xfs: uninline xfs_get_extsz_hint
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / xfs / linux-2.6 / xfs_aops.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_bit.h"
1da177e4 20#include "xfs_log.h"
a844f451 21#include "xfs_inum.h"
1da177e4 22#include "xfs_sb.h"
a844f451 23#include "xfs_ag.h"
1da177e4
LT
24#include "xfs_dir2.h"
25#include "xfs_trans.h"
26#include "xfs_dmapi.h"
27#include "xfs_mount.h"
28#include "xfs_bmap_btree.h"
29#include "xfs_alloc_btree.h"
30#include "xfs_ialloc_btree.h"
1da177e4 31#include "xfs_dir2_sf.h"
a844f451 32#include "xfs_attr_sf.h"
1da177e4
LT
33#include "xfs_dinode.h"
34#include "xfs_inode.h"
a844f451
NS
35#include "xfs_alloc.h"
36#include "xfs_btree.h"
1da177e4
LT
37#include "xfs_error.h"
38#include "xfs_rw.h"
39#include "xfs_iomap.h"
739bfb2a 40#include "xfs_vnodeops.h"
1da177e4 41#include <linux/mpage.h>
10ce4444 42#include <linux/pagevec.h>
1da177e4
LT
43#include <linux/writeback.h>
44
25e41b3d
CH
45
46/*
47 * Prime number of hash buckets since address is used as the key.
48 */
49#define NVSYNC 37
50#define to_ioend_wq(v) (&xfs_ioend_wq[((unsigned long)v) % NVSYNC])
51static wait_queue_head_t xfs_ioend_wq[NVSYNC];
52
53void __init
54xfs_ioend_init(void)
55{
56 int i;
57
58 for (i = 0; i < NVSYNC; i++)
59 init_waitqueue_head(&xfs_ioend_wq[i]);
60}
61
62void
63xfs_ioend_wait(
64 xfs_inode_t *ip)
65{
66 wait_queue_head_t *wq = to_ioend_wq(ip);
67
68 wait_event(*wq, (atomic_read(&ip->i_iocount) == 0));
69}
70
71STATIC void
72xfs_ioend_wake(
73 xfs_inode_t *ip)
74{
75 if (atomic_dec_and_test(&ip->i_iocount))
76 wake_up(to_ioend_wq(ip));
77}
78
f51623b2
NS
79STATIC void
80xfs_count_page_state(
81 struct page *page,
82 int *delalloc,
83 int *unmapped,
84 int *unwritten)
85{
86 struct buffer_head *bh, *head;
87
88 *delalloc = *unmapped = *unwritten = 0;
89
90 bh = head = page_buffers(page);
91 do {
92 if (buffer_uptodate(bh) && !buffer_mapped(bh))
93 (*unmapped) = 1;
f51623b2
NS
94 else if (buffer_unwritten(bh))
95 (*unwritten) = 1;
96 else if (buffer_delay(bh))
97 (*delalloc) = 1;
98 } while ((bh = bh->b_this_page) != head);
99}
100
1da177e4
LT
101#if defined(XFS_RW_TRACE)
102void
103xfs_page_trace(
104 int tag,
105 struct inode *inode,
106 struct page *page,
ed9d88f7 107 unsigned long pgoff)
1da177e4
LT
108{
109 xfs_inode_t *ip;
1da177e4 110 loff_t isize = i_size_read(inode);
f6d6d4fc 111 loff_t offset = page_offset(page);
1da177e4
LT
112 int delalloc = -1, unmapped = -1, unwritten = -1;
113
114 if (page_has_buffers(page))
115 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
116
e6064d30 117 ip = XFS_I(inode);
1da177e4
LT
118 if (!ip->i_rwtrace)
119 return;
120
121 ktrace_enter(ip->i_rwtrace,
122 (void *)((unsigned long)tag),
123 (void *)ip,
124 (void *)inode,
125 (void *)page,
ed9d88f7 126 (void *)pgoff,
1da177e4
LT
127 (void *)((unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff)),
128 (void *)((unsigned long)(ip->i_d.di_size & 0xffffffff)),
129 (void *)((unsigned long)((isize >> 32) & 0xffffffff)),
130 (void *)((unsigned long)(isize & 0xffffffff)),
131 (void *)((unsigned long)((offset >> 32) & 0xffffffff)),
132 (void *)((unsigned long)(offset & 0xffffffff)),
133 (void *)((unsigned long)delalloc),
134 (void *)((unsigned long)unmapped),
135 (void *)((unsigned long)unwritten),
f1fdc848 136 (void *)((unsigned long)current_pid()),
1da177e4
LT
137 (void *)NULL);
138}
139#else
ed9d88f7 140#define xfs_page_trace(tag, inode, page, pgoff)
1da177e4
LT
141#endif
142
6214ed44
CH
143STATIC struct block_device *
144xfs_find_bdev_for_inode(
145 struct xfs_inode *ip)
146{
147 struct xfs_mount *mp = ip->i_mount;
148
71ddabb9 149 if (XFS_IS_REALTIME_INODE(ip))
6214ed44
CH
150 return mp->m_rtdev_targp->bt_bdev;
151 else
152 return mp->m_ddev_targp->bt_bdev;
153}
154
f6d6d4fc
CH
155/*
156 * We're now finished for good with this ioend structure.
157 * Update the page state via the associated buffer_heads,
158 * release holds on the inode and bio, and finally free
159 * up memory. Do not use the ioend after this.
160 */
0829c360
CH
161STATIC void
162xfs_destroy_ioend(
163 xfs_ioend_t *ioend)
164{
f6d6d4fc 165 struct buffer_head *bh, *next;
583fa586 166 struct xfs_inode *ip = XFS_I(ioend->io_inode);
f6d6d4fc
CH
167
168 for (bh = ioend->io_buffer_head; bh; bh = next) {
169 next = bh->b_private;
7d04a335 170 bh->b_end_io(bh, !ioend->io_error);
f6d6d4fc 171 }
583fa586
CH
172
173 /*
174 * Volume managers supporting multiple paths can send back ENODEV
175 * when the final path disappears. In this case continuing to fill
176 * the page cache with dirty data which cannot be written out is
177 * evil, so prevent that.
178 */
179 if (unlikely(ioend->io_error == -ENODEV)) {
180 xfs_do_force_shutdown(ip->i_mount, SHUTDOWN_DEVICE_REQ,
181 __FILE__, __LINE__);
b677c210 182 }
583fa586 183
25e41b3d 184 xfs_ioend_wake(ip);
0829c360
CH
185 mempool_free(ioend, xfs_ioend_pool);
186}
187
932640e8
DC
188/*
189 * If the end of the current ioend is beyond the current EOF,
190 * return the new EOF value, otherwise zero.
191 */
192STATIC xfs_fsize_t
193xfs_ioend_new_eof(
194 xfs_ioend_t *ioend)
195{
196 xfs_inode_t *ip = XFS_I(ioend->io_inode);
197 xfs_fsize_t isize;
198 xfs_fsize_t bsize;
199
200 bsize = ioend->io_offset + ioend->io_size;
201 isize = MAX(ip->i_size, ip->i_new_size);
202 isize = MIN(isize, bsize);
203 return isize > ip->i_d.di_size ? isize : 0;
204}
205
ba87ea69
LM
206/*
207 * Update on-disk file size now that data has been written to disk.
208 * The current in-memory file size is i_size. If a write is beyond
613d7043 209 * eof i_new_size will be the intended file size until i_size is
ba87ea69
LM
210 * updated. If this write does not extend all the way to the valid
211 * file size then restrict this update to the end of the write.
212 */
932640e8 213
ba87ea69
LM
214STATIC void
215xfs_setfilesize(
216 xfs_ioend_t *ioend)
217{
b677c210 218 xfs_inode_t *ip = XFS_I(ioend->io_inode);
ba87ea69 219 xfs_fsize_t isize;
ba87ea69 220
ba87ea69
LM
221 ASSERT((ip->i_d.di_mode & S_IFMT) == S_IFREG);
222 ASSERT(ioend->io_type != IOMAP_READ);
223
224 if (unlikely(ioend->io_error))
225 return;
226
ba87ea69 227 xfs_ilock(ip, XFS_ILOCK_EXCL);
932640e8
DC
228 isize = xfs_ioend_new_eof(ioend);
229 if (isize) {
ba87ea69 230 ip->i_d.di_size = isize;
94b97e39 231 xfs_mark_inode_dirty_sync(ip);
ba87ea69
LM
232 }
233
234 xfs_iunlock(ip, XFS_ILOCK_EXCL);
235}
236
0829c360 237/*
5ec4fabb 238 * IO write completion.
f6d6d4fc
CH
239 */
240STATIC void
5ec4fabb 241xfs_end_io(
c4028958 242 struct work_struct *work)
0829c360 243{
c4028958
DH
244 xfs_ioend_t *ioend =
245 container_of(work, xfs_ioend_t, io_work);
7642861b 246 struct xfs_inode *ip = XFS_I(ioend->io_inode);
ba87ea69 247
5ec4fabb
CH
248 /*
249 * For unwritten extents we need to issue transactions to convert a
250 * range to normal written extens after the data I/O has finished.
251 */
252 if (ioend->io_type == IOMAP_UNWRITTEN &&
253 likely(!ioend->io_error && !XFS_FORCED_SHUTDOWN(ip->i_mount))) {
254 int error;
255
256 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
257 ioend->io_size);
258 if (error)
259 ioend->io_error = error;
260 }
ba87ea69 261
5ec4fabb
CH
262 /*
263 * We might have to update the on-disk file size after extending
264 * writes.
265 */
266 if (ioend->io_type != IOMAP_READ)
267 xfs_setfilesize(ioend);
0829c360
CH
268 xfs_destroy_ioend(ioend);
269}
270
c626d174
DC
271/*
272 * Schedule IO completion handling on a xfsdatad if this was
273 * the final hold on this ioend. If we are asked to wait,
274 * flush the workqueue.
275 */
276STATIC void
277xfs_finish_ioend(
278 xfs_ioend_t *ioend,
279 int wait)
280{
281 if (atomic_dec_and_test(&ioend->io_remaining)) {
5ec4fabb 282 struct workqueue_struct *wq;
c626d174 283
5ec4fabb
CH
284 wq = (ioend->io_type == IOMAP_UNWRITTEN) ?
285 xfsconvertd_workqueue : xfsdatad_workqueue;
c626d174
DC
286 queue_work(wq, &ioend->io_work);
287 if (wait)
288 flush_workqueue(wq);
289 }
290}
291
0829c360
CH
292/*
293 * Allocate and initialise an IO completion structure.
294 * We need to track unwritten extent write completion here initially.
295 * We'll need to extend this for updating the ondisk inode size later
296 * (vs. incore size).
297 */
298STATIC xfs_ioend_t *
299xfs_alloc_ioend(
f6d6d4fc
CH
300 struct inode *inode,
301 unsigned int type)
0829c360
CH
302{
303 xfs_ioend_t *ioend;
304
305 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
306
307 /*
308 * Set the count to 1 initially, which will prevent an I/O
309 * completion callback from happening before we have started
310 * all the I/O from calling the completion routine too early.
311 */
312 atomic_set(&ioend->io_remaining, 1);
7d04a335 313 ioend->io_error = 0;
f6d6d4fc
CH
314 ioend->io_list = NULL;
315 ioend->io_type = type;
b677c210 316 ioend->io_inode = inode;
c1a073bd 317 ioend->io_buffer_head = NULL;
f6d6d4fc 318 ioend->io_buffer_tail = NULL;
b677c210 319 atomic_inc(&XFS_I(ioend->io_inode)->i_iocount);
0829c360
CH
320 ioend->io_offset = 0;
321 ioend->io_size = 0;
322
5ec4fabb 323 INIT_WORK(&ioend->io_work, xfs_end_io);
0829c360
CH
324 return ioend;
325}
326
1da177e4
LT
327STATIC int
328xfs_map_blocks(
329 struct inode *inode,
330 loff_t offset,
331 ssize_t count,
332 xfs_iomap_t *mapp,
333 int flags)
334{
6bd16ff2
CH
335 int nmaps = 1;
336
337 return -xfs_iomap(XFS_I(inode), offset, count, flags, mapp, &nmaps);
1da177e4
LT
338}
339
7989cb8e 340STATIC_INLINE int
1defeac9 341xfs_iomap_valid(
1da177e4 342 xfs_iomap_t *iomapp,
1defeac9 343 loff_t offset)
1da177e4 344{
1defeac9
CH
345 return offset >= iomapp->iomap_offset &&
346 offset < iomapp->iomap_offset + iomapp->iomap_bsize;
1da177e4
LT
347}
348
f6d6d4fc
CH
349/*
350 * BIO completion handler for buffered IO.
351 */
782e3b3b 352STATIC void
f6d6d4fc
CH
353xfs_end_bio(
354 struct bio *bio,
f6d6d4fc
CH
355 int error)
356{
357 xfs_ioend_t *ioend = bio->bi_private;
358
f6d6d4fc 359 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
7d04a335 360 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
f6d6d4fc
CH
361
362 /* Toss bio and pass work off to an xfsdatad thread */
f6d6d4fc
CH
363 bio->bi_private = NULL;
364 bio->bi_end_io = NULL;
f6d6d4fc 365 bio_put(bio);
7d04a335 366
e927af90 367 xfs_finish_ioend(ioend, 0);
f6d6d4fc
CH
368}
369
370STATIC void
371xfs_submit_ioend_bio(
06342cf8
CH
372 struct writeback_control *wbc,
373 xfs_ioend_t *ioend,
374 struct bio *bio)
f6d6d4fc
CH
375{
376 atomic_inc(&ioend->io_remaining);
f6d6d4fc
CH
377 bio->bi_private = ioend;
378 bio->bi_end_io = xfs_end_bio;
379
932640e8
DC
380 /*
381 * If the I/O is beyond EOF we mark the inode dirty immediately
382 * but don't update the inode size until I/O completion.
383 */
384 if (xfs_ioend_new_eof(ioend))
385 xfs_mark_inode_dirty_sync(XFS_I(ioend->io_inode));
386
06342cf8
CH
387 submit_bio(wbc->sync_mode == WB_SYNC_ALL ?
388 WRITE_SYNC_PLUG : WRITE, bio);
f6d6d4fc
CH
389 ASSERT(!bio_flagged(bio, BIO_EOPNOTSUPP));
390 bio_put(bio);
391}
392
393STATIC struct bio *
394xfs_alloc_ioend_bio(
395 struct buffer_head *bh)
396{
397 struct bio *bio;
398 int nvecs = bio_get_nr_vecs(bh->b_bdev);
399
400 do {
401 bio = bio_alloc(GFP_NOIO, nvecs);
402 nvecs >>= 1;
403 } while (!bio);
404
405 ASSERT(bio->bi_private == NULL);
406 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
407 bio->bi_bdev = bh->b_bdev;
408 bio_get(bio);
409 return bio;
410}
411
412STATIC void
413xfs_start_buffer_writeback(
414 struct buffer_head *bh)
415{
416 ASSERT(buffer_mapped(bh));
417 ASSERT(buffer_locked(bh));
418 ASSERT(!buffer_delay(bh));
419 ASSERT(!buffer_unwritten(bh));
420
421 mark_buffer_async_write(bh);
422 set_buffer_uptodate(bh);
423 clear_buffer_dirty(bh);
424}
425
426STATIC void
427xfs_start_page_writeback(
428 struct page *page,
f6d6d4fc
CH
429 int clear_dirty,
430 int buffers)
431{
432 ASSERT(PageLocked(page));
433 ASSERT(!PageWriteback(page));
f6d6d4fc 434 if (clear_dirty)
92132021
DC
435 clear_page_dirty_for_io(page);
436 set_page_writeback(page);
f6d6d4fc 437 unlock_page(page);
1f7decf6
FW
438 /* If no buffers on the page are to be written, finish it here */
439 if (!buffers)
f6d6d4fc 440 end_page_writeback(page);
f6d6d4fc
CH
441}
442
443static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
444{
445 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
446}
447
448/*
d88992f6
DC
449 * Submit all of the bios for all of the ioends we have saved up, covering the
450 * initial writepage page and also any probed pages.
451 *
452 * Because we may have multiple ioends spanning a page, we need to start
453 * writeback on all the buffers before we submit them for I/O. If we mark the
454 * buffers as we got, then we can end up with a page that only has buffers
455 * marked async write and I/O complete on can occur before we mark the other
456 * buffers async write.
457 *
458 * The end result of this is that we trip a bug in end_page_writeback() because
459 * we call it twice for the one page as the code in end_buffer_async_write()
460 * assumes that all buffers on the page are started at the same time.
461 *
462 * The fix is two passes across the ioend list - one to start writeback on the
c41564b5 463 * buffer_heads, and then submit them for I/O on the second pass.
f6d6d4fc
CH
464 */
465STATIC void
466xfs_submit_ioend(
06342cf8 467 struct writeback_control *wbc,
f6d6d4fc
CH
468 xfs_ioend_t *ioend)
469{
d88992f6 470 xfs_ioend_t *head = ioend;
f6d6d4fc
CH
471 xfs_ioend_t *next;
472 struct buffer_head *bh;
473 struct bio *bio;
474 sector_t lastblock = 0;
475
d88992f6
DC
476 /* Pass 1 - start writeback */
477 do {
478 next = ioend->io_list;
479 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
480 xfs_start_buffer_writeback(bh);
481 }
482 } while ((ioend = next) != NULL);
483
484 /* Pass 2 - submit I/O */
485 ioend = head;
f6d6d4fc
CH
486 do {
487 next = ioend->io_list;
488 bio = NULL;
489
490 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
f6d6d4fc
CH
491
492 if (!bio) {
493 retry:
494 bio = xfs_alloc_ioend_bio(bh);
495 } else if (bh->b_blocknr != lastblock + 1) {
06342cf8 496 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
497 goto retry;
498 }
499
500 if (bio_add_buffer(bio, bh) != bh->b_size) {
06342cf8 501 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
502 goto retry;
503 }
504
505 lastblock = bh->b_blocknr;
506 }
507 if (bio)
06342cf8 508 xfs_submit_ioend_bio(wbc, ioend, bio);
e927af90 509 xfs_finish_ioend(ioend, 0);
f6d6d4fc
CH
510 } while ((ioend = next) != NULL);
511}
512
513/*
514 * Cancel submission of all buffer_heads so far in this endio.
515 * Toss the endio too. Only ever called for the initial page
516 * in a writepage request, so only ever one page.
517 */
518STATIC void
519xfs_cancel_ioend(
520 xfs_ioend_t *ioend)
521{
522 xfs_ioend_t *next;
523 struct buffer_head *bh, *next_bh;
524
525 do {
526 next = ioend->io_list;
527 bh = ioend->io_buffer_head;
528 do {
529 next_bh = bh->b_private;
530 clear_buffer_async_write(bh);
531 unlock_buffer(bh);
532 } while ((bh = next_bh) != NULL);
533
25e41b3d 534 xfs_ioend_wake(XFS_I(ioend->io_inode));
f6d6d4fc
CH
535 mempool_free(ioend, xfs_ioend_pool);
536 } while ((ioend = next) != NULL);
537}
538
539/*
540 * Test to see if we've been building up a completion structure for
541 * earlier buffers -- if so, we try to append to this ioend if we
542 * can, otherwise we finish off any current ioend and start another.
543 * Return true if we've finished the given ioend.
544 */
545STATIC void
546xfs_add_to_ioend(
547 struct inode *inode,
548 struct buffer_head *bh,
7336cea8 549 xfs_off_t offset,
f6d6d4fc
CH
550 unsigned int type,
551 xfs_ioend_t **result,
552 int need_ioend)
553{
554 xfs_ioend_t *ioend = *result;
555
556 if (!ioend || need_ioend || type != ioend->io_type) {
557 xfs_ioend_t *previous = *result;
f6d6d4fc 558
f6d6d4fc
CH
559 ioend = xfs_alloc_ioend(inode, type);
560 ioend->io_offset = offset;
561 ioend->io_buffer_head = bh;
562 ioend->io_buffer_tail = bh;
563 if (previous)
564 previous->io_list = ioend;
565 *result = ioend;
566 } else {
567 ioend->io_buffer_tail->b_private = bh;
568 ioend->io_buffer_tail = bh;
569 }
570
571 bh->b_private = NULL;
572 ioend->io_size += bh->b_size;
573}
574
87cbc49c
NS
575STATIC void
576xfs_map_buffer(
577 struct buffer_head *bh,
578 xfs_iomap_t *mp,
579 xfs_off_t offset,
580 uint block_bits)
581{
582 sector_t bn;
583
584 ASSERT(mp->iomap_bn != IOMAP_DADDR_NULL);
585
586 bn = (mp->iomap_bn >> (block_bits - BBSHIFT)) +
587 ((offset - mp->iomap_offset) >> block_bits);
588
589 ASSERT(bn || (mp->iomap_flags & IOMAP_REALTIME));
590
591 bh->b_blocknr = bn;
592 set_buffer_mapped(bh);
593}
594
1da177e4
LT
595STATIC void
596xfs_map_at_offset(
1da177e4 597 struct buffer_head *bh,
1defeac9 598 loff_t offset,
1da177e4 599 int block_bits,
1defeac9 600 xfs_iomap_t *iomapp)
1da177e4 601{
1da177e4
LT
602 ASSERT(!(iomapp->iomap_flags & IOMAP_HOLE));
603 ASSERT(!(iomapp->iomap_flags & IOMAP_DELAY));
1da177e4
LT
604
605 lock_buffer(bh);
87cbc49c 606 xfs_map_buffer(bh, iomapp, offset, block_bits);
ce8e922c 607 bh->b_bdev = iomapp->iomap_target->bt_bdev;
1da177e4
LT
608 set_buffer_mapped(bh);
609 clear_buffer_delay(bh);
f6d6d4fc 610 clear_buffer_unwritten(bh);
1da177e4
LT
611}
612
613/*
6c4fe19f 614 * Look for a page at index that is suitable for clustering.
1da177e4
LT
615 */
616STATIC unsigned int
6c4fe19f 617xfs_probe_page(
10ce4444 618 struct page *page,
6c4fe19f
CH
619 unsigned int pg_offset,
620 int mapped)
1da177e4 621{
1da177e4
LT
622 int ret = 0;
623
1da177e4 624 if (PageWriteback(page))
10ce4444 625 return 0;
1da177e4
LT
626
627 if (page->mapping && PageDirty(page)) {
628 if (page_has_buffers(page)) {
629 struct buffer_head *bh, *head;
630
631 bh = head = page_buffers(page);
632 do {
6c4fe19f
CH
633 if (!buffer_uptodate(bh))
634 break;
635 if (mapped != buffer_mapped(bh))
1da177e4
LT
636 break;
637 ret += bh->b_size;
638 if (ret >= pg_offset)
639 break;
640 } while ((bh = bh->b_this_page) != head);
641 } else
6c4fe19f 642 ret = mapped ? 0 : PAGE_CACHE_SIZE;
1da177e4
LT
643 }
644
1da177e4
LT
645 return ret;
646}
647
f6d6d4fc 648STATIC size_t
6c4fe19f 649xfs_probe_cluster(
1da177e4
LT
650 struct inode *inode,
651 struct page *startpage,
652 struct buffer_head *bh,
6c4fe19f
CH
653 struct buffer_head *head,
654 int mapped)
1da177e4 655{
10ce4444 656 struct pagevec pvec;
1da177e4 657 pgoff_t tindex, tlast, tloff;
10ce4444
CH
658 size_t total = 0;
659 int done = 0, i;
1da177e4
LT
660
661 /* First sum forwards in this page */
662 do {
2353e8e9 663 if (!buffer_uptodate(bh) || (mapped != buffer_mapped(bh)))
10ce4444 664 return total;
1da177e4
LT
665 total += bh->b_size;
666 } while ((bh = bh->b_this_page) != head);
667
10ce4444
CH
668 /* if we reached the end of the page, sum forwards in following pages */
669 tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT;
670 tindex = startpage->index + 1;
671
672 /* Prune this back to avoid pathological behavior */
673 tloff = min(tlast, startpage->index + 64);
674
675 pagevec_init(&pvec, 0);
676 while (!done && tindex <= tloff) {
677 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
678
679 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
680 break;
681
682 for (i = 0; i < pagevec_count(&pvec); i++) {
683 struct page *page = pvec.pages[i];
265c1fac 684 size_t pg_offset, pg_len = 0;
10ce4444
CH
685
686 if (tindex == tlast) {
687 pg_offset =
688 i_size_read(inode) & (PAGE_CACHE_SIZE - 1);
1defeac9
CH
689 if (!pg_offset) {
690 done = 1;
10ce4444 691 break;
1defeac9 692 }
10ce4444
CH
693 } else
694 pg_offset = PAGE_CACHE_SIZE;
695
529ae9aa 696 if (page->index == tindex && trylock_page(page)) {
265c1fac 697 pg_len = xfs_probe_page(page, pg_offset, mapped);
10ce4444
CH
698 unlock_page(page);
699 }
700
265c1fac 701 if (!pg_len) {
10ce4444
CH
702 done = 1;
703 break;
704 }
705
265c1fac 706 total += pg_len;
1defeac9 707 tindex++;
1da177e4 708 }
10ce4444
CH
709
710 pagevec_release(&pvec);
711 cond_resched();
1da177e4 712 }
10ce4444 713
1da177e4
LT
714 return total;
715}
716
717/*
10ce4444
CH
718 * Test if a given page is suitable for writing as part of an unwritten
719 * or delayed allocate extent.
1da177e4 720 */
10ce4444
CH
721STATIC int
722xfs_is_delayed_page(
723 struct page *page,
f6d6d4fc 724 unsigned int type)
1da177e4 725{
1da177e4 726 if (PageWriteback(page))
10ce4444 727 return 0;
1da177e4
LT
728
729 if (page->mapping && page_has_buffers(page)) {
730 struct buffer_head *bh, *head;
731 int acceptable = 0;
732
733 bh = head = page_buffers(page);
734 do {
f6d6d4fc
CH
735 if (buffer_unwritten(bh))
736 acceptable = (type == IOMAP_UNWRITTEN);
737 else if (buffer_delay(bh))
738 acceptable = (type == IOMAP_DELAY);
2ddee844 739 else if (buffer_dirty(bh) && buffer_mapped(bh))
df3c7244 740 acceptable = (type == IOMAP_NEW);
f6d6d4fc 741 else
1da177e4 742 break;
1da177e4
LT
743 } while ((bh = bh->b_this_page) != head);
744
745 if (acceptable)
10ce4444 746 return 1;
1da177e4
LT
747 }
748
10ce4444 749 return 0;
1da177e4
LT
750}
751
1da177e4
LT
752/*
753 * Allocate & map buffers for page given the extent map. Write it out.
754 * except for the original page of a writepage, this is called on
755 * delalloc/unwritten pages only, for the original page it is possible
756 * that the page has no mapping at all.
757 */
f6d6d4fc 758STATIC int
1da177e4
LT
759xfs_convert_page(
760 struct inode *inode,
761 struct page *page,
10ce4444 762 loff_t tindex,
1defeac9 763 xfs_iomap_t *mp,
f6d6d4fc 764 xfs_ioend_t **ioendp,
1da177e4 765 struct writeback_control *wbc,
1da177e4
LT
766 int startio,
767 int all_bh)
768{
f6d6d4fc 769 struct buffer_head *bh, *head;
9260dc6b
CH
770 xfs_off_t end_offset;
771 unsigned long p_offset;
f6d6d4fc 772 unsigned int type;
1da177e4 773 int bbits = inode->i_blkbits;
24e17b5f 774 int len, page_dirty;
f6d6d4fc 775 int count = 0, done = 0, uptodate = 1;
9260dc6b 776 xfs_off_t offset = page_offset(page);
1da177e4 777
10ce4444
CH
778 if (page->index != tindex)
779 goto fail;
529ae9aa 780 if (!trylock_page(page))
10ce4444
CH
781 goto fail;
782 if (PageWriteback(page))
783 goto fail_unlock_page;
784 if (page->mapping != inode->i_mapping)
785 goto fail_unlock_page;
786 if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
787 goto fail_unlock_page;
788
24e17b5f
NS
789 /*
790 * page_dirty is initially a count of buffers on the page before
c41564b5 791 * EOF and is decremented as we move each into a cleanable state.
9260dc6b
CH
792 *
793 * Derivation:
794 *
795 * End offset is the highest offset that this page should represent.
796 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
797 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
798 * hence give us the correct page_dirty count. On any other page,
799 * it will be zero and in that case we need page_dirty to be the
800 * count of buffers on the page.
24e17b5f 801 */
9260dc6b
CH
802 end_offset = min_t(unsigned long long,
803 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
804 i_size_read(inode));
805
24e17b5f 806 len = 1 << inode->i_blkbits;
9260dc6b
CH
807 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
808 PAGE_CACHE_SIZE);
809 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
810 page_dirty = p_offset / len;
24e17b5f 811
1da177e4
LT
812 bh = head = page_buffers(page);
813 do {
9260dc6b 814 if (offset >= end_offset)
1da177e4 815 break;
f6d6d4fc
CH
816 if (!buffer_uptodate(bh))
817 uptodate = 0;
818 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
819 done = 1;
1da177e4 820 continue;
f6d6d4fc
CH
821 }
822
9260dc6b
CH
823 if (buffer_unwritten(bh) || buffer_delay(bh)) {
824 if (buffer_unwritten(bh))
825 type = IOMAP_UNWRITTEN;
826 else
827 type = IOMAP_DELAY;
828
829 if (!xfs_iomap_valid(mp, offset)) {
f6d6d4fc 830 done = 1;
9260dc6b
CH
831 continue;
832 }
833
834 ASSERT(!(mp->iomap_flags & IOMAP_HOLE));
835 ASSERT(!(mp->iomap_flags & IOMAP_DELAY));
836
837 xfs_map_at_offset(bh, offset, bbits, mp);
838 if (startio) {
7336cea8 839 xfs_add_to_ioend(inode, bh, offset,
9260dc6b
CH
840 type, ioendp, done);
841 } else {
842 set_buffer_dirty(bh);
843 unlock_buffer(bh);
844 mark_buffer_dirty(bh);
845 }
846 page_dirty--;
847 count++;
848 } else {
df3c7244 849 type = IOMAP_NEW;
9260dc6b 850 if (buffer_mapped(bh) && all_bh && startio) {
1da177e4 851 lock_buffer(bh);
7336cea8 852 xfs_add_to_ioend(inode, bh, offset,
f6d6d4fc
CH
853 type, ioendp, done);
854 count++;
24e17b5f 855 page_dirty--;
9260dc6b
CH
856 } else {
857 done = 1;
1da177e4 858 }
1da177e4 859 }
7336cea8 860 } while (offset += len, (bh = bh->b_this_page) != head);
1da177e4 861
f6d6d4fc
CH
862 if (uptodate && bh == head)
863 SetPageUptodate(page);
864
865 if (startio) {
f5e596bb
CH
866 if (count) {
867 struct backing_dev_info *bdi;
868
869 bdi = inode->i_mapping->backing_dev_info;
9fddaca2 870 wbc->nr_to_write--;
f5e596bb
CH
871 if (bdi_write_congested(bdi)) {
872 wbc->encountered_congestion = 1;
873 done = 1;
9fddaca2 874 } else if (wbc->nr_to_write <= 0) {
f5e596bb
CH
875 done = 1;
876 }
877 }
b41759cf 878 xfs_start_page_writeback(page, !page_dirty, count);
1da177e4 879 }
f6d6d4fc
CH
880
881 return done;
10ce4444
CH
882 fail_unlock_page:
883 unlock_page(page);
884 fail:
885 return 1;
1da177e4
LT
886}
887
888/*
889 * Convert & write out a cluster of pages in the same extent as defined
890 * by mp and following the start page.
891 */
892STATIC void
893xfs_cluster_write(
894 struct inode *inode,
895 pgoff_t tindex,
896 xfs_iomap_t *iomapp,
f6d6d4fc 897 xfs_ioend_t **ioendp,
1da177e4
LT
898 struct writeback_control *wbc,
899 int startio,
900 int all_bh,
901 pgoff_t tlast)
902{
10ce4444
CH
903 struct pagevec pvec;
904 int done = 0, i;
1da177e4 905
10ce4444
CH
906 pagevec_init(&pvec, 0);
907 while (!done && tindex <= tlast) {
908 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
909
910 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
1da177e4 911 break;
10ce4444
CH
912
913 for (i = 0; i < pagevec_count(&pvec); i++) {
914 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
915 iomapp, ioendp, wbc, startio, all_bh);
916 if (done)
917 break;
918 }
919
920 pagevec_release(&pvec);
921 cond_resched();
1da177e4
LT
922 }
923}
924
925/*
926 * Calling this without startio set means we are being asked to make a dirty
927 * page ready for freeing it's buffers. When called with startio set then
928 * we are coming from writepage.
929 *
930 * When called with startio set it is important that we write the WHOLE
931 * page if possible.
932 * The bh->b_state's cannot know if any of the blocks or which block for
933 * that matter are dirty due to mmap writes, and therefore bh uptodate is
c41564b5 934 * only valid if the page itself isn't completely uptodate. Some layers
1da177e4
LT
935 * may clear the page dirty flag prior to calling write page, under the
936 * assumption the entire page will be written out; by not writing out the
937 * whole page the page can be reused before all valid dirty data is
938 * written out. Note: in the case of a page that has been dirty'd by
939 * mapwrite and but partially setup by block_prepare_write the
940 * bh->b_states's will not agree and only ones setup by BPW/BCW will have
941 * valid state, thus the whole page must be written out thing.
942 */
943
944STATIC int
945xfs_page_state_convert(
946 struct inode *inode,
947 struct page *page,
948 struct writeback_control *wbc,
949 int startio,
950 int unmapped) /* also implies page uptodate */
951{
f6d6d4fc 952 struct buffer_head *bh, *head;
1defeac9 953 xfs_iomap_t iomap;
f6d6d4fc 954 xfs_ioend_t *ioend = NULL, *iohead = NULL;
1da177e4
LT
955 loff_t offset;
956 unsigned long p_offset = 0;
f6d6d4fc 957 unsigned int type;
1da177e4
LT
958 __uint64_t end_offset;
959 pgoff_t end_index, last_index, tlast;
d5cb48aa
CH
960 ssize_t size, len;
961 int flags, err, iomap_valid = 0, uptodate = 1;
8272145c
NS
962 int page_dirty, count = 0;
963 int trylock = 0;
6c4fe19f 964 int all_bh = unmapped;
1da177e4 965
8272145c
NS
966 if (startio) {
967 if (wbc->sync_mode == WB_SYNC_NONE && wbc->nonblocking)
968 trylock |= BMAPI_TRYLOCK;
969 }
3ba0815a 970
1da177e4
LT
971 /* Is this page beyond the end of the file? */
972 offset = i_size_read(inode);
973 end_index = offset >> PAGE_CACHE_SHIFT;
974 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
975 if (page->index >= end_index) {
976 if ((page->index >= end_index + 1) ||
977 !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
19d5bcf3
NS
978 if (startio)
979 unlock_page(page);
980 return 0;
1da177e4
LT
981 }
982 }
983
1da177e4 984 /*
24e17b5f 985 * page_dirty is initially a count of buffers on the page before
c41564b5 986 * EOF and is decremented as we move each into a cleanable state.
f6d6d4fc
CH
987 *
988 * Derivation:
989 *
990 * End offset is the highest offset that this page should represent.
991 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
992 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
993 * hence give us the correct page_dirty count. On any other page,
994 * it will be zero and in that case we need page_dirty to be the
995 * count of buffers on the page.
996 */
997 end_offset = min_t(unsigned long long,
998 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, offset);
24e17b5f 999 len = 1 << inode->i_blkbits;
f6d6d4fc
CH
1000 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
1001 PAGE_CACHE_SIZE);
1002 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
24e17b5f
NS
1003 page_dirty = p_offset / len;
1004
24e17b5f 1005 bh = head = page_buffers(page);
f6d6d4fc 1006 offset = page_offset(page);
df3c7244
DC
1007 flags = BMAPI_READ;
1008 type = IOMAP_NEW;
f6d6d4fc 1009
f6d6d4fc 1010 /* TODO: cleanup count and page_dirty */
1da177e4
LT
1011
1012 do {
1013 if (offset >= end_offset)
1014 break;
1015 if (!buffer_uptodate(bh))
1016 uptodate = 0;
f6d6d4fc 1017 if (!(PageUptodate(page) || buffer_uptodate(bh)) && !startio) {
1defeac9
CH
1018 /*
1019 * the iomap is actually still valid, but the ioend
1020 * isn't. shouldn't happen too often.
1021 */
1022 iomap_valid = 0;
1da177e4 1023 continue;
f6d6d4fc 1024 }
1da177e4 1025
1defeac9
CH
1026 if (iomap_valid)
1027 iomap_valid = xfs_iomap_valid(&iomap, offset);
1da177e4
LT
1028
1029 /*
1030 * First case, map an unwritten extent and prepare for
1031 * extent state conversion transaction on completion.
f6d6d4fc 1032 *
1da177e4
LT
1033 * Second case, allocate space for a delalloc buffer.
1034 * We can return EAGAIN here in the release page case.
d5cb48aa
CH
1035 *
1036 * Third case, an unmapped buffer was found, and we are
1037 * in a path where we need to write the whole page out.
df3c7244 1038 */
d5cb48aa
CH
1039 if (buffer_unwritten(bh) || buffer_delay(bh) ||
1040 ((buffer_uptodate(bh) || PageUptodate(page)) &&
1041 !buffer_mapped(bh) && (unmapped || startio))) {
effd120e
DC
1042 int new_ioend = 0;
1043
df3c7244 1044 /*
6c4fe19f
CH
1045 * Make sure we don't use a read-only iomap
1046 */
df3c7244 1047 if (flags == BMAPI_READ)
6c4fe19f
CH
1048 iomap_valid = 0;
1049
f6d6d4fc
CH
1050 if (buffer_unwritten(bh)) {
1051 type = IOMAP_UNWRITTEN;
8272145c 1052 flags = BMAPI_WRITE | BMAPI_IGNSTATE;
d5cb48aa 1053 } else if (buffer_delay(bh)) {
f6d6d4fc 1054 type = IOMAP_DELAY;
8272145c 1055 flags = BMAPI_ALLOCATE | trylock;
d5cb48aa 1056 } else {
6c4fe19f 1057 type = IOMAP_NEW;
8272145c 1058 flags = BMAPI_WRITE | BMAPI_MMAP;
f6d6d4fc
CH
1059 }
1060
1defeac9 1061 if (!iomap_valid) {
effd120e
DC
1062 /*
1063 * if we didn't have a valid mapping then we
1064 * need to ensure that we put the new mapping
1065 * in a new ioend structure. This needs to be
1066 * done to ensure that the ioends correctly
1067 * reflect the block mappings at io completion
1068 * for unwritten extent conversion.
1069 */
1070 new_ioend = 1;
6c4fe19f
CH
1071 if (type == IOMAP_NEW) {
1072 size = xfs_probe_cluster(inode,
1073 page, bh, head, 0);
d5cb48aa
CH
1074 } else {
1075 size = len;
1076 }
1077
1078 err = xfs_map_blocks(inode, offset, size,
1079 &iomap, flags);
f6d6d4fc 1080 if (err)
1da177e4 1081 goto error;
1defeac9 1082 iomap_valid = xfs_iomap_valid(&iomap, offset);
1da177e4 1083 }
1defeac9
CH
1084 if (iomap_valid) {
1085 xfs_map_at_offset(bh, offset,
1086 inode->i_blkbits, &iomap);
1da177e4 1087 if (startio) {
7336cea8 1088 xfs_add_to_ioend(inode, bh, offset,
1defeac9 1089 type, &ioend,
effd120e 1090 new_ioend);
1da177e4
LT
1091 } else {
1092 set_buffer_dirty(bh);
1093 unlock_buffer(bh);
1094 mark_buffer_dirty(bh);
1095 }
1096 page_dirty--;
f6d6d4fc 1097 count++;
1da177e4 1098 }
d5cb48aa 1099 } else if (buffer_uptodate(bh) && startio) {
6c4fe19f
CH
1100 /*
1101 * we got here because the buffer is already mapped.
1102 * That means it must already have extents allocated
1103 * underneath it. Map the extent by reading it.
1104 */
df3c7244 1105 if (!iomap_valid || flags != BMAPI_READ) {
6c4fe19f
CH
1106 flags = BMAPI_READ;
1107 size = xfs_probe_cluster(inode, page, bh,
1108 head, 1);
1109 err = xfs_map_blocks(inode, offset, size,
1110 &iomap, flags);
1111 if (err)
1112 goto error;
1113 iomap_valid = xfs_iomap_valid(&iomap, offset);
1114 }
d5cb48aa 1115
df3c7244
DC
1116 /*
1117 * We set the type to IOMAP_NEW in case we are doing a
1118 * small write at EOF that is extending the file but
1119 * without needing an allocation. We need to update the
1120 * file size on I/O completion in this case so it is
1121 * the same case as having just allocated a new extent
1122 * that we are writing into for the first time.
1123 */
1124 type = IOMAP_NEW;
ca5de404 1125 if (trylock_buffer(bh)) {
d5cb48aa 1126 ASSERT(buffer_mapped(bh));
6c4fe19f
CH
1127 if (iomap_valid)
1128 all_bh = 1;
7336cea8 1129 xfs_add_to_ioend(inode, bh, offset, type,
d5cb48aa
CH
1130 &ioend, !iomap_valid);
1131 page_dirty--;
1132 count++;
f6d6d4fc 1133 } else {
1defeac9 1134 iomap_valid = 0;
1da177e4 1135 }
d5cb48aa
CH
1136 } else if ((buffer_uptodate(bh) || PageUptodate(page)) &&
1137 (unmapped || startio)) {
1138 iomap_valid = 0;
1da177e4 1139 }
f6d6d4fc
CH
1140
1141 if (!iohead)
1142 iohead = ioend;
1143
1144 } while (offset += len, ((bh = bh->b_this_page) != head));
1da177e4
LT
1145
1146 if (uptodate && bh == head)
1147 SetPageUptodate(page);
1148
f6d6d4fc 1149 if (startio)
b41759cf 1150 xfs_start_page_writeback(page, 1, count);
1da177e4 1151
1defeac9
CH
1152 if (ioend && iomap_valid) {
1153 offset = (iomap.iomap_offset + iomap.iomap_bsize - 1) >>
1da177e4 1154 PAGE_CACHE_SHIFT;
775bf6c9 1155 tlast = min_t(pgoff_t, offset, last_index);
1defeac9 1156 xfs_cluster_write(inode, page->index + 1, &iomap, &ioend,
6c4fe19f 1157 wbc, startio, all_bh, tlast);
1da177e4
LT
1158 }
1159
f6d6d4fc 1160 if (iohead)
06342cf8 1161 xfs_submit_ioend(wbc, iohead);
f6d6d4fc 1162
1da177e4
LT
1163 return page_dirty;
1164
1165error:
f6d6d4fc
CH
1166 if (iohead)
1167 xfs_cancel_ioend(iohead);
1da177e4
LT
1168
1169 /*
1170 * If it's delalloc and we have nowhere to put it,
1171 * throw it away, unless the lower layers told
1172 * us to try again.
1173 */
1174 if (err != -EAGAIN) {
f6d6d4fc 1175 if (!unmapped)
1da177e4 1176 block_invalidatepage(page, 0);
1da177e4
LT
1177 ClearPageUptodate(page);
1178 }
1179 return err;
1180}
1181
f51623b2
NS
1182/*
1183 * writepage: Called from one of two places:
1184 *
1185 * 1. we are flushing a delalloc buffer head.
1186 *
1187 * 2. we are writing out a dirty page. Typically the page dirty
1188 * state is cleared before we get here. In this case is it
1189 * conceivable we have no buffer heads.
1190 *
1191 * For delalloc space on the page we need to allocate space and
1192 * flush it. For unmapped buffer heads on the page we should
1193 * allocate space if the page is uptodate. For any other dirty
1194 * buffer heads on the page we should flush them.
1195 *
1196 * If we detect that a transaction would be required to flush
1197 * the page, we have to check the process flags first, if we
1198 * are already in a transaction or disk I/O during allocations
1199 * is off, we need to fail the writepage and redirty the page.
1200 */
1201
1202STATIC int
e4c573bb 1203xfs_vm_writepage(
f51623b2
NS
1204 struct page *page,
1205 struct writeback_control *wbc)
1206{
1207 int error;
1208 int need_trans;
1209 int delalloc, unmapped, unwritten;
1210 struct inode *inode = page->mapping->host;
1211
1212 xfs_page_trace(XFS_WRITEPAGE_ENTER, inode, page, 0);
1213
1214 /*
1215 * We need a transaction if:
1216 * 1. There are delalloc buffers on the page
1217 * 2. The page is uptodate and we have unmapped buffers
1218 * 3. The page is uptodate and we have no buffers
1219 * 4. There are unwritten buffers on the page
1220 */
1221
1222 if (!page_has_buffers(page)) {
1223 unmapped = 1;
1224 need_trans = 1;
1225 } else {
1226 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1227 if (!PageUptodate(page))
1228 unmapped = 0;
1229 need_trans = delalloc + unmapped + unwritten;
1230 }
1231
1232 /*
1233 * If we need a transaction and the process flags say
1234 * we are already in a transaction, or no IO is allowed
1235 * then mark the page dirty again and leave the page
1236 * as is.
1237 */
59c1b082 1238 if (current_test_flags(PF_FSTRANS) && need_trans)
f51623b2
NS
1239 goto out_fail;
1240
1241 /*
1242 * Delay hooking up buffer heads until we have
1243 * made our go/no-go decision.
1244 */
1245 if (!page_has_buffers(page))
1246 create_empty_buffers(page, 1 << inode->i_blkbits, 0);
1247
c8a4051c
ES
1248
1249 /*
1250 * VM calculation for nr_to_write seems off. Bump it way
1251 * up, this gets simple streaming writes zippy again.
1252 * To be reviewed again after Jens' writeback changes.
1253 */
1254 wbc->nr_to_write *= 4;
1255
f51623b2
NS
1256 /*
1257 * Convert delayed allocate, unwritten or unmapped space
1258 * to real space and flush out to disk.
1259 */
1260 error = xfs_page_state_convert(inode, page, wbc, 1, unmapped);
1261 if (error == -EAGAIN)
1262 goto out_fail;
1263 if (unlikely(error < 0))
1264 goto out_unlock;
1265
1266 return 0;
1267
1268out_fail:
1269 redirty_page_for_writepage(wbc, page);
1270 unlock_page(page);
1271 return 0;
1272out_unlock:
1273 unlock_page(page);
1274 return error;
1275}
1276
7d4fb40a
NS
1277STATIC int
1278xfs_vm_writepages(
1279 struct address_space *mapping,
1280 struct writeback_control *wbc)
1281{
b3aea4ed 1282 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
7d4fb40a
NS
1283 return generic_writepages(mapping, wbc);
1284}
1285
f51623b2
NS
1286/*
1287 * Called to move a page into cleanable state - and from there
1288 * to be released. Possibly the page is already clean. We always
1289 * have buffer heads in this call.
1290 *
1291 * Returns 0 if the page is ok to release, 1 otherwise.
1292 *
1293 * Possible scenarios are:
1294 *
1295 * 1. We are being called to release a page which has been written
1296 * to via regular I/O. buffer heads will be dirty and possibly
1297 * delalloc. If no delalloc buffer heads in this case then we
1298 * can just return zero.
1299 *
1300 * 2. We are called to release a page which has been written via
1301 * mmap, all we need to do is ensure there is no delalloc
1302 * state in the buffer heads, if not we can let the caller
1303 * free them and we should come back later via writepage.
1304 */
1305STATIC int
238f4c54 1306xfs_vm_releasepage(
f51623b2
NS
1307 struct page *page,
1308 gfp_t gfp_mask)
1309{
1310 struct inode *inode = page->mapping->host;
1311 int dirty, delalloc, unmapped, unwritten;
1312 struct writeback_control wbc = {
1313 .sync_mode = WB_SYNC_ALL,
1314 .nr_to_write = 1,
1315 };
1316
ed9d88f7 1317 xfs_page_trace(XFS_RELEASEPAGE_ENTER, inode, page, 0);
f51623b2 1318
238f4c54
NS
1319 if (!page_has_buffers(page))
1320 return 0;
1321
f51623b2
NS
1322 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1323 if (!delalloc && !unwritten)
1324 goto free_buffers;
1325
1326 if (!(gfp_mask & __GFP_FS))
1327 return 0;
1328
1329 /* If we are already inside a transaction or the thread cannot
1330 * do I/O, we cannot release this page.
1331 */
59c1b082 1332 if (current_test_flags(PF_FSTRANS))
f51623b2
NS
1333 return 0;
1334
1335 /*
1336 * Convert delalloc space to real space, do not flush the
1337 * data out to disk, that will be done by the caller.
1338 * Never need to allocate space here - we will always
1339 * come back to writepage in that case.
1340 */
1341 dirty = xfs_page_state_convert(inode, page, &wbc, 0, 0);
1342 if (dirty == 0 && !unwritten)
1343 goto free_buffers;
1344 return 0;
1345
1346free_buffers:
1347 return try_to_free_buffers(page);
1348}
1349
1da177e4 1350STATIC int
c2536668 1351__xfs_get_blocks(
1da177e4
LT
1352 struct inode *inode,
1353 sector_t iblock,
1da177e4
LT
1354 struct buffer_head *bh_result,
1355 int create,
1356 int direct,
1357 bmapi_flags_t flags)
1358{
1da177e4 1359 xfs_iomap_t iomap;
fdc7ed75
NS
1360 xfs_off_t offset;
1361 ssize_t size;
c2536668 1362 int niomap = 1;
1da177e4 1363 int error;
1da177e4 1364
fdc7ed75 1365 offset = (xfs_off_t)iblock << inode->i_blkbits;
c2536668
NS
1366 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1367 size = bh_result->b_size;
364f358a
LM
1368
1369 if (!create && direct && offset >= i_size_read(inode))
1370 return 0;
1371
541d7d3c 1372 error = xfs_iomap(XFS_I(inode), offset, size,
67fcaa73 1373 create ? flags : BMAPI_READ, &iomap, &niomap);
1da177e4
LT
1374 if (error)
1375 return -error;
c2536668 1376 if (niomap == 0)
1da177e4
LT
1377 return 0;
1378
1379 if (iomap.iomap_bn != IOMAP_DADDR_NULL) {
87cbc49c
NS
1380 /*
1381 * For unwritten extents do not report a disk address on
1da177e4
LT
1382 * the read case (treat as if we're reading into a hole).
1383 */
1384 if (create || !(iomap.iomap_flags & IOMAP_UNWRITTEN)) {
87cbc49c
NS
1385 xfs_map_buffer(bh_result, &iomap, offset,
1386 inode->i_blkbits);
1da177e4
LT
1387 }
1388 if (create && (iomap.iomap_flags & IOMAP_UNWRITTEN)) {
1389 if (direct)
1390 bh_result->b_private = inode;
1391 set_buffer_unwritten(bh_result);
1da177e4
LT
1392 }
1393 }
1394
c2536668
NS
1395 /*
1396 * If this is a realtime file, data may be on a different device.
1397 * to that pointed to from the buffer_head b_bdev currently.
1398 */
ce8e922c 1399 bh_result->b_bdev = iomap.iomap_target->bt_bdev;
1da177e4 1400
c2536668 1401 /*
549054af
DC
1402 * If we previously allocated a block out beyond eof and we are now
1403 * coming back to use it then we will need to flag it as new even if it
1404 * has a disk address.
1405 *
1406 * With sub-block writes into unwritten extents we also need to mark
1407 * the buffer as new so that the unwritten parts of the buffer gets
1408 * correctly zeroed.
1da177e4
LT
1409 */
1410 if (create &&
1411 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
549054af
DC
1412 (offset >= i_size_read(inode)) ||
1413 (iomap.iomap_flags & (IOMAP_NEW|IOMAP_UNWRITTEN))))
1da177e4 1414 set_buffer_new(bh_result);
1da177e4
LT
1415
1416 if (iomap.iomap_flags & IOMAP_DELAY) {
1417 BUG_ON(direct);
1418 if (create) {
1419 set_buffer_uptodate(bh_result);
1420 set_buffer_mapped(bh_result);
1421 set_buffer_delay(bh_result);
1422 }
1423 }
1424
c2536668 1425 if (direct || size > (1 << inode->i_blkbits)) {
fdc7ed75
NS
1426 ASSERT(iomap.iomap_bsize - iomap.iomap_delta > 0);
1427 offset = min_t(xfs_off_t,
c2536668
NS
1428 iomap.iomap_bsize - iomap.iomap_delta, size);
1429 bh_result->b_size = (ssize_t)min_t(xfs_off_t, LONG_MAX, offset);
1da177e4
LT
1430 }
1431
1432 return 0;
1433}
1434
1435int
c2536668 1436xfs_get_blocks(
1da177e4
LT
1437 struct inode *inode,
1438 sector_t iblock,
1439 struct buffer_head *bh_result,
1440 int create)
1441{
c2536668 1442 return __xfs_get_blocks(inode, iblock,
fa30bd05 1443 bh_result, create, 0, BMAPI_WRITE);
1da177e4
LT
1444}
1445
1446STATIC int
e4c573bb 1447xfs_get_blocks_direct(
1da177e4
LT
1448 struct inode *inode,
1449 sector_t iblock,
1da177e4
LT
1450 struct buffer_head *bh_result,
1451 int create)
1452{
c2536668 1453 return __xfs_get_blocks(inode, iblock,
1d8fa7a2 1454 bh_result, create, 1, BMAPI_WRITE|BMAPI_DIRECT);
1da177e4
LT
1455}
1456
f0973863 1457STATIC void
e4c573bb 1458xfs_end_io_direct(
f0973863
CH
1459 struct kiocb *iocb,
1460 loff_t offset,
1461 ssize_t size,
1462 void *private)
1463{
1464 xfs_ioend_t *ioend = iocb->private;
1465
1466 /*
1467 * Non-NULL private data means we need to issue a transaction to
1468 * convert a range from unwritten to written extents. This needs
c41564b5 1469 * to happen from process context but aio+dio I/O completion
f0973863 1470 * happens from irq context so we need to defer it to a workqueue.
c41564b5 1471 * This is not necessary for synchronous direct I/O, but we do
f0973863
CH
1472 * it anyway to keep the code uniform and simpler.
1473 *
e927af90
DC
1474 * Well, if only it were that simple. Because synchronous direct I/O
1475 * requires extent conversion to occur *before* we return to userspace,
1476 * we have to wait for extent conversion to complete. Look at the
1477 * iocb that has been passed to us to determine if this is AIO or
1478 * not. If it is synchronous, tell xfs_finish_ioend() to kick the
1479 * workqueue and wait for it to complete.
1480 *
f0973863
CH
1481 * The core direct I/O code might be changed to always call the
1482 * completion handler in the future, in which case all this can
1483 * go away.
1484 */
ba87ea69
LM
1485 ioend->io_offset = offset;
1486 ioend->io_size = size;
1487 if (ioend->io_type == IOMAP_READ) {
e927af90 1488 xfs_finish_ioend(ioend, 0);
ba87ea69 1489 } else if (private && size > 0) {
e927af90 1490 xfs_finish_ioend(ioend, is_sync_kiocb(iocb));
f0973863 1491 } else {
ba87ea69
LM
1492 /*
1493 * A direct I/O write ioend starts it's life in unwritten
1494 * state in case they map an unwritten extent. This write
1495 * didn't map an unwritten extent so switch it's completion
1496 * handler.
1497 */
5ec4fabb 1498 ioend->io_type = IOMAP_NEW;
e927af90 1499 xfs_finish_ioend(ioend, 0);
f0973863
CH
1500 }
1501
1502 /*
c41564b5 1503 * blockdev_direct_IO can return an error even after the I/O
f0973863
CH
1504 * completion handler was called. Thus we need to protect
1505 * against double-freeing.
1506 */
1507 iocb->private = NULL;
1508}
1509
1da177e4 1510STATIC ssize_t
e4c573bb 1511xfs_vm_direct_IO(
1da177e4
LT
1512 int rw,
1513 struct kiocb *iocb,
1514 const struct iovec *iov,
1515 loff_t offset,
1516 unsigned long nr_segs)
1517{
1518 struct file *file = iocb->ki_filp;
1519 struct inode *inode = file->f_mapping->host;
6214ed44 1520 struct block_device *bdev;
f0973863 1521 ssize_t ret;
1da177e4 1522
6214ed44 1523 bdev = xfs_find_bdev_for_inode(XFS_I(inode));
1da177e4 1524
721259bc 1525 if (rw == WRITE) {
ba87ea69 1526 iocb->private = xfs_alloc_ioend(inode, IOMAP_UNWRITTEN);
721259bc 1527 ret = blockdev_direct_IO_own_locking(rw, iocb, inode,
6214ed44 1528 bdev, iov, offset, nr_segs,
721259bc
LM
1529 xfs_get_blocks_direct,
1530 xfs_end_io_direct);
1531 } else {
ba87ea69 1532 iocb->private = xfs_alloc_ioend(inode, IOMAP_READ);
721259bc 1533 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
6214ed44 1534 bdev, iov, offset, nr_segs,
721259bc
LM
1535 xfs_get_blocks_direct,
1536 xfs_end_io_direct);
1537 }
f0973863 1538
8459d86a 1539 if (unlikely(ret != -EIOCBQUEUED && iocb->private))
f0973863
CH
1540 xfs_destroy_ioend(iocb->private);
1541 return ret;
1da177e4
LT
1542}
1543
f51623b2 1544STATIC int
d79689c7 1545xfs_vm_write_begin(
f51623b2 1546 struct file *file,
d79689c7
NP
1547 struct address_space *mapping,
1548 loff_t pos,
1549 unsigned len,
1550 unsigned flags,
1551 struct page **pagep,
1552 void **fsdata)
f51623b2 1553{
d79689c7
NP
1554 *pagep = NULL;
1555 return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1556 xfs_get_blocks);
f51623b2 1557}
1da177e4
LT
1558
1559STATIC sector_t
e4c573bb 1560xfs_vm_bmap(
1da177e4
LT
1561 struct address_space *mapping,
1562 sector_t block)
1563{
1564 struct inode *inode = (struct inode *)mapping->host;
739bfb2a 1565 struct xfs_inode *ip = XFS_I(inode);
1da177e4 1566
cf441eeb 1567 xfs_itrace_entry(XFS_I(inode));
126468b1 1568 xfs_ilock(ip, XFS_IOLOCK_SHARED);
739bfb2a 1569 xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF);
126468b1 1570 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
c2536668 1571 return generic_block_bmap(mapping, block, xfs_get_blocks);
1da177e4
LT
1572}
1573
1574STATIC int
e4c573bb 1575xfs_vm_readpage(
1da177e4
LT
1576 struct file *unused,
1577 struct page *page)
1578{
c2536668 1579 return mpage_readpage(page, xfs_get_blocks);
1da177e4
LT
1580}
1581
1582STATIC int
e4c573bb 1583xfs_vm_readpages(
1da177e4
LT
1584 struct file *unused,
1585 struct address_space *mapping,
1586 struct list_head *pages,
1587 unsigned nr_pages)
1588{
c2536668 1589 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1da177e4
LT
1590}
1591
2ff28e22 1592STATIC void
238f4c54 1593xfs_vm_invalidatepage(
bcec2b7f
NS
1594 struct page *page,
1595 unsigned long offset)
1596{
1597 xfs_page_trace(XFS_INVALIDPAGE_ENTER,
1598 page->mapping->host, page, offset);
2ff28e22 1599 block_invalidatepage(page, offset);
bcec2b7f
NS
1600}
1601
f5e54d6e 1602const struct address_space_operations xfs_address_space_operations = {
e4c573bb
NS
1603 .readpage = xfs_vm_readpage,
1604 .readpages = xfs_vm_readpages,
1605 .writepage = xfs_vm_writepage,
7d4fb40a 1606 .writepages = xfs_vm_writepages,
1da177e4 1607 .sync_page = block_sync_page,
238f4c54
NS
1608 .releasepage = xfs_vm_releasepage,
1609 .invalidatepage = xfs_vm_invalidatepage,
d79689c7
NP
1610 .write_begin = xfs_vm_write_begin,
1611 .write_end = generic_write_end,
e4c573bb
NS
1612 .bmap = xfs_vm_bmap,
1613 .direct_IO = xfs_vm_direct_IO,
e965f963 1614 .migratepage = buffer_migrate_page,
bddaafa1 1615 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 1616 .error_remove_page = generic_error_remove_page,
1da177e4 1617};