xfs: check for more work before sleeping in xfssyncd
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / xfs / linux-2.6 / xfs_aops.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_bit.h"
1da177e4 20#include "xfs_log.h"
a844f451 21#include "xfs_inum.h"
1da177e4 22#include "xfs_sb.h"
a844f451 23#include "xfs_ag.h"
1da177e4
LT
24#include "xfs_dir2.h"
25#include "xfs_trans.h"
26#include "xfs_dmapi.h"
27#include "xfs_mount.h"
28#include "xfs_bmap_btree.h"
29#include "xfs_alloc_btree.h"
30#include "xfs_ialloc_btree.h"
1da177e4 31#include "xfs_dir2_sf.h"
a844f451 32#include "xfs_attr_sf.h"
1da177e4
LT
33#include "xfs_dinode.h"
34#include "xfs_inode.h"
a844f451
NS
35#include "xfs_alloc.h"
36#include "xfs_btree.h"
1da177e4
LT
37#include "xfs_error.h"
38#include "xfs_rw.h"
39#include "xfs_iomap.h"
739bfb2a 40#include "xfs_vnodeops.h"
0b1b213f 41#include "xfs_trace.h"
1da177e4 42#include <linux/mpage.h>
10ce4444 43#include <linux/pagevec.h>
1da177e4
LT
44#include <linux/writeback.h>
45
25e41b3d
CH
46
47/*
48 * Prime number of hash buckets since address is used as the key.
49 */
50#define NVSYNC 37
51#define to_ioend_wq(v) (&xfs_ioend_wq[((unsigned long)v) % NVSYNC])
52static wait_queue_head_t xfs_ioend_wq[NVSYNC];
53
54void __init
55xfs_ioend_init(void)
56{
57 int i;
58
59 for (i = 0; i < NVSYNC; i++)
60 init_waitqueue_head(&xfs_ioend_wq[i]);
61}
62
63void
64xfs_ioend_wait(
65 xfs_inode_t *ip)
66{
67 wait_queue_head_t *wq = to_ioend_wq(ip);
68
69 wait_event(*wq, (atomic_read(&ip->i_iocount) == 0));
70}
71
72STATIC void
73xfs_ioend_wake(
74 xfs_inode_t *ip)
75{
76 if (atomic_dec_and_test(&ip->i_iocount))
77 wake_up(to_ioend_wq(ip));
78}
79
0b1b213f 80void
f51623b2
NS
81xfs_count_page_state(
82 struct page *page,
83 int *delalloc,
84 int *unmapped,
85 int *unwritten)
86{
87 struct buffer_head *bh, *head;
88
89 *delalloc = *unmapped = *unwritten = 0;
90
91 bh = head = page_buffers(page);
92 do {
93 if (buffer_uptodate(bh) && !buffer_mapped(bh))
94 (*unmapped) = 1;
f51623b2
NS
95 else if (buffer_unwritten(bh))
96 (*unwritten) = 1;
97 else if (buffer_delay(bh))
98 (*delalloc) = 1;
99 } while ((bh = bh->b_this_page) != head);
100}
101
6214ed44
CH
102STATIC struct block_device *
103xfs_find_bdev_for_inode(
104 struct xfs_inode *ip)
105{
106 struct xfs_mount *mp = ip->i_mount;
107
71ddabb9 108 if (XFS_IS_REALTIME_INODE(ip))
6214ed44
CH
109 return mp->m_rtdev_targp->bt_bdev;
110 else
111 return mp->m_ddev_targp->bt_bdev;
112}
113
f6d6d4fc
CH
114/*
115 * We're now finished for good with this ioend structure.
116 * Update the page state via the associated buffer_heads,
117 * release holds on the inode and bio, and finally free
118 * up memory. Do not use the ioend after this.
119 */
0829c360
CH
120STATIC void
121xfs_destroy_ioend(
122 xfs_ioend_t *ioend)
123{
f6d6d4fc 124 struct buffer_head *bh, *next;
583fa586 125 struct xfs_inode *ip = XFS_I(ioend->io_inode);
f6d6d4fc
CH
126
127 for (bh = ioend->io_buffer_head; bh; bh = next) {
128 next = bh->b_private;
7d04a335 129 bh->b_end_io(bh, !ioend->io_error);
f6d6d4fc 130 }
583fa586
CH
131
132 /*
133 * Volume managers supporting multiple paths can send back ENODEV
134 * when the final path disappears. In this case continuing to fill
135 * the page cache with dirty data which cannot be written out is
136 * evil, so prevent that.
137 */
138 if (unlikely(ioend->io_error == -ENODEV)) {
139 xfs_do_force_shutdown(ip->i_mount, SHUTDOWN_DEVICE_REQ,
140 __FILE__, __LINE__);
b677c210 141 }
583fa586 142
25e41b3d 143 xfs_ioend_wake(ip);
0829c360
CH
144 mempool_free(ioend, xfs_ioend_pool);
145}
146
932640e8
DC
147/*
148 * If the end of the current ioend is beyond the current EOF,
149 * return the new EOF value, otherwise zero.
150 */
151STATIC xfs_fsize_t
152xfs_ioend_new_eof(
153 xfs_ioend_t *ioend)
154{
155 xfs_inode_t *ip = XFS_I(ioend->io_inode);
156 xfs_fsize_t isize;
157 xfs_fsize_t bsize;
158
159 bsize = ioend->io_offset + ioend->io_size;
160 isize = MAX(ip->i_size, ip->i_new_size);
161 isize = MIN(isize, bsize);
162 return isize > ip->i_d.di_size ? isize : 0;
163}
164
ba87ea69 165/*
77d7a0c2
DC
166 * Update on-disk file size now that data has been written to disk. The
167 * current in-memory file size is i_size. If a write is beyond eof i_new_size
168 * will be the intended file size until i_size is updated. If this write does
169 * not extend all the way to the valid file size then restrict this update to
170 * the end of the write.
171 *
172 * This function does not block as blocking on the inode lock in IO completion
173 * can lead to IO completion order dependency deadlocks.. If it can't get the
174 * inode ilock it will return EAGAIN. Callers must handle this.
ba87ea69 175 */
77d7a0c2 176STATIC int
ba87ea69
LM
177xfs_setfilesize(
178 xfs_ioend_t *ioend)
179{
b677c210 180 xfs_inode_t *ip = XFS_I(ioend->io_inode);
ba87ea69 181 xfs_fsize_t isize;
ba87ea69 182
ba87ea69
LM
183 ASSERT((ip->i_d.di_mode & S_IFMT) == S_IFREG);
184 ASSERT(ioend->io_type != IOMAP_READ);
185
186 if (unlikely(ioend->io_error))
77d7a0c2
DC
187 return 0;
188
189 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
190 return EAGAIN;
ba87ea69 191
932640e8
DC
192 isize = xfs_ioend_new_eof(ioend);
193 if (isize) {
ba87ea69 194 ip->i_d.di_size = isize;
66d834ea 195 xfs_mark_inode_dirty(ip);
ba87ea69
LM
196 }
197
198 xfs_iunlock(ip, XFS_ILOCK_EXCL);
77d7a0c2
DC
199 return 0;
200}
201
202/*
203 * Schedule IO completion handling on a xfsdatad if this was
204 * the final hold on this ioend. If we are asked to wait,
205 * flush the workqueue.
206 */
207STATIC void
208xfs_finish_ioend(
209 xfs_ioend_t *ioend,
210 int wait)
211{
212 if (atomic_dec_and_test(&ioend->io_remaining)) {
213 struct workqueue_struct *wq;
214
215 wq = (ioend->io_type == IOMAP_UNWRITTEN) ?
216 xfsconvertd_workqueue : xfsdatad_workqueue;
217 queue_work(wq, &ioend->io_work);
218 if (wait)
219 flush_workqueue(wq);
220 }
ba87ea69
LM
221}
222
0829c360 223/*
5ec4fabb 224 * IO write completion.
f6d6d4fc
CH
225 */
226STATIC void
5ec4fabb 227xfs_end_io(
77d7a0c2 228 struct work_struct *work)
0829c360 229{
77d7a0c2
DC
230 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
231 struct xfs_inode *ip = XFS_I(ioend->io_inode);
69418932 232 int error = 0;
ba87ea69 233
5ec4fabb
CH
234 /*
235 * For unwritten extents we need to issue transactions to convert a
236 * range to normal written extens after the data I/O has finished.
237 */
238 if (ioend->io_type == IOMAP_UNWRITTEN &&
239 likely(!ioend->io_error && !XFS_FORCED_SHUTDOWN(ip->i_mount))) {
5ec4fabb
CH
240
241 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
242 ioend->io_size);
243 if (error)
244 ioend->io_error = error;
245 }
ba87ea69 246
5ec4fabb
CH
247 /*
248 * We might have to update the on-disk file size after extending
249 * writes.
250 */
77d7a0c2
DC
251 if (ioend->io_type != IOMAP_READ) {
252 error = xfs_setfilesize(ioend);
253 ASSERT(!error || error == EAGAIN);
c626d174 254 }
77d7a0c2
DC
255
256 /*
257 * If we didn't complete processing of the ioend, requeue it to the
258 * tail of the workqueue for another attempt later. Otherwise destroy
259 * it.
260 */
261 if (error == EAGAIN) {
262 atomic_inc(&ioend->io_remaining);
263 xfs_finish_ioend(ioend, 0);
264 /* ensure we don't spin on blocked ioends */
265 delay(1);
266 } else
267 xfs_destroy_ioend(ioend);
c626d174
DC
268}
269
0829c360
CH
270/*
271 * Allocate and initialise an IO completion structure.
272 * We need to track unwritten extent write completion here initially.
273 * We'll need to extend this for updating the ondisk inode size later
274 * (vs. incore size).
275 */
276STATIC xfs_ioend_t *
277xfs_alloc_ioend(
f6d6d4fc
CH
278 struct inode *inode,
279 unsigned int type)
0829c360
CH
280{
281 xfs_ioend_t *ioend;
282
283 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
284
285 /*
286 * Set the count to 1 initially, which will prevent an I/O
287 * completion callback from happening before we have started
288 * all the I/O from calling the completion routine too early.
289 */
290 atomic_set(&ioend->io_remaining, 1);
7d04a335 291 ioend->io_error = 0;
f6d6d4fc
CH
292 ioend->io_list = NULL;
293 ioend->io_type = type;
b677c210 294 ioend->io_inode = inode;
c1a073bd 295 ioend->io_buffer_head = NULL;
f6d6d4fc 296 ioend->io_buffer_tail = NULL;
b677c210 297 atomic_inc(&XFS_I(ioend->io_inode)->i_iocount);
0829c360
CH
298 ioend->io_offset = 0;
299 ioend->io_size = 0;
300
5ec4fabb 301 INIT_WORK(&ioend->io_work, xfs_end_io);
0829c360
CH
302 return ioend;
303}
304
1da177e4
LT
305STATIC int
306xfs_map_blocks(
307 struct inode *inode,
308 loff_t offset,
309 ssize_t count,
310 xfs_iomap_t *mapp,
311 int flags)
312{
6bd16ff2
CH
313 int nmaps = 1;
314
315 return -xfs_iomap(XFS_I(inode), offset, count, flags, mapp, &nmaps);
1da177e4
LT
316}
317
b8f82a4a 318STATIC int
1defeac9 319xfs_iomap_valid(
1da177e4 320 xfs_iomap_t *iomapp,
1defeac9 321 loff_t offset)
1da177e4 322{
1defeac9
CH
323 return offset >= iomapp->iomap_offset &&
324 offset < iomapp->iomap_offset + iomapp->iomap_bsize;
1da177e4
LT
325}
326
f6d6d4fc
CH
327/*
328 * BIO completion handler for buffered IO.
329 */
782e3b3b 330STATIC void
f6d6d4fc
CH
331xfs_end_bio(
332 struct bio *bio,
f6d6d4fc
CH
333 int error)
334{
335 xfs_ioend_t *ioend = bio->bi_private;
336
f6d6d4fc 337 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
7d04a335 338 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
f6d6d4fc
CH
339
340 /* Toss bio and pass work off to an xfsdatad thread */
f6d6d4fc
CH
341 bio->bi_private = NULL;
342 bio->bi_end_io = NULL;
f6d6d4fc 343 bio_put(bio);
7d04a335 344
e927af90 345 xfs_finish_ioend(ioend, 0);
f6d6d4fc
CH
346}
347
348STATIC void
349xfs_submit_ioend_bio(
06342cf8
CH
350 struct writeback_control *wbc,
351 xfs_ioend_t *ioend,
352 struct bio *bio)
f6d6d4fc
CH
353{
354 atomic_inc(&ioend->io_remaining);
f6d6d4fc
CH
355 bio->bi_private = ioend;
356 bio->bi_end_io = xfs_end_bio;
357
932640e8
DC
358 /*
359 * If the I/O is beyond EOF we mark the inode dirty immediately
360 * but don't update the inode size until I/O completion.
361 */
362 if (xfs_ioend_new_eof(ioend))
66d834ea 363 xfs_mark_inode_dirty(XFS_I(ioend->io_inode));
932640e8 364
06342cf8
CH
365 submit_bio(wbc->sync_mode == WB_SYNC_ALL ?
366 WRITE_SYNC_PLUG : WRITE, bio);
f6d6d4fc
CH
367 ASSERT(!bio_flagged(bio, BIO_EOPNOTSUPP));
368 bio_put(bio);
369}
370
371STATIC struct bio *
372xfs_alloc_ioend_bio(
373 struct buffer_head *bh)
374{
375 struct bio *bio;
376 int nvecs = bio_get_nr_vecs(bh->b_bdev);
377
378 do {
379 bio = bio_alloc(GFP_NOIO, nvecs);
380 nvecs >>= 1;
381 } while (!bio);
382
383 ASSERT(bio->bi_private == NULL);
384 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
385 bio->bi_bdev = bh->b_bdev;
386 bio_get(bio);
387 return bio;
388}
389
390STATIC void
391xfs_start_buffer_writeback(
392 struct buffer_head *bh)
393{
394 ASSERT(buffer_mapped(bh));
395 ASSERT(buffer_locked(bh));
396 ASSERT(!buffer_delay(bh));
397 ASSERT(!buffer_unwritten(bh));
398
399 mark_buffer_async_write(bh);
400 set_buffer_uptodate(bh);
401 clear_buffer_dirty(bh);
402}
403
404STATIC void
405xfs_start_page_writeback(
406 struct page *page,
f6d6d4fc
CH
407 int clear_dirty,
408 int buffers)
409{
410 ASSERT(PageLocked(page));
411 ASSERT(!PageWriteback(page));
f6d6d4fc 412 if (clear_dirty)
92132021
DC
413 clear_page_dirty_for_io(page);
414 set_page_writeback(page);
f6d6d4fc 415 unlock_page(page);
1f7decf6
FW
416 /* If no buffers on the page are to be written, finish it here */
417 if (!buffers)
f6d6d4fc 418 end_page_writeback(page);
f6d6d4fc
CH
419}
420
421static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
422{
423 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
424}
425
426/*
d88992f6
DC
427 * Submit all of the bios for all of the ioends we have saved up, covering the
428 * initial writepage page and also any probed pages.
429 *
430 * Because we may have multiple ioends spanning a page, we need to start
431 * writeback on all the buffers before we submit them for I/O. If we mark the
432 * buffers as we got, then we can end up with a page that only has buffers
433 * marked async write and I/O complete on can occur before we mark the other
434 * buffers async write.
435 *
436 * The end result of this is that we trip a bug in end_page_writeback() because
437 * we call it twice for the one page as the code in end_buffer_async_write()
438 * assumes that all buffers on the page are started at the same time.
439 *
440 * The fix is two passes across the ioend list - one to start writeback on the
c41564b5 441 * buffer_heads, and then submit them for I/O on the second pass.
f6d6d4fc
CH
442 */
443STATIC void
444xfs_submit_ioend(
06342cf8 445 struct writeback_control *wbc,
f6d6d4fc
CH
446 xfs_ioend_t *ioend)
447{
d88992f6 448 xfs_ioend_t *head = ioend;
f6d6d4fc
CH
449 xfs_ioend_t *next;
450 struct buffer_head *bh;
451 struct bio *bio;
452 sector_t lastblock = 0;
453
d88992f6
DC
454 /* Pass 1 - start writeback */
455 do {
456 next = ioend->io_list;
457 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
458 xfs_start_buffer_writeback(bh);
459 }
460 } while ((ioend = next) != NULL);
461
462 /* Pass 2 - submit I/O */
463 ioend = head;
f6d6d4fc
CH
464 do {
465 next = ioend->io_list;
466 bio = NULL;
467
468 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
f6d6d4fc
CH
469
470 if (!bio) {
471 retry:
472 bio = xfs_alloc_ioend_bio(bh);
473 } else if (bh->b_blocknr != lastblock + 1) {
06342cf8 474 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
475 goto retry;
476 }
477
478 if (bio_add_buffer(bio, bh) != bh->b_size) {
06342cf8 479 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
480 goto retry;
481 }
482
483 lastblock = bh->b_blocknr;
484 }
485 if (bio)
06342cf8 486 xfs_submit_ioend_bio(wbc, ioend, bio);
e927af90 487 xfs_finish_ioend(ioend, 0);
f6d6d4fc
CH
488 } while ((ioend = next) != NULL);
489}
490
491/*
492 * Cancel submission of all buffer_heads so far in this endio.
493 * Toss the endio too. Only ever called for the initial page
494 * in a writepage request, so only ever one page.
495 */
496STATIC void
497xfs_cancel_ioend(
498 xfs_ioend_t *ioend)
499{
500 xfs_ioend_t *next;
501 struct buffer_head *bh, *next_bh;
502
503 do {
504 next = ioend->io_list;
505 bh = ioend->io_buffer_head;
506 do {
507 next_bh = bh->b_private;
508 clear_buffer_async_write(bh);
509 unlock_buffer(bh);
510 } while ((bh = next_bh) != NULL);
511
25e41b3d 512 xfs_ioend_wake(XFS_I(ioend->io_inode));
f6d6d4fc
CH
513 mempool_free(ioend, xfs_ioend_pool);
514 } while ((ioend = next) != NULL);
515}
516
517/*
518 * Test to see if we've been building up a completion structure for
519 * earlier buffers -- if so, we try to append to this ioend if we
520 * can, otherwise we finish off any current ioend and start another.
521 * Return true if we've finished the given ioend.
522 */
523STATIC void
524xfs_add_to_ioend(
525 struct inode *inode,
526 struct buffer_head *bh,
7336cea8 527 xfs_off_t offset,
f6d6d4fc
CH
528 unsigned int type,
529 xfs_ioend_t **result,
530 int need_ioend)
531{
532 xfs_ioend_t *ioend = *result;
533
534 if (!ioend || need_ioend || type != ioend->io_type) {
535 xfs_ioend_t *previous = *result;
f6d6d4fc 536
f6d6d4fc
CH
537 ioend = xfs_alloc_ioend(inode, type);
538 ioend->io_offset = offset;
539 ioend->io_buffer_head = bh;
540 ioend->io_buffer_tail = bh;
541 if (previous)
542 previous->io_list = ioend;
543 *result = ioend;
544 } else {
545 ioend->io_buffer_tail->b_private = bh;
546 ioend->io_buffer_tail = bh;
547 }
548
549 bh->b_private = NULL;
550 ioend->io_size += bh->b_size;
551}
552
87cbc49c
NS
553STATIC void
554xfs_map_buffer(
555 struct buffer_head *bh,
556 xfs_iomap_t *mp,
557 xfs_off_t offset,
558 uint block_bits)
559{
560 sector_t bn;
561
562 ASSERT(mp->iomap_bn != IOMAP_DADDR_NULL);
563
564 bn = (mp->iomap_bn >> (block_bits - BBSHIFT)) +
565 ((offset - mp->iomap_offset) >> block_bits);
566
567 ASSERT(bn || (mp->iomap_flags & IOMAP_REALTIME));
568
569 bh->b_blocknr = bn;
570 set_buffer_mapped(bh);
571}
572
1da177e4
LT
573STATIC void
574xfs_map_at_offset(
1da177e4 575 struct buffer_head *bh,
1defeac9 576 loff_t offset,
1da177e4 577 int block_bits,
1defeac9 578 xfs_iomap_t *iomapp)
1da177e4 579{
1da177e4
LT
580 ASSERT(!(iomapp->iomap_flags & IOMAP_HOLE));
581 ASSERT(!(iomapp->iomap_flags & IOMAP_DELAY));
1da177e4
LT
582
583 lock_buffer(bh);
87cbc49c 584 xfs_map_buffer(bh, iomapp, offset, block_bits);
ce8e922c 585 bh->b_bdev = iomapp->iomap_target->bt_bdev;
1da177e4
LT
586 set_buffer_mapped(bh);
587 clear_buffer_delay(bh);
f6d6d4fc 588 clear_buffer_unwritten(bh);
1da177e4
LT
589}
590
591/*
6c4fe19f 592 * Look for a page at index that is suitable for clustering.
1da177e4
LT
593 */
594STATIC unsigned int
6c4fe19f 595xfs_probe_page(
10ce4444 596 struct page *page,
6c4fe19f
CH
597 unsigned int pg_offset,
598 int mapped)
1da177e4 599{
1da177e4
LT
600 int ret = 0;
601
1da177e4 602 if (PageWriteback(page))
10ce4444 603 return 0;
1da177e4
LT
604
605 if (page->mapping && PageDirty(page)) {
606 if (page_has_buffers(page)) {
607 struct buffer_head *bh, *head;
608
609 bh = head = page_buffers(page);
610 do {
6c4fe19f
CH
611 if (!buffer_uptodate(bh))
612 break;
613 if (mapped != buffer_mapped(bh))
1da177e4
LT
614 break;
615 ret += bh->b_size;
616 if (ret >= pg_offset)
617 break;
618 } while ((bh = bh->b_this_page) != head);
619 } else
6c4fe19f 620 ret = mapped ? 0 : PAGE_CACHE_SIZE;
1da177e4
LT
621 }
622
1da177e4
LT
623 return ret;
624}
625
f6d6d4fc 626STATIC size_t
6c4fe19f 627xfs_probe_cluster(
1da177e4
LT
628 struct inode *inode,
629 struct page *startpage,
630 struct buffer_head *bh,
6c4fe19f
CH
631 struct buffer_head *head,
632 int mapped)
1da177e4 633{
10ce4444 634 struct pagevec pvec;
1da177e4 635 pgoff_t tindex, tlast, tloff;
10ce4444
CH
636 size_t total = 0;
637 int done = 0, i;
1da177e4
LT
638
639 /* First sum forwards in this page */
640 do {
2353e8e9 641 if (!buffer_uptodate(bh) || (mapped != buffer_mapped(bh)))
10ce4444 642 return total;
1da177e4
LT
643 total += bh->b_size;
644 } while ((bh = bh->b_this_page) != head);
645
10ce4444
CH
646 /* if we reached the end of the page, sum forwards in following pages */
647 tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT;
648 tindex = startpage->index + 1;
649
650 /* Prune this back to avoid pathological behavior */
651 tloff = min(tlast, startpage->index + 64);
652
653 pagevec_init(&pvec, 0);
654 while (!done && tindex <= tloff) {
655 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
656
657 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
658 break;
659
660 for (i = 0; i < pagevec_count(&pvec); i++) {
661 struct page *page = pvec.pages[i];
265c1fac 662 size_t pg_offset, pg_len = 0;
10ce4444
CH
663
664 if (tindex == tlast) {
665 pg_offset =
666 i_size_read(inode) & (PAGE_CACHE_SIZE - 1);
1defeac9
CH
667 if (!pg_offset) {
668 done = 1;
10ce4444 669 break;
1defeac9 670 }
10ce4444
CH
671 } else
672 pg_offset = PAGE_CACHE_SIZE;
673
529ae9aa 674 if (page->index == tindex && trylock_page(page)) {
265c1fac 675 pg_len = xfs_probe_page(page, pg_offset, mapped);
10ce4444
CH
676 unlock_page(page);
677 }
678
265c1fac 679 if (!pg_len) {
10ce4444
CH
680 done = 1;
681 break;
682 }
683
265c1fac 684 total += pg_len;
1defeac9 685 tindex++;
1da177e4 686 }
10ce4444
CH
687
688 pagevec_release(&pvec);
689 cond_resched();
1da177e4 690 }
10ce4444 691
1da177e4
LT
692 return total;
693}
694
695/*
10ce4444
CH
696 * Test if a given page is suitable for writing as part of an unwritten
697 * or delayed allocate extent.
1da177e4 698 */
10ce4444
CH
699STATIC int
700xfs_is_delayed_page(
701 struct page *page,
f6d6d4fc 702 unsigned int type)
1da177e4 703{
1da177e4 704 if (PageWriteback(page))
10ce4444 705 return 0;
1da177e4
LT
706
707 if (page->mapping && page_has_buffers(page)) {
708 struct buffer_head *bh, *head;
709 int acceptable = 0;
710
711 bh = head = page_buffers(page);
712 do {
f6d6d4fc
CH
713 if (buffer_unwritten(bh))
714 acceptable = (type == IOMAP_UNWRITTEN);
715 else if (buffer_delay(bh))
716 acceptable = (type == IOMAP_DELAY);
2ddee844 717 else if (buffer_dirty(bh) && buffer_mapped(bh))
df3c7244 718 acceptable = (type == IOMAP_NEW);
f6d6d4fc 719 else
1da177e4 720 break;
1da177e4
LT
721 } while ((bh = bh->b_this_page) != head);
722
723 if (acceptable)
10ce4444 724 return 1;
1da177e4
LT
725 }
726
10ce4444 727 return 0;
1da177e4
LT
728}
729
1da177e4
LT
730/*
731 * Allocate & map buffers for page given the extent map. Write it out.
732 * except for the original page of a writepage, this is called on
733 * delalloc/unwritten pages only, for the original page it is possible
734 * that the page has no mapping at all.
735 */
f6d6d4fc 736STATIC int
1da177e4
LT
737xfs_convert_page(
738 struct inode *inode,
739 struct page *page,
10ce4444 740 loff_t tindex,
1defeac9 741 xfs_iomap_t *mp,
f6d6d4fc 742 xfs_ioend_t **ioendp,
1da177e4 743 struct writeback_control *wbc,
1da177e4
LT
744 int startio,
745 int all_bh)
746{
f6d6d4fc 747 struct buffer_head *bh, *head;
9260dc6b
CH
748 xfs_off_t end_offset;
749 unsigned long p_offset;
f6d6d4fc 750 unsigned int type;
1da177e4 751 int bbits = inode->i_blkbits;
24e17b5f 752 int len, page_dirty;
f6d6d4fc 753 int count = 0, done = 0, uptodate = 1;
9260dc6b 754 xfs_off_t offset = page_offset(page);
1da177e4 755
10ce4444
CH
756 if (page->index != tindex)
757 goto fail;
529ae9aa 758 if (!trylock_page(page))
10ce4444
CH
759 goto fail;
760 if (PageWriteback(page))
761 goto fail_unlock_page;
762 if (page->mapping != inode->i_mapping)
763 goto fail_unlock_page;
764 if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
765 goto fail_unlock_page;
766
24e17b5f
NS
767 /*
768 * page_dirty is initially a count of buffers on the page before
c41564b5 769 * EOF and is decremented as we move each into a cleanable state.
9260dc6b
CH
770 *
771 * Derivation:
772 *
773 * End offset is the highest offset that this page should represent.
774 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
775 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
776 * hence give us the correct page_dirty count. On any other page,
777 * it will be zero and in that case we need page_dirty to be the
778 * count of buffers on the page.
24e17b5f 779 */
9260dc6b
CH
780 end_offset = min_t(unsigned long long,
781 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
782 i_size_read(inode));
783
24e17b5f 784 len = 1 << inode->i_blkbits;
9260dc6b
CH
785 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
786 PAGE_CACHE_SIZE);
787 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
788 page_dirty = p_offset / len;
24e17b5f 789
1da177e4
LT
790 bh = head = page_buffers(page);
791 do {
9260dc6b 792 if (offset >= end_offset)
1da177e4 793 break;
f6d6d4fc
CH
794 if (!buffer_uptodate(bh))
795 uptodate = 0;
796 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
797 done = 1;
1da177e4 798 continue;
f6d6d4fc
CH
799 }
800
9260dc6b
CH
801 if (buffer_unwritten(bh) || buffer_delay(bh)) {
802 if (buffer_unwritten(bh))
803 type = IOMAP_UNWRITTEN;
804 else
805 type = IOMAP_DELAY;
806
807 if (!xfs_iomap_valid(mp, offset)) {
f6d6d4fc 808 done = 1;
9260dc6b
CH
809 continue;
810 }
811
812 ASSERT(!(mp->iomap_flags & IOMAP_HOLE));
813 ASSERT(!(mp->iomap_flags & IOMAP_DELAY));
814
815 xfs_map_at_offset(bh, offset, bbits, mp);
816 if (startio) {
7336cea8 817 xfs_add_to_ioend(inode, bh, offset,
9260dc6b
CH
818 type, ioendp, done);
819 } else {
820 set_buffer_dirty(bh);
821 unlock_buffer(bh);
822 mark_buffer_dirty(bh);
823 }
824 page_dirty--;
825 count++;
826 } else {
df3c7244 827 type = IOMAP_NEW;
9260dc6b 828 if (buffer_mapped(bh) && all_bh && startio) {
1da177e4 829 lock_buffer(bh);
7336cea8 830 xfs_add_to_ioend(inode, bh, offset,
f6d6d4fc
CH
831 type, ioendp, done);
832 count++;
24e17b5f 833 page_dirty--;
9260dc6b
CH
834 } else {
835 done = 1;
1da177e4 836 }
1da177e4 837 }
7336cea8 838 } while (offset += len, (bh = bh->b_this_page) != head);
1da177e4 839
f6d6d4fc
CH
840 if (uptodate && bh == head)
841 SetPageUptodate(page);
842
843 if (startio) {
f5e596bb 844 if (count) {
9fddaca2 845 wbc->nr_to_write--;
0d99519e 846 if (wbc->nr_to_write <= 0)
f5e596bb 847 done = 1;
f5e596bb 848 }
b41759cf 849 xfs_start_page_writeback(page, !page_dirty, count);
1da177e4 850 }
f6d6d4fc
CH
851
852 return done;
10ce4444
CH
853 fail_unlock_page:
854 unlock_page(page);
855 fail:
856 return 1;
1da177e4
LT
857}
858
859/*
860 * Convert & write out a cluster of pages in the same extent as defined
861 * by mp and following the start page.
862 */
863STATIC void
864xfs_cluster_write(
865 struct inode *inode,
866 pgoff_t tindex,
867 xfs_iomap_t *iomapp,
f6d6d4fc 868 xfs_ioend_t **ioendp,
1da177e4
LT
869 struct writeback_control *wbc,
870 int startio,
871 int all_bh,
872 pgoff_t tlast)
873{
10ce4444
CH
874 struct pagevec pvec;
875 int done = 0, i;
1da177e4 876
10ce4444
CH
877 pagevec_init(&pvec, 0);
878 while (!done && tindex <= tlast) {
879 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
880
881 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
1da177e4 882 break;
10ce4444
CH
883
884 for (i = 0; i < pagevec_count(&pvec); i++) {
885 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
886 iomapp, ioendp, wbc, startio, all_bh);
887 if (done)
888 break;
889 }
890
891 pagevec_release(&pvec);
892 cond_resched();
1da177e4
LT
893 }
894}
895
896/*
897 * Calling this without startio set means we are being asked to make a dirty
898 * page ready for freeing it's buffers. When called with startio set then
899 * we are coming from writepage.
900 *
901 * When called with startio set it is important that we write the WHOLE
902 * page if possible.
903 * The bh->b_state's cannot know if any of the blocks or which block for
904 * that matter are dirty due to mmap writes, and therefore bh uptodate is
c41564b5 905 * only valid if the page itself isn't completely uptodate. Some layers
1da177e4
LT
906 * may clear the page dirty flag prior to calling write page, under the
907 * assumption the entire page will be written out; by not writing out the
908 * whole page the page can be reused before all valid dirty data is
909 * written out. Note: in the case of a page that has been dirty'd by
910 * mapwrite and but partially setup by block_prepare_write the
911 * bh->b_states's will not agree and only ones setup by BPW/BCW will have
912 * valid state, thus the whole page must be written out thing.
913 */
914
915STATIC int
916xfs_page_state_convert(
917 struct inode *inode,
918 struct page *page,
919 struct writeback_control *wbc,
920 int startio,
921 int unmapped) /* also implies page uptodate */
922{
f6d6d4fc 923 struct buffer_head *bh, *head;
1defeac9 924 xfs_iomap_t iomap;
f6d6d4fc 925 xfs_ioend_t *ioend = NULL, *iohead = NULL;
1da177e4
LT
926 loff_t offset;
927 unsigned long p_offset = 0;
f6d6d4fc 928 unsigned int type;
1da177e4
LT
929 __uint64_t end_offset;
930 pgoff_t end_index, last_index, tlast;
d5cb48aa
CH
931 ssize_t size, len;
932 int flags, err, iomap_valid = 0, uptodate = 1;
8272145c
NS
933 int page_dirty, count = 0;
934 int trylock = 0;
6c4fe19f 935 int all_bh = unmapped;
1da177e4 936
8272145c
NS
937 if (startio) {
938 if (wbc->sync_mode == WB_SYNC_NONE && wbc->nonblocking)
939 trylock |= BMAPI_TRYLOCK;
940 }
3ba0815a 941
1da177e4
LT
942 /* Is this page beyond the end of the file? */
943 offset = i_size_read(inode);
944 end_index = offset >> PAGE_CACHE_SHIFT;
945 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
946 if (page->index >= end_index) {
947 if ((page->index >= end_index + 1) ||
948 !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
19d5bcf3
NS
949 if (startio)
950 unlock_page(page);
951 return 0;
1da177e4
LT
952 }
953 }
954
1da177e4 955 /*
24e17b5f 956 * page_dirty is initially a count of buffers on the page before
c41564b5 957 * EOF and is decremented as we move each into a cleanable state.
f6d6d4fc
CH
958 *
959 * Derivation:
960 *
961 * End offset is the highest offset that this page should represent.
962 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
963 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
964 * hence give us the correct page_dirty count. On any other page,
965 * it will be zero and in that case we need page_dirty to be the
966 * count of buffers on the page.
967 */
968 end_offset = min_t(unsigned long long,
969 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, offset);
24e17b5f 970 len = 1 << inode->i_blkbits;
f6d6d4fc
CH
971 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
972 PAGE_CACHE_SIZE);
973 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
24e17b5f
NS
974 page_dirty = p_offset / len;
975
24e17b5f 976 bh = head = page_buffers(page);
f6d6d4fc 977 offset = page_offset(page);
df3c7244
DC
978 flags = BMAPI_READ;
979 type = IOMAP_NEW;
f6d6d4fc 980
f6d6d4fc 981 /* TODO: cleanup count and page_dirty */
1da177e4
LT
982
983 do {
984 if (offset >= end_offset)
985 break;
986 if (!buffer_uptodate(bh))
987 uptodate = 0;
f6d6d4fc 988 if (!(PageUptodate(page) || buffer_uptodate(bh)) && !startio) {
1defeac9
CH
989 /*
990 * the iomap is actually still valid, but the ioend
991 * isn't. shouldn't happen too often.
992 */
993 iomap_valid = 0;
1da177e4 994 continue;
f6d6d4fc 995 }
1da177e4 996
1defeac9
CH
997 if (iomap_valid)
998 iomap_valid = xfs_iomap_valid(&iomap, offset);
1da177e4
LT
999
1000 /*
1001 * First case, map an unwritten extent and prepare for
1002 * extent state conversion transaction on completion.
f6d6d4fc 1003 *
1da177e4
LT
1004 * Second case, allocate space for a delalloc buffer.
1005 * We can return EAGAIN here in the release page case.
d5cb48aa
CH
1006 *
1007 * Third case, an unmapped buffer was found, and we are
1008 * in a path where we need to write the whole page out.
df3c7244 1009 */
d5cb48aa
CH
1010 if (buffer_unwritten(bh) || buffer_delay(bh) ||
1011 ((buffer_uptodate(bh) || PageUptodate(page)) &&
1012 !buffer_mapped(bh) && (unmapped || startio))) {
effd120e
DC
1013 int new_ioend = 0;
1014
df3c7244 1015 /*
6c4fe19f
CH
1016 * Make sure we don't use a read-only iomap
1017 */
df3c7244 1018 if (flags == BMAPI_READ)
6c4fe19f
CH
1019 iomap_valid = 0;
1020
f6d6d4fc
CH
1021 if (buffer_unwritten(bh)) {
1022 type = IOMAP_UNWRITTEN;
8272145c 1023 flags = BMAPI_WRITE | BMAPI_IGNSTATE;
d5cb48aa 1024 } else if (buffer_delay(bh)) {
f6d6d4fc 1025 type = IOMAP_DELAY;
8272145c 1026 flags = BMAPI_ALLOCATE | trylock;
d5cb48aa 1027 } else {
6c4fe19f 1028 type = IOMAP_NEW;
8272145c 1029 flags = BMAPI_WRITE | BMAPI_MMAP;
f6d6d4fc
CH
1030 }
1031
1defeac9 1032 if (!iomap_valid) {
effd120e
DC
1033 /*
1034 * if we didn't have a valid mapping then we
1035 * need to ensure that we put the new mapping
1036 * in a new ioend structure. This needs to be
1037 * done to ensure that the ioends correctly
1038 * reflect the block mappings at io completion
1039 * for unwritten extent conversion.
1040 */
1041 new_ioend = 1;
6c4fe19f
CH
1042 if (type == IOMAP_NEW) {
1043 size = xfs_probe_cluster(inode,
1044 page, bh, head, 0);
d5cb48aa
CH
1045 } else {
1046 size = len;
1047 }
1048
1049 err = xfs_map_blocks(inode, offset, size,
1050 &iomap, flags);
f6d6d4fc 1051 if (err)
1da177e4 1052 goto error;
1defeac9 1053 iomap_valid = xfs_iomap_valid(&iomap, offset);
1da177e4 1054 }
1defeac9
CH
1055 if (iomap_valid) {
1056 xfs_map_at_offset(bh, offset,
1057 inode->i_blkbits, &iomap);
1da177e4 1058 if (startio) {
7336cea8 1059 xfs_add_to_ioend(inode, bh, offset,
1defeac9 1060 type, &ioend,
effd120e 1061 new_ioend);
1da177e4
LT
1062 } else {
1063 set_buffer_dirty(bh);
1064 unlock_buffer(bh);
1065 mark_buffer_dirty(bh);
1066 }
1067 page_dirty--;
f6d6d4fc 1068 count++;
1da177e4 1069 }
d5cb48aa 1070 } else if (buffer_uptodate(bh) && startio) {
6c4fe19f
CH
1071 /*
1072 * we got here because the buffer is already mapped.
1073 * That means it must already have extents allocated
1074 * underneath it. Map the extent by reading it.
1075 */
df3c7244 1076 if (!iomap_valid || flags != BMAPI_READ) {
6c4fe19f
CH
1077 flags = BMAPI_READ;
1078 size = xfs_probe_cluster(inode, page, bh,
1079 head, 1);
1080 err = xfs_map_blocks(inode, offset, size,
1081 &iomap, flags);
1082 if (err)
1083 goto error;
1084 iomap_valid = xfs_iomap_valid(&iomap, offset);
1085 }
d5cb48aa 1086
df3c7244
DC
1087 /*
1088 * We set the type to IOMAP_NEW in case we are doing a
1089 * small write at EOF that is extending the file but
1090 * without needing an allocation. We need to update the
1091 * file size on I/O completion in this case so it is
1092 * the same case as having just allocated a new extent
1093 * that we are writing into for the first time.
1094 */
1095 type = IOMAP_NEW;
ca5de404 1096 if (trylock_buffer(bh)) {
d5cb48aa 1097 ASSERT(buffer_mapped(bh));
6c4fe19f
CH
1098 if (iomap_valid)
1099 all_bh = 1;
7336cea8 1100 xfs_add_to_ioend(inode, bh, offset, type,
d5cb48aa
CH
1101 &ioend, !iomap_valid);
1102 page_dirty--;
1103 count++;
f6d6d4fc 1104 } else {
1defeac9 1105 iomap_valid = 0;
1da177e4 1106 }
d5cb48aa
CH
1107 } else if ((buffer_uptodate(bh) || PageUptodate(page)) &&
1108 (unmapped || startio)) {
1109 iomap_valid = 0;
1da177e4 1110 }
f6d6d4fc
CH
1111
1112 if (!iohead)
1113 iohead = ioend;
1114
1115 } while (offset += len, ((bh = bh->b_this_page) != head));
1da177e4
LT
1116
1117 if (uptodate && bh == head)
1118 SetPageUptodate(page);
1119
f6d6d4fc 1120 if (startio)
b41759cf 1121 xfs_start_page_writeback(page, 1, count);
1da177e4 1122
1defeac9
CH
1123 if (ioend && iomap_valid) {
1124 offset = (iomap.iomap_offset + iomap.iomap_bsize - 1) >>
1da177e4 1125 PAGE_CACHE_SHIFT;
775bf6c9 1126 tlast = min_t(pgoff_t, offset, last_index);
1defeac9 1127 xfs_cluster_write(inode, page->index + 1, &iomap, &ioend,
6c4fe19f 1128 wbc, startio, all_bh, tlast);
1da177e4
LT
1129 }
1130
f6d6d4fc 1131 if (iohead)
06342cf8 1132 xfs_submit_ioend(wbc, iohead);
f6d6d4fc 1133
1da177e4
LT
1134 return page_dirty;
1135
1136error:
f6d6d4fc
CH
1137 if (iohead)
1138 xfs_cancel_ioend(iohead);
1da177e4
LT
1139
1140 /*
1141 * If it's delalloc and we have nowhere to put it,
1142 * throw it away, unless the lower layers told
1143 * us to try again.
1144 */
1145 if (err != -EAGAIN) {
f6d6d4fc 1146 if (!unmapped)
1da177e4 1147 block_invalidatepage(page, 0);
1da177e4
LT
1148 ClearPageUptodate(page);
1149 }
1150 return err;
1151}
1152
f51623b2
NS
1153/*
1154 * writepage: Called from one of two places:
1155 *
1156 * 1. we are flushing a delalloc buffer head.
1157 *
1158 * 2. we are writing out a dirty page. Typically the page dirty
1159 * state is cleared before we get here. In this case is it
1160 * conceivable we have no buffer heads.
1161 *
1162 * For delalloc space on the page we need to allocate space and
1163 * flush it. For unmapped buffer heads on the page we should
1164 * allocate space if the page is uptodate. For any other dirty
1165 * buffer heads on the page we should flush them.
1166 *
1167 * If we detect that a transaction would be required to flush
1168 * the page, we have to check the process flags first, if we
1169 * are already in a transaction or disk I/O during allocations
1170 * is off, we need to fail the writepage and redirty the page.
1171 */
1172
1173STATIC int
e4c573bb 1174xfs_vm_writepage(
f51623b2
NS
1175 struct page *page,
1176 struct writeback_control *wbc)
1177{
1178 int error;
1179 int need_trans;
1180 int delalloc, unmapped, unwritten;
1181 struct inode *inode = page->mapping->host;
1182
0b1b213f 1183 trace_xfs_writepage(inode, page, 0);
f51623b2
NS
1184
1185 /*
1186 * We need a transaction if:
1187 * 1. There are delalloc buffers on the page
1188 * 2. The page is uptodate and we have unmapped buffers
1189 * 3. The page is uptodate and we have no buffers
1190 * 4. There are unwritten buffers on the page
1191 */
1192
1193 if (!page_has_buffers(page)) {
1194 unmapped = 1;
1195 need_trans = 1;
1196 } else {
1197 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1198 if (!PageUptodate(page))
1199 unmapped = 0;
1200 need_trans = delalloc + unmapped + unwritten;
1201 }
1202
1203 /*
1204 * If we need a transaction and the process flags say
1205 * we are already in a transaction, or no IO is allowed
1206 * then mark the page dirty again and leave the page
1207 * as is.
1208 */
59c1b082 1209 if (current_test_flags(PF_FSTRANS) && need_trans)
f51623b2
NS
1210 goto out_fail;
1211
1212 /*
1213 * Delay hooking up buffer heads until we have
1214 * made our go/no-go decision.
1215 */
1216 if (!page_has_buffers(page))
1217 create_empty_buffers(page, 1 << inode->i_blkbits, 0);
1218
c8a4051c
ES
1219
1220 /*
1221 * VM calculation for nr_to_write seems off. Bump it way
1222 * up, this gets simple streaming writes zippy again.
1223 * To be reviewed again after Jens' writeback changes.
1224 */
1225 wbc->nr_to_write *= 4;
1226
f51623b2
NS
1227 /*
1228 * Convert delayed allocate, unwritten or unmapped space
1229 * to real space and flush out to disk.
1230 */
1231 error = xfs_page_state_convert(inode, page, wbc, 1, unmapped);
1232 if (error == -EAGAIN)
1233 goto out_fail;
1234 if (unlikely(error < 0))
1235 goto out_unlock;
1236
1237 return 0;
1238
1239out_fail:
1240 redirty_page_for_writepage(wbc, page);
1241 unlock_page(page);
1242 return 0;
1243out_unlock:
1244 unlock_page(page);
1245 return error;
1246}
1247
7d4fb40a
NS
1248STATIC int
1249xfs_vm_writepages(
1250 struct address_space *mapping,
1251 struct writeback_control *wbc)
1252{
b3aea4ed 1253 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
7d4fb40a
NS
1254 return generic_writepages(mapping, wbc);
1255}
1256
f51623b2
NS
1257/*
1258 * Called to move a page into cleanable state - and from there
1259 * to be released. Possibly the page is already clean. We always
1260 * have buffer heads in this call.
1261 *
1262 * Returns 0 if the page is ok to release, 1 otherwise.
1263 *
1264 * Possible scenarios are:
1265 *
1266 * 1. We are being called to release a page which has been written
1267 * to via regular I/O. buffer heads will be dirty and possibly
1268 * delalloc. If no delalloc buffer heads in this case then we
1269 * can just return zero.
1270 *
1271 * 2. We are called to release a page which has been written via
1272 * mmap, all we need to do is ensure there is no delalloc
1273 * state in the buffer heads, if not we can let the caller
1274 * free them and we should come back later via writepage.
1275 */
1276STATIC int
238f4c54 1277xfs_vm_releasepage(
f51623b2
NS
1278 struct page *page,
1279 gfp_t gfp_mask)
1280{
1281 struct inode *inode = page->mapping->host;
1282 int dirty, delalloc, unmapped, unwritten;
1283 struct writeback_control wbc = {
1284 .sync_mode = WB_SYNC_ALL,
1285 .nr_to_write = 1,
1286 };
1287
0b1b213f 1288 trace_xfs_releasepage(inode, page, 0);
f51623b2 1289
238f4c54
NS
1290 if (!page_has_buffers(page))
1291 return 0;
1292
f51623b2
NS
1293 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1294 if (!delalloc && !unwritten)
1295 goto free_buffers;
1296
1297 if (!(gfp_mask & __GFP_FS))
1298 return 0;
1299
1300 /* If we are already inside a transaction or the thread cannot
1301 * do I/O, we cannot release this page.
1302 */
59c1b082 1303 if (current_test_flags(PF_FSTRANS))
f51623b2
NS
1304 return 0;
1305
1306 /*
1307 * Convert delalloc space to real space, do not flush the
1308 * data out to disk, that will be done by the caller.
1309 * Never need to allocate space here - we will always
1310 * come back to writepage in that case.
1311 */
1312 dirty = xfs_page_state_convert(inode, page, &wbc, 0, 0);
1313 if (dirty == 0 && !unwritten)
1314 goto free_buffers;
1315 return 0;
1316
1317free_buffers:
1318 return try_to_free_buffers(page);
1319}
1320
1da177e4 1321STATIC int
c2536668 1322__xfs_get_blocks(
1da177e4
LT
1323 struct inode *inode,
1324 sector_t iblock,
1da177e4
LT
1325 struct buffer_head *bh_result,
1326 int create,
1327 int direct,
1328 bmapi_flags_t flags)
1329{
1da177e4 1330 xfs_iomap_t iomap;
fdc7ed75
NS
1331 xfs_off_t offset;
1332 ssize_t size;
c2536668 1333 int niomap = 1;
1da177e4 1334 int error;
1da177e4 1335
fdc7ed75 1336 offset = (xfs_off_t)iblock << inode->i_blkbits;
c2536668
NS
1337 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1338 size = bh_result->b_size;
364f358a
LM
1339
1340 if (!create && direct && offset >= i_size_read(inode))
1341 return 0;
1342
541d7d3c 1343 error = xfs_iomap(XFS_I(inode), offset, size,
67fcaa73 1344 create ? flags : BMAPI_READ, &iomap, &niomap);
1da177e4
LT
1345 if (error)
1346 return -error;
c2536668 1347 if (niomap == 0)
1da177e4
LT
1348 return 0;
1349
1350 if (iomap.iomap_bn != IOMAP_DADDR_NULL) {
87cbc49c
NS
1351 /*
1352 * For unwritten extents do not report a disk address on
1da177e4
LT
1353 * the read case (treat as if we're reading into a hole).
1354 */
1355 if (create || !(iomap.iomap_flags & IOMAP_UNWRITTEN)) {
87cbc49c
NS
1356 xfs_map_buffer(bh_result, &iomap, offset,
1357 inode->i_blkbits);
1da177e4
LT
1358 }
1359 if (create && (iomap.iomap_flags & IOMAP_UNWRITTEN)) {
1360 if (direct)
1361 bh_result->b_private = inode;
1362 set_buffer_unwritten(bh_result);
1da177e4
LT
1363 }
1364 }
1365
c2536668
NS
1366 /*
1367 * If this is a realtime file, data may be on a different device.
1368 * to that pointed to from the buffer_head b_bdev currently.
1369 */
ce8e922c 1370 bh_result->b_bdev = iomap.iomap_target->bt_bdev;
1da177e4 1371
c2536668 1372 /*
549054af
DC
1373 * If we previously allocated a block out beyond eof and we are now
1374 * coming back to use it then we will need to flag it as new even if it
1375 * has a disk address.
1376 *
1377 * With sub-block writes into unwritten extents we also need to mark
1378 * the buffer as new so that the unwritten parts of the buffer gets
1379 * correctly zeroed.
1da177e4
LT
1380 */
1381 if (create &&
1382 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
549054af
DC
1383 (offset >= i_size_read(inode)) ||
1384 (iomap.iomap_flags & (IOMAP_NEW|IOMAP_UNWRITTEN))))
1da177e4 1385 set_buffer_new(bh_result);
1da177e4
LT
1386
1387 if (iomap.iomap_flags & IOMAP_DELAY) {
1388 BUG_ON(direct);
1389 if (create) {
1390 set_buffer_uptodate(bh_result);
1391 set_buffer_mapped(bh_result);
1392 set_buffer_delay(bh_result);
1393 }
1394 }
1395
c2536668 1396 if (direct || size > (1 << inode->i_blkbits)) {
fdc7ed75
NS
1397 ASSERT(iomap.iomap_bsize - iomap.iomap_delta > 0);
1398 offset = min_t(xfs_off_t,
c2536668
NS
1399 iomap.iomap_bsize - iomap.iomap_delta, size);
1400 bh_result->b_size = (ssize_t)min_t(xfs_off_t, LONG_MAX, offset);
1da177e4
LT
1401 }
1402
1403 return 0;
1404}
1405
1406int
c2536668 1407xfs_get_blocks(
1da177e4
LT
1408 struct inode *inode,
1409 sector_t iblock,
1410 struct buffer_head *bh_result,
1411 int create)
1412{
c2536668 1413 return __xfs_get_blocks(inode, iblock,
fa30bd05 1414 bh_result, create, 0, BMAPI_WRITE);
1da177e4
LT
1415}
1416
1417STATIC int
e4c573bb 1418xfs_get_blocks_direct(
1da177e4
LT
1419 struct inode *inode,
1420 sector_t iblock,
1da177e4
LT
1421 struct buffer_head *bh_result,
1422 int create)
1423{
c2536668 1424 return __xfs_get_blocks(inode, iblock,
1d8fa7a2 1425 bh_result, create, 1, BMAPI_WRITE|BMAPI_DIRECT);
1da177e4
LT
1426}
1427
f0973863 1428STATIC void
e4c573bb 1429xfs_end_io_direct(
f0973863
CH
1430 struct kiocb *iocb,
1431 loff_t offset,
1432 ssize_t size,
1433 void *private)
1434{
1435 xfs_ioend_t *ioend = iocb->private;
1436
1437 /*
1438 * Non-NULL private data means we need to issue a transaction to
1439 * convert a range from unwritten to written extents. This needs
c41564b5 1440 * to happen from process context but aio+dio I/O completion
f0973863 1441 * happens from irq context so we need to defer it to a workqueue.
c41564b5 1442 * This is not necessary for synchronous direct I/O, but we do
f0973863
CH
1443 * it anyway to keep the code uniform and simpler.
1444 *
e927af90
DC
1445 * Well, if only it were that simple. Because synchronous direct I/O
1446 * requires extent conversion to occur *before* we return to userspace,
1447 * we have to wait for extent conversion to complete. Look at the
1448 * iocb that has been passed to us to determine if this is AIO or
1449 * not. If it is synchronous, tell xfs_finish_ioend() to kick the
1450 * workqueue and wait for it to complete.
1451 *
f0973863
CH
1452 * The core direct I/O code might be changed to always call the
1453 * completion handler in the future, in which case all this can
1454 * go away.
1455 */
ba87ea69
LM
1456 ioend->io_offset = offset;
1457 ioend->io_size = size;
1458 if (ioend->io_type == IOMAP_READ) {
e927af90 1459 xfs_finish_ioend(ioend, 0);
ba87ea69 1460 } else if (private && size > 0) {
e927af90 1461 xfs_finish_ioend(ioend, is_sync_kiocb(iocb));
f0973863 1462 } else {
ba87ea69
LM
1463 /*
1464 * A direct I/O write ioend starts it's life in unwritten
1465 * state in case they map an unwritten extent. This write
1466 * didn't map an unwritten extent so switch it's completion
1467 * handler.
1468 */
5ec4fabb 1469 ioend->io_type = IOMAP_NEW;
e927af90 1470 xfs_finish_ioend(ioend, 0);
f0973863
CH
1471 }
1472
1473 /*
c41564b5 1474 * blockdev_direct_IO can return an error even after the I/O
f0973863
CH
1475 * completion handler was called. Thus we need to protect
1476 * against double-freeing.
1477 */
1478 iocb->private = NULL;
1479}
1480
1da177e4 1481STATIC ssize_t
e4c573bb 1482xfs_vm_direct_IO(
1da177e4
LT
1483 int rw,
1484 struct kiocb *iocb,
1485 const struct iovec *iov,
1486 loff_t offset,
1487 unsigned long nr_segs)
1488{
1489 struct file *file = iocb->ki_filp;
1490 struct inode *inode = file->f_mapping->host;
6214ed44 1491 struct block_device *bdev;
f0973863 1492 ssize_t ret;
1da177e4 1493
6214ed44 1494 bdev = xfs_find_bdev_for_inode(XFS_I(inode));
1da177e4 1495
5fe878ae
CH
1496 iocb->private = xfs_alloc_ioend(inode, rw == WRITE ?
1497 IOMAP_UNWRITTEN : IOMAP_READ);
1498
1499 ret = blockdev_direct_IO_no_locking(rw, iocb, inode, bdev, iov,
1500 offset, nr_segs,
1501 xfs_get_blocks_direct,
1502 xfs_end_io_direct);
f0973863 1503
8459d86a 1504 if (unlikely(ret != -EIOCBQUEUED && iocb->private))
f0973863
CH
1505 xfs_destroy_ioend(iocb->private);
1506 return ret;
1da177e4
LT
1507}
1508
f51623b2 1509STATIC int
d79689c7 1510xfs_vm_write_begin(
f51623b2 1511 struct file *file,
d79689c7
NP
1512 struct address_space *mapping,
1513 loff_t pos,
1514 unsigned len,
1515 unsigned flags,
1516 struct page **pagep,
1517 void **fsdata)
f51623b2 1518{
d79689c7
NP
1519 *pagep = NULL;
1520 return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1521 xfs_get_blocks);
f51623b2 1522}
1da177e4
LT
1523
1524STATIC sector_t
e4c573bb 1525xfs_vm_bmap(
1da177e4
LT
1526 struct address_space *mapping,
1527 sector_t block)
1528{
1529 struct inode *inode = (struct inode *)mapping->host;
739bfb2a 1530 struct xfs_inode *ip = XFS_I(inode);
1da177e4 1531
cf441eeb 1532 xfs_itrace_entry(XFS_I(inode));
126468b1 1533 xfs_ilock(ip, XFS_IOLOCK_SHARED);
739bfb2a 1534 xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF);
126468b1 1535 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
c2536668 1536 return generic_block_bmap(mapping, block, xfs_get_blocks);
1da177e4
LT
1537}
1538
1539STATIC int
e4c573bb 1540xfs_vm_readpage(
1da177e4
LT
1541 struct file *unused,
1542 struct page *page)
1543{
c2536668 1544 return mpage_readpage(page, xfs_get_blocks);
1da177e4
LT
1545}
1546
1547STATIC int
e4c573bb 1548xfs_vm_readpages(
1da177e4
LT
1549 struct file *unused,
1550 struct address_space *mapping,
1551 struct list_head *pages,
1552 unsigned nr_pages)
1553{
c2536668 1554 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1da177e4
LT
1555}
1556
2ff28e22 1557STATIC void
238f4c54 1558xfs_vm_invalidatepage(
bcec2b7f
NS
1559 struct page *page,
1560 unsigned long offset)
1561{
0b1b213f 1562 trace_xfs_invalidatepage(page->mapping->host, page, offset);
2ff28e22 1563 block_invalidatepage(page, offset);
bcec2b7f
NS
1564}
1565
f5e54d6e 1566const struct address_space_operations xfs_address_space_operations = {
e4c573bb
NS
1567 .readpage = xfs_vm_readpage,
1568 .readpages = xfs_vm_readpages,
1569 .writepage = xfs_vm_writepage,
7d4fb40a 1570 .writepages = xfs_vm_writepages,
1da177e4 1571 .sync_page = block_sync_page,
238f4c54
NS
1572 .releasepage = xfs_vm_releasepage,
1573 .invalidatepage = xfs_vm_invalidatepage,
d79689c7
NP
1574 .write_begin = xfs_vm_write_begin,
1575 .write_end = generic_write_end,
e4c573bb
NS
1576 .bmap = xfs_vm_bmap,
1577 .direct_IO = xfs_vm_direct_IO,
e965f963 1578 .migratepage = buffer_migrate_page,
bddaafa1 1579 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 1580 .error_remove_page = generic_error_remove_page,
1da177e4 1581};