234 */
a206c817
CH
235 error = xfs_setfilesize(ioend);
236 ASSERT(!error || error == EAGAIN);
77d7a0c2
DC
237
238 /*
239 * If we didn't complete processing of the ioend, requeue it to the
240 * tail of the workqueue for another attempt later. Otherwise destroy
241 * it.
242 */
243 if (error == EAGAIN) {
244 atomic_inc(&ioend->io_remaining);
209fb87a 245 xfs_finish_ioend(ioend);
77d7a0c2
DC
246 /* ensure we don't spin on blocked ioends */
247 delay(1);
fb511f21
CH
248 } else {
249 if (ioend->io_iocb)
250 aio_complete(ioend->io_iocb, ioend->io_result, 0);
77d7a0c2 251 xfs_destroy_ioend(ioend);
fb511f21 252 }
c626d174
DC
253}
254
209fb87a
CH
255/*
256 * Call IO completion handling in caller context on the final put of an ioend.
257 */
258STATIC void
259xfs_finish_ioend_sync(
260 struct xfs_ioend *ioend)
261{
262 if (atomic_dec_and_test(&ioend->io_remaining))
263 xfs_end_io(&ioend->io_work);
264}
265
0829c360
CH
266/*
267 * Allocate and initialise an IO completion structure.
268 * We need to track unwritten extent write completion here initially.
269 * We'll need to extend this for updating the ondisk inode size later
270 * (vs. incore size).
271 */
272STATIC xfs_ioend_t *
273xfs_alloc_ioend(
f6d6d4fc
CH
274 struct inode *inode,
275 unsigned int type)
0829c360
CH
276{
277 xfs_ioend_t *ioend;
278
279 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
280
281 /*
282 * Set the count to 1 initially, which will prevent an I/O
283 * completion callback from happening before we have started
284 * all the I/O from calling the completion routine too early.
285 */
286 atomic_set(&ioend->io_remaining, 1);
7d04a335 287 ioend->io_error = 0;
f6d6d4fc
CH
288 ioend->io_list = NULL;
289 ioend->io_type = type;
b677c210 290 ioend->io_inode = inode;
c1a073bd 291 ioend->io_buffer_head = NULL;
f6d6d4fc 292 ioend->io_buffer_tail = NULL;
b677c210 293 atomic_inc(&XFS_I(ioend->io_inode)->i_iocount);
0829c360
CH
294 ioend->io_offset = 0;
295 ioend->io_size = 0;
fb511f21
CH
296 ioend->io_iocb = NULL;
297 ioend->io_result = 0;
0829c360 298
5ec4fabb 299 INIT_WORK(&ioend->io_work, xfs_end_io);
0829c360
CH
300 return ioend;
301}
302
1da177e4
LT
303STATIC int
304xfs_map_blocks(
305 struct inode *inode,
306 loff_t offset,
207d0416 307 struct xfs_bmbt_irec *imap,
a206c817
CH
308 int type,
309 int nonblocking)
1da177e4 310{
a206c817
CH
311 struct xfs_inode *ip = XFS_I(inode);
312 struct xfs_mount *mp = ip->i_mount;
ed1e7b7e 313 ssize_t count = 1 << inode->i_blkbits;
a206c817
CH
314 xfs_fileoff_t offset_fsb, end_fsb;
315 int error = 0;
a206c817
CH
316 int bmapi_flags = XFS_BMAPI_ENTIRE;
317 int nimaps = 1;
318
319 if (XFS_FORCED_SHUTDOWN(mp))
320 return -XFS_ERROR(EIO);
321
8ff2957d 322 if (type == IO_UNWRITTEN)
a206c817 323 bmapi_flags |= XFS_BMAPI_IGSTATE;
8ff2957d
CH
324
325 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
326 if (nonblocking)
327 return -XFS_ERROR(EAGAIN);
328 xfs_ilock(ip, XFS_ILOCK_SHARED);
a206c817
CH
329 }
330
8ff2957d
CH
331 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
332 (ip->i_df.if_flags & XFS_IFEXTENTS));
a206c817 333 ASSERT(offset <= mp->m_maxioffset);
8ff2957d 334
a206c817
CH
335 if (offset + count > mp->m_maxioffset)
336 count = mp->m_maxioffset - offset;
337 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
338 offset_fsb = XFS_B_TO_FSBT(mp, offset);
a206c817
CH
339 error = xfs_bmapi(NULL, ip, offset_fsb, end_fsb - offset_fsb,
340 bmapi_flags, NULL, 0, imap, &nimaps, NULL);
8ff2957d 341 xfs_iunlock(ip, XFS_ILOCK_SHARED);
a206c817 342
8ff2957d
CH
343 if (error)
344 return -XFS_ERROR(error);
a206c817 345
8ff2957d
CH
346 if (type == IO_DELALLOC &&
347 (!nimaps || isnullstartblock(imap->br_startblock))) {
a206c817
CH
348 error = xfs_iomap_write_allocate(ip, offset, count, imap);
349 if (!error)
350 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
8ff2957d 351 return -XFS_ERROR(error);
a206c817
CH
352 }
353
8ff2957d
CH
354#ifdef DEBUG
355 if (type == IO_UNWRITTEN) {
356 ASSERT(nimaps);
357 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
358 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
359 }
360#endif
361 if (nimaps)
362 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
363 return 0;
1da177e4
LT
364}
365
b8f82a4a 366STATIC int
558e6891 367xfs_imap_valid(
8699bb0a 368 struct inode *inode,
207d0416 369 struct xfs_bmbt_irec *imap,
558e6891 370 xfs_off_t offset)
1da177e4 371{
558e6891 372 offset >>= inode->i_blkbits;
8699bb0a 373
558e6891
CH
374 return offset >= imap->br_startoff &&
375 offset < imap->br_startoff + imap->br_blockcount;
1da177e4
LT
376}
377
f6d6d4fc
CH
378/*
379 * BIO completion handler for buffered IO.
380 */
782e3b3b 381STATIC void
f6d6d4fc
CH
382xfs_end_bio(
383 struct bio *bio,
f6d6d4fc
CH
384 int error)
385{
386 xfs_ioend_t *ioend = bio->bi_private;
387
f6d6d4fc 388 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
7d04a335 389 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
f6d6d4fc
CH
390
391 /* Toss bio and pass work off to an xfsdatad thread */
f6d6d4fc
CH
392 bio->bi_private = NULL;
393 bio->bi_end_io = NULL;
f6d6d4fc 394 bio_put(bio);
7d04a335 395
209fb87a 396 xfs_finish_ioend(ioend);
f6d6d4fc
CH
397}
398
399STATIC void
400xfs_submit_ioend_bio(
06342cf8
CH
401 struct writeback_control *wbc,
402 xfs_ioend_t *ioend,
403 struct bio *bio)
f6d6d4fc
CH
404{
405 atomic_inc(&ioend->io_remaining);
f6d6d4fc
CH
406 bio->bi_private = ioend;
407 bio->bi_end_io = xfs_end_bio;
408
932640e8
DC
409 /*
410 * If the I/O is beyond EOF we mark the inode dirty immediately
411 * but don't update the inode size until I/O completion.
412 */
413 if (xfs_ioend_new_eof(ioend))
66d834ea 414 xfs_mark_inode_dirty(XFS_I(ioend->io_inode));
932640e8 415
06342cf8
CH
416 submit_bio(wbc->sync_mode == WB_SYNC_ALL ?
417 WRITE_SYNC_PLUG : WRITE, bio);
f6d6d4fc
CH
418}
419
420STATIC struct bio *
421xfs_alloc_ioend_bio(
422 struct buffer_head *bh)
423{
f6d6d4fc 424 int nvecs = bio_get_nr_vecs(bh->b_bdev);
221cb251 425 struct bio *bio = bio_alloc(GFP_NOIO, nvecs);
f6d6d4fc
CH
426
427 ASSERT(bio->bi_private == NULL);
428 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
429 bio->bi_bdev = bh->b_bdev;
f6d6d4fc
CH
430 return bio;
431}
432
433STATIC void
434xfs_start_buffer_writeback(
435 struct buffer_head *bh)
436{
437 ASSERT(buffer_mapped(bh));
438 ASSERT(buffer_locked(bh));
439 ASSERT(!buffer_delay(bh));
440 ASSERT(!buffer_unwritten(bh));
441
442 mark_buffer_async_write(bh);
443 set_buffer_uptodate(bh);
444 clear_buffer_dirty(bh);
445}
446
447STATIC void
448xfs_start_page_writeback(
449 struct page *page,
f6d6d4fc
CH
450 int clear_dirty,
451 int buffers)
452{
453 ASSERT(PageLocked(page));
454 ASSERT(!PageWriteback(page));
f6d6d4fc 455 if (clear_dirty)
92132021
DC
456 clear_page_dirty_for_io(page);
457 set_page_writeback(page);
f6d6d4fc 458 unlock_page(page);
1f7decf6
FW
459 /* If no buffers on the page are to be written, finish it here */
460 if (!buffers)
f6d6d4fc 461 end_page_writeback(page);
f6d6d4fc
CH
462}
463
464static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
465{
466 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
467}
468
469/*
d88992f6
DC
470 * Submit all of the bios for all of the ioends we have saved up, covering the
471 * initial writepage page and also any probed pages.
472 *
473 * Because we may have multiple ioends spanning a page, we need to start
474 * writeback on all the buffers before we submit them for I/O. If we mark the
475 * buffers as we got, then we can end up with a page that only has buffers
476 * marked async write and I/O complete on can occur before we mark the other
477 * buffers async write.
478 *
479 * The end result of this is that we trip a bug in end_page_writeback() because
480 * we call it twice for the one page as the code in end_buffer_async_write()
481 * assumes that all buffers on the page are started at the same time.
482 *
483 * The fix is two passes across the ioend list - one to start writeback on the
c41564b5 484 * buffer_heads, and then submit them for I/O on the second pass.
f6d6d4fc
CH
485 */
486STATIC void
487xfs_submit_ioend(
06342cf8 488 struct writeback_control *wbc,
f6d6d4fc
CH
489 xfs_ioend_t *ioend)
490{
d88992f6 491 xfs_ioend_t *head = ioend;
f6d6d4fc
CH
492 xfs_ioend_t *next;
493 struct buffer_head *bh;
494 struct bio *bio;
495 sector_t lastblock = 0;
496
d88992f6
DC
497 /* Pass 1 - start writeback */
498 do {
499 next = ioend->io_list;
221cb251 500 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
d88992f6 501 xfs_start_buffer_writeback(bh);
d88992f6
DC
502 } while ((ioend = next) != NULL);
503
504 /* Pass 2 - submit I/O */
505 ioend = head;
f6d6d4fc
CH
506 do {
507 next = ioend->io_list;
508 bio = NULL;
509
510 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
f6d6d4fc
CH
511
512 if (!bio) {
513 retry:
514 bio = xfs_alloc_ioend_bio(bh);
515 } else if (bh->b_blocknr != lastblock + 1) {
06342cf8 516 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
517 goto retry;
518 }
519
520 if (bio_add_buffer(bio, bh) != bh->b_size) {
06342cf8 521 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
522 goto retry;
523 }
524
525 lastblock = bh->b_blocknr;
526 }
527 if (bio)
06342cf8 528 xfs_submit_ioend_bio(wbc, ioend, bio);
209fb87a 529 xfs_finish_ioend(ioend);
f6d6d4fc
CH
530 } while ((ioend = next) != NULL);
531}
532
533/*
534 * Cancel submission of all buffer_heads so far in this endio.
535 * Toss the endio too. Only ever called for the initial page
536 * in a writepage request, so only ever one page.
537 */
538STATIC void
539xfs_cancel_ioend(
540 xfs_ioend_t *ioend)
541{
542 xfs_ioend_t *next;
543 struct buffer_head *bh, *next_bh;
544
545 do {
546 next = ioend->io_list;
547 bh = ioend->io_buffer_head;
548 do {
549 next_bh = bh->b_private;
550 clear_buffer_async_write(bh);
551 unlock_buffer(bh);
552 } while ((bh = next_bh) != NULL);
553
25e41b3d 554 xfs_ioend_wake(XFS_I(ioend->io_inode));
f6d6d4fc
CH
555 mempool_free(ioend, xfs_ioend_pool);
556 } while ((ioend = next) != NULL);
557}
558
559/*
560 * Test to see if we've been building up a completion structure for
561 * earlier buffers -- if so, we try to append to this ioend if we
562 * can, otherwise we finish off any current ioend and start another.
563 * Return true if we've finished the given ioend.
564 */
565STATIC void
566xfs_add_to_ioend(
567 struct inode *inode,
568 struct buffer_head *bh,
7336cea8 569 xfs_off_t offset,
f6d6d4fc
CH
570 unsigned int type,
571 xfs_ioend_t **result,
572 int need_ioend)
573{
574 xfs_ioend_t *ioend = *result;
575
576 if (!ioend || need_ioend || type != ioend->io_type) {
577 xfs_ioend_t *previous = *result;
f6d6d4fc 578
f6d6d4fc
CH
579 ioend = xfs_alloc_ioend(inode, type);
580 ioend->io_offset = offset;
581 ioend->io_buffer_head = bh;
582 ioend->io_buffer_tail = bh;
583 if (previous)
584 previous->io_list = ioend;
585 *result = ioend;
586 } else {
587 ioend->io_buffer_tail->b_private = bh;
588 ioend->io_buffer_tail = bh;
589 }
590
591 bh->b_private = NULL;
592 ioend->io_size += bh->b_size;
593}
594
87cbc49c
NS
595STATIC void
596xfs_map_buffer(
046f1685 597 struct inode *inode,
87cbc49c 598 struct buffer_head *bh,
207d0416 599 struct xfs_bmbt_irec *imap,
046f1685 600 xfs_off_t offset)
87cbc49c
NS
601{
602 sector_t bn;
8699bb0a 603 struct xfs_mount *m = XFS_I(inode)->i_mount;
207d0416
CH
604 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
605 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
87cbc49c 606
207d0416
CH
607 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
608 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
87cbc49c 609
e513182d 610 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
8699bb0a 611 ((offset - iomap_offset) >> inode->i_blkbits);
87cbc49c 612
046f1685 613 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
87cbc49c
NS
614
615 bh->b_blocknr = bn;
616 set_buffer_mapped(bh);
617}
618
1da177e4
LT
619STATIC void
620xfs_map_at_offset(
046f1685 621 struct inode *inode,
1da177e4 622 struct buffer_head *bh,
207d0416 623 struct xfs_bmbt_irec *imap,
046f1685 624 xfs_off_t offset)
1da177e4 625{
207d0416
CH
626 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
627 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
1da177e4 628
207d0416 629 xfs_map_buffer(inode, bh, imap, offset);
1da177e4
LT
630 set_buffer_mapped(bh);
631 clear_buffer_delay(bh);
f6d6d4fc 632 clear_buffer_unwritten(bh);
1da177e4
LT
633}
634
1da177e4 635/*
10ce4444
CH
636 * Test if a given page is suitable for writing as part of an unwritten
637 * or delayed allocate extent.
1da177e4 638 */
10ce4444
CH
639STATIC int
640xfs_is_delayed_page(
641 struct page *page,
f6d6d4fc 642 unsigned int type)
1da177e4 643{
1da177e4 644 if (PageWriteback(page))
10ce4444 645 return 0;
1da177e4
LT
646
647 if (page->mapping && page_has_buffers(page)) {
648 struct buffer_head *bh, *head;
649 int acceptable = 0;
650
651 bh = head = page_buffers(page);
652 do {
f6d6d4fc 653 if (buffer_unwritten(bh))
34a52c6c 654 acceptable = (type == IO_UNWRITTEN);
f6d6d4fc 655 else if (buffer_delay(bh))
a206c817 656 acceptable = (type == IO_DELALLOC);
2ddee844 657 else if (buffer_dirty(bh) && buffer_mapped(bh))
a206c817 658 acceptable = (type == IO_OVERWRITE);
f6d6d4fc 659 else
1da177e4 660 break;
1da177e4
LT
661 } while ((bh = bh->b_this_page) != head);
662
663 if (acceptable)
10ce4444 664 return 1;
1da177e4
LT
665 }
666
10ce4444 667 return 0;
1da177e4
LT
668}
669
1da177e4
LT
670/*
671 * Allocate & map buffers for page given the extent map. Write it out.
672 * except for the original page of a writepage, this is called on
673 * delalloc/unwritten pages only, for the original page it is possible
674 * that the page has no mapping at all.
675 */
f6d6d4fc 676STATIC int
1da177e4
LT
677xfs_convert_page(
678 struct inode *inode,
679 struct page *page,
10ce4444 680 loff_t tindex,
207d0416 681 struct xfs_bmbt_irec *imap,
f6d6d4fc 682 xfs_ioend_t **ioendp,
2fa24f92 683 struct writeback_control *wbc)
1da177e4 684{
f6d6d4fc 685 struct buffer_head *bh, *head;
9260dc6b
CH
686 xfs_off_t end_offset;
687 unsigned long p_offset;
f6d6d4fc 688 unsigned int type;
24e17b5f 689 int len, page_dirty;
f6d6d4fc 690 int count = 0, done = 0, uptodate = 1;
9260dc6b 691 xfs_off_t offset = page_offset(page);
1da177e4 692
10ce4444
CH
693 if (page->index != tindex)
694 goto fail;
529ae9aa 695 if (!trylock_page(page))
10ce4444
CH
696 goto fail;
697 if (PageWriteback(page))
698 goto fail_unlock_page;
699 if (page->mapping != inode->i_mapping)
700 goto fail_unlock_page;
701 if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
702 goto fail_unlock_page;
703
24e17b5f
NS
704 /*
705 * page_dirty is initially a count of buffers on the page before
c41564b5 706 * EOF and is decremented as we move each into a cleanable state.
9260dc6b
CH
707 *
708 * Derivation:
709 *
710 * End offset is the highest offset that this page should represent.
711 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
712 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
713 * hence give us the correct page_dirty count. On any other page,
714 * it will be zero and in that case we need page_dirty to be the
715 * count of buffers on the page.
24e17b5f 716 */
9260dc6b
CH
717 end_offset = min_t(unsigned long long,
718 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
719 i_size_read(inode));
720
24e17b5f 721 len = 1 << inode->i_blkbits;
9260dc6b
CH
722 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
723 PAGE_CACHE_SIZE);
724 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
725 page_dirty = p_offset / len;
24e17b5f 726
1da177e4
LT
727 bh = head = page_buffers(page);
728 do {
9260dc6b 729 if (offset >= end_offset)
1da177e4 730 break;
f6d6d4fc
CH
731 if (!buffer_uptodate(bh))
732 uptodate = 0;
733 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
734 done = 1;
1da177e4 735 continue;
f6d6d4fc
CH
736 }
737
2fa24f92
CH
738 if (buffer_unwritten(bh) || buffer_delay(bh) ||
739 buffer_mapped(bh)) {
9260dc6b 740 if (buffer_unwritten(bh))
34a52c6c 741 type = IO_UNWRITTEN;
2fa24f92 742 else if (buffer_delay(bh))
a206c817 743 type = IO_DELALLOC;
2fa24f92
CH
744 else
745 type = IO_OVERWRITE;
9260dc6b 746
558e6891 747 if (!xfs_imap_valid(inode, imap, offset)) {
f6d6d4fc 748 done = 1;
9260dc6b
CH
749 continue;
750 }
751
ecff71e6
CH
752 lock_buffer(bh);
753 if (type != IO_OVERWRITE)
2fa24f92 754 xfs_map_at_offset(inode, bh, imap, offset);
89f3b363
CH
755 xfs_add_to_ioend(inode, bh, offset, type,
756 ioendp, done);
757
9260dc6b
CH
758 page_dirty--;
759 count++;
760 } else {
2fa24f92 761 done = 1;
1da177e4 762 }
7336cea8 763 } while (offset += len, (bh = bh->b_this_page) != head);
1da177e4 764
f6d6d4fc
CH
765 if (uptodate && bh == head)
766 SetPageUptodate(page);
767
89f3b363 768 if (count) {
efceab1d
DC
769 if (--wbc->nr_to_write <= 0 &&
770 wbc->sync_mode == WB_SYNC_NONE)
89f3b363 771 done = 1;
1da177e4 772 }
89f3b363 773 xfs_start_page_writeback(page, !page_dirty, count);
f6d6d4fc
CH
774
775 return done;
10ce4444
CH
776 fail_unlock_page:
777 unlock_page(page);
778 fail:
779 return 1;
1da177e4
LT
780}
781
782/*
783 * Convert & write out a cluster of pages in the same extent as defined
784 * by mp and following the start page.
785 */
786STATIC void
787xfs_cluster_write(
788 struct inode *inode,
789 pgoff_t tindex,
207d0416 790 struct xfs_bmbt_irec *imap,
f6d6d4fc 791 xfs_ioend_t **ioendp,
1da177e4 792 struct writeback_control *wbc,
1da177e4
LT
793 pgoff_t tlast)
794{
10ce4444
CH
795 struct pagevec pvec;
796 int done = 0, i;
1da177e4 797
10ce4444
CH
798 pagevec_init(&pvec, 0);
799 while (!done && tindex <= tlast) {
800 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
801
802 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
1da177e4 803 break;
10ce4444
CH
804
805 for (i = 0; i < pagevec_count(&pvec); i++) {
806 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
2fa24f92 807 imap, ioendp, wbc);
10ce4444
CH
808 if (done)
809 break;
810 }
811
812 pagevec_release(&pvec);
813 cond_resched();
1da177e4
LT
814 }
815}
816
3ed3a434
DC
817STATIC void
818xfs_vm_invalidatepage(
819 struct page *page,
820 unsigned long offset)
821{
822 trace_xfs_invalidatepage(page->mapping->host, page, offset);
823 block_invalidatepage(page, offset);
824}
825
826/*
827 * If the page has delalloc buffers on it, we need to punch them out before we
828 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
829 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
830 * is done on that same region - the delalloc extent is returned when none is
831 * supposed to be there.
832 *
833 * We prevent this by truncating away the delalloc regions on the page before
834 * invalidating it. Because they are delalloc, we can do this without needing a
835 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
836 * truncation without a transaction as there is no space left for block
837 * reservation (typically why we see a ENOSPC in writeback).
838 *
839 * This is not a performance critical path, so for now just do the punching a
840 * buffer head at a time.
841 */
842STATIC void
843xfs_aops_discard_page(
844 struct page *page)
845{
846 struct inode *inode = page->mapping->host;
847 struct xfs_inode *ip = XFS_I(inode);
848 struct buffer_head *bh, *head;
849 loff_t offset = page_offset(page);
3ed3a434 850
a206c817 851 if (!xfs_is_delayed_page(page, IO_DELALLOC))
3ed3a434
DC
852 goto out_invalidate;
853
e8c3753c
DC
854 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
855 goto out_invalidate;
856
3ed3a434
DC
857 xfs_fs_cmn_err(CE_ALERT, ip->i_mount,
858 "page discard on page %p, inode 0x%llx, offset %llu.",
859 page, ip->i_ino, offset);
860
861 xfs_ilock(ip, XFS_ILOCK_EXCL);
862 bh = head = page_buffers(page);
863 do {
3ed3a434 864 int error;
c726de44 865 xfs_fileoff_t start_fsb;
3ed3a434
DC
866
867 if (!buffer_delay(bh))
868 goto next_buffer;
869
c726de44
DC
870 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
871 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
3ed3a434
DC
872 if (error) {
873 /* something screwed, just bail */
e8c3753c
DC
874 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
875 xfs_fs_cmn_err(CE_ALERT, ip->i_mount,
3ed3a434 876 "page discard unable to remove delalloc mapping.");
e8c3753c 877 }
3ed3a434
DC
878 break;
879 }
880next_buffer:
c726de44 881 offset += 1 << inode->i_blkbits;
3ed3a434
DC
882
883 } while ((bh = bh->b_this_page) != head);
884
885 xfs_iunlock(ip, XFS_ILOCK_EXCL);
886out_invalidate:
887 xfs_vm_invalidatepage(page, 0);
888 return;
889}
890
1da177e4 891/*
89f3b363
CH
892 * Write out a dirty page.
893 *
894 * For delalloc space on the page we need to allocate space and flush it.
895 * For unwritten space on the page we need to start the conversion to
896 * regular allocated space.
89f3b363 897 * For any other dirty buffer heads on the page we should flush them.
1da177e4 898 *
89f3b363
CH
899 * If we detect that a transaction would be required to flush the page, we
900 * have to check the process flags first, if we are already in a transaction
901 * or disk I/O during allocations is off, we need to fail the writepage and
902 * redirty the page.
1da177e4 903 */
1da177e4 904STATIC int
89f3b363
CH
905xfs_vm_writepage(
906 struct page *page,
907 struct writeback_control *wbc)
1da177e4 908{
89f3b363 909 struct inode *inode = page->mapping->host;
20cb52eb 910 int delalloc, unwritten;
f6d6d4fc 911 struct buffer_head *bh, *head;
207d0416 912 struct xfs_bmbt_irec imap;
f6d6d4fc 913 xfs_ioend_t *ioend = NULL, *iohead = NULL;
1da177e4 914 loff_t offset;
f6d6d4fc 915 unsigned int type;
1da177e4 916 __uint64_t end_offset;
bd1556a1 917 pgoff_t end_index, last_index;
ed1e7b7e 918 ssize_t len;
a206c817 919 int err, imap_valid = 0, uptodate = 1;
89f3b363 920 int count = 0;
a206c817 921 int nonblocking = 0;
89f3b363
CH
922
923 trace_xfs_writepage(inode, page, 0);
924
20cb52eb
CH
925 ASSERT(page_has_buffers(page));
926
89f3b363
CH
927 /*
928 * Refuse to write the page out if we are called from reclaim context.
929 *
d4f7a5cb
CH
930 * This avoids stack overflows when called from deeply used stacks in
931 * random callers for direct reclaim or memcg reclaim. We explicitly
932 * allow reclaim from kswapd as the stack usage there is relatively low.
89f3b363
CH
933 *
934 * This should really be done by the core VM, but until that happens
935 * filesystems like XFS, btrfs and ext4 have to take care of this
936 * by themselves.
937 */
d4f7a5cb 938 if ((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == PF_MEMALLOC)
b5420f23 939 goto redirty;
1da177e4 940
89f3b363 941 /*
20cb52eb
CH
942 * We need a transaction if there are delalloc or unwritten buffers
943 * on the page.
944 *
945 * If we need a transaction and the process flags say we are already
946 * in a transaction, or no IO is allowed then mark the page dirty
947 * again and leave the page as is.
89f3b363 948 */
20cb52eb
CH
949 xfs_count_page_state(page, &delalloc, &unwritten);
950 if ((current->flags & PF_FSTRANS) && (delalloc || unwritten))
b5420f23 951 goto redirty;
89f3b363 952
1da177e4
LT
953 /* Is this page beyond the end of the file? */
954 offset = i_size_read(inode);
955 end_index = offset >> PAGE_CACHE_SHIFT;
956 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
957 if (page->index >= end_index) {
958 if ((page->index >= end_index + 1) ||
959 !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
89f3b363 960 unlock_page(page);
19d5bcf3 961 return 0;
1da177e4
LT
962 }
963 }
964
f6d6d4fc 965 end_offset = min_t(unsigned long long,
20cb52eb
CH
966 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
967 offset);
24e17b5f 968 len = 1 << inode->i_blkbits;
24e17b5f 969
24e17b5f 970 bh = head = page_buffers(page);
f6d6d4fc 971 offset = page_offset(page);
a206c817
CH
972 type = IO_OVERWRITE;
973
974 if (wbc->sync_mode == WB_SYNC_NONE && wbc->nonblocking)
975 nonblocking = 1;
f6d6d4fc 976
1da177e4 977 do {
6ac7248e
CH
978 int new_ioend = 0;
979
1da177e4
LT
980 if (offset >= end_offset)
981 break;
982 if (!buffer_uptodate(bh))
983 uptodate = 0;
1da177e4 984
3d9b02e3 985 /*
ece413f5
CH
986 * set_page_dirty dirties all buffers in a page, independent
987 * of their state. The dirty state however is entirely
988 * meaningless for holes (!mapped && uptodate), so skip
989 * buffers covering holes here.
3d9b02e3
ES
990 */
991 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
3d9b02e3
ES
992 imap_valid = 0;
993 continue;
994 }
995
aeea1b1f
CH
996 if (buffer_unwritten(bh)) {
997 if (type != IO_UNWRITTEN) {
998 type = IO_UNWRITTEN;
999 imap_valid = 0;
1da177e4 1000 }
aeea1b1f
CH
1001 } else if (buffer_delay(bh)) {
1002 if (type != IO_DELALLOC) {
1003 type = IO_DELALLOC;
1004 imap_valid = 0;
1da177e4 1005 }
89f3b363 1006 } else if (buffer_uptodate(bh)) {
a206c817
CH
1007 if (type != IO_OVERWRITE) {
1008 type = IO_OVERWRITE;
85da94c6
CH
1009 imap_valid = 0;
1010 }
aeea1b1f
CH
1011 } else {
1012 if (PageUptodate(page)) {
1013 ASSERT(buffer_mapped(bh));
1014 imap_valid = 0;
6c4fe19f 1015 }
aeea1b1f
CH
1016 continue;
1017 }
d5cb48aa 1018
aeea1b1f
CH
1019 if (imap_valid)
1020 imap_valid = xfs_imap_valid(inode, &imap, offset);
1021 if (!imap_valid) {
1022 /*
1023 * If we didn't have a valid mapping then we need to
1024 * put the new mapping into a separate ioend structure.
1025 * This ensures non-contiguous extents always have
1026 * separate ioends, which is particularly important
1027 * for unwritten extent conversion at I/O completion
1028 * time.
1029 */
1030 new_ioend = 1;
1031 err = xfs_map_blocks(inode, offset, &imap, type,
1032 nonblocking);
1033 if (err)
1034 goto error;
1035 imap_valid = xfs_imap_valid(inode, &imap, offset);
1036 }
1037 if (imap_valid) {
ecff71e6
CH
1038 lock_buffer(bh);
1039 if (type != IO_OVERWRITE)
aeea1b1f
CH
1040 xfs_map_at_offset(inode, bh, &imap, offset);
1041 xfs_add_to_ioend(inode, bh, offset, type, &ioend,
1042 new_ioend);
1043 count++;
1da177e4 1044 }
f6d6d4fc
CH
1045
1046 if (!iohead)
1047 iohead = ioend;
1048
1049 } while (offset += len, ((bh = bh->b_this_page) != head));
1da177e4
LT
1050
1051 if (uptodate && bh == head)
1052 SetPageUptodate(page);
1053
89f3b363 1054 xfs_start_page_writeback(page, 1, count);
1da177e4 1055
558e6891 1056 if (ioend && imap_valid) {
bd1556a1
CH
1057 xfs_off_t end_index;
1058
1059 end_index = imap.br_startoff + imap.br_blockcount;
1060
1061 /* to bytes */
1062 end_index <<= inode->i_blkbits;
1063
1064 /* to pages */
1065 end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1066
1067 /* check against file size */
1068 if (end_index > last_index)
1069 end_index = last_index;
8699bb0a 1070
207d0416 1071 xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
2fa24f92 1072 wbc, end_index);
1da177e4
LT
1073 }
1074
f6d6d4fc 1075 if (iohead)
06342cf8 1076 xfs_submit_ioend(wbc, iohead);
f6d6d4fc 1077
89f3b363 1078 return 0;
1da177e4
LT
1079
1080error:
f6d6d4fc
CH
1081 if (iohead)
1082 xfs_cancel_ioend(iohead);
1da177e4 1083
b5420f23
CH
1084 if (err == -EAGAIN)
1085 goto redirty;
1086
20cb52eb 1087 xfs_aops_discard_page(page);
89f3b363
CH
1088 ClearPageUptodate(page);
1089 unlock_page(page);
1da177e4 1090 return err;
f51623b2 1091
b5420f23 1092redirty:
f51623b2
NS
1093 redirty_page_for_writepage(wbc, page);
1094 unlock_page(page);
1095 return 0;
f51623b2
NS
1096}
1097
7d4fb40a
NS
1098STATIC int
1099xfs_vm_writepages(
1100 struct address_space *mapping,
1101 struct writeback_control *wbc)
1102{
b3aea4ed 1103 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
7d4fb40a
NS
1104 return generic_writepages(mapping, wbc);
1105}
1106
f51623b2
NS
1107/*
1108 * Called to move a page into cleanable state - and from there
89f3b363 1109 * to be released. The page should already be clean. We always
f51623b2
NS
1110 * have buffer heads in this call.
1111 *
89f3b363 1112 * Returns 1 if the page is ok to release, 0 otherwise.
f51623b2
NS
1113 */
1114STATIC int
238f4c54 1115xfs_vm_releasepage(
f51623b2
NS
1116 struct page *page,
1117 gfp_t gfp_mask)
1118{
20cb52eb 1119 int delalloc, unwritten;
f51623b2 1120
89f3b363 1121 trace_xfs_releasepage(page->mapping->host, page, 0);
238f4c54 1122
20cb52eb 1123 xfs_count_page_state(page, &delalloc, &unwritten);
f51623b2 1124
89f3b363 1125 if (WARN_ON(delalloc))
f51623b2 1126 return 0;
89f3b363 1127 if (WARN_ON(unwritten))
f51623b2
NS
1128 return 0;
1129
f51623b2
NS
1130 return try_to_free_buffers(page);
1131}
1132
1da177e4 1133STATIC int
c2536668 1134__xfs_get_blocks(
1da177e4
LT
1135 struct inode *inode,
1136 sector_t iblock,
1da177e4
LT
1137 struct buffer_head *bh_result,
1138 int create,
f2bde9b8 1139 int direct)
1da177e4 1140{
a206c817
CH
1141 struct xfs_inode *ip = XFS_I(inode);
1142 struct xfs_mount *mp = ip->i_mount;
1143 xfs_fileoff_t offset_fsb, end_fsb;
1144 int error = 0;
1145 int lockmode = 0;
207d0416 1146 struct xfs_bmbt_irec imap;
a206c817 1147 int nimaps = 1;
fdc7ed75
NS
1148 xfs_off_t offset;
1149 ssize_t size;
207d0416 1150 int new = 0;
a206c817
CH
1151
1152 if (XFS_FORCED_SHUTDOWN(mp))
1153 return -XFS_ERROR(EIO);
1da177e4 1154
fdc7ed75 1155 offset = (xfs_off_t)iblock << inode->i_blkbits;
c2536668
NS
1156 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1157 size = bh_result->b_size;
364f358a
LM
1158
1159 if (!create && direct && offset >= i_size_read(inode))
1160 return 0;
1161
a206c817
CH
1162 if (create) {
1163 lockmode = XFS_ILOCK_EXCL;
1164 xfs_ilock(ip, lockmode);
1165 } else {
1166 lockmode = xfs_ilock_map_shared(ip);
1167 }
f2bde9b8 1168
a206c817
CH
1169 ASSERT(offset <= mp->m_maxioffset);
1170 if (offset + size > mp->m_maxioffset)
1171 size = mp->m_maxioffset - offset;
1172 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1173 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1174
1175 error = xfs_bmapi(NULL, ip, offset_fsb, end_fsb - offset_fsb,
1176 XFS_BMAPI_ENTIRE, NULL, 0, &imap, &nimaps, NULL);
1da177e4 1177 if (error)
a206c817
CH
1178 goto out_unlock;
1179
1180 if (create &&
1181 (!nimaps ||
1182 (imap.br_startblock == HOLESTARTBLOCK ||
1183 imap.br_startblock == DELAYSTARTBLOCK))) {
1184 if (direct) {
1185 error = xfs_iomap_write_direct(ip, offset, size,
1186 &imap, nimaps);
1187 } else {
1188 error = xfs_iomap_write_delay(ip, offset, size, &imap);
1189 }
1190 if (error)
1191 goto out_unlock;
1192
1193 trace_xfs_get_blocks_alloc(ip, offset, size, 0, &imap);
1194 } else if (nimaps) {
1195 trace_xfs_get_blocks_found(ip, offset, size, 0, &imap);
1196 } else {
1197 trace_xfs_get_blocks_notfound(ip, offset, size);
1198 goto out_unlock;
1199 }
1200 xfs_iunlock(ip, lockmode);
1da177e4 1201
207d0416
CH
1202 if (imap.br_startblock != HOLESTARTBLOCK &&
1203 imap.br_startblock != DELAYSTARTBLOCK) {
87cbc49c
NS
1204 /*
1205 * For unwritten extents do not report a disk address on
1da177e4
LT
1206 * the read case (treat as if we're reading into a hole).
1207 */
207d0416
CH
1208 if (create || !ISUNWRITTEN(&imap))
1209 xfs_map_buffer(inode, bh_result, &imap, offset);
1210 if (create && ISUNWRITTEN(&imap)) {
1da177e4
LT
1211 if (direct)
1212 bh_result->b_private = inode;
1213 set_buffer_unwritten(bh_result);
1da177e4
LT
1214 }
1215 }
1216
c2536668
NS
1217 /*
1218 * If this is a realtime file, data may be on a different device.
1219 * to that pointed to from the buffer_head b_bdev currently.
1220 */
046f1685 1221 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1da177e4 1222
c2536668 1223 /*
549054af
DC
1224 * If we previously allocated a block out beyond eof and we are now
1225 * coming back to use it then we will need to flag it as new even if it
1226 * has a disk address.
1227 *
1228 * With sub-block writes into unwritten extents we also need to mark
1229 * the buffer as new so that the unwritten parts of the buffer gets
1230 * correctly zeroed.
1da177e4
LT
1231 */
1232 if (create &&
1233 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
549054af 1234 (offset >= i_size_read(inode)) ||
207d0416 1235 (new || ISUNWRITTEN(&imap))))
1da177e4 1236 set_buffer_new(bh_result);
1da177e4 1237
207d0416 1238 if (imap.br_startblock == DELAYSTARTBLOCK) {
1da177e4
LT
1239 BUG_ON(direct);
1240 if (create) {
1241 set_buffer_uptodate(bh_result);
1242 set_buffer_mapped(bh_result);
1243 set_buffer_delay(bh_result);
1244 }
1245 }
1246
2b8f12b7
CH
1247 /*
1248 * If this is O_DIRECT or the mpage code calling tell them how large
1249 * the mapping is, so that we can avoid repeated get_blocks calls.
1250 */
c2536668 1251 if (direct || size > (1 << inode->i_blkbits)) {
2b8f12b7
CH
1252 xfs_off_t mapping_size;
1253
1254 mapping_size = imap.br_startoff + imap.br_blockcount - iblock;
1255 mapping_size <<= inode->i_blkbits;
1256
1257 ASSERT(mapping_size > 0);
1258 if (mapping_size > size)
1259 mapping_size = size;
1260 if (mapping_size > LONG_MAX)
1261 mapping_size = LONG_MAX;
1262
1263 bh_result->b_size = mapping_size;
1da177e4
LT
1264 }
1265
1266 return 0;
a206c817
CH
1267
1268out_unlock:
1269 xfs_iunlock(ip, lockmode);
1270 return -error;
1da177e4
LT
1271}
1272
1273int
c2536668 1274xfs_get_blocks(
1da177e4
LT
1275 struct inode *inode,
1276 sector_t iblock,
1277 struct buffer_head *bh_result,
1278 int create)
1279{
f2bde9b8 1280 return __xfs_get_blocks(inode, iblock, bh_result, create, 0);
1da177e4
LT
1281}
1282
1283STATIC int
e4c573bb 1284xfs_get_blocks_direct(
1da177e4
LT
1285 struct inode *inode,
1286 sector_t iblock,
1da177e4
LT
1287 struct buffer_head *bh_result,
1288 int create)
1289{
f2bde9b8 1290 return __xfs_get_blocks(inode, iblock, bh_result, create, 1);
1da177e4
LT
1291}
1292
209fb87a
CH
1293/*
1294 * Complete a direct I/O write request.
1295 *
1296 * If the private argument is non-NULL __xfs_get_blocks signals us that we
1297 * need to issue a transaction to convert the range from unwritten to written
1298 * extents. In case this is regular synchronous I/O we just call xfs_end_io
1299 * to do this and we are done. But in case this was a successfull AIO
1300 * request this handler is called from interrupt context, from which we
1301 * can't start transactions. In that case offload the I/O completion to
1302 * the workqueues we also use for buffered I/O completion.
1303 */
f0973863 1304STATIC void
209fb87a
CH
1305xfs_end_io_direct_write(
1306 struct kiocb *iocb,
1307 loff_t offset,
1308 ssize_t size,
1309 void *private,
1310 int ret,
1311 bool is_async)
f0973863 1312{
209fb87a 1313 struct xfs_ioend *ioend = iocb->private;
f0973863
CH
1314
1315 /*
209fb87a
CH
1316 * blockdev_direct_IO can return an error even after the I/O
1317 * completion handler was called. Thus we need to protect
1318 * against double-freeing.
f0973863 1319 */
209fb87a
CH
1320 iocb->private = NULL;
1321
ba87ea69
LM
1322 ioend->io_offset = offset;
1323 ioend->io_size = size;
209fb87a
CH
1324 if (private && size > 0)
1325 ioend->io_type = IO_UNWRITTEN;
1326
1327 if (is_async) {
1328 /*
1329 * If we are converting an unwritten extent we need to delay
1330 * the AIO completion until after the unwrittent extent
1331 * conversion has completed, otherwise do it ASAP.
1332 */
1333 if (ioend->io_type == IO_UNWRITTEN) {
fb511f21
CH
1334 ioend->io_iocb = iocb;
1335 ioend->io_result = ret;
fb511f21 1336 } else {
209fb87a 1337 aio_complete(iocb, ret, 0);
fb511f21 1338 }
209fb87a 1339 xfs_finish_ioend(ioend);
f0973863 1340 } else {
209fb87a 1341 xfs_finish_ioend_sync(ioend);
f0973863 1342 }
f0973863
CH
1343}
1344
1da177e4 1345STATIC ssize_t
e4c573bb 1346xfs_vm_direct_IO(
1da177e4
LT
1347 int rw,
1348 struct kiocb *iocb,
1349 const struct iovec *iov,
1350 loff_t offset,
1351 unsigned long nr_segs)
1352{
209fb87a
CH
1353 struct inode *inode = iocb->ki_filp->f_mapping->host;
1354 struct block_device *bdev = xfs_find_bdev_for_inode(inode);
1355 ssize_t ret;
1356
1357 if (rw & WRITE) {
a206c817 1358 iocb->private = xfs_alloc_ioend(inode, IO_DIRECT);
209fb87a 1359
eafdc7d1
CH
1360 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1361 offset, nr_segs,
1362 xfs_get_blocks_direct,
1363 xfs_end_io_direct_write, NULL, 0);
209fb87a
CH
1364 if (ret != -EIOCBQUEUED && iocb->private)
1365 xfs_destroy_ioend(iocb->private);
1366 } else {
eafdc7d1
CH
1367 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1368 offset, nr_segs,
1369 xfs_get_blocks_direct,
1370 NULL, NULL, 0);
209fb87a 1371 }
f0973863 1372
f0973863 1373 return ret;
1da177e4
LT
1374}
1375
fa9b227e
CH
1376STATIC void
1377xfs_vm_write_failed(
1378 struct address_space *mapping,
1379 loff_t to)
1380{
1381 struct inode *inode = mapping->host;
1382
1383 if (to > inode->i_size) {
c726de44
DC
1384 /*
1385 * punch out the delalloc blocks we have already allocated. We
1386 * don't call xfs_setattr() to do this as we may be in the
1387 * middle of a multi-iovec write and so the vfs inode->i_size
1388 * will not match the xfs ip->i_size and so it will zero too
1389 * much. Hence we jus truncate the page cache to zero what is
1390 * necessary and punch the delalloc blocks directly.
1391 */
1392 struct xfs_inode *ip = XFS_I(inode);
1393 xfs_fileoff_t start_fsb;
1394 xfs_fileoff_t end_fsb;
1395 int error;
1396
1397 truncate_pagecache(inode, to, inode->i_size);
1398
1399 /*
1400 * Check if there are any blocks that are outside of i_size
1401 * that need to be trimmed back.
1402 */
1403 start_fsb = XFS_B_TO_FSB(ip->i_mount, inode->i_size) + 1;
1404 end_fsb = XFS_B_TO_FSB(ip->i_mount, to);
1405 if (end_fsb <= start_fsb)
1406 return;
1407
1408 xfs_ilock(ip, XFS_ILOCK_EXCL);
1409 error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1410 end_fsb - start_fsb);
1411 if (error) {
1412 /* something screwed, just bail */
1413 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1414 xfs_fs_cmn_err(CE_ALERT, ip->i_mount,
1415 "xfs_vm_write_failed: unable to clean up ino %lld",
1416 ip->i_ino);
1417 }
1418 }
1419 xfs_iunlock(ip, XFS_ILOCK_EXCL);
fa9b227e
CH
1420 }
1421}
1422
f51623b2 1423STATIC int
d79689c7 1424xfs_vm_write_begin(
f51623b2 1425 struct file *file,
d79689c7
NP
1426 struct address_space *mapping,
1427 loff_t pos,
1428 unsigned len,
1429 unsigned flags,
1430 struct page **pagep,
1431 void **fsdata)
f51623b2 1432{
155130a4
CH
1433 int ret;
1434
1435 ret = block_write_begin(mapping, pos, len, flags | AOP_FLAG_NOFS,
1436 pagep, xfs_get_blocks);
fa9b227e
CH
1437 if (unlikely(ret))
1438 xfs_vm_write_failed(mapping, pos + len);
1439 return ret;
1440}
1441
1442STATIC int
1443xfs_vm_write_end(
1444 struct file *file,
1445 struct address_space *mapping,
1446 loff_t pos,
1447 unsigned len,
1448 unsigned copied,
1449 struct page *page,
1450 void *fsdata)
1451{
1452 int ret;
155130a4 1453
fa9b227e
CH
1454 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
1455 if (unlikely(ret < len))
1456 xfs_vm_write_failed(mapping, pos + len);
155130a4 1457 return ret;
f51623b2 1458}
1da177e4
LT
1459
1460STATIC sector_t
e4c573bb 1461xfs_vm_bmap(
1da177e4
LT
1462 struct address_space *mapping,
1463 sector_t block)
1464{
1465 struct inode *inode = (struct inode *)mapping->host;
739bfb2a 1466 struct xfs_inode *ip = XFS_I(inode);
1da177e4 1467
cca28fb8 1468 trace_xfs_vm_bmap(XFS_I(inode));
126468b1 1469 xfs_ilock(ip, XFS_IOLOCK_SHARED);
739bfb2a 1470 xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF);
126468b1 1471 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
c2536668 1472 return generic_block_bmap(mapping, block, xfs_get_blocks);
1da177e4
LT
1473}
1474
1475STATIC int
e4c573bb 1476xfs_vm_readpage(
1da177e4
LT
1477 struct file *unused,
1478 struct page *page)
1479{
c2536668 1480 return mpage_readpage(page, xfs_get_blocks);
1da177e4
LT
1481}
1482
1483STATIC int
e4c573bb 1484xfs_vm_readpages(
1da177e4
LT
1485 struct file *unused,
1486 struct address_space *mapping,
1487 struct list_head *pages,
1488 unsigned nr_pages)
1489{
c2536668 1490 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1da177e4
LT
1491}
1492
f5e54d6e 1493const struct address_space_operations xfs_address_space_operations = {
e4c573bb
NS
1494 .readpage = xfs_vm_readpage,
1495 .readpages = xfs_vm_readpages,
1496 .writepage = xfs_vm_writepage,
7d4fb40a 1497 .writepages = xfs_vm_writepages,
1da177e4 1498 .sync_page = block_sync_page,
238f4c54
NS
1499 .releasepage = xfs_vm_releasepage,
1500 .invalidatepage = xfs_vm_invalidatepage,
d79689c7 1501 .write_begin = xfs_vm_write_begin,
fa9b227e 1502 .write_end = xfs_vm_write_end,
e4c573bb
NS
1503 .bmap = xfs_vm_bmap,
1504 .direct_IO = xfs_vm_direct_IO,
e965f963 1505 .migratepage = buffer_migrate_page,
bddaafa1 1506 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 1507 .error_remove_page = generic_error_remove_page,
1da177e4 1508};