xfs: reduce stack usage in xfs_iomap
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / xfs / linux-2.6 / xfs_aops.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_bit.h"
1da177e4 20#include "xfs_log.h"
a844f451 21#include "xfs_inum.h"
1da177e4 22#include "xfs_sb.h"
a844f451 23#include "xfs_ag.h"
1da177e4 24#include "xfs_trans.h"
1da177e4
LT
25#include "xfs_mount.h"
26#include "xfs_bmap_btree.h"
1da177e4
LT
27#include "xfs_dinode.h"
28#include "xfs_inode.h"
a844f451 29#include "xfs_alloc.h"
1da177e4
LT
30#include "xfs_error.h"
31#include "xfs_rw.h"
32#include "xfs_iomap.h"
739bfb2a 33#include "xfs_vnodeops.h"
0b1b213f 34#include "xfs_trace.h"
3ed3a434 35#include "xfs_bmap.h"
5a0e3ad6 36#include <linux/gfp.h>
1da177e4 37#include <linux/mpage.h>
10ce4444 38#include <linux/pagevec.h>
1da177e4
LT
39#include <linux/writeback.h>
40
34a52c6c
CH
41/*
42 * Types of I/O for bmap clustering and I/O completion tracking.
43 */
44enum {
45 IO_READ, /* mapping for a read */
46 IO_DELAY, /* mapping covers delalloc region */
47 IO_UNWRITTEN, /* mapping covers allocated but uninitialized data */
48 IO_NEW /* just allocated */
49};
25e41b3d
CH
50
51/*
52 * Prime number of hash buckets since address is used as the key.
53 */
54#define NVSYNC 37
55#define to_ioend_wq(v) (&xfs_ioend_wq[((unsigned long)v) % NVSYNC])
56static wait_queue_head_t xfs_ioend_wq[NVSYNC];
57
58void __init
59xfs_ioend_init(void)
60{
61 int i;
62
63 for (i = 0; i < NVSYNC; i++)
64 init_waitqueue_head(&xfs_ioend_wq[i]);
65}
66
67void
68xfs_ioend_wait(
69 xfs_inode_t *ip)
70{
71 wait_queue_head_t *wq = to_ioend_wq(ip);
72
73 wait_event(*wq, (atomic_read(&ip->i_iocount) == 0));
74}
75
76STATIC void
77xfs_ioend_wake(
78 xfs_inode_t *ip)
79{
80 if (atomic_dec_and_test(&ip->i_iocount))
81 wake_up(to_ioend_wq(ip));
82}
83
0b1b213f 84void
f51623b2
NS
85xfs_count_page_state(
86 struct page *page,
87 int *delalloc,
f51623b2
NS
88 int *unwritten)
89{
90 struct buffer_head *bh, *head;
91
20cb52eb 92 *delalloc = *unwritten = 0;
f51623b2
NS
93
94 bh = head = page_buffers(page);
95 do {
20cb52eb 96 if (buffer_unwritten(bh))
f51623b2
NS
97 (*unwritten) = 1;
98 else if (buffer_delay(bh))
99 (*delalloc) = 1;
100 } while ((bh = bh->b_this_page) != head);
101}
102
6214ed44
CH
103STATIC struct block_device *
104xfs_find_bdev_for_inode(
046f1685 105 struct inode *inode)
6214ed44 106{
046f1685 107 struct xfs_inode *ip = XFS_I(inode);
6214ed44
CH
108 struct xfs_mount *mp = ip->i_mount;
109
71ddabb9 110 if (XFS_IS_REALTIME_INODE(ip))
6214ed44
CH
111 return mp->m_rtdev_targp->bt_bdev;
112 else
113 return mp->m_ddev_targp->bt_bdev;
114}
115
f6d6d4fc
CH
116/*
117 * We're now finished for good with this ioend structure.
118 * Update the page state via the associated buffer_heads,
119 * release holds on the inode and bio, and finally free
120 * up memory. Do not use the ioend after this.
121 */
0829c360
CH
122STATIC void
123xfs_destroy_ioend(
124 xfs_ioend_t *ioend)
125{
f6d6d4fc 126 struct buffer_head *bh, *next;
583fa586 127 struct xfs_inode *ip = XFS_I(ioend->io_inode);
f6d6d4fc
CH
128
129 for (bh = ioend->io_buffer_head; bh; bh = next) {
130 next = bh->b_private;
7d04a335 131 bh->b_end_io(bh, !ioend->io_error);
f6d6d4fc 132 }
583fa586
CH
133
134 /*
135 * Volume managers supporting multiple paths can send back ENODEV
136 * when the final path disappears. In this case continuing to fill
137 * the page cache with dirty data which cannot be written out is
138 * evil, so prevent that.
139 */
140 if (unlikely(ioend->io_error == -ENODEV)) {
141 xfs_do_force_shutdown(ip->i_mount, SHUTDOWN_DEVICE_REQ,
142 __FILE__, __LINE__);
b677c210 143 }
583fa586 144
25e41b3d 145 xfs_ioend_wake(ip);
0829c360
CH
146 mempool_free(ioend, xfs_ioend_pool);
147}
148
932640e8
DC
149/*
150 * If the end of the current ioend is beyond the current EOF,
151 * return the new EOF value, otherwise zero.
152 */
153STATIC xfs_fsize_t
154xfs_ioend_new_eof(
155 xfs_ioend_t *ioend)
156{
157 xfs_inode_t *ip = XFS_I(ioend->io_inode);
158 xfs_fsize_t isize;
159 xfs_fsize_t bsize;
160
161 bsize = ioend->io_offset + ioend->io_size;
162 isize = MAX(ip->i_size, ip->i_new_size);
163 isize = MIN(isize, bsize);
164 return isize > ip->i_d.di_size ? isize : 0;
165}
166
ba87ea69 167/*
77d7a0c2
DC
168 * Update on-disk file size now that data has been written to disk. The
169 * current in-memory file size is i_size. If a write is beyond eof i_new_size
170 * will be the intended file size until i_size is updated. If this write does
171 * not extend all the way to the valid file size then restrict this update to
172 * the end of the write.
173 *
174 * This function does not block as blocking on the inode lock in IO completion
175 * can lead to IO completion order dependency deadlocks.. If it can't get the
176 * inode ilock it will return EAGAIN. Callers must handle this.
ba87ea69 177 */
77d7a0c2 178STATIC int
ba87ea69
LM
179xfs_setfilesize(
180 xfs_ioend_t *ioend)
181{
b677c210 182 xfs_inode_t *ip = XFS_I(ioend->io_inode);
ba87ea69 183 xfs_fsize_t isize;
ba87ea69 184
ba87ea69 185 ASSERT((ip->i_d.di_mode & S_IFMT) == S_IFREG);
34a52c6c 186 ASSERT(ioend->io_type != IO_READ);
ba87ea69
LM
187
188 if (unlikely(ioend->io_error))
77d7a0c2
DC
189 return 0;
190
191 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
192 return EAGAIN;
ba87ea69 193
932640e8
DC
194 isize = xfs_ioend_new_eof(ioend);
195 if (isize) {
ba87ea69 196 ip->i_d.di_size = isize;
66d834ea 197 xfs_mark_inode_dirty(ip);
ba87ea69
LM
198 }
199
200 xfs_iunlock(ip, XFS_ILOCK_EXCL);
77d7a0c2
DC
201 return 0;
202}
203
204/*
205 * Schedule IO completion handling on a xfsdatad if this was
206 * the final hold on this ioend. If we are asked to wait,
207 * flush the workqueue.
208 */
209STATIC void
210xfs_finish_ioend(
211 xfs_ioend_t *ioend,
212 int wait)
213{
214 if (atomic_dec_and_test(&ioend->io_remaining)) {
215 struct workqueue_struct *wq;
216
34a52c6c 217 wq = (ioend->io_type == IO_UNWRITTEN) ?
77d7a0c2
DC
218 xfsconvertd_workqueue : xfsdatad_workqueue;
219 queue_work(wq, &ioend->io_work);
220 if (wait)
221 flush_workqueue(wq);
222 }
ba87ea69
LM
223}
224
0829c360 225/*
5ec4fabb 226 * IO write completion.
f6d6d4fc
CH
227 */
228STATIC void
5ec4fabb 229xfs_end_io(
77d7a0c2 230 struct work_struct *work)
0829c360 231{
77d7a0c2
DC
232 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
233 struct xfs_inode *ip = XFS_I(ioend->io_inode);
69418932 234 int error = 0;
ba87ea69 235
5ec4fabb
CH
236 /*
237 * For unwritten extents we need to issue transactions to convert a
238 * range to normal written extens after the data I/O has finished.
239 */
34a52c6c 240 if (ioend->io_type == IO_UNWRITTEN &&
5ec4fabb 241 likely(!ioend->io_error && !XFS_FORCED_SHUTDOWN(ip->i_mount))) {
5ec4fabb
CH
242
243 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
244 ioend->io_size);
245 if (error)
246 ioend->io_error = error;
247 }
ba87ea69 248
5ec4fabb
CH
249 /*
250 * We might have to update the on-disk file size after extending
251 * writes.
252 */
34a52c6c 253 if (ioend->io_type != IO_READ) {
77d7a0c2
DC
254 error = xfs_setfilesize(ioend);
255 ASSERT(!error || error == EAGAIN);
c626d174 256 }
77d7a0c2
DC
257
258 /*
259 * If we didn't complete processing of the ioend, requeue it to the
260 * tail of the workqueue for another attempt later. Otherwise destroy
261 * it.
262 */
263 if (error == EAGAIN) {
264 atomic_inc(&ioend->io_remaining);
265 xfs_finish_ioend(ioend, 0);
266 /* ensure we don't spin on blocked ioends */
267 delay(1);
268 } else
269 xfs_destroy_ioend(ioend);
c626d174
DC
270}
271
0829c360
CH
272/*
273 * Allocate and initialise an IO completion structure.
274 * We need to track unwritten extent write completion here initially.
275 * We'll need to extend this for updating the ondisk inode size later
276 * (vs. incore size).
277 */
278STATIC xfs_ioend_t *
279xfs_alloc_ioend(
f6d6d4fc
CH
280 struct inode *inode,
281 unsigned int type)
0829c360
CH
282{
283 xfs_ioend_t *ioend;
284
285 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
286
287 /*
288 * Set the count to 1 initially, which will prevent an I/O
289 * completion callback from happening before we have started
290 * all the I/O from calling the completion routine too early.
291 */
292 atomic_set(&ioend->io_remaining, 1);
7d04a335 293 ioend->io_error = 0;
f6d6d4fc
CH
294 ioend->io_list = NULL;
295 ioend->io_type = type;
b677c210 296 ioend->io_inode = inode;
c1a073bd 297 ioend->io_buffer_head = NULL;
f6d6d4fc 298 ioend->io_buffer_tail = NULL;
b677c210 299 atomic_inc(&XFS_I(ioend->io_inode)->i_iocount);
0829c360
CH
300 ioend->io_offset = 0;
301 ioend->io_size = 0;
302
5ec4fabb 303 INIT_WORK(&ioend->io_work, xfs_end_io);
0829c360
CH
304 return ioend;
305}
306
1da177e4
LT
307STATIC int
308xfs_map_blocks(
309 struct inode *inode,
310 loff_t offset,
311 ssize_t count,
207d0416 312 struct xfs_bmbt_irec *imap,
1da177e4
LT
313 int flags)
314{
6bd16ff2 315 int nmaps = 1;
207d0416 316 int new = 0;
6bd16ff2 317
207d0416 318 return -xfs_iomap(XFS_I(inode), offset, count, flags, imap, &nmaps, &new);
1da177e4
LT
319}
320
b8f82a4a 321STATIC int
558e6891 322xfs_imap_valid(
8699bb0a 323 struct inode *inode,
207d0416 324 struct xfs_bmbt_irec *imap,
558e6891 325 xfs_off_t offset)
1da177e4 326{
558e6891 327 offset >>= inode->i_blkbits;
8699bb0a 328
558e6891
CH
329 return offset >= imap->br_startoff &&
330 offset < imap->br_startoff + imap->br_blockcount;
1da177e4
LT
331}
332
f6d6d4fc
CH
333/*
334 * BIO completion handler for buffered IO.
335 */
782e3b3b 336STATIC void
f6d6d4fc
CH
337xfs_end_bio(
338 struct bio *bio,
f6d6d4fc
CH
339 int error)
340{
341 xfs_ioend_t *ioend = bio->bi_private;
342
f6d6d4fc 343 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
7d04a335 344 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
f6d6d4fc
CH
345
346 /* Toss bio and pass work off to an xfsdatad thread */
f6d6d4fc
CH
347 bio->bi_private = NULL;
348 bio->bi_end_io = NULL;
f6d6d4fc 349 bio_put(bio);
7d04a335 350
e927af90 351 xfs_finish_ioend(ioend, 0);
f6d6d4fc
CH
352}
353
354STATIC void
355xfs_submit_ioend_bio(
06342cf8
CH
356 struct writeback_control *wbc,
357 xfs_ioend_t *ioend,
358 struct bio *bio)
f6d6d4fc
CH
359{
360 atomic_inc(&ioend->io_remaining);
f6d6d4fc
CH
361 bio->bi_private = ioend;
362 bio->bi_end_io = xfs_end_bio;
363
932640e8
DC
364 /*
365 * If the I/O is beyond EOF we mark the inode dirty immediately
366 * but don't update the inode size until I/O completion.
367 */
368 if (xfs_ioend_new_eof(ioend))
66d834ea 369 xfs_mark_inode_dirty(XFS_I(ioend->io_inode));
932640e8 370
06342cf8
CH
371 submit_bio(wbc->sync_mode == WB_SYNC_ALL ?
372 WRITE_SYNC_PLUG : WRITE, bio);
f6d6d4fc
CH
373 ASSERT(!bio_flagged(bio, BIO_EOPNOTSUPP));
374 bio_put(bio);
375}
376
377STATIC struct bio *
378xfs_alloc_ioend_bio(
379 struct buffer_head *bh)
380{
381 struct bio *bio;
382 int nvecs = bio_get_nr_vecs(bh->b_bdev);
383
384 do {
385 bio = bio_alloc(GFP_NOIO, nvecs);
386 nvecs >>= 1;
387 } while (!bio);
388
389 ASSERT(bio->bi_private == NULL);
390 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
391 bio->bi_bdev = bh->b_bdev;
392 bio_get(bio);
393 return bio;
394}
395
396STATIC void
397xfs_start_buffer_writeback(
398 struct buffer_head *bh)
399{
400 ASSERT(buffer_mapped(bh));
401 ASSERT(buffer_locked(bh));
402 ASSERT(!buffer_delay(bh));
403 ASSERT(!buffer_unwritten(bh));
404
405 mark_buffer_async_write(bh);
406 set_buffer_uptodate(bh);
407 clear_buffer_dirty(bh);
408}
409
410STATIC void
411xfs_start_page_writeback(
412 struct page *page,
f6d6d4fc
CH
413 int clear_dirty,
414 int buffers)
415{
416 ASSERT(PageLocked(page));
417 ASSERT(!PageWriteback(page));
f6d6d4fc 418 if (clear_dirty)
92132021
DC
419 clear_page_dirty_for_io(page);
420 set_page_writeback(page);
f6d6d4fc 421 unlock_page(page);
1f7decf6
FW
422 /* If no buffers on the page are to be written, finish it here */
423 if (!buffers)
f6d6d4fc 424 end_page_writeback(page);
f6d6d4fc
CH
425}
426
427static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
428{
429 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
430}
431
432/*
d88992f6
DC
433 * Submit all of the bios for all of the ioends we have saved up, covering the
434 * initial writepage page and also any probed pages.
435 *
436 * Because we may have multiple ioends spanning a page, we need to start
437 * writeback on all the buffers before we submit them for I/O. If we mark the
438 * buffers as we got, then we can end up with a page that only has buffers
439 * marked async write and I/O complete on can occur before we mark the other
440 * buffers async write.
441 *
442 * The end result of this is that we trip a bug in end_page_writeback() because
443 * we call it twice for the one page as the code in end_buffer_async_write()
444 * assumes that all buffers on the page are started at the same time.
445 *
446 * The fix is two passes across the ioend list - one to start writeback on the
c41564b5 447 * buffer_heads, and then submit them for I/O on the second pass.
f6d6d4fc
CH
448 */
449STATIC void
450xfs_submit_ioend(
06342cf8 451 struct writeback_control *wbc,
f6d6d4fc
CH
452 xfs_ioend_t *ioend)
453{
d88992f6 454 xfs_ioend_t *head = ioend;
f6d6d4fc
CH
455 xfs_ioend_t *next;
456 struct buffer_head *bh;
457 struct bio *bio;
458 sector_t lastblock = 0;
459
d88992f6
DC
460 /* Pass 1 - start writeback */
461 do {
462 next = ioend->io_list;
463 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
464 xfs_start_buffer_writeback(bh);
465 }
466 } while ((ioend = next) != NULL);
467
468 /* Pass 2 - submit I/O */
469 ioend = head;
f6d6d4fc
CH
470 do {
471 next = ioend->io_list;
472 bio = NULL;
473
474 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
f6d6d4fc
CH
475
476 if (!bio) {
477 retry:
478 bio = xfs_alloc_ioend_bio(bh);
479 } else if (bh->b_blocknr != lastblock + 1) {
06342cf8 480 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
481 goto retry;
482 }
483
484 if (bio_add_buffer(bio, bh) != bh->b_size) {
06342cf8 485 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
486 goto retry;
487 }
488
489 lastblock = bh->b_blocknr;
490 }
491 if (bio)
06342cf8 492 xfs_submit_ioend_bio(wbc, ioend, bio);
e927af90 493 xfs_finish_ioend(ioend, 0);
f6d6d4fc
CH
494 } while ((ioend = next) != NULL);
495}
496
497/*
498 * Cancel submission of all buffer_heads so far in this endio.
499 * Toss the endio too. Only ever called for the initial page
500 * in a writepage request, so only ever one page.
501 */
502STATIC void
503xfs_cancel_ioend(
504 xfs_ioend_t *ioend)
505{
506 xfs_ioend_t *next;
507 struct buffer_head *bh, *next_bh;
508
509 do {
510 next = ioend->io_list;
511 bh = ioend->io_buffer_head;
512 do {
513 next_bh = bh->b_private;
514 clear_buffer_async_write(bh);
515 unlock_buffer(bh);
516 } while ((bh = next_bh) != NULL);
517
25e41b3d 518 xfs_ioend_wake(XFS_I(ioend->io_inode));
f6d6d4fc
CH
519 mempool_free(ioend, xfs_ioend_pool);
520 } while ((ioend = next) != NULL);
521}
522
523/*
524 * Test to see if we've been building up a completion structure for
525 * earlier buffers -- if so, we try to append to this ioend if we
526 * can, otherwise we finish off any current ioend and start another.
527 * Return true if we've finished the given ioend.
528 */
529STATIC void
530xfs_add_to_ioend(
531 struct inode *inode,
532 struct buffer_head *bh,
7336cea8 533 xfs_off_t offset,
f6d6d4fc
CH
534 unsigned int type,
535 xfs_ioend_t **result,
536 int need_ioend)
537{
538 xfs_ioend_t *ioend = *result;
539
540 if (!ioend || need_ioend || type != ioend->io_type) {
541 xfs_ioend_t *previous = *result;
f6d6d4fc 542
f6d6d4fc
CH
543 ioend = xfs_alloc_ioend(inode, type);
544 ioend->io_offset = offset;
545 ioend->io_buffer_head = bh;
546 ioend->io_buffer_tail = bh;
547 if (previous)
548 previous->io_list = ioend;
549 *result = ioend;
550 } else {
551 ioend->io_buffer_tail->b_private = bh;
552 ioend->io_buffer_tail = bh;
553 }
554
555 bh->b_private = NULL;
556 ioend->io_size += bh->b_size;
557}
558
87cbc49c
NS
559STATIC void
560xfs_map_buffer(
046f1685 561 struct inode *inode,
87cbc49c 562 struct buffer_head *bh,
207d0416 563 struct xfs_bmbt_irec *imap,
046f1685 564 xfs_off_t offset)
87cbc49c
NS
565{
566 sector_t bn;
8699bb0a 567 struct xfs_mount *m = XFS_I(inode)->i_mount;
207d0416
CH
568 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
569 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
87cbc49c 570
207d0416
CH
571 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
572 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
87cbc49c 573
e513182d 574 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
8699bb0a 575 ((offset - iomap_offset) >> inode->i_blkbits);
87cbc49c 576
046f1685 577 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
87cbc49c
NS
578
579 bh->b_blocknr = bn;
580 set_buffer_mapped(bh);
581}
582
1da177e4
LT
583STATIC void
584xfs_map_at_offset(
046f1685 585 struct inode *inode,
1da177e4 586 struct buffer_head *bh,
207d0416 587 struct xfs_bmbt_irec *imap,
046f1685 588 xfs_off_t offset)
1da177e4 589{
207d0416
CH
590 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
591 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
1da177e4
LT
592
593 lock_buffer(bh);
207d0416 594 xfs_map_buffer(inode, bh, imap, offset);
046f1685 595 bh->b_bdev = xfs_find_bdev_for_inode(inode);
1da177e4
LT
596 set_buffer_mapped(bh);
597 clear_buffer_delay(bh);
f6d6d4fc 598 clear_buffer_unwritten(bh);
1da177e4
LT
599}
600
601/*
6c4fe19f 602 * Look for a page at index that is suitable for clustering.
1da177e4
LT
603 */
604STATIC unsigned int
6c4fe19f 605xfs_probe_page(
10ce4444 606 struct page *page,
20cb52eb 607 unsigned int pg_offset)
1da177e4 608{
20cb52eb 609 struct buffer_head *bh, *head;
1da177e4
LT
610 int ret = 0;
611
1da177e4 612 if (PageWriteback(page))
10ce4444 613 return 0;
20cb52eb
CH
614 if (!PageDirty(page))
615 return 0;
616 if (!page->mapping)
617 return 0;
618 if (!page_has_buffers(page))
619 return 0;
1da177e4 620
20cb52eb
CH
621 bh = head = page_buffers(page);
622 do {
623 if (!buffer_uptodate(bh))
624 break;
625 if (!buffer_mapped(bh))
626 break;
627 ret += bh->b_size;
628 if (ret >= pg_offset)
629 break;
630 } while ((bh = bh->b_this_page) != head);
1da177e4 631
1da177e4
LT
632 return ret;
633}
634
f6d6d4fc 635STATIC size_t
6c4fe19f 636xfs_probe_cluster(
1da177e4
LT
637 struct inode *inode,
638 struct page *startpage,
639 struct buffer_head *bh,
20cb52eb 640 struct buffer_head *head)
1da177e4 641{
10ce4444 642 struct pagevec pvec;
1da177e4 643 pgoff_t tindex, tlast, tloff;
10ce4444
CH
644 size_t total = 0;
645 int done = 0, i;
1da177e4
LT
646
647 /* First sum forwards in this page */
648 do {
20cb52eb 649 if (!buffer_uptodate(bh) || !buffer_mapped(bh))
10ce4444 650 return total;
1da177e4
LT
651 total += bh->b_size;
652 } while ((bh = bh->b_this_page) != head);
653
10ce4444
CH
654 /* if we reached the end of the page, sum forwards in following pages */
655 tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT;
656 tindex = startpage->index + 1;
657
658 /* Prune this back to avoid pathological behavior */
659 tloff = min(tlast, startpage->index + 64);
660
661 pagevec_init(&pvec, 0);
662 while (!done && tindex <= tloff) {
663 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
664
665 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
666 break;
667
668 for (i = 0; i < pagevec_count(&pvec); i++) {
669 struct page *page = pvec.pages[i];
265c1fac 670 size_t pg_offset, pg_len = 0;
10ce4444
CH
671
672 if (tindex == tlast) {
673 pg_offset =
674 i_size_read(inode) & (PAGE_CACHE_SIZE - 1);
1defeac9
CH
675 if (!pg_offset) {
676 done = 1;
10ce4444 677 break;
1defeac9 678 }
10ce4444
CH
679 } else
680 pg_offset = PAGE_CACHE_SIZE;
681
529ae9aa 682 if (page->index == tindex && trylock_page(page)) {
20cb52eb 683 pg_len = xfs_probe_page(page, pg_offset);
10ce4444
CH
684 unlock_page(page);
685 }
686
265c1fac 687 if (!pg_len) {
10ce4444
CH
688 done = 1;
689 break;
690 }
691
265c1fac 692 total += pg_len;
1defeac9 693 tindex++;
1da177e4 694 }
10ce4444
CH
695
696 pagevec_release(&pvec);
697 cond_resched();
1da177e4 698 }
10ce4444 699
1da177e4
LT
700 return total;
701}
702
703/*
10ce4444
CH
704 * Test if a given page is suitable for writing as part of an unwritten
705 * or delayed allocate extent.
1da177e4 706 */
10ce4444
CH
707STATIC int
708xfs_is_delayed_page(
709 struct page *page,
f6d6d4fc 710 unsigned int type)
1da177e4 711{
1da177e4 712 if (PageWriteback(page))
10ce4444 713 return 0;
1da177e4
LT
714
715 if (page->mapping && page_has_buffers(page)) {
716 struct buffer_head *bh, *head;
717 int acceptable = 0;
718
719 bh = head = page_buffers(page);
720 do {
f6d6d4fc 721 if (buffer_unwritten(bh))
34a52c6c 722 acceptable = (type == IO_UNWRITTEN);
f6d6d4fc 723 else if (buffer_delay(bh))
34a52c6c 724 acceptable = (type == IO_DELAY);
2ddee844 725 else if (buffer_dirty(bh) && buffer_mapped(bh))
34a52c6c 726 acceptable = (type == IO_NEW);
f6d6d4fc 727 else
1da177e4 728 break;
1da177e4
LT
729 } while ((bh = bh->b_this_page) != head);
730
731 if (acceptable)
10ce4444 732 return 1;
1da177e4
LT
733 }
734
10ce4444 735 return 0;
1da177e4
LT
736}
737
1da177e4
LT
738/*
739 * Allocate & map buffers for page given the extent map. Write it out.
740 * except for the original page of a writepage, this is called on
741 * delalloc/unwritten pages only, for the original page it is possible
742 * that the page has no mapping at all.
743 */
f6d6d4fc 744STATIC int
1da177e4
LT
745xfs_convert_page(
746 struct inode *inode,
747 struct page *page,
10ce4444 748 loff_t tindex,
207d0416 749 struct xfs_bmbt_irec *imap,
f6d6d4fc 750 xfs_ioend_t **ioendp,
1da177e4 751 struct writeback_control *wbc,
1da177e4
LT
752 int all_bh)
753{
f6d6d4fc 754 struct buffer_head *bh, *head;
9260dc6b
CH
755 xfs_off_t end_offset;
756 unsigned long p_offset;
f6d6d4fc 757 unsigned int type;
24e17b5f 758 int len, page_dirty;
f6d6d4fc 759 int count = 0, done = 0, uptodate = 1;
9260dc6b 760 xfs_off_t offset = page_offset(page);
1da177e4 761
10ce4444
CH
762 if (page->index != tindex)
763 goto fail;
529ae9aa 764 if (!trylock_page(page))
10ce4444
CH
765 goto fail;
766 if (PageWriteback(page))
767 goto fail_unlock_page;
768 if (page->mapping != inode->i_mapping)
769 goto fail_unlock_page;
770 if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
771 goto fail_unlock_page;
772
24e17b5f
NS
773 /*
774 * page_dirty is initially a count of buffers on the page before
c41564b5 775 * EOF and is decremented as we move each into a cleanable state.
9260dc6b
CH
776 *
777 * Derivation:
778 *
779 * End offset is the highest offset that this page should represent.
780 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
781 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
782 * hence give us the correct page_dirty count. On any other page,
783 * it will be zero and in that case we need page_dirty to be the
784 * count of buffers on the page.
24e17b5f 785 */
9260dc6b
CH
786 end_offset = min_t(unsigned long long,
787 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
788 i_size_read(inode));
789
24e17b5f 790 len = 1 << inode->i_blkbits;
9260dc6b
CH
791 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
792 PAGE_CACHE_SIZE);
793 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
794 page_dirty = p_offset / len;
24e17b5f 795
1da177e4
LT
796 bh = head = page_buffers(page);
797 do {
9260dc6b 798 if (offset >= end_offset)
1da177e4 799 break;
f6d6d4fc
CH
800 if (!buffer_uptodate(bh))
801 uptodate = 0;
802 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
803 done = 1;
1da177e4 804 continue;
f6d6d4fc
CH
805 }
806
9260dc6b
CH
807 if (buffer_unwritten(bh) || buffer_delay(bh)) {
808 if (buffer_unwritten(bh))
34a52c6c 809 type = IO_UNWRITTEN;
9260dc6b 810 else
34a52c6c 811 type = IO_DELAY;
9260dc6b 812
558e6891 813 if (!xfs_imap_valid(inode, imap, offset)) {
f6d6d4fc 814 done = 1;
9260dc6b
CH
815 continue;
816 }
817
207d0416
CH
818 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
819 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
9260dc6b 820
207d0416 821 xfs_map_at_offset(inode, bh, imap, offset);
89f3b363
CH
822 xfs_add_to_ioend(inode, bh, offset, type,
823 ioendp, done);
824
9260dc6b
CH
825 page_dirty--;
826 count++;
827 } else {
34a52c6c 828 type = IO_NEW;
89f3b363 829 if (buffer_mapped(bh) && all_bh) {
1da177e4 830 lock_buffer(bh);
7336cea8 831 xfs_add_to_ioend(inode, bh, offset,
f6d6d4fc
CH
832 type, ioendp, done);
833 count++;
24e17b5f 834 page_dirty--;
9260dc6b
CH
835 } else {
836 done = 1;
1da177e4 837 }
1da177e4 838 }
7336cea8 839 } while (offset += len, (bh = bh->b_this_page) != head);
1da177e4 840
f6d6d4fc
CH
841 if (uptodate && bh == head)
842 SetPageUptodate(page);
843
89f3b363
CH
844 if (count) {
845 wbc->nr_to_write--;
846 if (wbc->nr_to_write <= 0)
847 done = 1;
1da177e4 848 }
89f3b363 849 xfs_start_page_writeback(page, !page_dirty, count);
f6d6d4fc
CH
850
851 return done;
10ce4444
CH
852 fail_unlock_page:
853 unlock_page(page);
854 fail:
855 return 1;
1da177e4
LT
856}
857
858/*
859 * Convert & write out a cluster of pages in the same extent as defined
860 * by mp and following the start page.
861 */
862STATIC void
863xfs_cluster_write(
864 struct inode *inode,
865 pgoff_t tindex,
207d0416 866 struct xfs_bmbt_irec *imap,
f6d6d4fc 867 xfs_ioend_t **ioendp,
1da177e4 868 struct writeback_control *wbc,
1da177e4
LT
869 int all_bh,
870 pgoff_t tlast)
871{
10ce4444
CH
872 struct pagevec pvec;
873 int done = 0, i;
1da177e4 874
10ce4444
CH
875 pagevec_init(&pvec, 0);
876 while (!done && tindex <= tlast) {
877 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
878
879 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
1da177e4 880 break;
10ce4444
CH
881
882 for (i = 0; i < pagevec_count(&pvec); i++) {
883 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
89f3b363 884 imap, ioendp, wbc, all_bh);
10ce4444
CH
885 if (done)
886 break;
887 }
888
889 pagevec_release(&pvec);
890 cond_resched();
1da177e4
LT
891 }
892}
893
3ed3a434
DC
894STATIC void
895xfs_vm_invalidatepage(
896 struct page *page,
897 unsigned long offset)
898{
899 trace_xfs_invalidatepage(page->mapping->host, page, offset);
900 block_invalidatepage(page, offset);
901}
902
903/*
904 * If the page has delalloc buffers on it, we need to punch them out before we
905 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
906 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
907 * is done on that same region - the delalloc extent is returned when none is
908 * supposed to be there.
909 *
910 * We prevent this by truncating away the delalloc regions on the page before
911 * invalidating it. Because they are delalloc, we can do this without needing a
912 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
913 * truncation without a transaction as there is no space left for block
914 * reservation (typically why we see a ENOSPC in writeback).
915 *
916 * This is not a performance critical path, so for now just do the punching a
917 * buffer head at a time.
918 */
919STATIC void
920xfs_aops_discard_page(
921 struct page *page)
922{
923 struct inode *inode = page->mapping->host;
924 struct xfs_inode *ip = XFS_I(inode);
925 struct buffer_head *bh, *head;
926 loff_t offset = page_offset(page);
927 ssize_t len = 1 << inode->i_blkbits;
928
34a52c6c 929 if (!xfs_is_delayed_page(page, IO_DELAY))
3ed3a434
DC
930 goto out_invalidate;
931
e8c3753c
DC
932 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
933 goto out_invalidate;
934
3ed3a434
DC
935 xfs_fs_cmn_err(CE_ALERT, ip->i_mount,
936 "page discard on page %p, inode 0x%llx, offset %llu.",
937 page, ip->i_ino, offset);
938
939 xfs_ilock(ip, XFS_ILOCK_EXCL);
940 bh = head = page_buffers(page);
941 do {
942 int done;
943 xfs_fileoff_t offset_fsb;
944 xfs_bmbt_irec_t imap;
945 int nimaps = 1;
946 int error;
947 xfs_fsblock_t firstblock;
948 xfs_bmap_free_t flist;
949
950 if (!buffer_delay(bh))
951 goto next_buffer;
952
953 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
954
955 /*
956 * Map the range first and check that it is a delalloc extent
957 * before trying to unmap the range. Otherwise we will be
958 * trying to remove a real extent (which requires a
959 * transaction) or a hole, which is probably a bad idea...
960 */
961 error = xfs_bmapi(NULL, ip, offset_fsb, 1,
962 XFS_BMAPI_ENTIRE, NULL, 0, &imap,
b4e9181e 963 &nimaps, NULL);
3ed3a434
DC
964
965 if (error) {
966 /* something screwed, just bail */
e8c3753c
DC
967 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
968 xfs_fs_cmn_err(CE_ALERT, ip->i_mount,
969 "page discard failed delalloc mapping lookup.");
970 }
3ed3a434
DC
971 break;
972 }
973 if (!nimaps) {
974 /* nothing there */
975 goto next_buffer;
976 }
977 if (imap.br_startblock != DELAYSTARTBLOCK) {
978 /* been converted, ignore */
979 goto next_buffer;
980 }
981 WARN_ON(imap.br_blockcount == 0);
982
983 /*
984 * Note: while we initialise the firstblock/flist pair, they
985 * should never be used because blocks should never be
986 * allocated or freed for a delalloc extent and hence we need
987 * don't cancel or finish them after the xfs_bunmapi() call.
988 */
989 xfs_bmap_init(&flist, &firstblock);
990 error = xfs_bunmapi(NULL, ip, offset_fsb, 1, 0, 1, &firstblock,
b4e9181e 991 &flist, &done);
3ed3a434
DC
992
993 ASSERT(!flist.xbf_count && !flist.xbf_first);
994 if (error) {
995 /* something screwed, just bail */
e8c3753c
DC
996 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
997 xfs_fs_cmn_err(CE_ALERT, ip->i_mount,
3ed3a434 998 "page discard unable to remove delalloc mapping.");
e8c3753c 999 }
3ed3a434
DC
1000 break;
1001 }
1002next_buffer:
1003 offset += len;
1004
1005 } while ((bh = bh->b_this_page) != head);
1006
1007 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1008out_invalidate:
1009 xfs_vm_invalidatepage(page, 0);
1010 return;
1011}
1012
1da177e4 1013/*
89f3b363
CH
1014 * Write out a dirty page.
1015 *
1016 * For delalloc space on the page we need to allocate space and flush it.
1017 * For unwritten space on the page we need to start the conversion to
1018 * regular allocated space.
89f3b363 1019 * For any other dirty buffer heads on the page we should flush them.
1da177e4 1020 *
89f3b363
CH
1021 * If we detect that a transaction would be required to flush the page, we
1022 * have to check the process flags first, if we are already in a transaction
1023 * or disk I/O during allocations is off, we need to fail the writepage and
1024 * redirty the page.
1da177e4 1025 */
1da177e4 1026STATIC int
89f3b363
CH
1027xfs_vm_writepage(
1028 struct page *page,
1029 struct writeback_control *wbc)
1da177e4 1030{
89f3b363 1031 struct inode *inode = page->mapping->host;
20cb52eb 1032 int delalloc, unwritten;
f6d6d4fc 1033 struct buffer_head *bh, *head;
207d0416 1034 struct xfs_bmbt_irec imap;
f6d6d4fc 1035 xfs_ioend_t *ioend = NULL, *iohead = NULL;
1da177e4 1036 loff_t offset;
f6d6d4fc 1037 unsigned int type;
1da177e4 1038 __uint64_t end_offset;
bd1556a1 1039 pgoff_t end_index, last_index;
d5cb48aa 1040 ssize_t size, len;
558e6891 1041 int flags, err, imap_valid = 0, uptodate = 1;
89f3b363 1042 int count = 0;
20cb52eb 1043 int all_bh = 0;
89f3b363
CH
1044
1045 trace_xfs_writepage(inode, page, 0);
1046
20cb52eb
CH
1047 ASSERT(page_has_buffers(page));
1048
89f3b363
CH
1049 /*
1050 * Refuse to write the page out if we are called from reclaim context.
1051 *
1052 * This is primarily to avoid stack overflows when called from deep
1053 * used stacks in random callers for direct reclaim, but disabling
1054 * reclaim for kswap is a nice side-effect as kswapd causes rather
1055 * suboptimal I/O patters, too.
1056 *
1057 * This should really be done by the core VM, but until that happens
1058 * filesystems like XFS, btrfs and ext4 have to take care of this
1059 * by themselves.
1060 */
1061 if (current->flags & PF_MEMALLOC)
1062 goto out_fail;
1da177e4 1063
89f3b363 1064 /*
20cb52eb
CH
1065 * We need a transaction if there are delalloc or unwritten buffers
1066 * on the page.
1067 *
1068 * If we need a transaction and the process flags say we are already
1069 * in a transaction, or no IO is allowed then mark the page dirty
1070 * again and leave the page as is.
89f3b363 1071 */
20cb52eb
CH
1072 xfs_count_page_state(page, &delalloc, &unwritten);
1073 if ((current->flags & PF_FSTRANS) && (delalloc || unwritten))
89f3b363
CH
1074 goto out_fail;
1075
1076 /*
1077 * Delay hooking up buffer heads until we have
1078 * made our go/no-go decision.
1079 */
1080 if (!page_has_buffers(page))
1081 create_empty_buffers(page, 1 << inode->i_blkbits, 0);
1082
1da177e4
LT
1083 /* Is this page beyond the end of the file? */
1084 offset = i_size_read(inode);
1085 end_index = offset >> PAGE_CACHE_SHIFT;
1086 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
1087 if (page->index >= end_index) {
1088 if ((page->index >= end_index + 1) ||
1089 !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
89f3b363 1090 unlock_page(page);
19d5bcf3 1091 return 0;
1da177e4
LT
1092 }
1093 }
1094
f6d6d4fc 1095 end_offset = min_t(unsigned long long,
20cb52eb
CH
1096 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
1097 offset);
24e17b5f 1098 len = 1 << inode->i_blkbits;
24e17b5f 1099
24e17b5f 1100 bh = head = page_buffers(page);
f6d6d4fc 1101 offset = page_offset(page);
df3c7244 1102 flags = BMAPI_READ;
34a52c6c 1103 type = IO_NEW;
f6d6d4fc 1104
1da177e4
LT
1105 do {
1106 if (offset >= end_offset)
1107 break;
1108 if (!buffer_uptodate(bh))
1109 uptodate = 0;
1da177e4 1110
3d9b02e3
ES
1111 /*
1112 * A hole may still be marked uptodate because discard_buffer
1113 * leaves the flag set.
1114 */
1115 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
1116 ASSERT(!buffer_dirty(bh));
1117 imap_valid = 0;
1118 continue;
1119 }
1120
558e6891
CH
1121 if (imap_valid)
1122 imap_valid = xfs_imap_valid(inode, &imap, offset);
1da177e4 1123
20cb52eb 1124 if (buffer_unwritten(bh) || buffer_delay(bh)) {
effd120e
DC
1125 int new_ioend = 0;
1126
df3c7244 1127 /*
6c4fe19f
CH
1128 * Make sure we don't use a read-only iomap
1129 */
df3c7244 1130 if (flags == BMAPI_READ)
558e6891 1131 imap_valid = 0;
6c4fe19f 1132
f6d6d4fc 1133 if (buffer_unwritten(bh)) {
34a52c6c 1134 type = IO_UNWRITTEN;
8272145c 1135 flags = BMAPI_WRITE | BMAPI_IGNSTATE;
d5cb48aa 1136 } else if (buffer_delay(bh)) {
34a52c6c 1137 type = IO_DELAY;
89f3b363
CH
1138 flags = BMAPI_ALLOCATE;
1139
1140 if (wbc->sync_mode == WB_SYNC_NONE &&
1141 wbc->nonblocking)
1142 flags |= BMAPI_TRYLOCK;
f6d6d4fc
CH
1143 }
1144
558e6891 1145 if (!imap_valid) {
effd120e 1146 /*
20cb52eb 1147 * If we didn't have a valid mapping then we
effd120e
DC
1148 * need to ensure that we put the new mapping
1149 * in a new ioend structure. This needs to be
1150 * done to ensure that the ioends correctly
1151 * reflect the block mappings at io completion
1152 * for unwritten extent conversion.
1153 */
1154 new_ioend = 1;
20cb52eb 1155 err = xfs_map_blocks(inode, offset, len,
207d0416 1156 &imap, flags);
f6d6d4fc 1157 if (err)
1da177e4 1158 goto error;
558e6891
CH
1159 imap_valid = xfs_imap_valid(inode, &imap,
1160 offset);
1da177e4 1161 }
558e6891 1162 if (imap_valid) {
207d0416 1163 xfs_map_at_offset(inode, bh, &imap, offset);
89f3b363
CH
1164 xfs_add_to_ioend(inode, bh, offset, type,
1165 &ioend, new_ioend);
f6d6d4fc 1166 count++;
1da177e4 1167 }
89f3b363 1168 } else if (buffer_uptodate(bh)) {
6c4fe19f
CH
1169 /*
1170 * we got here because the buffer is already mapped.
1171 * That means it must already have extents allocated
1172 * underneath it. Map the extent by reading it.
1173 */
558e6891 1174 if (!imap_valid || flags != BMAPI_READ) {
6c4fe19f 1175 flags = BMAPI_READ;
20cb52eb 1176 size = xfs_probe_cluster(inode, page, bh, head);
6c4fe19f 1177 err = xfs_map_blocks(inode, offset, size,
207d0416 1178 &imap, flags);
6c4fe19f
CH
1179 if (err)
1180 goto error;
558e6891
CH
1181 imap_valid = xfs_imap_valid(inode, &imap,
1182 offset);
6c4fe19f 1183 }
d5cb48aa 1184
df3c7244 1185 /*
34a52c6c 1186 * We set the type to IO_NEW in case we are doing a
df3c7244
DC
1187 * small write at EOF that is extending the file but
1188 * without needing an allocation. We need to update the
1189 * file size on I/O completion in this case so it is
1190 * the same case as having just allocated a new extent
1191 * that we are writing into for the first time.
1192 */
34a52c6c 1193 type = IO_NEW;
ca5de404 1194 if (trylock_buffer(bh)) {
558e6891 1195 if (imap_valid)
6c4fe19f 1196 all_bh = 1;
7336cea8 1197 xfs_add_to_ioend(inode, bh, offset, type,
558e6891 1198 &ioend, !imap_valid);
d5cb48aa 1199 count++;
f6d6d4fc 1200 } else {
558e6891 1201 imap_valid = 0;
1da177e4 1202 }
89f3b363 1203 } else if (PageUptodate(page)) {
20cb52eb 1204 ASSERT(buffer_mapped(bh));
558e6891 1205 imap_valid = 0;
1da177e4 1206 }
f6d6d4fc
CH
1207
1208 if (!iohead)
1209 iohead = ioend;
1210
1211 } while (offset += len, ((bh = bh->b_this_page) != head));
1da177e4
LT
1212
1213 if (uptodate && bh == head)
1214 SetPageUptodate(page);
1215
89f3b363 1216 xfs_start_page_writeback(page, 1, count);
1da177e4 1217
558e6891 1218 if (ioend && imap_valid) {
bd1556a1
CH
1219 xfs_off_t end_index;
1220
1221 end_index = imap.br_startoff + imap.br_blockcount;
1222
1223 /* to bytes */
1224 end_index <<= inode->i_blkbits;
1225
1226 /* to pages */
1227 end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1228
1229 /* check against file size */
1230 if (end_index > last_index)
1231 end_index = last_index;
8699bb0a 1232
207d0416 1233 xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
89f3b363 1234 wbc, all_bh, end_index);
1da177e4
LT
1235 }
1236
f6d6d4fc 1237 if (iohead)
06342cf8 1238 xfs_submit_ioend(wbc, iohead);
f6d6d4fc 1239
89f3b363 1240 return 0;
1da177e4
LT
1241
1242error:
f6d6d4fc
CH
1243 if (iohead)
1244 xfs_cancel_ioend(iohead);
1da177e4 1245
20cb52eb 1246 xfs_aops_discard_page(page);
89f3b363
CH
1247 ClearPageUptodate(page);
1248 unlock_page(page);
1da177e4 1249 return err;
f51623b2
NS
1250
1251out_fail:
1252 redirty_page_for_writepage(wbc, page);
1253 unlock_page(page);
1254 return 0;
f51623b2
NS
1255}
1256
7d4fb40a
NS
1257STATIC int
1258xfs_vm_writepages(
1259 struct address_space *mapping,
1260 struct writeback_control *wbc)
1261{
b3aea4ed 1262 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
7d4fb40a
NS
1263 return generic_writepages(mapping, wbc);
1264}
1265
f51623b2
NS
1266/*
1267 * Called to move a page into cleanable state - and from there
89f3b363 1268 * to be released. The page should already be clean. We always
f51623b2
NS
1269 * have buffer heads in this call.
1270 *
89f3b363 1271 * Returns 1 if the page is ok to release, 0 otherwise.
f51623b2
NS
1272 */
1273STATIC int
238f4c54 1274xfs_vm_releasepage(
f51623b2
NS
1275 struct page *page,
1276 gfp_t gfp_mask)
1277{
20cb52eb 1278 int delalloc, unwritten;
f51623b2 1279
89f3b363 1280 trace_xfs_releasepage(page->mapping->host, page, 0);
238f4c54 1281
20cb52eb 1282 xfs_count_page_state(page, &delalloc, &unwritten);
f51623b2 1283
89f3b363 1284 if (WARN_ON(delalloc))
f51623b2 1285 return 0;
89f3b363 1286 if (WARN_ON(unwritten))
f51623b2
NS
1287 return 0;
1288
f51623b2
NS
1289 return try_to_free_buffers(page);
1290}
1291
1da177e4 1292STATIC int
c2536668 1293__xfs_get_blocks(
1da177e4
LT
1294 struct inode *inode,
1295 sector_t iblock,
1da177e4
LT
1296 struct buffer_head *bh_result,
1297 int create,
1298 int direct,
1299 bmapi_flags_t flags)
1300{
207d0416 1301 struct xfs_bmbt_irec imap;
fdc7ed75
NS
1302 xfs_off_t offset;
1303 ssize_t size;
207d0416
CH
1304 int nimap = 1;
1305 int new = 0;
1da177e4 1306 int error;
1da177e4 1307
fdc7ed75 1308 offset = (xfs_off_t)iblock << inode->i_blkbits;
c2536668
NS
1309 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1310 size = bh_result->b_size;
364f358a
LM
1311
1312 if (!create && direct && offset >= i_size_read(inode))
1313 return 0;
1314
541d7d3c 1315 error = xfs_iomap(XFS_I(inode), offset, size,
207d0416 1316 create ? flags : BMAPI_READ, &imap, &nimap, &new);
1da177e4
LT
1317 if (error)
1318 return -error;
207d0416 1319 if (nimap == 0)
1da177e4
LT
1320 return 0;
1321
207d0416
CH
1322 if (imap.br_startblock != HOLESTARTBLOCK &&
1323 imap.br_startblock != DELAYSTARTBLOCK) {
87cbc49c
NS
1324 /*
1325 * For unwritten extents do not report a disk address on
1da177e4
LT
1326 * the read case (treat as if we're reading into a hole).
1327 */
207d0416
CH
1328 if (create || !ISUNWRITTEN(&imap))
1329 xfs_map_buffer(inode, bh_result, &imap, offset);
1330 if (create && ISUNWRITTEN(&imap)) {
1da177e4
LT
1331 if (direct)
1332 bh_result->b_private = inode;
1333 set_buffer_unwritten(bh_result);
1da177e4
LT
1334 }
1335 }
1336
c2536668
NS
1337 /*
1338 * If this is a realtime file, data may be on a different device.
1339 * to that pointed to from the buffer_head b_bdev currently.
1340 */
046f1685 1341 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1da177e4 1342
c2536668 1343 /*
549054af
DC
1344 * If we previously allocated a block out beyond eof and we are now
1345 * coming back to use it then we will need to flag it as new even if it
1346 * has a disk address.
1347 *
1348 * With sub-block writes into unwritten extents we also need to mark
1349 * the buffer as new so that the unwritten parts of the buffer gets
1350 * correctly zeroed.
1da177e4
LT
1351 */
1352 if (create &&
1353 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
549054af 1354 (offset >= i_size_read(inode)) ||
207d0416 1355 (new || ISUNWRITTEN(&imap))))
1da177e4 1356 set_buffer_new(bh_result);
1da177e4 1357
207d0416 1358 if (imap.br_startblock == DELAYSTARTBLOCK) {
1da177e4
LT
1359 BUG_ON(direct);
1360 if (create) {
1361 set_buffer_uptodate(bh_result);
1362 set_buffer_mapped(bh_result);
1363 set_buffer_delay(bh_result);
1364 }
1365 }
1366
2b8f12b7
CH
1367 /*
1368 * If this is O_DIRECT or the mpage code calling tell them how large
1369 * the mapping is, so that we can avoid repeated get_blocks calls.
1370 */
c2536668 1371 if (direct || size > (1 << inode->i_blkbits)) {
2b8f12b7
CH
1372 xfs_off_t mapping_size;
1373
1374 mapping_size = imap.br_startoff + imap.br_blockcount - iblock;
1375 mapping_size <<= inode->i_blkbits;
1376
1377 ASSERT(mapping_size > 0);
1378 if (mapping_size > size)
1379 mapping_size = size;
1380 if (mapping_size > LONG_MAX)
1381 mapping_size = LONG_MAX;
1382
1383 bh_result->b_size = mapping_size;
1da177e4
LT
1384 }
1385
1386 return 0;
1387}
1388
1389int
c2536668 1390xfs_get_blocks(
1da177e4
LT
1391 struct inode *inode,
1392 sector_t iblock,
1393 struct buffer_head *bh_result,
1394 int create)
1395{
c2536668 1396 return __xfs_get_blocks(inode, iblock,
fa30bd05 1397 bh_result, create, 0, BMAPI_WRITE);
1da177e4
LT
1398}
1399
1400STATIC int
e4c573bb 1401xfs_get_blocks_direct(
1da177e4
LT
1402 struct inode *inode,
1403 sector_t iblock,
1da177e4
LT
1404 struct buffer_head *bh_result,
1405 int create)
1406{
c2536668 1407 return __xfs_get_blocks(inode, iblock,
1d8fa7a2 1408 bh_result, create, 1, BMAPI_WRITE|BMAPI_DIRECT);
1da177e4
LT
1409}
1410
f0973863 1411STATIC void
e4c573bb 1412xfs_end_io_direct(
f0973863
CH
1413 struct kiocb *iocb,
1414 loff_t offset,
1415 ssize_t size,
1416 void *private)
1417{
1418 xfs_ioend_t *ioend = iocb->private;
1419
1420 /*
1421 * Non-NULL private data means we need to issue a transaction to
1422 * convert a range from unwritten to written extents. This needs
c41564b5 1423 * to happen from process context but aio+dio I/O completion
f0973863 1424 * happens from irq context so we need to defer it to a workqueue.
c41564b5 1425 * This is not necessary for synchronous direct I/O, but we do
f0973863
CH
1426 * it anyway to keep the code uniform and simpler.
1427 *
e927af90
DC
1428 * Well, if only it were that simple. Because synchronous direct I/O
1429 * requires extent conversion to occur *before* we return to userspace,
1430 * we have to wait for extent conversion to complete. Look at the
1431 * iocb that has been passed to us to determine if this is AIO or
1432 * not. If it is synchronous, tell xfs_finish_ioend() to kick the
1433 * workqueue and wait for it to complete.
1434 *
f0973863
CH
1435 * The core direct I/O code might be changed to always call the
1436 * completion handler in the future, in which case all this can
1437 * go away.
1438 */
ba87ea69
LM
1439 ioend->io_offset = offset;
1440 ioend->io_size = size;
34a52c6c 1441 if (ioend->io_type == IO_READ) {
e927af90 1442 xfs_finish_ioend(ioend, 0);
ba87ea69 1443 } else if (private && size > 0) {
e927af90 1444 xfs_finish_ioend(ioend, is_sync_kiocb(iocb));
f0973863 1445 } else {
ba87ea69
LM
1446 /*
1447 * A direct I/O write ioend starts it's life in unwritten
1448 * state in case they map an unwritten extent. This write
1449 * didn't map an unwritten extent so switch it's completion
1450 * handler.
1451 */
34a52c6c 1452 ioend->io_type = IO_NEW;
e927af90 1453 xfs_finish_ioend(ioend, 0);
f0973863
CH
1454 }
1455
1456 /*
c41564b5 1457 * blockdev_direct_IO can return an error even after the I/O
f0973863
CH
1458 * completion handler was called. Thus we need to protect
1459 * against double-freeing.
1460 */
1461 iocb->private = NULL;
1462}
1463
1da177e4 1464STATIC ssize_t
e4c573bb 1465xfs_vm_direct_IO(
1da177e4
LT
1466 int rw,
1467 struct kiocb *iocb,
1468 const struct iovec *iov,
1469 loff_t offset,
1470 unsigned long nr_segs)
1471{
1472 struct file *file = iocb->ki_filp;
1473 struct inode *inode = file->f_mapping->host;
6214ed44 1474 struct block_device *bdev;
f0973863 1475 ssize_t ret;
1da177e4 1476
046f1685 1477 bdev = xfs_find_bdev_for_inode(inode);
1da177e4 1478
5fe878ae 1479 iocb->private = xfs_alloc_ioend(inode, rw == WRITE ?
34a52c6c 1480 IO_UNWRITTEN : IO_READ);
5fe878ae
CH
1481
1482 ret = blockdev_direct_IO_no_locking(rw, iocb, inode, bdev, iov,
1483 offset, nr_segs,
1484 xfs_get_blocks_direct,
1485 xfs_end_io_direct);
f0973863 1486
8459d86a 1487 if (unlikely(ret != -EIOCBQUEUED && iocb->private))
f0973863
CH
1488 xfs_destroy_ioend(iocb->private);
1489 return ret;
1da177e4
LT
1490}
1491
f51623b2 1492STATIC int
d79689c7 1493xfs_vm_write_begin(
f51623b2 1494 struct file *file,
d79689c7
NP
1495 struct address_space *mapping,
1496 loff_t pos,
1497 unsigned len,
1498 unsigned flags,
1499 struct page **pagep,
1500 void **fsdata)
f51623b2 1501{
d79689c7
NP
1502 *pagep = NULL;
1503 return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1504 xfs_get_blocks);
f51623b2 1505}
1da177e4
LT
1506
1507STATIC sector_t
e4c573bb 1508xfs_vm_bmap(
1da177e4
LT
1509 struct address_space *mapping,
1510 sector_t block)
1511{
1512 struct inode *inode = (struct inode *)mapping->host;
739bfb2a 1513 struct xfs_inode *ip = XFS_I(inode);
1da177e4 1514
cf441eeb 1515 xfs_itrace_entry(XFS_I(inode));
126468b1 1516 xfs_ilock(ip, XFS_IOLOCK_SHARED);
739bfb2a 1517 xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF);
126468b1 1518 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
c2536668 1519 return generic_block_bmap(mapping, block, xfs_get_blocks);
1da177e4
LT
1520}
1521
1522STATIC int
e4c573bb 1523xfs_vm_readpage(
1da177e4
LT
1524 struct file *unused,
1525 struct page *page)
1526{
c2536668 1527 return mpage_readpage(page, xfs_get_blocks);
1da177e4
LT
1528}
1529
1530STATIC int
e4c573bb 1531xfs_vm_readpages(
1da177e4
LT
1532 struct file *unused,
1533 struct address_space *mapping,
1534 struct list_head *pages,
1535 unsigned nr_pages)
1536{
c2536668 1537 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1da177e4
LT
1538}
1539
f5e54d6e 1540const struct address_space_operations xfs_address_space_operations = {
e4c573bb
NS
1541 .readpage = xfs_vm_readpage,
1542 .readpages = xfs_vm_readpages,
1543 .writepage = xfs_vm_writepage,
7d4fb40a 1544 .writepages = xfs_vm_writepages,
1da177e4 1545 .sync_page = block_sync_page,
238f4c54
NS
1546 .releasepage = xfs_vm_releasepage,
1547 .invalidatepage = xfs_vm_invalidatepage,
d79689c7
NP
1548 .write_begin = xfs_vm_write_begin,
1549 .write_end = generic_write_end,
e4c573bb
NS
1550 .bmap = xfs_vm_bmap,
1551 .direct_IO = xfs_vm_direct_IO,
e965f963 1552 .migratepage = buffer_migrate_page,
bddaafa1 1553 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 1554 .error_remove_page = generic_error_remove_page,
1da177e4 1555};