xfs: limit xfs_imap_to_bmap to a single mapping
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / xfs / linux-2.6 / xfs_aops.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_bit.h"
1da177e4 20#include "xfs_log.h"
a844f451 21#include "xfs_inum.h"
1da177e4 22#include "xfs_sb.h"
a844f451 23#include "xfs_ag.h"
1da177e4
LT
24#include "xfs_dir2.h"
25#include "xfs_trans.h"
26#include "xfs_dmapi.h"
27#include "xfs_mount.h"
28#include "xfs_bmap_btree.h"
29#include "xfs_alloc_btree.h"
30#include "xfs_ialloc_btree.h"
1da177e4 31#include "xfs_dir2_sf.h"
a844f451 32#include "xfs_attr_sf.h"
1da177e4
LT
33#include "xfs_dinode.h"
34#include "xfs_inode.h"
a844f451
NS
35#include "xfs_alloc.h"
36#include "xfs_btree.h"
1da177e4
LT
37#include "xfs_error.h"
38#include "xfs_rw.h"
39#include "xfs_iomap.h"
739bfb2a 40#include "xfs_vnodeops.h"
0b1b213f 41#include "xfs_trace.h"
3ed3a434 42#include "xfs_bmap.h"
5a0e3ad6 43#include <linux/gfp.h>
1da177e4 44#include <linux/mpage.h>
10ce4444 45#include <linux/pagevec.h>
1da177e4
LT
46#include <linux/writeback.h>
47
25e41b3d
CH
48
49/*
50 * Prime number of hash buckets since address is used as the key.
51 */
52#define NVSYNC 37
53#define to_ioend_wq(v) (&xfs_ioend_wq[((unsigned long)v) % NVSYNC])
54static wait_queue_head_t xfs_ioend_wq[NVSYNC];
55
56void __init
57xfs_ioend_init(void)
58{
59 int i;
60
61 for (i = 0; i < NVSYNC; i++)
62 init_waitqueue_head(&xfs_ioend_wq[i]);
63}
64
65void
66xfs_ioend_wait(
67 xfs_inode_t *ip)
68{
69 wait_queue_head_t *wq = to_ioend_wq(ip);
70
71 wait_event(*wq, (atomic_read(&ip->i_iocount) == 0));
72}
73
74STATIC void
75xfs_ioend_wake(
76 xfs_inode_t *ip)
77{
78 if (atomic_dec_and_test(&ip->i_iocount))
79 wake_up(to_ioend_wq(ip));
80}
81
0b1b213f 82void
f51623b2
NS
83xfs_count_page_state(
84 struct page *page,
85 int *delalloc,
86 int *unmapped,
87 int *unwritten)
88{
89 struct buffer_head *bh, *head;
90
91 *delalloc = *unmapped = *unwritten = 0;
92
93 bh = head = page_buffers(page);
94 do {
95 if (buffer_uptodate(bh) && !buffer_mapped(bh))
96 (*unmapped) = 1;
f51623b2
NS
97 else if (buffer_unwritten(bh))
98 (*unwritten) = 1;
99 else if (buffer_delay(bh))
100 (*delalloc) = 1;
101 } while ((bh = bh->b_this_page) != head);
102}
103
6214ed44
CH
104STATIC struct block_device *
105xfs_find_bdev_for_inode(
106 struct xfs_inode *ip)
107{
108 struct xfs_mount *mp = ip->i_mount;
109
71ddabb9 110 if (XFS_IS_REALTIME_INODE(ip))
6214ed44
CH
111 return mp->m_rtdev_targp->bt_bdev;
112 else
113 return mp->m_ddev_targp->bt_bdev;
114}
115
f6d6d4fc
CH
116/*
117 * We're now finished for good with this ioend structure.
118 * Update the page state via the associated buffer_heads,
119 * release holds on the inode and bio, and finally free
120 * up memory. Do not use the ioend after this.
121 */
0829c360
CH
122STATIC void
123xfs_destroy_ioend(
124 xfs_ioend_t *ioend)
125{
f6d6d4fc 126 struct buffer_head *bh, *next;
583fa586 127 struct xfs_inode *ip = XFS_I(ioend->io_inode);
f6d6d4fc
CH
128
129 for (bh = ioend->io_buffer_head; bh; bh = next) {
130 next = bh->b_private;
7d04a335 131 bh->b_end_io(bh, !ioend->io_error);
f6d6d4fc 132 }
583fa586
CH
133
134 /*
135 * Volume managers supporting multiple paths can send back ENODEV
136 * when the final path disappears. In this case continuing to fill
137 * the page cache with dirty data which cannot be written out is
138 * evil, so prevent that.
139 */
140 if (unlikely(ioend->io_error == -ENODEV)) {
141 xfs_do_force_shutdown(ip->i_mount, SHUTDOWN_DEVICE_REQ,
142 __FILE__, __LINE__);
b677c210 143 }
583fa586 144
25e41b3d 145 xfs_ioend_wake(ip);
0829c360
CH
146 mempool_free(ioend, xfs_ioend_pool);
147}
148
932640e8
DC
149/*
150 * If the end of the current ioend is beyond the current EOF,
151 * return the new EOF value, otherwise zero.
152 */
153STATIC xfs_fsize_t
154xfs_ioend_new_eof(
155 xfs_ioend_t *ioend)
156{
157 xfs_inode_t *ip = XFS_I(ioend->io_inode);
158 xfs_fsize_t isize;
159 xfs_fsize_t bsize;
160
161 bsize = ioend->io_offset + ioend->io_size;
162 isize = MAX(ip->i_size, ip->i_new_size);
163 isize = MIN(isize, bsize);
164 return isize > ip->i_d.di_size ? isize : 0;
165}
166
ba87ea69 167/*
77d7a0c2
DC
168 * Update on-disk file size now that data has been written to disk. The
169 * current in-memory file size is i_size. If a write is beyond eof i_new_size
170 * will be the intended file size until i_size is updated. If this write does
171 * not extend all the way to the valid file size then restrict this update to
172 * the end of the write.
173 *
174 * This function does not block as blocking on the inode lock in IO completion
175 * can lead to IO completion order dependency deadlocks.. If it can't get the
176 * inode ilock it will return EAGAIN. Callers must handle this.
ba87ea69 177 */
77d7a0c2 178STATIC int
ba87ea69
LM
179xfs_setfilesize(
180 xfs_ioend_t *ioend)
181{
b677c210 182 xfs_inode_t *ip = XFS_I(ioend->io_inode);
ba87ea69 183 xfs_fsize_t isize;
ba87ea69 184
ba87ea69
LM
185 ASSERT((ip->i_d.di_mode & S_IFMT) == S_IFREG);
186 ASSERT(ioend->io_type != IOMAP_READ);
187
188 if (unlikely(ioend->io_error))
77d7a0c2
DC
189 return 0;
190
191 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
192 return EAGAIN;
ba87ea69 193
932640e8
DC
194 isize = xfs_ioend_new_eof(ioend);
195 if (isize) {
ba87ea69 196 ip->i_d.di_size = isize;
66d834ea 197 xfs_mark_inode_dirty(ip);
ba87ea69
LM
198 }
199
200 xfs_iunlock(ip, XFS_ILOCK_EXCL);
77d7a0c2
DC
201 return 0;
202}
203
204/*
205 * Schedule IO completion handling on a xfsdatad if this was
206 * the final hold on this ioend. If we are asked to wait,
207 * flush the workqueue.
208 */
209STATIC void
210xfs_finish_ioend(
211 xfs_ioend_t *ioend,
212 int wait)
213{
214 if (atomic_dec_and_test(&ioend->io_remaining)) {
215 struct workqueue_struct *wq;
216
217 wq = (ioend->io_type == IOMAP_UNWRITTEN) ?
218 xfsconvertd_workqueue : xfsdatad_workqueue;
219 queue_work(wq, &ioend->io_work);
220 if (wait)
221 flush_workqueue(wq);
222 }
ba87ea69
LM
223}
224
0829c360 225/*
5ec4fabb 226 * IO write completion.
f6d6d4fc
CH
227 */
228STATIC void
5ec4fabb 229xfs_end_io(
77d7a0c2 230 struct work_struct *work)
0829c360 231{
77d7a0c2
DC
232 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
233 struct xfs_inode *ip = XFS_I(ioend->io_inode);
69418932 234 int error = 0;
ba87ea69 235
5ec4fabb
CH
236 /*
237 * For unwritten extents we need to issue transactions to convert a
238 * range to normal written extens after the data I/O has finished.
239 */
240 if (ioend->io_type == IOMAP_UNWRITTEN &&
241 likely(!ioend->io_error && !XFS_FORCED_SHUTDOWN(ip->i_mount))) {
5ec4fabb
CH
242
243 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
244 ioend->io_size);
245 if (error)
246 ioend->io_error = error;
247 }
ba87ea69 248
5ec4fabb
CH
249 /*
250 * We might have to update the on-disk file size after extending
251 * writes.
252 */
77d7a0c2
DC
253 if (ioend->io_type != IOMAP_READ) {
254 error = xfs_setfilesize(ioend);
255 ASSERT(!error || error == EAGAIN);
c626d174 256 }
77d7a0c2
DC
257
258 /*
259 * If we didn't complete processing of the ioend, requeue it to the
260 * tail of the workqueue for another attempt later. Otherwise destroy
261 * it.
262 */
263 if (error == EAGAIN) {
264 atomic_inc(&ioend->io_remaining);
265 xfs_finish_ioend(ioend, 0);
266 /* ensure we don't spin on blocked ioends */
267 delay(1);
268 } else
269 xfs_destroy_ioend(ioend);
c626d174
DC
270}
271
0829c360
CH
272/*
273 * Allocate and initialise an IO completion structure.
274 * We need to track unwritten extent write completion here initially.
275 * We'll need to extend this for updating the ondisk inode size later
276 * (vs. incore size).
277 */
278STATIC xfs_ioend_t *
279xfs_alloc_ioend(
f6d6d4fc
CH
280 struct inode *inode,
281 unsigned int type)
0829c360
CH
282{
283 xfs_ioend_t *ioend;
284
285 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
286
287 /*
288 * Set the count to 1 initially, which will prevent an I/O
289 * completion callback from happening before we have started
290 * all the I/O from calling the completion routine too early.
291 */
292 atomic_set(&ioend->io_remaining, 1);
7d04a335 293 ioend->io_error = 0;
f6d6d4fc
CH
294 ioend->io_list = NULL;
295 ioend->io_type = type;
b677c210 296 ioend->io_inode = inode;
c1a073bd 297 ioend->io_buffer_head = NULL;
f6d6d4fc 298 ioend->io_buffer_tail = NULL;
b677c210 299 atomic_inc(&XFS_I(ioend->io_inode)->i_iocount);
0829c360
CH
300 ioend->io_offset = 0;
301 ioend->io_size = 0;
302
5ec4fabb 303 INIT_WORK(&ioend->io_work, xfs_end_io);
0829c360
CH
304 return ioend;
305}
306
1da177e4
LT
307STATIC int
308xfs_map_blocks(
309 struct inode *inode,
310 loff_t offset,
311 ssize_t count,
312 xfs_iomap_t *mapp,
313 int flags)
314{
6bd16ff2
CH
315 int nmaps = 1;
316
317 return -xfs_iomap(XFS_I(inode), offset, count, flags, mapp, &nmaps);
1da177e4
LT
318}
319
b8f82a4a 320STATIC int
1defeac9 321xfs_iomap_valid(
1da177e4 322 xfs_iomap_t *iomapp,
1defeac9 323 loff_t offset)
1da177e4 324{
1defeac9
CH
325 return offset >= iomapp->iomap_offset &&
326 offset < iomapp->iomap_offset + iomapp->iomap_bsize;
1da177e4
LT
327}
328
f6d6d4fc
CH
329/*
330 * BIO completion handler for buffered IO.
331 */
782e3b3b 332STATIC void
f6d6d4fc
CH
333xfs_end_bio(
334 struct bio *bio,
f6d6d4fc
CH
335 int error)
336{
337 xfs_ioend_t *ioend = bio->bi_private;
338
f6d6d4fc 339 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
7d04a335 340 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
f6d6d4fc
CH
341
342 /* Toss bio and pass work off to an xfsdatad thread */
f6d6d4fc
CH
343 bio->bi_private = NULL;
344 bio->bi_end_io = NULL;
f6d6d4fc 345 bio_put(bio);
7d04a335 346
e927af90 347 xfs_finish_ioend(ioend, 0);
f6d6d4fc
CH
348}
349
350STATIC void
351xfs_submit_ioend_bio(
06342cf8
CH
352 struct writeback_control *wbc,
353 xfs_ioend_t *ioend,
354 struct bio *bio)
f6d6d4fc
CH
355{
356 atomic_inc(&ioend->io_remaining);
f6d6d4fc
CH
357 bio->bi_private = ioend;
358 bio->bi_end_io = xfs_end_bio;
359
932640e8
DC
360 /*
361 * If the I/O is beyond EOF we mark the inode dirty immediately
362 * but don't update the inode size until I/O completion.
363 */
364 if (xfs_ioend_new_eof(ioend))
66d834ea 365 xfs_mark_inode_dirty(XFS_I(ioend->io_inode));
932640e8 366
06342cf8
CH
367 submit_bio(wbc->sync_mode == WB_SYNC_ALL ?
368 WRITE_SYNC_PLUG : WRITE, bio);
f6d6d4fc
CH
369 ASSERT(!bio_flagged(bio, BIO_EOPNOTSUPP));
370 bio_put(bio);
371}
372
373STATIC struct bio *
374xfs_alloc_ioend_bio(
375 struct buffer_head *bh)
376{
377 struct bio *bio;
378 int nvecs = bio_get_nr_vecs(bh->b_bdev);
379
380 do {
381 bio = bio_alloc(GFP_NOIO, nvecs);
382 nvecs >>= 1;
383 } while (!bio);
384
385 ASSERT(bio->bi_private == NULL);
386 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
387 bio->bi_bdev = bh->b_bdev;
388 bio_get(bio);
389 return bio;
390}
391
392STATIC void
393xfs_start_buffer_writeback(
394 struct buffer_head *bh)
395{
396 ASSERT(buffer_mapped(bh));
397 ASSERT(buffer_locked(bh));
398 ASSERT(!buffer_delay(bh));
399 ASSERT(!buffer_unwritten(bh));
400
401 mark_buffer_async_write(bh);
402 set_buffer_uptodate(bh);
403 clear_buffer_dirty(bh);
404}
405
406STATIC void
407xfs_start_page_writeback(
408 struct page *page,
f6d6d4fc
CH
409 int clear_dirty,
410 int buffers)
411{
412 ASSERT(PageLocked(page));
413 ASSERT(!PageWriteback(page));
f6d6d4fc 414 if (clear_dirty)
92132021
DC
415 clear_page_dirty_for_io(page);
416 set_page_writeback(page);
f6d6d4fc 417 unlock_page(page);
1f7decf6
FW
418 /* If no buffers on the page are to be written, finish it here */
419 if (!buffers)
f6d6d4fc 420 end_page_writeback(page);
f6d6d4fc
CH
421}
422
423static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
424{
425 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
426}
427
428/*
d88992f6
DC
429 * Submit all of the bios for all of the ioends we have saved up, covering the
430 * initial writepage page and also any probed pages.
431 *
432 * Because we may have multiple ioends spanning a page, we need to start
433 * writeback on all the buffers before we submit them for I/O. If we mark the
434 * buffers as we got, then we can end up with a page that only has buffers
435 * marked async write and I/O complete on can occur before we mark the other
436 * buffers async write.
437 *
438 * The end result of this is that we trip a bug in end_page_writeback() because
439 * we call it twice for the one page as the code in end_buffer_async_write()
440 * assumes that all buffers on the page are started at the same time.
441 *
442 * The fix is two passes across the ioend list - one to start writeback on the
c41564b5 443 * buffer_heads, and then submit them for I/O on the second pass.
f6d6d4fc
CH
444 */
445STATIC void
446xfs_submit_ioend(
06342cf8 447 struct writeback_control *wbc,
f6d6d4fc
CH
448 xfs_ioend_t *ioend)
449{
d88992f6 450 xfs_ioend_t *head = ioend;
f6d6d4fc
CH
451 xfs_ioend_t *next;
452 struct buffer_head *bh;
453 struct bio *bio;
454 sector_t lastblock = 0;
455
d88992f6
DC
456 /* Pass 1 - start writeback */
457 do {
458 next = ioend->io_list;
459 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
460 xfs_start_buffer_writeback(bh);
461 }
462 } while ((ioend = next) != NULL);
463
464 /* Pass 2 - submit I/O */
465 ioend = head;
f6d6d4fc
CH
466 do {
467 next = ioend->io_list;
468 bio = NULL;
469
470 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
f6d6d4fc
CH
471
472 if (!bio) {
473 retry:
474 bio = xfs_alloc_ioend_bio(bh);
475 } else if (bh->b_blocknr != lastblock + 1) {
06342cf8 476 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
477 goto retry;
478 }
479
480 if (bio_add_buffer(bio, bh) != bh->b_size) {
06342cf8 481 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
482 goto retry;
483 }
484
485 lastblock = bh->b_blocknr;
486 }
487 if (bio)
06342cf8 488 xfs_submit_ioend_bio(wbc, ioend, bio);
e927af90 489 xfs_finish_ioend(ioend, 0);
f6d6d4fc
CH
490 } while ((ioend = next) != NULL);
491}
492
493/*
494 * Cancel submission of all buffer_heads so far in this endio.
495 * Toss the endio too. Only ever called for the initial page
496 * in a writepage request, so only ever one page.
497 */
498STATIC void
499xfs_cancel_ioend(
500 xfs_ioend_t *ioend)
501{
502 xfs_ioend_t *next;
503 struct buffer_head *bh, *next_bh;
504
505 do {
506 next = ioend->io_list;
507 bh = ioend->io_buffer_head;
508 do {
509 next_bh = bh->b_private;
510 clear_buffer_async_write(bh);
511 unlock_buffer(bh);
512 } while ((bh = next_bh) != NULL);
513
25e41b3d 514 xfs_ioend_wake(XFS_I(ioend->io_inode));
f6d6d4fc
CH
515 mempool_free(ioend, xfs_ioend_pool);
516 } while ((ioend = next) != NULL);
517}
518
519/*
520 * Test to see if we've been building up a completion structure for
521 * earlier buffers -- if so, we try to append to this ioend if we
522 * can, otherwise we finish off any current ioend and start another.
523 * Return true if we've finished the given ioend.
524 */
525STATIC void
526xfs_add_to_ioend(
527 struct inode *inode,
528 struct buffer_head *bh,
7336cea8 529 xfs_off_t offset,
f6d6d4fc
CH
530 unsigned int type,
531 xfs_ioend_t **result,
532 int need_ioend)
533{
534 xfs_ioend_t *ioend = *result;
535
536 if (!ioend || need_ioend || type != ioend->io_type) {
537 xfs_ioend_t *previous = *result;
f6d6d4fc 538
f6d6d4fc
CH
539 ioend = xfs_alloc_ioend(inode, type);
540 ioend->io_offset = offset;
541 ioend->io_buffer_head = bh;
542 ioend->io_buffer_tail = bh;
543 if (previous)
544 previous->io_list = ioend;
545 *result = ioend;
546 } else {
547 ioend->io_buffer_tail->b_private = bh;
548 ioend->io_buffer_tail = bh;
549 }
550
551 bh->b_private = NULL;
552 ioend->io_size += bh->b_size;
553}
554
87cbc49c
NS
555STATIC void
556xfs_map_buffer(
557 struct buffer_head *bh,
558 xfs_iomap_t *mp,
559 xfs_off_t offset,
560 uint block_bits)
561{
562 sector_t bn;
563
564 ASSERT(mp->iomap_bn != IOMAP_DADDR_NULL);
565
566 bn = (mp->iomap_bn >> (block_bits - BBSHIFT)) +
567 ((offset - mp->iomap_offset) >> block_bits);
568
569 ASSERT(bn || (mp->iomap_flags & IOMAP_REALTIME));
570
571 bh->b_blocknr = bn;
572 set_buffer_mapped(bh);
573}
574
1da177e4
LT
575STATIC void
576xfs_map_at_offset(
1da177e4 577 struct buffer_head *bh,
1defeac9 578 loff_t offset,
1da177e4 579 int block_bits,
1defeac9 580 xfs_iomap_t *iomapp)
1da177e4 581{
1da177e4
LT
582 ASSERT(!(iomapp->iomap_flags & IOMAP_HOLE));
583 ASSERT(!(iomapp->iomap_flags & IOMAP_DELAY));
1da177e4
LT
584
585 lock_buffer(bh);
87cbc49c 586 xfs_map_buffer(bh, iomapp, offset, block_bits);
ce8e922c 587 bh->b_bdev = iomapp->iomap_target->bt_bdev;
1da177e4
LT
588 set_buffer_mapped(bh);
589 clear_buffer_delay(bh);
f6d6d4fc 590 clear_buffer_unwritten(bh);
1da177e4
LT
591}
592
593/*
6c4fe19f 594 * Look for a page at index that is suitable for clustering.
1da177e4
LT
595 */
596STATIC unsigned int
6c4fe19f 597xfs_probe_page(
10ce4444 598 struct page *page,
6c4fe19f
CH
599 unsigned int pg_offset,
600 int mapped)
1da177e4 601{
1da177e4
LT
602 int ret = 0;
603
1da177e4 604 if (PageWriteback(page))
10ce4444 605 return 0;
1da177e4
LT
606
607 if (page->mapping && PageDirty(page)) {
608 if (page_has_buffers(page)) {
609 struct buffer_head *bh, *head;
610
611 bh = head = page_buffers(page);
612 do {
6c4fe19f
CH
613 if (!buffer_uptodate(bh))
614 break;
615 if (mapped != buffer_mapped(bh))
1da177e4
LT
616 break;
617 ret += bh->b_size;
618 if (ret >= pg_offset)
619 break;
620 } while ((bh = bh->b_this_page) != head);
621 } else
6c4fe19f 622 ret = mapped ? 0 : PAGE_CACHE_SIZE;
1da177e4
LT
623 }
624
1da177e4
LT
625 return ret;
626}
627
f6d6d4fc 628STATIC size_t
6c4fe19f 629xfs_probe_cluster(
1da177e4
LT
630 struct inode *inode,
631 struct page *startpage,
632 struct buffer_head *bh,
6c4fe19f
CH
633 struct buffer_head *head,
634 int mapped)
1da177e4 635{
10ce4444 636 struct pagevec pvec;
1da177e4 637 pgoff_t tindex, tlast, tloff;
10ce4444
CH
638 size_t total = 0;
639 int done = 0, i;
1da177e4
LT
640
641 /* First sum forwards in this page */
642 do {
2353e8e9 643 if (!buffer_uptodate(bh) || (mapped != buffer_mapped(bh)))
10ce4444 644 return total;
1da177e4
LT
645 total += bh->b_size;
646 } while ((bh = bh->b_this_page) != head);
647
10ce4444
CH
648 /* if we reached the end of the page, sum forwards in following pages */
649 tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT;
650 tindex = startpage->index + 1;
651
652 /* Prune this back to avoid pathological behavior */
653 tloff = min(tlast, startpage->index + 64);
654
655 pagevec_init(&pvec, 0);
656 while (!done && tindex <= tloff) {
657 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
658
659 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
660 break;
661
662 for (i = 0; i < pagevec_count(&pvec); i++) {
663 struct page *page = pvec.pages[i];
265c1fac 664 size_t pg_offset, pg_len = 0;
10ce4444
CH
665
666 if (tindex == tlast) {
667 pg_offset =
668 i_size_read(inode) & (PAGE_CACHE_SIZE - 1);
1defeac9
CH
669 if (!pg_offset) {
670 done = 1;
10ce4444 671 break;
1defeac9 672 }
10ce4444
CH
673 } else
674 pg_offset = PAGE_CACHE_SIZE;
675
529ae9aa 676 if (page->index == tindex && trylock_page(page)) {
265c1fac 677 pg_len = xfs_probe_page(page, pg_offset, mapped);
10ce4444
CH
678 unlock_page(page);
679 }
680
265c1fac 681 if (!pg_len) {
10ce4444
CH
682 done = 1;
683 break;
684 }
685
265c1fac 686 total += pg_len;
1defeac9 687 tindex++;
1da177e4 688 }
10ce4444
CH
689
690 pagevec_release(&pvec);
691 cond_resched();
1da177e4 692 }
10ce4444 693
1da177e4
LT
694 return total;
695}
696
697/*
10ce4444
CH
698 * Test if a given page is suitable for writing as part of an unwritten
699 * or delayed allocate extent.
1da177e4 700 */
10ce4444
CH
701STATIC int
702xfs_is_delayed_page(
703 struct page *page,
f6d6d4fc 704 unsigned int type)
1da177e4 705{
1da177e4 706 if (PageWriteback(page))
10ce4444 707 return 0;
1da177e4
LT
708
709 if (page->mapping && page_has_buffers(page)) {
710 struct buffer_head *bh, *head;
711 int acceptable = 0;
712
713 bh = head = page_buffers(page);
714 do {
f6d6d4fc
CH
715 if (buffer_unwritten(bh))
716 acceptable = (type == IOMAP_UNWRITTEN);
717 else if (buffer_delay(bh))
718 acceptable = (type == IOMAP_DELAY);
2ddee844 719 else if (buffer_dirty(bh) && buffer_mapped(bh))
df3c7244 720 acceptable = (type == IOMAP_NEW);
f6d6d4fc 721 else
1da177e4 722 break;
1da177e4
LT
723 } while ((bh = bh->b_this_page) != head);
724
725 if (acceptable)
10ce4444 726 return 1;
1da177e4
LT
727 }
728
10ce4444 729 return 0;
1da177e4
LT
730}
731
1da177e4
LT
732/*
733 * Allocate & map buffers for page given the extent map. Write it out.
734 * except for the original page of a writepage, this is called on
735 * delalloc/unwritten pages only, for the original page it is possible
736 * that the page has no mapping at all.
737 */
f6d6d4fc 738STATIC int
1da177e4
LT
739xfs_convert_page(
740 struct inode *inode,
741 struct page *page,
10ce4444 742 loff_t tindex,
1defeac9 743 xfs_iomap_t *mp,
f6d6d4fc 744 xfs_ioend_t **ioendp,
1da177e4 745 struct writeback_control *wbc,
1da177e4
LT
746 int startio,
747 int all_bh)
748{
f6d6d4fc 749 struct buffer_head *bh, *head;
9260dc6b
CH
750 xfs_off_t end_offset;
751 unsigned long p_offset;
f6d6d4fc 752 unsigned int type;
1da177e4 753 int bbits = inode->i_blkbits;
24e17b5f 754 int len, page_dirty;
f6d6d4fc 755 int count = 0, done = 0, uptodate = 1;
9260dc6b 756 xfs_off_t offset = page_offset(page);
1da177e4 757
10ce4444
CH
758 if (page->index != tindex)
759 goto fail;
529ae9aa 760 if (!trylock_page(page))
10ce4444
CH
761 goto fail;
762 if (PageWriteback(page))
763 goto fail_unlock_page;
764 if (page->mapping != inode->i_mapping)
765 goto fail_unlock_page;
766 if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
767 goto fail_unlock_page;
768
24e17b5f
NS
769 /*
770 * page_dirty is initially a count of buffers on the page before
c41564b5 771 * EOF and is decremented as we move each into a cleanable state.
9260dc6b
CH
772 *
773 * Derivation:
774 *
775 * End offset is the highest offset that this page should represent.
776 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
777 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
778 * hence give us the correct page_dirty count. On any other page,
779 * it will be zero and in that case we need page_dirty to be the
780 * count of buffers on the page.
24e17b5f 781 */
9260dc6b
CH
782 end_offset = min_t(unsigned long long,
783 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
784 i_size_read(inode));
785
24e17b5f 786 len = 1 << inode->i_blkbits;
9260dc6b
CH
787 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
788 PAGE_CACHE_SIZE);
789 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
790 page_dirty = p_offset / len;
24e17b5f 791
1da177e4
LT
792 bh = head = page_buffers(page);
793 do {
9260dc6b 794 if (offset >= end_offset)
1da177e4 795 break;
f6d6d4fc
CH
796 if (!buffer_uptodate(bh))
797 uptodate = 0;
798 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
799 done = 1;
1da177e4 800 continue;
f6d6d4fc
CH
801 }
802
9260dc6b
CH
803 if (buffer_unwritten(bh) || buffer_delay(bh)) {
804 if (buffer_unwritten(bh))
805 type = IOMAP_UNWRITTEN;
806 else
807 type = IOMAP_DELAY;
808
809 if (!xfs_iomap_valid(mp, offset)) {
f6d6d4fc 810 done = 1;
9260dc6b
CH
811 continue;
812 }
813
814 ASSERT(!(mp->iomap_flags & IOMAP_HOLE));
815 ASSERT(!(mp->iomap_flags & IOMAP_DELAY));
816
817 xfs_map_at_offset(bh, offset, bbits, mp);
818 if (startio) {
7336cea8 819 xfs_add_to_ioend(inode, bh, offset,
9260dc6b
CH
820 type, ioendp, done);
821 } else {
822 set_buffer_dirty(bh);
823 unlock_buffer(bh);
824 mark_buffer_dirty(bh);
825 }
826 page_dirty--;
827 count++;
828 } else {
df3c7244 829 type = IOMAP_NEW;
9260dc6b 830 if (buffer_mapped(bh) && all_bh && startio) {
1da177e4 831 lock_buffer(bh);
7336cea8 832 xfs_add_to_ioend(inode, bh, offset,
f6d6d4fc
CH
833 type, ioendp, done);
834 count++;
24e17b5f 835 page_dirty--;
9260dc6b
CH
836 } else {
837 done = 1;
1da177e4 838 }
1da177e4 839 }
7336cea8 840 } while (offset += len, (bh = bh->b_this_page) != head);
1da177e4 841
f6d6d4fc
CH
842 if (uptodate && bh == head)
843 SetPageUptodate(page);
844
845 if (startio) {
f5e596bb 846 if (count) {
9fddaca2 847 wbc->nr_to_write--;
0d99519e 848 if (wbc->nr_to_write <= 0)
f5e596bb 849 done = 1;
f5e596bb 850 }
b41759cf 851 xfs_start_page_writeback(page, !page_dirty, count);
1da177e4 852 }
f6d6d4fc
CH
853
854 return done;
10ce4444
CH
855 fail_unlock_page:
856 unlock_page(page);
857 fail:
858 return 1;
1da177e4
LT
859}
860
861/*
862 * Convert & write out a cluster of pages in the same extent as defined
863 * by mp and following the start page.
864 */
865STATIC void
866xfs_cluster_write(
867 struct inode *inode,
868 pgoff_t tindex,
869 xfs_iomap_t *iomapp,
f6d6d4fc 870 xfs_ioend_t **ioendp,
1da177e4
LT
871 struct writeback_control *wbc,
872 int startio,
873 int all_bh,
874 pgoff_t tlast)
875{
10ce4444
CH
876 struct pagevec pvec;
877 int done = 0, i;
1da177e4 878
10ce4444
CH
879 pagevec_init(&pvec, 0);
880 while (!done && tindex <= tlast) {
881 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
882
883 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
1da177e4 884 break;
10ce4444
CH
885
886 for (i = 0; i < pagevec_count(&pvec); i++) {
887 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
888 iomapp, ioendp, wbc, startio, all_bh);
889 if (done)
890 break;
891 }
892
893 pagevec_release(&pvec);
894 cond_resched();
1da177e4
LT
895 }
896}
897
3ed3a434
DC
898STATIC void
899xfs_vm_invalidatepage(
900 struct page *page,
901 unsigned long offset)
902{
903 trace_xfs_invalidatepage(page->mapping->host, page, offset);
904 block_invalidatepage(page, offset);
905}
906
907/*
908 * If the page has delalloc buffers on it, we need to punch them out before we
909 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
910 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
911 * is done on that same region - the delalloc extent is returned when none is
912 * supposed to be there.
913 *
914 * We prevent this by truncating away the delalloc regions on the page before
915 * invalidating it. Because they are delalloc, we can do this without needing a
916 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
917 * truncation without a transaction as there is no space left for block
918 * reservation (typically why we see a ENOSPC in writeback).
919 *
920 * This is not a performance critical path, so for now just do the punching a
921 * buffer head at a time.
922 */
923STATIC void
924xfs_aops_discard_page(
925 struct page *page)
926{
927 struct inode *inode = page->mapping->host;
928 struct xfs_inode *ip = XFS_I(inode);
929 struct buffer_head *bh, *head;
930 loff_t offset = page_offset(page);
931 ssize_t len = 1 << inode->i_blkbits;
932
933 if (!xfs_is_delayed_page(page, IOMAP_DELAY))
934 goto out_invalidate;
935
e8c3753c
DC
936 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
937 goto out_invalidate;
938
3ed3a434
DC
939 xfs_fs_cmn_err(CE_ALERT, ip->i_mount,
940 "page discard on page %p, inode 0x%llx, offset %llu.",
941 page, ip->i_ino, offset);
942
943 xfs_ilock(ip, XFS_ILOCK_EXCL);
944 bh = head = page_buffers(page);
945 do {
946 int done;
947 xfs_fileoff_t offset_fsb;
948 xfs_bmbt_irec_t imap;
949 int nimaps = 1;
950 int error;
951 xfs_fsblock_t firstblock;
952 xfs_bmap_free_t flist;
953
954 if (!buffer_delay(bh))
955 goto next_buffer;
956
957 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
958
959 /*
960 * Map the range first and check that it is a delalloc extent
961 * before trying to unmap the range. Otherwise we will be
962 * trying to remove a real extent (which requires a
963 * transaction) or a hole, which is probably a bad idea...
964 */
965 error = xfs_bmapi(NULL, ip, offset_fsb, 1,
966 XFS_BMAPI_ENTIRE, NULL, 0, &imap,
967 &nimaps, NULL, NULL);
968
969 if (error) {
970 /* something screwed, just bail */
e8c3753c
DC
971 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
972 xfs_fs_cmn_err(CE_ALERT, ip->i_mount,
973 "page discard failed delalloc mapping lookup.");
974 }
3ed3a434
DC
975 break;
976 }
977 if (!nimaps) {
978 /* nothing there */
979 goto next_buffer;
980 }
981 if (imap.br_startblock != DELAYSTARTBLOCK) {
982 /* been converted, ignore */
983 goto next_buffer;
984 }
985 WARN_ON(imap.br_blockcount == 0);
986
987 /*
988 * Note: while we initialise the firstblock/flist pair, they
989 * should never be used because blocks should never be
990 * allocated or freed for a delalloc extent and hence we need
991 * don't cancel or finish them after the xfs_bunmapi() call.
992 */
993 xfs_bmap_init(&flist, &firstblock);
994 error = xfs_bunmapi(NULL, ip, offset_fsb, 1, 0, 1, &firstblock,
995 &flist, NULL, &done);
996
997 ASSERT(!flist.xbf_count && !flist.xbf_first);
998 if (error) {
999 /* something screwed, just bail */
e8c3753c
DC
1000 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1001 xfs_fs_cmn_err(CE_ALERT, ip->i_mount,
3ed3a434 1002 "page discard unable to remove delalloc mapping.");
e8c3753c 1003 }
3ed3a434
DC
1004 break;
1005 }
1006next_buffer:
1007 offset += len;
1008
1009 } while ((bh = bh->b_this_page) != head);
1010
1011 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1012out_invalidate:
1013 xfs_vm_invalidatepage(page, 0);
1014 return;
1015}
1016
1da177e4
LT
1017/*
1018 * Calling this without startio set means we are being asked to make a dirty
1019 * page ready for freeing it's buffers. When called with startio set then
1020 * we are coming from writepage.
1021 *
1022 * When called with startio set it is important that we write the WHOLE
1023 * page if possible.
1024 * The bh->b_state's cannot know if any of the blocks or which block for
1025 * that matter are dirty due to mmap writes, and therefore bh uptodate is
c41564b5 1026 * only valid if the page itself isn't completely uptodate. Some layers
1da177e4
LT
1027 * may clear the page dirty flag prior to calling write page, under the
1028 * assumption the entire page will be written out; by not writing out the
1029 * whole page the page can be reused before all valid dirty data is
1030 * written out. Note: in the case of a page that has been dirty'd by
1031 * mapwrite and but partially setup by block_prepare_write the
1032 * bh->b_states's will not agree and only ones setup by BPW/BCW will have
1033 * valid state, thus the whole page must be written out thing.
1034 */
1035
1036STATIC int
1037xfs_page_state_convert(
1038 struct inode *inode,
1039 struct page *page,
1040 struct writeback_control *wbc,
1041 int startio,
1042 int unmapped) /* also implies page uptodate */
1043{
f6d6d4fc 1044 struct buffer_head *bh, *head;
1defeac9 1045 xfs_iomap_t iomap;
f6d6d4fc 1046 xfs_ioend_t *ioend = NULL, *iohead = NULL;
1da177e4
LT
1047 loff_t offset;
1048 unsigned long p_offset = 0;
f6d6d4fc 1049 unsigned int type;
1da177e4
LT
1050 __uint64_t end_offset;
1051 pgoff_t end_index, last_index, tlast;
d5cb48aa
CH
1052 ssize_t size, len;
1053 int flags, err, iomap_valid = 0, uptodate = 1;
8272145c
NS
1054 int page_dirty, count = 0;
1055 int trylock = 0;
6c4fe19f 1056 int all_bh = unmapped;
1da177e4 1057
8272145c
NS
1058 if (startio) {
1059 if (wbc->sync_mode == WB_SYNC_NONE && wbc->nonblocking)
1060 trylock |= BMAPI_TRYLOCK;
1061 }
3ba0815a 1062
1da177e4
LT
1063 /* Is this page beyond the end of the file? */
1064 offset = i_size_read(inode);
1065 end_index = offset >> PAGE_CACHE_SHIFT;
1066 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
1067 if (page->index >= end_index) {
1068 if ((page->index >= end_index + 1) ||
1069 !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
19d5bcf3
NS
1070 if (startio)
1071 unlock_page(page);
1072 return 0;
1da177e4
LT
1073 }
1074 }
1075
1da177e4 1076 /*
24e17b5f 1077 * page_dirty is initially a count of buffers on the page before
c41564b5 1078 * EOF and is decremented as we move each into a cleanable state.
f6d6d4fc
CH
1079 *
1080 * Derivation:
1081 *
1082 * End offset is the highest offset that this page should represent.
1083 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
1084 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
1085 * hence give us the correct page_dirty count. On any other page,
1086 * it will be zero and in that case we need page_dirty to be the
1087 * count of buffers on the page.
1088 */
1089 end_offset = min_t(unsigned long long,
1090 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, offset);
24e17b5f 1091 len = 1 << inode->i_blkbits;
f6d6d4fc
CH
1092 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
1093 PAGE_CACHE_SIZE);
1094 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
24e17b5f
NS
1095 page_dirty = p_offset / len;
1096
24e17b5f 1097 bh = head = page_buffers(page);
f6d6d4fc 1098 offset = page_offset(page);
df3c7244
DC
1099 flags = BMAPI_READ;
1100 type = IOMAP_NEW;
f6d6d4fc 1101
f6d6d4fc 1102 /* TODO: cleanup count and page_dirty */
1da177e4
LT
1103
1104 do {
1105 if (offset >= end_offset)
1106 break;
1107 if (!buffer_uptodate(bh))
1108 uptodate = 0;
f6d6d4fc 1109 if (!(PageUptodate(page) || buffer_uptodate(bh)) && !startio) {
1defeac9
CH
1110 /*
1111 * the iomap is actually still valid, but the ioend
1112 * isn't. shouldn't happen too often.
1113 */
1114 iomap_valid = 0;
1da177e4 1115 continue;
f6d6d4fc 1116 }
1da177e4 1117
1defeac9
CH
1118 if (iomap_valid)
1119 iomap_valid = xfs_iomap_valid(&iomap, offset);
1da177e4
LT
1120
1121 /*
1122 * First case, map an unwritten extent and prepare for
1123 * extent state conversion transaction on completion.
f6d6d4fc 1124 *
1da177e4
LT
1125 * Second case, allocate space for a delalloc buffer.
1126 * We can return EAGAIN here in the release page case.
d5cb48aa
CH
1127 *
1128 * Third case, an unmapped buffer was found, and we are
1129 * in a path where we need to write the whole page out.
df3c7244 1130 */
d5cb48aa
CH
1131 if (buffer_unwritten(bh) || buffer_delay(bh) ||
1132 ((buffer_uptodate(bh) || PageUptodate(page)) &&
1133 !buffer_mapped(bh) && (unmapped || startio))) {
effd120e
DC
1134 int new_ioend = 0;
1135
df3c7244 1136 /*
6c4fe19f
CH
1137 * Make sure we don't use a read-only iomap
1138 */
df3c7244 1139 if (flags == BMAPI_READ)
6c4fe19f
CH
1140 iomap_valid = 0;
1141
f6d6d4fc
CH
1142 if (buffer_unwritten(bh)) {
1143 type = IOMAP_UNWRITTEN;
8272145c 1144 flags = BMAPI_WRITE | BMAPI_IGNSTATE;
d5cb48aa 1145 } else if (buffer_delay(bh)) {
f6d6d4fc 1146 type = IOMAP_DELAY;
8272145c 1147 flags = BMAPI_ALLOCATE | trylock;
d5cb48aa 1148 } else {
6c4fe19f 1149 type = IOMAP_NEW;
8272145c 1150 flags = BMAPI_WRITE | BMAPI_MMAP;
f6d6d4fc
CH
1151 }
1152
1defeac9 1153 if (!iomap_valid) {
effd120e
DC
1154 /*
1155 * if we didn't have a valid mapping then we
1156 * need to ensure that we put the new mapping
1157 * in a new ioend structure. This needs to be
1158 * done to ensure that the ioends correctly
1159 * reflect the block mappings at io completion
1160 * for unwritten extent conversion.
1161 */
1162 new_ioend = 1;
6c4fe19f
CH
1163 if (type == IOMAP_NEW) {
1164 size = xfs_probe_cluster(inode,
1165 page, bh, head, 0);
d5cb48aa
CH
1166 } else {
1167 size = len;
1168 }
1169
1170 err = xfs_map_blocks(inode, offset, size,
1171 &iomap, flags);
f6d6d4fc 1172 if (err)
1da177e4 1173 goto error;
1defeac9 1174 iomap_valid = xfs_iomap_valid(&iomap, offset);
1da177e4 1175 }
1defeac9
CH
1176 if (iomap_valid) {
1177 xfs_map_at_offset(bh, offset,
1178 inode->i_blkbits, &iomap);
1da177e4 1179 if (startio) {
7336cea8 1180 xfs_add_to_ioend(inode, bh, offset,
1defeac9 1181 type, &ioend,
effd120e 1182 new_ioend);
1da177e4
LT
1183 } else {
1184 set_buffer_dirty(bh);
1185 unlock_buffer(bh);
1186 mark_buffer_dirty(bh);
1187 }
1188 page_dirty--;
f6d6d4fc 1189 count++;
1da177e4 1190 }
d5cb48aa 1191 } else if (buffer_uptodate(bh) && startio) {
6c4fe19f
CH
1192 /*
1193 * we got here because the buffer is already mapped.
1194 * That means it must already have extents allocated
1195 * underneath it. Map the extent by reading it.
1196 */
df3c7244 1197 if (!iomap_valid || flags != BMAPI_READ) {
6c4fe19f
CH
1198 flags = BMAPI_READ;
1199 size = xfs_probe_cluster(inode, page, bh,
1200 head, 1);
1201 err = xfs_map_blocks(inode, offset, size,
1202 &iomap, flags);
1203 if (err)
1204 goto error;
1205 iomap_valid = xfs_iomap_valid(&iomap, offset);
1206 }
d5cb48aa 1207
df3c7244
DC
1208 /*
1209 * We set the type to IOMAP_NEW in case we are doing a
1210 * small write at EOF that is extending the file but
1211 * without needing an allocation. We need to update the
1212 * file size on I/O completion in this case so it is
1213 * the same case as having just allocated a new extent
1214 * that we are writing into for the first time.
1215 */
1216 type = IOMAP_NEW;
ca5de404 1217 if (trylock_buffer(bh)) {
d5cb48aa 1218 ASSERT(buffer_mapped(bh));
6c4fe19f
CH
1219 if (iomap_valid)
1220 all_bh = 1;
7336cea8 1221 xfs_add_to_ioend(inode, bh, offset, type,
d5cb48aa
CH
1222 &ioend, !iomap_valid);
1223 page_dirty--;
1224 count++;
f6d6d4fc 1225 } else {
1defeac9 1226 iomap_valid = 0;
1da177e4 1227 }
d5cb48aa
CH
1228 } else if ((buffer_uptodate(bh) || PageUptodate(page)) &&
1229 (unmapped || startio)) {
1230 iomap_valid = 0;
1da177e4 1231 }
f6d6d4fc
CH
1232
1233 if (!iohead)
1234 iohead = ioend;
1235
1236 } while (offset += len, ((bh = bh->b_this_page) != head));
1da177e4
LT
1237
1238 if (uptodate && bh == head)
1239 SetPageUptodate(page);
1240
f6d6d4fc 1241 if (startio)
b41759cf 1242 xfs_start_page_writeback(page, 1, count);
1da177e4 1243
1defeac9
CH
1244 if (ioend && iomap_valid) {
1245 offset = (iomap.iomap_offset + iomap.iomap_bsize - 1) >>
1da177e4 1246 PAGE_CACHE_SHIFT;
775bf6c9 1247 tlast = min_t(pgoff_t, offset, last_index);
1defeac9 1248 xfs_cluster_write(inode, page->index + 1, &iomap, &ioend,
6c4fe19f 1249 wbc, startio, all_bh, tlast);
1da177e4
LT
1250 }
1251
f6d6d4fc 1252 if (iohead)
06342cf8 1253 xfs_submit_ioend(wbc, iohead);
f6d6d4fc 1254
1da177e4
LT
1255 return page_dirty;
1256
1257error:
f6d6d4fc
CH
1258 if (iohead)
1259 xfs_cancel_ioend(iohead);
1da177e4
LT
1260
1261 /*
1262 * If it's delalloc and we have nowhere to put it,
1263 * throw it away, unless the lower layers told
1264 * us to try again.
1265 */
1266 if (err != -EAGAIN) {
f6d6d4fc 1267 if (!unmapped)
3ed3a434 1268 xfs_aops_discard_page(page);
1da177e4
LT
1269 ClearPageUptodate(page);
1270 }
1271 return err;
1272}
1273
f51623b2
NS
1274/*
1275 * writepage: Called from one of two places:
1276 *
1277 * 1. we are flushing a delalloc buffer head.
1278 *
1279 * 2. we are writing out a dirty page. Typically the page dirty
1280 * state is cleared before we get here. In this case is it
1281 * conceivable we have no buffer heads.
1282 *
1283 * For delalloc space on the page we need to allocate space and
1284 * flush it. For unmapped buffer heads on the page we should
1285 * allocate space if the page is uptodate. For any other dirty
1286 * buffer heads on the page we should flush them.
1287 *
1288 * If we detect that a transaction would be required to flush
1289 * the page, we have to check the process flags first, if we
1290 * are already in a transaction or disk I/O during allocations
1291 * is off, we need to fail the writepage and redirty the page.
1292 */
1293
1294STATIC int
e4c573bb 1295xfs_vm_writepage(
f51623b2
NS
1296 struct page *page,
1297 struct writeback_control *wbc)
1298{
1299 int error;
1300 int need_trans;
1301 int delalloc, unmapped, unwritten;
1302 struct inode *inode = page->mapping->host;
1303
0b1b213f 1304 trace_xfs_writepage(inode, page, 0);
f51623b2
NS
1305
1306 /*
1307 * We need a transaction if:
1308 * 1. There are delalloc buffers on the page
1309 * 2. The page is uptodate and we have unmapped buffers
1310 * 3. The page is uptodate and we have no buffers
1311 * 4. There are unwritten buffers on the page
1312 */
1313
1314 if (!page_has_buffers(page)) {
1315 unmapped = 1;
1316 need_trans = 1;
1317 } else {
1318 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1319 if (!PageUptodate(page))
1320 unmapped = 0;
1321 need_trans = delalloc + unmapped + unwritten;
1322 }
1323
1324 /*
1325 * If we need a transaction and the process flags say
1326 * we are already in a transaction, or no IO is allowed
1327 * then mark the page dirty again and leave the page
1328 * as is.
1329 */
59c1b082 1330 if (current_test_flags(PF_FSTRANS) && need_trans)
f51623b2
NS
1331 goto out_fail;
1332
1333 /*
1334 * Delay hooking up buffer heads until we have
1335 * made our go/no-go decision.
1336 */
1337 if (!page_has_buffers(page))
1338 create_empty_buffers(page, 1 << inode->i_blkbits, 0);
1339
c8a4051c
ES
1340
1341 /*
1342 * VM calculation for nr_to_write seems off. Bump it way
1343 * up, this gets simple streaming writes zippy again.
1344 * To be reviewed again after Jens' writeback changes.
1345 */
1346 wbc->nr_to_write *= 4;
1347
f51623b2
NS
1348 /*
1349 * Convert delayed allocate, unwritten or unmapped space
1350 * to real space and flush out to disk.
1351 */
1352 error = xfs_page_state_convert(inode, page, wbc, 1, unmapped);
1353 if (error == -EAGAIN)
1354 goto out_fail;
1355 if (unlikely(error < 0))
1356 goto out_unlock;
1357
1358 return 0;
1359
1360out_fail:
1361 redirty_page_for_writepage(wbc, page);
1362 unlock_page(page);
1363 return 0;
1364out_unlock:
1365 unlock_page(page);
1366 return error;
1367}
1368
7d4fb40a
NS
1369STATIC int
1370xfs_vm_writepages(
1371 struct address_space *mapping,
1372 struct writeback_control *wbc)
1373{
b3aea4ed 1374 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
7d4fb40a
NS
1375 return generic_writepages(mapping, wbc);
1376}
1377
f51623b2
NS
1378/*
1379 * Called to move a page into cleanable state - and from there
1380 * to be released. Possibly the page is already clean. We always
1381 * have buffer heads in this call.
1382 *
1383 * Returns 0 if the page is ok to release, 1 otherwise.
1384 *
1385 * Possible scenarios are:
1386 *
1387 * 1. We are being called to release a page which has been written
1388 * to via regular I/O. buffer heads will be dirty and possibly
1389 * delalloc. If no delalloc buffer heads in this case then we
1390 * can just return zero.
1391 *
1392 * 2. We are called to release a page which has been written via
1393 * mmap, all we need to do is ensure there is no delalloc
1394 * state in the buffer heads, if not we can let the caller
1395 * free them and we should come back later via writepage.
1396 */
1397STATIC int
238f4c54 1398xfs_vm_releasepage(
f51623b2
NS
1399 struct page *page,
1400 gfp_t gfp_mask)
1401{
1402 struct inode *inode = page->mapping->host;
1403 int dirty, delalloc, unmapped, unwritten;
1404 struct writeback_control wbc = {
1405 .sync_mode = WB_SYNC_ALL,
1406 .nr_to_write = 1,
1407 };
1408
0b1b213f 1409 trace_xfs_releasepage(inode, page, 0);
f51623b2 1410
238f4c54
NS
1411 if (!page_has_buffers(page))
1412 return 0;
1413
f51623b2
NS
1414 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1415 if (!delalloc && !unwritten)
1416 goto free_buffers;
1417
1418 if (!(gfp_mask & __GFP_FS))
1419 return 0;
1420
1421 /* If we are already inside a transaction or the thread cannot
1422 * do I/O, we cannot release this page.
1423 */
59c1b082 1424 if (current_test_flags(PF_FSTRANS))
f51623b2
NS
1425 return 0;
1426
1427 /*
1428 * Convert delalloc space to real space, do not flush the
1429 * data out to disk, that will be done by the caller.
1430 * Never need to allocate space here - we will always
1431 * come back to writepage in that case.
1432 */
1433 dirty = xfs_page_state_convert(inode, page, &wbc, 0, 0);
1434 if (dirty == 0 && !unwritten)
1435 goto free_buffers;
1436 return 0;
1437
1438free_buffers:
1439 return try_to_free_buffers(page);
1440}
1441
1da177e4 1442STATIC int
c2536668 1443__xfs_get_blocks(
1da177e4
LT
1444 struct inode *inode,
1445 sector_t iblock,
1da177e4
LT
1446 struct buffer_head *bh_result,
1447 int create,
1448 int direct,
1449 bmapi_flags_t flags)
1450{
1da177e4 1451 xfs_iomap_t iomap;
fdc7ed75
NS
1452 xfs_off_t offset;
1453 ssize_t size;
c2536668 1454 int niomap = 1;
1da177e4 1455 int error;
1da177e4 1456
fdc7ed75 1457 offset = (xfs_off_t)iblock << inode->i_blkbits;
c2536668
NS
1458 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1459 size = bh_result->b_size;
364f358a
LM
1460
1461 if (!create && direct && offset >= i_size_read(inode))
1462 return 0;
1463
541d7d3c 1464 error = xfs_iomap(XFS_I(inode), offset, size,
67fcaa73 1465 create ? flags : BMAPI_READ, &iomap, &niomap);
1da177e4
LT
1466 if (error)
1467 return -error;
c2536668 1468 if (niomap == 0)
1da177e4
LT
1469 return 0;
1470
1471 if (iomap.iomap_bn != IOMAP_DADDR_NULL) {
87cbc49c
NS
1472 /*
1473 * For unwritten extents do not report a disk address on
1da177e4
LT
1474 * the read case (treat as if we're reading into a hole).
1475 */
1476 if (create || !(iomap.iomap_flags & IOMAP_UNWRITTEN)) {
87cbc49c
NS
1477 xfs_map_buffer(bh_result, &iomap, offset,
1478 inode->i_blkbits);
1da177e4
LT
1479 }
1480 if (create && (iomap.iomap_flags & IOMAP_UNWRITTEN)) {
1481 if (direct)
1482 bh_result->b_private = inode;
1483 set_buffer_unwritten(bh_result);
1da177e4
LT
1484 }
1485 }
1486
c2536668
NS
1487 /*
1488 * If this is a realtime file, data may be on a different device.
1489 * to that pointed to from the buffer_head b_bdev currently.
1490 */
ce8e922c 1491 bh_result->b_bdev = iomap.iomap_target->bt_bdev;
1da177e4 1492
c2536668 1493 /*
549054af
DC
1494 * If we previously allocated a block out beyond eof and we are now
1495 * coming back to use it then we will need to flag it as new even if it
1496 * has a disk address.
1497 *
1498 * With sub-block writes into unwritten extents we also need to mark
1499 * the buffer as new so that the unwritten parts of the buffer gets
1500 * correctly zeroed.
1da177e4
LT
1501 */
1502 if (create &&
1503 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
549054af
DC
1504 (offset >= i_size_read(inode)) ||
1505 (iomap.iomap_flags & (IOMAP_NEW|IOMAP_UNWRITTEN))))
1da177e4 1506 set_buffer_new(bh_result);
1da177e4
LT
1507
1508 if (iomap.iomap_flags & IOMAP_DELAY) {
1509 BUG_ON(direct);
1510 if (create) {
1511 set_buffer_uptodate(bh_result);
1512 set_buffer_mapped(bh_result);
1513 set_buffer_delay(bh_result);
1514 }
1515 }
1516
c2536668 1517 if (direct || size > (1 << inode->i_blkbits)) {
fdc7ed75
NS
1518 ASSERT(iomap.iomap_bsize - iomap.iomap_delta > 0);
1519 offset = min_t(xfs_off_t,
c2536668
NS
1520 iomap.iomap_bsize - iomap.iomap_delta, size);
1521 bh_result->b_size = (ssize_t)min_t(xfs_off_t, LONG_MAX, offset);
1da177e4
LT
1522 }
1523
1524 return 0;
1525}
1526
1527int
c2536668 1528xfs_get_blocks(
1da177e4
LT
1529 struct inode *inode,
1530 sector_t iblock,
1531 struct buffer_head *bh_result,
1532 int create)
1533{
c2536668 1534 return __xfs_get_blocks(inode, iblock,
fa30bd05 1535 bh_result, create, 0, BMAPI_WRITE);
1da177e4
LT
1536}
1537
1538STATIC int
e4c573bb 1539xfs_get_blocks_direct(
1da177e4
LT
1540 struct inode *inode,
1541 sector_t iblock,
1da177e4
LT
1542 struct buffer_head *bh_result,
1543 int create)
1544{
c2536668 1545 return __xfs_get_blocks(inode, iblock,
1d8fa7a2 1546 bh_result, create, 1, BMAPI_WRITE|BMAPI_DIRECT);
1da177e4
LT
1547}
1548
f0973863 1549STATIC void
e4c573bb 1550xfs_end_io_direct(
f0973863
CH
1551 struct kiocb *iocb,
1552 loff_t offset,
1553 ssize_t size,
1554 void *private)
1555{
1556 xfs_ioend_t *ioend = iocb->private;
1557
1558 /*
1559 * Non-NULL private data means we need to issue a transaction to
1560 * convert a range from unwritten to written extents. This needs
c41564b5 1561 * to happen from process context but aio+dio I/O completion
f0973863 1562 * happens from irq context so we need to defer it to a workqueue.
c41564b5 1563 * This is not necessary for synchronous direct I/O, but we do
f0973863
CH
1564 * it anyway to keep the code uniform and simpler.
1565 *
e927af90
DC
1566 * Well, if only it were that simple. Because synchronous direct I/O
1567 * requires extent conversion to occur *before* we return to userspace,
1568 * we have to wait for extent conversion to complete. Look at the
1569 * iocb that has been passed to us to determine if this is AIO or
1570 * not. If it is synchronous, tell xfs_finish_ioend() to kick the
1571 * workqueue and wait for it to complete.
1572 *
f0973863
CH
1573 * The core direct I/O code might be changed to always call the
1574 * completion handler in the future, in which case all this can
1575 * go away.
1576 */
ba87ea69
LM
1577 ioend->io_offset = offset;
1578 ioend->io_size = size;
1579 if (ioend->io_type == IOMAP_READ) {
e927af90 1580 xfs_finish_ioend(ioend, 0);
ba87ea69 1581 } else if (private && size > 0) {
e927af90 1582 xfs_finish_ioend(ioend, is_sync_kiocb(iocb));
f0973863 1583 } else {
ba87ea69
LM
1584 /*
1585 * A direct I/O write ioend starts it's life in unwritten
1586 * state in case they map an unwritten extent. This write
1587 * didn't map an unwritten extent so switch it's completion
1588 * handler.
1589 */
5ec4fabb 1590 ioend->io_type = IOMAP_NEW;
e927af90 1591 xfs_finish_ioend(ioend, 0);
f0973863
CH
1592 }
1593
1594 /*
c41564b5 1595 * blockdev_direct_IO can return an error even after the I/O
f0973863
CH
1596 * completion handler was called. Thus we need to protect
1597 * against double-freeing.
1598 */
1599 iocb->private = NULL;
1600}
1601
1da177e4 1602STATIC ssize_t
e4c573bb 1603xfs_vm_direct_IO(
1da177e4
LT
1604 int rw,
1605 struct kiocb *iocb,
1606 const struct iovec *iov,
1607 loff_t offset,
1608 unsigned long nr_segs)
1609{
1610 struct file *file = iocb->ki_filp;
1611 struct inode *inode = file->f_mapping->host;
6214ed44 1612 struct block_device *bdev;
f0973863 1613 ssize_t ret;
1da177e4 1614
6214ed44 1615 bdev = xfs_find_bdev_for_inode(XFS_I(inode));
1da177e4 1616
5fe878ae
CH
1617 iocb->private = xfs_alloc_ioend(inode, rw == WRITE ?
1618 IOMAP_UNWRITTEN : IOMAP_READ);
1619
1620 ret = blockdev_direct_IO_no_locking(rw, iocb, inode, bdev, iov,
1621 offset, nr_segs,
1622 xfs_get_blocks_direct,
1623 xfs_end_io_direct);
f0973863 1624
8459d86a 1625 if (unlikely(ret != -EIOCBQUEUED && iocb->private))
f0973863
CH
1626 xfs_destroy_ioend(iocb->private);
1627 return ret;
1da177e4
LT
1628}
1629
f51623b2 1630STATIC int
d79689c7 1631xfs_vm_write_begin(
f51623b2 1632 struct file *file,
d79689c7
NP
1633 struct address_space *mapping,
1634 loff_t pos,
1635 unsigned len,
1636 unsigned flags,
1637 struct page **pagep,
1638 void **fsdata)
f51623b2 1639{
d79689c7
NP
1640 *pagep = NULL;
1641 return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1642 xfs_get_blocks);
f51623b2 1643}
1da177e4
LT
1644
1645STATIC sector_t
e4c573bb 1646xfs_vm_bmap(
1da177e4
LT
1647 struct address_space *mapping,
1648 sector_t block)
1649{
1650 struct inode *inode = (struct inode *)mapping->host;
739bfb2a 1651 struct xfs_inode *ip = XFS_I(inode);
1da177e4 1652
cf441eeb 1653 xfs_itrace_entry(XFS_I(inode));
126468b1 1654 xfs_ilock(ip, XFS_IOLOCK_SHARED);
739bfb2a 1655 xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF);
126468b1 1656 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
c2536668 1657 return generic_block_bmap(mapping, block, xfs_get_blocks);
1da177e4
LT
1658}
1659
1660STATIC int
e4c573bb 1661xfs_vm_readpage(
1da177e4
LT
1662 struct file *unused,
1663 struct page *page)
1664{
c2536668 1665 return mpage_readpage(page, xfs_get_blocks);
1da177e4
LT
1666}
1667
1668STATIC int
e4c573bb 1669xfs_vm_readpages(
1da177e4
LT
1670 struct file *unused,
1671 struct address_space *mapping,
1672 struct list_head *pages,
1673 unsigned nr_pages)
1674{
c2536668 1675 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1da177e4
LT
1676}
1677
f5e54d6e 1678const struct address_space_operations xfs_address_space_operations = {
e4c573bb
NS
1679 .readpage = xfs_vm_readpage,
1680 .readpages = xfs_vm_readpages,
1681 .writepage = xfs_vm_writepage,
7d4fb40a 1682 .writepages = xfs_vm_writepages,
1da177e4 1683 .sync_page = block_sync_page,
238f4c54
NS
1684 .releasepage = xfs_vm_releasepage,
1685 .invalidatepage = xfs_vm_invalidatepage,
d79689c7
NP
1686 .write_begin = xfs_vm_write_begin,
1687 .write_end = generic_write_end,
e4c573bb
NS
1688 .bmap = xfs_vm_bmap,
1689 .direct_IO = xfs_vm_direct_IO,
e965f963 1690 .migratepage = buffer_migrate_page,
bddaafa1 1691 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 1692 .error_remove_page = generic_error_remove_page,
1da177e4 1693};