xfs: kill xfs_iomap
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / xfs / linux-2.6 / xfs_aops.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_bit.h"
1da177e4 20#include "xfs_log.h"
a844f451 21#include "xfs_inum.h"
1da177e4 22#include "xfs_sb.h"
a844f451 23#include "xfs_ag.h"
1da177e4 24#include "xfs_trans.h"
1da177e4
LT
25#include "xfs_mount.h"
26#include "xfs_bmap_btree.h"
1da177e4
LT
27#include "xfs_dinode.h"
28#include "xfs_inode.h"
a844f451 29#include "xfs_alloc.h"
1da177e4
LT
30#include "xfs_error.h"
31#include "xfs_rw.h"
32#include "xfs_iomap.h"
739bfb2a 33#include "xfs_vnodeops.h"
0b1b213f 34#include "xfs_trace.h"
3ed3a434 35#include "xfs_bmap.h"
5a0e3ad6 36#include <linux/gfp.h>
1da177e4 37#include <linux/mpage.h>
10ce4444 38#include <linux/pagevec.h>
1da177e4
LT
39#include <linux/writeback.h>
40
25e41b3d
CH
41
42/*
43 * Prime number of hash buckets since address is used as the key.
44 */
45#define NVSYNC 37
46#define to_ioend_wq(v) (&xfs_ioend_wq[((unsigned long)v) % NVSYNC])
47static wait_queue_head_t xfs_ioend_wq[NVSYNC];
48
49void __init
50xfs_ioend_init(void)
51{
52 int i;
53
54 for (i = 0; i < NVSYNC; i++)
55 init_waitqueue_head(&xfs_ioend_wq[i]);
56}
57
58void
59xfs_ioend_wait(
60 xfs_inode_t *ip)
61{
62 wait_queue_head_t *wq = to_ioend_wq(ip);
63
64 wait_event(*wq, (atomic_read(&ip->i_iocount) == 0));
65}
66
67STATIC void
68xfs_ioend_wake(
69 xfs_inode_t *ip)
70{
71 if (atomic_dec_and_test(&ip->i_iocount))
72 wake_up(to_ioend_wq(ip));
73}
74
0b1b213f 75void
f51623b2
NS
76xfs_count_page_state(
77 struct page *page,
78 int *delalloc,
f51623b2
NS
79 int *unwritten)
80{
81 struct buffer_head *bh, *head;
82
20cb52eb 83 *delalloc = *unwritten = 0;
f51623b2
NS
84
85 bh = head = page_buffers(page);
86 do {
20cb52eb 87 if (buffer_unwritten(bh))
f51623b2
NS
88 (*unwritten) = 1;
89 else if (buffer_delay(bh))
90 (*delalloc) = 1;
91 } while ((bh = bh->b_this_page) != head);
92}
93
6214ed44
CH
94STATIC struct block_device *
95xfs_find_bdev_for_inode(
046f1685 96 struct inode *inode)
6214ed44 97{
046f1685 98 struct xfs_inode *ip = XFS_I(inode);
6214ed44
CH
99 struct xfs_mount *mp = ip->i_mount;
100
71ddabb9 101 if (XFS_IS_REALTIME_INODE(ip))
6214ed44
CH
102 return mp->m_rtdev_targp->bt_bdev;
103 else
104 return mp->m_ddev_targp->bt_bdev;
105}
106
f6d6d4fc
CH
107/*
108 * We're now finished for good with this ioend structure.
109 * Update the page state via the associated buffer_heads,
110 * release holds on the inode and bio, and finally free
111 * up memory. Do not use the ioend after this.
112 */
0829c360
CH
113STATIC void
114xfs_destroy_ioend(
115 xfs_ioend_t *ioend)
116{
f6d6d4fc 117 struct buffer_head *bh, *next;
583fa586 118 struct xfs_inode *ip = XFS_I(ioend->io_inode);
f6d6d4fc
CH
119
120 for (bh = ioend->io_buffer_head; bh; bh = next) {
121 next = bh->b_private;
7d04a335 122 bh->b_end_io(bh, !ioend->io_error);
f6d6d4fc 123 }
583fa586
CH
124
125 /*
126 * Volume managers supporting multiple paths can send back ENODEV
127 * when the final path disappears. In this case continuing to fill
128 * the page cache with dirty data which cannot be written out is
129 * evil, so prevent that.
130 */
131 if (unlikely(ioend->io_error == -ENODEV)) {
132 xfs_do_force_shutdown(ip->i_mount, SHUTDOWN_DEVICE_REQ,
133 __FILE__, __LINE__);
b677c210 134 }
583fa586 135
25e41b3d 136 xfs_ioend_wake(ip);
0829c360
CH
137 mempool_free(ioend, xfs_ioend_pool);
138}
139
932640e8
DC
140/*
141 * If the end of the current ioend is beyond the current EOF,
142 * return the new EOF value, otherwise zero.
143 */
144STATIC xfs_fsize_t
145xfs_ioend_new_eof(
146 xfs_ioend_t *ioend)
147{
148 xfs_inode_t *ip = XFS_I(ioend->io_inode);
149 xfs_fsize_t isize;
150 xfs_fsize_t bsize;
151
152 bsize = ioend->io_offset + ioend->io_size;
153 isize = MAX(ip->i_size, ip->i_new_size);
154 isize = MIN(isize, bsize);
155 return isize > ip->i_d.di_size ? isize : 0;
156}
157
ba87ea69 158/*
77d7a0c2
DC
159 * Update on-disk file size now that data has been written to disk. The
160 * current in-memory file size is i_size. If a write is beyond eof i_new_size
161 * will be the intended file size until i_size is updated. If this write does
162 * not extend all the way to the valid file size then restrict this update to
163 * the end of the write.
164 *
165 * This function does not block as blocking on the inode lock in IO completion
166 * can lead to IO completion order dependency deadlocks.. If it can't get the
167 * inode ilock it will return EAGAIN. Callers must handle this.
ba87ea69 168 */
77d7a0c2 169STATIC int
ba87ea69
LM
170xfs_setfilesize(
171 xfs_ioend_t *ioend)
172{
b677c210 173 xfs_inode_t *ip = XFS_I(ioend->io_inode);
ba87ea69 174 xfs_fsize_t isize;
ba87ea69 175
ba87ea69 176 if (unlikely(ioend->io_error))
77d7a0c2
DC
177 return 0;
178
179 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
180 return EAGAIN;
ba87ea69 181
932640e8
DC
182 isize = xfs_ioend_new_eof(ioend);
183 if (isize) {
ba87ea69 184 ip->i_d.di_size = isize;
66d834ea 185 xfs_mark_inode_dirty(ip);
ba87ea69
LM
186 }
187
188 xfs_iunlock(ip, XFS_ILOCK_EXCL);
77d7a0c2
DC
189 return 0;
190}
191
192/*
209fb87a 193 * Schedule IO completion handling on the final put of an ioend.
77d7a0c2
DC
194 */
195STATIC void
196xfs_finish_ioend(
209fb87a 197 struct xfs_ioend *ioend)
77d7a0c2
DC
198{
199 if (atomic_dec_and_test(&ioend->io_remaining)) {
209fb87a
CH
200 if (ioend->io_type == IO_UNWRITTEN)
201 queue_work(xfsconvertd_workqueue, &ioend->io_work);
202 else
203 queue_work(xfsdatad_workqueue, &ioend->io_work);
77d7a0c2 204 }
ba87ea69
LM
205}
206
0829c360 207/*
5ec4fabb 208 * IO write completion.
f6d6d4fc
CH
209 */
210STATIC void
5ec4fabb 211xfs_end_io(
77d7a0c2 212 struct work_struct *work)
0829c360 213{
77d7a0c2
DC
214 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
215 struct xfs_inode *ip = XFS_I(ioend->io_inode);
69418932 216 int error = 0;
ba87ea69 217
5ec4fabb
CH
218 /*
219 * For unwritten extents we need to issue transactions to convert a
220 * range to normal written extens after the data I/O has finished.
221 */
34a52c6c 222 if (ioend->io_type == IO_UNWRITTEN &&
5ec4fabb 223 likely(!ioend->io_error && !XFS_FORCED_SHUTDOWN(ip->i_mount))) {
5ec4fabb
CH
224
225 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
226 ioend->io_size);
227 if (error)
228 ioend->io_error = error;
229 }
ba87ea69 230
5ec4fabb
CH
231 /*
232 * We might have to update the on-disk file size after extending
233 * writes.
234 */
a206c817
CH
235 error = xfs_setfilesize(ioend);
236 ASSERT(!error || error == EAGAIN);
77d7a0c2
DC
237
238 /*
239 * If we didn't complete processing of the ioend, requeue it to the
240 * tail of the workqueue for another attempt later. Otherwise destroy
241 * it.
242 */
243 if (error == EAGAIN) {
244 atomic_inc(&ioend->io_remaining);
209fb87a 245 xfs_finish_ioend(ioend);
77d7a0c2
DC
246 /* ensure we don't spin on blocked ioends */
247 delay(1);
fb511f21
CH
248 } else {
249 if (ioend->io_iocb)
250 aio_complete(ioend->io_iocb, ioend->io_result, 0);
77d7a0c2 251 xfs_destroy_ioend(ioend);
fb511f21 252 }
c626d174
DC
253}
254
209fb87a
CH
255/*
256 * Call IO completion handling in caller context on the final put of an ioend.
257 */
258STATIC void
259xfs_finish_ioend_sync(
260 struct xfs_ioend *ioend)
261{
262 if (atomic_dec_and_test(&ioend->io_remaining))
263 xfs_end_io(&ioend->io_work);
264}
265
0829c360
CH
266/*
267 * Allocate and initialise an IO completion structure.
268 * We need to track unwritten extent write completion here initially.
269 * We'll need to extend this for updating the ondisk inode size later
270 * (vs. incore size).
271 */
272STATIC xfs_ioend_t *
273xfs_alloc_ioend(
f6d6d4fc
CH
274 struct inode *inode,
275 unsigned int type)
0829c360
CH
276{
277 xfs_ioend_t *ioend;
278
279 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
280
281 /*
282 * Set the count to 1 initially, which will prevent an I/O
283 * completion callback from happening before we have started
284 * all the I/O from calling the completion routine too early.
285 */
286 atomic_set(&ioend->io_remaining, 1);
7d04a335 287 ioend->io_error = 0;
f6d6d4fc
CH
288 ioend->io_list = NULL;
289 ioend->io_type = type;
b677c210 290 ioend->io_inode = inode;
c1a073bd 291 ioend->io_buffer_head = NULL;
f6d6d4fc 292 ioend->io_buffer_tail = NULL;
b677c210 293 atomic_inc(&XFS_I(ioend->io_inode)->i_iocount);
0829c360
CH
294 ioend->io_offset = 0;
295 ioend->io_size = 0;
fb511f21
CH
296 ioend->io_iocb = NULL;
297 ioend->io_result = 0;
0829c360 298
5ec4fabb 299 INIT_WORK(&ioend->io_work, xfs_end_io);
0829c360
CH
300 return ioend;
301}
302
1da177e4
LT
303STATIC int
304xfs_map_blocks(
305 struct inode *inode,
306 loff_t offset,
307 ssize_t count,
207d0416 308 struct xfs_bmbt_irec *imap,
a206c817
CH
309 int type,
310 int nonblocking)
1da177e4 311{
a206c817
CH
312 struct xfs_inode *ip = XFS_I(inode);
313 struct xfs_mount *mp = ip->i_mount;
314 xfs_fileoff_t offset_fsb, end_fsb;
315 int error = 0;
316 int lockmode = 0;
317 int bmapi_flags = XFS_BMAPI_ENTIRE;
318 int nimaps = 1;
319
320 if (XFS_FORCED_SHUTDOWN(mp))
321 return -XFS_ERROR(EIO);
322
323 switch (type) {
324 case IO_OVERWRITE:
325 lockmode = xfs_ilock_map_shared(ip);
326 break;
327 case IO_UNWRITTEN:
328 lockmode = XFS_ILOCK_EXCL;
329 bmapi_flags |= XFS_BMAPI_IGSTATE;
330 xfs_ilock(ip, lockmode);
331 break;
332 case IO_DELALLOC:
333 lockmode = XFS_ILOCK_SHARED;
334
335 if (!xfs_ilock_nowait(ip, lockmode)) {
336 if (nonblocking)
337 return -XFS_ERROR(EAGAIN);
338 xfs_ilock(ip, lockmode);
339 }
340 break;
341 }
342
343 ASSERT(offset <= mp->m_maxioffset);
344 if (offset + count > mp->m_maxioffset)
345 count = mp->m_maxioffset - offset;
346 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
347 offset_fsb = XFS_B_TO_FSBT(mp, offset);
6bd16ff2 348
a206c817
CH
349 error = xfs_bmapi(NULL, ip, offset_fsb, end_fsb - offset_fsb,
350 bmapi_flags, NULL, 0, imap, &nimaps, NULL);
351 if (error)
352 goto out;
353
354 switch (type) {
355 case IO_UNWRITTEN:
356 /* If we found an extent, return it */
357 if (nimaps &&
358 (imap->br_startblock != HOLESTARTBLOCK) &&
359 (imap->br_startblock != DELAYSTARTBLOCK)) {
360 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
361 break;
362 }
363
364 error = xfs_iomap_write_delay(ip, offset, count, imap);
365 if (!error)
366 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
367 break;
368 case IO_DELALLOC:
369 /* If we found an extent, return it */
370 xfs_iunlock(ip, lockmode);
371 lockmode = 0;
372
373 if (nimaps && !isnullstartblock(imap->br_startblock)) {
374 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
375 break;
376 }
377
378 error = xfs_iomap_write_allocate(ip, offset, count, imap);
379 if (!error)
380 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
381 break;
382 default:
383 if (nimaps)
384 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
385 }
386
387out:
388 if (lockmode)
389 xfs_iunlock(ip, lockmode);
390 return -XFS_ERROR(error);
1da177e4
LT
391}
392
b8f82a4a 393STATIC int
558e6891 394xfs_imap_valid(
8699bb0a 395 struct inode *inode,
207d0416 396 struct xfs_bmbt_irec *imap,
558e6891 397 xfs_off_t offset)
1da177e4 398{
558e6891 399 offset >>= inode->i_blkbits;
8699bb0a 400
558e6891
CH
401 return offset >= imap->br_startoff &&
402 offset < imap->br_startoff + imap->br_blockcount;
1da177e4
LT
403}
404
f6d6d4fc
CH
405/*
406 * BIO completion handler for buffered IO.
407 */
782e3b3b 408STATIC void
f6d6d4fc
CH
409xfs_end_bio(
410 struct bio *bio,
f6d6d4fc
CH
411 int error)
412{
413 xfs_ioend_t *ioend = bio->bi_private;
414
f6d6d4fc 415 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
7d04a335 416 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
f6d6d4fc
CH
417
418 /* Toss bio and pass work off to an xfsdatad thread */
f6d6d4fc
CH
419 bio->bi_private = NULL;
420 bio->bi_end_io = NULL;
f6d6d4fc 421 bio_put(bio);
7d04a335 422
209fb87a 423 xfs_finish_ioend(ioend);
f6d6d4fc
CH
424}
425
426STATIC void
427xfs_submit_ioend_bio(
06342cf8
CH
428 struct writeback_control *wbc,
429 xfs_ioend_t *ioend,
430 struct bio *bio)
f6d6d4fc
CH
431{
432 atomic_inc(&ioend->io_remaining);
f6d6d4fc
CH
433 bio->bi_private = ioend;
434 bio->bi_end_io = xfs_end_bio;
435
932640e8
DC
436 /*
437 * If the I/O is beyond EOF we mark the inode dirty immediately
438 * but don't update the inode size until I/O completion.
439 */
440 if (xfs_ioend_new_eof(ioend))
66d834ea 441 xfs_mark_inode_dirty(XFS_I(ioend->io_inode));
932640e8 442
06342cf8
CH
443 submit_bio(wbc->sync_mode == WB_SYNC_ALL ?
444 WRITE_SYNC_PLUG : WRITE, bio);
f6d6d4fc
CH
445}
446
447STATIC struct bio *
448xfs_alloc_ioend_bio(
449 struct buffer_head *bh)
450{
f6d6d4fc 451 int nvecs = bio_get_nr_vecs(bh->b_bdev);
221cb251 452 struct bio *bio = bio_alloc(GFP_NOIO, nvecs);
f6d6d4fc
CH
453
454 ASSERT(bio->bi_private == NULL);
455 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
456 bio->bi_bdev = bh->b_bdev;
f6d6d4fc
CH
457 return bio;
458}
459
460STATIC void
461xfs_start_buffer_writeback(
462 struct buffer_head *bh)
463{
464 ASSERT(buffer_mapped(bh));
465 ASSERT(buffer_locked(bh));
466 ASSERT(!buffer_delay(bh));
467 ASSERT(!buffer_unwritten(bh));
468
469 mark_buffer_async_write(bh);
470 set_buffer_uptodate(bh);
471 clear_buffer_dirty(bh);
472}
473
474STATIC void
475xfs_start_page_writeback(
476 struct page *page,
f6d6d4fc
CH
477 int clear_dirty,
478 int buffers)
479{
480 ASSERT(PageLocked(page));
481 ASSERT(!PageWriteback(page));
f6d6d4fc 482 if (clear_dirty)
92132021
DC
483 clear_page_dirty_for_io(page);
484 set_page_writeback(page);
f6d6d4fc 485 unlock_page(page);
1f7decf6
FW
486 /* If no buffers on the page are to be written, finish it here */
487 if (!buffers)
f6d6d4fc 488 end_page_writeback(page);
f6d6d4fc
CH
489}
490
491static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
492{
493 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
494}
495
496/*
d88992f6
DC
497 * Submit all of the bios for all of the ioends we have saved up, covering the
498 * initial writepage page and also any probed pages.
499 *
500 * Because we may have multiple ioends spanning a page, we need to start
501 * writeback on all the buffers before we submit them for I/O. If we mark the
502 * buffers as we got, then we can end up with a page that only has buffers
503 * marked async write and I/O complete on can occur before we mark the other
504 * buffers async write.
505 *
506 * The end result of this is that we trip a bug in end_page_writeback() because
507 * we call it twice for the one page as the code in end_buffer_async_write()
508 * assumes that all buffers on the page are started at the same time.
509 *
510 * The fix is two passes across the ioend list - one to start writeback on the
c41564b5 511 * buffer_heads, and then submit them for I/O on the second pass.
f6d6d4fc
CH
512 */
513STATIC void
514xfs_submit_ioend(
06342cf8 515 struct writeback_control *wbc,
f6d6d4fc
CH
516 xfs_ioend_t *ioend)
517{
d88992f6 518 xfs_ioend_t *head = ioend;
f6d6d4fc
CH
519 xfs_ioend_t *next;
520 struct buffer_head *bh;
521 struct bio *bio;
522 sector_t lastblock = 0;
523
d88992f6
DC
524 /* Pass 1 - start writeback */
525 do {
526 next = ioend->io_list;
221cb251 527 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
d88992f6 528 xfs_start_buffer_writeback(bh);
d88992f6
DC
529 } while ((ioend = next) != NULL);
530
531 /* Pass 2 - submit I/O */
532 ioend = head;
f6d6d4fc
CH
533 do {
534 next = ioend->io_list;
535 bio = NULL;
536
537 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
f6d6d4fc
CH
538
539 if (!bio) {
540 retry:
541 bio = xfs_alloc_ioend_bio(bh);
542 } else if (bh->b_blocknr != lastblock + 1) {
06342cf8 543 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
544 goto retry;
545 }
546
547 if (bio_add_buffer(bio, bh) != bh->b_size) {
06342cf8 548 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
549 goto retry;
550 }
551
552 lastblock = bh->b_blocknr;
553 }
554 if (bio)
06342cf8 555 xfs_submit_ioend_bio(wbc, ioend, bio);
209fb87a 556 xfs_finish_ioend(ioend);
f6d6d4fc
CH
557 } while ((ioend = next) != NULL);
558}
559
560/*
561 * Cancel submission of all buffer_heads so far in this endio.
562 * Toss the endio too. Only ever called for the initial page
563 * in a writepage request, so only ever one page.
564 */
565STATIC void
566xfs_cancel_ioend(
567 xfs_ioend_t *ioend)
568{
569 xfs_ioend_t *next;
570 struct buffer_head *bh, *next_bh;
571
572 do {
573 next = ioend->io_list;
574 bh = ioend->io_buffer_head;
575 do {
576 next_bh = bh->b_private;
577 clear_buffer_async_write(bh);
578 unlock_buffer(bh);
579 } while ((bh = next_bh) != NULL);
580
25e41b3d 581 xfs_ioend_wake(XFS_I(ioend->io_inode));
f6d6d4fc
CH
582 mempool_free(ioend, xfs_ioend_pool);
583 } while ((ioend = next) != NULL);
584}
585
586/*
587 * Test to see if we've been building up a completion structure for
588 * earlier buffers -- if so, we try to append to this ioend if we
589 * can, otherwise we finish off any current ioend and start another.
590 * Return true if we've finished the given ioend.
591 */
592STATIC void
593xfs_add_to_ioend(
594 struct inode *inode,
595 struct buffer_head *bh,
7336cea8 596 xfs_off_t offset,
f6d6d4fc
CH
597 unsigned int type,
598 xfs_ioend_t **result,
599 int need_ioend)
600{
601 xfs_ioend_t *ioend = *result;
602
603 if (!ioend || need_ioend || type != ioend->io_type) {
604 xfs_ioend_t *previous = *result;
f6d6d4fc 605
f6d6d4fc
CH
606 ioend = xfs_alloc_ioend(inode, type);
607 ioend->io_offset = offset;
608 ioend->io_buffer_head = bh;
609 ioend->io_buffer_tail = bh;
610 if (previous)
611 previous->io_list = ioend;
612 *result = ioend;
613 } else {
614 ioend->io_buffer_tail->b_private = bh;
615 ioend->io_buffer_tail = bh;
616 }
617
618 bh->b_private = NULL;
619 ioend->io_size += bh->b_size;
620}
621
87cbc49c
NS
622STATIC void
623xfs_map_buffer(
046f1685 624 struct inode *inode,
87cbc49c 625 struct buffer_head *bh,
207d0416 626 struct xfs_bmbt_irec *imap,
046f1685 627 xfs_off_t offset)
87cbc49c
NS
628{
629 sector_t bn;
8699bb0a 630 struct xfs_mount *m = XFS_I(inode)->i_mount;
207d0416
CH
631 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
632 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
87cbc49c 633
207d0416
CH
634 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
635 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
87cbc49c 636
e513182d 637 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
8699bb0a 638 ((offset - iomap_offset) >> inode->i_blkbits);
87cbc49c 639
046f1685 640 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
87cbc49c
NS
641
642 bh->b_blocknr = bn;
643 set_buffer_mapped(bh);
644}
645
1da177e4
LT
646STATIC void
647xfs_map_at_offset(
046f1685 648 struct inode *inode,
1da177e4 649 struct buffer_head *bh,
207d0416 650 struct xfs_bmbt_irec *imap,
046f1685 651 xfs_off_t offset)
1da177e4 652{
207d0416
CH
653 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
654 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
1da177e4
LT
655
656 lock_buffer(bh);
207d0416 657 xfs_map_buffer(inode, bh, imap, offset);
046f1685 658 bh->b_bdev = xfs_find_bdev_for_inode(inode);
1da177e4
LT
659 set_buffer_mapped(bh);
660 clear_buffer_delay(bh);
f6d6d4fc 661 clear_buffer_unwritten(bh);
1da177e4
LT
662}
663
664/*
6c4fe19f 665 * Look for a page at index that is suitable for clustering.
1da177e4
LT
666 */
667STATIC unsigned int
6c4fe19f 668xfs_probe_page(
10ce4444 669 struct page *page,
20cb52eb 670 unsigned int pg_offset)
1da177e4 671{
20cb52eb 672 struct buffer_head *bh, *head;
1da177e4
LT
673 int ret = 0;
674
1da177e4 675 if (PageWriteback(page))
10ce4444 676 return 0;
20cb52eb
CH
677 if (!PageDirty(page))
678 return 0;
679 if (!page->mapping)
680 return 0;
681 if (!page_has_buffers(page))
682 return 0;
1da177e4 683
20cb52eb
CH
684 bh = head = page_buffers(page);
685 do {
686 if (!buffer_uptodate(bh))
687 break;
688 if (!buffer_mapped(bh))
689 break;
690 ret += bh->b_size;
691 if (ret >= pg_offset)
692 break;
693 } while ((bh = bh->b_this_page) != head);
1da177e4 694
1da177e4
LT
695 return ret;
696}
697
f6d6d4fc 698STATIC size_t
6c4fe19f 699xfs_probe_cluster(
1da177e4
LT
700 struct inode *inode,
701 struct page *startpage,
702 struct buffer_head *bh,
20cb52eb 703 struct buffer_head *head)
1da177e4 704{
10ce4444 705 struct pagevec pvec;
1da177e4 706 pgoff_t tindex, tlast, tloff;
10ce4444
CH
707 size_t total = 0;
708 int done = 0, i;
1da177e4
LT
709
710 /* First sum forwards in this page */
711 do {
20cb52eb 712 if (!buffer_uptodate(bh) || !buffer_mapped(bh))
10ce4444 713 return total;
1da177e4
LT
714 total += bh->b_size;
715 } while ((bh = bh->b_this_page) != head);
716
10ce4444
CH
717 /* if we reached the end of the page, sum forwards in following pages */
718 tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT;
719 tindex = startpage->index + 1;
720
721 /* Prune this back to avoid pathological behavior */
722 tloff = min(tlast, startpage->index + 64);
723
724 pagevec_init(&pvec, 0);
725 while (!done && tindex <= tloff) {
726 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
727
728 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
729 break;
730
731 for (i = 0; i < pagevec_count(&pvec); i++) {
732 struct page *page = pvec.pages[i];
265c1fac 733 size_t pg_offset, pg_len = 0;
10ce4444
CH
734
735 if (tindex == tlast) {
736 pg_offset =
737 i_size_read(inode) & (PAGE_CACHE_SIZE - 1);
1defeac9
CH
738 if (!pg_offset) {
739 done = 1;
10ce4444 740 break;
1defeac9 741 }
10ce4444
CH
742 } else
743 pg_offset = PAGE_CACHE_SIZE;
744
529ae9aa 745 if (page->index == tindex && trylock_page(page)) {
20cb52eb 746 pg_len = xfs_probe_page(page, pg_offset);
10ce4444
CH
747 unlock_page(page);
748 }
749
265c1fac 750 if (!pg_len) {
10ce4444
CH
751 done = 1;
752 break;
753 }
754
265c1fac 755 total += pg_len;
1defeac9 756 tindex++;
1da177e4 757 }
10ce4444
CH
758
759 pagevec_release(&pvec);
760 cond_resched();
1da177e4 761 }
10ce4444 762
1da177e4
LT
763 return total;
764}
765
766/*
10ce4444
CH
767 * Test if a given page is suitable for writing as part of an unwritten
768 * or delayed allocate extent.
1da177e4 769 */
10ce4444
CH
770STATIC int
771xfs_is_delayed_page(
772 struct page *page,
f6d6d4fc 773 unsigned int type)
1da177e4 774{
1da177e4 775 if (PageWriteback(page))
10ce4444 776 return 0;
1da177e4
LT
777
778 if (page->mapping && page_has_buffers(page)) {
779 struct buffer_head *bh, *head;
780 int acceptable = 0;
781
782 bh = head = page_buffers(page);
783 do {
f6d6d4fc 784 if (buffer_unwritten(bh))
34a52c6c 785 acceptable = (type == IO_UNWRITTEN);
f6d6d4fc 786 else if (buffer_delay(bh))
a206c817 787 acceptable = (type == IO_DELALLOC);
2ddee844 788 else if (buffer_dirty(bh) && buffer_mapped(bh))
a206c817 789 acceptable = (type == IO_OVERWRITE);
f6d6d4fc 790 else
1da177e4 791 break;
1da177e4
LT
792 } while ((bh = bh->b_this_page) != head);
793
794 if (acceptable)
10ce4444 795 return 1;
1da177e4
LT
796 }
797
10ce4444 798 return 0;
1da177e4
LT
799}
800
1da177e4
LT
801/*
802 * Allocate & map buffers for page given the extent map. Write it out.
803 * except for the original page of a writepage, this is called on
804 * delalloc/unwritten pages only, for the original page it is possible
805 * that the page has no mapping at all.
806 */
f6d6d4fc 807STATIC int
1da177e4
LT
808xfs_convert_page(
809 struct inode *inode,
810 struct page *page,
10ce4444 811 loff_t tindex,
207d0416 812 struct xfs_bmbt_irec *imap,
f6d6d4fc 813 xfs_ioend_t **ioendp,
1da177e4 814 struct writeback_control *wbc,
1da177e4
LT
815 int all_bh)
816{
f6d6d4fc 817 struct buffer_head *bh, *head;
9260dc6b
CH
818 xfs_off_t end_offset;
819 unsigned long p_offset;
f6d6d4fc 820 unsigned int type;
24e17b5f 821 int len, page_dirty;
f6d6d4fc 822 int count = 0, done = 0, uptodate = 1;
9260dc6b 823 xfs_off_t offset = page_offset(page);
1da177e4 824
10ce4444
CH
825 if (page->index != tindex)
826 goto fail;
529ae9aa 827 if (!trylock_page(page))
10ce4444
CH
828 goto fail;
829 if (PageWriteback(page))
830 goto fail_unlock_page;
831 if (page->mapping != inode->i_mapping)
832 goto fail_unlock_page;
833 if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
834 goto fail_unlock_page;
835
24e17b5f
NS
836 /*
837 * page_dirty is initially a count of buffers on the page before
c41564b5 838 * EOF and is decremented as we move each into a cleanable state.
9260dc6b
CH
839 *
840 * Derivation:
841 *
842 * End offset is the highest offset that this page should represent.
843 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
844 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
845 * hence give us the correct page_dirty count. On any other page,
846 * it will be zero and in that case we need page_dirty to be the
847 * count of buffers on the page.
24e17b5f 848 */
9260dc6b
CH
849 end_offset = min_t(unsigned long long,
850 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
851 i_size_read(inode));
852
24e17b5f 853 len = 1 << inode->i_blkbits;
9260dc6b
CH
854 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
855 PAGE_CACHE_SIZE);
856 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
857 page_dirty = p_offset / len;
24e17b5f 858
1da177e4
LT
859 bh = head = page_buffers(page);
860 do {
9260dc6b 861 if (offset >= end_offset)
1da177e4 862 break;
f6d6d4fc
CH
863 if (!buffer_uptodate(bh))
864 uptodate = 0;
865 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
866 done = 1;
1da177e4 867 continue;
f6d6d4fc
CH
868 }
869
9260dc6b
CH
870 if (buffer_unwritten(bh) || buffer_delay(bh)) {
871 if (buffer_unwritten(bh))
34a52c6c 872 type = IO_UNWRITTEN;
9260dc6b 873 else
a206c817 874 type = IO_DELALLOC;
9260dc6b 875
558e6891 876 if (!xfs_imap_valid(inode, imap, offset)) {
f6d6d4fc 877 done = 1;
9260dc6b
CH
878 continue;
879 }
880
207d0416
CH
881 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
882 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
9260dc6b 883
207d0416 884 xfs_map_at_offset(inode, bh, imap, offset);
89f3b363
CH
885 xfs_add_to_ioend(inode, bh, offset, type,
886 ioendp, done);
887
9260dc6b
CH
888 page_dirty--;
889 count++;
890 } else {
a206c817 891 type = IO_OVERWRITE;
89f3b363 892 if (buffer_mapped(bh) && all_bh) {
1da177e4 893 lock_buffer(bh);
7336cea8 894 xfs_add_to_ioend(inode, bh, offset,
f6d6d4fc
CH
895 type, ioendp, done);
896 count++;
24e17b5f 897 page_dirty--;
9260dc6b
CH
898 } else {
899 done = 1;
1da177e4 900 }
1da177e4 901 }
7336cea8 902 } while (offset += len, (bh = bh->b_this_page) != head);
1da177e4 903
f6d6d4fc
CH
904 if (uptodate && bh == head)
905 SetPageUptodate(page);
906
89f3b363 907 if (count) {
efceab1d
DC
908 if (--wbc->nr_to_write <= 0 &&
909 wbc->sync_mode == WB_SYNC_NONE)
89f3b363 910 done = 1;
1da177e4 911 }
89f3b363 912 xfs_start_page_writeback(page, !page_dirty, count);
f6d6d4fc
CH
913
914 return done;
10ce4444
CH
915 fail_unlock_page:
916 unlock_page(page);
917 fail:
918 return 1;
1da177e4
LT
919}
920
921/*
922 * Convert & write out a cluster of pages in the same extent as defined
923 * by mp and following the start page.
924 */
925STATIC void
926xfs_cluster_write(
927 struct inode *inode,
928 pgoff_t tindex,
207d0416 929 struct xfs_bmbt_irec *imap,
f6d6d4fc 930 xfs_ioend_t **ioendp,
1da177e4 931 struct writeback_control *wbc,
1da177e4
LT
932 int all_bh,
933 pgoff_t tlast)
934{
10ce4444
CH
935 struct pagevec pvec;
936 int done = 0, i;
1da177e4 937
10ce4444
CH
938 pagevec_init(&pvec, 0);
939 while (!done && tindex <= tlast) {
940 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
941
942 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
1da177e4 943 break;
10ce4444
CH
944
945 for (i = 0; i < pagevec_count(&pvec); i++) {
946 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
89f3b363 947 imap, ioendp, wbc, all_bh);
10ce4444
CH
948 if (done)
949 break;
950 }
951
952 pagevec_release(&pvec);
953 cond_resched();
1da177e4
LT
954 }
955}
956
3ed3a434
DC
957STATIC void
958xfs_vm_invalidatepage(
959 struct page *page,
960 unsigned long offset)
961{
962 trace_xfs_invalidatepage(page->mapping->host, page, offset);
963 block_invalidatepage(page, offset);
964}
965
966/*
967 * If the page has delalloc buffers on it, we need to punch them out before we
968 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
969 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
970 * is done on that same region - the delalloc extent is returned when none is
971 * supposed to be there.
972 *
973 * We prevent this by truncating away the delalloc regions on the page before
974 * invalidating it. Because they are delalloc, we can do this without needing a
975 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
976 * truncation without a transaction as there is no space left for block
977 * reservation (typically why we see a ENOSPC in writeback).
978 *
979 * This is not a performance critical path, so for now just do the punching a
980 * buffer head at a time.
981 */
982STATIC void
983xfs_aops_discard_page(
984 struct page *page)
985{
986 struct inode *inode = page->mapping->host;
987 struct xfs_inode *ip = XFS_I(inode);
988 struct buffer_head *bh, *head;
989 loff_t offset = page_offset(page);
3ed3a434 990
a206c817 991 if (!xfs_is_delayed_page(page, IO_DELALLOC))
3ed3a434
DC
992 goto out_invalidate;
993
e8c3753c
DC
994 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
995 goto out_invalidate;
996
3ed3a434
DC
997 xfs_fs_cmn_err(CE_ALERT, ip->i_mount,
998 "page discard on page %p, inode 0x%llx, offset %llu.",
999 page, ip->i_ino, offset);
1000
1001 xfs_ilock(ip, XFS_ILOCK_EXCL);
1002 bh = head = page_buffers(page);
1003 do {
3ed3a434 1004 int error;
c726de44 1005 xfs_fileoff_t start_fsb;
3ed3a434
DC
1006
1007 if (!buffer_delay(bh))
1008 goto next_buffer;
1009
c726de44
DC
1010 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
1011 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
3ed3a434
DC
1012 if (error) {
1013 /* something screwed, just bail */
e8c3753c
DC
1014 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1015 xfs_fs_cmn_err(CE_ALERT, ip->i_mount,
3ed3a434 1016 "page discard unable to remove delalloc mapping.");
e8c3753c 1017 }
3ed3a434
DC
1018 break;
1019 }
1020next_buffer:
c726de44 1021 offset += 1 << inode->i_blkbits;
3ed3a434
DC
1022
1023 } while ((bh = bh->b_this_page) != head);
1024
1025 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1026out_invalidate:
1027 xfs_vm_invalidatepage(page, 0);
1028 return;
1029}
1030
1da177e4 1031/*
89f3b363
CH
1032 * Write out a dirty page.
1033 *
1034 * For delalloc space on the page we need to allocate space and flush it.
1035 * For unwritten space on the page we need to start the conversion to
1036 * regular allocated space.
89f3b363 1037 * For any other dirty buffer heads on the page we should flush them.
1da177e4 1038 *
89f3b363
CH
1039 * If we detect that a transaction would be required to flush the page, we
1040 * have to check the process flags first, if we are already in a transaction
1041 * or disk I/O during allocations is off, we need to fail the writepage and
1042 * redirty the page.
1da177e4 1043 */
1da177e4 1044STATIC int
89f3b363
CH
1045xfs_vm_writepage(
1046 struct page *page,
1047 struct writeback_control *wbc)
1da177e4 1048{
89f3b363 1049 struct inode *inode = page->mapping->host;
20cb52eb 1050 int delalloc, unwritten;
f6d6d4fc 1051 struct buffer_head *bh, *head;
207d0416 1052 struct xfs_bmbt_irec imap;
f6d6d4fc 1053 xfs_ioend_t *ioend = NULL, *iohead = NULL;
1da177e4 1054 loff_t offset;
f6d6d4fc 1055 unsigned int type;
1da177e4 1056 __uint64_t end_offset;
bd1556a1 1057 pgoff_t end_index, last_index;
d5cb48aa 1058 ssize_t size, len;
a206c817 1059 int err, imap_valid = 0, uptodate = 1;
89f3b363 1060 int count = 0;
20cb52eb 1061 int all_bh = 0;
a206c817 1062 int nonblocking = 0;
89f3b363
CH
1063
1064 trace_xfs_writepage(inode, page, 0);
1065
20cb52eb
CH
1066 ASSERT(page_has_buffers(page));
1067
89f3b363
CH
1068 /*
1069 * Refuse to write the page out if we are called from reclaim context.
1070 *
d4f7a5cb
CH
1071 * This avoids stack overflows when called from deeply used stacks in
1072 * random callers for direct reclaim or memcg reclaim. We explicitly
1073 * allow reclaim from kswapd as the stack usage there is relatively low.
89f3b363
CH
1074 *
1075 * This should really be done by the core VM, but until that happens
1076 * filesystems like XFS, btrfs and ext4 have to take care of this
1077 * by themselves.
1078 */
d4f7a5cb 1079 if ((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == PF_MEMALLOC)
b5420f23 1080 goto redirty;
1da177e4 1081
89f3b363 1082 /*
20cb52eb
CH
1083 * We need a transaction if there are delalloc or unwritten buffers
1084 * on the page.
1085 *
1086 * If we need a transaction and the process flags say we are already
1087 * in a transaction, or no IO is allowed then mark the page dirty
1088 * again and leave the page as is.
89f3b363 1089 */
20cb52eb
CH
1090 xfs_count_page_state(page, &delalloc, &unwritten);
1091 if ((current->flags & PF_FSTRANS) && (delalloc || unwritten))
b5420f23 1092 goto redirty;
89f3b363 1093
1da177e4
LT
1094 /* Is this page beyond the end of the file? */
1095 offset = i_size_read(inode);
1096 end_index = offset >> PAGE_CACHE_SHIFT;
1097 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
1098 if (page->index >= end_index) {
1099 if ((page->index >= end_index + 1) ||
1100 !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
89f3b363 1101 unlock_page(page);
19d5bcf3 1102 return 0;
1da177e4
LT
1103 }
1104 }
1105
f6d6d4fc 1106 end_offset = min_t(unsigned long long,
20cb52eb
CH
1107 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
1108 offset);
24e17b5f 1109 len = 1 << inode->i_blkbits;
24e17b5f 1110
24e17b5f 1111 bh = head = page_buffers(page);
f6d6d4fc 1112 offset = page_offset(page);
a206c817
CH
1113 type = IO_OVERWRITE;
1114
1115 if (wbc->sync_mode == WB_SYNC_NONE && wbc->nonblocking)
1116 nonblocking = 1;
f6d6d4fc 1117
1da177e4 1118 do {
6ac7248e
CH
1119 int new_ioend = 0;
1120
1da177e4
LT
1121 if (offset >= end_offset)
1122 break;
1123 if (!buffer_uptodate(bh))
1124 uptodate = 0;
1da177e4 1125
3d9b02e3 1126 /*
ece413f5
CH
1127 * set_page_dirty dirties all buffers in a page, independent
1128 * of their state. The dirty state however is entirely
1129 * meaningless for holes (!mapped && uptodate), so skip
1130 * buffers covering holes here.
3d9b02e3
ES
1131 */
1132 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
3d9b02e3
ES
1133 imap_valid = 0;
1134 continue;
1135 }
1136
558e6891
CH
1137 if (imap_valid)
1138 imap_valid = xfs_imap_valid(inode, &imap, offset);
1da177e4 1139
20cb52eb 1140 if (buffer_unwritten(bh) || buffer_delay(bh)) {
f6d6d4fc 1141 if (buffer_unwritten(bh)) {
85da94c6
CH
1142 if (type != IO_UNWRITTEN) {
1143 type = IO_UNWRITTEN;
1144 imap_valid = 0;
1145 }
d5cb48aa 1146 } else if (buffer_delay(bh)) {
a206c817
CH
1147 if (type != IO_DELALLOC) {
1148 type = IO_DELALLOC;
85da94c6
CH
1149 imap_valid = 0;
1150 }
f6d6d4fc
CH
1151 }
1152
558e6891 1153 if (!imap_valid) {
effd120e 1154 /*
20cb52eb 1155 * If we didn't have a valid mapping then we
effd120e
DC
1156 * need to ensure that we put the new mapping
1157 * in a new ioend structure. This needs to be
1158 * done to ensure that the ioends correctly
1159 * reflect the block mappings at io completion
1160 * for unwritten extent conversion.
1161 */
1162 new_ioend = 1;
a206c817
CH
1163 err = xfs_map_blocks(inode, offset, len, &imap,
1164 type, nonblocking);
f6d6d4fc 1165 if (err)
1da177e4 1166 goto error;
558e6891
CH
1167 imap_valid = xfs_imap_valid(inode, &imap,
1168 offset);
1da177e4 1169 }
558e6891 1170 if (imap_valid) {
207d0416 1171 xfs_map_at_offset(inode, bh, &imap, offset);
89f3b363
CH
1172 xfs_add_to_ioend(inode, bh, offset, type,
1173 &ioend, new_ioend);
f6d6d4fc 1174 count++;
1da177e4 1175 }
89f3b363 1176 } else if (buffer_uptodate(bh)) {
6c4fe19f
CH
1177 /*
1178 * we got here because the buffer is already mapped.
1179 * That means it must already have extents allocated
1180 * underneath it. Map the extent by reading it.
1181 */
a206c817
CH
1182 if (type != IO_OVERWRITE) {
1183 type = IO_OVERWRITE;
85da94c6
CH
1184 imap_valid = 0;
1185 }
1186 if (!imap_valid) {
6ac7248e 1187 new_ioend = 1;
20cb52eb 1188 size = xfs_probe_cluster(inode, page, bh, head);
6c4fe19f 1189 err = xfs_map_blocks(inode, offset, size,
a206c817 1190 &imap, type, nonblocking);
6c4fe19f
CH
1191 if (err)
1192 goto error;
558e6891
CH
1193 imap_valid = xfs_imap_valid(inode, &imap,
1194 offset);
6c4fe19f 1195 }
d5cb48aa 1196
6ac7248e
CH
1197 if (imap_valid) {
1198 all_bh = 1;
1199 lock_buffer(bh);
7336cea8 1200 xfs_add_to_ioend(inode, bh, offset, type,
6ac7248e 1201 &ioend, new_ioend);
d5cb48aa 1202 count++;
1da177e4 1203 }
89f3b363 1204 } else if (PageUptodate(page)) {
20cb52eb 1205 ASSERT(buffer_mapped(bh));
558e6891 1206 imap_valid = 0;
1da177e4 1207 }
f6d6d4fc
CH
1208
1209 if (!iohead)
1210 iohead = ioend;
1211
1212 } while (offset += len, ((bh = bh->b_this_page) != head));
1da177e4
LT
1213
1214 if (uptodate && bh == head)
1215 SetPageUptodate(page);
1216
89f3b363 1217 xfs_start_page_writeback(page, 1, count);
1da177e4 1218
558e6891 1219 if (ioend && imap_valid) {
bd1556a1
CH
1220 xfs_off_t end_index;
1221
1222 end_index = imap.br_startoff + imap.br_blockcount;
1223
1224 /* to bytes */
1225 end_index <<= inode->i_blkbits;
1226
1227 /* to pages */
1228 end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1229
1230 /* check against file size */
1231 if (end_index > last_index)
1232 end_index = last_index;
8699bb0a 1233
207d0416 1234 xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
89f3b363 1235 wbc, all_bh, end_index);
1da177e4
LT
1236 }
1237
f6d6d4fc 1238 if (iohead)
06342cf8 1239 xfs_submit_ioend(wbc, iohead);
f6d6d4fc 1240
89f3b363 1241 return 0;
1da177e4
LT
1242
1243error:
f6d6d4fc
CH
1244 if (iohead)
1245 xfs_cancel_ioend(iohead);
1da177e4 1246
b5420f23
CH
1247 if (err == -EAGAIN)
1248 goto redirty;
1249
20cb52eb 1250 xfs_aops_discard_page(page);
89f3b363
CH
1251 ClearPageUptodate(page);
1252 unlock_page(page);
1da177e4 1253 return err;
f51623b2 1254
b5420f23 1255redirty:
f51623b2
NS
1256 redirty_page_for_writepage(wbc, page);
1257 unlock_page(page);
1258 return 0;
f51623b2
NS
1259}
1260
7d4fb40a
NS
1261STATIC int
1262xfs_vm_writepages(
1263 struct address_space *mapping,
1264 struct writeback_control *wbc)
1265{
b3aea4ed 1266 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
7d4fb40a
NS
1267 return generic_writepages(mapping, wbc);
1268}
1269
f51623b2
NS
1270/*
1271 * Called to move a page into cleanable state - and from there
89f3b363 1272 * to be released. The page should already be clean. We always
f51623b2
NS
1273 * have buffer heads in this call.
1274 *
89f3b363 1275 * Returns 1 if the page is ok to release, 0 otherwise.
f51623b2
NS
1276 */
1277STATIC int
238f4c54 1278xfs_vm_releasepage(
f51623b2
NS
1279 struct page *page,
1280 gfp_t gfp_mask)
1281{
20cb52eb 1282 int delalloc, unwritten;
f51623b2 1283
89f3b363 1284 trace_xfs_releasepage(page->mapping->host, page, 0);
238f4c54 1285
20cb52eb 1286 xfs_count_page_state(page, &delalloc, &unwritten);
f51623b2 1287
89f3b363 1288 if (WARN_ON(delalloc))
f51623b2 1289 return 0;
89f3b363 1290 if (WARN_ON(unwritten))
f51623b2
NS
1291 return 0;
1292
f51623b2
NS
1293 return try_to_free_buffers(page);
1294}
1295
1da177e4 1296STATIC int
c2536668 1297__xfs_get_blocks(
1da177e4
LT
1298 struct inode *inode,
1299 sector_t iblock,
1da177e4
LT
1300 struct buffer_head *bh_result,
1301 int create,
f2bde9b8 1302 int direct)
1da177e4 1303{
a206c817
CH
1304 struct xfs_inode *ip = XFS_I(inode);
1305 struct xfs_mount *mp = ip->i_mount;
1306 xfs_fileoff_t offset_fsb, end_fsb;
1307 int error = 0;
1308 int lockmode = 0;
207d0416 1309 struct xfs_bmbt_irec imap;
a206c817 1310 int nimaps = 1;
fdc7ed75
NS
1311 xfs_off_t offset;
1312 ssize_t size;
207d0416 1313 int new = 0;
a206c817
CH
1314
1315 if (XFS_FORCED_SHUTDOWN(mp))
1316 return -XFS_ERROR(EIO);
1da177e4 1317
fdc7ed75 1318 offset = (xfs_off_t)iblock << inode->i_blkbits;
c2536668
NS
1319 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1320 size = bh_result->b_size;
364f358a
LM
1321
1322 if (!create && direct && offset >= i_size_read(inode))
1323 return 0;
1324
a206c817
CH
1325 if (create) {
1326 lockmode = XFS_ILOCK_EXCL;
1327 xfs_ilock(ip, lockmode);
1328 } else {
1329 lockmode = xfs_ilock_map_shared(ip);
1330 }
f2bde9b8 1331
a206c817
CH
1332 ASSERT(offset <= mp->m_maxioffset);
1333 if (offset + size > mp->m_maxioffset)
1334 size = mp->m_maxioffset - offset;
1335 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1336 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1337
1338 error = xfs_bmapi(NULL, ip, offset_fsb, end_fsb - offset_fsb,
1339 XFS_BMAPI_ENTIRE, NULL, 0, &imap, &nimaps, NULL);
1da177e4 1340 if (error)
a206c817
CH
1341 goto out_unlock;
1342
1343 if (create &&
1344 (!nimaps ||
1345 (imap.br_startblock == HOLESTARTBLOCK ||
1346 imap.br_startblock == DELAYSTARTBLOCK))) {
1347 if (direct) {
1348 error = xfs_iomap_write_direct(ip, offset, size,
1349 &imap, nimaps);
1350 } else {
1351 error = xfs_iomap_write_delay(ip, offset, size, &imap);
1352 }
1353 if (error)
1354 goto out_unlock;
1355
1356 trace_xfs_get_blocks_alloc(ip, offset, size, 0, &imap);
1357 } else if (nimaps) {
1358 trace_xfs_get_blocks_found(ip, offset, size, 0, &imap);
1359 } else {
1360 trace_xfs_get_blocks_notfound(ip, offset, size);
1361 goto out_unlock;
1362 }
1363 xfs_iunlock(ip, lockmode);
1da177e4 1364
207d0416
CH
1365 if (imap.br_startblock != HOLESTARTBLOCK &&
1366 imap.br_startblock != DELAYSTARTBLOCK) {
87cbc49c
NS
1367 /*
1368 * For unwritten extents do not report a disk address on
1da177e4
LT
1369 * the read case (treat as if we're reading into a hole).
1370 */
207d0416
CH
1371 if (create || !ISUNWRITTEN(&imap))
1372 xfs_map_buffer(inode, bh_result, &imap, offset);
1373 if (create && ISUNWRITTEN(&imap)) {
1da177e4
LT
1374 if (direct)
1375 bh_result->b_private = inode;
1376 set_buffer_unwritten(bh_result);
1da177e4
LT
1377 }
1378 }
1379
c2536668
NS
1380 /*
1381 * If this is a realtime file, data may be on a different device.
1382 * to that pointed to from the buffer_head b_bdev currently.
1383 */
046f1685 1384 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1da177e4 1385
c2536668 1386 /*
549054af
DC
1387 * If we previously allocated a block out beyond eof and we are now
1388 * coming back to use it then we will need to flag it as new even if it
1389 * has a disk address.
1390 *
1391 * With sub-block writes into unwritten extents we also need to mark
1392 * the buffer as new so that the unwritten parts of the buffer gets
1393 * correctly zeroed.
1da177e4
LT
1394 */
1395 if (create &&
1396 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
549054af 1397 (offset >= i_size_read(inode)) ||
207d0416 1398 (new || ISUNWRITTEN(&imap))))
1da177e4 1399 set_buffer_new(bh_result);
1da177e4 1400
207d0416 1401 if (imap.br_startblock == DELAYSTARTBLOCK) {
1da177e4
LT
1402 BUG_ON(direct);
1403 if (create) {
1404 set_buffer_uptodate(bh_result);
1405 set_buffer_mapped(bh_result);
1406 set_buffer_delay(bh_result);
1407 }
1408 }
1409
2b8f12b7
CH
1410 /*
1411 * If this is O_DIRECT or the mpage code calling tell them how large
1412 * the mapping is, so that we can avoid repeated get_blocks calls.
1413 */
c2536668 1414 if (direct || size > (1 << inode->i_blkbits)) {
2b8f12b7
CH
1415 xfs_off_t mapping_size;
1416
1417 mapping_size = imap.br_startoff + imap.br_blockcount - iblock;
1418 mapping_size <<= inode->i_blkbits;
1419
1420 ASSERT(mapping_size > 0);
1421 if (mapping_size > size)
1422 mapping_size = size;
1423 if (mapping_size > LONG_MAX)
1424 mapping_size = LONG_MAX;
1425
1426 bh_result->b_size = mapping_size;
1da177e4
LT
1427 }
1428
1429 return 0;
a206c817
CH
1430
1431out_unlock:
1432 xfs_iunlock(ip, lockmode);
1433 return -error;
1da177e4
LT
1434}
1435
1436int
c2536668 1437xfs_get_blocks(
1da177e4
LT
1438 struct inode *inode,
1439 sector_t iblock,
1440 struct buffer_head *bh_result,
1441 int create)
1442{
f2bde9b8 1443 return __xfs_get_blocks(inode, iblock, bh_result, create, 0);
1da177e4
LT
1444}
1445
1446STATIC int
e4c573bb 1447xfs_get_blocks_direct(
1da177e4
LT
1448 struct inode *inode,
1449 sector_t iblock,
1da177e4
LT
1450 struct buffer_head *bh_result,
1451 int create)
1452{
f2bde9b8 1453 return __xfs_get_blocks(inode, iblock, bh_result, create, 1);
1da177e4
LT
1454}
1455
209fb87a
CH
1456/*
1457 * Complete a direct I/O write request.
1458 *
1459 * If the private argument is non-NULL __xfs_get_blocks signals us that we
1460 * need to issue a transaction to convert the range from unwritten to written
1461 * extents. In case this is regular synchronous I/O we just call xfs_end_io
1462 * to do this and we are done. But in case this was a successfull AIO
1463 * request this handler is called from interrupt context, from which we
1464 * can't start transactions. In that case offload the I/O completion to
1465 * the workqueues we also use for buffered I/O completion.
1466 */
f0973863 1467STATIC void
209fb87a
CH
1468xfs_end_io_direct_write(
1469 struct kiocb *iocb,
1470 loff_t offset,
1471 ssize_t size,
1472 void *private,
1473 int ret,
1474 bool is_async)
f0973863 1475{
209fb87a 1476 struct xfs_ioend *ioend = iocb->private;
f0973863
CH
1477
1478 /*
209fb87a
CH
1479 * blockdev_direct_IO can return an error even after the I/O
1480 * completion handler was called. Thus we need to protect
1481 * against double-freeing.
f0973863 1482 */
209fb87a
CH
1483 iocb->private = NULL;
1484
ba87ea69
LM
1485 ioend->io_offset = offset;
1486 ioend->io_size = size;
209fb87a
CH
1487 if (private && size > 0)
1488 ioend->io_type = IO_UNWRITTEN;
1489
1490 if (is_async) {
1491 /*
1492 * If we are converting an unwritten extent we need to delay
1493 * the AIO completion until after the unwrittent extent
1494 * conversion has completed, otherwise do it ASAP.
1495 */
1496 if (ioend->io_type == IO_UNWRITTEN) {
fb511f21
CH
1497 ioend->io_iocb = iocb;
1498 ioend->io_result = ret;
fb511f21 1499 } else {
209fb87a 1500 aio_complete(iocb, ret, 0);
fb511f21 1501 }
209fb87a 1502 xfs_finish_ioend(ioend);
f0973863 1503 } else {
209fb87a 1504 xfs_finish_ioend_sync(ioend);
f0973863 1505 }
f0973863
CH
1506}
1507
1da177e4 1508STATIC ssize_t
e4c573bb 1509xfs_vm_direct_IO(
1da177e4
LT
1510 int rw,
1511 struct kiocb *iocb,
1512 const struct iovec *iov,
1513 loff_t offset,
1514 unsigned long nr_segs)
1515{
209fb87a
CH
1516 struct inode *inode = iocb->ki_filp->f_mapping->host;
1517 struct block_device *bdev = xfs_find_bdev_for_inode(inode);
1518 ssize_t ret;
1519
1520 if (rw & WRITE) {
a206c817 1521 iocb->private = xfs_alloc_ioend(inode, IO_DIRECT);
209fb87a 1522
eafdc7d1
CH
1523 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1524 offset, nr_segs,
1525 xfs_get_blocks_direct,
1526 xfs_end_io_direct_write, NULL, 0);
209fb87a
CH
1527 if (ret != -EIOCBQUEUED && iocb->private)
1528 xfs_destroy_ioend(iocb->private);
1529 } else {
eafdc7d1
CH
1530 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1531 offset, nr_segs,
1532 xfs_get_blocks_direct,
1533 NULL, NULL, 0);
209fb87a 1534 }
f0973863 1535
f0973863 1536 return ret;
1da177e4
LT
1537}
1538
fa9b227e
CH
1539STATIC void
1540xfs_vm_write_failed(
1541 struct address_space *mapping,
1542 loff_t to)
1543{
1544 struct inode *inode = mapping->host;
1545
1546 if (to > inode->i_size) {
c726de44
DC
1547 /*
1548 * punch out the delalloc blocks we have already allocated. We
1549 * don't call xfs_setattr() to do this as we may be in the
1550 * middle of a multi-iovec write and so the vfs inode->i_size
1551 * will not match the xfs ip->i_size and so it will zero too
1552 * much. Hence we jus truncate the page cache to zero what is
1553 * necessary and punch the delalloc blocks directly.
1554 */
1555 struct xfs_inode *ip = XFS_I(inode);
1556 xfs_fileoff_t start_fsb;
1557 xfs_fileoff_t end_fsb;
1558 int error;
1559
1560 truncate_pagecache(inode, to, inode->i_size);
1561
1562 /*
1563 * Check if there are any blocks that are outside of i_size
1564 * that need to be trimmed back.
1565 */
1566 start_fsb = XFS_B_TO_FSB(ip->i_mount, inode->i_size) + 1;
1567 end_fsb = XFS_B_TO_FSB(ip->i_mount, to);
1568 if (end_fsb <= start_fsb)
1569 return;
1570
1571 xfs_ilock(ip, XFS_ILOCK_EXCL);
1572 error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1573 end_fsb - start_fsb);
1574 if (error) {
1575 /* something screwed, just bail */
1576 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1577 xfs_fs_cmn_err(CE_ALERT, ip->i_mount,
1578 "xfs_vm_write_failed: unable to clean up ino %lld",
1579 ip->i_ino);
1580 }
1581 }
1582 xfs_iunlock(ip, XFS_ILOCK_EXCL);
fa9b227e
CH
1583 }
1584}
1585
f51623b2 1586STATIC int
d79689c7 1587xfs_vm_write_begin(
f51623b2 1588 struct file *file,
d79689c7
NP
1589 struct address_space *mapping,
1590 loff_t pos,
1591 unsigned len,
1592 unsigned flags,
1593 struct page **pagep,
1594 void **fsdata)
f51623b2 1595{
155130a4
CH
1596 int ret;
1597
1598 ret = block_write_begin(mapping, pos, len, flags | AOP_FLAG_NOFS,
1599 pagep, xfs_get_blocks);
fa9b227e
CH
1600 if (unlikely(ret))
1601 xfs_vm_write_failed(mapping, pos + len);
1602 return ret;
1603}
1604
1605STATIC int
1606xfs_vm_write_end(
1607 struct file *file,
1608 struct address_space *mapping,
1609 loff_t pos,
1610 unsigned len,
1611 unsigned copied,
1612 struct page *page,
1613 void *fsdata)
1614{
1615 int ret;
155130a4 1616
fa9b227e
CH
1617 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
1618 if (unlikely(ret < len))
1619 xfs_vm_write_failed(mapping, pos + len);
155130a4 1620 return ret;
f51623b2 1621}
1da177e4
LT
1622
1623STATIC sector_t
e4c573bb 1624xfs_vm_bmap(
1da177e4
LT
1625 struct address_space *mapping,
1626 sector_t block)
1627{
1628 struct inode *inode = (struct inode *)mapping->host;
739bfb2a 1629 struct xfs_inode *ip = XFS_I(inode);
1da177e4 1630
cca28fb8 1631 trace_xfs_vm_bmap(XFS_I(inode));
126468b1 1632 xfs_ilock(ip, XFS_IOLOCK_SHARED);
739bfb2a 1633 xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF);
126468b1 1634 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
c2536668 1635 return generic_block_bmap(mapping, block, xfs_get_blocks);
1da177e4
LT
1636}
1637
1638STATIC int
e4c573bb 1639xfs_vm_readpage(
1da177e4
LT
1640 struct file *unused,
1641 struct page *page)
1642{
c2536668 1643 return mpage_readpage(page, xfs_get_blocks);
1da177e4
LT
1644}
1645
1646STATIC int
e4c573bb 1647xfs_vm_readpages(
1da177e4
LT
1648 struct file *unused,
1649 struct address_space *mapping,
1650 struct list_head *pages,
1651 unsigned nr_pages)
1652{
c2536668 1653 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1da177e4
LT
1654}
1655
f5e54d6e 1656const struct address_space_operations xfs_address_space_operations = {
e4c573bb
NS
1657 .readpage = xfs_vm_readpage,
1658 .readpages = xfs_vm_readpages,
1659 .writepage = xfs_vm_writepage,
7d4fb40a 1660 .writepages = xfs_vm_writepages,
1da177e4 1661 .sync_page = block_sync_page,
238f4c54
NS
1662 .releasepage = xfs_vm_releasepage,
1663 .invalidatepage = xfs_vm_invalidatepage,
d79689c7 1664 .write_begin = xfs_vm_write_begin,
fa9b227e 1665 .write_end = xfs_vm_write_end,
e4c573bb
NS
1666 .bmap = xfs_vm_bmap,
1667 .direct_IO = xfs_vm_direct_IO,
e965f963 1668 .migratepage = buffer_migrate_page,
bddaafa1 1669 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 1670 .error_remove_page = generic_error_remove_page,
1da177e4 1671};