xfs: do not require an ioend for new EOF calculation
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / xfs / xfs_aops.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_bit.h"
1da177e4 20#include "xfs_log.h"
a844f451 21#include "xfs_inum.h"
1da177e4 22#include "xfs_sb.h"
a844f451 23#include "xfs_ag.h"
1da177e4 24#include "xfs_trans.h"
1da177e4
LT
25#include "xfs_mount.h"
26#include "xfs_bmap_btree.h"
1da177e4
LT
27#include "xfs_dinode.h"
28#include "xfs_inode.h"
a844f451 29#include "xfs_alloc.h"
1da177e4
LT
30#include "xfs_error.h"
31#include "xfs_rw.h"
32#include "xfs_iomap.h"
739bfb2a 33#include "xfs_vnodeops.h"
0b1b213f 34#include "xfs_trace.h"
3ed3a434 35#include "xfs_bmap.h"
5a0e3ad6 36#include <linux/gfp.h>
1da177e4 37#include <linux/mpage.h>
10ce4444 38#include <linux/pagevec.h>
1da177e4
LT
39#include <linux/writeback.h>
40
0b1b213f 41void
f51623b2
NS
42xfs_count_page_state(
43 struct page *page,
44 int *delalloc,
f51623b2
NS
45 int *unwritten)
46{
47 struct buffer_head *bh, *head;
48
20cb52eb 49 *delalloc = *unwritten = 0;
f51623b2
NS
50
51 bh = head = page_buffers(page);
52 do {
20cb52eb 53 if (buffer_unwritten(bh))
f51623b2
NS
54 (*unwritten) = 1;
55 else if (buffer_delay(bh))
56 (*delalloc) = 1;
57 } while ((bh = bh->b_this_page) != head);
58}
59
6214ed44
CH
60STATIC struct block_device *
61xfs_find_bdev_for_inode(
046f1685 62 struct inode *inode)
6214ed44 63{
046f1685 64 struct xfs_inode *ip = XFS_I(inode);
6214ed44
CH
65 struct xfs_mount *mp = ip->i_mount;
66
71ddabb9 67 if (XFS_IS_REALTIME_INODE(ip))
6214ed44
CH
68 return mp->m_rtdev_targp->bt_bdev;
69 else
70 return mp->m_ddev_targp->bt_bdev;
71}
72
f6d6d4fc
CH
73/*
74 * We're now finished for good with this ioend structure.
75 * Update the page state via the associated buffer_heads,
76 * release holds on the inode and bio, and finally free
77 * up memory. Do not use the ioend after this.
78 */
0829c360
CH
79STATIC void
80xfs_destroy_ioend(
81 xfs_ioend_t *ioend)
82{
f6d6d4fc
CH
83 struct buffer_head *bh, *next;
84
85 for (bh = ioend->io_buffer_head; bh; bh = next) {
86 next = bh->b_private;
7d04a335 87 bh->b_end_io(bh, !ioend->io_error);
f6d6d4fc 88 }
583fa586 89
c859cdd1 90 if (ioend->io_iocb) {
04f658ee
CH
91 if (ioend->io_isasync) {
92 aio_complete(ioend->io_iocb, ioend->io_error ?
93 ioend->io_error : ioend->io_result, 0);
94 }
c859cdd1
CH
95 inode_dio_done(ioend->io_inode);
96 }
4a06fd26 97
0829c360
CH
98 mempool_free(ioend, xfs_ioend_pool);
99}
100
fc0063c4
CH
101/*
102 * Fast and loose check if this write could update the on-disk inode size.
103 */
104static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
105{
106 return ioend->io_offset + ioend->io_size >
107 XFS_I(ioend->io_inode)->i_d.di_size;
108}
109
ba87ea69 110/*
2813d682 111 * Update on-disk file size now that data has been written to disk.
ba87ea69 112 */
aa6bf01d 113STATIC void
ba87ea69 114xfs_setfilesize(
aa6bf01d 115 struct xfs_ioend *ioend)
ba87ea69 116{
aa6bf01d 117 struct xfs_inode *ip = XFS_I(ioend->io_inode);
ba87ea69 118 xfs_fsize_t isize;
ba87ea69 119
aa6bf01d 120 xfs_ilock(ip, XFS_ILOCK_EXCL);
6923e686 121 isize = xfs_new_eof(ip, ioend->io_offset + ioend->io_size);
932640e8 122 if (isize) {
55fb25d5 123 trace_xfs_setfilesize(ip, ioend->io_offset, ioend->io_size);
ba87ea69 124 ip->i_d.di_size = isize;
66d834ea 125 xfs_mark_inode_dirty(ip);
ba87ea69
LM
126 }
127
128 xfs_iunlock(ip, XFS_ILOCK_EXCL);
77d7a0c2
DC
129}
130
131/*
209fb87a 132 * Schedule IO completion handling on the final put of an ioend.
fc0063c4
CH
133 *
134 * If there is no work to do we might as well call it a day and free the
135 * ioend right now.
77d7a0c2
DC
136 */
137STATIC void
138xfs_finish_ioend(
209fb87a 139 struct xfs_ioend *ioend)
77d7a0c2
DC
140{
141 if (atomic_dec_and_test(&ioend->io_remaining)) {
aa6bf01d
CH
142 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
143
209fb87a 144 if (ioend->io_type == IO_UNWRITTEN)
aa6bf01d 145 queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
fc0063c4 146 else if (xfs_ioend_is_append(ioend))
aa6bf01d 147 queue_work(mp->m_data_workqueue, &ioend->io_work);
fc0063c4
CH
148 else
149 xfs_destroy_ioend(ioend);
77d7a0c2 150 }
ba87ea69
LM
151}
152
0829c360 153/*
5ec4fabb 154 * IO write completion.
f6d6d4fc
CH
155 */
156STATIC void
5ec4fabb 157xfs_end_io(
77d7a0c2 158 struct work_struct *work)
0829c360 159{
77d7a0c2
DC
160 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
161 struct xfs_inode *ip = XFS_I(ioend->io_inode);
69418932 162 int error = 0;
ba87ea69 163
04f658ee 164 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
810627d9 165 ioend->io_error = -EIO;
04f658ee
CH
166 goto done;
167 }
168 if (ioend->io_error)
169 goto done;
170
5ec4fabb
CH
171 /*
172 * For unwritten extents we need to issue transactions to convert a
173 * range to normal written extens after the data I/O has finished.
174 */
04f658ee 175 if (ioend->io_type == IO_UNWRITTEN) {
5ec4fabb
CH
176 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
177 ioend->io_size);
04f658ee
CH
178 if (error) {
179 ioend->io_error = -error;
180 goto done;
181 }
5ec4fabb 182 }
ba87ea69 183
5ec4fabb
CH
184 /*
185 * We might have to update the on-disk file size after extending
186 * writes.
187 */
aa6bf01d 188 xfs_setfilesize(ioend);
04f658ee 189done:
aa6bf01d 190 xfs_destroy_ioend(ioend);
c626d174
DC
191}
192
209fb87a
CH
193/*
194 * Call IO completion handling in caller context on the final put of an ioend.
195 */
196STATIC void
197xfs_finish_ioend_sync(
198 struct xfs_ioend *ioend)
199{
200 if (atomic_dec_and_test(&ioend->io_remaining))
201 xfs_end_io(&ioend->io_work);
202}
203
0829c360
CH
204/*
205 * Allocate and initialise an IO completion structure.
206 * We need to track unwritten extent write completion here initially.
207 * We'll need to extend this for updating the ondisk inode size later
208 * (vs. incore size).
209 */
210STATIC xfs_ioend_t *
211xfs_alloc_ioend(
f6d6d4fc
CH
212 struct inode *inode,
213 unsigned int type)
0829c360
CH
214{
215 xfs_ioend_t *ioend;
216
217 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
218
219 /*
220 * Set the count to 1 initially, which will prevent an I/O
221 * completion callback from happening before we have started
222 * all the I/O from calling the completion routine too early.
223 */
224 atomic_set(&ioend->io_remaining, 1);
c859cdd1 225 ioend->io_isasync = 0;
7d04a335 226 ioend->io_error = 0;
f6d6d4fc
CH
227 ioend->io_list = NULL;
228 ioend->io_type = type;
b677c210 229 ioend->io_inode = inode;
c1a073bd 230 ioend->io_buffer_head = NULL;
f6d6d4fc 231 ioend->io_buffer_tail = NULL;
0829c360
CH
232 ioend->io_offset = 0;
233 ioend->io_size = 0;
fb511f21
CH
234 ioend->io_iocb = NULL;
235 ioend->io_result = 0;
0829c360 236
5ec4fabb 237 INIT_WORK(&ioend->io_work, xfs_end_io);
0829c360
CH
238 return ioend;
239}
240
1da177e4
LT
241STATIC int
242xfs_map_blocks(
243 struct inode *inode,
244 loff_t offset,
207d0416 245 struct xfs_bmbt_irec *imap,
a206c817
CH
246 int type,
247 int nonblocking)
1da177e4 248{
a206c817
CH
249 struct xfs_inode *ip = XFS_I(inode);
250 struct xfs_mount *mp = ip->i_mount;
ed1e7b7e 251 ssize_t count = 1 << inode->i_blkbits;
a206c817
CH
252 xfs_fileoff_t offset_fsb, end_fsb;
253 int error = 0;
a206c817
CH
254 int bmapi_flags = XFS_BMAPI_ENTIRE;
255 int nimaps = 1;
256
257 if (XFS_FORCED_SHUTDOWN(mp))
258 return -XFS_ERROR(EIO);
259
8ff2957d 260 if (type == IO_UNWRITTEN)
a206c817 261 bmapi_flags |= XFS_BMAPI_IGSTATE;
8ff2957d
CH
262
263 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
264 if (nonblocking)
265 return -XFS_ERROR(EAGAIN);
266 xfs_ilock(ip, XFS_ILOCK_SHARED);
a206c817
CH
267 }
268
8ff2957d
CH
269 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
270 (ip->i_df.if_flags & XFS_IFEXTENTS));
a206c817 271 ASSERT(offset <= mp->m_maxioffset);
8ff2957d 272
a206c817
CH
273 if (offset + count > mp->m_maxioffset)
274 count = mp->m_maxioffset - offset;
275 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
276 offset_fsb = XFS_B_TO_FSBT(mp, offset);
5c8ed202
DC
277 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
278 imap, &nimaps, bmapi_flags);
8ff2957d 279 xfs_iunlock(ip, XFS_ILOCK_SHARED);
a206c817 280
8ff2957d
CH
281 if (error)
282 return -XFS_ERROR(error);
a206c817 283
8ff2957d
CH
284 if (type == IO_DELALLOC &&
285 (!nimaps || isnullstartblock(imap->br_startblock))) {
a206c817
CH
286 error = xfs_iomap_write_allocate(ip, offset, count, imap);
287 if (!error)
288 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
8ff2957d 289 return -XFS_ERROR(error);
a206c817
CH
290 }
291
8ff2957d
CH
292#ifdef DEBUG
293 if (type == IO_UNWRITTEN) {
294 ASSERT(nimaps);
295 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
296 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
297 }
298#endif
299 if (nimaps)
300 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
301 return 0;
1da177e4
LT
302}
303
b8f82a4a 304STATIC int
558e6891 305xfs_imap_valid(
8699bb0a 306 struct inode *inode,
207d0416 307 struct xfs_bmbt_irec *imap,
558e6891 308 xfs_off_t offset)
1da177e4 309{
558e6891 310 offset >>= inode->i_blkbits;
8699bb0a 311
558e6891
CH
312 return offset >= imap->br_startoff &&
313 offset < imap->br_startoff + imap->br_blockcount;
1da177e4
LT
314}
315
f6d6d4fc
CH
316/*
317 * BIO completion handler for buffered IO.
318 */
782e3b3b 319STATIC void
f6d6d4fc
CH
320xfs_end_bio(
321 struct bio *bio,
f6d6d4fc
CH
322 int error)
323{
324 xfs_ioend_t *ioend = bio->bi_private;
325
f6d6d4fc 326 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
7d04a335 327 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
f6d6d4fc
CH
328
329 /* Toss bio and pass work off to an xfsdatad thread */
f6d6d4fc
CH
330 bio->bi_private = NULL;
331 bio->bi_end_io = NULL;
f6d6d4fc 332 bio_put(bio);
7d04a335 333
209fb87a 334 xfs_finish_ioend(ioend);
f6d6d4fc
CH
335}
336
337STATIC void
338xfs_submit_ioend_bio(
06342cf8
CH
339 struct writeback_control *wbc,
340 xfs_ioend_t *ioend,
341 struct bio *bio)
f6d6d4fc 342{
6923e686 343 struct xfs_inode *ip = XFS_I(ioend->io_inode);
f6d6d4fc 344 atomic_inc(&ioend->io_remaining);
f6d6d4fc
CH
345 bio->bi_private = ioend;
346 bio->bi_end_io = xfs_end_bio;
347
932640e8
DC
348 /*
349 * If the I/O is beyond EOF we mark the inode dirty immediately
350 * but don't update the inode size until I/O completion.
351 */
6923e686
CH
352 if (xfs_new_eof(ip, ioend->io_offset + ioend->io_size))
353 xfs_mark_inode_dirty(ip);
932640e8 354
721a9602 355 submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
f6d6d4fc
CH
356}
357
358STATIC struct bio *
359xfs_alloc_ioend_bio(
360 struct buffer_head *bh)
361{
f6d6d4fc 362 int nvecs = bio_get_nr_vecs(bh->b_bdev);
221cb251 363 struct bio *bio = bio_alloc(GFP_NOIO, nvecs);
f6d6d4fc
CH
364
365 ASSERT(bio->bi_private == NULL);
366 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
367 bio->bi_bdev = bh->b_bdev;
f6d6d4fc
CH
368 return bio;
369}
370
371STATIC void
372xfs_start_buffer_writeback(
373 struct buffer_head *bh)
374{
375 ASSERT(buffer_mapped(bh));
376 ASSERT(buffer_locked(bh));
377 ASSERT(!buffer_delay(bh));
378 ASSERT(!buffer_unwritten(bh));
379
380 mark_buffer_async_write(bh);
381 set_buffer_uptodate(bh);
382 clear_buffer_dirty(bh);
383}
384
385STATIC void
386xfs_start_page_writeback(
387 struct page *page,
f6d6d4fc
CH
388 int clear_dirty,
389 int buffers)
390{
391 ASSERT(PageLocked(page));
392 ASSERT(!PageWriteback(page));
f6d6d4fc 393 if (clear_dirty)
92132021
DC
394 clear_page_dirty_for_io(page);
395 set_page_writeback(page);
f6d6d4fc 396 unlock_page(page);
1f7decf6
FW
397 /* If no buffers on the page are to be written, finish it here */
398 if (!buffers)
f6d6d4fc 399 end_page_writeback(page);
f6d6d4fc
CH
400}
401
402static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
403{
404 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
405}
406
407/*
d88992f6
DC
408 * Submit all of the bios for all of the ioends we have saved up, covering the
409 * initial writepage page and also any probed pages.
410 *
411 * Because we may have multiple ioends spanning a page, we need to start
412 * writeback on all the buffers before we submit them for I/O. If we mark the
413 * buffers as we got, then we can end up with a page that only has buffers
414 * marked async write and I/O complete on can occur before we mark the other
415 * buffers async write.
416 *
417 * The end result of this is that we trip a bug in end_page_writeback() because
418 * we call it twice for the one page as the code in end_buffer_async_write()
419 * assumes that all buffers on the page are started at the same time.
420 *
421 * The fix is two passes across the ioend list - one to start writeback on the
c41564b5 422 * buffer_heads, and then submit them for I/O on the second pass.
f6d6d4fc
CH
423 */
424STATIC void
425xfs_submit_ioend(
06342cf8 426 struct writeback_control *wbc,
f6d6d4fc
CH
427 xfs_ioend_t *ioend)
428{
d88992f6 429 xfs_ioend_t *head = ioend;
f6d6d4fc
CH
430 xfs_ioend_t *next;
431 struct buffer_head *bh;
432 struct bio *bio;
433 sector_t lastblock = 0;
434
d88992f6
DC
435 /* Pass 1 - start writeback */
436 do {
437 next = ioend->io_list;
221cb251 438 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
d88992f6 439 xfs_start_buffer_writeback(bh);
d88992f6
DC
440 } while ((ioend = next) != NULL);
441
442 /* Pass 2 - submit I/O */
443 ioend = head;
f6d6d4fc
CH
444 do {
445 next = ioend->io_list;
446 bio = NULL;
447
448 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
f6d6d4fc
CH
449
450 if (!bio) {
451 retry:
452 bio = xfs_alloc_ioend_bio(bh);
453 } else if (bh->b_blocknr != lastblock + 1) {
06342cf8 454 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
455 goto retry;
456 }
457
458 if (bio_add_buffer(bio, bh) != bh->b_size) {
06342cf8 459 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
460 goto retry;
461 }
462
463 lastblock = bh->b_blocknr;
464 }
465 if (bio)
06342cf8 466 xfs_submit_ioend_bio(wbc, ioend, bio);
209fb87a 467 xfs_finish_ioend(ioend);
f6d6d4fc
CH
468 } while ((ioend = next) != NULL);
469}
470
471/*
472 * Cancel submission of all buffer_heads so far in this endio.
473 * Toss the endio too. Only ever called for the initial page
474 * in a writepage request, so only ever one page.
475 */
476STATIC void
477xfs_cancel_ioend(
478 xfs_ioend_t *ioend)
479{
480 xfs_ioend_t *next;
481 struct buffer_head *bh, *next_bh;
482
483 do {
484 next = ioend->io_list;
485 bh = ioend->io_buffer_head;
486 do {
487 next_bh = bh->b_private;
488 clear_buffer_async_write(bh);
489 unlock_buffer(bh);
490 } while ((bh = next_bh) != NULL);
491
f6d6d4fc
CH
492 mempool_free(ioend, xfs_ioend_pool);
493 } while ((ioend = next) != NULL);
494}
495
496/*
497 * Test to see if we've been building up a completion structure for
498 * earlier buffers -- if so, we try to append to this ioend if we
499 * can, otherwise we finish off any current ioend and start another.
500 * Return true if we've finished the given ioend.
501 */
502STATIC void
503xfs_add_to_ioend(
504 struct inode *inode,
505 struct buffer_head *bh,
7336cea8 506 xfs_off_t offset,
f6d6d4fc
CH
507 unsigned int type,
508 xfs_ioend_t **result,
509 int need_ioend)
510{
511 xfs_ioend_t *ioend = *result;
512
513 if (!ioend || need_ioend || type != ioend->io_type) {
514 xfs_ioend_t *previous = *result;
f6d6d4fc 515
f6d6d4fc
CH
516 ioend = xfs_alloc_ioend(inode, type);
517 ioend->io_offset = offset;
518 ioend->io_buffer_head = bh;
519 ioend->io_buffer_tail = bh;
520 if (previous)
521 previous->io_list = ioend;
522 *result = ioend;
523 } else {
524 ioend->io_buffer_tail->b_private = bh;
525 ioend->io_buffer_tail = bh;
526 }
527
528 bh->b_private = NULL;
529 ioend->io_size += bh->b_size;
530}
531
87cbc49c
NS
532STATIC void
533xfs_map_buffer(
046f1685 534 struct inode *inode,
87cbc49c 535 struct buffer_head *bh,
207d0416 536 struct xfs_bmbt_irec *imap,
046f1685 537 xfs_off_t offset)
87cbc49c
NS
538{
539 sector_t bn;
8699bb0a 540 struct xfs_mount *m = XFS_I(inode)->i_mount;
207d0416
CH
541 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
542 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
87cbc49c 543
207d0416
CH
544 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
545 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
87cbc49c 546
e513182d 547 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
8699bb0a 548 ((offset - iomap_offset) >> inode->i_blkbits);
87cbc49c 549
046f1685 550 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
87cbc49c
NS
551
552 bh->b_blocknr = bn;
553 set_buffer_mapped(bh);
554}
555
1da177e4
LT
556STATIC void
557xfs_map_at_offset(
046f1685 558 struct inode *inode,
1da177e4 559 struct buffer_head *bh,
207d0416 560 struct xfs_bmbt_irec *imap,
046f1685 561 xfs_off_t offset)
1da177e4 562{
207d0416
CH
563 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
564 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
1da177e4 565
207d0416 566 xfs_map_buffer(inode, bh, imap, offset);
1da177e4
LT
567 set_buffer_mapped(bh);
568 clear_buffer_delay(bh);
f6d6d4fc 569 clear_buffer_unwritten(bh);
1da177e4
LT
570}
571
1da177e4 572/*
10ce4444
CH
573 * Test if a given page is suitable for writing as part of an unwritten
574 * or delayed allocate extent.
1da177e4 575 */
10ce4444
CH
576STATIC int
577xfs_is_delayed_page(
578 struct page *page,
f6d6d4fc 579 unsigned int type)
1da177e4 580{
1da177e4 581 if (PageWriteback(page))
10ce4444 582 return 0;
1da177e4
LT
583
584 if (page->mapping && page_has_buffers(page)) {
585 struct buffer_head *bh, *head;
586 int acceptable = 0;
587
588 bh = head = page_buffers(page);
589 do {
f6d6d4fc 590 if (buffer_unwritten(bh))
34a52c6c 591 acceptable = (type == IO_UNWRITTEN);
f6d6d4fc 592 else if (buffer_delay(bh))
a206c817 593 acceptable = (type == IO_DELALLOC);
2ddee844 594 else if (buffer_dirty(bh) && buffer_mapped(bh))
a206c817 595 acceptable = (type == IO_OVERWRITE);
f6d6d4fc 596 else
1da177e4 597 break;
1da177e4
LT
598 } while ((bh = bh->b_this_page) != head);
599
600 if (acceptable)
10ce4444 601 return 1;
1da177e4
LT
602 }
603
10ce4444 604 return 0;
1da177e4
LT
605}
606
1da177e4
LT
607/*
608 * Allocate & map buffers for page given the extent map. Write it out.
609 * except for the original page of a writepage, this is called on
610 * delalloc/unwritten pages only, for the original page it is possible
611 * that the page has no mapping at all.
612 */
f6d6d4fc 613STATIC int
1da177e4
LT
614xfs_convert_page(
615 struct inode *inode,
616 struct page *page,
10ce4444 617 loff_t tindex,
207d0416 618 struct xfs_bmbt_irec *imap,
f6d6d4fc 619 xfs_ioend_t **ioendp,
2fa24f92 620 struct writeback_control *wbc)
1da177e4 621{
f6d6d4fc 622 struct buffer_head *bh, *head;
9260dc6b
CH
623 xfs_off_t end_offset;
624 unsigned long p_offset;
f6d6d4fc 625 unsigned int type;
24e17b5f 626 int len, page_dirty;
f6d6d4fc 627 int count = 0, done = 0, uptodate = 1;
9260dc6b 628 xfs_off_t offset = page_offset(page);
1da177e4 629
10ce4444
CH
630 if (page->index != tindex)
631 goto fail;
529ae9aa 632 if (!trylock_page(page))
10ce4444
CH
633 goto fail;
634 if (PageWriteback(page))
635 goto fail_unlock_page;
636 if (page->mapping != inode->i_mapping)
637 goto fail_unlock_page;
638 if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
639 goto fail_unlock_page;
640
24e17b5f
NS
641 /*
642 * page_dirty is initially a count of buffers on the page before
c41564b5 643 * EOF and is decremented as we move each into a cleanable state.
9260dc6b
CH
644 *
645 * Derivation:
646 *
647 * End offset is the highest offset that this page should represent.
648 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
649 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
650 * hence give us the correct page_dirty count. On any other page,
651 * it will be zero and in that case we need page_dirty to be the
652 * count of buffers on the page.
24e17b5f 653 */
9260dc6b
CH
654 end_offset = min_t(unsigned long long,
655 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
656 i_size_read(inode));
657
24e17b5f 658 len = 1 << inode->i_blkbits;
9260dc6b
CH
659 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
660 PAGE_CACHE_SIZE);
661 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
662 page_dirty = p_offset / len;
24e17b5f 663
1da177e4
LT
664 bh = head = page_buffers(page);
665 do {
9260dc6b 666 if (offset >= end_offset)
1da177e4 667 break;
f6d6d4fc
CH
668 if (!buffer_uptodate(bh))
669 uptodate = 0;
670 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
671 done = 1;
1da177e4 672 continue;
f6d6d4fc
CH
673 }
674
2fa24f92
CH
675 if (buffer_unwritten(bh) || buffer_delay(bh) ||
676 buffer_mapped(bh)) {
9260dc6b 677 if (buffer_unwritten(bh))
34a52c6c 678 type = IO_UNWRITTEN;
2fa24f92 679 else if (buffer_delay(bh))
a206c817 680 type = IO_DELALLOC;
2fa24f92
CH
681 else
682 type = IO_OVERWRITE;
9260dc6b 683
558e6891 684 if (!xfs_imap_valid(inode, imap, offset)) {
f6d6d4fc 685 done = 1;
9260dc6b
CH
686 continue;
687 }
688
ecff71e6
CH
689 lock_buffer(bh);
690 if (type != IO_OVERWRITE)
2fa24f92 691 xfs_map_at_offset(inode, bh, imap, offset);
89f3b363
CH
692 xfs_add_to_ioend(inode, bh, offset, type,
693 ioendp, done);
694
9260dc6b
CH
695 page_dirty--;
696 count++;
697 } else {
2fa24f92 698 done = 1;
1da177e4 699 }
7336cea8 700 } while (offset += len, (bh = bh->b_this_page) != head);
1da177e4 701
f6d6d4fc
CH
702 if (uptodate && bh == head)
703 SetPageUptodate(page);
704
89f3b363 705 if (count) {
efceab1d
DC
706 if (--wbc->nr_to_write <= 0 &&
707 wbc->sync_mode == WB_SYNC_NONE)
89f3b363 708 done = 1;
1da177e4 709 }
89f3b363 710 xfs_start_page_writeback(page, !page_dirty, count);
f6d6d4fc
CH
711
712 return done;
10ce4444
CH
713 fail_unlock_page:
714 unlock_page(page);
715 fail:
716 return 1;
1da177e4
LT
717}
718
719/*
720 * Convert & write out a cluster of pages in the same extent as defined
721 * by mp and following the start page.
722 */
723STATIC void
724xfs_cluster_write(
725 struct inode *inode,
726 pgoff_t tindex,
207d0416 727 struct xfs_bmbt_irec *imap,
f6d6d4fc 728 xfs_ioend_t **ioendp,
1da177e4 729 struct writeback_control *wbc,
1da177e4
LT
730 pgoff_t tlast)
731{
10ce4444
CH
732 struct pagevec pvec;
733 int done = 0, i;
1da177e4 734
10ce4444
CH
735 pagevec_init(&pvec, 0);
736 while (!done && tindex <= tlast) {
737 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
738
739 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
1da177e4 740 break;
10ce4444
CH
741
742 for (i = 0; i < pagevec_count(&pvec); i++) {
743 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
2fa24f92 744 imap, ioendp, wbc);
10ce4444
CH
745 if (done)
746 break;
747 }
748
749 pagevec_release(&pvec);
750 cond_resched();
1da177e4
LT
751 }
752}
753
3ed3a434
DC
754STATIC void
755xfs_vm_invalidatepage(
756 struct page *page,
757 unsigned long offset)
758{
759 trace_xfs_invalidatepage(page->mapping->host, page, offset);
760 block_invalidatepage(page, offset);
761}
762
763/*
764 * If the page has delalloc buffers on it, we need to punch them out before we
765 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
766 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
767 * is done on that same region - the delalloc extent is returned when none is
768 * supposed to be there.
769 *
770 * We prevent this by truncating away the delalloc regions on the page before
771 * invalidating it. Because they are delalloc, we can do this without needing a
772 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
773 * truncation without a transaction as there is no space left for block
774 * reservation (typically why we see a ENOSPC in writeback).
775 *
776 * This is not a performance critical path, so for now just do the punching a
777 * buffer head at a time.
778 */
779STATIC void
780xfs_aops_discard_page(
781 struct page *page)
782{
783 struct inode *inode = page->mapping->host;
784 struct xfs_inode *ip = XFS_I(inode);
785 struct buffer_head *bh, *head;
786 loff_t offset = page_offset(page);
3ed3a434 787
a206c817 788 if (!xfs_is_delayed_page(page, IO_DELALLOC))
3ed3a434
DC
789 goto out_invalidate;
790
e8c3753c
DC
791 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
792 goto out_invalidate;
793
4f10700a 794 xfs_alert(ip->i_mount,
3ed3a434
DC
795 "page discard on page %p, inode 0x%llx, offset %llu.",
796 page, ip->i_ino, offset);
797
798 xfs_ilock(ip, XFS_ILOCK_EXCL);
799 bh = head = page_buffers(page);
800 do {
3ed3a434 801 int error;
c726de44 802 xfs_fileoff_t start_fsb;
3ed3a434
DC
803
804 if (!buffer_delay(bh))
805 goto next_buffer;
806
c726de44
DC
807 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
808 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
3ed3a434
DC
809 if (error) {
810 /* something screwed, just bail */
e8c3753c 811 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
4f10700a 812 xfs_alert(ip->i_mount,
3ed3a434 813 "page discard unable to remove delalloc mapping.");
e8c3753c 814 }
3ed3a434
DC
815 break;
816 }
817next_buffer:
c726de44 818 offset += 1 << inode->i_blkbits;
3ed3a434
DC
819
820 } while ((bh = bh->b_this_page) != head);
821
822 xfs_iunlock(ip, XFS_ILOCK_EXCL);
823out_invalidate:
824 xfs_vm_invalidatepage(page, 0);
825 return;
826}
827
1da177e4 828/*
89f3b363
CH
829 * Write out a dirty page.
830 *
831 * For delalloc space on the page we need to allocate space and flush it.
832 * For unwritten space on the page we need to start the conversion to
833 * regular allocated space.
89f3b363 834 * For any other dirty buffer heads on the page we should flush them.
1da177e4 835 */
1da177e4 836STATIC int
89f3b363
CH
837xfs_vm_writepage(
838 struct page *page,
839 struct writeback_control *wbc)
1da177e4 840{
89f3b363 841 struct inode *inode = page->mapping->host;
f6d6d4fc 842 struct buffer_head *bh, *head;
207d0416 843 struct xfs_bmbt_irec imap;
f6d6d4fc 844 xfs_ioend_t *ioend = NULL, *iohead = NULL;
1da177e4 845 loff_t offset;
f6d6d4fc 846 unsigned int type;
1da177e4 847 __uint64_t end_offset;
bd1556a1 848 pgoff_t end_index, last_index;
ed1e7b7e 849 ssize_t len;
a206c817 850 int err, imap_valid = 0, uptodate = 1;
89f3b363 851 int count = 0;
a206c817 852 int nonblocking = 0;
89f3b363
CH
853
854 trace_xfs_writepage(inode, page, 0);
855
20cb52eb
CH
856 ASSERT(page_has_buffers(page));
857
89f3b363
CH
858 /*
859 * Refuse to write the page out if we are called from reclaim context.
860 *
d4f7a5cb
CH
861 * This avoids stack overflows when called from deeply used stacks in
862 * random callers for direct reclaim or memcg reclaim. We explicitly
863 * allow reclaim from kswapd as the stack usage there is relatively low.
89f3b363 864 *
94054fa3
MG
865 * This should never happen except in the case of a VM regression so
866 * warn about it.
89f3b363 867 */
94054fa3
MG
868 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
869 PF_MEMALLOC))
b5420f23 870 goto redirty;
1da177e4 871
89f3b363 872 /*
680a647b
CH
873 * Given that we do not allow direct reclaim to call us, we should
874 * never be called while in a filesystem transaction.
89f3b363 875 */
680a647b 876 if (WARN_ON(current->flags & PF_FSTRANS))
b5420f23 877 goto redirty;
89f3b363 878
1da177e4
LT
879 /* Is this page beyond the end of the file? */
880 offset = i_size_read(inode);
881 end_index = offset >> PAGE_CACHE_SHIFT;
882 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
883 if (page->index >= end_index) {
884 if ((page->index >= end_index + 1) ||
885 !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
89f3b363 886 unlock_page(page);
19d5bcf3 887 return 0;
1da177e4
LT
888 }
889 }
890
f6d6d4fc 891 end_offset = min_t(unsigned long long,
20cb52eb
CH
892 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
893 offset);
24e17b5f 894 len = 1 << inode->i_blkbits;
24e17b5f 895
24e17b5f 896 bh = head = page_buffers(page);
f6d6d4fc 897 offset = page_offset(page);
a206c817
CH
898 type = IO_OVERWRITE;
899
dbcdde3e 900 if (wbc->sync_mode == WB_SYNC_NONE)
a206c817 901 nonblocking = 1;
f6d6d4fc 902
1da177e4 903 do {
6ac7248e
CH
904 int new_ioend = 0;
905
1da177e4
LT
906 if (offset >= end_offset)
907 break;
908 if (!buffer_uptodate(bh))
909 uptodate = 0;
1da177e4 910
3d9b02e3 911 /*
ece413f5
CH
912 * set_page_dirty dirties all buffers in a page, independent
913 * of their state. The dirty state however is entirely
914 * meaningless for holes (!mapped && uptodate), so skip
915 * buffers covering holes here.
3d9b02e3
ES
916 */
917 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
3d9b02e3
ES
918 imap_valid = 0;
919 continue;
920 }
921
aeea1b1f
CH
922 if (buffer_unwritten(bh)) {
923 if (type != IO_UNWRITTEN) {
924 type = IO_UNWRITTEN;
925 imap_valid = 0;
1da177e4 926 }
aeea1b1f
CH
927 } else if (buffer_delay(bh)) {
928 if (type != IO_DELALLOC) {
929 type = IO_DELALLOC;
930 imap_valid = 0;
1da177e4 931 }
89f3b363 932 } else if (buffer_uptodate(bh)) {
a206c817
CH
933 if (type != IO_OVERWRITE) {
934 type = IO_OVERWRITE;
85da94c6
CH
935 imap_valid = 0;
936 }
aeea1b1f
CH
937 } else {
938 if (PageUptodate(page)) {
939 ASSERT(buffer_mapped(bh));
940 imap_valid = 0;
6c4fe19f 941 }
aeea1b1f
CH
942 continue;
943 }
d5cb48aa 944
aeea1b1f
CH
945 if (imap_valid)
946 imap_valid = xfs_imap_valid(inode, &imap, offset);
947 if (!imap_valid) {
948 /*
949 * If we didn't have a valid mapping then we need to
950 * put the new mapping into a separate ioend structure.
951 * This ensures non-contiguous extents always have
952 * separate ioends, which is particularly important
953 * for unwritten extent conversion at I/O completion
954 * time.
955 */
956 new_ioend = 1;
957 err = xfs_map_blocks(inode, offset, &imap, type,
958 nonblocking);
959 if (err)
960 goto error;
961 imap_valid = xfs_imap_valid(inode, &imap, offset);
962 }
963 if (imap_valid) {
ecff71e6
CH
964 lock_buffer(bh);
965 if (type != IO_OVERWRITE)
aeea1b1f
CH
966 xfs_map_at_offset(inode, bh, &imap, offset);
967 xfs_add_to_ioend(inode, bh, offset, type, &ioend,
968 new_ioend);
969 count++;
1da177e4 970 }
f6d6d4fc
CH
971
972 if (!iohead)
973 iohead = ioend;
974
975 } while (offset += len, ((bh = bh->b_this_page) != head));
1da177e4
LT
976
977 if (uptodate && bh == head)
978 SetPageUptodate(page);
979
89f3b363 980 xfs_start_page_writeback(page, 1, count);
1da177e4 981
558e6891 982 if (ioend && imap_valid) {
bd1556a1
CH
983 xfs_off_t end_index;
984
985 end_index = imap.br_startoff + imap.br_blockcount;
986
987 /* to bytes */
988 end_index <<= inode->i_blkbits;
989
990 /* to pages */
991 end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
992
993 /* check against file size */
994 if (end_index > last_index)
995 end_index = last_index;
8699bb0a 996
207d0416 997 xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
2fa24f92 998 wbc, end_index);
1da177e4
LT
999 }
1000
f6d6d4fc 1001 if (iohead)
06342cf8 1002 xfs_submit_ioend(wbc, iohead);
f6d6d4fc 1003
89f3b363 1004 return 0;
1da177e4
LT
1005
1006error:
f6d6d4fc
CH
1007 if (iohead)
1008 xfs_cancel_ioend(iohead);
1da177e4 1009
b5420f23
CH
1010 if (err == -EAGAIN)
1011 goto redirty;
1012
20cb52eb 1013 xfs_aops_discard_page(page);
89f3b363
CH
1014 ClearPageUptodate(page);
1015 unlock_page(page);
1da177e4 1016 return err;
f51623b2 1017
b5420f23 1018redirty:
f51623b2
NS
1019 redirty_page_for_writepage(wbc, page);
1020 unlock_page(page);
1021 return 0;
f51623b2
NS
1022}
1023
7d4fb40a
NS
1024STATIC int
1025xfs_vm_writepages(
1026 struct address_space *mapping,
1027 struct writeback_control *wbc)
1028{
b3aea4ed 1029 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
7d4fb40a
NS
1030 return generic_writepages(mapping, wbc);
1031}
1032
f51623b2
NS
1033/*
1034 * Called to move a page into cleanable state - and from there
89f3b363 1035 * to be released. The page should already be clean. We always
f51623b2
NS
1036 * have buffer heads in this call.
1037 *
89f3b363 1038 * Returns 1 if the page is ok to release, 0 otherwise.
f51623b2
NS
1039 */
1040STATIC int
238f4c54 1041xfs_vm_releasepage(
f51623b2
NS
1042 struct page *page,
1043 gfp_t gfp_mask)
1044{
20cb52eb 1045 int delalloc, unwritten;
f51623b2 1046
89f3b363 1047 trace_xfs_releasepage(page->mapping->host, page, 0);
238f4c54 1048
20cb52eb 1049 xfs_count_page_state(page, &delalloc, &unwritten);
f51623b2 1050
89f3b363 1051 if (WARN_ON(delalloc))
f51623b2 1052 return 0;
89f3b363 1053 if (WARN_ON(unwritten))
f51623b2
NS
1054 return 0;
1055
f51623b2
NS
1056 return try_to_free_buffers(page);
1057}
1058
1da177e4 1059STATIC int
c2536668 1060__xfs_get_blocks(
1da177e4
LT
1061 struct inode *inode,
1062 sector_t iblock,
1da177e4
LT
1063 struct buffer_head *bh_result,
1064 int create,
f2bde9b8 1065 int direct)
1da177e4 1066{
a206c817
CH
1067 struct xfs_inode *ip = XFS_I(inode);
1068 struct xfs_mount *mp = ip->i_mount;
1069 xfs_fileoff_t offset_fsb, end_fsb;
1070 int error = 0;
1071 int lockmode = 0;
207d0416 1072 struct xfs_bmbt_irec imap;
a206c817 1073 int nimaps = 1;
fdc7ed75
NS
1074 xfs_off_t offset;
1075 ssize_t size;
207d0416 1076 int new = 0;
a206c817
CH
1077
1078 if (XFS_FORCED_SHUTDOWN(mp))
1079 return -XFS_ERROR(EIO);
1da177e4 1080
fdc7ed75 1081 offset = (xfs_off_t)iblock << inode->i_blkbits;
c2536668
NS
1082 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1083 size = bh_result->b_size;
364f358a
LM
1084
1085 if (!create && direct && offset >= i_size_read(inode))
1086 return 0;
1087
a206c817
CH
1088 if (create) {
1089 lockmode = XFS_ILOCK_EXCL;
1090 xfs_ilock(ip, lockmode);
1091 } else {
1092 lockmode = xfs_ilock_map_shared(ip);
1093 }
f2bde9b8 1094
a206c817
CH
1095 ASSERT(offset <= mp->m_maxioffset);
1096 if (offset + size > mp->m_maxioffset)
1097 size = mp->m_maxioffset - offset;
1098 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1099 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1100
5c8ed202
DC
1101 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1102 &imap, &nimaps, XFS_BMAPI_ENTIRE);
1da177e4 1103 if (error)
a206c817
CH
1104 goto out_unlock;
1105
1106 if (create &&
1107 (!nimaps ||
1108 (imap.br_startblock == HOLESTARTBLOCK ||
1109 imap.br_startblock == DELAYSTARTBLOCK))) {
1110 if (direct) {
1111 error = xfs_iomap_write_direct(ip, offset, size,
1112 &imap, nimaps);
1113 } else {
1114 error = xfs_iomap_write_delay(ip, offset, size, &imap);
1115 }
1116 if (error)
1117 goto out_unlock;
1118
1119 trace_xfs_get_blocks_alloc(ip, offset, size, 0, &imap);
1120 } else if (nimaps) {
1121 trace_xfs_get_blocks_found(ip, offset, size, 0, &imap);
1122 } else {
1123 trace_xfs_get_blocks_notfound(ip, offset, size);
1124 goto out_unlock;
1125 }
1126 xfs_iunlock(ip, lockmode);
1da177e4 1127
207d0416
CH
1128 if (imap.br_startblock != HOLESTARTBLOCK &&
1129 imap.br_startblock != DELAYSTARTBLOCK) {
87cbc49c
NS
1130 /*
1131 * For unwritten extents do not report a disk address on
1da177e4
LT
1132 * the read case (treat as if we're reading into a hole).
1133 */
207d0416
CH
1134 if (create || !ISUNWRITTEN(&imap))
1135 xfs_map_buffer(inode, bh_result, &imap, offset);
1136 if (create && ISUNWRITTEN(&imap)) {
1da177e4
LT
1137 if (direct)
1138 bh_result->b_private = inode;
1139 set_buffer_unwritten(bh_result);
1da177e4
LT
1140 }
1141 }
1142
c2536668
NS
1143 /*
1144 * If this is a realtime file, data may be on a different device.
1145 * to that pointed to from the buffer_head b_bdev currently.
1146 */
046f1685 1147 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1da177e4 1148
c2536668 1149 /*
549054af
DC
1150 * If we previously allocated a block out beyond eof and we are now
1151 * coming back to use it then we will need to flag it as new even if it
1152 * has a disk address.
1153 *
1154 * With sub-block writes into unwritten extents we also need to mark
1155 * the buffer as new so that the unwritten parts of the buffer gets
1156 * correctly zeroed.
1da177e4
LT
1157 */
1158 if (create &&
1159 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
549054af 1160 (offset >= i_size_read(inode)) ||
207d0416 1161 (new || ISUNWRITTEN(&imap))))
1da177e4 1162 set_buffer_new(bh_result);
1da177e4 1163
207d0416 1164 if (imap.br_startblock == DELAYSTARTBLOCK) {
1da177e4
LT
1165 BUG_ON(direct);
1166 if (create) {
1167 set_buffer_uptodate(bh_result);
1168 set_buffer_mapped(bh_result);
1169 set_buffer_delay(bh_result);
1170 }
1171 }
1172
2b8f12b7
CH
1173 /*
1174 * If this is O_DIRECT or the mpage code calling tell them how large
1175 * the mapping is, so that we can avoid repeated get_blocks calls.
1176 */
c2536668 1177 if (direct || size > (1 << inode->i_blkbits)) {
2b8f12b7
CH
1178 xfs_off_t mapping_size;
1179
1180 mapping_size = imap.br_startoff + imap.br_blockcount - iblock;
1181 mapping_size <<= inode->i_blkbits;
1182
1183 ASSERT(mapping_size > 0);
1184 if (mapping_size > size)
1185 mapping_size = size;
1186 if (mapping_size > LONG_MAX)
1187 mapping_size = LONG_MAX;
1188
1189 bh_result->b_size = mapping_size;
1da177e4
LT
1190 }
1191
1192 return 0;
a206c817
CH
1193
1194out_unlock:
1195 xfs_iunlock(ip, lockmode);
1196 return -error;
1da177e4
LT
1197}
1198
1199int
c2536668 1200xfs_get_blocks(
1da177e4
LT
1201 struct inode *inode,
1202 sector_t iblock,
1203 struct buffer_head *bh_result,
1204 int create)
1205{
f2bde9b8 1206 return __xfs_get_blocks(inode, iblock, bh_result, create, 0);
1da177e4
LT
1207}
1208
1209STATIC int
e4c573bb 1210xfs_get_blocks_direct(
1da177e4
LT
1211 struct inode *inode,
1212 sector_t iblock,
1da177e4
LT
1213 struct buffer_head *bh_result,
1214 int create)
1215{
f2bde9b8 1216 return __xfs_get_blocks(inode, iblock, bh_result, create, 1);
1da177e4
LT
1217}
1218
209fb87a
CH
1219/*
1220 * Complete a direct I/O write request.
1221 *
1222 * If the private argument is non-NULL __xfs_get_blocks signals us that we
1223 * need to issue a transaction to convert the range from unwritten to written
1224 * extents. In case this is regular synchronous I/O we just call xfs_end_io
25985edc 1225 * to do this and we are done. But in case this was a successful AIO
209fb87a
CH
1226 * request this handler is called from interrupt context, from which we
1227 * can't start transactions. In that case offload the I/O completion to
1228 * the workqueues we also use for buffered I/O completion.
1229 */
f0973863 1230STATIC void
209fb87a
CH
1231xfs_end_io_direct_write(
1232 struct kiocb *iocb,
1233 loff_t offset,
1234 ssize_t size,
1235 void *private,
1236 int ret,
1237 bool is_async)
f0973863 1238{
209fb87a 1239 struct xfs_ioend *ioend = iocb->private;
f0973863 1240
2813d682
CH
1241 /*
1242 * While the generic direct I/O code updates the inode size, it does
1243 * so only after the end_io handler is called, which means our
1244 * end_io handler thinks the on-disk size is outside the in-core
1245 * size. To prevent this just update it a little bit earlier here.
1246 */
1247 if (offset + size > i_size_read(ioend->io_inode))
1248 i_size_write(ioend->io_inode, offset + size);
1249
f0973863 1250 /*
209fb87a
CH
1251 * blockdev_direct_IO can return an error even after the I/O
1252 * completion handler was called. Thus we need to protect
1253 * against double-freeing.
f0973863 1254 */
209fb87a
CH
1255 iocb->private = NULL;
1256
ba87ea69
LM
1257 ioend->io_offset = offset;
1258 ioend->io_size = size;
c859cdd1
CH
1259 ioend->io_iocb = iocb;
1260 ioend->io_result = ret;
209fb87a
CH
1261 if (private && size > 0)
1262 ioend->io_type = IO_UNWRITTEN;
1263
1264 if (is_async) {
c859cdd1 1265 ioend->io_isasync = 1;
209fb87a 1266 xfs_finish_ioend(ioend);
f0973863 1267 } else {
209fb87a 1268 xfs_finish_ioend_sync(ioend);
f0973863 1269 }
f0973863
CH
1270}
1271
1da177e4 1272STATIC ssize_t
e4c573bb 1273xfs_vm_direct_IO(
1da177e4
LT
1274 int rw,
1275 struct kiocb *iocb,
1276 const struct iovec *iov,
1277 loff_t offset,
1278 unsigned long nr_segs)
1279{
209fb87a
CH
1280 struct inode *inode = iocb->ki_filp->f_mapping->host;
1281 struct block_device *bdev = xfs_find_bdev_for_inode(inode);
1282 ssize_t ret;
1283
1284 if (rw & WRITE) {
a206c817 1285 iocb->private = xfs_alloc_ioend(inode, IO_DIRECT);
209fb87a 1286
eafdc7d1
CH
1287 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1288 offset, nr_segs,
1289 xfs_get_blocks_direct,
1290 xfs_end_io_direct_write, NULL, 0);
209fb87a
CH
1291 if (ret != -EIOCBQUEUED && iocb->private)
1292 xfs_destroy_ioend(iocb->private);
1293 } else {
eafdc7d1
CH
1294 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1295 offset, nr_segs,
1296 xfs_get_blocks_direct,
1297 NULL, NULL, 0);
209fb87a 1298 }
f0973863 1299
f0973863 1300 return ret;
1da177e4
LT
1301}
1302
fa9b227e
CH
1303STATIC void
1304xfs_vm_write_failed(
1305 struct address_space *mapping,
1306 loff_t to)
1307{
1308 struct inode *inode = mapping->host;
1309
1310 if (to > inode->i_size) {
c726de44 1311 /*
2813d682
CH
1312 * Punch out the delalloc blocks we have already allocated.
1313 *
1314 * Don't bother with xfs_setattr given that nothing can have
1315 * made it to disk yet as the page is still locked at this
1316 * point.
c726de44
DC
1317 */
1318 struct xfs_inode *ip = XFS_I(inode);
1319 xfs_fileoff_t start_fsb;
1320 xfs_fileoff_t end_fsb;
1321 int error;
1322
1323 truncate_pagecache(inode, to, inode->i_size);
1324
1325 /*
1326 * Check if there are any blocks that are outside of i_size
1327 * that need to be trimmed back.
1328 */
1329 start_fsb = XFS_B_TO_FSB(ip->i_mount, inode->i_size) + 1;
1330 end_fsb = XFS_B_TO_FSB(ip->i_mount, to);
1331 if (end_fsb <= start_fsb)
1332 return;
1333
1334 xfs_ilock(ip, XFS_ILOCK_EXCL);
1335 error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1336 end_fsb - start_fsb);
1337 if (error) {
1338 /* something screwed, just bail */
1339 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
4f10700a 1340 xfs_alert(ip->i_mount,
c726de44
DC
1341 "xfs_vm_write_failed: unable to clean up ino %lld",
1342 ip->i_ino);
1343 }
1344 }
1345 xfs_iunlock(ip, XFS_ILOCK_EXCL);
fa9b227e
CH
1346 }
1347}
1348
f51623b2 1349STATIC int
d79689c7 1350xfs_vm_write_begin(
f51623b2 1351 struct file *file,
d79689c7
NP
1352 struct address_space *mapping,
1353 loff_t pos,
1354 unsigned len,
1355 unsigned flags,
1356 struct page **pagep,
1357 void **fsdata)
f51623b2 1358{
155130a4
CH
1359 int ret;
1360
1361 ret = block_write_begin(mapping, pos, len, flags | AOP_FLAG_NOFS,
1362 pagep, xfs_get_blocks);
fa9b227e
CH
1363 if (unlikely(ret))
1364 xfs_vm_write_failed(mapping, pos + len);
1365 return ret;
1366}
1367
1368STATIC int
1369xfs_vm_write_end(
1370 struct file *file,
1371 struct address_space *mapping,
1372 loff_t pos,
1373 unsigned len,
1374 unsigned copied,
1375 struct page *page,
1376 void *fsdata)
1377{
1378 int ret;
155130a4 1379
fa9b227e
CH
1380 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
1381 if (unlikely(ret < len))
1382 xfs_vm_write_failed(mapping, pos + len);
155130a4 1383 return ret;
f51623b2 1384}
1da177e4
LT
1385
1386STATIC sector_t
e4c573bb 1387xfs_vm_bmap(
1da177e4
LT
1388 struct address_space *mapping,
1389 sector_t block)
1390{
1391 struct inode *inode = (struct inode *)mapping->host;
739bfb2a 1392 struct xfs_inode *ip = XFS_I(inode);
1da177e4 1393
cca28fb8 1394 trace_xfs_vm_bmap(XFS_I(inode));
126468b1 1395 xfs_ilock(ip, XFS_IOLOCK_SHARED);
739bfb2a 1396 xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF);
126468b1 1397 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
c2536668 1398 return generic_block_bmap(mapping, block, xfs_get_blocks);
1da177e4
LT
1399}
1400
1401STATIC int
e4c573bb 1402xfs_vm_readpage(
1da177e4
LT
1403 struct file *unused,
1404 struct page *page)
1405{
c2536668 1406 return mpage_readpage(page, xfs_get_blocks);
1da177e4
LT
1407}
1408
1409STATIC int
e4c573bb 1410xfs_vm_readpages(
1da177e4
LT
1411 struct file *unused,
1412 struct address_space *mapping,
1413 struct list_head *pages,
1414 unsigned nr_pages)
1415{
c2536668 1416 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1da177e4
LT
1417}
1418
f5e54d6e 1419const struct address_space_operations xfs_address_space_operations = {
e4c573bb
NS
1420 .readpage = xfs_vm_readpage,
1421 .readpages = xfs_vm_readpages,
1422 .writepage = xfs_vm_writepage,
7d4fb40a 1423 .writepages = xfs_vm_writepages,
238f4c54
NS
1424 .releasepage = xfs_vm_releasepage,
1425 .invalidatepage = xfs_vm_invalidatepage,
d79689c7 1426 .write_begin = xfs_vm_write_begin,
fa9b227e 1427 .write_end = xfs_vm_write_end,
e4c573bb
NS
1428 .bmap = xfs_vm_bmap,
1429 .direct_IO = xfs_vm_direct_IO,
e965f963 1430 .migratepage = buffer_migrate_page,
bddaafa1 1431 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 1432 .error_remove_page = generic_error_remove_page,
1da177e4 1433};