buddy: clarify comments describing buddy merge
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4
LT
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
9f158333 25#include <linux/kernel.h>
1da177e4
LT
26#include <linux/module.h>
27#include <linux/suspend.h>
28#include <linux/pagevec.h>
29#include <linux/blkdev.h>
30#include <linux/slab.h>
5a3135c2 31#include <linux/oom.h>
1da177e4
LT
32#include <linux/notifier.h>
33#include <linux/topology.h>
34#include <linux/sysctl.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
bdc8cb98 37#include <linux/memory_hotplug.h>
1da177e4
LT
38#include <linux/nodemask.h>
39#include <linux/vmalloc.h>
4be38e35 40#include <linux/mempolicy.h>
6811378e 41#include <linux/stop_machine.h>
c713216d
MG
42#include <linux/sort.h>
43#include <linux/pfn.h>
3fcfab16 44#include <linux/backing-dev.h>
933e312e 45#include <linux/fault-inject.h>
a5d76b54 46#include <linux/page-isolation.h>
8a9f3ccd 47#include <linux/memcontrol.h>
3ac7fe5a 48#include <linux/debugobjects.h>
1da177e4
LT
49
50#include <asm/tlbflush.h>
ac924c60 51#include <asm/div64.h>
1da177e4
LT
52#include "internal.h"
53
54/*
13808910 55 * Array of node states.
1da177e4 56 */
13808910
CL
57nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
58 [N_POSSIBLE] = NODE_MASK_ALL,
59 [N_ONLINE] = { { [0] = 1UL } },
60#ifndef CONFIG_NUMA
61 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
62#ifdef CONFIG_HIGHMEM
63 [N_HIGH_MEMORY] = { { [0] = 1UL } },
64#endif
65 [N_CPU] = { { [0] = 1UL } },
66#endif /* NUMA */
67};
68EXPORT_SYMBOL(node_states);
69
6c231b7b 70unsigned long totalram_pages __read_mostly;
cb45b0e9 71unsigned long totalreserve_pages __read_mostly;
1da177e4 72long nr_swap_pages;
8ad4b1fb 73int percpu_pagelist_fraction;
1da177e4 74
d9c23400
MG
75#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
76int pageblock_order __read_mostly;
77#endif
78
d98c7a09 79static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 80
1da177e4
LT
81/*
82 * results with 256, 32 in the lowmem_reserve sysctl:
83 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
84 * 1G machine -> (16M dma, 784M normal, 224M high)
85 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
86 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
87 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
88 *
89 * TBD: should special case ZONE_DMA32 machines here - in those we normally
90 * don't need any ZONE_NORMAL reservation
1da177e4 91 */
2f1b6248 92int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 93#ifdef CONFIG_ZONE_DMA
2f1b6248 94 256,
4b51d669 95#endif
fb0e7942 96#ifdef CONFIG_ZONE_DMA32
2f1b6248 97 256,
fb0e7942 98#endif
e53ef38d 99#ifdef CONFIG_HIGHMEM
2a1e274a 100 32,
e53ef38d 101#endif
2a1e274a 102 32,
2f1b6248 103};
1da177e4
LT
104
105EXPORT_SYMBOL(totalram_pages);
1da177e4 106
15ad7cdc 107static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 108#ifdef CONFIG_ZONE_DMA
2f1b6248 109 "DMA",
4b51d669 110#endif
fb0e7942 111#ifdef CONFIG_ZONE_DMA32
2f1b6248 112 "DMA32",
fb0e7942 113#endif
2f1b6248 114 "Normal",
e53ef38d 115#ifdef CONFIG_HIGHMEM
2a1e274a 116 "HighMem",
e53ef38d 117#endif
2a1e274a 118 "Movable",
2f1b6248
CL
119};
120
1da177e4
LT
121int min_free_kbytes = 1024;
122
86356ab1
YG
123unsigned long __meminitdata nr_kernel_pages;
124unsigned long __meminitdata nr_all_pages;
a3142c8e 125static unsigned long __meminitdata dma_reserve;
1da177e4 126
c713216d
MG
127#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
128 /*
183ff22b 129 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
c713216d
MG
130 * ranges of memory (RAM) that may be registered with add_active_range().
131 * Ranges passed to add_active_range() will be merged if possible
132 * so the number of times add_active_range() can be called is
133 * related to the number of nodes and the number of holes
134 */
135 #ifdef CONFIG_MAX_ACTIVE_REGIONS
136 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
137 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
138 #else
139 #if MAX_NUMNODES >= 32
140 /* If there can be many nodes, allow up to 50 holes per node */
141 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
142 #else
143 /* By default, allow up to 256 distinct regions */
144 #define MAX_ACTIVE_REGIONS 256
145 #endif
146 #endif
147
98011f56
JB
148 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
149 static int __meminitdata nr_nodemap_entries;
150 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
151 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
fb01439c 152#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
98011f56
JB
153 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
154 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
fb01439c 155#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
2a1e274a 156 unsigned long __initdata required_kernelcore;
484f51f8 157 static unsigned long __initdata required_movablecore;
e228929b 158 unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
2a1e274a
MG
159
160 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
161 int movable_zone;
162 EXPORT_SYMBOL(movable_zone);
c713216d
MG
163#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
164
418508c1
MS
165#if MAX_NUMNODES > 1
166int nr_node_ids __read_mostly = MAX_NUMNODES;
167EXPORT_SYMBOL(nr_node_ids);
168#endif
169
9ef9acb0
MG
170int page_group_by_mobility_disabled __read_mostly;
171
b2a0ac88
MG
172static void set_pageblock_migratetype(struct page *page, int migratetype)
173{
174 set_pageblock_flags_group(page, (unsigned long)migratetype,
175 PB_migrate, PB_migrate_end);
176}
177
13e7444b 178#ifdef CONFIG_DEBUG_VM
c6a57e19 179static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 180{
bdc8cb98
DH
181 int ret = 0;
182 unsigned seq;
183 unsigned long pfn = page_to_pfn(page);
c6a57e19 184
bdc8cb98
DH
185 do {
186 seq = zone_span_seqbegin(zone);
187 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
188 ret = 1;
189 else if (pfn < zone->zone_start_pfn)
190 ret = 1;
191 } while (zone_span_seqretry(zone, seq));
192
193 return ret;
c6a57e19
DH
194}
195
196static int page_is_consistent(struct zone *zone, struct page *page)
197{
14e07298 198 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 199 return 0;
1da177e4 200 if (zone != page_zone(page))
c6a57e19
DH
201 return 0;
202
203 return 1;
204}
205/*
206 * Temporary debugging check for pages not lying within a given zone.
207 */
208static int bad_range(struct zone *zone, struct page *page)
209{
210 if (page_outside_zone_boundaries(zone, page))
1da177e4 211 return 1;
c6a57e19
DH
212 if (!page_is_consistent(zone, page))
213 return 1;
214
1da177e4
LT
215 return 0;
216}
13e7444b
NP
217#else
218static inline int bad_range(struct zone *zone, struct page *page)
219{
220 return 0;
221}
222#endif
223
224abf92 224static void bad_page(struct page *page)
1da177e4 225{
9442ec9d
HD
226 void *pc = page_get_page_cgroup(page);
227
228 printk(KERN_EMERG "Bad page state in process '%s'\n" KERN_EMERG
229 "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
224abf92
NP
230 current->comm, page, (int)(2*sizeof(unsigned long)),
231 (unsigned long)page->flags, page->mapping,
232 page_mapcount(page), page_count(page));
9442ec9d
HD
233 if (pc) {
234 printk(KERN_EMERG "cgroup:%p\n", pc);
235 page_reset_bad_cgroup(page);
236 }
237 printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
238 KERN_EMERG "Backtrace:\n");
1da177e4 239 dump_stack();
dfa7e20c 240 page->flags &= ~PAGE_FLAGS_CLEAR_WHEN_BAD;
1da177e4
LT
241 set_page_count(page, 0);
242 reset_page_mapcount(page);
243 page->mapping = NULL;
9f158333 244 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
245}
246
1da177e4
LT
247/*
248 * Higher-order pages are called "compound pages". They are structured thusly:
249 *
250 * The first PAGE_SIZE page is called the "head page".
251 *
252 * The remaining PAGE_SIZE pages are called "tail pages".
253 *
254 * All pages have PG_compound set. All pages have their ->private pointing at
255 * the head page (even the head page has this).
256 *
41d78ba5
HD
257 * The first tail page's ->lru.next holds the address of the compound page's
258 * put_page() function. Its ->lru.prev holds the order of allocation.
259 * This usage means that zero-order pages may not be compound.
1da177e4 260 */
d98c7a09
HD
261
262static void free_compound_page(struct page *page)
263{
d85f3385 264 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
265}
266
1da177e4
LT
267static void prep_compound_page(struct page *page, unsigned long order)
268{
269 int i;
270 int nr_pages = 1 << order;
271
33f2ef89 272 set_compound_page_dtor(page, free_compound_page);
d85f3385 273 set_compound_order(page, order);
6d777953 274 __SetPageHead(page);
d85f3385 275 for (i = 1; i < nr_pages; i++) {
1da177e4
LT
276 struct page *p = page + i;
277
d85f3385 278 __SetPageTail(p);
d85f3385 279 p->first_page = page;
1da177e4
LT
280 }
281}
282
283static void destroy_compound_page(struct page *page, unsigned long order)
284{
285 int i;
286 int nr_pages = 1 << order;
287
d85f3385 288 if (unlikely(compound_order(page) != order))
224abf92 289 bad_page(page);
1da177e4 290
6d777953 291 if (unlikely(!PageHead(page)))
d85f3385 292 bad_page(page);
6d777953 293 __ClearPageHead(page);
d85f3385 294 for (i = 1; i < nr_pages; i++) {
1da177e4
LT
295 struct page *p = page + i;
296
6d777953 297 if (unlikely(!PageTail(p) |
d85f3385 298 (p->first_page != page)))
224abf92 299 bad_page(page);
d85f3385 300 __ClearPageTail(p);
1da177e4
LT
301 }
302}
1da177e4 303
17cf4406
NP
304static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
305{
306 int i;
307
6626c5d5
AM
308 /*
309 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
310 * and __GFP_HIGHMEM from hard or soft interrupt context.
311 */
725d704e 312 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
313 for (i = 0; i < (1 << order); i++)
314 clear_highpage(page + i);
315}
316
6aa3001b
AM
317static inline void set_page_order(struct page *page, int order)
318{
4c21e2f2 319 set_page_private(page, order);
676165a8 320 __SetPageBuddy(page);
1da177e4
LT
321}
322
323static inline void rmv_page_order(struct page *page)
324{
676165a8 325 __ClearPageBuddy(page);
4c21e2f2 326 set_page_private(page, 0);
1da177e4
LT
327}
328
329/*
330 * Locate the struct page for both the matching buddy in our
331 * pair (buddy1) and the combined O(n+1) page they form (page).
332 *
333 * 1) Any buddy B1 will have an order O twin B2 which satisfies
334 * the following equation:
335 * B2 = B1 ^ (1 << O)
336 * For example, if the starting buddy (buddy2) is #8 its order
337 * 1 buddy is #10:
338 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
339 *
340 * 2) Any buddy B will have an order O+1 parent P which
341 * satisfies the following equation:
342 * P = B & ~(1 << O)
343 *
d6e05edc 344 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4
LT
345 */
346static inline struct page *
347__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
348{
349 unsigned long buddy_idx = page_idx ^ (1 << order);
350
351 return page + (buddy_idx - page_idx);
352}
353
354static inline unsigned long
355__find_combined_index(unsigned long page_idx, unsigned int order)
356{
357 return (page_idx & ~(1 << order));
358}
359
360/*
361 * This function checks whether a page is free && is the buddy
362 * we can do coalesce a page and its buddy if
13e7444b 363 * (a) the buddy is not in a hole &&
676165a8 364 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
365 * (c) a page and its buddy have the same order &&
366 * (d) a page and its buddy are in the same zone.
676165a8
NP
367 *
368 * For recording whether a page is in the buddy system, we use PG_buddy.
369 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
1da177e4 370 *
676165a8 371 * For recording page's order, we use page_private(page).
1da177e4 372 */
cb2b95e1
AW
373static inline int page_is_buddy(struct page *page, struct page *buddy,
374 int order)
1da177e4 375{
14e07298 376 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 377 return 0;
13e7444b 378
cb2b95e1
AW
379 if (page_zone_id(page) != page_zone_id(buddy))
380 return 0;
381
382 if (PageBuddy(buddy) && page_order(buddy) == order) {
383 BUG_ON(page_count(buddy) != 0);
6aa3001b 384 return 1;
676165a8 385 }
6aa3001b 386 return 0;
1da177e4
LT
387}
388
389/*
390 * Freeing function for a buddy system allocator.
391 *
392 * The concept of a buddy system is to maintain direct-mapped table
393 * (containing bit values) for memory blocks of various "orders".
394 * The bottom level table contains the map for the smallest allocatable
395 * units of memory (here, pages), and each level above it describes
396 * pairs of units from the levels below, hence, "buddies".
397 * At a high level, all that happens here is marking the table entry
398 * at the bottom level available, and propagating the changes upward
399 * as necessary, plus some accounting needed to play nicely with other
400 * parts of the VM system.
401 * At each level, we keep a list of pages, which are heads of continuous
676165a8 402 * free pages of length of (1 << order) and marked with PG_buddy. Page's
4c21e2f2 403 * order is recorded in page_private(page) field.
1da177e4
LT
404 * So when we are allocating or freeing one, we can derive the state of the
405 * other. That is, if we allocate a small block, and both were
406 * free, the remainder of the region must be split into blocks.
407 * If a block is freed, and its buddy is also free, then this
408 * triggers coalescing into a block of larger size.
409 *
410 * -- wli
411 */
412
48db57f8 413static inline void __free_one_page(struct page *page,
1da177e4
LT
414 struct zone *zone, unsigned int order)
415{
416 unsigned long page_idx;
417 int order_size = 1 << order;
b2a0ac88 418 int migratetype = get_pageblock_migratetype(page);
1da177e4 419
224abf92 420 if (unlikely(PageCompound(page)))
1da177e4
LT
421 destroy_compound_page(page, order);
422
423 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
424
725d704e
NP
425 VM_BUG_ON(page_idx & (order_size - 1));
426 VM_BUG_ON(bad_range(zone, page));
1da177e4 427
d23ad423 428 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
1da177e4
LT
429 while (order < MAX_ORDER-1) {
430 unsigned long combined_idx;
1da177e4
LT
431 struct page *buddy;
432
1da177e4 433 buddy = __page_find_buddy(page, page_idx, order);
cb2b95e1 434 if (!page_is_buddy(page, buddy, order))
3c82d0ce 435 break;
13e7444b 436
3c82d0ce 437 /* Our buddy is free, merge with it and move up one order. */
1da177e4 438 list_del(&buddy->lru);
b2a0ac88 439 zone->free_area[order].nr_free--;
1da177e4 440 rmv_page_order(buddy);
13e7444b 441 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
442 page = page + (combined_idx - page_idx);
443 page_idx = combined_idx;
444 order++;
445 }
446 set_page_order(page, order);
b2a0ac88
MG
447 list_add(&page->lru,
448 &zone->free_area[order].free_list[migratetype]);
1da177e4
LT
449 zone->free_area[order].nr_free++;
450}
451
224abf92 452static inline int free_pages_check(struct page *page)
1da177e4 453{
92be2e33
NP
454 if (unlikely(page_mapcount(page) |
455 (page->mapping != NULL) |
9442ec9d 456 (page_get_page_cgroup(page) != NULL) |
92be2e33 457 (page_count(page) != 0) |
dfa7e20c 458 (page->flags & PAGE_FLAGS_CHECK_AT_FREE)))
224abf92 459 bad_page(page);
1da177e4 460 if (PageDirty(page))
242e5468 461 __ClearPageDirty(page);
689bcebf
HD
462 /*
463 * For now, we report if PG_reserved was found set, but do not
464 * clear it, and do not free the page. But we shall soon need
465 * to do more, for when the ZERO_PAGE count wraps negative.
466 */
467 return PageReserved(page);
1da177e4
LT
468}
469
470/*
471 * Frees a list of pages.
472 * Assumes all pages on list are in same zone, and of same order.
207f36ee 473 * count is the number of pages to free.
1da177e4
LT
474 *
475 * If the zone was previously in an "all pages pinned" state then look to
476 * see if this freeing clears that state.
477 *
478 * And clear the zone's pages_scanned counter, to hold off the "all pages are
479 * pinned" detection logic.
480 */
48db57f8
NP
481static void free_pages_bulk(struct zone *zone, int count,
482 struct list_head *list, int order)
1da177e4 483{
c54ad30c 484 spin_lock(&zone->lock);
e815af95 485 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
1da177e4 486 zone->pages_scanned = 0;
48db57f8
NP
487 while (count--) {
488 struct page *page;
489
725d704e 490 VM_BUG_ON(list_empty(list));
1da177e4 491 page = list_entry(list->prev, struct page, lru);
48db57f8 492 /* have to delete it as __free_one_page list manipulates */
1da177e4 493 list_del(&page->lru);
48db57f8 494 __free_one_page(page, zone, order);
1da177e4 495 }
c54ad30c 496 spin_unlock(&zone->lock);
1da177e4
LT
497}
498
48db57f8 499static void free_one_page(struct zone *zone, struct page *page, int order)
1da177e4 500{
006d22d9 501 spin_lock(&zone->lock);
e815af95 502 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
006d22d9 503 zone->pages_scanned = 0;
0798e519 504 __free_one_page(page, zone, order);
006d22d9 505 spin_unlock(&zone->lock);
48db57f8
NP
506}
507
508static void __free_pages_ok(struct page *page, unsigned int order)
509{
510 unsigned long flags;
1da177e4 511 int i;
689bcebf 512 int reserved = 0;
1da177e4 513
1da177e4 514 for (i = 0 ; i < (1 << order) ; ++i)
224abf92 515 reserved += free_pages_check(page + i);
689bcebf
HD
516 if (reserved)
517 return;
518
3ac7fe5a 519 if (!PageHighMem(page)) {
9858db50 520 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
521 debug_check_no_obj_freed(page_address(page),
522 PAGE_SIZE << order);
523 }
dafb1367 524 arch_free_page(page, order);
48db57f8 525 kernel_map_pages(page, 1 << order, 0);
dafb1367 526
c54ad30c 527 local_irq_save(flags);
f8891e5e 528 __count_vm_events(PGFREE, 1 << order);
48db57f8 529 free_one_page(page_zone(page), page, order);
c54ad30c 530 local_irq_restore(flags);
1da177e4
LT
531}
532
a226f6c8
DH
533/*
534 * permit the bootmem allocator to evade page validation on high-order frees
535 */
0c0a4a51 536void __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8
DH
537{
538 if (order == 0) {
539 __ClearPageReserved(page);
540 set_page_count(page, 0);
7835e98b 541 set_page_refcounted(page);
545b1ea9 542 __free_page(page);
a226f6c8 543 } else {
a226f6c8
DH
544 int loop;
545
545b1ea9 546 prefetchw(page);
a226f6c8
DH
547 for (loop = 0; loop < BITS_PER_LONG; loop++) {
548 struct page *p = &page[loop];
549
545b1ea9
NP
550 if (loop + 1 < BITS_PER_LONG)
551 prefetchw(p + 1);
a226f6c8
DH
552 __ClearPageReserved(p);
553 set_page_count(p, 0);
554 }
555
7835e98b 556 set_page_refcounted(page);
545b1ea9 557 __free_pages(page, order);
a226f6c8
DH
558 }
559}
560
1da177e4
LT
561
562/*
563 * The order of subdivision here is critical for the IO subsystem.
564 * Please do not alter this order without good reasons and regression
565 * testing. Specifically, as large blocks of memory are subdivided,
566 * the order in which smaller blocks are delivered depends on the order
567 * they're subdivided in this function. This is the primary factor
568 * influencing the order in which pages are delivered to the IO
569 * subsystem according to empirical testing, and this is also justified
570 * by considering the behavior of a buddy system containing a single
571 * large block of memory acted on by a series of small allocations.
572 * This behavior is a critical factor in sglist merging's success.
573 *
574 * -- wli
575 */
085cc7d5 576static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
577 int low, int high, struct free_area *area,
578 int migratetype)
1da177e4
LT
579{
580 unsigned long size = 1 << high;
581
582 while (high > low) {
583 area--;
584 high--;
585 size >>= 1;
725d704e 586 VM_BUG_ON(bad_range(zone, &page[size]));
b2a0ac88 587 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
588 area->nr_free++;
589 set_page_order(&page[size], high);
590 }
1da177e4
LT
591}
592
1da177e4
LT
593/*
594 * This page is about to be returned from the page allocator
595 */
17cf4406 596static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
1da177e4 597{
92be2e33
NP
598 if (unlikely(page_mapcount(page) |
599 (page->mapping != NULL) |
9442ec9d 600 (page_get_page_cgroup(page) != NULL) |
92be2e33 601 (page_count(page) != 0) |
dfa7e20c 602 (page->flags & PAGE_FLAGS_CHECK_AT_PREP)))
224abf92 603 bad_page(page);
1da177e4 604
689bcebf
HD
605 /*
606 * For now, we report if PG_reserved was found set, but do not
607 * clear it, and do not allocate the page: as a safety net.
608 */
609 if (PageReserved(page))
610 return 1;
611
0a128b2b 612 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_reclaim |
1da177e4 613 1 << PG_referenced | 1 << PG_arch_1 |
5409bae0 614 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
4c21e2f2 615 set_page_private(page, 0);
7835e98b 616 set_page_refcounted(page);
cc102509
NP
617
618 arch_alloc_page(page, order);
1da177e4 619 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
620
621 if (gfp_flags & __GFP_ZERO)
622 prep_zero_page(page, order, gfp_flags);
623
624 if (order && (gfp_flags & __GFP_COMP))
625 prep_compound_page(page, order);
626
689bcebf 627 return 0;
1da177e4
LT
628}
629
56fd56b8
MG
630/*
631 * Go through the free lists for the given migratetype and remove
632 * the smallest available page from the freelists
633 */
634static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
635 int migratetype)
636{
637 unsigned int current_order;
638 struct free_area * area;
639 struct page *page;
640
641 /* Find a page of the appropriate size in the preferred list */
642 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
643 area = &(zone->free_area[current_order]);
644 if (list_empty(&area->free_list[migratetype]))
645 continue;
646
647 page = list_entry(area->free_list[migratetype].next,
648 struct page, lru);
649 list_del(&page->lru);
650 rmv_page_order(page);
651 area->nr_free--;
652 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
653 expand(zone, page, order, current_order, area, migratetype);
654 return page;
655 }
656
657 return NULL;
658}
659
660
b2a0ac88
MG
661/*
662 * This array describes the order lists are fallen back to when
663 * the free lists for the desirable migrate type are depleted
664 */
665static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
64c5e135
MG
666 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
667 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
668 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
669 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
670};
671
c361be55
MG
672/*
673 * Move the free pages in a range to the free lists of the requested type.
d9c23400 674 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
675 * boundary. If alignment is required, use move_freepages_block()
676 */
677int move_freepages(struct zone *zone,
678 struct page *start_page, struct page *end_page,
679 int migratetype)
680{
681 struct page *page;
682 unsigned long order;
d100313f 683 int pages_moved = 0;
c361be55
MG
684
685#ifndef CONFIG_HOLES_IN_ZONE
686 /*
687 * page_zone is not safe to call in this context when
688 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
689 * anyway as we check zone boundaries in move_freepages_block().
690 * Remove at a later date when no bug reports exist related to
ac0e5b7a 691 * grouping pages by mobility
c361be55
MG
692 */
693 BUG_ON(page_zone(start_page) != page_zone(end_page));
694#endif
695
696 for (page = start_page; page <= end_page;) {
697 if (!pfn_valid_within(page_to_pfn(page))) {
698 page++;
699 continue;
700 }
701
702 if (!PageBuddy(page)) {
703 page++;
704 continue;
705 }
706
707 order = page_order(page);
708 list_del(&page->lru);
709 list_add(&page->lru,
710 &zone->free_area[order].free_list[migratetype]);
711 page += 1 << order;
d100313f 712 pages_moved += 1 << order;
c361be55
MG
713 }
714
d100313f 715 return pages_moved;
c361be55
MG
716}
717
718int move_freepages_block(struct zone *zone, struct page *page, int migratetype)
719{
720 unsigned long start_pfn, end_pfn;
721 struct page *start_page, *end_page;
722
723 start_pfn = page_to_pfn(page);
d9c23400 724 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 725 start_page = pfn_to_page(start_pfn);
d9c23400
MG
726 end_page = start_page + pageblock_nr_pages - 1;
727 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
728
729 /* Do not cross zone boundaries */
730 if (start_pfn < zone->zone_start_pfn)
731 start_page = page;
732 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
733 return 0;
734
735 return move_freepages(zone, start_page, end_page, migratetype);
736}
737
b2a0ac88
MG
738/* Remove an element from the buddy allocator from the fallback list */
739static struct page *__rmqueue_fallback(struct zone *zone, int order,
740 int start_migratetype)
741{
742 struct free_area * area;
743 int current_order;
744 struct page *page;
745 int migratetype, i;
746
747 /* Find the largest possible block of pages in the other list */
748 for (current_order = MAX_ORDER-1; current_order >= order;
749 --current_order) {
750 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
751 migratetype = fallbacks[start_migratetype][i];
752
56fd56b8
MG
753 /* MIGRATE_RESERVE handled later if necessary */
754 if (migratetype == MIGRATE_RESERVE)
755 continue;
e010487d 756
b2a0ac88
MG
757 area = &(zone->free_area[current_order]);
758 if (list_empty(&area->free_list[migratetype]))
759 continue;
760
761 page = list_entry(area->free_list[migratetype].next,
762 struct page, lru);
763 area->nr_free--;
764
765 /*
c361be55 766 * If breaking a large block of pages, move all free
46dafbca
MG
767 * pages to the preferred allocation list. If falling
768 * back for a reclaimable kernel allocation, be more
769 * agressive about taking ownership of free pages
b2a0ac88 770 */
d9c23400 771 if (unlikely(current_order >= (pageblock_order >> 1)) ||
46dafbca
MG
772 start_migratetype == MIGRATE_RECLAIMABLE) {
773 unsigned long pages;
774 pages = move_freepages_block(zone, page,
775 start_migratetype);
776
777 /* Claim the whole block if over half of it is free */
d9c23400 778 if (pages >= (1 << (pageblock_order-1)))
46dafbca
MG
779 set_pageblock_migratetype(page,
780 start_migratetype);
781
b2a0ac88 782 migratetype = start_migratetype;
c361be55 783 }
b2a0ac88
MG
784
785 /* Remove the page from the freelists */
786 list_del(&page->lru);
787 rmv_page_order(page);
788 __mod_zone_page_state(zone, NR_FREE_PAGES,
789 -(1UL << order));
790
d9c23400 791 if (current_order == pageblock_order)
b2a0ac88
MG
792 set_pageblock_migratetype(page,
793 start_migratetype);
794
795 expand(zone, page, order, current_order, area, migratetype);
796 return page;
797 }
798 }
799
56fd56b8
MG
800 /* Use MIGRATE_RESERVE rather than fail an allocation */
801 return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
b2a0ac88
MG
802}
803
56fd56b8 804/*
1da177e4
LT
805 * Do the hard work of removing an element from the buddy allocator.
806 * Call me with the zone->lock already held.
807 */
b2a0ac88
MG
808static struct page *__rmqueue(struct zone *zone, unsigned int order,
809 int migratetype)
1da177e4 810{
1da177e4
LT
811 struct page *page;
812
56fd56b8 813 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 814
56fd56b8
MG
815 if (unlikely(!page))
816 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88
MG
817
818 return page;
1da177e4
LT
819}
820
821/*
822 * Obtain a specified number of elements from the buddy allocator, all under
823 * a single hold of the lock, for efficiency. Add them to the supplied list.
824 * Returns the number of new pages which were placed at *list.
825 */
826static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88
MG
827 unsigned long count, struct list_head *list,
828 int migratetype)
1da177e4 829{
1da177e4 830 int i;
1da177e4 831
c54ad30c 832 spin_lock(&zone->lock);
1da177e4 833 for (i = 0; i < count; ++i) {
b2a0ac88 834 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 835 if (unlikely(page == NULL))
1da177e4 836 break;
81eabcbe
MG
837
838 /*
839 * Split buddy pages returned by expand() are received here
840 * in physical page order. The page is added to the callers and
841 * list and the list head then moves forward. From the callers
842 * perspective, the linked list is ordered by page number in
843 * some conditions. This is useful for IO devices that can
844 * merge IO requests if the physical pages are ordered
845 * properly.
846 */
535131e6
MG
847 list_add(&page->lru, list);
848 set_page_private(page, migratetype);
81eabcbe 849 list = &page->lru;
1da177e4 850 }
c54ad30c 851 spin_unlock(&zone->lock);
085cc7d5 852 return i;
1da177e4
LT
853}
854
4ae7c039 855#ifdef CONFIG_NUMA
8fce4d8e 856/*
4037d452
CL
857 * Called from the vmstat counter updater to drain pagesets of this
858 * currently executing processor on remote nodes after they have
859 * expired.
860 *
879336c3
CL
861 * Note that this function must be called with the thread pinned to
862 * a single processor.
8fce4d8e 863 */
4037d452 864void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 865{
4ae7c039 866 unsigned long flags;
4037d452 867 int to_drain;
4ae7c039 868
4037d452
CL
869 local_irq_save(flags);
870 if (pcp->count >= pcp->batch)
871 to_drain = pcp->batch;
872 else
873 to_drain = pcp->count;
874 free_pages_bulk(zone, to_drain, &pcp->list, 0);
875 pcp->count -= to_drain;
876 local_irq_restore(flags);
4ae7c039
CL
877}
878#endif
879
9f8f2172
CL
880/*
881 * Drain pages of the indicated processor.
882 *
883 * The processor must either be the current processor and the
884 * thread pinned to the current processor or a processor that
885 * is not online.
886 */
887static void drain_pages(unsigned int cpu)
1da177e4 888{
c54ad30c 889 unsigned long flags;
1da177e4 890 struct zone *zone;
1da177e4
LT
891
892 for_each_zone(zone) {
893 struct per_cpu_pageset *pset;
3dfa5721 894 struct per_cpu_pages *pcp;
1da177e4 895
f2e12bb2
CL
896 if (!populated_zone(zone))
897 continue;
898
e7c8d5c9 899 pset = zone_pcp(zone, cpu);
3dfa5721
CL
900
901 pcp = &pset->pcp;
902 local_irq_save(flags);
903 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
904 pcp->count = 0;
905 local_irq_restore(flags);
1da177e4
LT
906 }
907}
1da177e4 908
9f8f2172
CL
909/*
910 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
911 */
912void drain_local_pages(void *arg)
913{
914 drain_pages(smp_processor_id());
915}
916
917/*
918 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
919 */
920void drain_all_pages(void)
921{
15c8b6c1 922 on_each_cpu(drain_local_pages, NULL, 1);
9f8f2172
CL
923}
924
296699de 925#ifdef CONFIG_HIBERNATION
1da177e4
LT
926
927void mark_free_pages(struct zone *zone)
928{
f623f0db
RW
929 unsigned long pfn, max_zone_pfn;
930 unsigned long flags;
b2a0ac88 931 int order, t;
1da177e4
LT
932 struct list_head *curr;
933
934 if (!zone->spanned_pages)
935 return;
936
937 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
938
939 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
940 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
941 if (pfn_valid(pfn)) {
942 struct page *page = pfn_to_page(pfn);
943
7be98234
RW
944 if (!swsusp_page_is_forbidden(page))
945 swsusp_unset_page_free(page);
f623f0db 946 }
1da177e4 947
b2a0ac88
MG
948 for_each_migratetype_order(order, t) {
949 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 950 unsigned long i;
1da177e4 951
f623f0db
RW
952 pfn = page_to_pfn(list_entry(curr, struct page, lru));
953 for (i = 0; i < (1UL << order); i++)
7be98234 954 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 955 }
b2a0ac88 956 }
1da177e4
LT
957 spin_unlock_irqrestore(&zone->lock, flags);
958}
e2c55dc8 959#endif /* CONFIG_PM */
1da177e4 960
1da177e4
LT
961/*
962 * Free a 0-order page
963 */
920c7a5d 964static void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
965{
966 struct zone *zone = page_zone(page);
967 struct per_cpu_pages *pcp;
968 unsigned long flags;
969
1da177e4
LT
970 if (PageAnon(page))
971 page->mapping = NULL;
224abf92 972 if (free_pages_check(page))
689bcebf
HD
973 return;
974
3ac7fe5a 975 if (!PageHighMem(page)) {
9858db50 976 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
3ac7fe5a
TG
977 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
978 }
dafb1367 979 arch_free_page(page, 0);
689bcebf
HD
980 kernel_map_pages(page, 1, 0);
981
3dfa5721 982 pcp = &zone_pcp(zone, get_cpu())->pcp;
1da177e4 983 local_irq_save(flags);
f8891e5e 984 __count_vm_event(PGFREE);
3dfa5721
CL
985 if (cold)
986 list_add_tail(&page->lru, &pcp->list);
987 else
988 list_add(&page->lru, &pcp->list);
535131e6 989 set_page_private(page, get_pageblock_migratetype(page));
1da177e4 990 pcp->count++;
48db57f8
NP
991 if (pcp->count >= pcp->high) {
992 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
993 pcp->count -= pcp->batch;
994 }
1da177e4
LT
995 local_irq_restore(flags);
996 put_cpu();
997}
998
920c7a5d 999void free_hot_page(struct page *page)
1da177e4
LT
1000{
1001 free_hot_cold_page(page, 0);
1002}
1003
920c7a5d 1004void free_cold_page(struct page *page)
1da177e4
LT
1005{
1006 free_hot_cold_page(page, 1);
1007}
1008
8dfcc9ba
NP
1009/*
1010 * split_page takes a non-compound higher-order page, and splits it into
1011 * n (1<<order) sub-pages: page[0..n]
1012 * Each sub-page must be freed individually.
1013 *
1014 * Note: this is probably too low level an operation for use in drivers.
1015 * Please consult with lkml before using this in your driver.
1016 */
1017void split_page(struct page *page, unsigned int order)
1018{
1019 int i;
1020
725d704e
NP
1021 VM_BUG_ON(PageCompound(page));
1022 VM_BUG_ON(!page_count(page));
7835e98b
NP
1023 for (i = 1; i < (1 << order); i++)
1024 set_page_refcounted(page + i);
8dfcc9ba 1025}
8dfcc9ba 1026
1da177e4
LT
1027/*
1028 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1029 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1030 * or two.
1031 */
18ea7e71 1032static struct page *buffered_rmqueue(struct zone *preferred_zone,
a74609fa 1033 struct zone *zone, int order, gfp_t gfp_flags)
1da177e4
LT
1034{
1035 unsigned long flags;
689bcebf 1036 struct page *page;
1da177e4 1037 int cold = !!(gfp_flags & __GFP_COLD);
a74609fa 1038 int cpu;
64c5e135 1039 int migratetype = allocflags_to_migratetype(gfp_flags);
1da177e4 1040
689bcebf 1041again:
a74609fa 1042 cpu = get_cpu();
48db57f8 1043 if (likely(order == 0)) {
1da177e4
LT
1044 struct per_cpu_pages *pcp;
1045
3dfa5721 1046 pcp = &zone_pcp(zone, cpu)->pcp;
1da177e4 1047 local_irq_save(flags);
a74609fa 1048 if (!pcp->count) {
941c7105 1049 pcp->count = rmqueue_bulk(zone, 0,
b2a0ac88 1050 pcp->batch, &pcp->list, migratetype);
a74609fa
NP
1051 if (unlikely(!pcp->count))
1052 goto failed;
1da177e4 1053 }
b92a6edd 1054
535131e6 1055 /* Find a page of the appropriate migrate type */
3dfa5721
CL
1056 if (cold) {
1057 list_for_each_entry_reverse(page, &pcp->list, lru)
1058 if (page_private(page) == migratetype)
1059 break;
1060 } else {
1061 list_for_each_entry(page, &pcp->list, lru)
1062 if (page_private(page) == migratetype)
1063 break;
1064 }
535131e6 1065
b92a6edd
MG
1066 /* Allocate more to the pcp list if necessary */
1067 if (unlikely(&page->lru == &pcp->list)) {
535131e6
MG
1068 pcp->count += rmqueue_bulk(zone, 0,
1069 pcp->batch, &pcp->list, migratetype);
1070 page = list_entry(pcp->list.next, struct page, lru);
535131e6 1071 }
b92a6edd
MG
1072
1073 list_del(&page->lru);
1074 pcp->count--;
7fb1d9fc 1075 } else {
1da177e4 1076 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1077 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1078 spin_unlock(&zone->lock);
1079 if (!page)
1080 goto failed;
1da177e4
LT
1081 }
1082
f8891e5e 1083 __count_zone_vm_events(PGALLOC, zone, 1 << order);
18ea7e71 1084 zone_statistics(preferred_zone, zone);
a74609fa
NP
1085 local_irq_restore(flags);
1086 put_cpu();
1da177e4 1087
725d704e 1088 VM_BUG_ON(bad_range(zone, page));
17cf4406 1089 if (prep_new_page(page, order, gfp_flags))
a74609fa 1090 goto again;
1da177e4 1091 return page;
a74609fa
NP
1092
1093failed:
1094 local_irq_restore(flags);
1095 put_cpu();
1096 return NULL;
1da177e4
LT
1097}
1098
7fb1d9fc 1099#define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
3148890b
NP
1100#define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1101#define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1102#define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1103#define ALLOC_HARDER 0x10 /* try to alloc harder */
1104#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1105#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 1106
933e312e
AM
1107#ifdef CONFIG_FAIL_PAGE_ALLOC
1108
1109static struct fail_page_alloc_attr {
1110 struct fault_attr attr;
1111
1112 u32 ignore_gfp_highmem;
1113 u32 ignore_gfp_wait;
54114994 1114 u32 min_order;
933e312e
AM
1115
1116#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1117
1118 struct dentry *ignore_gfp_highmem_file;
1119 struct dentry *ignore_gfp_wait_file;
54114994 1120 struct dentry *min_order_file;
933e312e
AM
1121
1122#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1123
1124} fail_page_alloc = {
1125 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1126 .ignore_gfp_wait = 1,
1127 .ignore_gfp_highmem = 1,
54114994 1128 .min_order = 1,
933e312e
AM
1129};
1130
1131static int __init setup_fail_page_alloc(char *str)
1132{
1133 return setup_fault_attr(&fail_page_alloc.attr, str);
1134}
1135__setup("fail_page_alloc=", setup_fail_page_alloc);
1136
1137static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1138{
54114994
AM
1139 if (order < fail_page_alloc.min_order)
1140 return 0;
933e312e
AM
1141 if (gfp_mask & __GFP_NOFAIL)
1142 return 0;
1143 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1144 return 0;
1145 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1146 return 0;
1147
1148 return should_fail(&fail_page_alloc.attr, 1 << order);
1149}
1150
1151#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1152
1153static int __init fail_page_alloc_debugfs(void)
1154{
1155 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1156 struct dentry *dir;
1157 int err;
1158
1159 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1160 "fail_page_alloc");
1161 if (err)
1162 return err;
1163 dir = fail_page_alloc.attr.dentries.dir;
1164
1165 fail_page_alloc.ignore_gfp_wait_file =
1166 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1167 &fail_page_alloc.ignore_gfp_wait);
1168
1169 fail_page_alloc.ignore_gfp_highmem_file =
1170 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1171 &fail_page_alloc.ignore_gfp_highmem);
54114994
AM
1172 fail_page_alloc.min_order_file =
1173 debugfs_create_u32("min-order", mode, dir,
1174 &fail_page_alloc.min_order);
933e312e
AM
1175
1176 if (!fail_page_alloc.ignore_gfp_wait_file ||
54114994
AM
1177 !fail_page_alloc.ignore_gfp_highmem_file ||
1178 !fail_page_alloc.min_order_file) {
933e312e
AM
1179 err = -ENOMEM;
1180 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1181 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
54114994 1182 debugfs_remove(fail_page_alloc.min_order_file);
933e312e
AM
1183 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1184 }
1185
1186 return err;
1187}
1188
1189late_initcall(fail_page_alloc_debugfs);
1190
1191#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1192
1193#else /* CONFIG_FAIL_PAGE_ALLOC */
1194
1195static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1196{
1197 return 0;
1198}
1199
1200#endif /* CONFIG_FAIL_PAGE_ALLOC */
1201
1da177e4
LT
1202/*
1203 * Return 1 if free pages are above 'mark'. This takes into account the order
1204 * of the allocation.
1205 */
1206int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 1207 int classzone_idx, int alloc_flags)
1da177e4
LT
1208{
1209 /* free_pages my go negative - that's OK */
d23ad423
CL
1210 long min = mark;
1211 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1da177e4
LT
1212 int o;
1213
7fb1d9fc 1214 if (alloc_flags & ALLOC_HIGH)
1da177e4 1215 min -= min / 2;
7fb1d9fc 1216 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1217 min -= min / 4;
1218
1219 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1220 return 0;
1221 for (o = 0; o < order; o++) {
1222 /* At the next order, this order's pages become unavailable */
1223 free_pages -= z->free_area[o].nr_free << o;
1224
1225 /* Require fewer higher order pages to be free */
1226 min >>= 1;
1227
1228 if (free_pages <= min)
1229 return 0;
1230 }
1231 return 1;
1232}
1233
9276b1bc
PJ
1234#ifdef CONFIG_NUMA
1235/*
1236 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1237 * skip over zones that are not allowed by the cpuset, or that have
1238 * been recently (in last second) found to be nearly full. See further
1239 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1240 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1241 *
1242 * If the zonelist cache is present in the passed in zonelist, then
1243 * returns a pointer to the allowed node mask (either the current
37b07e41 1244 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1245 *
1246 * If the zonelist cache is not available for this zonelist, does
1247 * nothing and returns NULL.
1248 *
1249 * If the fullzones BITMAP in the zonelist cache is stale (more than
1250 * a second since last zap'd) then we zap it out (clear its bits.)
1251 *
1252 * We hold off even calling zlc_setup, until after we've checked the
1253 * first zone in the zonelist, on the theory that most allocations will
1254 * be satisfied from that first zone, so best to examine that zone as
1255 * quickly as we can.
1256 */
1257static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1258{
1259 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1260 nodemask_t *allowednodes; /* zonelist_cache approximation */
1261
1262 zlc = zonelist->zlcache_ptr;
1263 if (!zlc)
1264 return NULL;
1265
f05111f5 1266 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1267 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1268 zlc->last_full_zap = jiffies;
1269 }
1270
1271 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1272 &cpuset_current_mems_allowed :
37b07e41 1273 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1274 return allowednodes;
1275}
1276
1277/*
1278 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1279 * if it is worth looking at further for free memory:
1280 * 1) Check that the zone isn't thought to be full (doesn't have its
1281 * bit set in the zonelist_cache fullzones BITMAP).
1282 * 2) Check that the zones node (obtained from the zonelist_cache
1283 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1284 * Return true (non-zero) if zone is worth looking at further, or
1285 * else return false (zero) if it is not.
1286 *
1287 * This check -ignores- the distinction between various watermarks,
1288 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1289 * found to be full for any variation of these watermarks, it will
1290 * be considered full for up to one second by all requests, unless
1291 * we are so low on memory on all allowed nodes that we are forced
1292 * into the second scan of the zonelist.
1293 *
1294 * In the second scan we ignore this zonelist cache and exactly
1295 * apply the watermarks to all zones, even it is slower to do so.
1296 * We are low on memory in the second scan, and should leave no stone
1297 * unturned looking for a free page.
1298 */
dd1a239f 1299static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1300 nodemask_t *allowednodes)
1301{
1302 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1303 int i; /* index of *z in zonelist zones */
1304 int n; /* node that zone *z is on */
1305
1306 zlc = zonelist->zlcache_ptr;
1307 if (!zlc)
1308 return 1;
1309
dd1a239f 1310 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1311 n = zlc->z_to_n[i];
1312
1313 /* This zone is worth trying if it is allowed but not full */
1314 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1315}
1316
1317/*
1318 * Given 'z' scanning a zonelist, set the corresponding bit in
1319 * zlc->fullzones, so that subsequent attempts to allocate a page
1320 * from that zone don't waste time re-examining it.
1321 */
dd1a239f 1322static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1323{
1324 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1325 int i; /* index of *z in zonelist zones */
1326
1327 zlc = zonelist->zlcache_ptr;
1328 if (!zlc)
1329 return;
1330
dd1a239f 1331 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1332
1333 set_bit(i, zlc->fullzones);
1334}
1335
1336#else /* CONFIG_NUMA */
1337
1338static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1339{
1340 return NULL;
1341}
1342
dd1a239f 1343static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1344 nodemask_t *allowednodes)
1345{
1346 return 1;
1347}
1348
dd1a239f 1349static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1350{
1351}
1352#endif /* CONFIG_NUMA */
1353
7fb1d9fc 1354/*
0798e519 1355 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1356 * a page.
1357 */
1358static struct page *
19770b32 1359get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
54a6eb5c 1360 struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
753ee728 1361{
dd1a239f 1362 struct zoneref *z;
7fb1d9fc 1363 struct page *page = NULL;
54a6eb5c 1364 int classzone_idx;
18ea7e71 1365 struct zone *zone, *preferred_zone;
9276b1bc
PJ
1366 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1367 int zlc_active = 0; /* set if using zonelist_cache */
1368 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1369
19770b32
MG
1370 (void)first_zones_zonelist(zonelist, high_zoneidx, nodemask,
1371 &preferred_zone);
7eb54824
AW
1372 if (!preferred_zone)
1373 return NULL;
1374
19770b32 1375 classzone_idx = zone_idx(preferred_zone);
7fb1d9fc 1376
9276b1bc 1377zonelist_scan:
7fb1d9fc 1378 /*
9276b1bc 1379 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1380 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1381 */
19770b32
MG
1382 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1383 high_zoneidx, nodemask) {
9276b1bc
PJ
1384 if (NUMA_BUILD && zlc_active &&
1385 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1386 continue;
7fb1d9fc 1387 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1388 !cpuset_zone_allowed_softwall(zone, gfp_mask))
9276b1bc 1389 goto try_next_zone;
7fb1d9fc
RS
1390
1391 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b
NP
1392 unsigned long mark;
1393 if (alloc_flags & ALLOC_WMARK_MIN)
1192d526 1394 mark = zone->pages_min;
3148890b 1395 else if (alloc_flags & ALLOC_WMARK_LOW)
1192d526 1396 mark = zone->pages_low;
3148890b 1397 else
1192d526 1398 mark = zone->pages_high;
0798e519
PJ
1399 if (!zone_watermark_ok(zone, order, mark,
1400 classzone_idx, alloc_flags)) {
9eeff239 1401 if (!zone_reclaim_mode ||
1192d526 1402 !zone_reclaim(zone, gfp_mask, order))
9276b1bc 1403 goto this_zone_full;
0798e519 1404 }
7fb1d9fc
RS
1405 }
1406
18ea7e71 1407 page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
0798e519 1408 if (page)
7fb1d9fc 1409 break;
9276b1bc
PJ
1410this_zone_full:
1411 if (NUMA_BUILD)
1412 zlc_mark_zone_full(zonelist, z);
1413try_next_zone:
1414 if (NUMA_BUILD && !did_zlc_setup) {
1415 /* we do zlc_setup after the first zone is tried */
1416 allowednodes = zlc_setup(zonelist, alloc_flags);
1417 zlc_active = 1;
1418 did_zlc_setup = 1;
1419 }
54a6eb5c 1420 }
9276b1bc
PJ
1421
1422 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1423 /* Disable zlc cache for second zonelist scan */
1424 zlc_active = 0;
1425 goto zonelist_scan;
1426 }
7fb1d9fc 1427 return page;
753ee728
MH
1428}
1429
1da177e4
LT
1430/*
1431 * This is the 'heart' of the zoned buddy allocator.
1432 */
e4048e5d 1433struct page *
19770b32
MG
1434__alloc_pages_internal(gfp_t gfp_mask, unsigned int order,
1435 struct zonelist *zonelist, nodemask_t *nodemask)
1da177e4 1436{
260b2367 1437 const gfp_t wait = gfp_mask & __GFP_WAIT;
54a6eb5c 1438 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
dd1a239f
MG
1439 struct zoneref *z;
1440 struct zone *zone;
1da177e4
LT
1441 struct page *page;
1442 struct reclaim_state reclaim_state;
1443 struct task_struct *p = current;
1da177e4 1444 int do_retry;
7fb1d9fc 1445 int alloc_flags;
a41f24ea
NA
1446 unsigned long did_some_progress;
1447 unsigned long pages_reclaimed = 0;
1da177e4
LT
1448
1449 might_sleep_if(wait);
1450
933e312e
AM
1451 if (should_fail_alloc_page(gfp_mask, order))
1452 return NULL;
1453
6b1de916 1454restart:
dd1a239f 1455 z = zonelist->_zonerefs; /* the list of zones suitable for gfp_mask */
1da177e4 1456
dd1a239f 1457 if (unlikely(!z->zone)) {
523b9458
CL
1458 /*
1459 * Happens if we have an empty zonelist as a result of
1460 * GFP_THISNODE being used on a memoryless node
1461 */
1da177e4
LT
1462 return NULL;
1463 }
6b1de916 1464
19770b32 1465 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
54a6eb5c 1466 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
7fb1d9fc
RS
1467 if (page)
1468 goto got_pg;
1da177e4 1469
952f3b51
CL
1470 /*
1471 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1472 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1473 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1474 * using a larger set of nodes after it has established that the
1475 * allowed per node queues are empty and that nodes are
1476 * over allocated.
1477 */
1478 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1479 goto nopage;
1480
dd1a239f
MG
1481 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1482 wakeup_kswapd(zone, order);
1da177e4 1483
9bf2229f 1484 /*
7fb1d9fc
RS
1485 * OK, we're below the kswapd watermark and have kicked background
1486 * reclaim. Now things get more complex, so set up alloc_flags according
1487 * to how we want to proceed.
1488 *
1489 * The caller may dip into page reserves a bit more if the caller
1490 * cannot run direct reclaim, or if the caller has realtime scheduling
4eac915d
PJ
1491 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1492 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
9bf2229f 1493 */
3148890b 1494 alloc_flags = ALLOC_WMARK_MIN;
7fb1d9fc
RS
1495 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1496 alloc_flags |= ALLOC_HARDER;
1497 if (gfp_mask & __GFP_HIGH)
1498 alloc_flags |= ALLOC_HIGH;
bdd804f4
PJ
1499 if (wait)
1500 alloc_flags |= ALLOC_CPUSET;
1da177e4
LT
1501
1502 /*
1503 * Go through the zonelist again. Let __GFP_HIGH and allocations
7fb1d9fc 1504 * coming from realtime tasks go deeper into reserves.
1da177e4
LT
1505 *
1506 * This is the last chance, in general, before the goto nopage.
1507 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
9bf2229f 1508 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1da177e4 1509 */
19770b32 1510 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
54a6eb5c 1511 high_zoneidx, alloc_flags);
7fb1d9fc
RS
1512 if (page)
1513 goto got_pg;
1da177e4
LT
1514
1515 /* This allocation should allow future memory freeing. */
b84a35be 1516
b43a57bb 1517rebalance:
b84a35be
NP
1518 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1519 && !in_interrupt()) {
1520 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
885036d3 1521nofail_alloc:
b84a35be 1522 /* go through the zonelist yet again, ignoring mins */
19770b32 1523 page = get_page_from_freelist(gfp_mask, nodemask, order,
54a6eb5c 1524 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
7fb1d9fc
RS
1525 if (page)
1526 goto got_pg;
885036d3 1527 if (gfp_mask & __GFP_NOFAIL) {
3fcfab16 1528 congestion_wait(WRITE, HZ/50);
885036d3
KK
1529 goto nofail_alloc;
1530 }
1da177e4
LT
1531 }
1532 goto nopage;
1533 }
1534
1535 /* Atomic allocations - we can't balance anything */
1536 if (!wait)
1537 goto nopage;
1538
1da177e4
LT
1539 cond_resched();
1540
1541 /* We now go into synchronous reclaim */
3e0d98b9 1542 cpuset_memory_pressure_bump();
1da177e4
LT
1543 p->flags |= PF_MEMALLOC;
1544 reclaim_state.reclaimed_slab = 0;
1545 p->reclaim_state = &reclaim_state;
1546
dac1d27b 1547 did_some_progress = try_to_free_pages(zonelist, order, gfp_mask);
1da177e4
LT
1548
1549 p->reclaim_state = NULL;
1550 p->flags &= ~PF_MEMALLOC;
1551
1552 cond_resched();
1553
e2c55dc8 1554 if (order != 0)
9f8f2172 1555 drain_all_pages();
e2c55dc8 1556
1da177e4 1557 if (likely(did_some_progress)) {
19770b32 1558 page = get_page_from_freelist(gfp_mask, nodemask, order,
54a6eb5c 1559 zonelist, high_zoneidx, alloc_flags);
7fb1d9fc
RS
1560 if (page)
1561 goto got_pg;
1da177e4 1562 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
dd1a239f 1563 if (!try_set_zone_oom(zonelist, gfp_mask)) {
ff0ceb9d
DR
1564 schedule_timeout_uninterruptible(1);
1565 goto restart;
1566 }
1567
1da177e4
LT
1568 /*
1569 * Go through the zonelist yet one more time, keep
1570 * very high watermark here, this is only to catch
1571 * a parallel oom killing, we must fail if we're still
1572 * under heavy pressure.
1573 */
19770b32
MG
1574 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1575 order, zonelist, high_zoneidx,
1576 ALLOC_WMARK_HIGH|ALLOC_CPUSET);
ff0ceb9d 1577 if (page) {
dd1a239f 1578 clear_zonelist_oom(zonelist, gfp_mask);
7fb1d9fc 1579 goto got_pg;
ff0ceb9d 1580 }
1da177e4 1581
a8bbf72a 1582 /* The OOM killer will not help higher order allocs so fail */
ff0ceb9d 1583 if (order > PAGE_ALLOC_COSTLY_ORDER) {
dd1a239f 1584 clear_zonelist_oom(zonelist, gfp_mask);
a8bbf72a 1585 goto nopage;
ff0ceb9d 1586 }
a8bbf72a 1587
9b0f8b04 1588 out_of_memory(zonelist, gfp_mask, order);
dd1a239f 1589 clear_zonelist_oom(zonelist, gfp_mask);
1da177e4
LT
1590 goto restart;
1591 }
1592
1593 /*
1594 * Don't let big-order allocations loop unless the caller explicitly
1595 * requests that. Wait for some write requests to complete then retry.
1596 *
a41f24ea
NA
1597 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1598 * means __GFP_NOFAIL, but that may not be true in other
ab857d09 1599 * implementations.
a41f24ea
NA
1600 *
1601 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1602 * specified, then we retry until we no longer reclaim any pages
1603 * (above), or we've reclaimed an order of pages at least as
1604 * large as the allocation's order. In both cases, if the
1605 * allocation still fails, we stop retrying.
1da177e4 1606 */
a41f24ea 1607 pages_reclaimed += did_some_progress;
1da177e4
LT
1608 do_retry = 0;
1609 if (!(gfp_mask & __GFP_NORETRY)) {
a41f24ea 1610 if (order <= PAGE_ALLOC_COSTLY_ORDER) {
1da177e4 1611 do_retry = 1;
a41f24ea
NA
1612 } else {
1613 if (gfp_mask & __GFP_REPEAT &&
1614 pages_reclaimed < (1 << order))
1615 do_retry = 1;
1616 }
1da177e4
LT
1617 if (gfp_mask & __GFP_NOFAIL)
1618 do_retry = 1;
1619 }
1620 if (do_retry) {
3fcfab16 1621 congestion_wait(WRITE, HZ/50);
1da177e4
LT
1622 goto rebalance;
1623 }
1624
1625nopage:
1626 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1627 printk(KERN_WARNING "%s: page allocation failure."
1628 " order:%d, mode:0x%x\n",
1629 p->comm, order, gfp_mask);
1630 dump_stack();
578c2fd6 1631 show_mem();
1da177e4 1632 }
1da177e4 1633got_pg:
1da177e4
LT
1634 return page;
1635}
e4048e5d 1636EXPORT_SYMBOL(__alloc_pages_internal);
1da177e4
LT
1637
1638/*
1639 * Common helper functions.
1640 */
920c7a5d 1641unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4
LT
1642{
1643 struct page * page;
1644 page = alloc_pages(gfp_mask, order);
1645 if (!page)
1646 return 0;
1647 return (unsigned long) page_address(page);
1648}
1649
1650EXPORT_SYMBOL(__get_free_pages);
1651
920c7a5d 1652unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4
LT
1653{
1654 struct page * page;
1655
1656 /*
1657 * get_zeroed_page() returns a 32-bit address, which cannot represent
1658 * a highmem page
1659 */
725d704e 1660 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1da177e4
LT
1661
1662 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1663 if (page)
1664 return (unsigned long) page_address(page);
1665 return 0;
1666}
1667
1668EXPORT_SYMBOL(get_zeroed_page);
1669
1670void __pagevec_free(struct pagevec *pvec)
1671{
1672 int i = pagevec_count(pvec);
1673
1674 while (--i >= 0)
1675 free_hot_cold_page(pvec->pages[i], pvec->cold);
1676}
1677
920c7a5d 1678void __free_pages(struct page *page, unsigned int order)
1da177e4 1679{
b5810039 1680 if (put_page_testzero(page)) {
1da177e4
LT
1681 if (order == 0)
1682 free_hot_page(page);
1683 else
1684 __free_pages_ok(page, order);
1685 }
1686}
1687
1688EXPORT_SYMBOL(__free_pages);
1689
920c7a5d 1690void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
1691{
1692 if (addr != 0) {
725d704e 1693 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
1694 __free_pages(virt_to_page((void *)addr), order);
1695 }
1696}
1697
1698EXPORT_SYMBOL(free_pages);
1699
1da177e4
LT
1700static unsigned int nr_free_zone_pages(int offset)
1701{
dd1a239f 1702 struct zoneref *z;
54a6eb5c
MG
1703 struct zone *zone;
1704
e310fd43 1705 /* Just pick one node, since fallback list is circular */
1da177e4
LT
1706 unsigned int sum = 0;
1707
0e88460d 1708 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 1709
54a6eb5c 1710 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43
MB
1711 unsigned long size = zone->present_pages;
1712 unsigned long high = zone->pages_high;
1713 if (size > high)
1714 sum += size - high;
1da177e4
LT
1715 }
1716
1717 return sum;
1718}
1719
1720/*
1721 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1722 */
1723unsigned int nr_free_buffer_pages(void)
1724{
af4ca457 1725 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 1726}
c2f1a551 1727EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
1728
1729/*
1730 * Amount of free RAM allocatable within all zones
1731 */
1732unsigned int nr_free_pagecache_pages(void)
1733{
2a1e274a 1734 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 1735}
08e0f6a9
CL
1736
1737static inline void show_node(struct zone *zone)
1da177e4 1738{
08e0f6a9 1739 if (NUMA_BUILD)
25ba77c1 1740 printk("Node %d ", zone_to_nid(zone));
1da177e4 1741}
1da177e4 1742
1da177e4
LT
1743void si_meminfo(struct sysinfo *val)
1744{
1745 val->totalram = totalram_pages;
1746 val->sharedram = 0;
d23ad423 1747 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 1748 val->bufferram = nr_blockdev_pages();
1da177e4
LT
1749 val->totalhigh = totalhigh_pages;
1750 val->freehigh = nr_free_highpages();
1da177e4
LT
1751 val->mem_unit = PAGE_SIZE;
1752}
1753
1754EXPORT_SYMBOL(si_meminfo);
1755
1756#ifdef CONFIG_NUMA
1757void si_meminfo_node(struct sysinfo *val, int nid)
1758{
1759 pg_data_t *pgdat = NODE_DATA(nid);
1760
1761 val->totalram = pgdat->node_present_pages;
d23ad423 1762 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 1763#ifdef CONFIG_HIGHMEM
1da177e4 1764 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
1765 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1766 NR_FREE_PAGES);
98d2b0eb
CL
1767#else
1768 val->totalhigh = 0;
1769 val->freehigh = 0;
1770#endif
1da177e4
LT
1771 val->mem_unit = PAGE_SIZE;
1772}
1773#endif
1774
1775#define K(x) ((x) << (PAGE_SHIFT-10))
1776
1777/*
1778 * Show free area list (used inside shift_scroll-lock stuff)
1779 * We also calculate the percentage fragmentation. We do this by counting the
1780 * memory on each free list with the exception of the first item on the list.
1781 */
1782void show_free_areas(void)
1783{
c7241913 1784 int cpu;
1da177e4
LT
1785 struct zone *zone;
1786
1787 for_each_zone(zone) {
c7241913 1788 if (!populated_zone(zone))
1da177e4 1789 continue;
c7241913
JS
1790
1791 show_node(zone);
1792 printk("%s per-cpu:\n", zone->name);
1da177e4 1793
6b482c67 1794 for_each_online_cpu(cpu) {
1da177e4
LT
1795 struct per_cpu_pageset *pageset;
1796
e7c8d5c9 1797 pageset = zone_pcp(zone, cpu);
1da177e4 1798
3dfa5721
CL
1799 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
1800 cpu, pageset->pcp.high,
1801 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
1802 }
1803 }
1804
a25700a5 1805 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
d23ad423 1806 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
65e458d4
CL
1807 global_page_state(NR_ACTIVE),
1808 global_page_state(NR_INACTIVE),
b1e7a8fd 1809 global_page_state(NR_FILE_DIRTY),
ce866b34 1810 global_page_state(NR_WRITEBACK),
fd39fc85 1811 global_page_state(NR_UNSTABLE_NFS),
d23ad423 1812 global_page_state(NR_FREE_PAGES),
972d1a7b
CL
1813 global_page_state(NR_SLAB_RECLAIMABLE) +
1814 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 1815 global_page_state(NR_FILE_MAPPED),
a25700a5
AM
1816 global_page_state(NR_PAGETABLE),
1817 global_page_state(NR_BOUNCE));
1da177e4
LT
1818
1819 for_each_zone(zone) {
1820 int i;
1821
c7241913
JS
1822 if (!populated_zone(zone))
1823 continue;
1824
1da177e4
LT
1825 show_node(zone);
1826 printk("%s"
1827 " free:%lukB"
1828 " min:%lukB"
1829 " low:%lukB"
1830 " high:%lukB"
1831 " active:%lukB"
1832 " inactive:%lukB"
1833 " present:%lukB"
1834 " pages_scanned:%lu"
1835 " all_unreclaimable? %s"
1836 "\n",
1837 zone->name,
d23ad423 1838 K(zone_page_state(zone, NR_FREE_PAGES)),
1da177e4
LT
1839 K(zone->pages_min),
1840 K(zone->pages_low),
1841 K(zone->pages_high),
c8785385
CL
1842 K(zone_page_state(zone, NR_ACTIVE)),
1843 K(zone_page_state(zone, NR_INACTIVE)),
1da177e4
LT
1844 K(zone->present_pages),
1845 zone->pages_scanned,
e815af95 1846 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
1da177e4
LT
1847 );
1848 printk("lowmem_reserve[]:");
1849 for (i = 0; i < MAX_NR_ZONES; i++)
1850 printk(" %lu", zone->lowmem_reserve[i]);
1851 printk("\n");
1852 }
1853
1854 for_each_zone(zone) {
8f9de51a 1855 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4 1856
c7241913
JS
1857 if (!populated_zone(zone))
1858 continue;
1859
1da177e4
LT
1860 show_node(zone);
1861 printk("%s: ", zone->name);
1da177e4
LT
1862
1863 spin_lock_irqsave(&zone->lock, flags);
1864 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
1865 nr[order] = zone->free_area[order].nr_free;
1866 total += nr[order] << order;
1da177e4
LT
1867 }
1868 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
1869 for (order = 0; order < MAX_ORDER; order++)
1870 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
1871 printk("= %lukB\n", K(total));
1872 }
1873
e6f3602d
LW
1874 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
1875
1da177e4
LT
1876 show_swap_cache_info();
1877}
1878
19770b32
MG
1879static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
1880{
1881 zoneref->zone = zone;
1882 zoneref->zone_idx = zone_idx(zone);
1883}
1884
1da177e4
LT
1885/*
1886 * Builds allocation fallback zone lists.
1a93205b
CL
1887 *
1888 * Add all populated zones of a node to the zonelist.
1da177e4 1889 */
f0c0b2b8
KH
1890static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1891 int nr_zones, enum zone_type zone_type)
1da177e4 1892{
1a93205b
CL
1893 struct zone *zone;
1894
98d2b0eb 1895 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 1896 zone_type++;
02a68a5e
CL
1897
1898 do {
2f6726e5 1899 zone_type--;
070f8032 1900 zone = pgdat->node_zones + zone_type;
1a93205b 1901 if (populated_zone(zone)) {
dd1a239f
MG
1902 zoneref_set_zone(zone,
1903 &zonelist->_zonerefs[nr_zones++]);
070f8032 1904 check_highest_zone(zone_type);
1da177e4 1905 }
02a68a5e 1906
2f6726e5 1907 } while (zone_type);
070f8032 1908 return nr_zones;
1da177e4
LT
1909}
1910
f0c0b2b8
KH
1911
1912/*
1913 * zonelist_order:
1914 * 0 = automatic detection of better ordering.
1915 * 1 = order by ([node] distance, -zonetype)
1916 * 2 = order by (-zonetype, [node] distance)
1917 *
1918 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1919 * the same zonelist. So only NUMA can configure this param.
1920 */
1921#define ZONELIST_ORDER_DEFAULT 0
1922#define ZONELIST_ORDER_NODE 1
1923#define ZONELIST_ORDER_ZONE 2
1924
1925/* zonelist order in the kernel.
1926 * set_zonelist_order() will set this to NODE or ZONE.
1927 */
1928static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
1929static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
1930
1931
1da177e4 1932#ifdef CONFIG_NUMA
f0c0b2b8
KH
1933/* The value user specified ....changed by config */
1934static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1935/* string for sysctl */
1936#define NUMA_ZONELIST_ORDER_LEN 16
1937char numa_zonelist_order[16] = "default";
1938
1939/*
1940 * interface for configure zonelist ordering.
1941 * command line option "numa_zonelist_order"
1942 * = "[dD]efault - default, automatic configuration.
1943 * = "[nN]ode - order by node locality, then by zone within node
1944 * = "[zZ]one - order by zone, then by locality within zone
1945 */
1946
1947static int __parse_numa_zonelist_order(char *s)
1948{
1949 if (*s == 'd' || *s == 'D') {
1950 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1951 } else if (*s == 'n' || *s == 'N') {
1952 user_zonelist_order = ZONELIST_ORDER_NODE;
1953 } else if (*s == 'z' || *s == 'Z') {
1954 user_zonelist_order = ZONELIST_ORDER_ZONE;
1955 } else {
1956 printk(KERN_WARNING
1957 "Ignoring invalid numa_zonelist_order value: "
1958 "%s\n", s);
1959 return -EINVAL;
1960 }
1961 return 0;
1962}
1963
1964static __init int setup_numa_zonelist_order(char *s)
1965{
1966 if (s)
1967 return __parse_numa_zonelist_order(s);
1968 return 0;
1969}
1970early_param("numa_zonelist_order", setup_numa_zonelist_order);
1971
1972/*
1973 * sysctl handler for numa_zonelist_order
1974 */
1975int numa_zonelist_order_handler(ctl_table *table, int write,
1976 struct file *file, void __user *buffer, size_t *length,
1977 loff_t *ppos)
1978{
1979 char saved_string[NUMA_ZONELIST_ORDER_LEN];
1980 int ret;
1981
1982 if (write)
1983 strncpy(saved_string, (char*)table->data,
1984 NUMA_ZONELIST_ORDER_LEN);
1985 ret = proc_dostring(table, write, file, buffer, length, ppos);
1986 if (ret)
1987 return ret;
1988 if (write) {
1989 int oldval = user_zonelist_order;
1990 if (__parse_numa_zonelist_order((char*)table->data)) {
1991 /*
1992 * bogus value. restore saved string
1993 */
1994 strncpy((char*)table->data, saved_string,
1995 NUMA_ZONELIST_ORDER_LEN);
1996 user_zonelist_order = oldval;
1997 } else if (oldval != user_zonelist_order)
1998 build_all_zonelists();
1999 }
2000 return 0;
2001}
2002
2003
1da177e4 2004#define MAX_NODE_LOAD (num_online_nodes())
f0c0b2b8
KH
2005static int node_load[MAX_NUMNODES];
2006
1da177e4 2007/**
4dc3b16b 2008 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
2009 * @node: node whose fallback list we're appending
2010 * @used_node_mask: nodemask_t of already used nodes
2011 *
2012 * We use a number of factors to determine which is the next node that should
2013 * appear on a given node's fallback list. The node should not have appeared
2014 * already in @node's fallback list, and it should be the next closest node
2015 * according to the distance array (which contains arbitrary distance values
2016 * from each node to each node in the system), and should also prefer nodes
2017 * with no CPUs, since presumably they'll have very little allocation pressure
2018 * on them otherwise.
2019 * It returns -1 if no node is found.
2020 */
f0c0b2b8 2021static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 2022{
4cf808eb 2023 int n, val;
1da177e4
LT
2024 int min_val = INT_MAX;
2025 int best_node = -1;
c5f59f08 2026 node_to_cpumask_ptr(tmp, 0);
1da177e4 2027
4cf808eb
LT
2028 /* Use the local node if we haven't already */
2029 if (!node_isset(node, *used_node_mask)) {
2030 node_set(node, *used_node_mask);
2031 return node;
2032 }
1da177e4 2033
37b07e41 2034 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
2035
2036 /* Don't want a node to appear more than once */
2037 if (node_isset(n, *used_node_mask))
2038 continue;
2039
1da177e4
LT
2040 /* Use the distance array to find the distance */
2041 val = node_distance(node, n);
2042
4cf808eb
LT
2043 /* Penalize nodes under us ("prefer the next node") */
2044 val += (n < node);
2045
1da177e4 2046 /* Give preference to headless and unused nodes */
c5f59f08
MT
2047 node_to_cpumask_ptr_next(tmp, n);
2048 if (!cpus_empty(*tmp))
1da177e4
LT
2049 val += PENALTY_FOR_NODE_WITH_CPUS;
2050
2051 /* Slight preference for less loaded node */
2052 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2053 val += node_load[n];
2054
2055 if (val < min_val) {
2056 min_val = val;
2057 best_node = n;
2058 }
2059 }
2060
2061 if (best_node >= 0)
2062 node_set(best_node, *used_node_mask);
2063
2064 return best_node;
2065}
2066
f0c0b2b8
KH
2067
2068/*
2069 * Build zonelists ordered by node and zones within node.
2070 * This results in maximum locality--normal zone overflows into local
2071 * DMA zone, if any--but risks exhausting DMA zone.
2072 */
2073static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 2074{
f0c0b2b8 2075 int j;
1da177e4 2076 struct zonelist *zonelist;
f0c0b2b8 2077
54a6eb5c 2078 zonelist = &pgdat->node_zonelists[0];
dd1a239f 2079 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
2080 ;
2081 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2082 MAX_NR_ZONES - 1);
dd1a239f
MG
2083 zonelist->_zonerefs[j].zone = NULL;
2084 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
2085}
2086
523b9458
CL
2087/*
2088 * Build gfp_thisnode zonelists
2089 */
2090static void build_thisnode_zonelists(pg_data_t *pgdat)
2091{
523b9458
CL
2092 int j;
2093 struct zonelist *zonelist;
2094
54a6eb5c
MG
2095 zonelist = &pgdat->node_zonelists[1];
2096 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
2097 zonelist->_zonerefs[j].zone = NULL;
2098 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
2099}
2100
f0c0b2b8
KH
2101/*
2102 * Build zonelists ordered by zone and nodes within zones.
2103 * This results in conserving DMA zone[s] until all Normal memory is
2104 * exhausted, but results in overflowing to remote node while memory
2105 * may still exist in local DMA zone.
2106 */
2107static int node_order[MAX_NUMNODES];
2108
2109static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2110{
f0c0b2b8
KH
2111 int pos, j, node;
2112 int zone_type; /* needs to be signed */
2113 struct zone *z;
2114 struct zonelist *zonelist;
2115
54a6eb5c
MG
2116 zonelist = &pgdat->node_zonelists[0];
2117 pos = 0;
2118 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2119 for (j = 0; j < nr_nodes; j++) {
2120 node = node_order[j];
2121 z = &NODE_DATA(node)->node_zones[zone_type];
2122 if (populated_zone(z)) {
dd1a239f
MG
2123 zoneref_set_zone(z,
2124 &zonelist->_zonerefs[pos++]);
54a6eb5c 2125 check_highest_zone(zone_type);
f0c0b2b8
KH
2126 }
2127 }
f0c0b2b8 2128 }
dd1a239f
MG
2129 zonelist->_zonerefs[pos].zone = NULL;
2130 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
2131}
2132
2133static int default_zonelist_order(void)
2134{
2135 int nid, zone_type;
2136 unsigned long low_kmem_size,total_size;
2137 struct zone *z;
2138 int average_size;
2139 /*
2140 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2141 * If they are really small and used heavily, the system can fall
2142 * into OOM very easily.
2143 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2144 */
2145 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2146 low_kmem_size = 0;
2147 total_size = 0;
2148 for_each_online_node(nid) {
2149 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2150 z = &NODE_DATA(nid)->node_zones[zone_type];
2151 if (populated_zone(z)) {
2152 if (zone_type < ZONE_NORMAL)
2153 low_kmem_size += z->present_pages;
2154 total_size += z->present_pages;
2155 }
2156 }
2157 }
2158 if (!low_kmem_size || /* there are no DMA area. */
2159 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2160 return ZONELIST_ORDER_NODE;
2161 /*
2162 * look into each node's config.
2163 * If there is a node whose DMA/DMA32 memory is very big area on
2164 * local memory, NODE_ORDER may be suitable.
2165 */
37b07e41
LS
2166 average_size = total_size /
2167 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
2168 for_each_online_node(nid) {
2169 low_kmem_size = 0;
2170 total_size = 0;
2171 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2172 z = &NODE_DATA(nid)->node_zones[zone_type];
2173 if (populated_zone(z)) {
2174 if (zone_type < ZONE_NORMAL)
2175 low_kmem_size += z->present_pages;
2176 total_size += z->present_pages;
2177 }
2178 }
2179 if (low_kmem_size &&
2180 total_size > average_size && /* ignore small node */
2181 low_kmem_size > total_size * 70/100)
2182 return ZONELIST_ORDER_NODE;
2183 }
2184 return ZONELIST_ORDER_ZONE;
2185}
2186
2187static void set_zonelist_order(void)
2188{
2189 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2190 current_zonelist_order = default_zonelist_order();
2191 else
2192 current_zonelist_order = user_zonelist_order;
2193}
2194
2195static void build_zonelists(pg_data_t *pgdat)
2196{
2197 int j, node, load;
2198 enum zone_type i;
1da177e4 2199 nodemask_t used_mask;
f0c0b2b8
KH
2200 int local_node, prev_node;
2201 struct zonelist *zonelist;
2202 int order = current_zonelist_order;
1da177e4
LT
2203
2204 /* initialize zonelists */
523b9458 2205 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 2206 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
2207 zonelist->_zonerefs[0].zone = NULL;
2208 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
2209 }
2210
2211 /* NUMA-aware ordering of nodes */
2212 local_node = pgdat->node_id;
2213 load = num_online_nodes();
2214 prev_node = local_node;
2215 nodes_clear(used_mask);
f0c0b2b8
KH
2216
2217 memset(node_load, 0, sizeof(node_load));
2218 memset(node_order, 0, sizeof(node_order));
2219 j = 0;
2220
1da177e4 2221 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
2222 int distance = node_distance(local_node, node);
2223
2224 /*
2225 * If another node is sufficiently far away then it is better
2226 * to reclaim pages in a zone before going off node.
2227 */
2228 if (distance > RECLAIM_DISTANCE)
2229 zone_reclaim_mode = 1;
2230
1da177e4
LT
2231 /*
2232 * We don't want to pressure a particular node.
2233 * So adding penalty to the first node in same
2234 * distance group to make it round-robin.
2235 */
9eeff239 2236 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
2237 node_load[node] = load;
2238
1da177e4
LT
2239 prev_node = node;
2240 load--;
f0c0b2b8
KH
2241 if (order == ZONELIST_ORDER_NODE)
2242 build_zonelists_in_node_order(pgdat, node);
2243 else
2244 node_order[j++] = node; /* remember order */
2245 }
1da177e4 2246
f0c0b2b8
KH
2247 if (order == ZONELIST_ORDER_ZONE) {
2248 /* calculate node order -- i.e., DMA last! */
2249 build_zonelists_in_zone_order(pgdat, j);
1da177e4 2250 }
523b9458
CL
2251
2252 build_thisnode_zonelists(pgdat);
1da177e4
LT
2253}
2254
9276b1bc 2255/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 2256static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2257{
54a6eb5c
MG
2258 struct zonelist *zonelist;
2259 struct zonelist_cache *zlc;
dd1a239f 2260 struct zoneref *z;
9276b1bc 2261
54a6eb5c
MG
2262 zonelist = &pgdat->node_zonelists[0];
2263 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2264 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
2265 for (z = zonelist->_zonerefs; z->zone; z++)
2266 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
2267}
2268
f0c0b2b8 2269
1da177e4
LT
2270#else /* CONFIG_NUMA */
2271
f0c0b2b8
KH
2272static void set_zonelist_order(void)
2273{
2274 current_zonelist_order = ZONELIST_ORDER_ZONE;
2275}
2276
2277static void build_zonelists(pg_data_t *pgdat)
1da177e4 2278{
19655d34 2279 int node, local_node;
54a6eb5c
MG
2280 enum zone_type j;
2281 struct zonelist *zonelist;
1da177e4
LT
2282
2283 local_node = pgdat->node_id;
1da177e4 2284
54a6eb5c
MG
2285 zonelist = &pgdat->node_zonelists[0];
2286 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 2287
54a6eb5c
MG
2288 /*
2289 * Now we build the zonelist so that it contains the zones
2290 * of all the other nodes.
2291 * We don't want to pressure a particular node, so when
2292 * building the zones for node N, we make sure that the
2293 * zones coming right after the local ones are those from
2294 * node N+1 (modulo N)
2295 */
2296 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2297 if (!node_online(node))
2298 continue;
2299 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2300 MAX_NR_ZONES - 1);
1da177e4 2301 }
54a6eb5c
MG
2302 for (node = 0; node < local_node; node++) {
2303 if (!node_online(node))
2304 continue;
2305 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2306 MAX_NR_ZONES - 1);
2307 }
2308
dd1a239f
MG
2309 zonelist->_zonerefs[j].zone = NULL;
2310 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
2311}
2312
9276b1bc 2313/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 2314static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2315{
54a6eb5c 2316 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
2317}
2318
1da177e4
LT
2319#endif /* CONFIG_NUMA */
2320
6811378e 2321/* return values int ....just for stop_machine_run() */
f0c0b2b8 2322static int __build_all_zonelists(void *dummy)
1da177e4 2323{
6811378e 2324 int nid;
9276b1bc
PJ
2325
2326 for_each_online_node(nid) {
7ea1530a
CL
2327 pg_data_t *pgdat = NODE_DATA(nid);
2328
2329 build_zonelists(pgdat);
2330 build_zonelist_cache(pgdat);
9276b1bc 2331 }
6811378e
YG
2332 return 0;
2333}
2334
f0c0b2b8 2335void build_all_zonelists(void)
6811378e 2336{
f0c0b2b8
KH
2337 set_zonelist_order();
2338
6811378e 2339 if (system_state == SYSTEM_BOOTING) {
423b41d7 2340 __build_all_zonelists(NULL);
68ad8df4 2341 mminit_verify_zonelist();
6811378e
YG
2342 cpuset_init_current_mems_allowed();
2343 } else {
183ff22b 2344 /* we have to stop all cpus to guarantee there is no user
6811378e
YG
2345 of zonelist */
2346 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
2347 /* cpuset refresh routine should be here */
2348 }
bd1e22b8 2349 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
2350 /*
2351 * Disable grouping by mobility if the number of pages in the
2352 * system is too low to allow the mechanism to work. It would be
2353 * more accurate, but expensive to check per-zone. This check is
2354 * made on memory-hotadd so a system can start with mobility
2355 * disabled and enable it later
2356 */
d9c23400 2357 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
2358 page_group_by_mobility_disabled = 1;
2359 else
2360 page_group_by_mobility_disabled = 0;
2361
2362 printk("Built %i zonelists in %s order, mobility grouping %s. "
2363 "Total pages: %ld\n",
f0c0b2b8
KH
2364 num_online_nodes(),
2365 zonelist_order_name[current_zonelist_order],
9ef9acb0 2366 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
2367 vm_total_pages);
2368#ifdef CONFIG_NUMA
2369 printk("Policy zone: %s\n", zone_names[policy_zone]);
2370#endif
1da177e4
LT
2371}
2372
2373/*
2374 * Helper functions to size the waitqueue hash table.
2375 * Essentially these want to choose hash table sizes sufficiently
2376 * large so that collisions trying to wait on pages are rare.
2377 * But in fact, the number of active page waitqueues on typical
2378 * systems is ridiculously low, less than 200. So this is even
2379 * conservative, even though it seems large.
2380 *
2381 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2382 * waitqueues, i.e. the size of the waitq table given the number of pages.
2383 */
2384#define PAGES_PER_WAITQUEUE 256
2385
cca448fe 2386#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 2387static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
2388{
2389 unsigned long size = 1;
2390
2391 pages /= PAGES_PER_WAITQUEUE;
2392
2393 while (size < pages)
2394 size <<= 1;
2395
2396 /*
2397 * Once we have dozens or even hundreds of threads sleeping
2398 * on IO we've got bigger problems than wait queue collision.
2399 * Limit the size of the wait table to a reasonable size.
2400 */
2401 size = min(size, 4096UL);
2402
2403 return max(size, 4UL);
2404}
cca448fe
YG
2405#else
2406/*
2407 * A zone's size might be changed by hot-add, so it is not possible to determine
2408 * a suitable size for its wait_table. So we use the maximum size now.
2409 *
2410 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2411 *
2412 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2413 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2414 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2415 *
2416 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2417 * or more by the traditional way. (See above). It equals:
2418 *
2419 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2420 * ia64(16K page size) : = ( 8G + 4M)byte.
2421 * powerpc (64K page size) : = (32G +16M)byte.
2422 */
2423static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2424{
2425 return 4096UL;
2426}
2427#endif
1da177e4
LT
2428
2429/*
2430 * This is an integer logarithm so that shifts can be used later
2431 * to extract the more random high bits from the multiplicative
2432 * hash function before the remainder is taken.
2433 */
2434static inline unsigned long wait_table_bits(unsigned long size)
2435{
2436 return ffz(~size);
2437}
2438
2439#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2440
56fd56b8 2441/*
d9c23400 2442 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
56fd56b8
MG
2443 * of blocks reserved is based on zone->pages_min. The memory within the
2444 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2445 * higher will lead to a bigger reserve which will get freed as contiguous
2446 * blocks as reclaim kicks in
2447 */
2448static void setup_zone_migrate_reserve(struct zone *zone)
2449{
2450 unsigned long start_pfn, pfn, end_pfn;
2451 struct page *page;
2452 unsigned long reserve, block_migratetype;
2453
2454 /* Get the start pfn, end pfn and the number of blocks to reserve */
2455 start_pfn = zone->zone_start_pfn;
2456 end_pfn = start_pfn + zone->spanned_pages;
d9c23400
MG
2457 reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2458 pageblock_order;
56fd56b8 2459
d9c23400 2460 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
2461 if (!pfn_valid(pfn))
2462 continue;
2463 page = pfn_to_page(pfn);
2464
2465 /* Blocks with reserved pages will never free, skip them. */
2466 if (PageReserved(page))
2467 continue;
2468
2469 block_migratetype = get_pageblock_migratetype(page);
2470
2471 /* If this block is reserved, account for it */
2472 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2473 reserve--;
2474 continue;
2475 }
2476
2477 /* Suitable for reserving if this block is movable */
2478 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2479 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2480 move_freepages_block(zone, page, MIGRATE_RESERVE);
2481 reserve--;
2482 continue;
2483 }
2484
2485 /*
2486 * If the reserve is met and this is a previous reserved block,
2487 * take it back
2488 */
2489 if (block_migratetype == MIGRATE_RESERVE) {
2490 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2491 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2492 }
2493 }
2494}
ac0e5b7a 2495
1da177e4
LT
2496/*
2497 * Initially all pages are reserved - free ones are freed
2498 * up by free_all_bootmem() once the early boot process is
2499 * done. Non-atomic initialization, single-pass.
2500 */
c09b4240 2501void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 2502 unsigned long start_pfn, enum memmap_context context)
1da177e4 2503{
1da177e4 2504 struct page *page;
29751f69
AW
2505 unsigned long end_pfn = start_pfn + size;
2506 unsigned long pfn;
86051ca5 2507 struct zone *z;
1da177e4 2508
86051ca5 2509 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 2510 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
2511 /*
2512 * There can be holes in boot-time mem_map[]s
2513 * handed to this function. They do not
2514 * exist on hotplugged memory.
2515 */
2516 if (context == MEMMAP_EARLY) {
2517 if (!early_pfn_valid(pfn))
2518 continue;
2519 if (!early_pfn_in_nid(pfn, nid))
2520 continue;
2521 }
d41dee36
AW
2522 page = pfn_to_page(pfn);
2523 set_page_links(page, zone, nid, pfn);
708614e6 2524 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 2525 init_page_count(page);
1da177e4
LT
2526 reset_page_mapcount(page);
2527 SetPageReserved(page);
b2a0ac88
MG
2528 /*
2529 * Mark the block movable so that blocks are reserved for
2530 * movable at startup. This will force kernel allocations
2531 * to reserve their blocks rather than leaking throughout
2532 * the address space during boot when many long-lived
56fd56b8
MG
2533 * kernel allocations are made. Later some blocks near
2534 * the start are marked MIGRATE_RESERVE by
2535 * setup_zone_migrate_reserve()
86051ca5
KH
2536 *
2537 * bitmap is created for zone's valid pfn range. but memmap
2538 * can be created for invalid pages (for alignment)
2539 * check here not to call set_pageblock_migratetype() against
2540 * pfn out of zone.
b2a0ac88 2541 */
86051ca5
KH
2542 if ((z->zone_start_pfn <= pfn)
2543 && (pfn < z->zone_start_pfn + z->spanned_pages)
2544 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 2545 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 2546
1da177e4
LT
2547 INIT_LIST_HEAD(&page->lru);
2548#ifdef WANT_PAGE_VIRTUAL
2549 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2550 if (!is_highmem_idx(zone))
3212c6be 2551 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 2552#endif
1da177e4
LT
2553 }
2554}
2555
1e548deb 2556static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 2557{
b2a0ac88
MG
2558 int order, t;
2559 for_each_migratetype_order(order, t) {
2560 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
2561 zone->free_area[order].nr_free = 0;
2562 }
2563}
2564
2565#ifndef __HAVE_ARCH_MEMMAP_INIT
2566#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 2567 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
2568#endif
2569
1d6f4e60 2570static int zone_batchsize(struct zone *zone)
e7c8d5c9
CL
2571{
2572 int batch;
2573
2574 /*
2575 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 2576 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
2577 *
2578 * OK, so we don't know how big the cache is. So guess.
2579 */
2580 batch = zone->present_pages / 1024;
ba56e91c
SR
2581 if (batch * PAGE_SIZE > 512 * 1024)
2582 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
2583 batch /= 4; /* We effectively *= 4 below */
2584 if (batch < 1)
2585 batch = 1;
2586
2587 /*
0ceaacc9
NP
2588 * Clamp the batch to a 2^n - 1 value. Having a power
2589 * of 2 value was found to be more likely to have
2590 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 2591 *
0ceaacc9
NP
2592 * For example if 2 tasks are alternately allocating
2593 * batches of pages, one task can end up with a lot
2594 * of pages of one half of the possible page colors
2595 * and the other with pages of the other colors.
e7c8d5c9 2596 */
0ceaacc9 2597 batch = (1 << (fls(batch + batch/2)-1)) - 1;
ba56e91c 2598
e7c8d5c9
CL
2599 return batch;
2600}
2601
2caaad41
CL
2602inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2603{
2604 struct per_cpu_pages *pcp;
2605
1c6fe946
MD
2606 memset(p, 0, sizeof(*p));
2607
3dfa5721 2608 pcp = &p->pcp;
2caaad41 2609 pcp->count = 0;
2caaad41
CL
2610 pcp->high = 6 * batch;
2611 pcp->batch = max(1UL, 1 * batch);
2612 INIT_LIST_HEAD(&pcp->list);
2caaad41
CL
2613}
2614
8ad4b1fb
RS
2615/*
2616 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2617 * to the value high for the pageset p.
2618 */
2619
2620static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2621 unsigned long high)
2622{
2623 struct per_cpu_pages *pcp;
2624
3dfa5721 2625 pcp = &p->pcp;
8ad4b1fb
RS
2626 pcp->high = high;
2627 pcp->batch = max(1UL, high/4);
2628 if ((high/4) > (PAGE_SHIFT * 8))
2629 pcp->batch = PAGE_SHIFT * 8;
2630}
2631
2632
e7c8d5c9
CL
2633#ifdef CONFIG_NUMA
2634/*
2caaad41
CL
2635 * Boot pageset table. One per cpu which is going to be used for all
2636 * zones and all nodes. The parameters will be set in such a way
2637 * that an item put on a list will immediately be handed over to
2638 * the buddy list. This is safe since pageset manipulation is done
2639 * with interrupts disabled.
2640 *
2641 * Some NUMA counter updates may also be caught by the boot pagesets.
b7c84c6a
CL
2642 *
2643 * The boot_pagesets must be kept even after bootup is complete for
2644 * unused processors and/or zones. They do play a role for bootstrapping
2645 * hotplugged processors.
2646 *
2647 * zoneinfo_show() and maybe other functions do
2648 * not check if the processor is online before following the pageset pointer.
2649 * Other parts of the kernel may not check if the zone is available.
2caaad41 2650 */
88a2a4ac 2651static struct per_cpu_pageset boot_pageset[NR_CPUS];
2caaad41
CL
2652
2653/*
2654 * Dynamically allocate memory for the
e7c8d5c9
CL
2655 * per cpu pageset array in struct zone.
2656 */
6292d9aa 2657static int __cpuinit process_zones(int cpu)
e7c8d5c9
CL
2658{
2659 struct zone *zone, *dzone;
37c0708d
CL
2660 int node = cpu_to_node(cpu);
2661
2662 node_set_state(node, N_CPU); /* this node has a cpu */
e7c8d5c9
CL
2663
2664 for_each_zone(zone) {
e7c8d5c9 2665
66a55030
CL
2666 if (!populated_zone(zone))
2667 continue;
2668
23316bc8 2669 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
37c0708d 2670 GFP_KERNEL, node);
23316bc8 2671 if (!zone_pcp(zone, cpu))
e7c8d5c9 2672 goto bad;
e7c8d5c9 2673
23316bc8 2674 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
8ad4b1fb
RS
2675
2676 if (percpu_pagelist_fraction)
2677 setup_pagelist_highmark(zone_pcp(zone, cpu),
2678 (zone->present_pages / percpu_pagelist_fraction));
e7c8d5c9
CL
2679 }
2680
2681 return 0;
2682bad:
2683 for_each_zone(dzone) {
64191688
AM
2684 if (!populated_zone(dzone))
2685 continue;
e7c8d5c9
CL
2686 if (dzone == zone)
2687 break;
23316bc8
NP
2688 kfree(zone_pcp(dzone, cpu));
2689 zone_pcp(dzone, cpu) = NULL;
e7c8d5c9
CL
2690 }
2691 return -ENOMEM;
2692}
2693
2694static inline void free_zone_pagesets(int cpu)
2695{
e7c8d5c9
CL
2696 struct zone *zone;
2697
2698 for_each_zone(zone) {
2699 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2700
f3ef9ead
DR
2701 /* Free per_cpu_pageset if it is slab allocated */
2702 if (pset != &boot_pageset[cpu])
2703 kfree(pset);
e7c8d5c9 2704 zone_pcp(zone, cpu) = NULL;
e7c8d5c9 2705 }
e7c8d5c9
CL
2706}
2707
9c7b216d 2708static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
e7c8d5c9
CL
2709 unsigned long action,
2710 void *hcpu)
2711{
2712 int cpu = (long)hcpu;
2713 int ret = NOTIFY_OK;
2714
2715 switch (action) {
ce421c79 2716 case CPU_UP_PREPARE:
8bb78442 2717 case CPU_UP_PREPARE_FROZEN:
ce421c79
AW
2718 if (process_zones(cpu))
2719 ret = NOTIFY_BAD;
2720 break;
2721 case CPU_UP_CANCELED:
8bb78442 2722 case CPU_UP_CANCELED_FROZEN:
ce421c79 2723 case CPU_DEAD:
8bb78442 2724 case CPU_DEAD_FROZEN:
ce421c79
AW
2725 free_zone_pagesets(cpu);
2726 break;
2727 default:
2728 break;
e7c8d5c9
CL
2729 }
2730 return ret;
2731}
2732
74b85f37 2733static struct notifier_block __cpuinitdata pageset_notifier =
e7c8d5c9
CL
2734 { &pageset_cpuup_callback, NULL, 0 };
2735
78d9955b 2736void __init setup_per_cpu_pageset(void)
e7c8d5c9
CL
2737{
2738 int err;
2739
2740 /* Initialize per_cpu_pageset for cpu 0.
2741 * A cpuup callback will do this for every cpu
2742 * as it comes online
2743 */
2744 err = process_zones(smp_processor_id());
2745 BUG_ON(err);
2746 register_cpu_notifier(&pageset_notifier);
2747}
2748
2749#endif
2750
577a32f6 2751static noinline __init_refok
cca448fe 2752int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
2753{
2754 int i;
2755 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 2756 size_t alloc_size;
ed8ece2e
DH
2757
2758 /*
2759 * The per-page waitqueue mechanism uses hashed waitqueues
2760 * per zone.
2761 */
02b694de
YG
2762 zone->wait_table_hash_nr_entries =
2763 wait_table_hash_nr_entries(zone_size_pages);
2764 zone->wait_table_bits =
2765 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
2766 alloc_size = zone->wait_table_hash_nr_entries
2767 * sizeof(wait_queue_head_t);
2768
cd94b9db 2769 if (!slab_is_available()) {
cca448fe
YG
2770 zone->wait_table = (wait_queue_head_t *)
2771 alloc_bootmem_node(pgdat, alloc_size);
2772 } else {
2773 /*
2774 * This case means that a zone whose size was 0 gets new memory
2775 * via memory hot-add.
2776 * But it may be the case that a new node was hot-added. In
2777 * this case vmalloc() will not be able to use this new node's
2778 * memory - this wait_table must be initialized to use this new
2779 * node itself as well.
2780 * To use this new node's memory, further consideration will be
2781 * necessary.
2782 */
8691f3a7 2783 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
2784 }
2785 if (!zone->wait_table)
2786 return -ENOMEM;
ed8ece2e 2787
02b694de 2788 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 2789 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
2790
2791 return 0;
ed8ece2e
DH
2792}
2793
c09b4240 2794static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e
DH
2795{
2796 int cpu;
2797 unsigned long batch = zone_batchsize(zone);
2798
2799 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2800#ifdef CONFIG_NUMA
2801 /* Early boot. Slab allocator not functional yet */
23316bc8 2802 zone_pcp(zone, cpu) = &boot_pageset[cpu];
ed8ece2e
DH
2803 setup_pageset(&boot_pageset[cpu],0);
2804#else
2805 setup_pageset(zone_pcp(zone,cpu), batch);
2806#endif
2807 }
f5335c0f
AB
2808 if (zone->present_pages)
2809 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2810 zone->name, zone->present_pages, batch);
ed8ece2e
DH
2811}
2812
718127cc
YG
2813__meminit int init_currently_empty_zone(struct zone *zone,
2814 unsigned long zone_start_pfn,
a2f3aa02
DH
2815 unsigned long size,
2816 enum memmap_context context)
ed8ece2e
DH
2817{
2818 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
2819 int ret;
2820 ret = zone_wait_table_init(zone, size);
2821 if (ret)
2822 return ret;
ed8ece2e
DH
2823 pgdat->nr_zones = zone_idx(zone) + 1;
2824
ed8ece2e
DH
2825 zone->zone_start_pfn = zone_start_pfn;
2826
708614e6
MG
2827 mminit_dprintk(MMINIT_TRACE, "memmap_init",
2828 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
2829 pgdat->node_id,
2830 (unsigned long)zone_idx(zone),
2831 zone_start_pfn, (zone_start_pfn + size));
2832
1e548deb 2833 zone_init_free_lists(zone);
718127cc
YG
2834
2835 return 0;
ed8ece2e
DH
2836}
2837
c713216d
MG
2838#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2839/*
2840 * Basic iterator support. Return the first range of PFNs for a node
2841 * Note: nid == MAX_NUMNODES returns first region regardless of node
2842 */
a3142c8e 2843static int __meminit first_active_region_index_in_nid(int nid)
c713216d
MG
2844{
2845 int i;
2846
2847 for (i = 0; i < nr_nodemap_entries; i++)
2848 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2849 return i;
2850
2851 return -1;
2852}
2853
2854/*
2855 * Basic iterator support. Return the next active range of PFNs for a node
183ff22b 2856 * Note: nid == MAX_NUMNODES returns next region regardless of node
c713216d 2857 */
a3142c8e 2858static int __meminit next_active_region_index_in_nid(int index, int nid)
c713216d
MG
2859{
2860 for (index = index + 1; index < nr_nodemap_entries; index++)
2861 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2862 return index;
2863
2864 return -1;
2865}
2866
2867#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2868/*
2869 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2870 * Architectures may implement their own version but if add_active_range()
2871 * was used and there are no special requirements, this is a convenient
2872 * alternative
2873 */
6f076f5d 2874int __meminit early_pfn_to_nid(unsigned long pfn)
c713216d
MG
2875{
2876 int i;
2877
2878 for (i = 0; i < nr_nodemap_entries; i++) {
2879 unsigned long start_pfn = early_node_map[i].start_pfn;
2880 unsigned long end_pfn = early_node_map[i].end_pfn;
2881
2882 if (start_pfn <= pfn && pfn < end_pfn)
2883 return early_node_map[i].nid;
2884 }
2885
2886 return 0;
2887}
2888#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2889
2890/* Basic iterator support to walk early_node_map[] */
2891#define for_each_active_range_index_in_nid(i, nid) \
2892 for (i = first_active_region_index_in_nid(nid); i != -1; \
2893 i = next_active_region_index_in_nid(i, nid))
2894
2895/**
2896 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
2897 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2898 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
2899 *
2900 * If an architecture guarantees that all ranges registered with
2901 * add_active_ranges() contain no holes and may be freed, this
2902 * this function may be used instead of calling free_bootmem() manually.
2903 */
2904void __init free_bootmem_with_active_regions(int nid,
2905 unsigned long max_low_pfn)
2906{
2907 int i;
2908
2909 for_each_active_range_index_in_nid(i, nid) {
2910 unsigned long size_pages = 0;
2911 unsigned long end_pfn = early_node_map[i].end_pfn;
2912
2913 if (early_node_map[i].start_pfn >= max_low_pfn)
2914 continue;
2915
2916 if (end_pfn > max_low_pfn)
2917 end_pfn = max_low_pfn;
2918
2919 size_pages = end_pfn - early_node_map[i].start_pfn;
2920 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2921 PFN_PHYS(early_node_map[i].start_pfn),
2922 size_pages << PAGE_SHIFT);
2923 }
2924}
2925
b5bc6c0e
YL
2926void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
2927{
2928 int i;
d52d53b8 2929 int ret;
b5bc6c0e 2930
d52d53b8
YL
2931 for_each_active_range_index_in_nid(i, nid) {
2932 ret = work_fn(early_node_map[i].start_pfn,
2933 early_node_map[i].end_pfn, data);
2934 if (ret)
2935 break;
2936 }
b5bc6c0e 2937}
c713216d
MG
2938/**
2939 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 2940 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
2941 *
2942 * If an architecture guarantees that all ranges registered with
2943 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 2944 * function may be used instead of calling memory_present() manually.
c713216d
MG
2945 */
2946void __init sparse_memory_present_with_active_regions(int nid)
2947{
2948 int i;
2949
2950 for_each_active_range_index_in_nid(i, nid)
2951 memory_present(early_node_map[i].nid,
2952 early_node_map[i].start_pfn,
2953 early_node_map[i].end_pfn);
2954}
2955
fb01439c
MG
2956/**
2957 * push_node_boundaries - Push node boundaries to at least the requested boundary
2958 * @nid: The nid of the node to push the boundary for
2959 * @start_pfn: The start pfn of the node
2960 * @end_pfn: The end pfn of the node
2961 *
2962 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2963 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2964 * be hotplugged even though no physical memory exists. This function allows
2965 * an arch to push out the node boundaries so mem_map is allocated that can
2966 * be used later.
2967 */
2968#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2969void __init push_node_boundaries(unsigned int nid,
2970 unsigned long start_pfn, unsigned long end_pfn)
2971{
6b74ab97
MG
2972 mminit_dprintk(MMINIT_TRACE, "zoneboundary",
2973 "Entering push_node_boundaries(%u, %lu, %lu)\n",
fb01439c
MG
2974 nid, start_pfn, end_pfn);
2975
2976 /* Initialise the boundary for this node if necessary */
2977 if (node_boundary_end_pfn[nid] == 0)
2978 node_boundary_start_pfn[nid] = -1UL;
2979
2980 /* Update the boundaries */
2981 if (node_boundary_start_pfn[nid] > start_pfn)
2982 node_boundary_start_pfn[nid] = start_pfn;
2983 if (node_boundary_end_pfn[nid] < end_pfn)
2984 node_boundary_end_pfn[nid] = end_pfn;
2985}
2986
2987/* If necessary, push the node boundary out for reserve hotadd */
98011f56 2988static void __meminit account_node_boundary(unsigned int nid,
fb01439c
MG
2989 unsigned long *start_pfn, unsigned long *end_pfn)
2990{
6b74ab97
MG
2991 mminit_dprintk(MMINIT_TRACE, "zoneboundary",
2992 "Entering account_node_boundary(%u, %lu, %lu)\n",
fb01439c
MG
2993 nid, *start_pfn, *end_pfn);
2994
2995 /* Return if boundary information has not been provided */
2996 if (node_boundary_end_pfn[nid] == 0)
2997 return;
2998
2999 /* Check the boundaries and update if necessary */
3000 if (node_boundary_start_pfn[nid] < *start_pfn)
3001 *start_pfn = node_boundary_start_pfn[nid];
3002 if (node_boundary_end_pfn[nid] > *end_pfn)
3003 *end_pfn = node_boundary_end_pfn[nid];
3004}
3005#else
3006void __init push_node_boundaries(unsigned int nid,
3007 unsigned long start_pfn, unsigned long end_pfn) {}
3008
98011f56 3009static void __meminit account_node_boundary(unsigned int nid,
fb01439c
MG
3010 unsigned long *start_pfn, unsigned long *end_pfn) {}
3011#endif
3012
3013
c713216d
MG
3014/**
3015 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
3016 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3017 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3018 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
3019 *
3020 * It returns the start and end page frame of a node based on information
3021 * provided by an arch calling add_active_range(). If called for a node
3022 * with no available memory, a warning is printed and the start and end
88ca3b94 3023 * PFNs will be 0.
c713216d 3024 */
a3142c8e 3025void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
3026 unsigned long *start_pfn, unsigned long *end_pfn)
3027{
3028 int i;
3029 *start_pfn = -1UL;
3030 *end_pfn = 0;
3031
3032 for_each_active_range_index_in_nid(i, nid) {
3033 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3034 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3035 }
3036
633c0666 3037 if (*start_pfn == -1UL)
c713216d 3038 *start_pfn = 0;
fb01439c
MG
3039
3040 /* Push the node boundaries out if requested */
3041 account_node_boundary(nid, start_pfn, end_pfn);
c713216d
MG
3042}
3043
2a1e274a
MG
3044/*
3045 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3046 * assumption is made that zones within a node are ordered in monotonic
3047 * increasing memory addresses so that the "highest" populated zone is used
3048 */
3049void __init find_usable_zone_for_movable(void)
3050{
3051 int zone_index;
3052 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3053 if (zone_index == ZONE_MOVABLE)
3054 continue;
3055
3056 if (arch_zone_highest_possible_pfn[zone_index] >
3057 arch_zone_lowest_possible_pfn[zone_index])
3058 break;
3059 }
3060
3061 VM_BUG_ON(zone_index == -1);
3062 movable_zone = zone_index;
3063}
3064
3065/*
3066 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3067 * because it is sized independant of architecture. Unlike the other zones,
3068 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3069 * in each node depending on the size of each node and how evenly kernelcore
3070 * is distributed. This helper function adjusts the zone ranges
3071 * provided by the architecture for a given node by using the end of the
3072 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3073 * zones within a node are in order of monotonic increases memory addresses
3074 */
3075void __meminit adjust_zone_range_for_zone_movable(int nid,
3076 unsigned long zone_type,
3077 unsigned long node_start_pfn,
3078 unsigned long node_end_pfn,
3079 unsigned long *zone_start_pfn,
3080 unsigned long *zone_end_pfn)
3081{
3082 /* Only adjust if ZONE_MOVABLE is on this node */
3083 if (zone_movable_pfn[nid]) {
3084 /* Size ZONE_MOVABLE */
3085 if (zone_type == ZONE_MOVABLE) {
3086 *zone_start_pfn = zone_movable_pfn[nid];
3087 *zone_end_pfn = min(node_end_pfn,
3088 arch_zone_highest_possible_pfn[movable_zone]);
3089
3090 /* Adjust for ZONE_MOVABLE starting within this range */
3091 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3092 *zone_end_pfn > zone_movable_pfn[nid]) {
3093 *zone_end_pfn = zone_movable_pfn[nid];
3094
3095 /* Check if this whole range is within ZONE_MOVABLE */
3096 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3097 *zone_start_pfn = *zone_end_pfn;
3098 }
3099}
3100
c713216d
MG
3101/*
3102 * Return the number of pages a zone spans in a node, including holes
3103 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3104 */
6ea6e688 3105static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3106 unsigned long zone_type,
3107 unsigned long *ignored)
3108{
3109 unsigned long node_start_pfn, node_end_pfn;
3110 unsigned long zone_start_pfn, zone_end_pfn;
3111
3112 /* Get the start and end of the node and zone */
3113 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3114 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3115 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
3116 adjust_zone_range_for_zone_movable(nid, zone_type,
3117 node_start_pfn, node_end_pfn,
3118 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
3119
3120 /* Check that this node has pages within the zone's required range */
3121 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3122 return 0;
3123
3124 /* Move the zone boundaries inside the node if necessary */
3125 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3126 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3127
3128 /* Return the spanned pages */
3129 return zone_end_pfn - zone_start_pfn;
3130}
3131
3132/*
3133 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 3134 * then all holes in the requested range will be accounted for.
c713216d 3135 */
a3142c8e 3136unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
3137 unsigned long range_start_pfn,
3138 unsigned long range_end_pfn)
3139{
3140 int i = 0;
3141 unsigned long prev_end_pfn = 0, hole_pages = 0;
3142 unsigned long start_pfn;
3143
3144 /* Find the end_pfn of the first active range of pfns in the node */
3145 i = first_active_region_index_in_nid(nid);
3146 if (i == -1)
3147 return 0;
3148
b5445f95
MG
3149 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3150
9c7cd687
MG
3151 /* Account for ranges before physical memory on this node */
3152 if (early_node_map[i].start_pfn > range_start_pfn)
b5445f95 3153 hole_pages = prev_end_pfn - range_start_pfn;
c713216d
MG
3154
3155 /* Find all holes for the zone within the node */
3156 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3157
3158 /* No need to continue if prev_end_pfn is outside the zone */
3159 if (prev_end_pfn >= range_end_pfn)
3160 break;
3161
3162 /* Make sure the end of the zone is not within the hole */
3163 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3164 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3165
3166 /* Update the hole size cound and move on */
3167 if (start_pfn > range_start_pfn) {
3168 BUG_ON(prev_end_pfn > start_pfn);
3169 hole_pages += start_pfn - prev_end_pfn;
3170 }
3171 prev_end_pfn = early_node_map[i].end_pfn;
3172 }
3173
9c7cd687
MG
3174 /* Account for ranges past physical memory on this node */
3175 if (range_end_pfn > prev_end_pfn)
0c6cb974 3176 hole_pages += range_end_pfn -
9c7cd687
MG
3177 max(range_start_pfn, prev_end_pfn);
3178
c713216d
MG
3179 return hole_pages;
3180}
3181
3182/**
3183 * absent_pages_in_range - Return number of page frames in holes within a range
3184 * @start_pfn: The start PFN to start searching for holes
3185 * @end_pfn: The end PFN to stop searching for holes
3186 *
88ca3b94 3187 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
3188 */
3189unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3190 unsigned long end_pfn)
3191{
3192 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3193}
3194
3195/* Return the number of page frames in holes in a zone on a node */
6ea6e688 3196static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3197 unsigned long zone_type,
3198 unsigned long *ignored)
3199{
9c7cd687
MG
3200 unsigned long node_start_pfn, node_end_pfn;
3201 unsigned long zone_start_pfn, zone_end_pfn;
3202
3203 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3204 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3205 node_start_pfn);
3206 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3207 node_end_pfn);
3208
2a1e274a
MG
3209 adjust_zone_range_for_zone_movable(nid, zone_type,
3210 node_start_pfn, node_end_pfn,
3211 &zone_start_pfn, &zone_end_pfn);
9c7cd687 3212 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 3213}
0e0b864e 3214
c713216d 3215#else
6ea6e688 3216static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3217 unsigned long zone_type,
3218 unsigned long *zones_size)
3219{
3220 return zones_size[zone_type];
3221}
3222
6ea6e688 3223static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3224 unsigned long zone_type,
3225 unsigned long *zholes_size)
3226{
3227 if (!zholes_size)
3228 return 0;
3229
3230 return zholes_size[zone_type];
3231}
0e0b864e 3232
c713216d
MG
3233#endif
3234
a3142c8e 3235static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
3236 unsigned long *zones_size, unsigned long *zholes_size)
3237{
3238 unsigned long realtotalpages, totalpages = 0;
3239 enum zone_type i;
3240
3241 for (i = 0; i < MAX_NR_ZONES; i++)
3242 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3243 zones_size);
3244 pgdat->node_spanned_pages = totalpages;
3245
3246 realtotalpages = totalpages;
3247 for (i = 0; i < MAX_NR_ZONES; i++)
3248 realtotalpages -=
3249 zone_absent_pages_in_node(pgdat->node_id, i,
3250 zholes_size);
3251 pgdat->node_present_pages = realtotalpages;
3252 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3253 realtotalpages);
3254}
3255
835c134e
MG
3256#ifndef CONFIG_SPARSEMEM
3257/*
3258 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
3259 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3260 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
3261 * round what is now in bits to nearest long in bits, then return it in
3262 * bytes.
3263 */
3264static unsigned long __init usemap_size(unsigned long zonesize)
3265{
3266 unsigned long usemapsize;
3267
d9c23400
MG
3268 usemapsize = roundup(zonesize, pageblock_nr_pages);
3269 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
3270 usemapsize *= NR_PAGEBLOCK_BITS;
3271 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3272
3273 return usemapsize / 8;
3274}
3275
3276static void __init setup_usemap(struct pglist_data *pgdat,
3277 struct zone *zone, unsigned long zonesize)
3278{
3279 unsigned long usemapsize = usemap_size(zonesize);
3280 zone->pageblock_flags = NULL;
3281 if (usemapsize) {
3282 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3283 memset(zone->pageblock_flags, 0, usemapsize);
3284 }
3285}
3286#else
3287static void inline setup_usemap(struct pglist_data *pgdat,
3288 struct zone *zone, unsigned long zonesize) {}
3289#endif /* CONFIG_SPARSEMEM */
3290
d9c23400 3291#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c
MG
3292
3293/* Return a sensible default order for the pageblock size. */
3294static inline int pageblock_default_order(void)
3295{
3296 if (HPAGE_SHIFT > PAGE_SHIFT)
3297 return HUGETLB_PAGE_ORDER;
3298
3299 return MAX_ORDER-1;
3300}
3301
d9c23400
MG
3302/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3303static inline void __init set_pageblock_order(unsigned int order)
3304{
3305 /* Check that pageblock_nr_pages has not already been setup */
3306 if (pageblock_order)
3307 return;
3308
3309 /*
3310 * Assume the largest contiguous order of interest is a huge page.
3311 * This value may be variable depending on boot parameters on IA64
3312 */
3313 pageblock_order = order;
3314}
3315#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3316
ba72cb8c
MG
3317/*
3318 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3319 * and pageblock_default_order() are unused as pageblock_order is set
3320 * at compile-time. See include/linux/pageblock-flags.h for the values of
3321 * pageblock_order based on the kernel config
3322 */
3323static inline int pageblock_default_order(unsigned int order)
3324{
3325 return MAX_ORDER-1;
3326}
d9c23400
MG
3327#define set_pageblock_order(x) do {} while (0)
3328
3329#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3330
1da177e4
LT
3331/*
3332 * Set up the zone data structures:
3333 * - mark all pages reserved
3334 * - mark all memory queues empty
3335 * - clear the memory bitmaps
3336 */
b5a0e011 3337static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
3338 unsigned long *zones_size, unsigned long *zholes_size)
3339{
2f1b6248 3340 enum zone_type j;
ed8ece2e 3341 int nid = pgdat->node_id;
1da177e4 3342 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 3343 int ret;
1da177e4 3344
208d54e5 3345 pgdat_resize_init(pgdat);
1da177e4
LT
3346 pgdat->nr_zones = 0;
3347 init_waitqueue_head(&pgdat->kswapd_wait);
3348 pgdat->kswapd_max_order = 0;
3349
3350 for (j = 0; j < MAX_NR_ZONES; j++) {
3351 struct zone *zone = pgdat->node_zones + j;
0e0b864e 3352 unsigned long size, realsize, memmap_pages;
1da177e4 3353
c713216d
MG
3354 size = zone_spanned_pages_in_node(nid, j, zones_size);
3355 realsize = size - zone_absent_pages_in_node(nid, j,
3356 zholes_size);
1da177e4 3357
0e0b864e
MG
3358 /*
3359 * Adjust realsize so that it accounts for how much memory
3360 * is used by this zone for memmap. This affects the watermark
3361 * and per-cpu initialisations
3362 */
f7232154
JW
3363 memmap_pages =
3364 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
3365 if (realsize >= memmap_pages) {
3366 realsize -= memmap_pages;
6b74ab97
MG
3367 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3368 "%s zone: %lu pages used for memmap\n",
0e0b864e
MG
3369 zone_names[j], memmap_pages);
3370 } else
3371 printk(KERN_WARNING
3372 " %s zone: %lu pages exceeds realsize %lu\n",
3373 zone_names[j], memmap_pages, realsize);
3374
6267276f
CL
3375 /* Account for reserved pages */
3376 if (j == 0 && realsize > dma_reserve) {
0e0b864e 3377 realsize -= dma_reserve;
6b74ab97
MG
3378 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3379 "%s zone: %lu pages reserved\n",
6267276f 3380 zone_names[0], dma_reserve);
0e0b864e
MG
3381 }
3382
98d2b0eb 3383 if (!is_highmem_idx(j))
1da177e4
LT
3384 nr_kernel_pages += realsize;
3385 nr_all_pages += realsize;
3386
3387 zone->spanned_pages = size;
3388 zone->present_pages = realsize;
9614634f 3389#ifdef CONFIG_NUMA
d5f541ed 3390 zone->node = nid;
8417bba4 3391 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 3392 / 100;
0ff38490 3393 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 3394#endif
1da177e4
LT
3395 zone->name = zone_names[j];
3396 spin_lock_init(&zone->lock);
3397 spin_lock_init(&zone->lru_lock);
bdc8cb98 3398 zone_seqlock_init(zone);
1da177e4 3399 zone->zone_pgdat = pgdat;
1da177e4 3400
3bb1a852 3401 zone->prev_priority = DEF_PRIORITY;
1da177e4 3402
ed8ece2e 3403 zone_pcp_init(zone);
1da177e4
LT
3404 INIT_LIST_HEAD(&zone->active_list);
3405 INIT_LIST_HEAD(&zone->inactive_list);
3406 zone->nr_scan_active = 0;
3407 zone->nr_scan_inactive = 0;
2244b95a 3408 zap_zone_vm_stats(zone);
e815af95 3409 zone->flags = 0;
1da177e4
LT
3410 if (!size)
3411 continue;
3412
ba72cb8c 3413 set_pageblock_order(pageblock_default_order());
835c134e 3414 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
3415 ret = init_currently_empty_zone(zone, zone_start_pfn,
3416 size, MEMMAP_EARLY);
718127cc 3417 BUG_ON(ret);
76cdd58e 3418 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 3419 zone_start_pfn += size;
1da177e4
LT
3420 }
3421}
3422
577a32f6 3423static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 3424{
1da177e4
LT
3425 /* Skip empty nodes */
3426 if (!pgdat->node_spanned_pages)
3427 return;
3428
d41dee36 3429#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
3430 /* ia64 gets its own node_mem_map, before this, without bootmem */
3431 if (!pgdat->node_mem_map) {
e984bb43 3432 unsigned long size, start, end;
d41dee36
AW
3433 struct page *map;
3434
e984bb43
BP
3435 /*
3436 * The zone's endpoints aren't required to be MAX_ORDER
3437 * aligned but the node_mem_map endpoints must be in order
3438 * for the buddy allocator to function correctly.
3439 */
3440 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3441 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3442 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3443 size = (end - start) * sizeof(struct page);
6f167ec7
DH
3444 map = alloc_remap(pgdat->node_id, size);
3445 if (!map)
3446 map = alloc_bootmem_node(pgdat, size);
e984bb43 3447 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 3448 }
12d810c1 3449#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
3450 /*
3451 * With no DISCONTIG, the global mem_map is just set as node 0's
3452 */
c713216d 3453 if (pgdat == NODE_DATA(0)) {
1da177e4 3454 mem_map = NODE_DATA(0)->node_mem_map;
c713216d
MG
3455#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3456 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 3457 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
c713216d
MG
3458#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3459 }
1da177e4 3460#endif
d41dee36 3461#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
3462}
3463
b5a0e011 3464void __paginginit free_area_init_node(int nid, struct pglist_data *pgdat,
1da177e4
LT
3465 unsigned long *zones_size, unsigned long node_start_pfn,
3466 unsigned long *zholes_size)
3467{
3468 pgdat->node_id = nid;
3469 pgdat->node_start_pfn = node_start_pfn;
c713216d 3470 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
3471
3472 alloc_node_mem_map(pgdat);
e8c27ac9
YL
3473#ifdef CONFIG_FLAT_NODE_MEM_MAP
3474 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3475 nid, (unsigned long)pgdat,
3476 (unsigned long)pgdat->node_mem_map);
3477#endif
1da177e4
LT
3478
3479 free_area_init_core(pgdat, zones_size, zholes_size);
3480}
3481
c713216d 3482#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
418508c1
MS
3483
3484#if MAX_NUMNODES > 1
3485/*
3486 * Figure out the number of possible node ids.
3487 */
3488static void __init setup_nr_node_ids(void)
3489{
3490 unsigned int node;
3491 unsigned int highest = 0;
3492
3493 for_each_node_mask(node, node_possible_map)
3494 highest = node;
3495 nr_node_ids = highest + 1;
3496}
3497#else
3498static inline void setup_nr_node_ids(void)
3499{
3500}
3501#endif
3502
c713216d
MG
3503/**
3504 * add_active_range - Register a range of PFNs backed by physical memory
3505 * @nid: The node ID the range resides on
3506 * @start_pfn: The start PFN of the available physical memory
3507 * @end_pfn: The end PFN of the available physical memory
3508 *
3509 * These ranges are stored in an early_node_map[] and later used by
3510 * free_area_init_nodes() to calculate zone sizes and holes. If the
3511 * range spans a memory hole, it is up to the architecture to ensure
3512 * the memory is not freed by the bootmem allocator. If possible
3513 * the range being registered will be merged with existing ranges.
3514 */
3515void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3516 unsigned long end_pfn)
3517{
3518 int i;
3519
6b74ab97
MG
3520 mminit_dprintk(MMINIT_TRACE, "memory_register",
3521 "Entering add_active_range(%d, %#lx, %#lx) "
3522 "%d entries of %d used\n",
3523 nid, start_pfn, end_pfn,
3524 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
c713216d 3525
2dbb51c4
MG
3526 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3527
c713216d
MG
3528 /* Merge with existing active regions if possible */
3529 for (i = 0; i < nr_nodemap_entries; i++) {
3530 if (early_node_map[i].nid != nid)
3531 continue;
3532
3533 /* Skip if an existing region covers this new one */
3534 if (start_pfn >= early_node_map[i].start_pfn &&
3535 end_pfn <= early_node_map[i].end_pfn)
3536 return;
3537
3538 /* Merge forward if suitable */
3539 if (start_pfn <= early_node_map[i].end_pfn &&
3540 end_pfn > early_node_map[i].end_pfn) {
3541 early_node_map[i].end_pfn = end_pfn;
3542 return;
3543 }
3544
3545 /* Merge backward if suitable */
3546 if (start_pfn < early_node_map[i].end_pfn &&
3547 end_pfn >= early_node_map[i].start_pfn) {
3548 early_node_map[i].start_pfn = start_pfn;
3549 return;
3550 }
3551 }
3552
3553 /* Check that early_node_map is large enough */
3554 if (i >= MAX_ACTIVE_REGIONS) {
3555 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3556 MAX_ACTIVE_REGIONS);
3557 return;
3558 }
3559
3560 early_node_map[i].nid = nid;
3561 early_node_map[i].start_pfn = start_pfn;
3562 early_node_map[i].end_pfn = end_pfn;
3563 nr_nodemap_entries = i + 1;
3564}
3565
3566/**
cc1050ba 3567 * remove_active_range - Shrink an existing registered range of PFNs
c713216d 3568 * @nid: The node id the range is on that should be shrunk
cc1050ba
YL
3569 * @start_pfn: The new PFN of the range
3570 * @end_pfn: The new PFN of the range
c713216d
MG
3571 *
3572 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
cc1a9d86
YL
3573 * The map is kept near the end physical page range that has already been
3574 * registered. This function allows an arch to shrink an existing registered
3575 * range.
c713216d 3576 */
cc1050ba
YL
3577void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3578 unsigned long end_pfn)
c713216d 3579{
cc1a9d86
YL
3580 int i, j;
3581 int removed = 0;
c713216d 3582
cc1050ba
YL
3583 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3584 nid, start_pfn, end_pfn);
3585
c713216d 3586 /* Find the old active region end and shrink */
cc1a9d86 3587 for_each_active_range_index_in_nid(i, nid) {
cc1050ba
YL
3588 if (early_node_map[i].start_pfn >= start_pfn &&
3589 early_node_map[i].end_pfn <= end_pfn) {
cc1a9d86 3590 /* clear it */
cc1050ba 3591 early_node_map[i].start_pfn = 0;
cc1a9d86
YL
3592 early_node_map[i].end_pfn = 0;
3593 removed = 1;
3594 continue;
3595 }
cc1050ba
YL
3596 if (early_node_map[i].start_pfn < start_pfn &&
3597 early_node_map[i].end_pfn > start_pfn) {
3598 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3599 early_node_map[i].end_pfn = start_pfn;
3600 if (temp_end_pfn > end_pfn)
3601 add_active_range(nid, end_pfn, temp_end_pfn);
3602 continue;
3603 }
3604 if (early_node_map[i].start_pfn >= start_pfn &&
3605 early_node_map[i].end_pfn > end_pfn &&
3606 early_node_map[i].start_pfn < end_pfn) {
3607 early_node_map[i].start_pfn = end_pfn;
cc1a9d86 3608 continue;
c713216d 3609 }
cc1a9d86
YL
3610 }
3611
3612 if (!removed)
3613 return;
3614
3615 /* remove the blank ones */
3616 for (i = nr_nodemap_entries - 1; i > 0; i--) {
3617 if (early_node_map[i].nid != nid)
3618 continue;
3619 if (early_node_map[i].end_pfn)
3620 continue;
3621 /* we found it, get rid of it */
3622 for (j = i; j < nr_nodemap_entries - 1; j++)
3623 memcpy(&early_node_map[j], &early_node_map[j+1],
3624 sizeof(early_node_map[j]));
3625 j = nr_nodemap_entries - 1;
3626 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3627 nr_nodemap_entries--;
3628 }
c713216d
MG
3629}
3630
3631/**
3632 * remove_all_active_ranges - Remove all currently registered regions
88ca3b94 3633 *
c713216d
MG
3634 * During discovery, it may be found that a table like SRAT is invalid
3635 * and an alternative discovery method must be used. This function removes
3636 * all currently registered regions.
3637 */
88ca3b94 3638void __init remove_all_active_ranges(void)
c713216d
MG
3639{
3640 memset(early_node_map, 0, sizeof(early_node_map));
3641 nr_nodemap_entries = 0;
fb01439c
MG
3642#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3643 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3644 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3645#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
c713216d
MG
3646}
3647
3648/* Compare two active node_active_regions */
3649static int __init cmp_node_active_region(const void *a, const void *b)
3650{
3651 struct node_active_region *arange = (struct node_active_region *)a;
3652 struct node_active_region *brange = (struct node_active_region *)b;
3653
3654 /* Done this way to avoid overflows */
3655 if (arange->start_pfn > brange->start_pfn)
3656 return 1;
3657 if (arange->start_pfn < brange->start_pfn)
3658 return -1;
3659
3660 return 0;
3661}
3662
3663/* sort the node_map by start_pfn */
3664static void __init sort_node_map(void)
3665{
3666 sort(early_node_map, (size_t)nr_nodemap_entries,
3667 sizeof(struct node_active_region),
3668 cmp_node_active_region, NULL);
3669}
3670
a6af2bc3 3671/* Find the lowest pfn for a node */
2bc0d261 3672unsigned long __init find_min_pfn_for_node(int nid)
c713216d
MG
3673{
3674 int i;
a6af2bc3 3675 unsigned long min_pfn = ULONG_MAX;
1abbfb41 3676
c713216d
MG
3677 /* Assuming a sorted map, the first range found has the starting pfn */
3678 for_each_active_range_index_in_nid(i, nid)
a6af2bc3 3679 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
c713216d 3680
a6af2bc3
MG
3681 if (min_pfn == ULONG_MAX) {
3682 printk(KERN_WARNING
2bc0d261 3683 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
3684 return 0;
3685 }
3686
3687 return min_pfn;
c713216d
MG
3688}
3689
3690/**
3691 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3692 *
3693 * It returns the minimum PFN based on information provided via
88ca3b94 3694 * add_active_range().
c713216d
MG
3695 */
3696unsigned long __init find_min_pfn_with_active_regions(void)
3697{
3698 return find_min_pfn_for_node(MAX_NUMNODES);
3699}
3700
3701/**
3702 * find_max_pfn_with_active_regions - Find the maximum PFN registered
3703 *
3704 * It returns the maximum PFN based on information provided via
88ca3b94 3705 * add_active_range().
c713216d
MG
3706 */
3707unsigned long __init find_max_pfn_with_active_regions(void)
3708{
3709 int i;
3710 unsigned long max_pfn = 0;
3711
3712 for (i = 0; i < nr_nodemap_entries; i++)
3713 max_pfn = max(max_pfn, early_node_map[i].end_pfn);
3714
3715 return max_pfn;
3716}
3717
37b07e41
LS
3718/*
3719 * early_calculate_totalpages()
3720 * Sum pages in active regions for movable zone.
3721 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3722 */
484f51f8 3723static unsigned long __init early_calculate_totalpages(void)
7e63efef
MG
3724{
3725 int i;
3726 unsigned long totalpages = 0;
3727
37b07e41
LS
3728 for (i = 0; i < nr_nodemap_entries; i++) {
3729 unsigned long pages = early_node_map[i].end_pfn -
7e63efef 3730 early_node_map[i].start_pfn;
37b07e41
LS
3731 totalpages += pages;
3732 if (pages)
3733 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3734 }
3735 return totalpages;
7e63efef
MG
3736}
3737
2a1e274a
MG
3738/*
3739 * Find the PFN the Movable zone begins in each node. Kernel memory
3740 * is spread evenly between nodes as long as the nodes have enough
3741 * memory. When they don't, some nodes will have more kernelcore than
3742 * others
3743 */
3744void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3745{
3746 int i, nid;
3747 unsigned long usable_startpfn;
3748 unsigned long kernelcore_node, kernelcore_remaining;
37b07e41
LS
3749 unsigned long totalpages = early_calculate_totalpages();
3750 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 3751
7e63efef
MG
3752 /*
3753 * If movablecore was specified, calculate what size of
3754 * kernelcore that corresponds so that memory usable for
3755 * any allocation type is evenly spread. If both kernelcore
3756 * and movablecore are specified, then the value of kernelcore
3757 * will be used for required_kernelcore if it's greater than
3758 * what movablecore would have allowed.
3759 */
3760 if (required_movablecore) {
7e63efef
MG
3761 unsigned long corepages;
3762
3763 /*
3764 * Round-up so that ZONE_MOVABLE is at least as large as what
3765 * was requested by the user
3766 */
3767 required_movablecore =
3768 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3769 corepages = totalpages - required_movablecore;
3770
3771 required_kernelcore = max(required_kernelcore, corepages);
3772 }
3773
2a1e274a
MG
3774 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3775 if (!required_kernelcore)
3776 return;
3777
3778 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3779 find_usable_zone_for_movable();
3780 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3781
3782restart:
3783 /* Spread kernelcore memory as evenly as possible throughout nodes */
3784 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 3785 for_each_node_state(nid, N_HIGH_MEMORY) {
2a1e274a
MG
3786 /*
3787 * Recalculate kernelcore_node if the division per node
3788 * now exceeds what is necessary to satisfy the requested
3789 * amount of memory for the kernel
3790 */
3791 if (required_kernelcore < kernelcore_node)
3792 kernelcore_node = required_kernelcore / usable_nodes;
3793
3794 /*
3795 * As the map is walked, we track how much memory is usable
3796 * by the kernel using kernelcore_remaining. When it is
3797 * 0, the rest of the node is usable by ZONE_MOVABLE
3798 */
3799 kernelcore_remaining = kernelcore_node;
3800
3801 /* Go through each range of PFNs within this node */
3802 for_each_active_range_index_in_nid(i, nid) {
3803 unsigned long start_pfn, end_pfn;
3804 unsigned long size_pages;
3805
3806 start_pfn = max(early_node_map[i].start_pfn,
3807 zone_movable_pfn[nid]);
3808 end_pfn = early_node_map[i].end_pfn;
3809 if (start_pfn >= end_pfn)
3810 continue;
3811
3812 /* Account for what is only usable for kernelcore */
3813 if (start_pfn < usable_startpfn) {
3814 unsigned long kernel_pages;
3815 kernel_pages = min(end_pfn, usable_startpfn)
3816 - start_pfn;
3817
3818 kernelcore_remaining -= min(kernel_pages,
3819 kernelcore_remaining);
3820 required_kernelcore -= min(kernel_pages,
3821 required_kernelcore);
3822
3823 /* Continue if range is now fully accounted */
3824 if (end_pfn <= usable_startpfn) {
3825
3826 /*
3827 * Push zone_movable_pfn to the end so
3828 * that if we have to rebalance
3829 * kernelcore across nodes, we will
3830 * not double account here
3831 */
3832 zone_movable_pfn[nid] = end_pfn;
3833 continue;
3834 }
3835 start_pfn = usable_startpfn;
3836 }
3837
3838 /*
3839 * The usable PFN range for ZONE_MOVABLE is from
3840 * start_pfn->end_pfn. Calculate size_pages as the
3841 * number of pages used as kernelcore
3842 */
3843 size_pages = end_pfn - start_pfn;
3844 if (size_pages > kernelcore_remaining)
3845 size_pages = kernelcore_remaining;
3846 zone_movable_pfn[nid] = start_pfn + size_pages;
3847
3848 /*
3849 * Some kernelcore has been met, update counts and
3850 * break if the kernelcore for this node has been
3851 * satisified
3852 */
3853 required_kernelcore -= min(required_kernelcore,
3854 size_pages);
3855 kernelcore_remaining -= size_pages;
3856 if (!kernelcore_remaining)
3857 break;
3858 }
3859 }
3860
3861 /*
3862 * If there is still required_kernelcore, we do another pass with one
3863 * less node in the count. This will push zone_movable_pfn[nid] further
3864 * along on the nodes that still have memory until kernelcore is
3865 * satisified
3866 */
3867 usable_nodes--;
3868 if (usable_nodes && required_kernelcore > usable_nodes)
3869 goto restart;
3870
3871 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3872 for (nid = 0; nid < MAX_NUMNODES; nid++)
3873 zone_movable_pfn[nid] =
3874 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3875}
3876
37b07e41
LS
3877/* Any regular memory on that node ? */
3878static void check_for_regular_memory(pg_data_t *pgdat)
3879{
3880#ifdef CONFIG_HIGHMEM
3881 enum zone_type zone_type;
3882
3883 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
3884 struct zone *zone = &pgdat->node_zones[zone_type];
3885 if (zone->present_pages)
3886 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
3887 }
3888#endif
3889}
3890
c713216d
MG
3891/**
3892 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 3893 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
3894 *
3895 * This will call free_area_init_node() for each active node in the system.
3896 * Using the page ranges provided by add_active_range(), the size of each
3897 * zone in each node and their holes is calculated. If the maximum PFN
3898 * between two adjacent zones match, it is assumed that the zone is empty.
3899 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3900 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3901 * starts where the previous one ended. For example, ZONE_DMA32 starts
3902 * at arch_max_dma_pfn.
3903 */
3904void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3905{
3906 unsigned long nid;
3907 enum zone_type i;
3908
a6af2bc3
MG
3909 /* Sort early_node_map as initialisation assumes it is sorted */
3910 sort_node_map();
3911
c713216d
MG
3912 /* Record where the zone boundaries are */
3913 memset(arch_zone_lowest_possible_pfn, 0,
3914 sizeof(arch_zone_lowest_possible_pfn));
3915 memset(arch_zone_highest_possible_pfn, 0,
3916 sizeof(arch_zone_highest_possible_pfn));
3917 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3918 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3919 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
3920 if (i == ZONE_MOVABLE)
3921 continue;
c713216d
MG
3922 arch_zone_lowest_possible_pfn[i] =
3923 arch_zone_highest_possible_pfn[i-1];
3924 arch_zone_highest_possible_pfn[i] =
3925 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3926 }
2a1e274a
MG
3927 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
3928 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
3929
3930 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
3931 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
3932 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
c713216d 3933
c713216d
MG
3934 /* Print out the zone ranges */
3935 printk("Zone PFN ranges:\n");
2a1e274a
MG
3936 for (i = 0; i < MAX_NR_ZONES; i++) {
3937 if (i == ZONE_MOVABLE)
3938 continue;
5dab8ec1 3939 printk(" %-8s %0#10lx -> %0#10lx\n",
c713216d
MG
3940 zone_names[i],
3941 arch_zone_lowest_possible_pfn[i],
3942 arch_zone_highest_possible_pfn[i]);
2a1e274a
MG
3943 }
3944
3945 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
3946 printk("Movable zone start PFN for each node\n");
3947 for (i = 0; i < MAX_NUMNODES; i++) {
3948 if (zone_movable_pfn[i])
3949 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
3950 }
c713216d
MG
3951
3952 /* Print out the early_node_map[] */
3953 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
3954 for (i = 0; i < nr_nodemap_entries; i++)
5dab8ec1 3955 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
c713216d
MG
3956 early_node_map[i].start_pfn,
3957 early_node_map[i].end_pfn);
3958
3959 /* Initialise every node */
708614e6 3960 mminit_verify_pageflags_layout();
8ef82866 3961 setup_nr_node_ids();
c713216d
MG
3962 for_each_online_node(nid) {
3963 pg_data_t *pgdat = NODE_DATA(nid);
3964 free_area_init_node(nid, pgdat, NULL,
3965 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
3966
3967 /* Any memory on that node */
3968 if (pgdat->node_present_pages)
3969 node_set_state(nid, N_HIGH_MEMORY);
3970 check_for_regular_memory(pgdat);
c713216d
MG
3971 }
3972}
2a1e274a 3973
7e63efef 3974static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
3975{
3976 unsigned long long coremem;
3977 if (!p)
3978 return -EINVAL;
3979
3980 coremem = memparse(p, &p);
7e63efef 3981 *core = coremem >> PAGE_SHIFT;
2a1e274a 3982
7e63efef 3983 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
3984 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
3985
3986 return 0;
3987}
ed7ed365 3988
7e63efef
MG
3989/*
3990 * kernelcore=size sets the amount of memory for use for allocations that
3991 * cannot be reclaimed or migrated.
3992 */
3993static int __init cmdline_parse_kernelcore(char *p)
3994{
3995 return cmdline_parse_core(p, &required_kernelcore);
3996}
3997
3998/*
3999 * movablecore=size sets the amount of memory for use for allocations that
4000 * can be reclaimed or migrated.
4001 */
4002static int __init cmdline_parse_movablecore(char *p)
4003{
4004 return cmdline_parse_core(p, &required_movablecore);
4005}
4006
ed7ed365 4007early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 4008early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 4009
c713216d
MG
4010#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4011
0e0b864e 4012/**
88ca3b94
RD
4013 * set_dma_reserve - set the specified number of pages reserved in the first zone
4014 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
4015 *
4016 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4017 * In the DMA zone, a significant percentage may be consumed by kernel image
4018 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
4019 * function may optionally be used to account for unfreeable pages in the
4020 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4021 * smaller per-cpu batchsize.
0e0b864e
MG
4022 */
4023void __init set_dma_reserve(unsigned long new_dma_reserve)
4024{
4025 dma_reserve = new_dma_reserve;
4026}
4027
93b7504e 4028#ifndef CONFIG_NEED_MULTIPLE_NODES
b61bfa3c 4029struct pglist_data contig_page_data = { .bdata = &bootmem_node_data[0] };
1da177e4 4030EXPORT_SYMBOL(contig_page_data);
93b7504e 4031#endif
1da177e4
LT
4032
4033void __init free_area_init(unsigned long *zones_size)
4034{
93b7504e 4035 free_area_init_node(0, NODE_DATA(0), zones_size,
1da177e4
LT
4036 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4037}
1da177e4 4038
1da177e4
LT
4039static int page_alloc_cpu_notify(struct notifier_block *self,
4040 unsigned long action, void *hcpu)
4041{
4042 int cpu = (unsigned long)hcpu;
1da177e4 4043
8bb78442 4044 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
9f8f2172
CL
4045 drain_pages(cpu);
4046
4047 /*
4048 * Spill the event counters of the dead processor
4049 * into the current processors event counters.
4050 * This artificially elevates the count of the current
4051 * processor.
4052 */
f8891e5e 4053 vm_events_fold_cpu(cpu);
9f8f2172
CL
4054
4055 /*
4056 * Zero the differential counters of the dead processor
4057 * so that the vm statistics are consistent.
4058 *
4059 * This is only okay since the processor is dead and cannot
4060 * race with what we are doing.
4061 */
2244b95a 4062 refresh_cpu_vm_stats(cpu);
1da177e4
LT
4063 }
4064 return NOTIFY_OK;
4065}
1da177e4
LT
4066
4067void __init page_alloc_init(void)
4068{
4069 hotcpu_notifier(page_alloc_cpu_notify, 0);
4070}
4071
cb45b0e9
HA
4072/*
4073 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4074 * or min_free_kbytes changes.
4075 */
4076static void calculate_totalreserve_pages(void)
4077{
4078 struct pglist_data *pgdat;
4079 unsigned long reserve_pages = 0;
2f6726e5 4080 enum zone_type i, j;
cb45b0e9
HA
4081
4082 for_each_online_pgdat(pgdat) {
4083 for (i = 0; i < MAX_NR_ZONES; i++) {
4084 struct zone *zone = pgdat->node_zones + i;
4085 unsigned long max = 0;
4086
4087 /* Find valid and maximum lowmem_reserve in the zone */
4088 for (j = i; j < MAX_NR_ZONES; j++) {
4089 if (zone->lowmem_reserve[j] > max)
4090 max = zone->lowmem_reserve[j];
4091 }
4092
4093 /* we treat pages_high as reserved pages. */
4094 max += zone->pages_high;
4095
4096 if (max > zone->present_pages)
4097 max = zone->present_pages;
4098 reserve_pages += max;
4099 }
4100 }
4101 totalreserve_pages = reserve_pages;
4102}
4103
1da177e4
LT
4104/*
4105 * setup_per_zone_lowmem_reserve - called whenever
4106 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4107 * has a correct pages reserved value, so an adequate number of
4108 * pages are left in the zone after a successful __alloc_pages().
4109 */
4110static void setup_per_zone_lowmem_reserve(void)
4111{
4112 struct pglist_data *pgdat;
2f6726e5 4113 enum zone_type j, idx;
1da177e4 4114
ec936fc5 4115 for_each_online_pgdat(pgdat) {
1da177e4
LT
4116 for (j = 0; j < MAX_NR_ZONES; j++) {
4117 struct zone *zone = pgdat->node_zones + j;
4118 unsigned long present_pages = zone->present_pages;
4119
4120 zone->lowmem_reserve[j] = 0;
4121
2f6726e5
CL
4122 idx = j;
4123 while (idx) {
1da177e4
LT
4124 struct zone *lower_zone;
4125
2f6726e5
CL
4126 idx--;
4127
1da177e4
LT
4128 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4129 sysctl_lowmem_reserve_ratio[idx] = 1;
4130
4131 lower_zone = pgdat->node_zones + idx;
4132 lower_zone->lowmem_reserve[j] = present_pages /
4133 sysctl_lowmem_reserve_ratio[idx];
4134 present_pages += lower_zone->present_pages;
4135 }
4136 }
4137 }
cb45b0e9
HA
4138
4139 /* update totalreserve_pages */
4140 calculate_totalreserve_pages();
1da177e4
LT
4141}
4142
88ca3b94
RD
4143/**
4144 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4145 *
4146 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4147 * with respect to min_free_kbytes.
1da177e4 4148 */
3947be19 4149void setup_per_zone_pages_min(void)
1da177e4
LT
4150{
4151 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4152 unsigned long lowmem_pages = 0;
4153 struct zone *zone;
4154 unsigned long flags;
4155
4156 /* Calculate total number of !ZONE_HIGHMEM pages */
4157 for_each_zone(zone) {
4158 if (!is_highmem(zone))
4159 lowmem_pages += zone->present_pages;
4160 }
4161
4162 for_each_zone(zone) {
ac924c60
AM
4163 u64 tmp;
4164
1da177e4 4165 spin_lock_irqsave(&zone->lru_lock, flags);
ac924c60
AM
4166 tmp = (u64)pages_min * zone->present_pages;
4167 do_div(tmp, lowmem_pages);
1da177e4
LT
4168 if (is_highmem(zone)) {
4169 /*
669ed175
NP
4170 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4171 * need highmem pages, so cap pages_min to a small
4172 * value here.
4173 *
4174 * The (pages_high-pages_low) and (pages_low-pages_min)
4175 * deltas controls asynch page reclaim, and so should
4176 * not be capped for highmem.
1da177e4
LT
4177 */
4178 int min_pages;
4179
4180 min_pages = zone->present_pages / 1024;
4181 if (min_pages < SWAP_CLUSTER_MAX)
4182 min_pages = SWAP_CLUSTER_MAX;
4183 if (min_pages > 128)
4184 min_pages = 128;
4185 zone->pages_min = min_pages;
4186 } else {
669ed175
NP
4187 /*
4188 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
4189 * proportionate to the zone's size.
4190 */
669ed175 4191 zone->pages_min = tmp;
1da177e4
LT
4192 }
4193
ac924c60
AM
4194 zone->pages_low = zone->pages_min + (tmp >> 2);
4195 zone->pages_high = zone->pages_min + (tmp >> 1);
56fd56b8 4196 setup_zone_migrate_reserve(zone);
1da177e4
LT
4197 spin_unlock_irqrestore(&zone->lru_lock, flags);
4198 }
cb45b0e9
HA
4199
4200 /* update totalreserve_pages */
4201 calculate_totalreserve_pages();
1da177e4
LT
4202}
4203
4204/*
4205 * Initialise min_free_kbytes.
4206 *
4207 * For small machines we want it small (128k min). For large machines
4208 * we want it large (64MB max). But it is not linear, because network
4209 * bandwidth does not increase linearly with machine size. We use
4210 *
4211 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4212 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4213 *
4214 * which yields
4215 *
4216 * 16MB: 512k
4217 * 32MB: 724k
4218 * 64MB: 1024k
4219 * 128MB: 1448k
4220 * 256MB: 2048k
4221 * 512MB: 2896k
4222 * 1024MB: 4096k
4223 * 2048MB: 5792k
4224 * 4096MB: 8192k
4225 * 8192MB: 11584k
4226 * 16384MB: 16384k
4227 */
4228static int __init init_per_zone_pages_min(void)
4229{
4230 unsigned long lowmem_kbytes;
4231
4232 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4233
4234 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4235 if (min_free_kbytes < 128)
4236 min_free_kbytes = 128;
4237 if (min_free_kbytes > 65536)
4238 min_free_kbytes = 65536;
4239 setup_per_zone_pages_min();
4240 setup_per_zone_lowmem_reserve();
4241 return 0;
4242}
4243module_init(init_per_zone_pages_min)
4244
4245/*
4246 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4247 * that we can call two helper functions whenever min_free_kbytes
4248 * changes.
4249 */
4250int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4251 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4252{
4253 proc_dointvec(table, write, file, buffer, length, ppos);
3b1d92c5
MG
4254 if (write)
4255 setup_per_zone_pages_min();
1da177e4
LT
4256 return 0;
4257}
4258
9614634f
CL
4259#ifdef CONFIG_NUMA
4260int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4261 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4262{
4263 struct zone *zone;
4264 int rc;
4265
4266 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4267 if (rc)
4268 return rc;
4269
4270 for_each_zone(zone)
8417bba4 4271 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
4272 sysctl_min_unmapped_ratio) / 100;
4273 return 0;
4274}
0ff38490
CL
4275
4276int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4277 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4278{
4279 struct zone *zone;
4280 int rc;
4281
4282 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4283 if (rc)
4284 return rc;
4285
4286 for_each_zone(zone)
4287 zone->min_slab_pages = (zone->present_pages *
4288 sysctl_min_slab_ratio) / 100;
4289 return 0;
4290}
9614634f
CL
4291#endif
4292
1da177e4
LT
4293/*
4294 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4295 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4296 * whenever sysctl_lowmem_reserve_ratio changes.
4297 *
4298 * The reserve ratio obviously has absolutely no relation with the
4299 * pages_min watermarks. The lowmem reserve ratio can only make sense
4300 * if in function of the boot time zone sizes.
4301 */
4302int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4303 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4304{
4305 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4306 setup_per_zone_lowmem_reserve();
4307 return 0;
4308}
4309
8ad4b1fb
RS
4310/*
4311 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4312 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4313 * can have before it gets flushed back to buddy allocator.
4314 */
4315
4316int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4317 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4318{
4319 struct zone *zone;
4320 unsigned int cpu;
4321 int ret;
4322
4323 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4324 if (!write || (ret == -EINVAL))
4325 return ret;
4326 for_each_zone(zone) {
4327 for_each_online_cpu(cpu) {
4328 unsigned long high;
4329 high = zone->present_pages / percpu_pagelist_fraction;
4330 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4331 }
4332 }
4333 return 0;
4334}
4335
f034b5d4 4336int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
4337
4338#ifdef CONFIG_NUMA
4339static int __init set_hashdist(char *str)
4340{
4341 if (!str)
4342 return 0;
4343 hashdist = simple_strtoul(str, &str, 0);
4344 return 1;
4345}
4346__setup("hashdist=", set_hashdist);
4347#endif
4348
4349/*
4350 * allocate a large system hash table from bootmem
4351 * - it is assumed that the hash table must contain an exact power-of-2
4352 * quantity of entries
4353 * - limit is the number of hash buckets, not the total allocation size
4354 */
4355void *__init alloc_large_system_hash(const char *tablename,
4356 unsigned long bucketsize,
4357 unsigned long numentries,
4358 int scale,
4359 int flags,
4360 unsigned int *_hash_shift,
4361 unsigned int *_hash_mask,
4362 unsigned long limit)
4363{
4364 unsigned long long max = limit;
4365 unsigned long log2qty, size;
4366 void *table = NULL;
4367
4368 /* allow the kernel cmdline to have a say */
4369 if (!numentries) {
4370 /* round applicable memory size up to nearest megabyte */
04903664 4371 numentries = nr_kernel_pages;
1da177e4
LT
4372 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4373 numentries >>= 20 - PAGE_SHIFT;
4374 numentries <<= 20 - PAGE_SHIFT;
4375
4376 /* limit to 1 bucket per 2^scale bytes of low memory */
4377 if (scale > PAGE_SHIFT)
4378 numentries >>= (scale - PAGE_SHIFT);
4379 else
4380 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
4381
4382 /* Make sure we've got at least a 0-order allocation.. */
4383 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4384 numentries = PAGE_SIZE / bucketsize;
1da177e4 4385 }
6e692ed3 4386 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
4387
4388 /* limit allocation size to 1/16 total memory by default */
4389 if (max == 0) {
4390 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4391 do_div(max, bucketsize);
4392 }
4393
4394 if (numentries > max)
4395 numentries = max;
4396
f0d1b0b3 4397 log2qty = ilog2(numentries);
1da177e4
LT
4398
4399 do {
4400 size = bucketsize << log2qty;
4401 if (flags & HASH_EARLY)
4402 table = alloc_bootmem(size);
4403 else if (hashdist)
4404 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4405 else {
2309f9e6 4406 unsigned long order = get_order(size);
1da177e4 4407 table = (void*) __get_free_pages(GFP_ATOMIC, order);
1037b83b
ED
4408 /*
4409 * If bucketsize is not a power-of-two, we may free
4410 * some pages at the end of hash table.
4411 */
4412 if (table) {
4413 unsigned long alloc_end = (unsigned long)table +
4414 (PAGE_SIZE << order);
4415 unsigned long used = (unsigned long)table +
4416 PAGE_ALIGN(size);
4417 split_page(virt_to_page(table), order);
4418 while (used < alloc_end) {
4419 free_page(used);
4420 used += PAGE_SIZE;
4421 }
4422 }
1da177e4
LT
4423 }
4424 } while (!table && size > PAGE_SIZE && --log2qty);
4425
4426 if (!table)
4427 panic("Failed to allocate %s hash table\n", tablename);
4428
b49ad484 4429 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
1da177e4
LT
4430 tablename,
4431 (1U << log2qty),
f0d1b0b3 4432 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
4433 size);
4434
4435 if (_hash_shift)
4436 *_hash_shift = log2qty;
4437 if (_hash_mask)
4438 *_hash_mask = (1 << log2qty) - 1;
4439
4440 return table;
4441}
a117e66e
KH
4442
4443#ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
a117e66e
KH
4444struct page *pfn_to_page(unsigned long pfn)
4445{
67de6482 4446 return __pfn_to_page(pfn);
a117e66e
KH
4447}
4448unsigned long page_to_pfn(struct page *page)
4449{
67de6482 4450 return __page_to_pfn(page);
a117e66e 4451}
a117e66e
KH
4452EXPORT_SYMBOL(pfn_to_page);
4453EXPORT_SYMBOL(page_to_pfn);
4454#endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
6220ec78 4455
835c134e
MG
4456/* Return a pointer to the bitmap storing bits affecting a block of pages */
4457static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4458 unsigned long pfn)
4459{
4460#ifdef CONFIG_SPARSEMEM
4461 return __pfn_to_section(pfn)->pageblock_flags;
4462#else
4463 return zone->pageblock_flags;
4464#endif /* CONFIG_SPARSEMEM */
4465}
4466
4467static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4468{
4469#ifdef CONFIG_SPARSEMEM
4470 pfn &= (PAGES_PER_SECTION-1);
d9c23400 4471 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
4472#else
4473 pfn = pfn - zone->zone_start_pfn;
d9c23400 4474 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
4475#endif /* CONFIG_SPARSEMEM */
4476}
4477
4478/**
d9c23400 4479 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
4480 * @page: The page within the block of interest
4481 * @start_bitidx: The first bit of interest to retrieve
4482 * @end_bitidx: The last bit of interest
4483 * returns pageblock_bits flags
4484 */
4485unsigned long get_pageblock_flags_group(struct page *page,
4486 int start_bitidx, int end_bitidx)
4487{
4488 struct zone *zone;
4489 unsigned long *bitmap;
4490 unsigned long pfn, bitidx;
4491 unsigned long flags = 0;
4492 unsigned long value = 1;
4493
4494 zone = page_zone(page);
4495 pfn = page_to_pfn(page);
4496 bitmap = get_pageblock_bitmap(zone, pfn);
4497 bitidx = pfn_to_bitidx(zone, pfn);
4498
4499 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4500 if (test_bit(bitidx + start_bitidx, bitmap))
4501 flags |= value;
6220ec78 4502
835c134e
MG
4503 return flags;
4504}
4505
4506/**
d9c23400 4507 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
4508 * @page: The page within the block of interest
4509 * @start_bitidx: The first bit of interest
4510 * @end_bitidx: The last bit of interest
4511 * @flags: The flags to set
4512 */
4513void set_pageblock_flags_group(struct page *page, unsigned long flags,
4514 int start_bitidx, int end_bitidx)
4515{
4516 struct zone *zone;
4517 unsigned long *bitmap;
4518 unsigned long pfn, bitidx;
4519 unsigned long value = 1;
4520
4521 zone = page_zone(page);
4522 pfn = page_to_pfn(page);
4523 bitmap = get_pageblock_bitmap(zone, pfn);
4524 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
4525 VM_BUG_ON(pfn < zone->zone_start_pfn);
4526 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
4527
4528 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4529 if (flags & value)
4530 __set_bit(bitidx + start_bitidx, bitmap);
4531 else
4532 __clear_bit(bitidx + start_bitidx, bitmap);
4533}
a5d76b54
KH
4534
4535/*
4536 * This is designed as sub function...plz see page_isolation.c also.
4537 * set/clear page block's type to be ISOLATE.
4538 * page allocater never alloc memory from ISOLATE block.
4539 */
4540
4541int set_migratetype_isolate(struct page *page)
4542{
4543 struct zone *zone;
4544 unsigned long flags;
4545 int ret = -EBUSY;
4546
4547 zone = page_zone(page);
4548 spin_lock_irqsave(&zone->lock, flags);
4549 /*
4550 * In future, more migrate types will be able to be isolation target.
4551 */
4552 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4553 goto out;
4554 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4555 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4556 ret = 0;
4557out:
4558 spin_unlock_irqrestore(&zone->lock, flags);
4559 if (!ret)
9f8f2172 4560 drain_all_pages();
a5d76b54
KH
4561 return ret;
4562}
4563
4564void unset_migratetype_isolate(struct page *page)
4565{
4566 struct zone *zone;
4567 unsigned long flags;
4568 zone = page_zone(page);
4569 spin_lock_irqsave(&zone->lock, flags);
4570 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4571 goto out;
4572 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4573 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4574out:
4575 spin_unlock_irqrestore(&zone->lock, flags);
4576}
0c0e6195
KH
4577
4578#ifdef CONFIG_MEMORY_HOTREMOVE
4579/*
4580 * All pages in the range must be isolated before calling this.
4581 */
4582void
4583__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4584{
4585 struct page *page;
4586 struct zone *zone;
4587 int order, i;
4588 unsigned long pfn;
4589 unsigned long flags;
4590 /* find the first valid pfn */
4591 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4592 if (pfn_valid(pfn))
4593 break;
4594 if (pfn == end_pfn)
4595 return;
4596 zone = page_zone(pfn_to_page(pfn));
4597 spin_lock_irqsave(&zone->lock, flags);
4598 pfn = start_pfn;
4599 while (pfn < end_pfn) {
4600 if (!pfn_valid(pfn)) {
4601 pfn++;
4602 continue;
4603 }
4604 page = pfn_to_page(pfn);
4605 BUG_ON(page_count(page));
4606 BUG_ON(!PageBuddy(page));
4607 order = page_order(page);
4608#ifdef CONFIG_DEBUG_VM
4609 printk(KERN_INFO "remove from free list %lx %d %lx\n",
4610 pfn, 1 << order, end_pfn);
4611#endif
4612 list_del(&page->lru);
4613 rmv_page_order(page);
4614 zone->free_area[order].nr_free--;
4615 __mod_zone_page_state(zone, NR_FREE_PAGES,
4616 - (1UL << order));
4617 for (i = 0; i < (1 << order); i++)
4618 SetPageReserved((page+i));
4619 pfn += (1 << order);
4620 }
4621 spin_unlock_irqrestore(&zone->lock, flags);
4622}
4623#endif