xfs: move aio completion after unwritten extent conversion
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / xfs / linux-2.6 / xfs_aops.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_bit.h"
1da177e4 20#include "xfs_log.h"
a844f451 21#include "xfs_inum.h"
1da177e4 22#include "xfs_sb.h"
a844f451 23#include "xfs_ag.h"
1da177e4 24#include "xfs_trans.h"
1da177e4
LT
25#include "xfs_mount.h"
26#include "xfs_bmap_btree.h"
1da177e4
LT
27#include "xfs_dinode.h"
28#include "xfs_inode.h"
a844f451 29#include "xfs_alloc.h"
1da177e4
LT
30#include "xfs_error.h"
31#include "xfs_rw.h"
32#include "xfs_iomap.h"
739bfb2a 33#include "xfs_vnodeops.h"
0b1b213f 34#include "xfs_trace.h"
3ed3a434 35#include "xfs_bmap.h"
5a0e3ad6 36#include <linux/gfp.h>
1da177e4 37#include <linux/mpage.h>
10ce4444 38#include <linux/pagevec.h>
1da177e4
LT
39#include <linux/writeback.h>
40
34a52c6c
CH
41/*
42 * Types of I/O for bmap clustering and I/O completion tracking.
43 */
44enum {
45 IO_READ, /* mapping for a read */
46 IO_DELAY, /* mapping covers delalloc region */
47 IO_UNWRITTEN, /* mapping covers allocated but uninitialized data */
48 IO_NEW /* just allocated */
49};
25e41b3d
CH
50
51/*
52 * Prime number of hash buckets since address is used as the key.
53 */
54#define NVSYNC 37
55#define to_ioend_wq(v) (&xfs_ioend_wq[((unsigned long)v) % NVSYNC])
56static wait_queue_head_t xfs_ioend_wq[NVSYNC];
57
58void __init
59xfs_ioend_init(void)
60{
61 int i;
62
63 for (i = 0; i < NVSYNC; i++)
64 init_waitqueue_head(&xfs_ioend_wq[i]);
65}
66
67void
68xfs_ioend_wait(
69 xfs_inode_t *ip)
70{
71 wait_queue_head_t *wq = to_ioend_wq(ip);
72
73 wait_event(*wq, (atomic_read(&ip->i_iocount) == 0));
74}
75
76STATIC void
77xfs_ioend_wake(
78 xfs_inode_t *ip)
79{
80 if (atomic_dec_and_test(&ip->i_iocount))
81 wake_up(to_ioend_wq(ip));
82}
83
0b1b213f 84void
f51623b2
NS
85xfs_count_page_state(
86 struct page *page,
87 int *delalloc,
f51623b2
NS
88 int *unwritten)
89{
90 struct buffer_head *bh, *head;
91
20cb52eb 92 *delalloc = *unwritten = 0;
f51623b2
NS
93
94 bh = head = page_buffers(page);
95 do {
20cb52eb 96 if (buffer_unwritten(bh))
f51623b2
NS
97 (*unwritten) = 1;
98 else if (buffer_delay(bh))
99 (*delalloc) = 1;
100 } while ((bh = bh->b_this_page) != head);
101}
102
6214ed44
CH
103STATIC struct block_device *
104xfs_find_bdev_for_inode(
046f1685 105 struct inode *inode)
6214ed44 106{
046f1685 107 struct xfs_inode *ip = XFS_I(inode);
6214ed44
CH
108 struct xfs_mount *mp = ip->i_mount;
109
71ddabb9 110 if (XFS_IS_REALTIME_INODE(ip))
6214ed44
CH
111 return mp->m_rtdev_targp->bt_bdev;
112 else
113 return mp->m_ddev_targp->bt_bdev;
114}
115
f6d6d4fc
CH
116/*
117 * We're now finished for good with this ioend structure.
118 * Update the page state via the associated buffer_heads,
119 * release holds on the inode and bio, and finally free
120 * up memory. Do not use the ioend after this.
121 */
0829c360
CH
122STATIC void
123xfs_destroy_ioend(
124 xfs_ioend_t *ioend)
125{
f6d6d4fc 126 struct buffer_head *bh, *next;
583fa586 127 struct xfs_inode *ip = XFS_I(ioend->io_inode);
f6d6d4fc
CH
128
129 for (bh = ioend->io_buffer_head; bh; bh = next) {
130 next = bh->b_private;
7d04a335 131 bh->b_end_io(bh, !ioend->io_error);
f6d6d4fc 132 }
583fa586
CH
133
134 /*
135 * Volume managers supporting multiple paths can send back ENODEV
136 * when the final path disappears. In this case continuing to fill
137 * the page cache with dirty data which cannot be written out is
138 * evil, so prevent that.
139 */
140 if (unlikely(ioend->io_error == -ENODEV)) {
141 xfs_do_force_shutdown(ip->i_mount, SHUTDOWN_DEVICE_REQ,
142 __FILE__, __LINE__);
b677c210 143 }
583fa586 144
25e41b3d 145 xfs_ioend_wake(ip);
0829c360
CH
146 mempool_free(ioend, xfs_ioend_pool);
147}
148
932640e8
DC
149/*
150 * If the end of the current ioend is beyond the current EOF,
151 * return the new EOF value, otherwise zero.
152 */
153STATIC xfs_fsize_t
154xfs_ioend_new_eof(
155 xfs_ioend_t *ioend)
156{
157 xfs_inode_t *ip = XFS_I(ioend->io_inode);
158 xfs_fsize_t isize;
159 xfs_fsize_t bsize;
160
161 bsize = ioend->io_offset + ioend->io_size;
162 isize = MAX(ip->i_size, ip->i_new_size);
163 isize = MIN(isize, bsize);
164 return isize > ip->i_d.di_size ? isize : 0;
165}
166
ba87ea69 167/*
77d7a0c2
DC
168 * Update on-disk file size now that data has been written to disk. The
169 * current in-memory file size is i_size. If a write is beyond eof i_new_size
170 * will be the intended file size until i_size is updated. If this write does
171 * not extend all the way to the valid file size then restrict this update to
172 * the end of the write.
173 *
174 * This function does not block as blocking on the inode lock in IO completion
175 * can lead to IO completion order dependency deadlocks.. If it can't get the
176 * inode ilock it will return EAGAIN. Callers must handle this.
ba87ea69 177 */
77d7a0c2 178STATIC int
ba87ea69
LM
179xfs_setfilesize(
180 xfs_ioend_t *ioend)
181{
b677c210 182 xfs_inode_t *ip = XFS_I(ioend->io_inode);
ba87ea69 183 xfs_fsize_t isize;
ba87ea69 184
ba87ea69 185 ASSERT((ip->i_d.di_mode & S_IFMT) == S_IFREG);
34a52c6c 186 ASSERT(ioend->io_type != IO_READ);
ba87ea69
LM
187
188 if (unlikely(ioend->io_error))
77d7a0c2
DC
189 return 0;
190
191 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
192 return EAGAIN;
ba87ea69 193
932640e8
DC
194 isize = xfs_ioend_new_eof(ioend);
195 if (isize) {
ba87ea69 196 ip->i_d.di_size = isize;
66d834ea 197 xfs_mark_inode_dirty(ip);
ba87ea69
LM
198 }
199
200 xfs_iunlock(ip, XFS_ILOCK_EXCL);
77d7a0c2
DC
201 return 0;
202}
203
204/*
205 * Schedule IO completion handling on a xfsdatad if this was
206 * the final hold on this ioend. If we are asked to wait,
207 * flush the workqueue.
208 */
209STATIC void
210xfs_finish_ioend(
211 xfs_ioend_t *ioend,
212 int wait)
213{
214 if (atomic_dec_and_test(&ioend->io_remaining)) {
215 struct workqueue_struct *wq;
216
34a52c6c 217 wq = (ioend->io_type == IO_UNWRITTEN) ?
77d7a0c2
DC
218 xfsconvertd_workqueue : xfsdatad_workqueue;
219 queue_work(wq, &ioend->io_work);
220 if (wait)
221 flush_workqueue(wq);
222 }
ba87ea69
LM
223}
224
0829c360 225/*
5ec4fabb 226 * IO write completion.
f6d6d4fc
CH
227 */
228STATIC void
5ec4fabb 229xfs_end_io(
77d7a0c2 230 struct work_struct *work)
0829c360 231{
77d7a0c2
DC
232 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
233 struct xfs_inode *ip = XFS_I(ioend->io_inode);
69418932 234 int error = 0;
ba87ea69 235
5ec4fabb
CH
236 /*
237 * For unwritten extents we need to issue transactions to convert a
238 * range to normal written extens after the data I/O has finished.
239 */
34a52c6c 240 if (ioend->io_type == IO_UNWRITTEN &&
5ec4fabb 241 likely(!ioend->io_error && !XFS_FORCED_SHUTDOWN(ip->i_mount))) {
5ec4fabb
CH
242
243 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
244 ioend->io_size);
245 if (error)
246 ioend->io_error = error;
247 }
ba87ea69 248
5ec4fabb
CH
249 /*
250 * We might have to update the on-disk file size after extending
251 * writes.
252 */
34a52c6c 253 if (ioend->io_type != IO_READ) {
77d7a0c2
DC
254 error = xfs_setfilesize(ioend);
255 ASSERT(!error || error == EAGAIN);
c626d174 256 }
77d7a0c2
DC
257
258 /*
259 * If we didn't complete processing of the ioend, requeue it to the
260 * tail of the workqueue for another attempt later. Otherwise destroy
261 * it.
262 */
263 if (error == EAGAIN) {
264 atomic_inc(&ioend->io_remaining);
265 xfs_finish_ioend(ioend, 0);
266 /* ensure we don't spin on blocked ioends */
267 delay(1);
fb511f21
CH
268 } else {
269 if (ioend->io_iocb)
270 aio_complete(ioend->io_iocb, ioend->io_result, 0);
77d7a0c2 271 xfs_destroy_ioend(ioend);
fb511f21 272 }
c626d174
DC
273}
274
0829c360
CH
275/*
276 * Allocate and initialise an IO completion structure.
277 * We need to track unwritten extent write completion here initially.
278 * We'll need to extend this for updating the ondisk inode size later
279 * (vs. incore size).
280 */
281STATIC xfs_ioend_t *
282xfs_alloc_ioend(
f6d6d4fc
CH
283 struct inode *inode,
284 unsigned int type)
0829c360
CH
285{
286 xfs_ioend_t *ioend;
287
288 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
289
290 /*
291 * Set the count to 1 initially, which will prevent an I/O
292 * completion callback from happening before we have started
293 * all the I/O from calling the completion routine too early.
294 */
295 atomic_set(&ioend->io_remaining, 1);
7d04a335 296 ioend->io_error = 0;
f6d6d4fc
CH
297 ioend->io_list = NULL;
298 ioend->io_type = type;
b677c210 299 ioend->io_inode = inode;
c1a073bd 300 ioend->io_buffer_head = NULL;
f6d6d4fc 301 ioend->io_buffer_tail = NULL;
b677c210 302 atomic_inc(&XFS_I(ioend->io_inode)->i_iocount);
0829c360
CH
303 ioend->io_offset = 0;
304 ioend->io_size = 0;
fb511f21
CH
305 ioend->io_iocb = NULL;
306 ioend->io_result = 0;
0829c360 307
5ec4fabb 308 INIT_WORK(&ioend->io_work, xfs_end_io);
0829c360
CH
309 return ioend;
310}
311
1da177e4
LT
312STATIC int
313xfs_map_blocks(
314 struct inode *inode,
315 loff_t offset,
316 ssize_t count,
207d0416 317 struct xfs_bmbt_irec *imap,
1da177e4
LT
318 int flags)
319{
6bd16ff2 320 int nmaps = 1;
207d0416 321 int new = 0;
6bd16ff2 322
207d0416 323 return -xfs_iomap(XFS_I(inode), offset, count, flags, imap, &nmaps, &new);
1da177e4
LT
324}
325
b8f82a4a 326STATIC int
558e6891 327xfs_imap_valid(
8699bb0a 328 struct inode *inode,
207d0416 329 struct xfs_bmbt_irec *imap,
558e6891 330 xfs_off_t offset)
1da177e4 331{
558e6891 332 offset >>= inode->i_blkbits;
8699bb0a 333
558e6891
CH
334 return offset >= imap->br_startoff &&
335 offset < imap->br_startoff + imap->br_blockcount;
1da177e4
LT
336}
337
f6d6d4fc
CH
338/*
339 * BIO completion handler for buffered IO.
340 */
782e3b3b 341STATIC void
f6d6d4fc
CH
342xfs_end_bio(
343 struct bio *bio,
f6d6d4fc
CH
344 int error)
345{
346 xfs_ioend_t *ioend = bio->bi_private;
347
f6d6d4fc 348 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
7d04a335 349 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
f6d6d4fc
CH
350
351 /* Toss bio and pass work off to an xfsdatad thread */
f6d6d4fc
CH
352 bio->bi_private = NULL;
353 bio->bi_end_io = NULL;
f6d6d4fc 354 bio_put(bio);
7d04a335 355
e927af90 356 xfs_finish_ioend(ioend, 0);
f6d6d4fc
CH
357}
358
359STATIC void
360xfs_submit_ioend_bio(
06342cf8
CH
361 struct writeback_control *wbc,
362 xfs_ioend_t *ioend,
363 struct bio *bio)
f6d6d4fc
CH
364{
365 atomic_inc(&ioend->io_remaining);
f6d6d4fc
CH
366 bio->bi_private = ioend;
367 bio->bi_end_io = xfs_end_bio;
368
932640e8
DC
369 /*
370 * If the I/O is beyond EOF we mark the inode dirty immediately
371 * but don't update the inode size until I/O completion.
372 */
373 if (xfs_ioend_new_eof(ioend))
66d834ea 374 xfs_mark_inode_dirty(XFS_I(ioend->io_inode));
932640e8 375
06342cf8
CH
376 submit_bio(wbc->sync_mode == WB_SYNC_ALL ?
377 WRITE_SYNC_PLUG : WRITE, bio);
f6d6d4fc
CH
378 ASSERT(!bio_flagged(bio, BIO_EOPNOTSUPP));
379 bio_put(bio);
380}
381
382STATIC struct bio *
383xfs_alloc_ioend_bio(
384 struct buffer_head *bh)
385{
386 struct bio *bio;
387 int nvecs = bio_get_nr_vecs(bh->b_bdev);
388
389 do {
390 bio = bio_alloc(GFP_NOIO, nvecs);
391 nvecs >>= 1;
392 } while (!bio);
393
394 ASSERT(bio->bi_private == NULL);
395 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
396 bio->bi_bdev = bh->b_bdev;
397 bio_get(bio);
398 return bio;
399}
400
401STATIC void
402xfs_start_buffer_writeback(
403 struct buffer_head *bh)
404{
405 ASSERT(buffer_mapped(bh));
406 ASSERT(buffer_locked(bh));
407 ASSERT(!buffer_delay(bh));
408 ASSERT(!buffer_unwritten(bh));
409
410 mark_buffer_async_write(bh);
411 set_buffer_uptodate(bh);
412 clear_buffer_dirty(bh);
413}
414
415STATIC void
416xfs_start_page_writeback(
417 struct page *page,
f6d6d4fc
CH
418 int clear_dirty,
419 int buffers)
420{
421 ASSERT(PageLocked(page));
422 ASSERT(!PageWriteback(page));
f6d6d4fc 423 if (clear_dirty)
92132021
DC
424 clear_page_dirty_for_io(page);
425 set_page_writeback(page);
f6d6d4fc 426 unlock_page(page);
1f7decf6
FW
427 /* If no buffers on the page are to be written, finish it here */
428 if (!buffers)
f6d6d4fc 429 end_page_writeback(page);
f6d6d4fc
CH
430}
431
432static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
433{
434 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
435}
436
437/*
d88992f6
DC
438 * Submit all of the bios for all of the ioends we have saved up, covering the
439 * initial writepage page and also any probed pages.
440 *
441 * Because we may have multiple ioends spanning a page, we need to start
442 * writeback on all the buffers before we submit them for I/O. If we mark the
443 * buffers as we got, then we can end up with a page that only has buffers
444 * marked async write and I/O complete on can occur before we mark the other
445 * buffers async write.
446 *
447 * The end result of this is that we trip a bug in end_page_writeback() because
448 * we call it twice for the one page as the code in end_buffer_async_write()
449 * assumes that all buffers on the page are started at the same time.
450 *
451 * The fix is two passes across the ioend list - one to start writeback on the
c41564b5 452 * buffer_heads, and then submit them for I/O on the second pass.
f6d6d4fc
CH
453 */
454STATIC void
455xfs_submit_ioend(
06342cf8 456 struct writeback_control *wbc,
f6d6d4fc
CH
457 xfs_ioend_t *ioend)
458{
d88992f6 459 xfs_ioend_t *head = ioend;
f6d6d4fc
CH
460 xfs_ioend_t *next;
461 struct buffer_head *bh;
462 struct bio *bio;
463 sector_t lastblock = 0;
464
d88992f6
DC
465 /* Pass 1 - start writeback */
466 do {
467 next = ioend->io_list;
468 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
469 xfs_start_buffer_writeback(bh);
470 }
471 } while ((ioend = next) != NULL);
472
473 /* Pass 2 - submit I/O */
474 ioend = head;
f6d6d4fc
CH
475 do {
476 next = ioend->io_list;
477 bio = NULL;
478
479 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
f6d6d4fc
CH
480
481 if (!bio) {
482 retry:
483 bio = xfs_alloc_ioend_bio(bh);
484 } else if (bh->b_blocknr != lastblock + 1) {
06342cf8 485 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
486 goto retry;
487 }
488
489 if (bio_add_buffer(bio, bh) != bh->b_size) {
06342cf8 490 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
491 goto retry;
492 }
493
494 lastblock = bh->b_blocknr;
495 }
496 if (bio)
06342cf8 497 xfs_submit_ioend_bio(wbc, ioend, bio);
e927af90 498 xfs_finish_ioend(ioend, 0);
f6d6d4fc
CH
499 } while ((ioend = next) != NULL);
500}
501
502/*
503 * Cancel submission of all buffer_heads so far in this endio.
504 * Toss the endio too. Only ever called for the initial page
505 * in a writepage request, so only ever one page.
506 */
507STATIC void
508xfs_cancel_ioend(
509 xfs_ioend_t *ioend)
510{
511 xfs_ioend_t *next;
512 struct buffer_head *bh, *next_bh;
513
514 do {
515 next = ioend->io_list;
516 bh = ioend->io_buffer_head;
517 do {
518 next_bh = bh->b_private;
519 clear_buffer_async_write(bh);
520 unlock_buffer(bh);
521 } while ((bh = next_bh) != NULL);
522
25e41b3d 523 xfs_ioend_wake(XFS_I(ioend->io_inode));
f6d6d4fc
CH
524 mempool_free(ioend, xfs_ioend_pool);
525 } while ((ioend = next) != NULL);
526}
527
528/*
529 * Test to see if we've been building up a completion structure for
530 * earlier buffers -- if so, we try to append to this ioend if we
531 * can, otherwise we finish off any current ioend and start another.
532 * Return true if we've finished the given ioend.
533 */
534STATIC void
535xfs_add_to_ioend(
536 struct inode *inode,
537 struct buffer_head *bh,
7336cea8 538 xfs_off_t offset,
f6d6d4fc
CH
539 unsigned int type,
540 xfs_ioend_t **result,
541 int need_ioend)
542{
543 xfs_ioend_t *ioend = *result;
544
545 if (!ioend || need_ioend || type != ioend->io_type) {
546 xfs_ioend_t *previous = *result;
f6d6d4fc 547
f6d6d4fc
CH
548 ioend = xfs_alloc_ioend(inode, type);
549 ioend->io_offset = offset;
550 ioend->io_buffer_head = bh;
551 ioend->io_buffer_tail = bh;
552 if (previous)
553 previous->io_list = ioend;
554 *result = ioend;
555 } else {
556 ioend->io_buffer_tail->b_private = bh;
557 ioend->io_buffer_tail = bh;
558 }
559
560 bh->b_private = NULL;
561 ioend->io_size += bh->b_size;
562}
563
87cbc49c
NS
564STATIC void
565xfs_map_buffer(
046f1685 566 struct inode *inode,
87cbc49c 567 struct buffer_head *bh,
207d0416 568 struct xfs_bmbt_irec *imap,
046f1685 569 xfs_off_t offset)
87cbc49c
NS
570{
571 sector_t bn;
8699bb0a 572 struct xfs_mount *m = XFS_I(inode)->i_mount;
207d0416
CH
573 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
574 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
87cbc49c 575
207d0416
CH
576 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
577 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
87cbc49c 578
e513182d 579 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
8699bb0a 580 ((offset - iomap_offset) >> inode->i_blkbits);
87cbc49c 581
046f1685 582 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
87cbc49c
NS
583
584 bh->b_blocknr = bn;
585 set_buffer_mapped(bh);
586}
587
1da177e4
LT
588STATIC void
589xfs_map_at_offset(
046f1685 590 struct inode *inode,
1da177e4 591 struct buffer_head *bh,
207d0416 592 struct xfs_bmbt_irec *imap,
046f1685 593 xfs_off_t offset)
1da177e4 594{
207d0416
CH
595 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
596 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
1da177e4
LT
597
598 lock_buffer(bh);
207d0416 599 xfs_map_buffer(inode, bh, imap, offset);
046f1685 600 bh->b_bdev = xfs_find_bdev_for_inode(inode);
1da177e4
LT
601 set_buffer_mapped(bh);
602 clear_buffer_delay(bh);
f6d6d4fc 603 clear_buffer_unwritten(bh);
1da177e4
LT
604}
605
606/*
6c4fe19f 607 * Look for a page at index that is suitable for clustering.
1da177e4
LT
608 */
609STATIC unsigned int
6c4fe19f 610xfs_probe_page(
10ce4444 611 struct page *page,
20cb52eb 612 unsigned int pg_offset)
1da177e4 613{
20cb52eb 614 struct buffer_head *bh, *head;
1da177e4
LT
615 int ret = 0;
616
1da177e4 617 if (PageWriteback(page))
10ce4444 618 return 0;
20cb52eb
CH
619 if (!PageDirty(page))
620 return 0;
621 if (!page->mapping)
622 return 0;
623 if (!page_has_buffers(page))
624 return 0;
1da177e4 625
20cb52eb
CH
626 bh = head = page_buffers(page);
627 do {
628 if (!buffer_uptodate(bh))
629 break;
630 if (!buffer_mapped(bh))
631 break;
632 ret += bh->b_size;
633 if (ret >= pg_offset)
634 break;
635 } while ((bh = bh->b_this_page) != head);
1da177e4 636
1da177e4
LT
637 return ret;
638}
639
f6d6d4fc 640STATIC size_t
6c4fe19f 641xfs_probe_cluster(
1da177e4
LT
642 struct inode *inode,
643 struct page *startpage,
644 struct buffer_head *bh,
20cb52eb 645 struct buffer_head *head)
1da177e4 646{
10ce4444 647 struct pagevec pvec;
1da177e4 648 pgoff_t tindex, tlast, tloff;
10ce4444
CH
649 size_t total = 0;
650 int done = 0, i;
1da177e4
LT
651
652 /* First sum forwards in this page */
653 do {
20cb52eb 654 if (!buffer_uptodate(bh) || !buffer_mapped(bh))
10ce4444 655 return total;
1da177e4
LT
656 total += bh->b_size;
657 } while ((bh = bh->b_this_page) != head);
658
10ce4444
CH
659 /* if we reached the end of the page, sum forwards in following pages */
660 tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT;
661 tindex = startpage->index + 1;
662
663 /* Prune this back to avoid pathological behavior */
664 tloff = min(tlast, startpage->index + 64);
665
666 pagevec_init(&pvec, 0);
667 while (!done && tindex <= tloff) {
668 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
669
670 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
671 break;
672
673 for (i = 0; i < pagevec_count(&pvec); i++) {
674 struct page *page = pvec.pages[i];
265c1fac 675 size_t pg_offset, pg_len = 0;
10ce4444
CH
676
677 if (tindex == tlast) {
678 pg_offset =
679 i_size_read(inode) & (PAGE_CACHE_SIZE - 1);
1defeac9
CH
680 if (!pg_offset) {
681 done = 1;
10ce4444 682 break;
1defeac9 683 }
10ce4444
CH
684 } else
685 pg_offset = PAGE_CACHE_SIZE;
686
529ae9aa 687 if (page->index == tindex && trylock_page(page)) {
20cb52eb 688 pg_len = xfs_probe_page(page, pg_offset);
10ce4444
CH
689 unlock_page(page);
690 }
691
265c1fac 692 if (!pg_len) {
10ce4444
CH
693 done = 1;
694 break;
695 }
696
265c1fac 697 total += pg_len;
1defeac9 698 tindex++;
1da177e4 699 }
10ce4444
CH
700
701 pagevec_release(&pvec);
702 cond_resched();
1da177e4 703 }
10ce4444 704
1da177e4
LT
705 return total;
706}
707
708/*
10ce4444
CH
709 * Test if a given page is suitable for writing as part of an unwritten
710 * or delayed allocate extent.
1da177e4 711 */
10ce4444
CH
712STATIC int
713xfs_is_delayed_page(
714 struct page *page,
f6d6d4fc 715 unsigned int type)
1da177e4 716{
1da177e4 717 if (PageWriteback(page))
10ce4444 718 return 0;
1da177e4
LT
719
720 if (page->mapping && page_has_buffers(page)) {
721 struct buffer_head *bh, *head;
722 int acceptable = 0;
723
724 bh = head = page_buffers(page);
725 do {
f6d6d4fc 726 if (buffer_unwritten(bh))
34a52c6c 727 acceptable = (type == IO_UNWRITTEN);
f6d6d4fc 728 else if (buffer_delay(bh))
34a52c6c 729 acceptable = (type == IO_DELAY);
2ddee844 730 else if (buffer_dirty(bh) && buffer_mapped(bh))
34a52c6c 731 acceptable = (type == IO_NEW);
f6d6d4fc 732 else
1da177e4 733 break;
1da177e4
LT
734 } while ((bh = bh->b_this_page) != head);
735
736 if (acceptable)
10ce4444 737 return 1;
1da177e4
LT
738 }
739
10ce4444 740 return 0;
1da177e4
LT
741}
742
1da177e4
LT
743/*
744 * Allocate & map buffers for page given the extent map. Write it out.
745 * except for the original page of a writepage, this is called on
746 * delalloc/unwritten pages only, for the original page it is possible
747 * that the page has no mapping at all.
748 */
f6d6d4fc 749STATIC int
1da177e4
LT
750xfs_convert_page(
751 struct inode *inode,
752 struct page *page,
10ce4444 753 loff_t tindex,
207d0416 754 struct xfs_bmbt_irec *imap,
f6d6d4fc 755 xfs_ioend_t **ioendp,
1da177e4 756 struct writeback_control *wbc,
1da177e4
LT
757 int all_bh)
758{
f6d6d4fc 759 struct buffer_head *bh, *head;
9260dc6b
CH
760 xfs_off_t end_offset;
761 unsigned long p_offset;
f6d6d4fc 762 unsigned int type;
24e17b5f 763 int len, page_dirty;
f6d6d4fc 764 int count = 0, done = 0, uptodate = 1;
9260dc6b 765 xfs_off_t offset = page_offset(page);
1da177e4 766
10ce4444
CH
767 if (page->index != tindex)
768 goto fail;
529ae9aa 769 if (!trylock_page(page))
10ce4444
CH
770 goto fail;
771 if (PageWriteback(page))
772 goto fail_unlock_page;
773 if (page->mapping != inode->i_mapping)
774 goto fail_unlock_page;
775 if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
776 goto fail_unlock_page;
777
24e17b5f
NS
778 /*
779 * page_dirty is initially a count of buffers on the page before
c41564b5 780 * EOF and is decremented as we move each into a cleanable state.
9260dc6b
CH
781 *
782 * Derivation:
783 *
784 * End offset is the highest offset that this page should represent.
785 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
786 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
787 * hence give us the correct page_dirty count. On any other page,
788 * it will be zero and in that case we need page_dirty to be the
789 * count of buffers on the page.
24e17b5f 790 */
9260dc6b
CH
791 end_offset = min_t(unsigned long long,
792 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
793 i_size_read(inode));
794
24e17b5f 795 len = 1 << inode->i_blkbits;
9260dc6b
CH
796 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
797 PAGE_CACHE_SIZE);
798 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
799 page_dirty = p_offset / len;
24e17b5f 800
1da177e4
LT
801 bh = head = page_buffers(page);
802 do {
9260dc6b 803 if (offset >= end_offset)
1da177e4 804 break;
f6d6d4fc
CH
805 if (!buffer_uptodate(bh))
806 uptodate = 0;
807 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
808 done = 1;
1da177e4 809 continue;
f6d6d4fc
CH
810 }
811
9260dc6b
CH
812 if (buffer_unwritten(bh) || buffer_delay(bh)) {
813 if (buffer_unwritten(bh))
34a52c6c 814 type = IO_UNWRITTEN;
9260dc6b 815 else
34a52c6c 816 type = IO_DELAY;
9260dc6b 817
558e6891 818 if (!xfs_imap_valid(inode, imap, offset)) {
f6d6d4fc 819 done = 1;
9260dc6b
CH
820 continue;
821 }
822
207d0416
CH
823 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
824 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
9260dc6b 825
207d0416 826 xfs_map_at_offset(inode, bh, imap, offset);
89f3b363
CH
827 xfs_add_to_ioend(inode, bh, offset, type,
828 ioendp, done);
829
9260dc6b
CH
830 page_dirty--;
831 count++;
832 } else {
34a52c6c 833 type = IO_NEW;
89f3b363 834 if (buffer_mapped(bh) && all_bh) {
1da177e4 835 lock_buffer(bh);
7336cea8 836 xfs_add_to_ioend(inode, bh, offset,
f6d6d4fc
CH
837 type, ioendp, done);
838 count++;
24e17b5f 839 page_dirty--;
9260dc6b
CH
840 } else {
841 done = 1;
1da177e4 842 }
1da177e4 843 }
7336cea8 844 } while (offset += len, (bh = bh->b_this_page) != head);
1da177e4 845
f6d6d4fc
CH
846 if (uptodate && bh == head)
847 SetPageUptodate(page);
848
89f3b363
CH
849 if (count) {
850 wbc->nr_to_write--;
851 if (wbc->nr_to_write <= 0)
852 done = 1;
1da177e4 853 }
89f3b363 854 xfs_start_page_writeback(page, !page_dirty, count);
f6d6d4fc
CH
855
856 return done;
10ce4444
CH
857 fail_unlock_page:
858 unlock_page(page);
859 fail:
860 return 1;
1da177e4
LT
861}
862
863/*
864 * Convert & write out a cluster of pages in the same extent as defined
865 * by mp and following the start page.
866 */
867STATIC void
868xfs_cluster_write(
869 struct inode *inode,
870 pgoff_t tindex,
207d0416 871 struct xfs_bmbt_irec *imap,
f6d6d4fc 872 xfs_ioend_t **ioendp,
1da177e4 873 struct writeback_control *wbc,
1da177e4
LT
874 int all_bh,
875 pgoff_t tlast)
876{
10ce4444
CH
877 struct pagevec pvec;
878 int done = 0, i;
1da177e4 879
10ce4444
CH
880 pagevec_init(&pvec, 0);
881 while (!done && tindex <= tlast) {
882 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
883
884 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
1da177e4 885 break;
10ce4444
CH
886
887 for (i = 0; i < pagevec_count(&pvec); i++) {
888 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
89f3b363 889 imap, ioendp, wbc, all_bh);
10ce4444
CH
890 if (done)
891 break;
892 }
893
894 pagevec_release(&pvec);
895 cond_resched();
1da177e4
LT
896 }
897}
898
3ed3a434
DC
899STATIC void
900xfs_vm_invalidatepage(
901 struct page *page,
902 unsigned long offset)
903{
904 trace_xfs_invalidatepage(page->mapping->host, page, offset);
905 block_invalidatepage(page, offset);
906}
907
908/*
909 * If the page has delalloc buffers on it, we need to punch them out before we
910 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
911 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
912 * is done on that same region - the delalloc extent is returned when none is
913 * supposed to be there.
914 *
915 * We prevent this by truncating away the delalloc regions on the page before
916 * invalidating it. Because they are delalloc, we can do this without needing a
917 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
918 * truncation without a transaction as there is no space left for block
919 * reservation (typically why we see a ENOSPC in writeback).
920 *
921 * This is not a performance critical path, so for now just do the punching a
922 * buffer head at a time.
923 */
924STATIC void
925xfs_aops_discard_page(
926 struct page *page)
927{
928 struct inode *inode = page->mapping->host;
929 struct xfs_inode *ip = XFS_I(inode);
930 struct buffer_head *bh, *head;
931 loff_t offset = page_offset(page);
932 ssize_t len = 1 << inode->i_blkbits;
933
34a52c6c 934 if (!xfs_is_delayed_page(page, IO_DELAY))
3ed3a434
DC
935 goto out_invalidate;
936
e8c3753c
DC
937 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
938 goto out_invalidate;
939
3ed3a434
DC
940 xfs_fs_cmn_err(CE_ALERT, ip->i_mount,
941 "page discard on page %p, inode 0x%llx, offset %llu.",
942 page, ip->i_ino, offset);
943
944 xfs_ilock(ip, XFS_ILOCK_EXCL);
945 bh = head = page_buffers(page);
946 do {
947 int done;
948 xfs_fileoff_t offset_fsb;
949 xfs_bmbt_irec_t imap;
950 int nimaps = 1;
951 int error;
952 xfs_fsblock_t firstblock;
953 xfs_bmap_free_t flist;
954
955 if (!buffer_delay(bh))
956 goto next_buffer;
957
958 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
959
960 /*
961 * Map the range first and check that it is a delalloc extent
962 * before trying to unmap the range. Otherwise we will be
963 * trying to remove a real extent (which requires a
964 * transaction) or a hole, which is probably a bad idea...
965 */
966 error = xfs_bmapi(NULL, ip, offset_fsb, 1,
967 XFS_BMAPI_ENTIRE, NULL, 0, &imap,
b4e9181e 968 &nimaps, NULL);
3ed3a434
DC
969
970 if (error) {
971 /* something screwed, just bail */
e8c3753c
DC
972 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
973 xfs_fs_cmn_err(CE_ALERT, ip->i_mount,
974 "page discard failed delalloc mapping lookup.");
975 }
3ed3a434
DC
976 break;
977 }
978 if (!nimaps) {
979 /* nothing there */
980 goto next_buffer;
981 }
982 if (imap.br_startblock != DELAYSTARTBLOCK) {
983 /* been converted, ignore */
984 goto next_buffer;
985 }
986 WARN_ON(imap.br_blockcount == 0);
987
988 /*
989 * Note: while we initialise the firstblock/flist pair, they
990 * should never be used because blocks should never be
991 * allocated or freed for a delalloc extent and hence we need
992 * don't cancel or finish them after the xfs_bunmapi() call.
993 */
994 xfs_bmap_init(&flist, &firstblock);
995 error = xfs_bunmapi(NULL, ip, offset_fsb, 1, 0, 1, &firstblock,
b4e9181e 996 &flist, &done);
3ed3a434
DC
997
998 ASSERT(!flist.xbf_count && !flist.xbf_first);
999 if (error) {
1000 /* something screwed, just bail */
e8c3753c
DC
1001 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1002 xfs_fs_cmn_err(CE_ALERT, ip->i_mount,
3ed3a434 1003 "page discard unable to remove delalloc mapping.");
e8c3753c 1004 }
3ed3a434
DC
1005 break;
1006 }
1007next_buffer:
1008 offset += len;
1009
1010 } while ((bh = bh->b_this_page) != head);
1011
1012 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1013out_invalidate:
1014 xfs_vm_invalidatepage(page, 0);
1015 return;
1016}
1017
1da177e4 1018/*
89f3b363
CH
1019 * Write out a dirty page.
1020 *
1021 * For delalloc space on the page we need to allocate space and flush it.
1022 * For unwritten space on the page we need to start the conversion to
1023 * regular allocated space.
89f3b363 1024 * For any other dirty buffer heads on the page we should flush them.
1da177e4 1025 *
89f3b363
CH
1026 * If we detect that a transaction would be required to flush the page, we
1027 * have to check the process flags first, if we are already in a transaction
1028 * or disk I/O during allocations is off, we need to fail the writepage and
1029 * redirty the page.
1da177e4 1030 */
1da177e4 1031STATIC int
89f3b363
CH
1032xfs_vm_writepage(
1033 struct page *page,
1034 struct writeback_control *wbc)
1da177e4 1035{
89f3b363 1036 struct inode *inode = page->mapping->host;
20cb52eb 1037 int delalloc, unwritten;
f6d6d4fc 1038 struct buffer_head *bh, *head;
207d0416 1039 struct xfs_bmbt_irec imap;
f6d6d4fc 1040 xfs_ioend_t *ioend = NULL, *iohead = NULL;
1da177e4 1041 loff_t offset;
f6d6d4fc 1042 unsigned int type;
1da177e4 1043 __uint64_t end_offset;
bd1556a1 1044 pgoff_t end_index, last_index;
d5cb48aa 1045 ssize_t size, len;
558e6891 1046 int flags, err, imap_valid = 0, uptodate = 1;
89f3b363 1047 int count = 0;
20cb52eb 1048 int all_bh = 0;
89f3b363
CH
1049
1050 trace_xfs_writepage(inode, page, 0);
1051
20cb52eb
CH
1052 ASSERT(page_has_buffers(page));
1053
89f3b363
CH
1054 /*
1055 * Refuse to write the page out if we are called from reclaim context.
1056 *
d4f7a5cb
CH
1057 * This avoids stack overflows when called from deeply used stacks in
1058 * random callers for direct reclaim or memcg reclaim. We explicitly
1059 * allow reclaim from kswapd as the stack usage there is relatively low.
89f3b363
CH
1060 *
1061 * This should really be done by the core VM, but until that happens
1062 * filesystems like XFS, btrfs and ext4 have to take care of this
1063 * by themselves.
1064 */
d4f7a5cb 1065 if ((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == PF_MEMALLOC)
89f3b363 1066 goto out_fail;
1da177e4 1067
89f3b363 1068 /*
20cb52eb
CH
1069 * We need a transaction if there are delalloc or unwritten buffers
1070 * on the page.
1071 *
1072 * If we need a transaction and the process flags say we are already
1073 * in a transaction, or no IO is allowed then mark the page dirty
1074 * again and leave the page as is.
89f3b363 1075 */
20cb52eb
CH
1076 xfs_count_page_state(page, &delalloc, &unwritten);
1077 if ((current->flags & PF_FSTRANS) && (delalloc || unwritten))
89f3b363
CH
1078 goto out_fail;
1079
1da177e4
LT
1080 /* Is this page beyond the end of the file? */
1081 offset = i_size_read(inode);
1082 end_index = offset >> PAGE_CACHE_SHIFT;
1083 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
1084 if (page->index >= end_index) {
1085 if ((page->index >= end_index + 1) ||
1086 !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
89f3b363 1087 unlock_page(page);
19d5bcf3 1088 return 0;
1da177e4
LT
1089 }
1090 }
1091
f6d6d4fc 1092 end_offset = min_t(unsigned long long,
20cb52eb
CH
1093 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
1094 offset);
24e17b5f 1095 len = 1 << inode->i_blkbits;
24e17b5f 1096
24e17b5f 1097 bh = head = page_buffers(page);
f6d6d4fc 1098 offset = page_offset(page);
df3c7244 1099 flags = BMAPI_READ;
34a52c6c 1100 type = IO_NEW;
f6d6d4fc 1101
1da177e4
LT
1102 do {
1103 if (offset >= end_offset)
1104 break;
1105 if (!buffer_uptodate(bh))
1106 uptodate = 0;
1da177e4 1107
3d9b02e3
ES
1108 /*
1109 * A hole may still be marked uptodate because discard_buffer
1110 * leaves the flag set.
1111 */
1112 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
1113 ASSERT(!buffer_dirty(bh));
1114 imap_valid = 0;
1115 continue;
1116 }
1117
558e6891
CH
1118 if (imap_valid)
1119 imap_valid = xfs_imap_valid(inode, &imap, offset);
1da177e4 1120
20cb52eb 1121 if (buffer_unwritten(bh) || buffer_delay(bh)) {
effd120e
DC
1122 int new_ioend = 0;
1123
df3c7244 1124 /*
6c4fe19f
CH
1125 * Make sure we don't use a read-only iomap
1126 */
df3c7244 1127 if (flags == BMAPI_READ)
558e6891 1128 imap_valid = 0;
6c4fe19f 1129
f6d6d4fc 1130 if (buffer_unwritten(bh)) {
34a52c6c 1131 type = IO_UNWRITTEN;
8272145c 1132 flags = BMAPI_WRITE | BMAPI_IGNSTATE;
d5cb48aa 1133 } else if (buffer_delay(bh)) {
34a52c6c 1134 type = IO_DELAY;
89f3b363
CH
1135 flags = BMAPI_ALLOCATE;
1136
1137 if (wbc->sync_mode == WB_SYNC_NONE &&
1138 wbc->nonblocking)
1139 flags |= BMAPI_TRYLOCK;
f6d6d4fc
CH
1140 }
1141
558e6891 1142 if (!imap_valid) {
effd120e 1143 /*
20cb52eb 1144 * If we didn't have a valid mapping then we
effd120e
DC
1145 * need to ensure that we put the new mapping
1146 * in a new ioend structure. This needs to be
1147 * done to ensure that the ioends correctly
1148 * reflect the block mappings at io completion
1149 * for unwritten extent conversion.
1150 */
1151 new_ioend = 1;
20cb52eb 1152 err = xfs_map_blocks(inode, offset, len,
207d0416 1153 &imap, flags);
f6d6d4fc 1154 if (err)
1da177e4 1155 goto error;
558e6891
CH
1156 imap_valid = xfs_imap_valid(inode, &imap,
1157 offset);
1da177e4 1158 }
558e6891 1159 if (imap_valid) {
207d0416 1160 xfs_map_at_offset(inode, bh, &imap, offset);
89f3b363
CH
1161 xfs_add_to_ioend(inode, bh, offset, type,
1162 &ioend, new_ioend);
f6d6d4fc 1163 count++;
1da177e4 1164 }
89f3b363 1165 } else if (buffer_uptodate(bh)) {
6c4fe19f
CH
1166 /*
1167 * we got here because the buffer is already mapped.
1168 * That means it must already have extents allocated
1169 * underneath it. Map the extent by reading it.
1170 */
558e6891 1171 if (!imap_valid || flags != BMAPI_READ) {
6c4fe19f 1172 flags = BMAPI_READ;
20cb52eb 1173 size = xfs_probe_cluster(inode, page, bh, head);
6c4fe19f 1174 err = xfs_map_blocks(inode, offset, size,
207d0416 1175 &imap, flags);
6c4fe19f
CH
1176 if (err)
1177 goto error;
558e6891
CH
1178 imap_valid = xfs_imap_valid(inode, &imap,
1179 offset);
6c4fe19f 1180 }
d5cb48aa 1181
df3c7244 1182 /*
34a52c6c 1183 * We set the type to IO_NEW in case we are doing a
df3c7244
DC
1184 * small write at EOF that is extending the file but
1185 * without needing an allocation. We need to update the
1186 * file size on I/O completion in this case so it is
1187 * the same case as having just allocated a new extent
1188 * that we are writing into for the first time.
1189 */
34a52c6c 1190 type = IO_NEW;
ca5de404 1191 if (trylock_buffer(bh)) {
558e6891 1192 if (imap_valid)
6c4fe19f 1193 all_bh = 1;
7336cea8 1194 xfs_add_to_ioend(inode, bh, offset, type,
558e6891 1195 &ioend, !imap_valid);
d5cb48aa 1196 count++;
f6d6d4fc 1197 } else {
558e6891 1198 imap_valid = 0;
1da177e4 1199 }
89f3b363 1200 } else if (PageUptodate(page)) {
20cb52eb 1201 ASSERT(buffer_mapped(bh));
558e6891 1202 imap_valid = 0;
1da177e4 1203 }
f6d6d4fc
CH
1204
1205 if (!iohead)
1206 iohead = ioend;
1207
1208 } while (offset += len, ((bh = bh->b_this_page) != head));
1da177e4
LT
1209
1210 if (uptodate && bh == head)
1211 SetPageUptodate(page);
1212
89f3b363 1213 xfs_start_page_writeback(page, 1, count);
1da177e4 1214
558e6891 1215 if (ioend && imap_valid) {
bd1556a1
CH
1216 xfs_off_t end_index;
1217
1218 end_index = imap.br_startoff + imap.br_blockcount;
1219
1220 /* to bytes */
1221 end_index <<= inode->i_blkbits;
1222
1223 /* to pages */
1224 end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1225
1226 /* check against file size */
1227 if (end_index > last_index)
1228 end_index = last_index;
8699bb0a 1229
207d0416 1230 xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
89f3b363 1231 wbc, all_bh, end_index);
1da177e4
LT
1232 }
1233
f6d6d4fc 1234 if (iohead)
06342cf8 1235 xfs_submit_ioend(wbc, iohead);
f6d6d4fc 1236
89f3b363 1237 return 0;
1da177e4
LT
1238
1239error:
f6d6d4fc
CH
1240 if (iohead)
1241 xfs_cancel_ioend(iohead);
1da177e4 1242
20cb52eb 1243 xfs_aops_discard_page(page);
89f3b363
CH
1244 ClearPageUptodate(page);
1245 unlock_page(page);
1da177e4 1246 return err;
f51623b2
NS
1247
1248out_fail:
1249 redirty_page_for_writepage(wbc, page);
1250 unlock_page(page);
1251 return 0;
f51623b2
NS
1252}
1253
7d4fb40a
NS
1254STATIC int
1255xfs_vm_writepages(
1256 struct address_space *mapping,
1257 struct writeback_control *wbc)
1258{
b3aea4ed 1259 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
7d4fb40a
NS
1260 return generic_writepages(mapping, wbc);
1261}
1262
f51623b2
NS
1263/*
1264 * Called to move a page into cleanable state - and from there
89f3b363 1265 * to be released. The page should already be clean. We always
f51623b2
NS
1266 * have buffer heads in this call.
1267 *
89f3b363 1268 * Returns 1 if the page is ok to release, 0 otherwise.
f51623b2
NS
1269 */
1270STATIC int
238f4c54 1271xfs_vm_releasepage(
f51623b2
NS
1272 struct page *page,
1273 gfp_t gfp_mask)
1274{
20cb52eb 1275 int delalloc, unwritten;
f51623b2 1276
89f3b363 1277 trace_xfs_releasepage(page->mapping->host, page, 0);
238f4c54 1278
20cb52eb 1279 xfs_count_page_state(page, &delalloc, &unwritten);
f51623b2 1280
89f3b363 1281 if (WARN_ON(delalloc))
f51623b2 1282 return 0;
89f3b363 1283 if (WARN_ON(unwritten))
f51623b2
NS
1284 return 0;
1285
f51623b2
NS
1286 return try_to_free_buffers(page);
1287}
1288
1da177e4 1289STATIC int
c2536668 1290__xfs_get_blocks(
1da177e4
LT
1291 struct inode *inode,
1292 sector_t iblock,
1da177e4
LT
1293 struct buffer_head *bh_result,
1294 int create,
f2bde9b8 1295 int direct)
1da177e4 1296{
f2bde9b8 1297 int flags = create ? BMAPI_WRITE : BMAPI_READ;
207d0416 1298 struct xfs_bmbt_irec imap;
fdc7ed75
NS
1299 xfs_off_t offset;
1300 ssize_t size;
207d0416
CH
1301 int nimap = 1;
1302 int new = 0;
1da177e4 1303 int error;
1da177e4 1304
fdc7ed75 1305 offset = (xfs_off_t)iblock << inode->i_blkbits;
c2536668
NS
1306 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1307 size = bh_result->b_size;
364f358a
LM
1308
1309 if (!create && direct && offset >= i_size_read(inode))
1310 return 0;
1311
f2bde9b8
CH
1312 if (direct && create)
1313 flags |= BMAPI_DIRECT;
1314
1315 error = xfs_iomap(XFS_I(inode), offset, size, flags, &imap, &nimap,
1316 &new);
1da177e4
LT
1317 if (error)
1318 return -error;
207d0416 1319 if (nimap == 0)
1da177e4
LT
1320 return 0;
1321
207d0416
CH
1322 if (imap.br_startblock != HOLESTARTBLOCK &&
1323 imap.br_startblock != DELAYSTARTBLOCK) {
87cbc49c
NS
1324 /*
1325 * For unwritten extents do not report a disk address on
1da177e4
LT
1326 * the read case (treat as if we're reading into a hole).
1327 */
207d0416
CH
1328 if (create || !ISUNWRITTEN(&imap))
1329 xfs_map_buffer(inode, bh_result, &imap, offset);
1330 if (create && ISUNWRITTEN(&imap)) {
1da177e4
LT
1331 if (direct)
1332 bh_result->b_private = inode;
1333 set_buffer_unwritten(bh_result);
1da177e4
LT
1334 }
1335 }
1336
c2536668
NS
1337 /*
1338 * If this is a realtime file, data may be on a different device.
1339 * to that pointed to from the buffer_head b_bdev currently.
1340 */
046f1685 1341 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1da177e4 1342
c2536668 1343 /*
549054af
DC
1344 * If we previously allocated a block out beyond eof and we are now
1345 * coming back to use it then we will need to flag it as new even if it
1346 * has a disk address.
1347 *
1348 * With sub-block writes into unwritten extents we also need to mark
1349 * the buffer as new so that the unwritten parts of the buffer gets
1350 * correctly zeroed.
1da177e4
LT
1351 */
1352 if (create &&
1353 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
549054af 1354 (offset >= i_size_read(inode)) ||
207d0416 1355 (new || ISUNWRITTEN(&imap))))
1da177e4 1356 set_buffer_new(bh_result);
1da177e4 1357
207d0416 1358 if (imap.br_startblock == DELAYSTARTBLOCK) {
1da177e4
LT
1359 BUG_ON(direct);
1360 if (create) {
1361 set_buffer_uptodate(bh_result);
1362 set_buffer_mapped(bh_result);
1363 set_buffer_delay(bh_result);
1364 }
1365 }
1366
2b8f12b7
CH
1367 /*
1368 * If this is O_DIRECT or the mpage code calling tell them how large
1369 * the mapping is, so that we can avoid repeated get_blocks calls.
1370 */
c2536668 1371 if (direct || size > (1 << inode->i_blkbits)) {
2b8f12b7
CH
1372 xfs_off_t mapping_size;
1373
1374 mapping_size = imap.br_startoff + imap.br_blockcount - iblock;
1375 mapping_size <<= inode->i_blkbits;
1376
1377 ASSERT(mapping_size > 0);
1378 if (mapping_size > size)
1379 mapping_size = size;
1380 if (mapping_size > LONG_MAX)
1381 mapping_size = LONG_MAX;
1382
1383 bh_result->b_size = mapping_size;
1da177e4
LT
1384 }
1385
1386 return 0;
1387}
1388
1389int
c2536668 1390xfs_get_blocks(
1da177e4
LT
1391 struct inode *inode,
1392 sector_t iblock,
1393 struct buffer_head *bh_result,
1394 int create)
1395{
f2bde9b8 1396 return __xfs_get_blocks(inode, iblock, bh_result, create, 0);
1da177e4
LT
1397}
1398
1399STATIC int
e4c573bb 1400xfs_get_blocks_direct(
1da177e4
LT
1401 struct inode *inode,
1402 sector_t iblock,
1da177e4
LT
1403 struct buffer_head *bh_result,
1404 int create)
1405{
f2bde9b8 1406 return __xfs_get_blocks(inode, iblock, bh_result, create, 1);
1da177e4
LT
1407}
1408
f0973863 1409STATIC void
e4c573bb 1410xfs_end_io_direct(
f0973863
CH
1411 struct kiocb *iocb,
1412 loff_t offset,
1413 ssize_t size,
40e2e973
CH
1414 void *private,
1415 int ret,
1416 bool is_async)
f0973863
CH
1417{
1418 xfs_ioend_t *ioend = iocb->private;
fb511f21 1419 bool complete_aio = is_async;
f0973863
CH
1420
1421 /*
1422 * Non-NULL private data means we need to issue a transaction to
1423 * convert a range from unwritten to written extents. This needs
c41564b5 1424 * to happen from process context but aio+dio I/O completion
f0973863 1425 * happens from irq context so we need to defer it to a workqueue.
c41564b5 1426 * This is not necessary for synchronous direct I/O, but we do
f0973863
CH
1427 * it anyway to keep the code uniform and simpler.
1428 *
e927af90
DC
1429 * Well, if only it were that simple. Because synchronous direct I/O
1430 * requires extent conversion to occur *before* we return to userspace,
1431 * we have to wait for extent conversion to complete. Look at the
1432 * iocb that has been passed to us to determine if this is AIO or
1433 * not. If it is synchronous, tell xfs_finish_ioend() to kick the
1434 * workqueue and wait for it to complete.
1435 *
f0973863
CH
1436 * The core direct I/O code might be changed to always call the
1437 * completion handler in the future, in which case all this can
1438 * go away.
1439 */
ba87ea69
LM
1440 ioend->io_offset = offset;
1441 ioend->io_size = size;
34a52c6c 1442 if (ioend->io_type == IO_READ) {
e927af90 1443 xfs_finish_ioend(ioend, 0);
ba87ea69 1444 } else if (private && size > 0) {
fb511f21
CH
1445 if (is_async) {
1446 ioend->io_iocb = iocb;
1447 ioend->io_result = ret;
1448 complete_aio = false;
1449 xfs_finish_ioend(ioend, 0);
1450 } else {
1451 xfs_finish_ioend(ioend, 1);
1452 }
f0973863 1453 } else {
ba87ea69
LM
1454 /*
1455 * A direct I/O write ioend starts it's life in unwritten
1456 * state in case they map an unwritten extent. This write
1457 * didn't map an unwritten extent so switch it's completion
1458 * handler.
1459 */
34a52c6c 1460 ioend->io_type = IO_NEW;
e927af90 1461 xfs_finish_ioend(ioend, 0);
f0973863
CH
1462 }
1463
1464 /*
c41564b5 1465 * blockdev_direct_IO can return an error even after the I/O
f0973863
CH
1466 * completion handler was called. Thus we need to protect
1467 * against double-freeing.
1468 */
1469 iocb->private = NULL;
40e2e973 1470
fb511f21 1471 if (complete_aio)
40e2e973 1472 aio_complete(iocb, ret, 0);
f0973863
CH
1473}
1474
1da177e4 1475STATIC ssize_t
e4c573bb 1476xfs_vm_direct_IO(
1da177e4
LT
1477 int rw,
1478 struct kiocb *iocb,
1479 const struct iovec *iov,
1480 loff_t offset,
1481 unsigned long nr_segs)
1482{
1483 struct file *file = iocb->ki_filp;
1484 struct inode *inode = file->f_mapping->host;
6214ed44 1485 struct block_device *bdev;
f0973863 1486 ssize_t ret;
1da177e4 1487
046f1685 1488 bdev = xfs_find_bdev_for_inode(inode);
1da177e4 1489
5fe878ae 1490 iocb->private = xfs_alloc_ioend(inode, rw == WRITE ?
34a52c6c 1491 IO_UNWRITTEN : IO_READ);
5fe878ae
CH
1492
1493 ret = blockdev_direct_IO_no_locking(rw, iocb, inode, bdev, iov,
1494 offset, nr_segs,
1495 xfs_get_blocks_direct,
1496 xfs_end_io_direct);
f0973863 1497
8459d86a 1498 if (unlikely(ret != -EIOCBQUEUED && iocb->private))
f0973863
CH
1499 xfs_destroy_ioend(iocb->private);
1500 return ret;
1da177e4
LT
1501}
1502
f51623b2 1503STATIC int
d79689c7 1504xfs_vm_write_begin(
f51623b2 1505 struct file *file,
d79689c7
NP
1506 struct address_space *mapping,
1507 loff_t pos,
1508 unsigned len,
1509 unsigned flags,
1510 struct page **pagep,
1511 void **fsdata)
f51623b2 1512{
d79689c7 1513 *pagep = NULL;
aea1b953
DC
1514 return block_write_begin(file, mapping, pos, len, flags | AOP_FLAG_NOFS,
1515 pagep, fsdata, xfs_get_blocks);
f51623b2 1516}
1da177e4
LT
1517
1518STATIC sector_t
e4c573bb 1519xfs_vm_bmap(
1da177e4
LT
1520 struct address_space *mapping,
1521 sector_t block)
1522{
1523 struct inode *inode = (struct inode *)mapping->host;
739bfb2a 1524 struct xfs_inode *ip = XFS_I(inode);
1da177e4 1525
cca28fb8 1526 trace_xfs_vm_bmap(XFS_I(inode));
126468b1 1527 xfs_ilock(ip, XFS_IOLOCK_SHARED);
739bfb2a 1528 xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF);
126468b1 1529 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
c2536668 1530 return generic_block_bmap(mapping, block, xfs_get_blocks);
1da177e4
LT
1531}
1532
1533STATIC int
e4c573bb 1534xfs_vm_readpage(
1da177e4
LT
1535 struct file *unused,
1536 struct page *page)
1537{
c2536668 1538 return mpage_readpage(page, xfs_get_blocks);
1da177e4
LT
1539}
1540
1541STATIC int
e4c573bb 1542xfs_vm_readpages(
1da177e4
LT
1543 struct file *unused,
1544 struct address_space *mapping,
1545 struct list_head *pages,
1546 unsigned nr_pages)
1547{
c2536668 1548 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1da177e4
LT
1549}
1550
f5e54d6e 1551const struct address_space_operations xfs_address_space_operations = {
e4c573bb
NS
1552 .readpage = xfs_vm_readpage,
1553 .readpages = xfs_vm_readpages,
1554 .writepage = xfs_vm_writepage,
7d4fb40a 1555 .writepages = xfs_vm_writepages,
1da177e4 1556 .sync_page = block_sync_page,
238f4c54
NS
1557 .releasepage = xfs_vm_releasepage,
1558 .invalidatepage = xfs_vm_invalidatepage,
d79689c7
NP
1559 .write_begin = xfs_vm_write_begin,
1560 .write_end = generic_write_end,
e4c573bb
NS
1561 .bmap = xfs_vm_bmap,
1562 .direct_IO = xfs_vm_direct_IO,
e965f963 1563 .migratepage = buffer_migrate_page,
bddaafa1 1564 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 1565 .error_remove_page = generic_error_remove_page,
1da177e4 1566};