xfs: wait for I/O completion when writing out pages in xfs_setattr_size
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / xfs / xfs_aops.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_bit.h"
1da177e4 20#include "xfs_log.h"
a844f451 21#include "xfs_inum.h"
1da177e4 22#include "xfs_sb.h"
a844f451 23#include "xfs_ag.h"
1da177e4 24#include "xfs_trans.h"
1da177e4
LT
25#include "xfs_mount.h"
26#include "xfs_bmap_btree.h"
1da177e4
LT
27#include "xfs_dinode.h"
28#include "xfs_inode.h"
a844f451 29#include "xfs_alloc.h"
1da177e4
LT
30#include "xfs_error.h"
31#include "xfs_rw.h"
32#include "xfs_iomap.h"
739bfb2a 33#include "xfs_vnodeops.h"
0b1b213f 34#include "xfs_trace.h"
3ed3a434 35#include "xfs_bmap.h"
5a0e3ad6 36#include <linux/gfp.h>
1da177e4 37#include <linux/mpage.h>
10ce4444 38#include <linux/pagevec.h>
1da177e4
LT
39#include <linux/writeback.h>
40
25e41b3d
CH
41
42/*
43 * Prime number of hash buckets since address is used as the key.
44 */
45#define NVSYNC 37
46#define to_ioend_wq(v) (&xfs_ioend_wq[((unsigned long)v) % NVSYNC])
47static wait_queue_head_t xfs_ioend_wq[NVSYNC];
48
49void __init
50xfs_ioend_init(void)
51{
52 int i;
53
54 for (i = 0; i < NVSYNC; i++)
55 init_waitqueue_head(&xfs_ioend_wq[i]);
56}
57
58void
59xfs_ioend_wait(
60 xfs_inode_t *ip)
61{
62 wait_queue_head_t *wq = to_ioend_wq(ip);
63
64 wait_event(*wq, (atomic_read(&ip->i_iocount) == 0));
65}
66
67STATIC void
68xfs_ioend_wake(
69 xfs_inode_t *ip)
70{
71 if (atomic_dec_and_test(&ip->i_iocount))
72 wake_up(to_ioend_wq(ip));
73}
74
0b1b213f 75void
f51623b2
NS
76xfs_count_page_state(
77 struct page *page,
78 int *delalloc,
f51623b2
NS
79 int *unwritten)
80{
81 struct buffer_head *bh, *head;
82
20cb52eb 83 *delalloc = *unwritten = 0;
f51623b2
NS
84
85 bh = head = page_buffers(page);
86 do {
20cb52eb 87 if (buffer_unwritten(bh))
f51623b2
NS
88 (*unwritten) = 1;
89 else if (buffer_delay(bh))
90 (*delalloc) = 1;
91 } while ((bh = bh->b_this_page) != head);
92}
93
6214ed44
CH
94STATIC struct block_device *
95xfs_find_bdev_for_inode(
046f1685 96 struct inode *inode)
6214ed44 97{
046f1685 98 struct xfs_inode *ip = XFS_I(inode);
6214ed44
CH
99 struct xfs_mount *mp = ip->i_mount;
100
71ddabb9 101 if (XFS_IS_REALTIME_INODE(ip))
6214ed44
CH
102 return mp->m_rtdev_targp->bt_bdev;
103 else
104 return mp->m_ddev_targp->bt_bdev;
105}
106
f6d6d4fc
CH
107/*
108 * We're now finished for good with this ioend structure.
109 * Update the page state via the associated buffer_heads,
110 * release holds on the inode and bio, and finally free
111 * up memory. Do not use the ioend after this.
112 */
0829c360
CH
113STATIC void
114xfs_destroy_ioend(
115 xfs_ioend_t *ioend)
116{
f6d6d4fc 117 struct buffer_head *bh, *next;
583fa586 118 struct xfs_inode *ip = XFS_I(ioend->io_inode);
f6d6d4fc
CH
119
120 for (bh = ioend->io_buffer_head; bh; bh = next) {
121 next = bh->b_private;
7d04a335 122 bh->b_end_io(bh, !ioend->io_error);
f6d6d4fc 123 }
583fa586 124
c859cdd1
CH
125 if (ioend->io_iocb) {
126 if (ioend->io_isasync)
127 aio_complete(ioend->io_iocb, ioend->io_result, 0);
128 inode_dio_done(ioend->io_inode);
129 }
25e41b3d 130 xfs_ioend_wake(ip);
0829c360
CH
131 mempool_free(ioend, xfs_ioend_pool);
132}
133
932640e8
DC
134/*
135 * If the end of the current ioend is beyond the current EOF,
136 * return the new EOF value, otherwise zero.
137 */
138STATIC xfs_fsize_t
139xfs_ioend_new_eof(
140 xfs_ioend_t *ioend)
141{
142 xfs_inode_t *ip = XFS_I(ioend->io_inode);
143 xfs_fsize_t isize;
144 xfs_fsize_t bsize;
145
146 bsize = ioend->io_offset + ioend->io_size;
147 isize = MAX(ip->i_size, ip->i_new_size);
148 isize = MIN(isize, bsize);
149 return isize > ip->i_d.di_size ? isize : 0;
150}
151
fc0063c4
CH
152/*
153 * Fast and loose check if this write could update the on-disk inode size.
154 */
155static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
156{
157 return ioend->io_offset + ioend->io_size >
158 XFS_I(ioend->io_inode)->i_d.di_size;
159}
160
ba87ea69 161/*
77d7a0c2
DC
162 * Update on-disk file size now that data has been written to disk. The
163 * current in-memory file size is i_size. If a write is beyond eof i_new_size
164 * will be the intended file size until i_size is updated. If this write does
165 * not extend all the way to the valid file size then restrict this update to
166 * the end of the write.
167 *
168 * This function does not block as blocking on the inode lock in IO completion
169 * can lead to IO completion order dependency deadlocks.. If it can't get the
170 * inode ilock it will return EAGAIN. Callers must handle this.
ba87ea69 171 */
77d7a0c2 172STATIC int
ba87ea69
LM
173xfs_setfilesize(
174 xfs_ioend_t *ioend)
175{
b677c210 176 xfs_inode_t *ip = XFS_I(ioend->io_inode);
ba87ea69 177 xfs_fsize_t isize;
ba87ea69 178
ba87ea69 179 if (unlikely(ioend->io_error))
77d7a0c2
DC
180 return 0;
181
182 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
183 return EAGAIN;
ba87ea69 184
932640e8
DC
185 isize = xfs_ioend_new_eof(ioend);
186 if (isize) {
55fb25d5 187 trace_xfs_setfilesize(ip, ioend->io_offset, ioend->io_size);
ba87ea69 188 ip->i_d.di_size = isize;
66d834ea 189 xfs_mark_inode_dirty(ip);
ba87ea69
LM
190 }
191
192 xfs_iunlock(ip, XFS_ILOCK_EXCL);
77d7a0c2
DC
193 return 0;
194}
195
196/*
209fb87a 197 * Schedule IO completion handling on the final put of an ioend.
fc0063c4
CH
198 *
199 * If there is no work to do we might as well call it a day and free the
200 * ioend right now.
77d7a0c2
DC
201 */
202STATIC void
203xfs_finish_ioend(
209fb87a 204 struct xfs_ioend *ioend)
77d7a0c2
DC
205{
206 if (atomic_dec_and_test(&ioend->io_remaining)) {
209fb87a
CH
207 if (ioend->io_type == IO_UNWRITTEN)
208 queue_work(xfsconvertd_workqueue, &ioend->io_work);
fc0063c4 209 else if (xfs_ioend_is_append(ioend))
209fb87a 210 queue_work(xfsdatad_workqueue, &ioend->io_work);
fc0063c4
CH
211 else
212 xfs_destroy_ioend(ioend);
77d7a0c2 213 }
ba87ea69
LM
214}
215
0829c360 216/*
5ec4fabb 217 * IO write completion.
f6d6d4fc
CH
218 */
219STATIC void
5ec4fabb 220xfs_end_io(
77d7a0c2 221 struct work_struct *work)
0829c360 222{
77d7a0c2
DC
223 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
224 struct xfs_inode *ip = XFS_I(ioend->io_inode);
69418932 225 int error = 0;
ba87ea69 226
5ec4fabb
CH
227 /*
228 * For unwritten extents we need to issue transactions to convert a
229 * range to normal written extens after the data I/O has finished.
230 */
34a52c6c 231 if (ioend->io_type == IO_UNWRITTEN &&
5ec4fabb 232 likely(!ioend->io_error && !XFS_FORCED_SHUTDOWN(ip->i_mount))) {
5ec4fabb
CH
233
234 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
235 ioend->io_size);
236 if (error)
237 ioend->io_error = error;
238 }
ba87ea69 239
5ec4fabb
CH
240 /*
241 * We might have to update the on-disk file size after extending
242 * writes.
243 */
a206c817
CH
244 error = xfs_setfilesize(ioend);
245 ASSERT(!error || error == EAGAIN);
77d7a0c2
DC
246
247 /*
248 * If we didn't complete processing of the ioend, requeue it to the
249 * tail of the workqueue for another attempt later. Otherwise destroy
250 * it.
251 */
252 if (error == EAGAIN) {
253 atomic_inc(&ioend->io_remaining);
209fb87a 254 xfs_finish_ioend(ioend);
77d7a0c2
DC
255 /* ensure we don't spin on blocked ioends */
256 delay(1);
fb511f21 257 } else {
77d7a0c2 258 xfs_destroy_ioend(ioend);
fb511f21 259 }
c626d174
DC
260}
261
209fb87a
CH
262/*
263 * Call IO completion handling in caller context on the final put of an ioend.
264 */
265STATIC void
266xfs_finish_ioend_sync(
267 struct xfs_ioend *ioend)
268{
269 if (atomic_dec_and_test(&ioend->io_remaining))
270 xfs_end_io(&ioend->io_work);
271}
272
0829c360
CH
273/*
274 * Allocate and initialise an IO completion structure.
275 * We need to track unwritten extent write completion here initially.
276 * We'll need to extend this for updating the ondisk inode size later
277 * (vs. incore size).
278 */
279STATIC xfs_ioend_t *
280xfs_alloc_ioend(
f6d6d4fc
CH
281 struct inode *inode,
282 unsigned int type)
0829c360
CH
283{
284 xfs_ioend_t *ioend;
285
286 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
287
288 /*
289 * Set the count to 1 initially, which will prevent an I/O
290 * completion callback from happening before we have started
291 * all the I/O from calling the completion routine too early.
292 */
293 atomic_set(&ioend->io_remaining, 1);
c859cdd1 294 ioend->io_isasync = 0;
7d04a335 295 ioend->io_error = 0;
f6d6d4fc
CH
296 ioend->io_list = NULL;
297 ioend->io_type = type;
b677c210 298 ioend->io_inode = inode;
c1a073bd 299 ioend->io_buffer_head = NULL;
f6d6d4fc 300 ioend->io_buffer_tail = NULL;
b677c210 301 atomic_inc(&XFS_I(ioend->io_inode)->i_iocount);
0829c360
CH
302 ioend->io_offset = 0;
303 ioend->io_size = 0;
fb511f21
CH
304 ioend->io_iocb = NULL;
305 ioend->io_result = 0;
0829c360 306
5ec4fabb 307 INIT_WORK(&ioend->io_work, xfs_end_io);
0829c360
CH
308 return ioend;
309}
310
1da177e4
LT
311STATIC int
312xfs_map_blocks(
313 struct inode *inode,
314 loff_t offset,
207d0416 315 struct xfs_bmbt_irec *imap,
a206c817
CH
316 int type,
317 int nonblocking)
1da177e4 318{
a206c817
CH
319 struct xfs_inode *ip = XFS_I(inode);
320 struct xfs_mount *mp = ip->i_mount;
ed1e7b7e 321 ssize_t count = 1 << inode->i_blkbits;
a206c817
CH
322 xfs_fileoff_t offset_fsb, end_fsb;
323 int error = 0;
a206c817
CH
324 int bmapi_flags = XFS_BMAPI_ENTIRE;
325 int nimaps = 1;
326
327 if (XFS_FORCED_SHUTDOWN(mp))
328 return -XFS_ERROR(EIO);
329
8ff2957d 330 if (type == IO_UNWRITTEN)
a206c817 331 bmapi_flags |= XFS_BMAPI_IGSTATE;
8ff2957d
CH
332
333 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
334 if (nonblocking)
335 return -XFS_ERROR(EAGAIN);
336 xfs_ilock(ip, XFS_ILOCK_SHARED);
a206c817
CH
337 }
338
8ff2957d
CH
339 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
340 (ip->i_df.if_flags & XFS_IFEXTENTS));
a206c817 341 ASSERT(offset <= mp->m_maxioffset);
8ff2957d 342
a206c817
CH
343 if (offset + count > mp->m_maxioffset)
344 count = mp->m_maxioffset - offset;
345 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
346 offset_fsb = XFS_B_TO_FSBT(mp, offset);
a206c817
CH
347 error = xfs_bmapi(NULL, ip, offset_fsb, end_fsb - offset_fsb,
348 bmapi_flags, NULL, 0, imap, &nimaps, NULL);
8ff2957d 349 xfs_iunlock(ip, XFS_ILOCK_SHARED);
a206c817 350
8ff2957d
CH
351 if (error)
352 return -XFS_ERROR(error);
a206c817 353
8ff2957d
CH
354 if (type == IO_DELALLOC &&
355 (!nimaps || isnullstartblock(imap->br_startblock))) {
a206c817
CH
356 error = xfs_iomap_write_allocate(ip, offset, count, imap);
357 if (!error)
358 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
8ff2957d 359 return -XFS_ERROR(error);
a206c817
CH
360 }
361
8ff2957d
CH
362#ifdef DEBUG
363 if (type == IO_UNWRITTEN) {
364 ASSERT(nimaps);
365 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
366 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
367 }
368#endif
369 if (nimaps)
370 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
371 return 0;
1da177e4
LT
372}
373
b8f82a4a 374STATIC int
558e6891 375xfs_imap_valid(
8699bb0a 376 struct inode *inode,
207d0416 377 struct xfs_bmbt_irec *imap,
558e6891 378 xfs_off_t offset)
1da177e4 379{
558e6891 380 offset >>= inode->i_blkbits;
8699bb0a 381
558e6891
CH
382 return offset >= imap->br_startoff &&
383 offset < imap->br_startoff + imap->br_blockcount;
1da177e4
LT
384}
385
f6d6d4fc
CH
386/*
387 * BIO completion handler for buffered IO.
388 */
782e3b3b 389STATIC void
f6d6d4fc
CH
390xfs_end_bio(
391 struct bio *bio,
f6d6d4fc
CH
392 int error)
393{
394 xfs_ioend_t *ioend = bio->bi_private;
395
f6d6d4fc 396 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
7d04a335 397 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
f6d6d4fc
CH
398
399 /* Toss bio and pass work off to an xfsdatad thread */
f6d6d4fc
CH
400 bio->bi_private = NULL;
401 bio->bi_end_io = NULL;
f6d6d4fc 402 bio_put(bio);
7d04a335 403
209fb87a 404 xfs_finish_ioend(ioend);
f6d6d4fc
CH
405}
406
407STATIC void
408xfs_submit_ioend_bio(
06342cf8
CH
409 struct writeback_control *wbc,
410 xfs_ioend_t *ioend,
411 struct bio *bio)
f6d6d4fc
CH
412{
413 atomic_inc(&ioend->io_remaining);
f6d6d4fc
CH
414 bio->bi_private = ioend;
415 bio->bi_end_io = xfs_end_bio;
416
932640e8
DC
417 /*
418 * If the I/O is beyond EOF we mark the inode dirty immediately
419 * but don't update the inode size until I/O completion.
420 */
421 if (xfs_ioend_new_eof(ioend))
66d834ea 422 xfs_mark_inode_dirty(XFS_I(ioend->io_inode));
932640e8 423
721a9602 424 submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
f6d6d4fc
CH
425}
426
427STATIC struct bio *
428xfs_alloc_ioend_bio(
429 struct buffer_head *bh)
430{
f6d6d4fc 431 int nvecs = bio_get_nr_vecs(bh->b_bdev);
221cb251 432 struct bio *bio = bio_alloc(GFP_NOIO, nvecs);
f6d6d4fc
CH
433
434 ASSERT(bio->bi_private == NULL);
435 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
436 bio->bi_bdev = bh->b_bdev;
f6d6d4fc
CH
437 return bio;
438}
439
440STATIC void
441xfs_start_buffer_writeback(
442 struct buffer_head *bh)
443{
444 ASSERT(buffer_mapped(bh));
445 ASSERT(buffer_locked(bh));
446 ASSERT(!buffer_delay(bh));
447 ASSERT(!buffer_unwritten(bh));
448
449 mark_buffer_async_write(bh);
450 set_buffer_uptodate(bh);
451 clear_buffer_dirty(bh);
452}
453
454STATIC void
455xfs_start_page_writeback(
456 struct page *page,
f6d6d4fc
CH
457 int clear_dirty,
458 int buffers)
459{
460 ASSERT(PageLocked(page));
461 ASSERT(!PageWriteback(page));
f6d6d4fc 462 if (clear_dirty)
92132021
DC
463 clear_page_dirty_for_io(page);
464 set_page_writeback(page);
f6d6d4fc 465 unlock_page(page);
1f7decf6
FW
466 /* If no buffers on the page are to be written, finish it here */
467 if (!buffers)
f6d6d4fc 468 end_page_writeback(page);
f6d6d4fc
CH
469}
470
471static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
472{
473 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
474}
475
476/*
d88992f6
DC
477 * Submit all of the bios for all of the ioends we have saved up, covering the
478 * initial writepage page and also any probed pages.
479 *
480 * Because we may have multiple ioends spanning a page, we need to start
481 * writeback on all the buffers before we submit them for I/O. If we mark the
482 * buffers as we got, then we can end up with a page that only has buffers
483 * marked async write and I/O complete on can occur before we mark the other
484 * buffers async write.
485 *
486 * The end result of this is that we trip a bug in end_page_writeback() because
487 * we call it twice for the one page as the code in end_buffer_async_write()
488 * assumes that all buffers on the page are started at the same time.
489 *
490 * The fix is two passes across the ioend list - one to start writeback on the
c41564b5 491 * buffer_heads, and then submit them for I/O on the second pass.
f6d6d4fc
CH
492 */
493STATIC void
494xfs_submit_ioend(
06342cf8 495 struct writeback_control *wbc,
f6d6d4fc
CH
496 xfs_ioend_t *ioend)
497{
d88992f6 498 xfs_ioend_t *head = ioend;
f6d6d4fc
CH
499 xfs_ioend_t *next;
500 struct buffer_head *bh;
501 struct bio *bio;
502 sector_t lastblock = 0;
503
d88992f6
DC
504 /* Pass 1 - start writeback */
505 do {
506 next = ioend->io_list;
221cb251 507 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
d88992f6 508 xfs_start_buffer_writeback(bh);
d88992f6
DC
509 } while ((ioend = next) != NULL);
510
511 /* Pass 2 - submit I/O */
512 ioend = head;
f6d6d4fc
CH
513 do {
514 next = ioend->io_list;
515 bio = NULL;
516
517 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
f6d6d4fc
CH
518
519 if (!bio) {
520 retry:
521 bio = xfs_alloc_ioend_bio(bh);
522 } else if (bh->b_blocknr != lastblock + 1) {
06342cf8 523 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
524 goto retry;
525 }
526
527 if (bio_add_buffer(bio, bh) != bh->b_size) {
06342cf8 528 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
529 goto retry;
530 }
531
532 lastblock = bh->b_blocknr;
533 }
534 if (bio)
06342cf8 535 xfs_submit_ioend_bio(wbc, ioend, bio);
209fb87a 536 xfs_finish_ioend(ioend);
f6d6d4fc
CH
537 } while ((ioend = next) != NULL);
538}
539
540/*
541 * Cancel submission of all buffer_heads so far in this endio.
542 * Toss the endio too. Only ever called for the initial page
543 * in a writepage request, so only ever one page.
544 */
545STATIC void
546xfs_cancel_ioend(
547 xfs_ioend_t *ioend)
548{
549 xfs_ioend_t *next;
550 struct buffer_head *bh, *next_bh;
551
552 do {
553 next = ioend->io_list;
554 bh = ioend->io_buffer_head;
555 do {
556 next_bh = bh->b_private;
557 clear_buffer_async_write(bh);
558 unlock_buffer(bh);
559 } while ((bh = next_bh) != NULL);
560
25e41b3d 561 xfs_ioend_wake(XFS_I(ioend->io_inode));
f6d6d4fc
CH
562 mempool_free(ioend, xfs_ioend_pool);
563 } while ((ioend = next) != NULL);
564}
565
566/*
567 * Test to see if we've been building up a completion structure for
568 * earlier buffers -- if so, we try to append to this ioend if we
569 * can, otherwise we finish off any current ioend and start another.
570 * Return true if we've finished the given ioend.
571 */
572STATIC void
573xfs_add_to_ioend(
574 struct inode *inode,
575 struct buffer_head *bh,
7336cea8 576 xfs_off_t offset,
f6d6d4fc
CH
577 unsigned int type,
578 xfs_ioend_t **result,
579 int need_ioend)
580{
581 xfs_ioend_t *ioend = *result;
582
583 if (!ioend || need_ioend || type != ioend->io_type) {
584 xfs_ioend_t *previous = *result;
f6d6d4fc 585
f6d6d4fc
CH
586 ioend = xfs_alloc_ioend(inode, type);
587 ioend->io_offset = offset;
588 ioend->io_buffer_head = bh;
589 ioend->io_buffer_tail = bh;
590 if (previous)
591 previous->io_list = ioend;
592 *result = ioend;
593 } else {
594 ioend->io_buffer_tail->b_private = bh;
595 ioend->io_buffer_tail = bh;
596 }
597
598 bh->b_private = NULL;
599 ioend->io_size += bh->b_size;
600}
601
87cbc49c
NS
602STATIC void
603xfs_map_buffer(
046f1685 604 struct inode *inode,
87cbc49c 605 struct buffer_head *bh,
207d0416 606 struct xfs_bmbt_irec *imap,
046f1685 607 xfs_off_t offset)
87cbc49c
NS
608{
609 sector_t bn;
8699bb0a 610 struct xfs_mount *m = XFS_I(inode)->i_mount;
207d0416
CH
611 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
612 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
87cbc49c 613
207d0416
CH
614 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
615 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
87cbc49c 616
e513182d 617 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
8699bb0a 618 ((offset - iomap_offset) >> inode->i_blkbits);
87cbc49c 619
046f1685 620 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
87cbc49c
NS
621
622 bh->b_blocknr = bn;
623 set_buffer_mapped(bh);
624}
625
1da177e4
LT
626STATIC void
627xfs_map_at_offset(
046f1685 628 struct inode *inode,
1da177e4 629 struct buffer_head *bh,
207d0416 630 struct xfs_bmbt_irec *imap,
046f1685 631 xfs_off_t offset)
1da177e4 632{
207d0416
CH
633 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
634 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
1da177e4 635
207d0416 636 xfs_map_buffer(inode, bh, imap, offset);
1da177e4
LT
637 set_buffer_mapped(bh);
638 clear_buffer_delay(bh);
f6d6d4fc 639 clear_buffer_unwritten(bh);
1da177e4
LT
640}
641
1da177e4 642/*
10ce4444
CH
643 * Test if a given page is suitable for writing as part of an unwritten
644 * or delayed allocate extent.
1da177e4 645 */
10ce4444
CH
646STATIC int
647xfs_is_delayed_page(
648 struct page *page,
f6d6d4fc 649 unsigned int type)
1da177e4 650{
1da177e4 651 if (PageWriteback(page))
10ce4444 652 return 0;
1da177e4
LT
653
654 if (page->mapping && page_has_buffers(page)) {
655 struct buffer_head *bh, *head;
656 int acceptable = 0;
657
658 bh = head = page_buffers(page);
659 do {
f6d6d4fc 660 if (buffer_unwritten(bh))
34a52c6c 661 acceptable = (type == IO_UNWRITTEN);
f6d6d4fc 662 else if (buffer_delay(bh))
a206c817 663 acceptable = (type == IO_DELALLOC);
2ddee844 664 else if (buffer_dirty(bh) && buffer_mapped(bh))
a206c817 665 acceptable = (type == IO_OVERWRITE);
f6d6d4fc 666 else
1da177e4 667 break;
1da177e4
LT
668 } while ((bh = bh->b_this_page) != head);
669
670 if (acceptable)
10ce4444 671 return 1;
1da177e4
LT
672 }
673
10ce4444 674 return 0;
1da177e4
LT
675}
676
1da177e4
LT
677/*
678 * Allocate & map buffers for page given the extent map. Write it out.
679 * except for the original page of a writepage, this is called on
680 * delalloc/unwritten pages only, for the original page it is possible
681 * that the page has no mapping at all.
682 */
f6d6d4fc 683STATIC int
1da177e4
LT
684xfs_convert_page(
685 struct inode *inode,
686 struct page *page,
10ce4444 687 loff_t tindex,
207d0416 688 struct xfs_bmbt_irec *imap,
f6d6d4fc 689 xfs_ioend_t **ioendp,
2fa24f92 690 struct writeback_control *wbc)
1da177e4 691{
f6d6d4fc 692 struct buffer_head *bh, *head;
9260dc6b
CH
693 xfs_off_t end_offset;
694 unsigned long p_offset;
f6d6d4fc 695 unsigned int type;
24e17b5f 696 int len, page_dirty;
f6d6d4fc 697 int count = 0, done = 0, uptodate = 1;
9260dc6b 698 xfs_off_t offset = page_offset(page);
1da177e4 699
10ce4444
CH
700 if (page->index != tindex)
701 goto fail;
529ae9aa 702 if (!trylock_page(page))
10ce4444
CH
703 goto fail;
704 if (PageWriteback(page))
705 goto fail_unlock_page;
706 if (page->mapping != inode->i_mapping)
707 goto fail_unlock_page;
708 if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
709 goto fail_unlock_page;
710
24e17b5f
NS
711 /*
712 * page_dirty is initially a count of buffers on the page before
c41564b5 713 * EOF and is decremented as we move each into a cleanable state.
9260dc6b
CH
714 *
715 * Derivation:
716 *
717 * End offset is the highest offset that this page should represent.
718 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
719 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
720 * hence give us the correct page_dirty count. On any other page,
721 * it will be zero and in that case we need page_dirty to be the
722 * count of buffers on the page.
24e17b5f 723 */
9260dc6b
CH
724 end_offset = min_t(unsigned long long,
725 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
726 i_size_read(inode));
727
24e17b5f 728 len = 1 << inode->i_blkbits;
9260dc6b
CH
729 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
730 PAGE_CACHE_SIZE);
731 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
732 page_dirty = p_offset / len;
24e17b5f 733
1da177e4
LT
734 bh = head = page_buffers(page);
735 do {
9260dc6b 736 if (offset >= end_offset)
1da177e4 737 break;
f6d6d4fc
CH
738 if (!buffer_uptodate(bh))
739 uptodate = 0;
740 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
741 done = 1;
1da177e4 742 continue;
f6d6d4fc
CH
743 }
744
2fa24f92
CH
745 if (buffer_unwritten(bh) || buffer_delay(bh) ||
746 buffer_mapped(bh)) {
9260dc6b 747 if (buffer_unwritten(bh))
34a52c6c 748 type = IO_UNWRITTEN;
2fa24f92 749 else if (buffer_delay(bh))
a206c817 750 type = IO_DELALLOC;
2fa24f92
CH
751 else
752 type = IO_OVERWRITE;
9260dc6b 753
558e6891 754 if (!xfs_imap_valid(inode, imap, offset)) {
f6d6d4fc 755 done = 1;
9260dc6b
CH
756 continue;
757 }
758
ecff71e6
CH
759 lock_buffer(bh);
760 if (type != IO_OVERWRITE)
2fa24f92 761 xfs_map_at_offset(inode, bh, imap, offset);
89f3b363
CH
762 xfs_add_to_ioend(inode, bh, offset, type,
763 ioendp, done);
764
9260dc6b
CH
765 page_dirty--;
766 count++;
767 } else {
2fa24f92 768 done = 1;
1da177e4 769 }
7336cea8 770 } while (offset += len, (bh = bh->b_this_page) != head);
1da177e4 771
f6d6d4fc
CH
772 if (uptodate && bh == head)
773 SetPageUptodate(page);
774
89f3b363 775 if (count) {
efceab1d
DC
776 if (--wbc->nr_to_write <= 0 &&
777 wbc->sync_mode == WB_SYNC_NONE)
89f3b363 778 done = 1;
1da177e4 779 }
89f3b363 780 xfs_start_page_writeback(page, !page_dirty, count);
f6d6d4fc
CH
781
782 return done;
10ce4444
CH
783 fail_unlock_page:
784 unlock_page(page);
785 fail:
786 return 1;
1da177e4
LT
787}
788
789/*
790 * Convert & write out a cluster of pages in the same extent as defined
791 * by mp and following the start page.
792 */
793STATIC void
794xfs_cluster_write(
795 struct inode *inode,
796 pgoff_t tindex,
207d0416 797 struct xfs_bmbt_irec *imap,
f6d6d4fc 798 xfs_ioend_t **ioendp,
1da177e4 799 struct writeback_control *wbc,
1da177e4
LT
800 pgoff_t tlast)
801{
10ce4444
CH
802 struct pagevec pvec;
803 int done = 0, i;
1da177e4 804
10ce4444
CH
805 pagevec_init(&pvec, 0);
806 while (!done && tindex <= tlast) {
807 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
808
809 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
1da177e4 810 break;
10ce4444
CH
811
812 for (i = 0; i < pagevec_count(&pvec); i++) {
813 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
2fa24f92 814 imap, ioendp, wbc);
10ce4444
CH
815 if (done)
816 break;
817 }
818
819 pagevec_release(&pvec);
820 cond_resched();
1da177e4
LT
821 }
822}
823
3ed3a434
DC
824STATIC void
825xfs_vm_invalidatepage(
826 struct page *page,
827 unsigned long offset)
828{
829 trace_xfs_invalidatepage(page->mapping->host, page, offset);
830 block_invalidatepage(page, offset);
831}
832
833/*
834 * If the page has delalloc buffers on it, we need to punch them out before we
835 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
836 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
837 * is done on that same region - the delalloc extent is returned when none is
838 * supposed to be there.
839 *
840 * We prevent this by truncating away the delalloc regions on the page before
841 * invalidating it. Because they are delalloc, we can do this without needing a
842 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
843 * truncation without a transaction as there is no space left for block
844 * reservation (typically why we see a ENOSPC in writeback).
845 *
846 * This is not a performance critical path, so for now just do the punching a
847 * buffer head at a time.
848 */
849STATIC void
850xfs_aops_discard_page(
851 struct page *page)
852{
853 struct inode *inode = page->mapping->host;
854 struct xfs_inode *ip = XFS_I(inode);
855 struct buffer_head *bh, *head;
856 loff_t offset = page_offset(page);
3ed3a434 857
a206c817 858 if (!xfs_is_delayed_page(page, IO_DELALLOC))
3ed3a434
DC
859 goto out_invalidate;
860
e8c3753c
DC
861 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
862 goto out_invalidate;
863
4f10700a 864 xfs_alert(ip->i_mount,
3ed3a434
DC
865 "page discard on page %p, inode 0x%llx, offset %llu.",
866 page, ip->i_ino, offset);
867
868 xfs_ilock(ip, XFS_ILOCK_EXCL);
869 bh = head = page_buffers(page);
870 do {
3ed3a434 871 int error;
c726de44 872 xfs_fileoff_t start_fsb;
3ed3a434
DC
873
874 if (!buffer_delay(bh))
875 goto next_buffer;
876
c726de44
DC
877 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
878 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
3ed3a434
DC
879 if (error) {
880 /* something screwed, just bail */
e8c3753c 881 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
4f10700a 882 xfs_alert(ip->i_mount,
3ed3a434 883 "page discard unable to remove delalloc mapping.");
e8c3753c 884 }
3ed3a434
DC
885 break;
886 }
887next_buffer:
c726de44 888 offset += 1 << inode->i_blkbits;
3ed3a434
DC
889
890 } while ((bh = bh->b_this_page) != head);
891
892 xfs_iunlock(ip, XFS_ILOCK_EXCL);
893out_invalidate:
894 xfs_vm_invalidatepage(page, 0);
895 return;
896}
897
1da177e4 898/*
89f3b363
CH
899 * Write out a dirty page.
900 *
901 * For delalloc space on the page we need to allocate space and flush it.
902 * For unwritten space on the page we need to start the conversion to
903 * regular allocated space.
89f3b363 904 * For any other dirty buffer heads on the page we should flush them.
1da177e4 905 */
1da177e4 906STATIC int
89f3b363
CH
907xfs_vm_writepage(
908 struct page *page,
909 struct writeback_control *wbc)
1da177e4 910{
89f3b363 911 struct inode *inode = page->mapping->host;
f6d6d4fc 912 struct buffer_head *bh, *head;
207d0416 913 struct xfs_bmbt_irec imap;
f6d6d4fc 914 xfs_ioend_t *ioend = NULL, *iohead = NULL;
1da177e4 915 loff_t offset;
f6d6d4fc 916 unsigned int type;
1da177e4 917 __uint64_t end_offset;
bd1556a1 918 pgoff_t end_index, last_index;
ed1e7b7e 919 ssize_t len;
a206c817 920 int err, imap_valid = 0, uptodate = 1;
89f3b363 921 int count = 0;
a206c817 922 int nonblocking = 0;
89f3b363
CH
923
924 trace_xfs_writepage(inode, page, 0);
925
20cb52eb
CH
926 ASSERT(page_has_buffers(page));
927
89f3b363
CH
928 /*
929 * Refuse to write the page out if we are called from reclaim context.
930 *
d4f7a5cb
CH
931 * This avoids stack overflows when called from deeply used stacks in
932 * random callers for direct reclaim or memcg reclaim. We explicitly
933 * allow reclaim from kswapd as the stack usage there is relatively low.
89f3b363
CH
934 *
935 * This should really be done by the core VM, but until that happens
936 * filesystems like XFS, btrfs and ext4 have to take care of this
937 * by themselves.
938 */
d4f7a5cb 939 if ((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == PF_MEMALLOC)
b5420f23 940 goto redirty;
1da177e4 941
89f3b363 942 /*
680a647b
CH
943 * Given that we do not allow direct reclaim to call us, we should
944 * never be called while in a filesystem transaction.
89f3b363 945 */
680a647b 946 if (WARN_ON(current->flags & PF_FSTRANS))
b5420f23 947 goto redirty;
89f3b363 948
1da177e4
LT
949 /* Is this page beyond the end of the file? */
950 offset = i_size_read(inode);
951 end_index = offset >> PAGE_CACHE_SHIFT;
952 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
953 if (page->index >= end_index) {
954 if ((page->index >= end_index + 1) ||
955 !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
89f3b363 956 unlock_page(page);
19d5bcf3 957 return 0;
1da177e4
LT
958 }
959 }
960
f6d6d4fc 961 end_offset = min_t(unsigned long long,
20cb52eb
CH
962 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
963 offset);
24e17b5f 964 len = 1 << inode->i_blkbits;
24e17b5f 965
24e17b5f 966 bh = head = page_buffers(page);
f6d6d4fc 967 offset = page_offset(page);
a206c817
CH
968 type = IO_OVERWRITE;
969
dbcdde3e 970 if (wbc->sync_mode == WB_SYNC_NONE)
a206c817 971 nonblocking = 1;
f6d6d4fc 972
1da177e4 973 do {
6ac7248e
CH
974 int new_ioend = 0;
975
1da177e4
LT
976 if (offset >= end_offset)
977 break;
978 if (!buffer_uptodate(bh))
979 uptodate = 0;
1da177e4 980
3d9b02e3 981 /*
ece413f5
CH
982 * set_page_dirty dirties all buffers in a page, independent
983 * of their state. The dirty state however is entirely
984 * meaningless for holes (!mapped && uptodate), so skip
985 * buffers covering holes here.
3d9b02e3
ES
986 */
987 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
3d9b02e3
ES
988 imap_valid = 0;
989 continue;
990 }
991
aeea1b1f
CH
992 if (buffer_unwritten(bh)) {
993 if (type != IO_UNWRITTEN) {
994 type = IO_UNWRITTEN;
995 imap_valid = 0;
1da177e4 996 }
aeea1b1f
CH
997 } else if (buffer_delay(bh)) {
998 if (type != IO_DELALLOC) {
999 type = IO_DELALLOC;
1000 imap_valid = 0;
1da177e4 1001 }
89f3b363 1002 } else if (buffer_uptodate(bh)) {
a206c817
CH
1003 if (type != IO_OVERWRITE) {
1004 type = IO_OVERWRITE;
85da94c6
CH
1005 imap_valid = 0;
1006 }
aeea1b1f
CH
1007 } else {
1008 if (PageUptodate(page)) {
1009 ASSERT(buffer_mapped(bh));
1010 imap_valid = 0;
6c4fe19f 1011 }
aeea1b1f
CH
1012 continue;
1013 }
d5cb48aa 1014
aeea1b1f
CH
1015 if (imap_valid)
1016 imap_valid = xfs_imap_valid(inode, &imap, offset);
1017 if (!imap_valid) {
1018 /*
1019 * If we didn't have a valid mapping then we need to
1020 * put the new mapping into a separate ioend structure.
1021 * This ensures non-contiguous extents always have
1022 * separate ioends, which is particularly important
1023 * for unwritten extent conversion at I/O completion
1024 * time.
1025 */
1026 new_ioend = 1;
1027 err = xfs_map_blocks(inode, offset, &imap, type,
1028 nonblocking);
1029 if (err)
1030 goto error;
1031 imap_valid = xfs_imap_valid(inode, &imap, offset);
1032 }
1033 if (imap_valid) {
ecff71e6
CH
1034 lock_buffer(bh);
1035 if (type != IO_OVERWRITE)
aeea1b1f
CH
1036 xfs_map_at_offset(inode, bh, &imap, offset);
1037 xfs_add_to_ioend(inode, bh, offset, type, &ioend,
1038 new_ioend);
1039 count++;
1da177e4 1040 }
f6d6d4fc
CH
1041
1042 if (!iohead)
1043 iohead = ioend;
1044
1045 } while (offset += len, ((bh = bh->b_this_page) != head));
1da177e4
LT
1046
1047 if (uptodate && bh == head)
1048 SetPageUptodate(page);
1049
89f3b363 1050 xfs_start_page_writeback(page, 1, count);
1da177e4 1051
558e6891 1052 if (ioend && imap_valid) {
bd1556a1
CH
1053 xfs_off_t end_index;
1054
1055 end_index = imap.br_startoff + imap.br_blockcount;
1056
1057 /* to bytes */
1058 end_index <<= inode->i_blkbits;
1059
1060 /* to pages */
1061 end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1062
1063 /* check against file size */
1064 if (end_index > last_index)
1065 end_index = last_index;
8699bb0a 1066
207d0416 1067 xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
2fa24f92 1068 wbc, end_index);
1da177e4
LT
1069 }
1070
f6d6d4fc 1071 if (iohead)
06342cf8 1072 xfs_submit_ioend(wbc, iohead);
f6d6d4fc 1073
89f3b363 1074 return 0;
1da177e4
LT
1075
1076error:
f6d6d4fc
CH
1077 if (iohead)
1078 xfs_cancel_ioend(iohead);
1da177e4 1079
b5420f23
CH
1080 if (err == -EAGAIN)
1081 goto redirty;
1082
20cb52eb 1083 xfs_aops_discard_page(page);
89f3b363
CH
1084 ClearPageUptodate(page);
1085 unlock_page(page);
1da177e4 1086 return err;
f51623b2 1087
b5420f23 1088redirty:
f51623b2
NS
1089 redirty_page_for_writepage(wbc, page);
1090 unlock_page(page);
1091 return 0;
f51623b2
NS
1092}
1093
7d4fb40a
NS
1094STATIC int
1095xfs_vm_writepages(
1096 struct address_space *mapping,
1097 struct writeback_control *wbc)
1098{
b3aea4ed 1099 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
7d4fb40a
NS
1100 return generic_writepages(mapping, wbc);
1101}
1102
f51623b2
NS
1103/*
1104 * Called to move a page into cleanable state - and from there
89f3b363 1105 * to be released. The page should already be clean. We always
f51623b2
NS
1106 * have buffer heads in this call.
1107 *
89f3b363 1108 * Returns 1 if the page is ok to release, 0 otherwise.
f51623b2
NS
1109 */
1110STATIC int
238f4c54 1111xfs_vm_releasepage(
f51623b2
NS
1112 struct page *page,
1113 gfp_t gfp_mask)
1114{
20cb52eb 1115 int delalloc, unwritten;
f51623b2 1116
89f3b363 1117 trace_xfs_releasepage(page->mapping->host, page, 0);
238f4c54 1118
20cb52eb 1119 xfs_count_page_state(page, &delalloc, &unwritten);
f51623b2 1120
89f3b363 1121 if (WARN_ON(delalloc))
f51623b2 1122 return 0;
89f3b363 1123 if (WARN_ON(unwritten))
f51623b2
NS
1124 return 0;
1125
f51623b2
NS
1126 return try_to_free_buffers(page);
1127}
1128
1da177e4 1129STATIC int
c2536668 1130__xfs_get_blocks(
1da177e4
LT
1131 struct inode *inode,
1132 sector_t iblock,
1da177e4
LT
1133 struct buffer_head *bh_result,
1134 int create,
f2bde9b8 1135 int direct)
1da177e4 1136{
a206c817
CH
1137 struct xfs_inode *ip = XFS_I(inode);
1138 struct xfs_mount *mp = ip->i_mount;
1139 xfs_fileoff_t offset_fsb, end_fsb;
1140 int error = 0;
1141 int lockmode = 0;
207d0416 1142 struct xfs_bmbt_irec imap;
a206c817 1143 int nimaps = 1;
fdc7ed75
NS
1144 xfs_off_t offset;
1145 ssize_t size;
207d0416 1146 int new = 0;
a206c817
CH
1147
1148 if (XFS_FORCED_SHUTDOWN(mp))
1149 return -XFS_ERROR(EIO);
1da177e4 1150
fdc7ed75 1151 offset = (xfs_off_t)iblock << inode->i_blkbits;
c2536668
NS
1152 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1153 size = bh_result->b_size;
364f358a
LM
1154
1155 if (!create && direct && offset >= i_size_read(inode))
1156 return 0;
1157
a206c817
CH
1158 if (create) {
1159 lockmode = XFS_ILOCK_EXCL;
1160 xfs_ilock(ip, lockmode);
1161 } else {
1162 lockmode = xfs_ilock_map_shared(ip);
1163 }
f2bde9b8 1164
a206c817
CH
1165 ASSERT(offset <= mp->m_maxioffset);
1166 if (offset + size > mp->m_maxioffset)
1167 size = mp->m_maxioffset - offset;
1168 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1169 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1170
1171 error = xfs_bmapi(NULL, ip, offset_fsb, end_fsb - offset_fsb,
1172 XFS_BMAPI_ENTIRE, NULL, 0, &imap, &nimaps, NULL);
1da177e4 1173 if (error)
a206c817
CH
1174 goto out_unlock;
1175
1176 if (create &&
1177 (!nimaps ||
1178 (imap.br_startblock == HOLESTARTBLOCK ||
1179 imap.br_startblock == DELAYSTARTBLOCK))) {
1180 if (direct) {
1181 error = xfs_iomap_write_direct(ip, offset, size,
1182 &imap, nimaps);
1183 } else {
1184 error = xfs_iomap_write_delay(ip, offset, size, &imap);
1185 }
1186 if (error)
1187 goto out_unlock;
1188
1189 trace_xfs_get_blocks_alloc(ip, offset, size, 0, &imap);
1190 } else if (nimaps) {
1191 trace_xfs_get_blocks_found(ip, offset, size, 0, &imap);
1192 } else {
1193 trace_xfs_get_blocks_notfound(ip, offset, size);
1194 goto out_unlock;
1195 }
1196 xfs_iunlock(ip, lockmode);
1da177e4 1197
207d0416
CH
1198 if (imap.br_startblock != HOLESTARTBLOCK &&
1199 imap.br_startblock != DELAYSTARTBLOCK) {
87cbc49c
NS
1200 /*
1201 * For unwritten extents do not report a disk address on
1da177e4
LT
1202 * the read case (treat as if we're reading into a hole).
1203 */
207d0416
CH
1204 if (create || !ISUNWRITTEN(&imap))
1205 xfs_map_buffer(inode, bh_result, &imap, offset);
1206 if (create && ISUNWRITTEN(&imap)) {
1da177e4
LT
1207 if (direct)
1208 bh_result->b_private = inode;
1209 set_buffer_unwritten(bh_result);
1da177e4
LT
1210 }
1211 }
1212
c2536668
NS
1213 /*
1214 * If this is a realtime file, data may be on a different device.
1215 * to that pointed to from the buffer_head b_bdev currently.
1216 */
046f1685 1217 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1da177e4 1218
c2536668 1219 /*
549054af
DC
1220 * If we previously allocated a block out beyond eof and we are now
1221 * coming back to use it then we will need to flag it as new even if it
1222 * has a disk address.
1223 *
1224 * With sub-block writes into unwritten extents we also need to mark
1225 * the buffer as new so that the unwritten parts of the buffer gets
1226 * correctly zeroed.
1da177e4
LT
1227 */
1228 if (create &&
1229 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
549054af 1230 (offset >= i_size_read(inode)) ||
207d0416 1231 (new || ISUNWRITTEN(&imap))))
1da177e4 1232 set_buffer_new(bh_result);
1da177e4 1233
207d0416 1234 if (imap.br_startblock == DELAYSTARTBLOCK) {
1da177e4
LT
1235 BUG_ON(direct);
1236 if (create) {
1237 set_buffer_uptodate(bh_result);
1238 set_buffer_mapped(bh_result);
1239 set_buffer_delay(bh_result);
1240 }
1241 }
1242
2b8f12b7
CH
1243 /*
1244 * If this is O_DIRECT or the mpage code calling tell them how large
1245 * the mapping is, so that we can avoid repeated get_blocks calls.
1246 */
c2536668 1247 if (direct || size > (1 << inode->i_blkbits)) {
2b8f12b7
CH
1248 xfs_off_t mapping_size;
1249
1250 mapping_size = imap.br_startoff + imap.br_blockcount - iblock;
1251 mapping_size <<= inode->i_blkbits;
1252
1253 ASSERT(mapping_size > 0);
1254 if (mapping_size > size)
1255 mapping_size = size;
1256 if (mapping_size > LONG_MAX)
1257 mapping_size = LONG_MAX;
1258
1259 bh_result->b_size = mapping_size;
1da177e4
LT
1260 }
1261
1262 return 0;
a206c817
CH
1263
1264out_unlock:
1265 xfs_iunlock(ip, lockmode);
1266 return -error;
1da177e4
LT
1267}
1268
1269int
c2536668 1270xfs_get_blocks(
1da177e4
LT
1271 struct inode *inode,
1272 sector_t iblock,
1273 struct buffer_head *bh_result,
1274 int create)
1275{
f2bde9b8 1276 return __xfs_get_blocks(inode, iblock, bh_result, create, 0);
1da177e4
LT
1277}
1278
1279STATIC int
e4c573bb 1280xfs_get_blocks_direct(
1da177e4
LT
1281 struct inode *inode,
1282 sector_t iblock,
1da177e4
LT
1283 struct buffer_head *bh_result,
1284 int create)
1285{
f2bde9b8 1286 return __xfs_get_blocks(inode, iblock, bh_result, create, 1);
1da177e4
LT
1287}
1288
209fb87a
CH
1289/*
1290 * Complete a direct I/O write request.
1291 *
1292 * If the private argument is non-NULL __xfs_get_blocks signals us that we
1293 * need to issue a transaction to convert the range from unwritten to written
1294 * extents. In case this is regular synchronous I/O we just call xfs_end_io
25985edc 1295 * to do this and we are done. But in case this was a successful AIO
209fb87a
CH
1296 * request this handler is called from interrupt context, from which we
1297 * can't start transactions. In that case offload the I/O completion to
1298 * the workqueues we also use for buffered I/O completion.
1299 */
f0973863 1300STATIC void
209fb87a
CH
1301xfs_end_io_direct_write(
1302 struct kiocb *iocb,
1303 loff_t offset,
1304 ssize_t size,
1305 void *private,
1306 int ret,
1307 bool is_async)
f0973863 1308{
209fb87a 1309 struct xfs_ioend *ioend = iocb->private;
f0973863
CH
1310
1311 /*
209fb87a
CH
1312 * blockdev_direct_IO can return an error even after the I/O
1313 * completion handler was called. Thus we need to protect
1314 * against double-freeing.
f0973863 1315 */
209fb87a
CH
1316 iocb->private = NULL;
1317
ba87ea69
LM
1318 ioend->io_offset = offset;
1319 ioend->io_size = size;
c859cdd1
CH
1320 ioend->io_iocb = iocb;
1321 ioend->io_result = ret;
209fb87a
CH
1322 if (private && size > 0)
1323 ioend->io_type = IO_UNWRITTEN;
1324
1325 if (is_async) {
c859cdd1 1326 ioend->io_isasync = 1;
209fb87a 1327 xfs_finish_ioend(ioend);
f0973863 1328 } else {
209fb87a 1329 xfs_finish_ioend_sync(ioend);
f0973863 1330 }
f0973863
CH
1331}
1332
1da177e4 1333STATIC ssize_t
e4c573bb 1334xfs_vm_direct_IO(
1da177e4
LT
1335 int rw,
1336 struct kiocb *iocb,
1337 const struct iovec *iov,
1338 loff_t offset,
1339 unsigned long nr_segs)
1340{
209fb87a
CH
1341 struct inode *inode = iocb->ki_filp->f_mapping->host;
1342 struct block_device *bdev = xfs_find_bdev_for_inode(inode);
1343 ssize_t ret;
1344
1345 if (rw & WRITE) {
a206c817 1346 iocb->private = xfs_alloc_ioend(inode, IO_DIRECT);
209fb87a 1347
eafdc7d1
CH
1348 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1349 offset, nr_segs,
1350 xfs_get_blocks_direct,
1351 xfs_end_io_direct_write, NULL, 0);
209fb87a
CH
1352 if (ret != -EIOCBQUEUED && iocb->private)
1353 xfs_destroy_ioend(iocb->private);
1354 } else {
eafdc7d1
CH
1355 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1356 offset, nr_segs,
1357 xfs_get_blocks_direct,
1358 NULL, NULL, 0);
209fb87a 1359 }
f0973863 1360
f0973863 1361 return ret;
1da177e4
LT
1362}
1363
fa9b227e
CH
1364STATIC void
1365xfs_vm_write_failed(
1366 struct address_space *mapping,
1367 loff_t to)
1368{
1369 struct inode *inode = mapping->host;
1370
1371 if (to > inode->i_size) {
c726de44
DC
1372 /*
1373 * punch out the delalloc blocks we have already allocated. We
1374 * don't call xfs_setattr() to do this as we may be in the
1375 * middle of a multi-iovec write and so the vfs inode->i_size
1376 * will not match the xfs ip->i_size and so it will zero too
1377 * much. Hence we jus truncate the page cache to zero what is
1378 * necessary and punch the delalloc blocks directly.
1379 */
1380 struct xfs_inode *ip = XFS_I(inode);
1381 xfs_fileoff_t start_fsb;
1382 xfs_fileoff_t end_fsb;
1383 int error;
1384
1385 truncate_pagecache(inode, to, inode->i_size);
1386
1387 /*
1388 * Check if there are any blocks that are outside of i_size
1389 * that need to be trimmed back.
1390 */
1391 start_fsb = XFS_B_TO_FSB(ip->i_mount, inode->i_size) + 1;
1392 end_fsb = XFS_B_TO_FSB(ip->i_mount, to);
1393 if (end_fsb <= start_fsb)
1394 return;
1395
1396 xfs_ilock(ip, XFS_ILOCK_EXCL);
1397 error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1398 end_fsb - start_fsb);
1399 if (error) {
1400 /* something screwed, just bail */
1401 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
4f10700a 1402 xfs_alert(ip->i_mount,
c726de44
DC
1403 "xfs_vm_write_failed: unable to clean up ino %lld",
1404 ip->i_ino);
1405 }
1406 }
1407 xfs_iunlock(ip, XFS_ILOCK_EXCL);
fa9b227e
CH
1408 }
1409}
1410
f51623b2 1411STATIC int
d79689c7 1412xfs_vm_write_begin(
f51623b2 1413 struct file *file,
d79689c7
NP
1414 struct address_space *mapping,
1415 loff_t pos,
1416 unsigned len,
1417 unsigned flags,
1418 struct page **pagep,
1419 void **fsdata)
f51623b2 1420{
155130a4
CH
1421 int ret;
1422
1423 ret = block_write_begin(mapping, pos, len, flags | AOP_FLAG_NOFS,
1424 pagep, xfs_get_blocks);
fa9b227e
CH
1425 if (unlikely(ret))
1426 xfs_vm_write_failed(mapping, pos + len);
1427 return ret;
1428}
1429
1430STATIC int
1431xfs_vm_write_end(
1432 struct file *file,
1433 struct address_space *mapping,
1434 loff_t pos,
1435 unsigned len,
1436 unsigned copied,
1437 struct page *page,
1438 void *fsdata)
1439{
1440 int ret;
155130a4 1441
fa9b227e
CH
1442 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
1443 if (unlikely(ret < len))
1444 xfs_vm_write_failed(mapping, pos + len);
155130a4 1445 return ret;
f51623b2 1446}
1da177e4
LT
1447
1448STATIC sector_t
e4c573bb 1449xfs_vm_bmap(
1da177e4
LT
1450 struct address_space *mapping,
1451 sector_t block)
1452{
1453 struct inode *inode = (struct inode *)mapping->host;
739bfb2a 1454 struct xfs_inode *ip = XFS_I(inode);
1da177e4 1455
cca28fb8 1456 trace_xfs_vm_bmap(XFS_I(inode));
126468b1 1457 xfs_ilock(ip, XFS_IOLOCK_SHARED);
739bfb2a 1458 xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF);
126468b1 1459 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
c2536668 1460 return generic_block_bmap(mapping, block, xfs_get_blocks);
1da177e4
LT
1461}
1462
1463STATIC int
e4c573bb 1464xfs_vm_readpage(
1da177e4
LT
1465 struct file *unused,
1466 struct page *page)
1467{
c2536668 1468 return mpage_readpage(page, xfs_get_blocks);
1da177e4
LT
1469}
1470
1471STATIC int
e4c573bb 1472xfs_vm_readpages(
1da177e4
LT
1473 struct file *unused,
1474 struct address_space *mapping,
1475 struct list_head *pages,
1476 unsigned nr_pages)
1477{
c2536668 1478 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1da177e4
LT
1479}
1480
f5e54d6e 1481const struct address_space_operations xfs_address_space_operations = {
e4c573bb
NS
1482 .readpage = xfs_vm_readpage,
1483 .readpages = xfs_vm_readpages,
1484 .writepage = xfs_vm_writepage,
7d4fb40a 1485 .writepages = xfs_vm_writepages,
238f4c54
NS
1486 .releasepage = xfs_vm_releasepage,
1487 .invalidatepage = xfs_vm_invalidatepage,
d79689c7 1488 .write_begin = xfs_vm_write_begin,
fa9b227e 1489 .write_end = xfs_vm_write_end,
e4c573bb
NS
1490 .bmap = xfs_vm_bmap,
1491 .direct_IO = xfs_vm_direct_IO,
e965f963 1492 .migratepage = buffer_migrate_page,
bddaafa1 1493 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 1494 .error_remove_page = generic_error_remove_page,
1da177e4 1495};