acer-wmi: remove debugfs entries upon unloading
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4
LT
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
9f158333 25#include <linux/kernel.h>
1da177e4
LT
26#include <linux/module.h>
27#include <linux/suspend.h>
28#include <linux/pagevec.h>
29#include <linux/blkdev.h>
30#include <linux/slab.h>
5a3135c2 31#include <linux/oom.h>
1da177e4
LT
32#include <linux/notifier.h>
33#include <linux/topology.h>
34#include <linux/sysctl.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
bdc8cb98 37#include <linux/memory_hotplug.h>
1da177e4
LT
38#include <linux/nodemask.h>
39#include <linux/vmalloc.h>
4be38e35 40#include <linux/mempolicy.h>
6811378e 41#include <linux/stop_machine.h>
c713216d
MG
42#include <linux/sort.h>
43#include <linux/pfn.h>
3fcfab16 44#include <linux/backing-dev.h>
933e312e 45#include <linux/fault-inject.h>
a5d76b54 46#include <linux/page-isolation.h>
8a9f3ccd 47#include <linux/memcontrol.h>
3ac7fe5a 48#include <linux/debugobjects.h>
1da177e4
LT
49
50#include <asm/tlbflush.h>
ac924c60 51#include <asm/div64.h>
1da177e4
LT
52#include "internal.h"
53
54/*
13808910 55 * Array of node states.
1da177e4 56 */
13808910
CL
57nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
58 [N_POSSIBLE] = NODE_MASK_ALL,
59 [N_ONLINE] = { { [0] = 1UL } },
60#ifndef CONFIG_NUMA
61 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
62#ifdef CONFIG_HIGHMEM
63 [N_HIGH_MEMORY] = { { [0] = 1UL } },
64#endif
65 [N_CPU] = { { [0] = 1UL } },
66#endif /* NUMA */
67};
68EXPORT_SYMBOL(node_states);
69
6c231b7b 70unsigned long totalram_pages __read_mostly;
cb45b0e9 71unsigned long totalreserve_pages __read_mostly;
1da177e4 72long nr_swap_pages;
8ad4b1fb 73int percpu_pagelist_fraction;
1da177e4 74
d9c23400
MG
75#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
76int pageblock_order __read_mostly;
77#endif
78
d98c7a09 79static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 80
1da177e4
LT
81/*
82 * results with 256, 32 in the lowmem_reserve sysctl:
83 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
84 * 1G machine -> (16M dma, 784M normal, 224M high)
85 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
86 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
87 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
88 *
89 * TBD: should special case ZONE_DMA32 machines here - in those we normally
90 * don't need any ZONE_NORMAL reservation
1da177e4 91 */
2f1b6248 92int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 93#ifdef CONFIG_ZONE_DMA
2f1b6248 94 256,
4b51d669 95#endif
fb0e7942 96#ifdef CONFIG_ZONE_DMA32
2f1b6248 97 256,
fb0e7942 98#endif
e53ef38d 99#ifdef CONFIG_HIGHMEM
2a1e274a 100 32,
e53ef38d 101#endif
2a1e274a 102 32,
2f1b6248 103};
1da177e4
LT
104
105EXPORT_SYMBOL(totalram_pages);
1da177e4 106
15ad7cdc 107static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 108#ifdef CONFIG_ZONE_DMA
2f1b6248 109 "DMA",
4b51d669 110#endif
fb0e7942 111#ifdef CONFIG_ZONE_DMA32
2f1b6248 112 "DMA32",
fb0e7942 113#endif
2f1b6248 114 "Normal",
e53ef38d 115#ifdef CONFIG_HIGHMEM
2a1e274a 116 "HighMem",
e53ef38d 117#endif
2a1e274a 118 "Movable",
2f1b6248
CL
119};
120
1da177e4
LT
121int min_free_kbytes = 1024;
122
86356ab1
YG
123unsigned long __meminitdata nr_kernel_pages;
124unsigned long __meminitdata nr_all_pages;
a3142c8e 125static unsigned long __meminitdata dma_reserve;
1da177e4 126
c713216d
MG
127#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
128 /*
183ff22b 129 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
c713216d
MG
130 * ranges of memory (RAM) that may be registered with add_active_range().
131 * Ranges passed to add_active_range() will be merged if possible
132 * so the number of times add_active_range() can be called is
133 * related to the number of nodes and the number of holes
134 */
135 #ifdef CONFIG_MAX_ACTIVE_REGIONS
136 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
137 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
138 #else
139 #if MAX_NUMNODES >= 32
140 /* If there can be many nodes, allow up to 50 holes per node */
141 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
142 #else
143 /* By default, allow up to 256 distinct regions */
144 #define MAX_ACTIVE_REGIONS 256
145 #endif
146 #endif
147
98011f56
JB
148 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
149 static int __meminitdata nr_nodemap_entries;
150 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
151 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
fb01439c 152#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
98011f56
JB
153 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
154 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
fb01439c 155#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
b69a7288 156 static unsigned long __initdata required_kernelcore;
484f51f8 157 static unsigned long __initdata required_movablecore;
b69a7288 158 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
2a1e274a
MG
159
160 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
161 int movable_zone;
162 EXPORT_SYMBOL(movable_zone);
c713216d
MG
163#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
164
418508c1
MS
165#if MAX_NUMNODES > 1
166int nr_node_ids __read_mostly = MAX_NUMNODES;
167EXPORT_SYMBOL(nr_node_ids);
168#endif
169
9ef9acb0
MG
170int page_group_by_mobility_disabled __read_mostly;
171
b2a0ac88
MG
172static void set_pageblock_migratetype(struct page *page, int migratetype)
173{
174 set_pageblock_flags_group(page, (unsigned long)migratetype,
175 PB_migrate, PB_migrate_end);
176}
177
13e7444b 178#ifdef CONFIG_DEBUG_VM
c6a57e19 179static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 180{
bdc8cb98
DH
181 int ret = 0;
182 unsigned seq;
183 unsigned long pfn = page_to_pfn(page);
c6a57e19 184
bdc8cb98
DH
185 do {
186 seq = zone_span_seqbegin(zone);
187 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
188 ret = 1;
189 else if (pfn < zone->zone_start_pfn)
190 ret = 1;
191 } while (zone_span_seqretry(zone, seq));
192
193 return ret;
c6a57e19
DH
194}
195
196static int page_is_consistent(struct zone *zone, struct page *page)
197{
14e07298 198 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 199 return 0;
1da177e4 200 if (zone != page_zone(page))
c6a57e19
DH
201 return 0;
202
203 return 1;
204}
205/*
206 * Temporary debugging check for pages not lying within a given zone.
207 */
208static int bad_range(struct zone *zone, struct page *page)
209{
210 if (page_outside_zone_boundaries(zone, page))
1da177e4 211 return 1;
c6a57e19
DH
212 if (!page_is_consistent(zone, page))
213 return 1;
214
1da177e4
LT
215 return 0;
216}
13e7444b
NP
217#else
218static inline int bad_range(struct zone *zone, struct page *page)
219{
220 return 0;
221}
222#endif
223
224abf92 224static void bad_page(struct page *page)
1da177e4 225{
9442ec9d
HD
226 void *pc = page_get_page_cgroup(page);
227
228 printk(KERN_EMERG "Bad page state in process '%s'\n" KERN_EMERG
229 "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
224abf92
NP
230 current->comm, page, (int)(2*sizeof(unsigned long)),
231 (unsigned long)page->flags, page->mapping,
232 page_mapcount(page), page_count(page));
9442ec9d
HD
233 if (pc) {
234 printk(KERN_EMERG "cgroup:%p\n", pc);
235 page_reset_bad_cgroup(page);
236 }
237 printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
238 KERN_EMERG "Backtrace:\n");
1da177e4 239 dump_stack();
dfa7e20c 240 page->flags &= ~PAGE_FLAGS_CLEAR_WHEN_BAD;
1da177e4
LT
241 set_page_count(page, 0);
242 reset_page_mapcount(page);
243 page->mapping = NULL;
9f158333 244 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
245}
246
1da177e4
LT
247/*
248 * Higher-order pages are called "compound pages". They are structured thusly:
249 *
250 * The first PAGE_SIZE page is called the "head page".
251 *
252 * The remaining PAGE_SIZE pages are called "tail pages".
253 *
254 * All pages have PG_compound set. All pages have their ->private pointing at
255 * the head page (even the head page has this).
256 *
41d78ba5
HD
257 * The first tail page's ->lru.next holds the address of the compound page's
258 * put_page() function. Its ->lru.prev holds the order of allocation.
259 * This usage means that zero-order pages may not be compound.
1da177e4 260 */
d98c7a09
HD
261
262static void free_compound_page(struct page *page)
263{
d85f3385 264 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
265}
266
01ad1c08 267void prep_compound_page(struct page *page, unsigned long order)
1da177e4
LT
268{
269 int i;
270 int nr_pages = 1 << order;
271
33f2ef89 272 set_compound_page_dtor(page, free_compound_page);
d85f3385 273 set_compound_order(page, order);
6d777953 274 __SetPageHead(page);
d85f3385 275 for (i = 1; i < nr_pages; i++) {
1da177e4
LT
276 struct page *p = page + i;
277
d85f3385 278 __SetPageTail(p);
d85f3385 279 p->first_page = page;
1da177e4
LT
280 }
281}
282
283static void destroy_compound_page(struct page *page, unsigned long order)
284{
285 int i;
286 int nr_pages = 1 << order;
287
d85f3385 288 if (unlikely(compound_order(page) != order))
224abf92 289 bad_page(page);
1da177e4 290
6d777953 291 if (unlikely(!PageHead(page)))
d85f3385 292 bad_page(page);
6d777953 293 __ClearPageHead(page);
d85f3385 294 for (i = 1; i < nr_pages; i++) {
1da177e4
LT
295 struct page *p = page + i;
296
6d777953 297 if (unlikely(!PageTail(p) |
d85f3385 298 (p->first_page != page)))
224abf92 299 bad_page(page);
d85f3385 300 __ClearPageTail(p);
1da177e4
LT
301 }
302}
1da177e4 303
17cf4406
NP
304static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
305{
306 int i;
307
6626c5d5
AM
308 /*
309 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
310 * and __GFP_HIGHMEM from hard or soft interrupt context.
311 */
725d704e 312 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
313 for (i = 0; i < (1 << order); i++)
314 clear_highpage(page + i);
315}
316
6aa3001b
AM
317static inline void set_page_order(struct page *page, int order)
318{
4c21e2f2 319 set_page_private(page, order);
676165a8 320 __SetPageBuddy(page);
1da177e4
LT
321}
322
323static inline void rmv_page_order(struct page *page)
324{
676165a8 325 __ClearPageBuddy(page);
4c21e2f2 326 set_page_private(page, 0);
1da177e4
LT
327}
328
329/*
330 * Locate the struct page for both the matching buddy in our
331 * pair (buddy1) and the combined O(n+1) page they form (page).
332 *
333 * 1) Any buddy B1 will have an order O twin B2 which satisfies
334 * the following equation:
335 * B2 = B1 ^ (1 << O)
336 * For example, if the starting buddy (buddy2) is #8 its order
337 * 1 buddy is #10:
338 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
339 *
340 * 2) Any buddy B will have an order O+1 parent P which
341 * satisfies the following equation:
342 * P = B & ~(1 << O)
343 *
d6e05edc 344 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4
LT
345 */
346static inline struct page *
347__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
348{
349 unsigned long buddy_idx = page_idx ^ (1 << order);
350
351 return page + (buddy_idx - page_idx);
352}
353
354static inline unsigned long
355__find_combined_index(unsigned long page_idx, unsigned int order)
356{
357 return (page_idx & ~(1 << order));
358}
359
360/*
361 * This function checks whether a page is free && is the buddy
362 * we can do coalesce a page and its buddy if
13e7444b 363 * (a) the buddy is not in a hole &&
676165a8 364 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
365 * (c) a page and its buddy have the same order &&
366 * (d) a page and its buddy are in the same zone.
676165a8
NP
367 *
368 * For recording whether a page is in the buddy system, we use PG_buddy.
369 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
1da177e4 370 *
676165a8 371 * For recording page's order, we use page_private(page).
1da177e4 372 */
cb2b95e1
AW
373static inline int page_is_buddy(struct page *page, struct page *buddy,
374 int order)
1da177e4 375{
14e07298 376 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 377 return 0;
13e7444b 378
cb2b95e1
AW
379 if (page_zone_id(page) != page_zone_id(buddy))
380 return 0;
381
382 if (PageBuddy(buddy) && page_order(buddy) == order) {
383 BUG_ON(page_count(buddy) != 0);
6aa3001b 384 return 1;
676165a8 385 }
6aa3001b 386 return 0;
1da177e4
LT
387}
388
389/*
390 * Freeing function for a buddy system allocator.
391 *
392 * The concept of a buddy system is to maintain direct-mapped table
393 * (containing bit values) for memory blocks of various "orders".
394 * The bottom level table contains the map for the smallest allocatable
395 * units of memory (here, pages), and each level above it describes
396 * pairs of units from the levels below, hence, "buddies".
397 * At a high level, all that happens here is marking the table entry
398 * at the bottom level available, and propagating the changes upward
399 * as necessary, plus some accounting needed to play nicely with other
400 * parts of the VM system.
401 * At each level, we keep a list of pages, which are heads of continuous
676165a8 402 * free pages of length of (1 << order) and marked with PG_buddy. Page's
4c21e2f2 403 * order is recorded in page_private(page) field.
1da177e4
LT
404 * So when we are allocating or freeing one, we can derive the state of the
405 * other. That is, if we allocate a small block, and both were
406 * free, the remainder of the region must be split into blocks.
407 * If a block is freed, and its buddy is also free, then this
408 * triggers coalescing into a block of larger size.
409 *
410 * -- wli
411 */
412
48db57f8 413static inline void __free_one_page(struct page *page,
1da177e4
LT
414 struct zone *zone, unsigned int order)
415{
416 unsigned long page_idx;
417 int order_size = 1 << order;
b2a0ac88 418 int migratetype = get_pageblock_migratetype(page);
1da177e4 419
224abf92 420 if (unlikely(PageCompound(page)))
1da177e4
LT
421 destroy_compound_page(page, order);
422
423 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
424
725d704e
NP
425 VM_BUG_ON(page_idx & (order_size - 1));
426 VM_BUG_ON(bad_range(zone, page));
1da177e4 427
d23ad423 428 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
1da177e4
LT
429 while (order < MAX_ORDER-1) {
430 unsigned long combined_idx;
1da177e4
LT
431 struct page *buddy;
432
1da177e4 433 buddy = __page_find_buddy(page, page_idx, order);
cb2b95e1 434 if (!page_is_buddy(page, buddy, order))
3c82d0ce 435 break;
13e7444b 436
3c82d0ce 437 /* Our buddy is free, merge with it and move up one order. */
1da177e4 438 list_del(&buddy->lru);
b2a0ac88 439 zone->free_area[order].nr_free--;
1da177e4 440 rmv_page_order(buddy);
13e7444b 441 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
442 page = page + (combined_idx - page_idx);
443 page_idx = combined_idx;
444 order++;
445 }
446 set_page_order(page, order);
b2a0ac88
MG
447 list_add(&page->lru,
448 &zone->free_area[order].free_list[migratetype]);
1da177e4
LT
449 zone->free_area[order].nr_free++;
450}
451
224abf92 452static inline int free_pages_check(struct page *page)
1da177e4 453{
92be2e33
NP
454 if (unlikely(page_mapcount(page) |
455 (page->mapping != NULL) |
9442ec9d 456 (page_get_page_cgroup(page) != NULL) |
92be2e33 457 (page_count(page) != 0) |
dfa7e20c 458 (page->flags & PAGE_FLAGS_CHECK_AT_FREE)))
224abf92 459 bad_page(page);
1da177e4 460 if (PageDirty(page))
242e5468 461 __ClearPageDirty(page);
689bcebf
HD
462 /*
463 * For now, we report if PG_reserved was found set, but do not
464 * clear it, and do not free the page. But we shall soon need
465 * to do more, for when the ZERO_PAGE count wraps negative.
466 */
467 return PageReserved(page);
1da177e4
LT
468}
469
470/*
471 * Frees a list of pages.
472 * Assumes all pages on list are in same zone, and of same order.
207f36ee 473 * count is the number of pages to free.
1da177e4
LT
474 *
475 * If the zone was previously in an "all pages pinned" state then look to
476 * see if this freeing clears that state.
477 *
478 * And clear the zone's pages_scanned counter, to hold off the "all pages are
479 * pinned" detection logic.
480 */
48db57f8
NP
481static void free_pages_bulk(struct zone *zone, int count,
482 struct list_head *list, int order)
1da177e4 483{
c54ad30c 484 spin_lock(&zone->lock);
e815af95 485 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
1da177e4 486 zone->pages_scanned = 0;
48db57f8
NP
487 while (count--) {
488 struct page *page;
489
725d704e 490 VM_BUG_ON(list_empty(list));
1da177e4 491 page = list_entry(list->prev, struct page, lru);
48db57f8 492 /* have to delete it as __free_one_page list manipulates */
1da177e4 493 list_del(&page->lru);
48db57f8 494 __free_one_page(page, zone, order);
1da177e4 495 }
c54ad30c 496 spin_unlock(&zone->lock);
1da177e4
LT
497}
498
48db57f8 499static void free_one_page(struct zone *zone, struct page *page, int order)
1da177e4 500{
006d22d9 501 spin_lock(&zone->lock);
e815af95 502 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
006d22d9 503 zone->pages_scanned = 0;
0798e519 504 __free_one_page(page, zone, order);
006d22d9 505 spin_unlock(&zone->lock);
48db57f8
NP
506}
507
508static void __free_pages_ok(struct page *page, unsigned int order)
509{
510 unsigned long flags;
1da177e4 511 int i;
689bcebf 512 int reserved = 0;
1da177e4 513
1da177e4 514 for (i = 0 ; i < (1 << order) ; ++i)
224abf92 515 reserved += free_pages_check(page + i);
689bcebf
HD
516 if (reserved)
517 return;
518
3ac7fe5a 519 if (!PageHighMem(page)) {
9858db50 520 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
521 debug_check_no_obj_freed(page_address(page),
522 PAGE_SIZE << order);
523 }
dafb1367 524 arch_free_page(page, order);
48db57f8 525 kernel_map_pages(page, 1 << order, 0);
dafb1367 526
c54ad30c 527 local_irq_save(flags);
f8891e5e 528 __count_vm_events(PGFREE, 1 << order);
48db57f8 529 free_one_page(page_zone(page), page, order);
c54ad30c 530 local_irq_restore(flags);
1da177e4
LT
531}
532
a226f6c8
DH
533/*
534 * permit the bootmem allocator to evade page validation on high-order frees
535 */
af370fb8 536void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8
DH
537{
538 if (order == 0) {
539 __ClearPageReserved(page);
540 set_page_count(page, 0);
7835e98b 541 set_page_refcounted(page);
545b1ea9 542 __free_page(page);
a226f6c8 543 } else {
a226f6c8
DH
544 int loop;
545
545b1ea9 546 prefetchw(page);
a226f6c8
DH
547 for (loop = 0; loop < BITS_PER_LONG; loop++) {
548 struct page *p = &page[loop];
549
545b1ea9
NP
550 if (loop + 1 < BITS_PER_LONG)
551 prefetchw(p + 1);
a226f6c8
DH
552 __ClearPageReserved(p);
553 set_page_count(p, 0);
554 }
555
7835e98b 556 set_page_refcounted(page);
545b1ea9 557 __free_pages(page, order);
a226f6c8
DH
558 }
559}
560
1da177e4
LT
561
562/*
563 * The order of subdivision here is critical for the IO subsystem.
564 * Please do not alter this order without good reasons and regression
565 * testing. Specifically, as large blocks of memory are subdivided,
566 * the order in which smaller blocks are delivered depends on the order
567 * they're subdivided in this function. This is the primary factor
568 * influencing the order in which pages are delivered to the IO
569 * subsystem according to empirical testing, and this is also justified
570 * by considering the behavior of a buddy system containing a single
571 * large block of memory acted on by a series of small allocations.
572 * This behavior is a critical factor in sglist merging's success.
573 *
574 * -- wli
575 */
085cc7d5 576static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
577 int low, int high, struct free_area *area,
578 int migratetype)
1da177e4
LT
579{
580 unsigned long size = 1 << high;
581
582 while (high > low) {
583 area--;
584 high--;
585 size >>= 1;
725d704e 586 VM_BUG_ON(bad_range(zone, &page[size]));
b2a0ac88 587 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
588 area->nr_free++;
589 set_page_order(&page[size], high);
590 }
1da177e4
LT
591}
592
1da177e4
LT
593/*
594 * This page is about to be returned from the page allocator
595 */
17cf4406 596static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
1da177e4 597{
92be2e33
NP
598 if (unlikely(page_mapcount(page) |
599 (page->mapping != NULL) |
9442ec9d 600 (page_get_page_cgroup(page) != NULL) |
92be2e33 601 (page_count(page) != 0) |
dfa7e20c 602 (page->flags & PAGE_FLAGS_CHECK_AT_PREP)))
224abf92 603 bad_page(page);
1da177e4 604
689bcebf
HD
605 /*
606 * For now, we report if PG_reserved was found set, but do not
607 * clear it, and do not allocate the page: as a safety net.
608 */
609 if (PageReserved(page))
610 return 1;
611
0a128b2b 612 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_reclaim |
1da177e4 613 1 << PG_referenced | 1 << PG_arch_1 |
5409bae0 614 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
4c21e2f2 615 set_page_private(page, 0);
7835e98b 616 set_page_refcounted(page);
cc102509
NP
617
618 arch_alloc_page(page, order);
1da177e4 619 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
620
621 if (gfp_flags & __GFP_ZERO)
622 prep_zero_page(page, order, gfp_flags);
623
624 if (order && (gfp_flags & __GFP_COMP))
625 prep_compound_page(page, order);
626
689bcebf 627 return 0;
1da177e4
LT
628}
629
56fd56b8
MG
630/*
631 * Go through the free lists for the given migratetype and remove
632 * the smallest available page from the freelists
633 */
634static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
635 int migratetype)
636{
637 unsigned int current_order;
638 struct free_area * area;
639 struct page *page;
640
641 /* Find a page of the appropriate size in the preferred list */
642 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
643 area = &(zone->free_area[current_order]);
644 if (list_empty(&area->free_list[migratetype]))
645 continue;
646
647 page = list_entry(area->free_list[migratetype].next,
648 struct page, lru);
649 list_del(&page->lru);
650 rmv_page_order(page);
651 area->nr_free--;
652 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
653 expand(zone, page, order, current_order, area, migratetype);
654 return page;
655 }
656
657 return NULL;
658}
659
660
b2a0ac88
MG
661/*
662 * This array describes the order lists are fallen back to when
663 * the free lists for the desirable migrate type are depleted
664 */
665static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
64c5e135
MG
666 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
667 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
668 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
669 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
670};
671
c361be55
MG
672/*
673 * Move the free pages in a range to the free lists of the requested type.
d9c23400 674 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
675 * boundary. If alignment is required, use move_freepages_block()
676 */
b69a7288
AB
677static int move_freepages(struct zone *zone,
678 struct page *start_page, struct page *end_page,
679 int migratetype)
c361be55
MG
680{
681 struct page *page;
682 unsigned long order;
d100313f 683 int pages_moved = 0;
c361be55
MG
684
685#ifndef CONFIG_HOLES_IN_ZONE
686 /*
687 * page_zone is not safe to call in this context when
688 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
689 * anyway as we check zone boundaries in move_freepages_block().
690 * Remove at a later date when no bug reports exist related to
ac0e5b7a 691 * grouping pages by mobility
c361be55
MG
692 */
693 BUG_ON(page_zone(start_page) != page_zone(end_page));
694#endif
695
696 for (page = start_page; page <= end_page;) {
344c790e
AL
697 /* Make sure we are not inadvertently changing nodes */
698 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
699
c361be55
MG
700 if (!pfn_valid_within(page_to_pfn(page))) {
701 page++;
702 continue;
703 }
704
705 if (!PageBuddy(page)) {
706 page++;
707 continue;
708 }
709
710 order = page_order(page);
711 list_del(&page->lru);
712 list_add(&page->lru,
713 &zone->free_area[order].free_list[migratetype]);
714 page += 1 << order;
d100313f 715 pages_moved += 1 << order;
c361be55
MG
716 }
717
d100313f 718 return pages_moved;
c361be55
MG
719}
720
b69a7288
AB
721static int move_freepages_block(struct zone *zone, struct page *page,
722 int migratetype)
c361be55
MG
723{
724 unsigned long start_pfn, end_pfn;
725 struct page *start_page, *end_page;
726
727 start_pfn = page_to_pfn(page);
d9c23400 728 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 729 start_page = pfn_to_page(start_pfn);
d9c23400
MG
730 end_page = start_page + pageblock_nr_pages - 1;
731 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
732
733 /* Do not cross zone boundaries */
734 if (start_pfn < zone->zone_start_pfn)
735 start_page = page;
736 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
737 return 0;
738
739 return move_freepages(zone, start_page, end_page, migratetype);
740}
741
b2a0ac88
MG
742/* Remove an element from the buddy allocator from the fallback list */
743static struct page *__rmqueue_fallback(struct zone *zone, int order,
744 int start_migratetype)
745{
746 struct free_area * area;
747 int current_order;
748 struct page *page;
749 int migratetype, i;
750
751 /* Find the largest possible block of pages in the other list */
752 for (current_order = MAX_ORDER-1; current_order >= order;
753 --current_order) {
754 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
755 migratetype = fallbacks[start_migratetype][i];
756
56fd56b8
MG
757 /* MIGRATE_RESERVE handled later if necessary */
758 if (migratetype == MIGRATE_RESERVE)
759 continue;
e010487d 760
b2a0ac88
MG
761 area = &(zone->free_area[current_order]);
762 if (list_empty(&area->free_list[migratetype]))
763 continue;
764
765 page = list_entry(area->free_list[migratetype].next,
766 struct page, lru);
767 area->nr_free--;
768
769 /*
c361be55 770 * If breaking a large block of pages, move all free
46dafbca
MG
771 * pages to the preferred allocation list. If falling
772 * back for a reclaimable kernel allocation, be more
773 * agressive about taking ownership of free pages
b2a0ac88 774 */
d9c23400 775 if (unlikely(current_order >= (pageblock_order >> 1)) ||
46dafbca
MG
776 start_migratetype == MIGRATE_RECLAIMABLE) {
777 unsigned long pages;
778 pages = move_freepages_block(zone, page,
779 start_migratetype);
780
781 /* Claim the whole block if over half of it is free */
d9c23400 782 if (pages >= (1 << (pageblock_order-1)))
46dafbca
MG
783 set_pageblock_migratetype(page,
784 start_migratetype);
785
b2a0ac88 786 migratetype = start_migratetype;
c361be55 787 }
b2a0ac88
MG
788
789 /* Remove the page from the freelists */
790 list_del(&page->lru);
791 rmv_page_order(page);
792 __mod_zone_page_state(zone, NR_FREE_PAGES,
793 -(1UL << order));
794
d9c23400 795 if (current_order == pageblock_order)
b2a0ac88
MG
796 set_pageblock_migratetype(page,
797 start_migratetype);
798
799 expand(zone, page, order, current_order, area, migratetype);
800 return page;
801 }
802 }
803
56fd56b8
MG
804 /* Use MIGRATE_RESERVE rather than fail an allocation */
805 return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
b2a0ac88
MG
806}
807
56fd56b8 808/*
1da177e4
LT
809 * Do the hard work of removing an element from the buddy allocator.
810 * Call me with the zone->lock already held.
811 */
b2a0ac88
MG
812static struct page *__rmqueue(struct zone *zone, unsigned int order,
813 int migratetype)
1da177e4 814{
1da177e4
LT
815 struct page *page;
816
56fd56b8 817 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 818
56fd56b8
MG
819 if (unlikely(!page))
820 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88
MG
821
822 return page;
1da177e4
LT
823}
824
825/*
826 * Obtain a specified number of elements from the buddy allocator, all under
827 * a single hold of the lock, for efficiency. Add them to the supplied list.
828 * Returns the number of new pages which were placed at *list.
829 */
830static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88
MG
831 unsigned long count, struct list_head *list,
832 int migratetype)
1da177e4 833{
1da177e4 834 int i;
1da177e4 835
c54ad30c 836 spin_lock(&zone->lock);
1da177e4 837 for (i = 0; i < count; ++i) {
b2a0ac88 838 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 839 if (unlikely(page == NULL))
1da177e4 840 break;
81eabcbe
MG
841
842 /*
843 * Split buddy pages returned by expand() are received here
844 * in physical page order. The page is added to the callers and
845 * list and the list head then moves forward. From the callers
846 * perspective, the linked list is ordered by page number in
847 * some conditions. This is useful for IO devices that can
848 * merge IO requests if the physical pages are ordered
849 * properly.
850 */
535131e6
MG
851 list_add(&page->lru, list);
852 set_page_private(page, migratetype);
81eabcbe 853 list = &page->lru;
1da177e4 854 }
c54ad30c 855 spin_unlock(&zone->lock);
085cc7d5 856 return i;
1da177e4
LT
857}
858
4ae7c039 859#ifdef CONFIG_NUMA
8fce4d8e 860/*
4037d452
CL
861 * Called from the vmstat counter updater to drain pagesets of this
862 * currently executing processor on remote nodes after they have
863 * expired.
864 *
879336c3
CL
865 * Note that this function must be called with the thread pinned to
866 * a single processor.
8fce4d8e 867 */
4037d452 868void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 869{
4ae7c039 870 unsigned long flags;
4037d452 871 int to_drain;
4ae7c039 872
4037d452
CL
873 local_irq_save(flags);
874 if (pcp->count >= pcp->batch)
875 to_drain = pcp->batch;
876 else
877 to_drain = pcp->count;
878 free_pages_bulk(zone, to_drain, &pcp->list, 0);
879 pcp->count -= to_drain;
880 local_irq_restore(flags);
4ae7c039
CL
881}
882#endif
883
9f8f2172
CL
884/*
885 * Drain pages of the indicated processor.
886 *
887 * The processor must either be the current processor and the
888 * thread pinned to the current processor or a processor that
889 * is not online.
890 */
891static void drain_pages(unsigned int cpu)
1da177e4 892{
c54ad30c 893 unsigned long flags;
1da177e4 894 struct zone *zone;
1da177e4
LT
895
896 for_each_zone(zone) {
897 struct per_cpu_pageset *pset;
3dfa5721 898 struct per_cpu_pages *pcp;
1da177e4 899
f2e12bb2
CL
900 if (!populated_zone(zone))
901 continue;
902
e7c8d5c9 903 pset = zone_pcp(zone, cpu);
3dfa5721
CL
904
905 pcp = &pset->pcp;
906 local_irq_save(flags);
907 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
908 pcp->count = 0;
909 local_irq_restore(flags);
1da177e4
LT
910 }
911}
1da177e4 912
9f8f2172
CL
913/*
914 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
915 */
916void drain_local_pages(void *arg)
917{
918 drain_pages(smp_processor_id());
919}
920
921/*
922 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
923 */
924void drain_all_pages(void)
925{
15c8b6c1 926 on_each_cpu(drain_local_pages, NULL, 1);
9f8f2172
CL
927}
928
296699de 929#ifdef CONFIG_HIBERNATION
1da177e4
LT
930
931void mark_free_pages(struct zone *zone)
932{
f623f0db
RW
933 unsigned long pfn, max_zone_pfn;
934 unsigned long flags;
b2a0ac88 935 int order, t;
1da177e4
LT
936 struct list_head *curr;
937
938 if (!zone->spanned_pages)
939 return;
940
941 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
942
943 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
944 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
945 if (pfn_valid(pfn)) {
946 struct page *page = pfn_to_page(pfn);
947
7be98234
RW
948 if (!swsusp_page_is_forbidden(page))
949 swsusp_unset_page_free(page);
f623f0db 950 }
1da177e4 951
b2a0ac88
MG
952 for_each_migratetype_order(order, t) {
953 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 954 unsigned long i;
1da177e4 955
f623f0db
RW
956 pfn = page_to_pfn(list_entry(curr, struct page, lru));
957 for (i = 0; i < (1UL << order); i++)
7be98234 958 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 959 }
b2a0ac88 960 }
1da177e4
LT
961 spin_unlock_irqrestore(&zone->lock, flags);
962}
e2c55dc8 963#endif /* CONFIG_PM */
1da177e4 964
1da177e4
LT
965/*
966 * Free a 0-order page
967 */
920c7a5d 968static void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
969{
970 struct zone *zone = page_zone(page);
971 struct per_cpu_pages *pcp;
972 unsigned long flags;
973
1da177e4
LT
974 if (PageAnon(page))
975 page->mapping = NULL;
224abf92 976 if (free_pages_check(page))
689bcebf
HD
977 return;
978
3ac7fe5a 979 if (!PageHighMem(page)) {
9858db50 980 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
3ac7fe5a
TG
981 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
982 }
dafb1367 983 arch_free_page(page, 0);
689bcebf
HD
984 kernel_map_pages(page, 1, 0);
985
3dfa5721 986 pcp = &zone_pcp(zone, get_cpu())->pcp;
1da177e4 987 local_irq_save(flags);
f8891e5e 988 __count_vm_event(PGFREE);
3dfa5721
CL
989 if (cold)
990 list_add_tail(&page->lru, &pcp->list);
991 else
992 list_add(&page->lru, &pcp->list);
535131e6 993 set_page_private(page, get_pageblock_migratetype(page));
1da177e4 994 pcp->count++;
48db57f8
NP
995 if (pcp->count >= pcp->high) {
996 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
997 pcp->count -= pcp->batch;
998 }
1da177e4
LT
999 local_irq_restore(flags);
1000 put_cpu();
1001}
1002
920c7a5d 1003void free_hot_page(struct page *page)
1da177e4
LT
1004{
1005 free_hot_cold_page(page, 0);
1006}
1007
920c7a5d 1008void free_cold_page(struct page *page)
1da177e4
LT
1009{
1010 free_hot_cold_page(page, 1);
1011}
1012
8dfcc9ba
NP
1013/*
1014 * split_page takes a non-compound higher-order page, and splits it into
1015 * n (1<<order) sub-pages: page[0..n]
1016 * Each sub-page must be freed individually.
1017 *
1018 * Note: this is probably too low level an operation for use in drivers.
1019 * Please consult with lkml before using this in your driver.
1020 */
1021void split_page(struct page *page, unsigned int order)
1022{
1023 int i;
1024
725d704e
NP
1025 VM_BUG_ON(PageCompound(page));
1026 VM_BUG_ON(!page_count(page));
7835e98b
NP
1027 for (i = 1; i < (1 << order); i++)
1028 set_page_refcounted(page + i);
8dfcc9ba 1029}
8dfcc9ba 1030
1da177e4
LT
1031/*
1032 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1033 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1034 * or two.
1035 */
18ea7e71 1036static struct page *buffered_rmqueue(struct zone *preferred_zone,
a74609fa 1037 struct zone *zone, int order, gfp_t gfp_flags)
1da177e4
LT
1038{
1039 unsigned long flags;
689bcebf 1040 struct page *page;
1da177e4 1041 int cold = !!(gfp_flags & __GFP_COLD);
a74609fa 1042 int cpu;
64c5e135 1043 int migratetype = allocflags_to_migratetype(gfp_flags);
1da177e4 1044
689bcebf 1045again:
a74609fa 1046 cpu = get_cpu();
48db57f8 1047 if (likely(order == 0)) {
1da177e4
LT
1048 struct per_cpu_pages *pcp;
1049
3dfa5721 1050 pcp = &zone_pcp(zone, cpu)->pcp;
1da177e4 1051 local_irq_save(flags);
a74609fa 1052 if (!pcp->count) {
941c7105 1053 pcp->count = rmqueue_bulk(zone, 0,
b2a0ac88 1054 pcp->batch, &pcp->list, migratetype);
a74609fa
NP
1055 if (unlikely(!pcp->count))
1056 goto failed;
1da177e4 1057 }
b92a6edd 1058
535131e6 1059 /* Find a page of the appropriate migrate type */
3dfa5721
CL
1060 if (cold) {
1061 list_for_each_entry_reverse(page, &pcp->list, lru)
1062 if (page_private(page) == migratetype)
1063 break;
1064 } else {
1065 list_for_each_entry(page, &pcp->list, lru)
1066 if (page_private(page) == migratetype)
1067 break;
1068 }
535131e6 1069
b92a6edd
MG
1070 /* Allocate more to the pcp list if necessary */
1071 if (unlikely(&page->lru == &pcp->list)) {
535131e6
MG
1072 pcp->count += rmqueue_bulk(zone, 0,
1073 pcp->batch, &pcp->list, migratetype);
1074 page = list_entry(pcp->list.next, struct page, lru);
535131e6 1075 }
b92a6edd
MG
1076
1077 list_del(&page->lru);
1078 pcp->count--;
7fb1d9fc 1079 } else {
1da177e4 1080 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1081 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1082 spin_unlock(&zone->lock);
1083 if (!page)
1084 goto failed;
1da177e4
LT
1085 }
1086
f8891e5e 1087 __count_zone_vm_events(PGALLOC, zone, 1 << order);
18ea7e71 1088 zone_statistics(preferred_zone, zone);
a74609fa
NP
1089 local_irq_restore(flags);
1090 put_cpu();
1da177e4 1091
725d704e 1092 VM_BUG_ON(bad_range(zone, page));
17cf4406 1093 if (prep_new_page(page, order, gfp_flags))
a74609fa 1094 goto again;
1da177e4 1095 return page;
a74609fa
NP
1096
1097failed:
1098 local_irq_restore(flags);
1099 put_cpu();
1100 return NULL;
1da177e4
LT
1101}
1102
7fb1d9fc 1103#define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
3148890b
NP
1104#define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1105#define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1106#define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1107#define ALLOC_HARDER 0x10 /* try to alloc harder */
1108#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1109#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 1110
933e312e
AM
1111#ifdef CONFIG_FAIL_PAGE_ALLOC
1112
1113static struct fail_page_alloc_attr {
1114 struct fault_attr attr;
1115
1116 u32 ignore_gfp_highmem;
1117 u32 ignore_gfp_wait;
54114994 1118 u32 min_order;
933e312e
AM
1119
1120#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1121
1122 struct dentry *ignore_gfp_highmem_file;
1123 struct dentry *ignore_gfp_wait_file;
54114994 1124 struct dentry *min_order_file;
933e312e
AM
1125
1126#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1127
1128} fail_page_alloc = {
1129 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1130 .ignore_gfp_wait = 1,
1131 .ignore_gfp_highmem = 1,
54114994 1132 .min_order = 1,
933e312e
AM
1133};
1134
1135static int __init setup_fail_page_alloc(char *str)
1136{
1137 return setup_fault_attr(&fail_page_alloc.attr, str);
1138}
1139__setup("fail_page_alloc=", setup_fail_page_alloc);
1140
1141static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1142{
54114994
AM
1143 if (order < fail_page_alloc.min_order)
1144 return 0;
933e312e
AM
1145 if (gfp_mask & __GFP_NOFAIL)
1146 return 0;
1147 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1148 return 0;
1149 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1150 return 0;
1151
1152 return should_fail(&fail_page_alloc.attr, 1 << order);
1153}
1154
1155#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1156
1157static int __init fail_page_alloc_debugfs(void)
1158{
1159 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1160 struct dentry *dir;
1161 int err;
1162
1163 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1164 "fail_page_alloc");
1165 if (err)
1166 return err;
1167 dir = fail_page_alloc.attr.dentries.dir;
1168
1169 fail_page_alloc.ignore_gfp_wait_file =
1170 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1171 &fail_page_alloc.ignore_gfp_wait);
1172
1173 fail_page_alloc.ignore_gfp_highmem_file =
1174 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1175 &fail_page_alloc.ignore_gfp_highmem);
54114994
AM
1176 fail_page_alloc.min_order_file =
1177 debugfs_create_u32("min-order", mode, dir,
1178 &fail_page_alloc.min_order);
933e312e
AM
1179
1180 if (!fail_page_alloc.ignore_gfp_wait_file ||
54114994
AM
1181 !fail_page_alloc.ignore_gfp_highmem_file ||
1182 !fail_page_alloc.min_order_file) {
933e312e
AM
1183 err = -ENOMEM;
1184 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1185 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
54114994 1186 debugfs_remove(fail_page_alloc.min_order_file);
933e312e
AM
1187 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1188 }
1189
1190 return err;
1191}
1192
1193late_initcall(fail_page_alloc_debugfs);
1194
1195#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1196
1197#else /* CONFIG_FAIL_PAGE_ALLOC */
1198
1199static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1200{
1201 return 0;
1202}
1203
1204#endif /* CONFIG_FAIL_PAGE_ALLOC */
1205
1da177e4
LT
1206/*
1207 * Return 1 if free pages are above 'mark'. This takes into account the order
1208 * of the allocation.
1209 */
1210int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 1211 int classzone_idx, int alloc_flags)
1da177e4
LT
1212{
1213 /* free_pages my go negative - that's OK */
d23ad423
CL
1214 long min = mark;
1215 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1da177e4
LT
1216 int o;
1217
7fb1d9fc 1218 if (alloc_flags & ALLOC_HIGH)
1da177e4 1219 min -= min / 2;
7fb1d9fc 1220 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1221 min -= min / 4;
1222
1223 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1224 return 0;
1225 for (o = 0; o < order; o++) {
1226 /* At the next order, this order's pages become unavailable */
1227 free_pages -= z->free_area[o].nr_free << o;
1228
1229 /* Require fewer higher order pages to be free */
1230 min >>= 1;
1231
1232 if (free_pages <= min)
1233 return 0;
1234 }
1235 return 1;
1236}
1237
9276b1bc
PJ
1238#ifdef CONFIG_NUMA
1239/*
1240 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1241 * skip over zones that are not allowed by the cpuset, or that have
1242 * been recently (in last second) found to be nearly full. See further
1243 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1244 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1245 *
1246 * If the zonelist cache is present in the passed in zonelist, then
1247 * returns a pointer to the allowed node mask (either the current
37b07e41 1248 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1249 *
1250 * If the zonelist cache is not available for this zonelist, does
1251 * nothing and returns NULL.
1252 *
1253 * If the fullzones BITMAP in the zonelist cache is stale (more than
1254 * a second since last zap'd) then we zap it out (clear its bits.)
1255 *
1256 * We hold off even calling zlc_setup, until after we've checked the
1257 * first zone in the zonelist, on the theory that most allocations will
1258 * be satisfied from that first zone, so best to examine that zone as
1259 * quickly as we can.
1260 */
1261static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1262{
1263 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1264 nodemask_t *allowednodes; /* zonelist_cache approximation */
1265
1266 zlc = zonelist->zlcache_ptr;
1267 if (!zlc)
1268 return NULL;
1269
f05111f5 1270 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1271 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1272 zlc->last_full_zap = jiffies;
1273 }
1274
1275 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1276 &cpuset_current_mems_allowed :
37b07e41 1277 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1278 return allowednodes;
1279}
1280
1281/*
1282 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1283 * if it is worth looking at further for free memory:
1284 * 1) Check that the zone isn't thought to be full (doesn't have its
1285 * bit set in the zonelist_cache fullzones BITMAP).
1286 * 2) Check that the zones node (obtained from the zonelist_cache
1287 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1288 * Return true (non-zero) if zone is worth looking at further, or
1289 * else return false (zero) if it is not.
1290 *
1291 * This check -ignores- the distinction between various watermarks,
1292 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1293 * found to be full for any variation of these watermarks, it will
1294 * be considered full for up to one second by all requests, unless
1295 * we are so low on memory on all allowed nodes that we are forced
1296 * into the second scan of the zonelist.
1297 *
1298 * In the second scan we ignore this zonelist cache and exactly
1299 * apply the watermarks to all zones, even it is slower to do so.
1300 * We are low on memory in the second scan, and should leave no stone
1301 * unturned looking for a free page.
1302 */
dd1a239f 1303static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1304 nodemask_t *allowednodes)
1305{
1306 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1307 int i; /* index of *z in zonelist zones */
1308 int n; /* node that zone *z is on */
1309
1310 zlc = zonelist->zlcache_ptr;
1311 if (!zlc)
1312 return 1;
1313
dd1a239f 1314 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1315 n = zlc->z_to_n[i];
1316
1317 /* This zone is worth trying if it is allowed but not full */
1318 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1319}
1320
1321/*
1322 * Given 'z' scanning a zonelist, set the corresponding bit in
1323 * zlc->fullzones, so that subsequent attempts to allocate a page
1324 * from that zone don't waste time re-examining it.
1325 */
dd1a239f 1326static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1327{
1328 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1329 int i; /* index of *z in zonelist zones */
1330
1331 zlc = zonelist->zlcache_ptr;
1332 if (!zlc)
1333 return;
1334
dd1a239f 1335 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1336
1337 set_bit(i, zlc->fullzones);
1338}
1339
1340#else /* CONFIG_NUMA */
1341
1342static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1343{
1344 return NULL;
1345}
1346
dd1a239f 1347static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1348 nodemask_t *allowednodes)
1349{
1350 return 1;
1351}
1352
dd1a239f 1353static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1354{
1355}
1356#endif /* CONFIG_NUMA */
1357
7fb1d9fc 1358/*
0798e519 1359 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1360 * a page.
1361 */
1362static struct page *
19770b32 1363get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
54a6eb5c 1364 struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
753ee728 1365{
dd1a239f 1366 struct zoneref *z;
7fb1d9fc 1367 struct page *page = NULL;
54a6eb5c 1368 int classzone_idx;
18ea7e71 1369 struct zone *zone, *preferred_zone;
9276b1bc
PJ
1370 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1371 int zlc_active = 0; /* set if using zonelist_cache */
1372 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1373
19770b32
MG
1374 (void)first_zones_zonelist(zonelist, high_zoneidx, nodemask,
1375 &preferred_zone);
7eb54824
AW
1376 if (!preferred_zone)
1377 return NULL;
1378
19770b32 1379 classzone_idx = zone_idx(preferred_zone);
7fb1d9fc 1380
9276b1bc 1381zonelist_scan:
7fb1d9fc 1382 /*
9276b1bc 1383 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1384 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1385 */
19770b32
MG
1386 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1387 high_zoneidx, nodemask) {
9276b1bc
PJ
1388 if (NUMA_BUILD && zlc_active &&
1389 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1390 continue;
7fb1d9fc 1391 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1392 !cpuset_zone_allowed_softwall(zone, gfp_mask))
9276b1bc 1393 goto try_next_zone;
7fb1d9fc
RS
1394
1395 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b
NP
1396 unsigned long mark;
1397 if (alloc_flags & ALLOC_WMARK_MIN)
1192d526 1398 mark = zone->pages_min;
3148890b 1399 else if (alloc_flags & ALLOC_WMARK_LOW)
1192d526 1400 mark = zone->pages_low;
3148890b 1401 else
1192d526 1402 mark = zone->pages_high;
0798e519
PJ
1403 if (!zone_watermark_ok(zone, order, mark,
1404 classzone_idx, alloc_flags)) {
9eeff239 1405 if (!zone_reclaim_mode ||
1192d526 1406 !zone_reclaim(zone, gfp_mask, order))
9276b1bc 1407 goto this_zone_full;
0798e519 1408 }
7fb1d9fc
RS
1409 }
1410
18ea7e71 1411 page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
0798e519 1412 if (page)
7fb1d9fc 1413 break;
9276b1bc
PJ
1414this_zone_full:
1415 if (NUMA_BUILD)
1416 zlc_mark_zone_full(zonelist, z);
1417try_next_zone:
1418 if (NUMA_BUILD && !did_zlc_setup) {
1419 /* we do zlc_setup after the first zone is tried */
1420 allowednodes = zlc_setup(zonelist, alloc_flags);
1421 zlc_active = 1;
1422 did_zlc_setup = 1;
1423 }
54a6eb5c 1424 }
9276b1bc
PJ
1425
1426 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1427 /* Disable zlc cache for second zonelist scan */
1428 zlc_active = 0;
1429 goto zonelist_scan;
1430 }
7fb1d9fc 1431 return page;
753ee728
MH
1432}
1433
1da177e4
LT
1434/*
1435 * This is the 'heart' of the zoned buddy allocator.
1436 */
e4048e5d 1437struct page *
19770b32
MG
1438__alloc_pages_internal(gfp_t gfp_mask, unsigned int order,
1439 struct zonelist *zonelist, nodemask_t *nodemask)
1da177e4 1440{
260b2367 1441 const gfp_t wait = gfp_mask & __GFP_WAIT;
54a6eb5c 1442 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
dd1a239f
MG
1443 struct zoneref *z;
1444 struct zone *zone;
1da177e4
LT
1445 struct page *page;
1446 struct reclaim_state reclaim_state;
1447 struct task_struct *p = current;
1da177e4 1448 int do_retry;
7fb1d9fc 1449 int alloc_flags;
a41f24ea
NA
1450 unsigned long did_some_progress;
1451 unsigned long pages_reclaimed = 0;
1da177e4
LT
1452
1453 might_sleep_if(wait);
1454
933e312e
AM
1455 if (should_fail_alloc_page(gfp_mask, order))
1456 return NULL;
1457
6b1de916 1458restart:
dd1a239f 1459 z = zonelist->_zonerefs; /* the list of zones suitable for gfp_mask */
1da177e4 1460
dd1a239f 1461 if (unlikely(!z->zone)) {
523b9458
CL
1462 /*
1463 * Happens if we have an empty zonelist as a result of
1464 * GFP_THISNODE being used on a memoryless node
1465 */
1da177e4
LT
1466 return NULL;
1467 }
6b1de916 1468
19770b32 1469 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
54a6eb5c 1470 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
7fb1d9fc
RS
1471 if (page)
1472 goto got_pg;
1da177e4 1473
952f3b51
CL
1474 /*
1475 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1476 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1477 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1478 * using a larger set of nodes after it has established that the
1479 * allowed per node queues are empty and that nodes are
1480 * over allocated.
1481 */
1482 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1483 goto nopage;
1484
dd1a239f
MG
1485 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1486 wakeup_kswapd(zone, order);
1da177e4 1487
9bf2229f 1488 /*
7fb1d9fc
RS
1489 * OK, we're below the kswapd watermark and have kicked background
1490 * reclaim. Now things get more complex, so set up alloc_flags according
1491 * to how we want to proceed.
1492 *
1493 * The caller may dip into page reserves a bit more if the caller
1494 * cannot run direct reclaim, or if the caller has realtime scheduling
4eac915d
PJ
1495 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1496 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
9bf2229f 1497 */
3148890b 1498 alloc_flags = ALLOC_WMARK_MIN;
7fb1d9fc
RS
1499 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1500 alloc_flags |= ALLOC_HARDER;
1501 if (gfp_mask & __GFP_HIGH)
1502 alloc_flags |= ALLOC_HIGH;
bdd804f4
PJ
1503 if (wait)
1504 alloc_flags |= ALLOC_CPUSET;
1da177e4
LT
1505
1506 /*
1507 * Go through the zonelist again. Let __GFP_HIGH and allocations
7fb1d9fc 1508 * coming from realtime tasks go deeper into reserves.
1da177e4
LT
1509 *
1510 * This is the last chance, in general, before the goto nopage.
1511 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
9bf2229f 1512 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1da177e4 1513 */
19770b32 1514 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
54a6eb5c 1515 high_zoneidx, alloc_flags);
7fb1d9fc
RS
1516 if (page)
1517 goto got_pg;
1da177e4
LT
1518
1519 /* This allocation should allow future memory freeing. */
b84a35be 1520
b43a57bb 1521rebalance:
b84a35be
NP
1522 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1523 && !in_interrupt()) {
1524 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
885036d3 1525nofail_alloc:
b84a35be 1526 /* go through the zonelist yet again, ignoring mins */
19770b32 1527 page = get_page_from_freelist(gfp_mask, nodemask, order,
54a6eb5c 1528 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
7fb1d9fc
RS
1529 if (page)
1530 goto got_pg;
885036d3 1531 if (gfp_mask & __GFP_NOFAIL) {
3fcfab16 1532 congestion_wait(WRITE, HZ/50);
885036d3
KK
1533 goto nofail_alloc;
1534 }
1da177e4
LT
1535 }
1536 goto nopage;
1537 }
1538
1539 /* Atomic allocations - we can't balance anything */
1540 if (!wait)
1541 goto nopage;
1542
1da177e4
LT
1543 cond_resched();
1544
1545 /* We now go into synchronous reclaim */
3e0d98b9 1546 cpuset_memory_pressure_bump();
1da177e4
LT
1547 p->flags |= PF_MEMALLOC;
1548 reclaim_state.reclaimed_slab = 0;
1549 p->reclaim_state = &reclaim_state;
1550
dac1d27b 1551 did_some_progress = try_to_free_pages(zonelist, order, gfp_mask);
1da177e4
LT
1552
1553 p->reclaim_state = NULL;
1554 p->flags &= ~PF_MEMALLOC;
1555
1556 cond_resched();
1557
e2c55dc8 1558 if (order != 0)
9f8f2172 1559 drain_all_pages();
e2c55dc8 1560
1da177e4 1561 if (likely(did_some_progress)) {
19770b32 1562 page = get_page_from_freelist(gfp_mask, nodemask, order,
54a6eb5c 1563 zonelist, high_zoneidx, alloc_flags);
7fb1d9fc
RS
1564 if (page)
1565 goto got_pg;
1da177e4 1566 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
dd1a239f 1567 if (!try_set_zone_oom(zonelist, gfp_mask)) {
ff0ceb9d
DR
1568 schedule_timeout_uninterruptible(1);
1569 goto restart;
1570 }
1571
1da177e4
LT
1572 /*
1573 * Go through the zonelist yet one more time, keep
1574 * very high watermark here, this is only to catch
1575 * a parallel oom killing, we must fail if we're still
1576 * under heavy pressure.
1577 */
19770b32
MG
1578 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1579 order, zonelist, high_zoneidx,
1580 ALLOC_WMARK_HIGH|ALLOC_CPUSET);
ff0ceb9d 1581 if (page) {
dd1a239f 1582 clear_zonelist_oom(zonelist, gfp_mask);
7fb1d9fc 1583 goto got_pg;
ff0ceb9d 1584 }
1da177e4 1585
a8bbf72a 1586 /* The OOM killer will not help higher order allocs so fail */
ff0ceb9d 1587 if (order > PAGE_ALLOC_COSTLY_ORDER) {
dd1a239f 1588 clear_zonelist_oom(zonelist, gfp_mask);
a8bbf72a 1589 goto nopage;
ff0ceb9d 1590 }
a8bbf72a 1591
9b0f8b04 1592 out_of_memory(zonelist, gfp_mask, order);
dd1a239f 1593 clear_zonelist_oom(zonelist, gfp_mask);
1da177e4
LT
1594 goto restart;
1595 }
1596
1597 /*
1598 * Don't let big-order allocations loop unless the caller explicitly
1599 * requests that. Wait for some write requests to complete then retry.
1600 *
a41f24ea
NA
1601 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1602 * means __GFP_NOFAIL, but that may not be true in other
ab857d09 1603 * implementations.
a41f24ea
NA
1604 *
1605 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1606 * specified, then we retry until we no longer reclaim any pages
1607 * (above), or we've reclaimed an order of pages at least as
1608 * large as the allocation's order. In both cases, if the
1609 * allocation still fails, we stop retrying.
1da177e4 1610 */
a41f24ea 1611 pages_reclaimed += did_some_progress;
1da177e4
LT
1612 do_retry = 0;
1613 if (!(gfp_mask & __GFP_NORETRY)) {
a41f24ea 1614 if (order <= PAGE_ALLOC_COSTLY_ORDER) {
1da177e4 1615 do_retry = 1;
a41f24ea
NA
1616 } else {
1617 if (gfp_mask & __GFP_REPEAT &&
1618 pages_reclaimed < (1 << order))
1619 do_retry = 1;
1620 }
1da177e4
LT
1621 if (gfp_mask & __GFP_NOFAIL)
1622 do_retry = 1;
1623 }
1624 if (do_retry) {
3fcfab16 1625 congestion_wait(WRITE, HZ/50);
1da177e4
LT
1626 goto rebalance;
1627 }
1628
1629nopage:
1630 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1631 printk(KERN_WARNING "%s: page allocation failure."
1632 " order:%d, mode:0x%x\n",
1633 p->comm, order, gfp_mask);
1634 dump_stack();
578c2fd6 1635 show_mem();
1da177e4 1636 }
1da177e4 1637got_pg:
1da177e4
LT
1638 return page;
1639}
e4048e5d 1640EXPORT_SYMBOL(__alloc_pages_internal);
1da177e4
LT
1641
1642/*
1643 * Common helper functions.
1644 */
920c7a5d 1645unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4
LT
1646{
1647 struct page * page;
1648 page = alloc_pages(gfp_mask, order);
1649 if (!page)
1650 return 0;
1651 return (unsigned long) page_address(page);
1652}
1653
1654EXPORT_SYMBOL(__get_free_pages);
1655
920c7a5d 1656unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4
LT
1657{
1658 struct page * page;
1659
1660 /*
1661 * get_zeroed_page() returns a 32-bit address, which cannot represent
1662 * a highmem page
1663 */
725d704e 1664 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1da177e4
LT
1665
1666 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1667 if (page)
1668 return (unsigned long) page_address(page);
1669 return 0;
1670}
1671
1672EXPORT_SYMBOL(get_zeroed_page);
1673
1674void __pagevec_free(struct pagevec *pvec)
1675{
1676 int i = pagevec_count(pvec);
1677
1678 while (--i >= 0)
1679 free_hot_cold_page(pvec->pages[i], pvec->cold);
1680}
1681
920c7a5d 1682void __free_pages(struct page *page, unsigned int order)
1da177e4 1683{
b5810039 1684 if (put_page_testzero(page)) {
1da177e4
LT
1685 if (order == 0)
1686 free_hot_page(page);
1687 else
1688 __free_pages_ok(page, order);
1689 }
1690}
1691
1692EXPORT_SYMBOL(__free_pages);
1693
920c7a5d 1694void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
1695{
1696 if (addr != 0) {
725d704e 1697 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
1698 __free_pages(virt_to_page((void *)addr), order);
1699 }
1700}
1701
1702EXPORT_SYMBOL(free_pages);
1703
2be0ffe2
TT
1704/**
1705 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1706 * @size: the number of bytes to allocate
1707 * @gfp_mask: GFP flags for the allocation
1708 *
1709 * This function is similar to alloc_pages(), except that it allocates the
1710 * minimum number of pages to satisfy the request. alloc_pages() can only
1711 * allocate memory in power-of-two pages.
1712 *
1713 * This function is also limited by MAX_ORDER.
1714 *
1715 * Memory allocated by this function must be released by free_pages_exact().
1716 */
1717void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1718{
1719 unsigned int order = get_order(size);
1720 unsigned long addr;
1721
1722 addr = __get_free_pages(gfp_mask, order);
1723 if (addr) {
1724 unsigned long alloc_end = addr + (PAGE_SIZE << order);
1725 unsigned long used = addr + PAGE_ALIGN(size);
1726
1727 split_page(virt_to_page(addr), order);
1728 while (used < alloc_end) {
1729 free_page(used);
1730 used += PAGE_SIZE;
1731 }
1732 }
1733
1734 return (void *)addr;
1735}
1736EXPORT_SYMBOL(alloc_pages_exact);
1737
1738/**
1739 * free_pages_exact - release memory allocated via alloc_pages_exact()
1740 * @virt: the value returned by alloc_pages_exact.
1741 * @size: size of allocation, same value as passed to alloc_pages_exact().
1742 *
1743 * Release the memory allocated by a previous call to alloc_pages_exact.
1744 */
1745void free_pages_exact(void *virt, size_t size)
1746{
1747 unsigned long addr = (unsigned long)virt;
1748 unsigned long end = addr + PAGE_ALIGN(size);
1749
1750 while (addr < end) {
1751 free_page(addr);
1752 addr += PAGE_SIZE;
1753 }
1754}
1755EXPORT_SYMBOL(free_pages_exact);
1756
1da177e4
LT
1757static unsigned int nr_free_zone_pages(int offset)
1758{
dd1a239f 1759 struct zoneref *z;
54a6eb5c
MG
1760 struct zone *zone;
1761
e310fd43 1762 /* Just pick one node, since fallback list is circular */
1da177e4
LT
1763 unsigned int sum = 0;
1764
0e88460d 1765 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 1766
54a6eb5c 1767 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43
MB
1768 unsigned long size = zone->present_pages;
1769 unsigned long high = zone->pages_high;
1770 if (size > high)
1771 sum += size - high;
1da177e4
LT
1772 }
1773
1774 return sum;
1775}
1776
1777/*
1778 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1779 */
1780unsigned int nr_free_buffer_pages(void)
1781{
af4ca457 1782 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 1783}
c2f1a551 1784EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
1785
1786/*
1787 * Amount of free RAM allocatable within all zones
1788 */
1789unsigned int nr_free_pagecache_pages(void)
1790{
2a1e274a 1791 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 1792}
08e0f6a9
CL
1793
1794static inline void show_node(struct zone *zone)
1da177e4 1795{
08e0f6a9 1796 if (NUMA_BUILD)
25ba77c1 1797 printk("Node %d ", zone_to_nid(zone));
1da177e4 1798}
1da177e4 1799
1da177e4
LT
1800void si_meminfo(struct sysinfo *val)
1801{
1802 val->totalram = totalram_pages;
1803 val->sharedram = 0;
d23ad423 1804 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 1805 val->bufferram = nr_blockdev_pages();
1da177e4
LT
1806 val->totalhigh = totalhigh_pages;
1807 val->freehigh = nr_free_highpages();
1da177e4
LT
1808 val->mem_unit = PAGE_SIZE;
1809}
1810
1811EXPORT_SYMBOL(si_meminfo);
1812
1813#ifdef CONFIG_NUMA
1814void si_meminfo_node(struct sysinfo *val, int nid)
1815{
1816 pg_data_t *pgdat = NODE_DATA(nid);
1817
1818 val->totalram = pgdat->node_present_pages;
d23ad423 1819 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 1820#ifdef CONFIG_HIGHMEM
1da177e4 1821 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
1822 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1823 NR_FREE_PAGES);
98d2b0eb
CL
1824#else
1825 val->totalhigh = 0;
1826 val->freehigh = 0;
1827#endif
1da177e4
LT
1828 val->mem_unit = PAGE_SIZE;
1829}
1830#endif
1831
1832#define K(x) ((x) << (PAGE_SHIFT-10))
1833
1834/*
1835 * Show free area list (used inside shift_scroll-lock stuff)
1836 * We also calculate the percentage fragmentation. We do this by counting the
1837 * memory on each free list with the exception of the first item on the list.
1838 */
1839void show_free_areas(void)
1840{
c7241913 1841 int cpu;
1da177e4
LT
1842 struct zone *zone;
1843
1844 for_each_zone(zone) {
c7241913 1845 if (!populated_zone(zone))
1da177e4 1846 continue;
c7241913
JS
1847
1848 show_node(zone);
1849 printk("%s per-cpu:\n", zone->name);
1da177e4 1850
6b482c67 1851 for_each_online_cpu(cpu) {
1da177e4
LT
1852 struct per_cpu_pageset *pageset;
1853
e7c8d5c9 1854 pageset = zone_pcp(zone, cpu);
1da177e4 1855
3dfa5721
CL
1856 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
1857 cpu, pageset->pcp.high,
1858 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
1859 }
1860 }
1861
a25700a5 1862 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
d23ad423 1863 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
65e458d4
CL
1864 global_page_state(NR_ACTIVE),
1865 global_page_state(NR_INACTIVE),
b1e7a8fd 1866 global_page_state(NR_FILE_DIRTY),
ce866b34 1867 global_page_state(NR_WRITEBACK),
fd39fc85 1868 global_page_state(NR_UNSTABLE_NFS),
d23ad423 1869 global_page_state(NR_FREE_PAGES),
972d1a7b
CL
1870 global_page_state(NR_SLAB_RECLAIMABLE) +
1871 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 1872 global_page_state(NR_FILE_MAPPED),
a25700a5
AM
1873 global_page_state(NR_PAGETABLE),
1874 global_page_state(NR_BOUNCE));
1da177e4
LT
1875
1876 for_each_zone(zone) {
1877 int i;
1878
c7241913
JS
1879 if (!populated_zone(zone))
1880 continue;
1881
1da177e4
LT
1882 show_node(zone);
1883 printk("%s"
1884 " free:%lukB"
1885 " min:%lukB"
1886 " low:%lukB"
1887 " high:%lukB"
1888 " active:%lukB"
1889 " inactive:%lukB"
1890 " present:%lukB"
1891 " pages_scanned:%lu"
1892 " all_unreclaimable? %s"
1893 "\n",
1894 zone->name,
d23ad423 1895 K(zone_page_state(zone, NR_FREE_PAGES)),
1da177e4
LT
1896 K(zone->pages_min),
1897 K(zone->pages_low),
1898 K(zone->pages_high),
c8785385
CL
1899 K(zone_page_state(zone, NR_ACTIVE)),
1900 K(zone_page_state(zone, NR_INACTIVE)),
1da177e4
LT
1901 K(zone->present_pages),
1902 zone->pages_scanned,
e815af95 1903 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
1da177e4
LT
1904 );
1905 printk("lowmem_reserve[]:");
1906 for (i = 0; i < MAX_NR_ZONES; i++)
1907 printk(" %lu", zone->lowmem_reserve[i]);
1908 printk("\n");
1909 }
1910
1911 for_each_zone(zone) {
8f9de51a 1912 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4 1913
c7241913
JS
1914 if (!populated_zone(zone))
1915 continue;
1916
1da177e4
LT
1917 show_node(zone);
1918 printk("%s: ", zone->name);
1da177e4
LT
1919
1920 spin_lock_irqsave(&zone->lock, flags);
1921 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
1922 nr[order] = zone->free_area[order].nr_free;
1923 total += nr[order] << order;
1da177e4
LT
1924 }
1925 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
1926 for (order = 0; order < MAX_ORDER; order++)
1927 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
1928 printk("= %lukB\n", K(total));
1929 }
1930
e6f3602d
LW
1931 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
1932
1da177e4
LT
1933 show_swap_cache_info();
1934}
1935
19770b32
MG
1936static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
1937{
1938 zoneref->zone = zone;
1939 zoneref->zone_idx = zone_idx(zone);
1940}
1941
1da177e4
LT
1942/*
1943 * Builds allocation fallback zone lists.
1a93205b
CL
1944 *
1945 * Add all populated zones of a node to the zonelist.
1da177e4 1946 */
f0c0b2b8
KH
1947static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1948 int nr_zones, enum zone_type zone_type)
1da177e4 1949{
1a93205b
CL
1950 struct zone *zone;
1951
98d2b0eb 1952 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 1953 zone_type++;
02a68a5e
CL
1954
1955 do {
2f6726e5 1956 zone_type--;
070f8032 1957 zone = pgdat->node_zones + zone_type;
1a93205b 1958 if (populated_zone(zone)) {
dd1a239f
MG
1959 zoneref_set_zone(zone,
1960 &zonelist->_zonerefs[nr_zones++]);
070f8032 1961 check_highest_zone(zone_type);
1da177e4 1962 }
02a68a5e 1963
2f6726e5 1964 } while (zone_type);
070f8032 1965 return nr_zones;
1da177e4
LT
1966}
1967
f0c0b2b8
KH
1968
1969/*
1970 * zonelist_order:
1971 * 0 = automatic detection of better ordering.
1972 * 1 = order by ([node] distance, -zonetype)
1973 * 2 = order by (-zonetype, [node] distance)
1974 *
1975 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1976 * the same zonelist. So only NUMA can configure this param.
1977 */
1978#define ZONELIST_ORDER_DEFAULT 0
1979#define ZONELIST_ORDER_NODE 1
1980#define ZONELIST_ORDER_ZONE 2
1981
1982/* zonelist order in the kernel.
1983 * set_zonelist_order() will set this to NODE or ZONE.
1984 */
1985static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
1986static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
1987
1988
1da177e4 1989#ifdef CONFIG_NUMA
f0c0b2b8
KH
1990/* The value user specified ....changed by config */
1991static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1992/* string for sysctl */
1993#define NUMA_ZONELIST_ORDER_LEN 16
1994char numa_zonelist_order[16] = "default";
1995
1996/*
1997 * interface for configure zonelist ordering.
1998 * command line option "numa_zonelist_order"
1999 * = "[dD]efault - default, automatic configuration.
2000 * = "[nN]ode - order by node locality, then by zone within node
2001 * = "[zZ]one - order by zone, then by locality within zone
2002 */
2003
2004static int __parse_numa_zonelist_order(char *s)
2005{
2006 if (*s == 'd' || *s == 'D') {
2007 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2008 } else if (*s == 'n' || *s == 'N') {
2009 user_zonelist_order = ZONELIST_ORDER_NODE;
2010 } else if (*s == 'z' || *s == 'Z') {
2011 user_zonelist_order = ZONELIST_ORDER_ZONE;
2012 } else {
2013 printk(KERN_WARNING
2014 "Ignoring invalid numa_zonelist_order value: "
2015 "%s\n", s);
2016 return -EINVAL;
2017 }
2018 return 0;
2019}
2020
2021static __init int setup_numa_zonelist_order(char *s)
2022{
2023 if (s)
2024 return __parse_numa_zonelist_order(s);
2025 return 0;
2026}
2027early_param("numa_zonelist_order", setup_numa_zonelist_order);
2028
2029/*
2030 * sysctl handler for numa_zonelist_order
2031 */
2032int numa_zonelist_order_handler(ctl_table *table, int write,
2033 struct file *file, void __user *buffer, size_t *length,
2034 loff_t *ppos)
2035{
2036 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2037 int ret;
2038
2039 if (write)
2040 strncpy(saved_string, (char*)table->data,
2041 NUMA_ZONELIST_ORDER_LEN);
2042 ret = proc_dostring(table, write, file, buffer, length, ppos);
2043 if (ret)
2044 return ret;
2045 if (write) {
2046 int oldval = user_zonelist_order;
2047 if (__parse_numa_zonelist_order((char*)table->data)) {
2048 /*
2049 * bogus value. restore saved string
2050 */
2051 strncpy((char*)table->data, saved_string,
2052 NUMA_ZONELIST_ORDER_LEN);
2053 user_zonelist_order = oldval;
2054 } else if (oldval != user_zonelist_order)
2055 build_all_zonelists();
2056 }
2057 return 0;
2058}
2059
2060
1da177e4 2061#define MAX_NODE_LOAD (num_online_nodes())
f0c0b2b8
KH
2062static int node_load[MAX_NUMNODES];
2063
1da177e4 2064/**
4dc3b16b 2065 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
2066 * @node: node whose fallback list we're appending
2067 * @used_node_mask: nodemask_t of already used nodes
2068 *
2069 * We use a number of factors to determine which is the next node that should
2070 * appear on a given node's fallback list. The node should not have appeared
2071 * already in @node's fallback list, and it should be the next closest node
2072 * according to the distance array (which contains arbitrary distance values
2073 * from each node to each node in the system), and should also prefer nodes
2074 * with no CPUs, since presumably they'll have very little allocation pressure
2075 * on them otherwise.
2076 * It returns -1 if no node is found.
2077 */
f0c0b2b8 2078static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 2079{
4cf808eb 2080 int n, val;
1da177e4
LT
2081 int min_val = INT_MAX;
2082 int best_node = -1;
c5f59f08 2083 node_to_cpumask_ptr(tmp, 0);
1da177e4 2084
4cf808eb
LT
2085 /* Use the local node if we haven't already */
2086 if (!node_isset(node, *used_node_mask)) {
2087 node_set(node, *used_node_mask);
2088 return node;
2089 }
1da177e4 2090
37b07e41 2091 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
2092
2093 /* Don't want a node to appear more than once */
2094 if (node_isset(n, *used_node_mask))
2095 continue;
2096
1da177e4
LT
2097 /* Use the distance array to find the distance */
2098 val = node_distance(node, n);
2099
4cf808eb
LT
2100 /* Penalize nodes under us ("prefer the next node") */
2101 val += (n < node);
2102
1da177e4 2103 /* Give preference to headless and unused nodes */
c5f59f08
MT
2104 node_to_cpumask_ptr_next(tmp, n);
2105 if (!cpus_empty(*tmp))
1da177e4
LT
2106 val += PENALTY_FOR_NODE_WITH_CPUS;
2107
2108 /* Slight preference for less loaded node */
2109 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2110 val += node_load[n];
2111
2112 if (val < min_val) {
2113 min_val = val;
2114 best_node = n;
2115 }
2116 }
2117
2118 if (best_node >= 0)
2119 node_set(best_node, *used_node_mask);
2120
2121 return best_node;
2122}
2123
f0c0b2b8
KH
2124
2125/*
2126 * Build zonelists ordered by node and zones within node.
2127 * This results in maximum locality--normal zone overflows into local
2128 * DMA zone, if any--but risks exhausting DMA zone.
2129 */
2130static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 2131{
f0c0b2b8 2132 int j;
1da177e4 2133 struct zonelist *zonelist;
f0c0b2b8 2134
54a6eb5c 2135 zonelist = &pgdat->node_zonelists[0];
dd1a239f 2136 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
2137 ;
2138 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2139 MAX_NR_ZONES - 1);
dd1a239f
MG
2140 zonelist->_zonerefs[j].zone = NULL;
2141 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
2142}
2143
523b9458
CL
2144/*
2145 * Build gfp_thisnode zonelists
2146 */
2147static void build_thisnode_zonelists(pg_data_t *pgdat)
2148{
523b9458
CL
2149 int j;
2150 struct zonelist *zonelist;
2151
54a6eb5c
MG
2152 zonelist = &pgdat->node_zonelists[1];
2153 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
2154 zonelist->_zonerefs[j].zone = NULL;
2155 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
2156}
2157
f0c0b2b8
KH
2158/*
2159 * Build zonelists ordered by zone and nodes within zones.
2160 * This results in conserving DMA zone[s] until all Normal memory is
2161 * exhausted, but results in overflowing to remote node while memory
2162 * may still exist in local DMA zone.
2163 */
2164static int node_order[MAX_NUMNODES];
2165
2166static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2167{
f0c0b2b8
KH
2168 int pos, j, node;
2169 int zone_type; /* needs to be signed */
2170 struct zone *z;
2171 struct zonelist *zonelist;
2172
54a6eb5c
MG
2173 zonelist = &pgdat->node_zonelists[0];
2174 pos = 0;
2175 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2176 for (j = 0; j < nr_nodes; j++) {
2177 node = node_order[j];
2178 z = &NODE_DATA(node)->node_zones[zone_type];
2179 if (populated_zone(z)) {
dd1a239f
MG
2180 zoneref_set_zone(z,
2181 &zonelist->_zonerefs[pos++]);
54a6eb5c 2182 check_highest_zone(zone_type);
f0c0b2b8
KH
2183 }
2184 }
f0c0b2b8 2185 }
dd1a239f
MG
2186 zonelist->_zonerefs[pos].zone = NULL;
2187 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
2188}
2189
2190static int default_zonelist_order(void)
2191{
2192 int nid, zone_type;
2193 unsigned long low_kmem_size,total_size;
2194 struct zone *z;
2195 int average_size;
2196 /*
2197 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2198 * If they are really small and used heavily, the system can fall
2199 * into OOM very easily.
2200 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2201 */
2202 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2203 low_kmem_size = 0;
2204 total_size = 0;
2205 for_each_online_node(nid) {
2206 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2207 z = &NODE_DATA(nid)->node_zones[zone_type];
2208 if (populated_zone(z)) {
2209 if (zone_type < ZONE_NORMAL)
2210 low_kmem_size += z->present_pages;
2211 total_size += z->present_pages;
2212 }
2213 }
2214 }
2215 if (!low_kmem_size || /* there are no DMA area. */
2216 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2217 return ZONELIST_ORDER_NODE;
2218 /*
2219 * look into each node's config.
2220 * If there is a node whose DMA/DMA32 memory is very big area on
2221 * local memory, NODE_ORDER may be suitable.
2222 */
37b07e41
LS
2223 average_size = total_size /
2224 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
2225 for_each_online_node(nid) {
2226 low_kmem_size = 0;
2227 total_size = 0;
2228 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2229 z = &NODE_DATA(nid)->node_zones[zone_type];
2230 if (populated_zone(z)) {
2231 if (zone_type < ZONE_NORMAL)
2232 low_kmem_size += z->present_pages;
2233 total_size += z->present_pages;
2234 }
2235 }
2236 if (low_kmem_size &&
2237 total_size > average_size && /* ignore small node */
2238 low_kmem_size > total_size * 70/100)
2239 return ZONELIST_ORDER_NODE;
2240 }
2241 return ZONELIST_ORDER_ZONE;
2242}
2243
2244static void set_zonelist_order(void)
2245{
2246 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2247 current_zonelist_order = default_zonelist_order();
2248 else
2249 current_zonelist_order = user_zonelist_order;
2250}
2251
2252static void build_zonelists(pg_data_t *pgdat)
2253{
2254 int j, node, load;
2255 enum zone_type i;
1da177e4 2256 nodemask_t used_mask;
f0c0b2b8
KH
2257 int local_node, prev_node;
2258 struct zonelist *zonelist;
2259 int order = current_zonelist_order;
1da177e4
LT
2260
2261 /* initialize zonelists */
523b9458 2262 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 2263 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
2264 zonelist->_zonerefs[0].zone = NULL;
2265 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
2266 }
2267
2268 /* NUMA-aware ordering of nodes */
2269 local_node = pgdat->node_id;
2270 load = num_online_nodes();
2271 prev_node = local_node;
2272 nodes_clear(used_mask);
f0c0b2b8
KH
2273
2274 memset(node_load, 0, sizeof(node_load));
2275 memset(node_order, 0, sizeof(node_order));
2276 j = 0;
2277
1da177e4 2278 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
2279 int distance = node_distance(local_node, node);
2280
2281 /*
2282 * If another node is sufficiently far away then it is better
2283 * to reclaim pages in a zone before going off node.
2284 */
2285 if (distance > RECLAIM_DISTANCE)
2286 zone_reclaim_mode = 1;
2287
1da177e4
LT
2288 /*
2289 * We don't want to pressure a particular node.
2290 * So adding penalty to the first node in same
2291 * distance group to make it round-robin.
2292 */
9eeff239 2293 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
2294 node_load[node] = load;
2295
1da177e4
LT
2296 prev_node = node;
2297 load--;
f0c0b2b8
KH
2298 if (order == ZONELIST_ORDER_NODE)
2299 build_zonelists_in_node_order(pgdat, node);
2300 else
2301 node_order[j++] = node; /* remember order */
2302 }
1da177e4 2303
f0c0b2b8
KH
2304 if (order == ZONELIST_ORDER_ZONE) {
2305 /* calculate node order -- i.e., DMA last! */
2306 build_zonelists_in_zone_order(pgdat, j);
1da177e4 2307 }
523b9458
CL
2308
2309 build_thisnode_zonelists(pgdat);
1da177e4
LT
2310}
2311
9276b1bc 2312/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 2313static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2314{
54a6eb5c
MG
2315 struct zonelist *zonelist;
2316 struct zonelist_cache *zlc;
dd1a239f 2317 struct zoneref *z;
9276b1bc 2318
54a6eb5c
MG
2319 zonelist = &pgdat->node_zonelists[0];
2320 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2321 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
2322 for (z = zonelist->_zonerefs; z->zone; z++)
2323 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
2324}
2325
f0c0b2b8 2326
1da177e4
LT
2327#else /* CONFIG_NUMA */
2328
f0c0b2b8
KH
2329static void set_zonelist_order(void)
2330{
2331 current_zonelist_order = ZONELIST_ORDER_ZONE;
2332}
2333
2334static void build_zonelists(pg_data_t *pgdat)
1da177e4 2335{
19655d34 2336 int node, local_node;
54a6eb5c
MG
2337 enum zone_type j;
2338 struct zonelist *zonelist;
1da177e4
LT
2339
2340 local_node = pgdat->node_id;
1da177e4 2341
54a6eb5c
MG
2342 zonelist = &pgdat->node_zonelists[0];
2343 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 2344
54a6eb5c
MG
2345 /*
2346 * Now we build the zonelist so that it contains the zones
2347 * of all the other nodes.
2348 * We don't want to pressure a particular node, so when
2349 * building the zones for node N, we make sure that the
2350 * zones coming right after the local ones are those from
2351 * node N+1 (modulo N)
2352 */
2353 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2354 if (!node_online(node))
2355 continue;
2356 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2357 MAX_NR_ZONES - 1);
1da177e4 2358 }
54a6eb5c
MG
2359 for (node = 0; node < local_node; node++) {
2360 if (!node_online(node))
2361 continue;
2362 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2363 MAX_NR_ZONES - 1);
2364 }
2365
dd1a239f
MG
2366 zonelist->_zonerefs[j].zone = NULL;
2367 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
2368}
2369
9276b1bc 2370/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 2371static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2372{
54a6eb5c 2373 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
2374}
2375
1da177e4
LT
2376#endif /* CONFIG_NUMA */
2377
9b1a4d38 2378/* return values int ....just for stop_machine() */
f0c0b2b8 2379static int __build_all_zonelists(void *dummy)
1da177e4 2380{
6811378e 2381 int nid;
9276b1bc
PJ
2382
2383 for_each_online_node(nid) {
7ea1530a
CL
2384 pg_data_t *pgdat = NODE_DATA(nid);
2385
2386 build_zonelists(pgdat);
2387 build_zonelist_cache(pgdat);
9276b1bc 2388 }
6811378e
YG
2389 return 0;
2390}
2391
f0c0b2b8 2392void build_all_zonelists(void)
6811378e 2393{
f0c0b2b8
KH
2394 set_zonelist_order();
2395
6811378e 2396 if (system_state == SYSTEM_BOOTING) {
423b41d7 2397 __build_all_zonelists(NULL);
68ad8df4 2398 mminit_verify_zonelist();
6811378e
YG
2399 cpuset_init_current_mems_allowed();
2400 } else {
183ff22b 2401 /* we have to stop all cpus to guarantee there is no user
6811378e 2402 of zonelist */
9b1a4d38 2403 stop_machine(__build_all_zonelists, NULL, NULL);
6811378e
YG
2404 /* cpuset refresh routine should be here */
2405 }
bd1e22b8 2406 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
2407 /*
2408 * Disable grouping by mobility if the number of pages in the
2409 * system is too low to allow the mechanism to work. It would be
2410 * more accurate, but expensive to check per-zone. This check is
2411 * made on memory-hotadd so a system can start with mobility
2412 * disabled and enable it later
2413 */
d9c23400 2414 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
2415 page_group_by_mobility_disabled = 1;
2416 else
2417 page_group_by_mobility_disabled = 0;
2418
2419 printk("Built %i zonelists in %s order, mobility grouping %s. "
2420 "Total pages: %ld\n",
f0c0b2b8
KH
2421 num_online_nodes(),
2422 zonelist_order_name[current_zonelist_order],
9ef9acb0 2423 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
2424 vm_total_pages);
2425#ifdef CONFIG_NUMA
2426 printk("Policy zone: %s\n", zone_names[policy_zone]);
2427#endif
1da177e4
LT
2428}
2429
2430/*
2431 * Helper functions to size the waitqueue hash table.
2432 * Essentially these want to choose hash table sizes sufficiently
2433 * large so that collisions trying to wait on pages are rare.
2434 * But in fact, the number of active page waitqueues on typical
2435 * systems is ridiculously low, less than 200. So this is even
2436 * conservative, even though it seems large.
2437 *
2438 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2439 * waitqueues, i.e. the size of the waitq table given the number of pages.
2440 */
2441#define PAGES_PER_WAITQUEUE 256
2442
cca448fe 2443#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 2444static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
2445{
2446 unsigned long size = 1;
2447
2448 pages /= PAGES_PER_WAITQUEUE;
2449
2450 while (size < pages)
2451 size <<= 1;
2452
2453 /*
2454 * Once we have dozens or even hundreds of threads sleeping
2455 * on IO we've got bigger problems than wait queue collision.
2456 * Limit the size of the wait table to a reasonable size.
2457 */
2458 size = min(size, 4096UL);
2459
2460 return max(size, 4UL);
2461}
cca448fe
YG
2462#else
2463/*
2464 * A zone's size might be changed by hot-add, so it is not possible to determine
2465 * a suitable size for its wait_table. So we use the maximum size now.
2466 *
2467 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2468 *
2469 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2470 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2471 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2472 *
2473 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2474 * or more by the traditional way. (See above). It equals:
2475 *
2476 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2477 * ia64(16K page size) : = ( 8G + 4M)byte.
2478 * powerpc (64K page size) : = (32G +16M)byte.
2479 */
2480static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2481{
2482 return 4096UL;
2483}
2484#endif
1da177e4
LT
2485
2486/*
2487 * This is an integer logarithm so that shifts can be used later
2488 * to extract the more random high bits from the multiplicative
2489 * hash function before the remainder is taken.
2490 */
2491static inline unsigned long wait_table_bits(unsigned long size)
2492{
2493 return ffz(~size);
2494}
2495
2496#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2497
56fd56b8 2498/*
d9c23400 2499 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
56fd56b8
MG
2500 * of blocks reserved is based on zone->pages_min. The memory within the
2501 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2502 * higher will lead to a bigger reserve which will get freed as contiguous
2503 * blocks as reclaim kicks in
2504 */
2505static void setup_zone_migrate_reserve(struct zone *zone)
2506{
2507 unsigned long start_pfn, pfn, end_pfn;
2508 struct page *page;
2509 unsigned long reserve, block_migratetype;
2510
2511 /* Get the start pfn, end pfn and the number of blocks to reserve */
2512 start_pfn = zone->zone_start_pfn;
2513 end_pfn = start_pfn + zone->spanned_pages;
d9c23400
MG
2514 reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2515 pageblock_order;
56fd56b8 2516
d9c23400 2517 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
2518 if (!pfn_valid(pfn))
2519 continue;
2520 page = pfn_to_page(pfn);
2521
344c790e
AL
2522 /* Watch out for overlapping nodes */
2523 if (page_to_nid(page) != zone_to_nid(zone))
2524 continue;
2525
56fd56b8
MG
2526 /* Blocks with reserved pages will never free, skip them. */
2527 if (PageReserved(page))
2528 continue;
2529
2530 block_migratetype = get_pageblock_migratetype(page);
2531
2532 /* If this block is reserved, account for it */
2533 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2534 reserve--;
2535 continue;
2536 }
2537
2538 /* Suitable for reserving if this block is movable */
2539 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2540 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2541 move_freepages_block(zone, page, MIGRATE_RESERVE);
2542 reserve--;
2543 continue;
2544 }
2545
2546 /*
2547 * If the reserve is met and this is a previous reserved block,
2548 * take it back
2549 */
2550 if (block_migratetype == MIGRATE_RESERVE) {
2551 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2552 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2553 }
2554 }
2555}
ac0e5b7a 2556
1da177e4
LT
2557/*
2558 * Initially all pages are reserved - free ones are freed
2559 * up by free_all_bootmem() once the early boot process is
2560 * done. Non-atomic initialization, single-pass.
2561 */
c09b4240 2562void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 2563 unsigned long start_pfn, enum memmap_context context)
1da177e4 2564{
1da177e4 2565 struct page *page;
29751f69
AW
2566 unsigned long end_pfn = start_pfn + size;
2567 unsigned long pfn;
86051ca5 2568 struct zone *z;
1da177e4 2569
86051ca5 2570 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 2571 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
2572 /*
2573 * There can be holes in boot-time mem_map[]s
2574 * handed to this function. They do not
2575 * exist on hotplugged memory.
2576 */
2577 if (context == MEMMAP_EARLY) {
2578 if (!early_pfn_valid(pfn))
2579 continue;
2580 if (!early_pfn_in_nid(pfn, nid))
2581 continue;
2582 }
d41dee36
AW
2583 page = pfn_to_page(pfn);
2584 set_page_links(page, zone, nid, pfn);
708614e6 2585 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 2586 init_page_count(page);
1da177e4
LT
2587 reset_page_mapcount(page);
2588 SetPageReserved(page);
b2a0ac88
MG
2589 /*
2590 * Mark the block movable so that blocks are reserved for
2591 * movable at startup. This will force kernel allocations
2592 * to reserve their blocks rather than leaking throughout
2593 * the address space during boot when many long-lived
56fd56b8
MG
2594 * kernel allocations are made. Later some blocks near
2595 * the start are marked MIGRATE_RESERVE by
2596 * setup_zone_migrate_reserve()
86051ca5
KH
2597 *
2598 * bitmap is created for zone's valid pfn range. but memmap
2599 * can be created for invalid pages (for alignment)
2600 * check here not to call set_pageblock_migratetype() against
2601 * pfn out of zone.
b2a0ac88 2602 */
86051ca5
KH
2603 if ((z->zone_start_pfn <= pfn)
2604 && (pfn < z->zone_start_pfn + z->spanned_pages)
2605 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 2606 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 2607
1da177e4
LT
2608 INIT_LIST_HEAD(&page->lru);
2609#ifdef WANT_PAGE_VIRTUAL
2610 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2611 if (!is_highmem_idx(zone))
3212c6be 2612 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 2613#endif
1da177e4
LT
2614 }
2615}
2616
1e548deb 2617static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 2618{
b2a0ac88
MG
2619 int order, t;
2620 for_each_migratetype_order(order, t) {
2621 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
2622 zone->free_area[order].nr_free = 0;
2623 }
2624}
2625
2626#ifndef __HAVE_ARCH_MEMMAP_INIT
2627#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 2628 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
2629#endif
2630
1d6f4e60 2631static int zone_batchsize(struct zone *zone)
e7c8d5c9
CL
2632{
2633 int batch;
2634
2635 /*
2636 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 2637 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
2638 *
2639 * OK, so we don't know how big the cache is. So guess.
2640 */
2641 batch = zone->present_pages / 1024;
ba56e91c
SR
2642 if (batch * PAGE_SIZE > 512 * 1024)
2643 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
2644 batch /= 4; /* We effectively *= 4 below */
2645 if (batch < 1)
2646 batch = 1;
2647
2648 /*
0ceaacc9
NP
2649 * Clamp the batch to a 2^n - 1 value. Having a power
2650 * of 2 value was found to be more likely to have
2651 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 2652 *
0ceaacc9
NP
2653 * For example if 2 tasks are alternately allocating
2654 * batches of pages, one task can end up with a lot
2655 * of pages of one half of the possible page colors
2656 * and the other with pages of the other colors.
e7c8d5c9 2657 */
0ceaacc9 2658 batch = (1 << (fls(batch + batch/2)-1)) - 1;
ba56e91c 2659
e7c8d5c9
CL
2660 return batch;
2661}
2662
b69a7288 2663static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
2664{
2665 struct per_cpu_pages *pcp;
2666
1c6fe946
MD
2667 memset(p, 0, sizeof(*p));
2668
3dfa5721 2669 pcp = &p->pcp;
2caaad41 2670 pcp->count = 0;
2caaad41
CL
2671 pcp->high = 6 * batch;
2672 pcp->batch = max(1UL, 1 * batch);
2673 INIT_LIST_HEAD(&pcp->list);
2caaad41
CL
2674}
2675
8ad4b1fb
RS
2676/*
2677 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2678 * to the value high for the pageset p.
2679 */
2680
2681static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2682 unsigned long high)
2683{
2684 struct per_cpu_pages *pcp;
2685
3dfa5721 2686 pcp = &p->pcp;
8ad4b1fb
RS
2687 pcp->high = high;
2688 pcp->batch = max(1UL, high/4);
2689 if ((high/4) > (PAGE_SHIFT * 8))
2690 pcp->batch = PAGE_SHIFT * 8;
2691}
2692
2693
e7c8d5c9
CL
2694#ifdef CONFIG_NUMA
2695/*
2caaad41
CL
2696 * Boot pageset table. One per cpu which is going to be used for all
2697 * zones and all nodes. The parameters will be set in such a way
2698 * that an item put on a list will immediately be handed over to
2699 * the buddy list. This is safe since pageset manipulation is done
2700 * with interrupts disabled.
2701 *
2702 * Some NUMA counter updates may also be caught by the boot pagesets.
b7c84c6a
CL
2703 *
2704 * The boot_pagesets must be kept even after bootup is complete for
2705 * unused processors and/or zones. They do play a role for bootstrapping
2706 * hotplugged processors.
2707 *
2708 * zoneinfo_show() and maybe other functions do
2709 * not check if the processor is online before following the pageset pointer.
2710 * Other parts of the kernel may not check if the zone is available.
2caaad41 2711 */
88a2a4ac 2712static struct per_cpu_pageset boot_pageset[NR_CPUS];
2caaad41
CL
2713
2714/*
2715 * Dynamically allocate memory for the
e7c8d5c9
CL
2716 * per cpu pageset array in struct zone.
2717 */
6292d9aa 2718static int __cpuinit process_zones(int cpu)
e7c8d5c9
CL
2719{
2720 struct zone *zone, *dzone;
37c0708d
CL
2721 int node = cpu_to_node(cpu);
2722
2723 node_set_state(node, N_CPU); /* this node has a cpu */
e7c8d5c9
CL
2724
2725 for_each_zone(zone) {
e7c8d5c9 2726
66a55030
CL
2727 if (!populated_zone(zone))
2728 continue;
2729
23316bc8 2730 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
37c0708d 2731 GFP_KERNEL, node);
23316bc8 2732 if (!zone_pcp(zone, cpu))
e7c8d5c9 2733 goto bad;
e7c8d5c9 2734
23316bc8 2735 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
8ad4b1fb
RS
2736
2737 if (percpu_pagelist_fraction)
2738 setup_pagelist_highmark(zone_pcp(zone, cpu),
2739 (zone->present_pages / percpu_pagelist_fraction));
e7c8d5c9
CL
2740 }
2741
2742 return 0;
2743bad:
2744 for_each_zone(dzone) {
64191688
AM
2745 if (!populated_zone(dzone))
2746 continue;
e7c8d5c9
CL
2747 if (dzone == zone)
2748 break;
23316bc8
NP
2749 kfree(zone_pcp(dzone, cpu));
2750 zone_pcp(dzone, cpu) = NULL;
e7c8d5c9
CL
2751 }
2752 return -ENOMEM;
2753}
2754
2755static inline void free_zone_pagesets(int cpu)
2756{
e7c8d5c9
CL
2757 struct zone *zone;
2758
2759 for_each_zone(zone) {
2760 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2761
f3ef9ead
DR
2762 /* Free per_cpu_pageset if it is slab allocated */
2763 if (pset != &boot_pageset[cpu])
2764 kfree(pset);
e7c8d5c9 2765 zone_pcp(zone, cpu) = NULL;
e7c8d5c9 2766 }
e7c8d5c9
CL
2767}
2768
9c7b216d 2769static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
e7c8d5c9
CL
2770 unsigned long action,
2771 void *hcpu)
2772{
2773 int cpu = (long)hcpu;
2774 int ret = NOTIFY_OK;
2775
2776 switch (action) {
ce421c79 2777 case CPU_UP_PREPARE:
8bb78442 2778 case CPU_UP_PREPARE_FROZEN:
ce421c79
AW
2779 if (process_zones(cpu))
2780 ret = NOTIFY_BAD;
2781 break;
2782 case CPU_UP_CANCELED:
8bb78442 2783 case CPU_UP_CANCELED_FROZEN:
ce421c79 2784 case CPU_DEAD:
8bb78442 2785 case CPU_DEAD_FROZEN:
ce421c79
AW
2786 free_zone_pagesets(cpu);
2787 break;
2788 default:
2789 break;
e7c8d5c9
CL
2790 }
2791 return ret;
2792}
2793
74b85f37 2794static struct notifier_block __cpuinitdata pageset_notifier =
e7c8d5c9
CL
2795 { &pageset_cpuup_callback, NULL, 0 };
2796
78d9955b 2797void __init setup_per_cpu_pageset(void)
e7c8d5c9
CL
2798{
2799 int err;
2800
2801 /* Initialize per_cpu_pageset for cpu 0.
2802 * A cpuup callback will do this for every cpu
2803 * as it comes online
2804 */
2805 err = process_zones(smp_processor_id());
2806 BUG_ON(err);
2807 register_cpu_notifier(&pageset_notifier);
2808}
2809
2810#endif
2811
577a32f6 2812static noinline __init_refok
cca448fe 2813int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
2814{
2815 int i;
2816 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 2817 size_t alloc_size;
ed8ece2e
DH
2818
2819 /*
2820 * The per-page waitqueue mechanism uses hashed waitqueues
2821 * per zone.
2822 */
02b694de
YG
2823 zone->wait_table_hash_nr_entries =
2824 wait_table_hash_nr_entries(zone_size_pages);
2825 zone->wait_table_bits =
2826 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
2827 alloc_size = zone->wait_table_hash_nr_entries
2828 * sizeof(wait_queue_head_t);
2829
cd94b9db 2830 if (!slab_is_available()) {
cca448fe
YG
2831 zone->wait_table = (wait_queue_head_t *)
2832 alloc_bootmem_node(pgdat, alloc_size);
2833 } else {
2834 /*
2835 * This case means that a zone whose size was 0 gets new memory
2836 * via memory hot-add.
2837 * But it may be the case that a new node was hot-added. In
2838 * this case vmalloc() will not be able to use this new node's
2839 * memory - this wait_table must be initialized to use this new
2840 * node itself as well.
2841 * To use this new node's memory, further consideration will be
2842 * necessary.
2843 */
8691f3a7 2844 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
2845 }
2846 if (!zone->wait_table)
2847 return -ENOMEM;
ed8ece2e 2848
02b694de 2849 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 2850 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
2851
2852 return 0;
ed8ece2e
DH
2853}
2854
c09b4240 2855static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e
DH
2856{
2857 int cpu;
2858 unsigned long batch = zone_batchsize(zone);
2859
2860 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2861#ifdef CONFIG_NUMA
2862 /* Early boot. Slab allocator not functional yet */
23316bc8 2863 zone_pcp(zone, cpu) = &boot_pageset[cpu];
ed8ece2e
DH
2864 setup_pageset(&boot_pageset[cpu],0);
2865#else
2866 setup_pageset(zone_pcp(zone,cpu), batch);
2867#endif
2868 }
f5335c0f
AB
2869 if (zone->present_pages)
2870 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2871 zone->name, zone->present_pages, batch);
ed8ece2e
DH
2872}
2873
718127cc
YG
2874__meminit int init_currently_empty_zone(struct zone *zone,
2875 unsigned long zone_start_pfn,
a2f3aa02
DH
2876 unsigned long size,
2877 enum memmap_context context)
ed8ece2e
DH
2878{
2879 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
2880 int ret;
2881 ret = zone_wait_table_init(zone, size);
2882 if (ret)
2883 return ret;
ed8ece2e
DH
2884 pgdat->nr_zones = zone_idx(zone) + 1;
2885
ed8ece2e
DH
2886 zone->zone_start_pfn = zone_start_pfn;
2887
708614e6
MG
2888 mminit_dprintk(MMINIT_TRACE, "memmap_init",
2889 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
2890 pgdat->node_id,
2891 (unsigned long)zone_idx(zone),
2892 zone_start_pfn, (zone_start_pfn + size));
2893
1e548deb 2894 zone_init_free_lists(zone);
718127cc
YG
2895
2896 return 0;
ed8ece2e
DH
2897}
2898
c713216d
MG
2899#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2900/*
2901 * Basic iterator support. Return the first range of PFNs for a node
2902 * Note: nid == MAX_NUMNODES returns first region regardless of node
2903 */
a3142c8e 2904static int __meminit first_active_region_index_in_nid(int nid)
c713216d
MG
2905{
2906 int i;
2907
2908 for (i = 0; i < nr_nodemap_entries; i++)
2909 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2910 return i;
2911
2912 return -1;
2913}
2914
2915/*
2916 * Basic iterator support. Return the next active range of PFNs for a node
183ff22b 2917 * Note: nid == MAX_NUMNODES returns next region regardless of node
c713216d 2918 */
a3142c8e 2919static int __meminit next_active_region_index_in_nid(int index, int nid)
c713216d
MG
2920{
2921 for (index = index + 1; index < nr_nodemap_entries; index++)
2922 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2923 return index;
2924
2925 return -1;
2926}
2927
2928#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2929/*
2930 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2931 * Architectures may implement their own version but if add_active_range()
2932 * was used and there are no special requirements, this is a convenient
2933 * alternative
2934 */
6f076f5d 2935int __meminit early_pfn_to_nid(unsigned long pfn)
c713216d
MG
2936{
2937 int i;
2938
2939 for (i = 0; i < nr_nodemap_entries; i++) {
2940 unsigned long start_pfn = early_node_map[i].start_pfn;
2941 unsigned long end_pfn = early_node_map[i].end_pfn;
2942
2943 if (start_pfn <= pfn && pfn < end_pfn)
2944 return early_node_map[i].nid;
2945 }
2946
2947 return 0;
2948}
2949#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2950
2951/* Basic iterator support to walk early_node_map[] */
2952#define for_each_active_range_index_in_nid(i, nid) \
2953 for (i = first_active_region_index_in_nid(nid); i != -1; \
2954 i = next_active_region_index_in_nid(i, nid))
2955
2956/**
2957 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
2958 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2959 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
2960 *
2961 * If an architecture guarantees that all ranges registered with
2962 * add_active_ranges() contain no holes and may be freed, this
2963 * this function may be used instead of calling free_bootmem() manually.
2964 */
2965void __init free_bootmem_with_active_regions(int nid,
2966 unsigned long max_low_pfn)
2967{
2968 int i;
2969
2970 for_each_active_range_index_in_nid(i, nid) {
2971 unsigned long size_pages = 0;
2972 unsigned long end_pfn = early_node_map[i].end_pfn;
2973
2974 if (early_node_map[i].start_pfn >= max_low_pfn)
2975 continue;
2976
2977 if (end_pfn > max_low_pfn)
2978 end_pfn = max_low_pfn;
2979
2980 size_pages = end_pfn - early_node_map[i].start_pfn;
2981 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2982 PFN_PHYS(early_node_map[i].start_pfn),
2983 size_pages << PAGE_SHIFT);
2984 }
2985}
2986
b5bc6c0e
YL
2987void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
2988{
2989 int i;
d52d53b8 2990 int ret;
b5bc6c0e 2991
d52d53b8
YL
2992 for_each_active_range_index_in_nid(i, nid) {
2993 ret = work_fn(early_node_map[i].start_pfn,
2994 early_node_map[i].end_pfn, data);
2995 if (ret)
2996 break;
2997 }
b5bc6c0e 2998}
c713216d
MG
2999/**
3000 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 3001 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
3002 *
3003 * If an architecture guarantees that all ranges registered with
3004 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 3005 * function may be used instead of calling memory_present() manually.
c713216d
MG
3006 */
3007void __init sparse_memory_present_with_active_regions(int nid)
3008{
3009 int i;
3010
3011 for_each_active_range_index_in_nid(i, nid)
3012 memory_present(early_node_map[i].nid,
3013 early_node_map[i].start_pfn,
3014 early_node_map[i].end_pfn);
3015}
3016
fb01439c
MG
3017/**
3018 * push_node_boundaries - Push node boundaries to at least the requested boundary
3019 * @nid: The nid of the node to push the boundary for
3020 * @start_pfn: The start pfn of the node
3021 * @end_pfn: The end pfn of the node
3022 *
3023 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
3024 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
3025 * be hotplugged even though no physical memory exists. This function allows
3026 * an arch to push out the node boundaries so mem_map is allocated that can
3027 * be used later.
3028 */
3029#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3030void __init push_node_boundaries(unsigned int nid,
3031 unsigned long start_pfn, unsigned long end_pfn)
3032{
6b74ab97
MG
3033 mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3034 "Entering push_node_boundaries(%u, %lu, %lu)\n",
fb01439c
MG
3035 nid, start_pfn, end_pfn);
3036
3037 /* Initialise the boundary for this node if necessary */
3038 if (node_boundary_end_pfn[nid] == 0)
3039 node_boundary_start_pfn[nid] = -1UL;
3040
3041 /* Update the boundaries */
3042 if (node_boundary_start_pfn[nid] > start_pfn)
3043 node_boundary_start_pfn[nid] = start_pfn;
3044 if (node_boundary_end_pfn[nid] < end_pfn)
3045 node_boundary_end_pfn[nid] = end_pfn;
3046}
3047
3048/* If necessary, push the node boundary out for reserve hotadd */
98011f56 3049static void __meminit account_node_boundary(unsigned int nid,
fb01439c
MG
3050 unsigned long *start_pfn, unsigned long *end_pfn)
3051{
6b74ab97
MG
3052 mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3053 "Entering account_node_boundary(%u, %lu, %lu)\n",
fb01439c
MG
3054 nid, *start_pfn, *end_pfn);
3055
3056 /* Return if boundary information has not been provided */
3057 if (node_boundary_end_pfn[nid] == 0)
3058 return;
3059
3060 /* Check the boundaries and update if necessary */
3061 if (node_boundary_start_pfn[nid] < *start_pfn)
3062 *start_pfn = node_boundary_start_pfn[nid];
3063 if (node_boundary_end_pfn[nid] > *end_pfn)
3064 *end_pfn = node_boundary_end_pfn[nid];
3065}
3066#else
3067void __init push_node_boundaries(unsigned int nid,
3068 unsigned long start_pfn, unsigned long end_pfn) {}
3069
98011f56 3070static void __meminit account_node_boundary(unsigned int nid,
fb01439c
MG
3071 unsigned long *start_pfn, unsigned long *end_pfn) {}
3072#endif
3073
3074
c713216d
MG
3075/**
3076 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
3077 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3078 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3079 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
3080 *
3081 * It returns the start and end page frame of a node based on information
3082 * provided by an arch calling add_active_range(). If called for a node
3083 * with no available memory, a warning is printed and the start and end
88ca3b94 3084 * PFNs will be 0.
c713216d 3085 */
a3142c8e 3086void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
3087 unsigned long *start_pfn, unsigned long *end_pfn)
3088{
3089 int i;
3090 *start_pfn = -1UL;
3091 *end_pfn = 0;
3092
3093 for_each_active_range_index_in_nid(i, nid) {
3094 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3095 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3096 }
3097
633c0666 3098 if (*start_pfn == -1UL)
c713216d 3099 *start_pfn = 0;
fb01439c
MG
3100
3101 /* Push the node boundaries out if requested */
3102 account_node_boundary(nid, start_pfn, end_pfn);
c713216d
MG
3103}
3104
2a1e274a
MG
3105/*
3106 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3107 * assumption is made that zones within a node are ordered in monotonic
3108 * increasing memory addresses so that the "highest" populated zone is used
3109 */
b69a7288 3110static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
3111{
3112 int zone_index;
3113 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3114 if (zone_index == ZONE_MOVABLE)
3115 continue;
3116
3117 if (arch_zone_highest_possible_pfn[zone_index] >
3118 arch_zone_lowest_possible_pfn[zone_index])
3119 break;
3120 }
3121
3122 VM_BUG_ON(zone_index == -1);
3123 movable_zone = zone_index;
3124}
3125
3126/*
3127 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3128 * because it is sized independant of architecture. Unlike the other zones,
3129 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3130 * in each node depending on the size of each node and how evenly kernelcore
3131 * is distributed. This helper function adjusts the zone ranges
3132 * provided by the architecture for a given node by using the end of the
3133 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3134 * zones within a node are in order of monotonic increases memory addresses
3135 */
b69a7288 3136static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
3137 unsigned long zone_type,
3138 unsigned long node_start_pfn,
3139 unsigned long node_end_pfn,
3140 unsigned long *zone_start_pfn,
3141 unsigned long *zone_end_pfn)
3142{
3143 /* Only adjust if ZONE_MOVABLE is on this node */
3144 if (zone_movable_pfn[nid]) {
3145 /* Size ZONE_MOVABLE */
3146 if (zone_type == ZONE_MOVABLE) {
3147 *zone_start_pfn = zone_movable_pfn[nid];
3148 *zone_end_pfn = min(node_end_pfn,
3149 arch_zone_highest_possible_pfn[movable_zone]);
3150
3151 /* Adjust for ZONE_MOVABLE starting within this range */
3152 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3153 *zone_end_pfn > zone_movable_pfn[nid]) {
3154 *zone_end_pfn = zone_movable_pfn[nid];
3155
3156 /* Check if this whole range is within ZONE_MOVABLE */
3157 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3158 *zone_start_pfn = *zone_end_pfn;
3159 }
3160}
3161
c713216d
MG
3162/*
3163 * Return the number of pages a zone spans in a node, including holes
3164 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3165 */
6ea6e688 3166static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3167 unsigned long zone_type,
3168 unsigned long *ignored)
3169{
3170 unsigned long node_start_pfn, node_end_pfn;
3171 unsigned long zone_start_pfn, zone_end_pfn;
3172
3173 /* Get the start and end of the node and zone */
3174 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3175 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3176 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
3177 adjust_zone_range_for_zone_movable(nid, zone_type,
3178 node_start_pfn, node_end_pfn,
3179 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
3180
3181 /* Check that this node has pages within the zone's required range */
3182 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3183 return 0;
3184
3185 /* Move the zone boundaries inside the node if necessary */
3186 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3187 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3188
3189 /* Return the spanned pages */
3190 return zone_end_pfn - zone_start_pfn;
3191}
3192
3193/*
3194 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 3195 * then all holes in the requested range will be accounted for.
c713216d 3196 */
b69a7288 3197static unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
3198 unsigned long range_start_pfn,
3199 unsigned long range_end_pfn)
3200{
3201 int i = 0;
3202 unsigned long prev_end_pfn = 0, hole_pages = 0;
3203 unsigned long start_pfn;
3204
3205 /* Find the end_pfn of the first active range of pfns in the node */
3206 i = first_active_region_index_in_nid(nid);
3207 if (i == -1)
3208 return 0;
3209
b5445f95
MG
3210 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3211
9c7cd687
MG
3212 /* Account for ranges before physical memory on this node */
3213 if (early_node_map[i].start_pfn > range_start_pfn)
b5445f95 3214 hole_pages = prev_end_pfn - range_start_pfn;
c713216d
MG
3215
3216 /* Find all holes for the zone within the node */
3217 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3218
3219 /* No need to continue if prev_end_pfn is outside the zone */
3220 if (prev_end_pfn >= range_end_pfn)
3221 break;
3222
3223 /* Make sure the end of the zone is not within the hole */
3224 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3225 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3226
3227 /* Update the hole size cound and move on */
3228 if (start_pfn > range_start_pfn) {
3229 BUG_ON(prev_end_pfn > start_pfn);
3230 hole_pages += start_pfn - prev_end_pfn;
3231 }
3232 prev_end_pfn = early_node_map[i].end_pfn;
3233 }
3234
9c7cd687
MG
3235 /* Account for ranges past physical memory on this node */
3236 if (range_end_pfn > prev_end_pfn)
0c6cb974 3237 hole_pages += range_end_pfn -
9c7cd687
MG
3238 max(range_start_pfn, prev_end_pfn);
3239
c713216d
MG
3240 return hole_pages;
3241}
3242
3243/**
3244 * absent_pages_in_range - Return number of page frames in holes within a range
3245 * @start_pfn: The start PFN to start searching for holes
3246 * @end_pfn: The end PFN to stop searching for holes
3247 *
88ca3b94 3248 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
3249 */
3250unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3251 unsigned long end_pfn)
3252{
3253 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3254}
3255
3256/* Return the number of page frames in holes in a zone on a node */
6ea6e688 3257static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3258 unsigned long zone_type,
3259 unsigned long *ignored)
3260{
9c7cd687
MG
3261 unsigned long node_start_pfn, node_end_pfn;
3262 unsigned long zone_start_pfn, zone_end_pfn;
3263
3264 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3265 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3266 node_start_pfn);
3267 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3268 node_end_pfn);
3269
2a1e274a
MG
3270 adjust_zone_range_for_zone_movable(nid, zone_type,
3271 node_start_pfn, node_end_pfn,
3272 &zone_start_pfn, &zone_end_pfn);
9c7cd687 3273 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 3274}
0e0b864e 3275
c713216d 3276#else
6ea6e688 3277static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3278 unsigned long zone_type,
3279 unsigned long *zones_size)
3280{
3281 return zones_size[zone_type];
3282}
3283
6ea6e688 3284static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3285 unsigned long zone_type,
3286 unsigned long *zholes_size)
3287{
3288 if (!zholes_size)
3289 return 0;
3290
3291 return zholes_size[zone_type];
3292}
0e0b864e 3293
c713216d
MG
3294#endif
3295
a3142c8e 3296static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
3297 unsigned long *zones_size, unsigned long *zholes_size)
3298{
3299 unsigned long realtotalpages, totalpages = 0;
3300 enum zone_type i;
3301
3302 for (i = 0; i < MAX_NR_ZONES; i++)
3303 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3304 zones_size);
3305 pgdat->node_spanned_pages = totalpages;
3306
3307 realtotalpages = totalpages;
3308 for (i = 0; i < MAX_NR_ZONES; i++)
3309 realtotalpages -=
3310 zone_absent_pages_in_node(pgdat->node_id, i,
3311 zholes_size);
3312 pgdat->node_present_pages = realtotalpages;
3313 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3314 realtotalpages);
3315}
3316
835c134e
MG
3317#ifndef CONFIG_SPARSEMEM
3318/*
3319 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
3320 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3321 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
3322 * round what is now in bits to nearest long in bits, then return it in
3323 * bytes.
3324 */
3325static unsigned long __init usemap_size(unsigned long zonesize)
3326{
3327 unsigned long usemapsize;
3328
d9c23400
MG
3329 usemapsize = roundup(zonesize, pageblock_nr_pages);
3330 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
3331 usemapsize *= NR_PAGEBLOCK_BITS;
3332 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3333
3334 return usemapsize / 8;
3335}
3336
3337static void __init setup_usemap(struct pglist_data *pgdat,
3338 struct zone *zone, unsigned long zonesize)
3339{
3340 unsigned long usemapsize = usemap_size(zonesize);
3341 zone->pageblock_flags = NULL;
3342 if (usemapsize) {
3343 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3344 memset(zone->pageblock_flags, 0, usemapsize);
3345 }
3346}
3347#else
3348static void inline setup_usemap(struct pglist_data *pgdat,
3349 struct zone *zone, unsigned long zonesize) {}
3350#endif /* CONFIG_SPARSEMEM */
3351
d9c23400 3352#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c
MG
3353
3354/* Return a sensible default order for the pageblock size. */
3355static inline int pageblock_default_order(void)
3356{
3357 if (HPAGE_SHIFT > PAGE_SHIFT)
3358 return HUGETLB_PAGE_ORDER;
3359
3360 return MAX_ORDER-1;
3361}
3362
d9c23400
MG
3363/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3364static inline void __init set_pageblock_order(unsigned int order)
3365{
3366 /* Check that pageblock_nr_pages has not already been setup */
3367 if (pageblock_order)
3368 return;
3369
3370 /*
3371 * Assume the largest contiguous order of interest is a huge page.
3372 * This value may be variable depending on boot parameters on IA64
3373 */
3374 pageblock_order = order;
3375}
3376#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3377
ba72cb8c
MG
3378/*
3379 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3380 * and pageblock_default_order() are unused as pageblock_order is set
3381 * at compile-time. See include/linux/pageblock-flags.h for the values of
3382 * pageblock_order based on the kernel config
3383 */
3384static inline int pageblock_default_order(unsigned int order)
3385{
3386 return MAX_ORDER-1;
3387}
d9c23400
MG
3388#define set_pageblock_order(x) do {} while (0)
3389
3390#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3391
1da177e4
LT
3392/*
3393 * Set up the zone data structures:
3394 * - mark all pages reserved
3395 * - mark all memory queues empty
3396 * - clear the memory bitmaps
3397 */
b5a0e011 3398static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
3399 unsigned long *zones_size, unsigned long *zholes_size)
3400{
2f1b6248 3401 enum zone_type j;
ed8ece2e 3402 int nid = pgdat->node_id;
1da177e4 3403 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 3404 int ret;
1da177e4 3405
208d54e5 3406 pgdat_resize_init(pgdat);
1da177e4
LT
3407 pgdat->nr_zones = 0;
3408 init_waitqueue_head(&pgdat->kswapd_wait);
3409 pgdat->kswapd_max_order = 0;
3410
3411 for (j = 0; j < MAX_NR_ZONES; j++) {
3412 struct zone *zone = pgdat->node_zones + j;
0e0b864e 3413 unsigned long size, realsize, memmap_pages;
1da177e4 3414
c713216d
MG
3415 size = zone_spanned_pages_in_node(nid, j, zones_size);
3416 realsize = size - zone_absent_pages_in_node(nid, j,
3417 zholes_size);
1da177e4 3418
0e0b864e
MG
3419 /*
3420 * Adjust realsize so that it accounts for how much memory
3421 * is used by this zone for memmap. This affects the watermark
3422 * and per-cpu initialisations
3423 */
f7232154
JW
3424 memmap_pages =
3425 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
3426 if (realsize >= memmap_pages) {
3427 realsize -= memmap_pages;
6b74ab97
MG
3428 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3429 "%s zone: %lu pages used for memmap\n",
0e0b864e
MG
3430 zone_names[j], memmap_pages);
3431 } else
3432 printk(KERN_WARNING
3433 " %s zone: %lu pages exceeds realsize %lu\n",
3434 zone_names[j], memmap_pages, realsize);
3435
6267276f
CL
3436 /* Account for reserved pages */
3437 if (j == 0 && realsize > dma_reserve) {
0e0b864e 3438 realsize -= dma_reserve;
6b74ab97
MG
3439 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3440 "%s zone: %lu pages reserved\n",
6267276f 3441 zone_names[0], dma_reserve);
0e0b864e
MG
3442 }
3443
98d2b0eb 3444 if (!is_highmem_idx(j))
1da177e4
LT
3445 nr_kernel_pages += realsize;
3446 nr_all_pages += realsize;
3447
3448 zone->spanned_pages = size;
3449 zone->present_pages = realsize;
9614634f 3450#ifdef CONFIG_NUMA
d5f541ed 3451 zone->node = nid;
8417bba4 3452 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 3453 / 100;
0ff38490 3454 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 3455#endif
1da177e4
LT
3456 zone->name = zone_names[j];
3457 spin_lock_init(&zone->lock);
3458 spin_lock_init(&zone->lru_lock);
bdc8cb98 3459 zone_seqlock_init(zone);
1da177e4 3460 zone->zone_pgdat = pgdat;
1da177e4 3461
3bb1a852 3462 zone->prev_priority = DEF_PRIORITY;
1da177e4 3463
ed8ece2e 3464 zone_pcp_init(zone);
1da177e4
LT
3465 INIT_LIST_HEAD(&zone->active_list);
3466 INIT_LIST_HEAD(&zone->inactive_list);
3467 zone->nr_scan_active = 0;
3468 zone->nr_scan_inactive = 0;
2244b95a 3469 zap_zone_vm_stats(zone);
e815af95 3470 zone->flags = 0;
1da177e4
LT
3471 if (!size)
3472 continue;
3473
ba72cb8c 3474 set_pageblock_order(pageblock_default_order());
835c134e 3475 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
3476 ret = init_currently_empty_zone(zone, zone_start_pfn,
3477 size, MEMMAP_EARLY);
718127cc 3478 BUG_ON(ret);
76cdd58e 3479 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 3480 zone_start_pfn += size;
1da177e4
LT
3481 }
3482}
3483
577a32f6 3484static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 3485{
1da177e4
LT
3486 /* Skip empty nodes */
3487 if (!pgdat->node_spanned_pages)
3488 return;
3489
d41dee36 3490#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
3491 /* ia64 gets its own node_mem_map, before this, without bootmem */
3492 if (!pgdat->node_mem_map) {
e984bb43 3493 unsigned long size, start, end;
d41dee36
AW
3494 struct page *map;
3495
e984bb43
BP
3496 /*
3497 * The zone's endpoints aren't required to be MAX_ORDER
3498 * aligned but the node_mem_map endpoints must be in order
3499 * for the buddy allocator to function correctly.
3500 */
3501 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3502 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3503 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3504 size = (end - start) * sizeof(struct page);
6f167ec7
DH
3505 map = alloc_remap(pgdat->node_id, size);
3506 if (!map)
3507 map = alloc_bootmem_node(pgdat, size);
e984bb43 3508 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 3509 }
12d810c1 3510#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
3511 /*
3512 * With no DISCONTIG, the global mem_map is just set as node 0's
3513 */
c713216d 3514 if (pgdat == NODE_DATA(0)) {
1da177e4 3515 mem_map = NODE_DATA(0)->node_mem_map;
c713216d
MG
3516#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3517 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 3518 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
c713216d
MG
3519#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3520 }
1da177e4 3521#endif
d41dee36 3522#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
3523}
3524
9109fb7b
JW
3525void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3526 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 3527{
9109fb7b
JW
3528 pg_data_t *pgdat = NODE_DATA(nid);
3529
1da177e4
LT
3530 pgdat->node_id = nid;
3531 pgdat->node_start_pfn = node_start_pfn;
c713216d 3532 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
3533
3534 alloc_node_mem_map(pgdat);
e8c27ac9
YL
3535#ifdef CONFIG_FLAT_NODE_MEM_MAP
3536 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3537 nid, (unsigned long)pgdat,
3538 (unsigned long)pgdat->node_mem_map);
3539#endif
1da177e4
LT
3540
3541 free_area_init_core(pgdat, zones_size, zholes_size);
3542}
3543
c713216d 3544#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
418508c1
MS
3545
3546#if MAX_NUMNODES > 1
3547/*
3548 * Figure out the number of possible node ids.
3549 */
3550static void __init setup_nr_node_ids(void)
3551{
3552 unsigned int node;
3553 unsigned int highest = 0;
3554
3555 for_each_node_mask(node, node_possible_map)
3556 highest = node;
3557 nr_node_ids = highest + 1;
3558}
3559#else
3560static inline void setup_nr_node_ids(void)
3561{
3562}
3563#endif
3564
c713216d
MG
3565/**
3566 * add_active_range - Register a range of PFNs backed by physical memory
3567 * @nid: The node ID the range resides on
3568 * @start_pfn: The start PFN of the available physical memory
3569 * @end_pfn: The end PFN of the available physical memory
3570 *
3571 * These ranges are stored in an early_node_map[] and later used by
3572 * free_area_init_nodes() to calculate zone sizes and holes. If the
3573 * range spans a memory hole, it is up to the architecture to ensure
3574 * the memory is not freed by the bootmem allocator. If possible
3575 * the range being registered will be merged with existing ranges.
3576 */
3577void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3578 unsigned long end_pfn)
3579{
3580 int i;
3581
6b74ab97
MG
3582 mminit_dprintk(MMINIT_TRACE, "memory_register",
3583 "Entering add_active_range(%d, %#lx, %#lx) "
3584 "%d entries of %d used\n",
3585 nid, start_pfn, end_pfn,
3586 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
c713216d 3587
2dbb51c4
MG
3588 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3589
c713216d
MG
3590 /* Merge with existing active regions if possible */
3591 for (i = 0; i < nr_nodemap_entries; i++) {
3592 if (early_node_map[i].nid != nid)
3593 continue;
3594
3595 /* Skip if an existing region covers this new one */
3596 if (start_pfn >= early_node_map[i].start_pfn &&
3597 end_pfn <= early_node_map[i].end_pfn)
3598 return;
3599
3600 /* Merge forward if suitable */
3601 if (start_pfn <= early_node_map[i].end_pfn &&
3602 end_pfn > early_node_map[i].end_pfn) {
3603 early_node_map[i].end_pfn = end_pfn;
3604 return;
3605 }
3606
3607 /* Merge backward if suitable */
3608 if (start_pfn < early_node_map[i].end_pfn &&
3609 end_pfn >= early_node_map[i].start_pfn) {
3610 early_node_map[i].start_pfn = start_pfn;
3611 return;
3612 }
3613 }
3614
3615 /* Check that early_node_map is large enough */
3616 if (i >= MAX_ACTIVE_REGIONS) {
3617 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3618 MAX_ACTIVE_REGIONS);
3619 return;
3620 }
3621
3622 early_node_map[i].nid = nid;
3623 early_node_map[i].start_pfn = start_pfn;
3624 early_node_map[i].end_pfn = end_pfn;
3625 nr_nodemap_entries = i + 1;
3626}
3627
3628/**
cc1050ba 3629 * remove_active_range - Shrink an existing registered range of PFNs
c713216d 3630 * @nid: The node id the range is on that should be shrunk
cc1050ba
YL
3631 * @start_pfn: The new PFN of the range
3632 * @end_pfn: The new PFN of the range
c713216d
MG
3633 *
3634 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
cc1a9d86
YL
3635 * The map is kept near the end physical page range that has already been
3636 * registered. This function allows an arch to shrink an existing registered
3637 * range.
c713216d 3638 */
cc1050ba
YL
3639void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3640 unsigned long end_pfn)
c713216d 3641{
cc1a9d86
YL
3642 int i, j;
3643 int removed = 0;
c713216d 3644
cc1050ba
YL
3645 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3646 nid, start_pfn, end_pfn);
3647
c713216d 3648 /* Find the old active region end and shrink */
cc1a9d86 3649 for_each_active_range_index_in_nid(i, nid) {
cc1050ba
YL
3650 if (early_node_map[i].start_pfn >= start_pfn &&
3651 early_node_map[i].end_pfn <= end_pfn) {
cc1a9d86 3652 /* clear it */
cc1050ba 3653 early_node_map[i].start_pfn = 0;
cc1a9d86
YL
3654 early_node_map[i].end_pfn = 0;
3655 removed = 1;
3656 continue;
3657 }
cc1050ba
YL
3658 if (early_node_map[i].start_pfn < start_pfn &&
3659 early_node_map[i].end_pfn > start_pfn) {
3660 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3661 early_node_map[i].end_pfn = start_pfn;
3662 if (temp_end_pfn > end_pfn)
3663 add_active_range(nid, end_pfn, temp_end_pfn);
3664 continue;
3665 }
3666 if (early_node_map[i].start_pfn >= start_pfn &&
3667 early_node_map[i].end_pfn > end_pfn &&
3668 early_node_map[i].start_pfn < end_pfn) {
3669 early_node_map[i].start_pfn = end_pfn;
cc1a9d86 3670 continue;
c713216d 3671 }
cc1a9d86
YL
3672 }
3673
3674 if (!removed)
3675 return;
3676
3677 /* remove the blank ones */
3678 for (i = nr_nodemap_entries - 1; i > 0; i--) {
3679 if (early_node_map[i].nid != nid)
3680 continue;
3681 if (early_node_map[i].end_pfn)
3682 continue;
3683 /* we found it, get rid of it */
3684 for (j = i; j < nr_nodemap_entries - 1; j++)
3685 memcpy(&early_node_map[j], &early_node_map[j+1],
3686 sizeof(early_node_map[j]));
3687 j = nr_nodemap_entries - 1;
3688 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3689 nr_nodemap_entries--;
3690 }
c713216d
MG
3691}
3692
3693/**
3694 * remove_all_active_ranges - Remove all currently registered regions
88ca3b94 3695 *
c713216d
MG
3696 * During discovery, it may be found that a table like SRAT is invalid
3697 * and an alternative discovery method must be used. This function removes
3698 * all currently registered regions.
3699 */
88ca3b94 3700void __init remove_all_active_ranges(void)
c713216d
MG
3701{
3702 memset(early_node_map, 0, sizeof(early_node_map));
3703 nr_nodemap_entries = 0;
fb01439c
MG
3704#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3705 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3706 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3707#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
c713216d
MG
3708}
3709
3710/* Compare two active node_active_regions */
3711static int __init cmp_node_active_region(const void *a, const void *b)
3712{
3713 struct node_active_region *arange = (struct node_active_region *)a;
3714 struct node_active_region *brange = (struct node_active_region *)b;
3715
3716 /* Done this way to avoid overflows */
3717 if (arange->start_pfn > brange->start_pfn)
3718 return 1;
3719 if (arange->start_pfn < brange->start_pfn)
3720 return -1;
3721
3722 return 0;
3723}
3724
3725/* sort the node_map by start_pfn */
3726static void __init sort_node_map(void)
3727{
3728 sort(early_node_map, (size_t)nr_nodemap_entries,
3729 sizeof(struct node_active_region),
3730 cmp_node_active_region, NULL);
3731}
3732
a6af2bc3 3733/* Find the lowest pfn for a node */
b69a7288 3734static unsigned long __init find_min_pfn_for_node(int nid)
c713216d
MG
3735{
3736 int i;
a6af2bc3 3737 unsigned long min_pfn = ULONG_MAX;
1abbfb41 3738
c713216d
MG
3739 /* Assuming a sorted map, the first range found has the starting pfn */
3740 for_each_active_range_index_in_nid(i, nid)
a6af2bc3 3741 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
c713216d 3742
a6af2bc3
MG
3743 if (min_pfn == ULONG_MAX) {
3744 printk(KERN_WARNING
2bc0d261 3745 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
3746 return 0;
3747 }
3748
3749 return min_pfn;
c713216d
MG
3750}
3751
3752/**
3753 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3754 *
3755 * It returns the minimum PFN based on information provided via
88ca3b94 3756 * add_active_range().
c713216d
MG
3757 */
3758unsigned long __init find_min_pfn_with_active_regions(void)
3759{
3760 return find_min_pfn_for_node(MAX_NUMNODES);
3761}
3762
37b07e41
LS
3763/*
3764 * early_calculate_totalpages()
3765 * Sum pages in active regions for movable zone.
3766 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3767 */
484f51f8 3768static unsigned long __init early_calculate_totalpages(void)
7e63efef
MG
3769{
3770 int i;
3771 unsigned long totalpages = 0;
3772
37b07e41
LS
3773 for (i = 0; i < nr_nodemap_entries; i++) {
3774 unsigned long pages = early_node_map[i].end_pfn -
7e63efef 3775 early_node_map[i].start_pfn;
37b07e41
LS
3776 totalpages += pages;
3777 if (pages)
3778 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3779 }
3780 return totalpages;
7e63efef
MG
3781}
3782
2a1e274a
MG
3783/*
3784 * Find the PFN the Movable zone begins in each node. Kernel memory
3785 * is spread evenly between nodes as long as the nodes have enough
3786 * memory. When they don't, some nodes will have more kernelcore than
3787 * others
3788 */
b69a7288 3789static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
2a1e274a
MG
3790{
3791 int i, nid;
3792 unsigned long usable_startpfn;
3793 unsigned long kernelcore_node, kernelcore_remaining;
37b07e41
LS
3794 unsigned long totalpages = early_calculate_totalpages();
3795 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 3796
7e63efef
MG
3797 /*
3798 * If movablecore was specified, calculate what size of
3799 * kernelcore that corresponds so that memory usable for
3800 * any allocation type is evenly spread. If both kernelcore
3801 * and movablecore are specified, then the value of kernelcore
3802 * will be used for required_kernelcore if it's greater than
3803 * what movablecore would have allowed.
3804 */
3805 if (required_movablecore) {
7e63efef
MG
3806 unsigned long corepages;
3807
3808 /*
3809 * Round-up so that ZONE_MOVABLE is at least as large as what
3810 * was requested by the user
3811 */
3812 required_movablecore =
3813 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3814 corepages = totalpages - required_movablecore;
3815
3816 required_kernelcore = max(required_kernelcore, corepages);
3817 }
3818
2a1e274a
MG
3819 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3820 if (!required_kernelcore)
3821 return;
3822
3823 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3824 find_usable_zone_for_movable();
3825 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3826
3827restart:
3828 /* Spread kernelcore memory as evenly as possible throughout nodes */
3829 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 3830 for_each_node_state(nid, N_HIGH_MEMORY) {
2a1e274a
MG
3831 /*
3832 * Recalculate kernelcore_node if the division per node
3833 * now exceeds what is necessary to satisfy the requested
3834 * amount of memory for the kernel
3835 */
3836 if (required_kernelcore < kernelcore_node)
3837 kernelcore_node = required_kernelcore / usable_nodes;
3838
3839 /*
3840 * As the map is walked, we track how much memory is usable
3841 * by the kernel using kernelcore_remaining. When it is
3842 * 0, the rest of the node is usable by ZONE_MOVABLE
3843 */
3844 kernelcore_remaining = kernelcore_node;
3845
3846 /* Go through each range of PFNs within this node */
3847 for_each_active_range_index_in_nid(i, nid) {
3848 unsigned long start_pfn, end_pfn;
3849 unsigned long size_pages;
3850
3851 start_pfn = max(early_node_map[i].start_pfn,
3852 zone_movable_pfn[nid]);
3853 end_pfn = early_node_map[i].end_pfn;
3854 if (start_pfn >= end_pfn)
3855 continue;
3856
3857 /* Account for what is only usable for kernelcore */
3858 if (start_pfn < usable_startpfn) {
3859 unsigned long kernel_pages;
3860 kernel_pages = min(end_pfn, usable_startpfn)
3861 - start_pfn;
3862
3863 kernelcore_remaining -= min(kernel_pages,
3864 kernelcore_remaining);
3865 required_kernelcore -= min(kernel_pages,
3866 required_kernelcore);
3867
3868 /* Continue if range is now fully accounted */
3869 if (end_pfn <= usable_startpfn) {
3870
3871 /*
3872 * Push zone_movable_pfn to the end so
3873 * that if we have to rebalance
3874 * kernelcore across nodes, we will
3875 * not double account here
3876 */
3877 zone_movable_pfn[nid] = end_pfn;
3878 continue;
3879 }
3880 start_pfn = usable_startpfn;
3881 }
3882
3883 /*
3884 * The usable PFN range for ZONE_MOVABLE is from
3885 * start_pfn->end_pfn. Calculate size_pages as the
3886 * number of pages used as kernelcore
3887 */
3888 size_pages = end_pfn - start_pfn;
3889 if (size_pages > kernelcore_remaining)
3890 size_pages = kernelcore_remaining;
3891 zone_movable_pfn[nid] = start_pfn + size_pages;
3892
3893 /*
3894 * Some kernelcore has been met, update counts and
3895 * break if the kernelcore for this node has been
3896 * satisified
3897 */
3898 required_kernelcore -= min(required_kernelcore,
3899 size_pages);
3900 kernelcore_remaining -= size_pages;
3901 if (!kernelcore_remaining)
3902 break;
3903 }
3904 }
3905
3906 /*
3907 * If there is still required_kernelcore, we do another pass with one
3908 * less node in the count. This will push zone_movable_pfn[nid] further
3909 * along on the nodes that still have memory until kernelcore is
3910 * satisified
3911 */
3912 usable_nodes--;
3913 if (usable_nodes && required_kernelcore > usable_nodes)
3914 goto restart;
3915
3916 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3917 for (nid = 0; nid < MAX_NUMNODES; nid++)
3918 zone_movable_pfn[nid] =
3919 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3920}
3921
37b07e41
LS
3922/* Any regular memory on that node ? */
3923static void check_for_regular_memory(pg_data_t *pgdat)
3924{
3925#ifdef CONFIG_HIGHMEM
3926 enum zone_type zone_type;
3927
3928 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
3929 struct zone *zone = &pgdat->node_zones[zone_type];
3930 if (zone->present_pages)
3931 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
3932 }
3933#endif
3934}
3935
c713216d
MG
3936/**
3937 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 3938 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
3939 *
3940 * This will call free_area_init_node() for each active node in the system.
3941 * Using the page ranges provided by add_active_range(), the size of each
3942 * zone in each node and their holes is calculated. If the maximum PFN
3943 * between two adjacent zones match, it is assumed that the zone is empty.
3944 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3945 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3946 * starts where the previous one ended. For example, ZONE_DMA32 starts
3947 * at arch_max_dma_pfn.
3948 */
3949void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3950{
3951 unsigned long nid;
3952 enum zone_type i;
3953
a6af2bc3
MG
3954 /* Sort early_node_map as initialisation assumes it is sorted */
3955 sort_node_map();
3956
c713216d
MG
3957 /* Record where the zone boundaries are */
3958 memset(arch_zone_lowest_possible_pfn, 0,
3959 sizeof(arch_zone_lowest_possible_pfn));
3960 memset(arch_zone_highest_possible_pfn, 0,
3961 sizeof(arch_zone_highest_possible_pfn));
3962 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3963 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3964 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
3965 if (i == ZONE_MOVABLE)
3966 continue;
c713216d
MG
3967 arch_zone_lowest_possible_pfn[i] =
3968 arch_zone_highest_possible_pfn[i-1];
3969 arch_zone_highest_possible_pfn[i] =
3970 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3971 }
2a1e274a
MG
3972 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
3973 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
3974
3975 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
3976 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
3977 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
c713216d 3978
c713216d
MG
3979 /* Print out the zone ranges */
3980 printk("Zone PFN ranges:\n");
2a1e274a
MG
3981 for (i = 0; i < MAX_NR_ZONES; i++) {
3982 if (i == ZONE_MOVABLE)
3983 continue;
5dab8ec1 3984 printk(" %-8s %0#10lx -> %0#10lx\n",
c713216d
MG
3985 zone_names[i],
3986 arch_zone_lowest_possible_pfn[i],
3987 arch_zone_highest_possible_pfn[i]);
2a1e274a
MG
3988 }
3989
3990 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
3991 printk("Movable zone start PFN for each node\n");
3992 for (i = 0; i < MAX_NUMNODES; i++) {
3993 if (zone_movable_pfn[i])
3994 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
3995 }
c713216d
MG
3996
3997 /* Print out the early_node_map[] */
3998 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
3999 for (i = 0; i < nr_nodemap_entries; i++)
5dab8ec1 4000 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
c713216d
MG
4001 early_node_map[i].start_pfn,
4002 early_node_map[i].end_pfn);
4003
4004 /* Initialise every node */
708614e6 4005 mminit_verify_pageflags_layout();
8ef82866 4006 setup_nr_node_ids();
c713216d
MG
4007 for_each_online_node(nid) {
4008 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4009 free_area_init_node(nid, NULL,
c713216d 4010 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4011
4012 /* Any memory on that node */
4013 if (pgdat->node_present_pages)
4014 node_set_state(nid, N_HIGH_MEMORY);
4015 check_for_regular_memory(pgdat);
c713216d
MG
4016 }
4017}
2a1e274a 4018
7e63efef 4019static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
4020{
4021 unsigned long long coremem;
4022 if (!p)
4023 return -EINVAL;
4024
4025 coremem = memparse(p, &p);
7e63efef 4026 *core = coremem >> PAGE_SHIFT;
2a1e274a 4027
7e63efef 4028 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
4029 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4030
4031 return 0;
4032}
ed7ed365 4033
7e63efef
MG
4034/*
4035 * kernelcore=size sets the amount of memory for use for allocations that
4036 * cannot be reclaimed or migrated.
4037 */
4038static int __init cmdline_parse_kernelcore(char *p)
4039{
4040 return cmdline_parse_core(p, &required_kernelcore);
4041}
4042
4043/*
4044 * movablecore=size sets the amount of memory for use for allocations that
4045 * can be reclaimed or migrated.
4046 */
4047static int __init cmdline_parse_movablecore(char *p)
4048{
4049 return cmdline_parse_core(p, &required_movablecore);
4050}
4051
ed7ed365 4052early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 4053early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 4054
c713216d
MG
4055#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4056
0e0b864e 4057/**
88ca3b94
RD
4058 * set_dma_reserve - set the specified number of pages reserved in the first zone
4059 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
4060 *
4061 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4062 * In the DMA zone, a significant percentage may be consumed by kernel image
4063 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
4064 * function may optionally be used to account for unfreeable pages in the
4065 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4066 * smaller per-cpu batchsize.
0e0b864e
MG
4067 */
4068void __init set_dma_reserve(unsigned long new_dma_reserve)
4069{
4070 dma_reserve = new_dma_reserve;
4071}
4072
93b7504e 4073#ifndef CONFIG_NEED_MULTIPLE_NODES
b61bfa3c 4074struct pglist_data contig_page_data = { .bdata = &bootmem_node_data[0] };
1da177e4 4075EXPORT_SYMBOL(contig_page_data);
93b7504e 4076#endif
1da177e4
LT
4077
4078void __init free_area_init(unsigned long *zones_size)
4079{
9109fb7b 4080 free_area_init_node(0, zones_size,
1da177e4
LT
4081 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4082}
1da177e4 4083
1da177e4
LT
4084static int page_alloc_cpu_notify(struct notifier_block *self,
4085 unsigned long action, void *hcpu)
4086{
4087 int cpu = (unsigned long)hcpu;
1da177e4 4088
8bb78442 4089 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
9f8f2172
CL
4090 drain_pages(cpu);
4091
4092 /*
4093 * Spill the event counters of the dead processor
4094 * into the current processors event counters.
4095 * This artificially elevates the count of the current
4096 * processor.
4097 */
f8891e5e 4098 vm_events_fold_cpu(cpu);
9f8f2172
CL
4099
4100 /*
4101 * Zero the differential counters of the dead processor
4102 * so that the vm statistics are consistent.
4103 *
4104 * This is only okay since the processor is dead and cannot
4105 * race with what we are doing.
4106 */
2244b95a 4107 refresh_cpu_vm_stats(cpu);
1da177e4
LT
4108 }
4109 return NOTIFY_OK;
4110}
1da177e4
LT
4111
4112void __init page_alloc_init(void)
4113{
4114 hotcpu_notifier(page_alloc_cpu_notify, 0);
4115}
4116
cb45b0e9
HA
4117/*
4118 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4119 * or min_free_kbytes changes.
4120 */
4121static void calculate_totalreserve_pages(void)
4122{
4123 struct pglist_data *pgdat;
4124 unsigned long reserve_pages = 0;
2f6726e5 4125 enum zone_type i, j;
cb45b0e9
HA
4126
4127 for_each_online_pgdat(pgdat) {
4128 for (i = 0; i < MAX_NR_ZONES; i++) {
4129 struct zone *zone = pgdat->node_zones + i;
4130 unsigned long max = 0;
4131
4132 /* Find valid and maximum lowmem_reserve in the zone */
4133 for (j = i; j < MAX_NR_ZONES; j++) {
4134 if (zone->lowmem_reserve[j] > max)
4135 max = zone->lowmem_reserve[j];
4136 }
4137
4138 /* we treat pages_high as reserved pages. */
4139 max += zone->pages_high;
4140
4141 if (max > zone->present_pages)
4142 max = zone->present_pages;
4143 reserve_pages += max;
4144 }
4145 }
4146 totalreserve_pages = reserve_pages;
4147}
4148
1da177e4
LT
4149/*
4150 * setup_per_zone_lowmem_reserve - called whenever
4151 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4152 * has a correct pages reserved value, so an adequate number of
4153 * pages are left in the zone after a successful __alloc_pages().
4154 */
4155static void setup_per_zone_lowmem_reserve(void)
4156{
4157 struct pglist_data *pgdat;
2f6726e5 4158 enum zone_type j, idx;
1da177e4 4159
ec936fc5 4160 for_each_online_pgdat(pgdat) {
1da177e4
LT
4161 for (j = 0; j < MAX_NR_ZONES; j++) {
4162 struct zone *zone = pgdat->node_zones + j;
4163 unsigned long present_pages = zone->present_pages;
4164
4165 zone->lowmem_reserve[j] = 0;
4166
2f6726e5
CL
4167 idx = j;
4168 while (idx) {
1da177e4
LT
4169 struct zone *lower_zone;
4170
2f6726e5
CL
4171 idx--;
4172
1da177e4
LT
4173 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4174 sysctl_lowmem_reserve_ratio[idx] = 1;
4175
4176 lower_zone = pgdat->node_zones + idx;
4177 lower_zone->lowmem_reserve[j] = present_pages /
4178 sysctl_lowmem_reserve_ratio[idx];
4179 present_pages += lower_zone->present_pages;
4180 }
4181 }
4182 }
cb45b0e9
HA
4183
4184 /* update totalreserve_pages */
4185 calculate_totalreserve_pages();
1da177e4
LT
4186}
4187
88ca3b94
RD
4188/**
4189 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4190 *
4191 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4192 * with respect to min_free_kbytes.
1da177e4 4193 */
3947be19 4194void setup_per_zone_pages_min(void)
1da177e4
LT
4195{
4196 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4197 unsigned long lowmem_pages = 0;
4198 struct zone *zone;
4199 unsigned long flags;
4200
4201 /* Calculate total number of !ZONE_HIGHMEM pages */
4202 for_each_zone(zone) {
4203 if (!is_highmem(zone))
4204 lowmem_pages += zone->present_pages;
4205 }
4206
4207 for_each_zone(zone) {
ac924c60
AM
4208 u64 tmp;
4209
1da177e4 4210 spin_lock_irqsave(&zone->lru_lock, flags);
ac924c60
AM
4211 tmp = (u64)pages_min * zone->present_pages;
4212 do_div(tmp, lowmem_pages);
1da177e4
LT
4213 if (is_highmem(zone)) {
4214 /*
669ed175
NP
4215 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4216 * need highmem pages, so cap pages_min to a small
4217 * value here.
4218 *
4219 * The (pages_high-pages_low) and (pages_low-pages_min)
4220 * deltas controls asynch page reclaim, and so should
4221 * not be capped for highmem.
1da177e4
LT
4222 */
4223 int min_pages;
4224
4225 min_pages = zone->present_pages / 1024;
4226 if (min_pages < SWAP_CLUSTER_MAX)
4227 min_pages = SWAP_CLUSTER_MAX;
4228 if (min_pages > 128)
4229 min_pages = 128;
4230 zone->pages_min = min_pages;
4231 } else {
669ed175
NP
4232 /*
4233 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
4234 * proportionate to the zone's size.
4235 */
669ed175 4236 zone->pages_min = tmp;
1da177e4
LT
4237 }
4238
ac924c60
AM
4239 zone->pages_low = zone->pages_min + (tmp >> 2);
4240 zone->pages_high = zone->pages_min + (tmp >> 1);
56fd56b8 4241 setup_zone_migrate_reserve(zone);
1da177e4
LT
4242 spin_unlock_irqrestore(&zone->lru_lock, flags);
4243 }
cb45b0e9
HA
4244
4245 /* update totalreserve_pages */
4246 calculate_totalreserve_pages();
1da177e4
LT
4247}
4248
4249/*
4250 * Initialise min_free_kbytes.
4251 *
4252 * For small machines we want it small (128k min). For large machines
4253 * we want it large (64MB max). But it is not linear, because network
4254 * bandwidth does not increase linearly with machine size. We use
4255 *
4256 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4257 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4258 *
4259 * which yields
4260 *
4261 * 16MB: 512k
4262 * 32MB: 724k
4263 * 64MB: 1024k
4264 * 128MB: 1448k
4265 * 256MB: 2048k
4266 * 512MB: 2896k
4267 * 1024MB: 4096k
4268 * 2048MB: 5792k
4269 * 4096MB: 8192k
4270 * 8192MB: 11584k
4271 * 16384MB: 16384k
4272 */
4273static int __init init_per_zone_pages_min(void)
4274{
4275 unsigned long lowmem_kbytes;
4276
4277 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4278
4279 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4280 if (min_free_kbytes < 128)
4281 min_free_kbytes = 128;
4282 if (min_free_kbytes > 65536)
4283 min_free_kbytes = 65536;
4284 setup_per_zone_pages_min();
4285 setup_per_zone_lowmem_reserve();
4286 return 0;
4287}
4288module_init(init_per_zone_pages_min)
4289
4290/*
4291 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4292 * that we can call two helper functions whenever min_free_kbytes
4293 * changes.
4294 */
4295int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4296 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4297{
4298 proc_dointvec(table, write, file, buffer, length, ppos);
3b1d92c5
MG
4299 if (write)
4300 setup_per_zone_pages_min();
1da177e4
LT
4301 return 0;
4302}
4303
9614634f
CL
4304#ifdef CONFIG_NUMA
4305int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4306 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4307{
4308 struct zone *zone;
4309 int rc;
4310
4311 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4312 if (rc)
4313 return rc;
4314
4315 for_each_zone(zone)
8417bba4 4316 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
4317 sysctl_min_unmapped_ratio) / 100;
4318 return 0;
4319}
0ff38490
CL
4320
4321int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4322 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4323{
4324 struct zone *zone;
4325 int rc;
4326
4327 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4328 if (rc)
4329 return rc;
4330
4331 for_each_zone(zone)
4332 zone->min_slab_pages = (zone->present_pages *
4333 sysctl_min_slab_ratio) / 100;
4334 return 0;
4335}
9614634f
CL
4336#endif
4337
1da177e4
LT
4338/*
4339 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4340 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4341 * whenever sysctl_lowmem_reserve_ratio changes.
4342 *
4343 * The reserve ratio obviously has absolutely no relation with the
4344 * pages_min watermarks. The lowmem reserve ratio can only make sense
4345 * if in function of the boot time zone sizes.
4346 */
4347int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4348 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4349{
4350 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4351 setup_per_zone_lowmem_reserve();
4352 return 0;
4353}
4354
8ad4b1fb
RS
4355/*
4356 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4357 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4358 * can have before it gets flushed back to buddy allocator.
4359 */
4360
4361int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4362 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4363{
4364 struct zone *zone;
4365 unsigned int cpu;
4366 int ret;
4367
4368 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4369 if (!write || (ret == -EINVAL))
4370 return ret;
4371 for_each_zone(zone) {
4372 for_each_online_cpu(cpu) {
4373 unsigned long high;
4374 high = zone->present_pages / percpu_pagelist_fraction;
4375 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4376 }
4377 }
4378 return 0;
4379}
4380
f034b5d4 4381int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
4382
4383#ifdef CONFIG_NUMA
4384static int __init set_hashdist(char *str)
4385{
4386 if (!str)
4387 return 0;
4388 hashdist = simple_strtoul(str, &str, 0);
4389 return 1;
4390}
4391__setup("hashdist=", set_hashdist);
4392#endif
4393
4394/*
4395 * allocate a large system hash table from bootmem
4396 * - it is assumed that the hash table must contain an exact power-of-2
4397 * quantity of entries
4398 * - limit is the number of hash buckets, not the total allocation size
4399 */
4400void *__init alloc_large_system_hash(const char *tablename,
4401 unsigned long bucketsize,
4402 unsigned long numentries,
4403 int scale,
4404 int flags,
4405 unsigned int *_hash_shift,
4406 unsigned int *_hash_mask,
4407 unsigned long limit)
4408{
4409 unsigned long long max = limit;
4410 unsigned long log2qty, size;
4411 void *table = NULL;
4412
4413 /* allow the kernel cmdline to have a say */
4414 if (!numentries) {
4415 /* round applicable memory size up to nearest megabyte */
04903664 4416 numentries = nr_kernel_pages;
1da177e4
LT
4417 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4418 numentries >>= 20 - PAGE_SHIFT;
4419 numentries <<= 20 - PAGE_SHIFT;
4420
4421 /* limit to 1 bucket per 2^scale bytes of low memory */
4422 if (scale > PAGE_SHIFT)
4423 numentries >>= (scale - PAGE_SHIFT);
4424 else
4425 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
4426
4427 /* Make sure we've got at least a 0-order allocation.. */
4428 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4429 numentries = PAGE_SIZE / bucketsize;
1da177e4 4430 }
6e692ed3 4431 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
4432
4433 /* limit allocation size to 1/16 total memory by default */
4434 if (max == 0) {
4435 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4436 do_div(max, bucketsize);
4437 }
4438
4439 if (numentries > max)
4440 numentries = max;
4441
f0d1b0b3 4442 log2qty = ilog2(numentries);
1da177e4
LT
4443
4444 do {
4445 size = bucketsize << log2qty;
4446 if (flags & HASH_EARLY)
74768ed8 4447 table = alloc_bootmem_nopanic(size);
1da177e4
LT
4448 else if (hashdist)
4449 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4450 else {
2309f9e6 4451 unsigned long order = get_order(size);
1da177e4 4452 table = (void*) __get_free_pages(GFP_ATOMIC, order);
1037b83b
ED
4453 /*
4454 * If bucketsize is not a power-of-two, we may free
4455 * some pages at the end of hash table.
4456 */
4457 if (table) {
4458 unsigned long alloc_end = (unsigned long)table +
4459 (PAGE_SIZE << order);
4460 unsigned long used = (unsigned long)table +
4461 PAGE_ALIGN(size);
4462 split_page(virt_to_page(table), order);
4463 while (used < alloc_end) {
4464 free_page(used);
4465 used += PAGE_SIZE;
4466 }
4467 }
1da177e4
LT
4468 }
4469 } while (!table && size > PAGE_SIZE && --log2qty);
4470
4471 if (!table)
4472 panic("Failed to allocate %s hash table\n", tablename);
4473
b49ad484 4474 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
1da177e4
LT
4475 tablename,
4476 (1U << log2qty),
f0d1b0b3 4477 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
4478 size);
4479
4480 if (_hash_shift)
4481 *_hash_shift = log2qty;
4482 if (_hash_mask)
4483 *_hash_mask = (1 << log2qty) - 1;
4484
4485 return table;
4486}
a117e66e
KH
4487
4488#ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
a117e66e
KH
4489struct page *pfn_to_page(unsigned long pfn)
4490{
67de6482 4491 return __pfn_to_page(pfn);
a117e66e
KH
4492}
4493unsigned long page_to_pfn(struct page *page)
4494{
67de6482 4495 return __page_to_pfn(page);
a117e66e 4496}
a117e66e
KH
4497EXPORT_SYMBOL(pfn_to_page);
4498EXPORT_SYMBOL(page_to_pfn);
4499#endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
6220ec78 4500
835c134e
MG
4501/* Return a pointer to the bitmap storing bits affecting a block of pages */
4502static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4503 unsigned long pfn)
4504{
4505#ifdef CONFIG_SPARSEMEM
4506 return __pfn_to_section(pfn)->pageblock_flags;
4507#else
4508 return zone->pageblock_flags;
4509#endif /* CONFIG_SPARSEMEM */
4510}
4511
4512static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4513{
4514#ifdef CONFIG_SPARSEMEM
4515 pfn &= (PAGES_PER_SECTION-1);
d9c23400 4516 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
4517#else
4518 pfn = pfn - zone->zone_start_pfn;
d9c23400 4519 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
4520#endif /* CONFIG_SPARSEMEM */
4521}
4522
4523/**
d9c23400 4524 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
4525 * @page: The page within the block of interest
4526 * @start_bitidx: The first bit of interest to retrieve
4527 * @end_bitidx: The last bit of interest
4528 * returns pageblock_bits flags
4529 */
4530unsigned long get_pageblock_flags_group(struct page *page,
4531 int start_bitidx, int end_bitidx)
4532{
4533 struct zone *zone;
4534 unsigned long *bitmap;
4535 unsigned long pfn, bitidx;
4536 unsigned long flags = 0;
4537 unsigned long value = 1;
4538
4539 zone = page_zone(page);
4540 pfn = page_to_pfn(page);
4541 bitmap = get_pageblock_bitmap(zone, pfn);
4542 bitidx = pfn_to_bitidx(zone, pfn);
4543
4544 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4545 if (test_bit(bitidx + start_bitidx, bitmap))
4546 flags |= value;
6220ec78 4547
835c134e
MG
4548 return flags;
4549}
4550
4551/**
d9c23400 4552 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
4553 * @page: The page within the block of interest
4554 * @start_bitidx: The first bit of interest
4555 * @end_bitidx: The last bit of interest
4556 * @flags: The flags to set
4557 */
4558void set_pageblock_flags_group(struct page *page, unsigned long flags,
4559 int start_bitidx, int end_bitidx)
4560{
4561 struct zone *zone;
4562 unsigned long *bitmap;
4563 unsigned long pfn, bitidx;
4564 unsigned long value = 1;
4565
4566 zone = page_zone(page);
4567 pfn = page_to_pfn(page);
4568 bitmap = get_pageblock_bitmap(zone, pfn);
4569 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
4570 VM_BUG_ON(pfn < zone->zone_start_pfn);
4571 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
4572
4573 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4574 if (flags & value)
4575 __set_bit(bitidx + start_bitidx, bitmap);
4576 else
4577 __clear_bit(bitidx + start_bitidx, bitmap);
4578}
a5d76b54
KH
4579
4580/*
4581 * This is designed as sub function...plz see page_isolation.c also.
4582 * set/clear page block's type to be ISOLATE.
4583 * page allocater never alloc memory from ISOLATE block.
4584 */
4585
4586int set_migratetype_isolate(struct page *page)
4587{
4588 struct zone *zone;
4589 unsigned long flags;
4590 int ret = -EBUSY;
4591
4592 zone = page_zone(page);
4593 spin_lock_irqsave(&zone->lock, flags);
4594 /*
4595 * In future, more migrate types will be able to be isolation target.
4596 */
4597 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4598 goto out;
4599 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4600 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4601 ret = 0;
4602out:
4603 spin_unlock_irqrestore(&zone->lock, flags);
4604 if (!ret)
9f8f2172 4605 drain_all_pages();
a5d76b54
KH
4606 return ret;
4607}
4608
4609void unset_migratetype_isolate(struct page *page)
4610{
4611 struct zone *zone;
4612 unsigned long flags;
4613 zone = page_zone(page);
4614 spin_lock_irqsave(&zone->lock, flags);
4615 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4616 goto out;
4617 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4618 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4619out:
4620 spin_unlock_irqrestore(&zone->lock, flags);
4621}
0c0e6195
KH
4622
4623#ifdef CONFIG_MEMORY_HOTREMOVE
4624/*
4625 * All pages in the range must be isolated before calling this.
4626 */
4627void
4628__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4629{
4630 struct page *page;
4631 struct zone *zone;
4632 int order, i;
4633 unsigned long pfn;
4634 unsigned long flags;
4635 /* find the first valid pfn */
4636 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4637 if (pfn_valid(pfn))
4638 break;
4639 if (pfn == end_pfn)
4640 return;
4641 zone = page_zone(pfn_to_page(pfn));
4642 spin_lock_irqsave(&zone->lock, flags);
4643 pfn = start_pfn;
4644 while (pfn < end_pfn) {
4645 if (!pfn_valid(pfn)) {
4646 pfn++;
4647 continue;
4648 }
4649 page = pfn_to_page(pfn);
4650 BUG_ON(page_count(page));
4651 BUG_ON(!PageBuddy(page));
4652 order = page_order(page);
4653#ifdef CONFIG_DEBUG_VM
4654 printk(KERN_INFO "remove from free list %lx %d %lx\n",
4655 pfn, 1 << order, end_pfn);
4656#endif
4657 list_del(&page->lru);
4658 rmv_page_order(page);
4659 zone->free_area[order].nr_free--;
4660 __mod_zone_page_state(zone, NR_FREE_PAGES,
4661 - (1UL << order));
4662 for (i = 0; i < (1 << order); i++)
4663 SetPageReserved((page+i));
4664 pfn += (1 << order);
4665 }
4666 spin_unlock_irqrestore(&zone->lock, flags);
4667}
4668#endif