vm: add VM_FAULT_SIGSEGV handling support
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
9a840895 48#include <linux/ksm.h>
1da177e4 49#include <linux/rmap.h>
b95f1b31 50#include <linux/export.h>
0ff92245 51#include <linux/delayacct.h>
1da177e4 52#include <linux/init.h>
edc79b2a 53#include <linux/writeback.h>
8a9f3ccd 54#include <linux/memcontrol.h>
cddb8a5c 55#include <linux/mmu_notifier.h>
3dc14741
HD
56#include <linux/kallsyms.h>
57#include <linux/swapops.h>
58#include <linux/elf.h>
5a0e3ad6 59#include <linux/gfp.h>
4daae3b4 60#include <linux/migrate.h>
2fbc57c5 61#include <linux/string.h>
1da177e4 62
6952b61d 63#include <asm/io.h>
1da177e4
LT
64#include <asm/pgalloc.h>
65#include <asm/uaccess.h>
66#include <asm/tlb.h>
67#include <asm/tlbflush.h>
68#include <asm/pgtable.h>
69
42b77728
JB
70#include "internal.h"
71
75980e97
PZ
72#ifdef LAST_NID_NOT_IN_PAGE_FLAGS
73#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_nid.
74#endif
75
d41dee36 76#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
77/* use the per-pgdat data instead for discontigmem - mbligh */
78unsigned long max_mapnr;
79struct page *mem_map;
80
81EXPORT_SYMBOL(max_mapnr);
82EXPORT_SYMBOL(mem_map);
83#endif
84
85unsigned long num_physpages;
86/*
87 * A number of key systems in x86 including ioremap() rely on the assumption
88 * that high_memory defines the upper bound on direct map memory, then end
89 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
90 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
91 * and ZONE_HIGHMEM.
92 */
93void * high_memory;
1da177e4
LT
94
95EXPORT_SYMBOL(num_physpages);
96EXPORT_SYMBOL(high_memory);
1da177e4 97
32a93233
IM
98/*
99 * Randomize the address space (stacks, mmaps, brk, etc.).
100 *
101 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102 * as ancient (libc5 based) binaries can segfault. )
103 */
104int randomize_va_space __read_mostly =
105#ifdef CONFIG_COMPAT_BRK
106 1;
107#else
108 2;
109#endif
a62eaf15
AK
110
111static int __init disable_randmaps(char *s)
112{
113 randomize_va_space = 0;
9b41046c 114 return 1;
a62eaf15
AK
115}
116__setup("norandmaps", disable_randmaps);
117
62eede62 118unsigned long zero_pfn __read_mostly;
03f6462a 119unsigned long highest_memmap_pfn __read_mostly;
a13ea5b7
HD
120
121/*
122 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
123 */
124static int __init init_zero_pfn(void)
125{
126 zero_pfn = page_to_pfn(ZERO_PAGE(0));
127 return 0;
128}
129core_initcall(init_zero_pfn);
a62eaf15 130
d559db08 131
34e55232
KH
132#if defined(SPLIT_RSS_COUNTING)
133
ea48cf78 134void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
135{
136 int i;
137
138 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
139 if (current->rss_stat.count[i]) {
140 add_mm_counter(mm, i, current->rss_stat.count[i]);
141 current->rss_stat.count[i] = 0;
34e55232
KH
142 }
143 }
05af2e10 144 current->rss_stat.events = 0;
34e55232
KH
145}
146
147static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
148{
149 struct task_struct *task = current;
150
151 if (likely(task->mm == mm))
152 task->rss_stat.count[member] += val;
153 else
154 add_mm_counter(mm, member, val);
155}
156#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
157#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
158
159/* sync counter once per 64 page faults */
160#define TASK_RSS_EVENTS_THRESH (64)
161static void check_sync_rss_stat(struct task_struct *task)
162{
163 if (unlikely(task != current))
164 return;
165 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 166 sync_mm_rss(task->mm);
34e55232 167}
9547d01b 168#else /* SPLIT_RSS_COUNTING */
34e55232
KH
169
170#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
171#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
172
173static void check_sync_rss_stat(struct task_struct *task)
174{
175}
176
9547d01b
PZ
177#endif /* SPLIT_RSS_COUNTING */
178
179#ifdef HAVE_GENERIC_MMU_GATHER
180
181static int tlb_next_batch(struct mmu_gather *tlb)
182{
183 struct mmu_gather_batch *batch;
184
185 batch = tlb->active;
186 if (batch->next) {
187 tlb->active = batch->next;
188 return 1;
189 }
190
53a59fc6
MH
191 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
192 return 0;
193
9547d01b
PZ
194 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
195 if (!batch)
196 return 0;
197
53a59fc6 198 tlb->batch_count++;
9547d01b
PZ
199 batch->next = NULL;
200 batch->nr = 0;
201 batch->max = MAX_GATHER_BATCH;
202
203 tlb->active->next = batch;
204 tlb->active = batch;
205
206 return 1;
207}
208
209/* tlb_gather_mmu
210 * Called to initialize an (on-stack) mmu_gather structure for page-table
211 * tear-down from @mm. The @fullmm argument is used when @mm is without
212 * users and we're going to destroy the full address space (exit/execve).
213 */
8e220cfd 214void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
9547d01b
PZ
215{
216 tlb->mm = mm;
217
8e220cfd
LT
218 /* Is it from 0 to ~0? */
219 tlb->fullmm = !(start | (end+1));
1de14c3c 220 tlb->need_flush_all = 0;
8e220cfd
LT
221 tlb->start = start;
222 tlb->end = end;
9547d01b 223 tlb->need_flush = 0;
9547d01b
PZ
224 tlb->local.next = NULL;
225 tlb->local.nr = 0;
226 tlb->local.max = ARRAY_SIZE(tlb->__pages);
227 tlb->active = &tlb->local;
53a59fc6 228 tlb->batch_count = 0;
9547d01b
PZ
229
230#ifdef CONFIG_HAVE_RCU_TABLE_FREE
231 tlb->batch = NULL;
232#endif
233}
234
235void tlb_flush_mmu(struct mmu_gather *tlb)
236{
237 struct mmu_gather_batch *batch;
238
239 if (!tlb->need_flush)
240 return;
241 tlb->need_flush = 0;
242 tlb_flush(tlb);
243#ifdef CONFIG_HAVE_RCU_TABLE_FREE
244 tlb_table_flush(tlb);
34e55232
KH
245#endif
246
9547d01b
PZ
247 for (batch = &tlb->local; batch; batch = batch->next) {
248 free_pages_and_swap_cache(batch->pages, batch->nr);
249 batch->nr = 0;
250 }
251 tlb->active = &tlb->local;
252}
253
254/* tlb_finish_mmu
255 * Called at the end of the shootdown operation to free up any resources
256 * that were required.
257 */
258void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
259{
260 struct mmu_gather_batch *batch, *next;
261
262 tlb_flush_mmu(tlb);
263
264 /* keep the page table cache within bounds */
265 check_pgt_cache();
266
267 for (batch = tlb->local.next; batch; batch = next) {
268 next = batch->next;
269 free_pages((unsigned long)batch, 0);
270 }
271 tlb->local.next = NULL;
272}
273
274/* __tlb_remove_page
275 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
276 * handling the additional races in SMP caused by other CPUs caching valid
277 * mappings in their TLBs. Returns the number of free page slots left.
278 * When out of page slots we must call tlb_flush_mmu().
279 */
280int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
281{
282 struct mmu_gather_batch *batch;
283
f21760b1 284 VM_BUG_ON(!tlb->need_flush);
9547d01b 285
9547d01b
PZ
286 batch = tlb->active;
287 batch->pages[batch->nr++] = page;
288 if (batch->nr == batch->max) {
289 if (!tlb_next_batch(tlb))
290 return 0;
0b43c3aa 291 batch = tlb->active;
9547d01b
PZ
292 }
293 VM_BUG_ON(batch->nr > batch->max);
294
295 return batch->max - batch->nr;
296}
297
298#endif /* HAVE_GENERIC_MMU_GATHER */
299
26723911
PZ
300#ifdef CONFIG_HAVE_RCU_TABLE_FREE
301
302/*
303 * See the comment near struct mmu_table_batch.
304 */
305
306static void tlb_remove_table_smp_sync(void *arg)
307{
308 /* Simply deliver the interrupt */
309}
310
311static void tlb_remove_table_one(void *table)
312{
313 /*
314 * This isn't an RCU grace period and hence the page-tables cannot be
315 * assumed to be actually RCU-freed.
316 *
317 * It is however sufficient for software page-table walkers that rely on
318 * IRQ disabling. See the comment near struct mmu_table_batch.
319 */
320 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
321 __tlb_remove_table(table);
322}
323
324static void tlb_remove_table_rcu(struct rcu_head *head)
325{
326 struct mmu_table_batch *batch;
327 int i;
328
329 batch = container_of(head, struct mmu_table_batch, rcu);
330
331 for (i = 0; i < batch->nr; i++)
332 __tlb_remove_table(batch->tables[i]);
333
334 free_page((unsigned long)batch);
335}
336
337void tlb_table_flush(struct mmu_gather *tlb)
338{
339 struct mmu_table_batch **batch = &tlb->batch;
340
341 if (*batch) {
342 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
343 *batch = NULL;
344 }
345}
346
347void tlb_remove_table(struct mmu_gather *tlb, void *table)
348{
349 struct mmu_table_batch **batch = &tlb->batch;
350
351 tlb->need_flush = 1;
352
353 /*
354 * When there's less then two users of this mm there cannot be a
355 * concurrent page-table walk.
356 */
357 if (atomic_read(&tlb->mm->mm_users) < 2) {
358 __tlb_remove_table(table);
359 return;
360 }
361
362 if (*batch == NULL) {
363 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
364 if (*batch == NULL) {
365 tlb_remove_table_one(table);
366 return;
367 }
368 (*batch)->nr = 0;
369 }
370 (*batch)->tables[(*batch)->nr++] = table;
371 if ((*batch)->nr == MAX_TABLE_BATCH)
372 tlb_table_flush(tlb);
373}
374
9547d01b 375#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
26723911 376
1da177e4
LT
377/*
378 * If a p?d_bad entry is found while walking page tables, report
379 * the error, before resetting entry to p?d_none. Usually (but
380 * very seldom) called out from the p?d_none_or_clear_bad macros.
381 */
382
383void pgd_clear_bad(pgd_t *pgd)
384{
385 pgd_ERROR(*pgd);
386 pgd_clear(pgd);
387}
388
389void pud_clear_bad(pud_t *pud)
390{
391 pud_ERROR(*pud);
392 pud_clear(pud);
393}
394
395void pmd_clear_bad(pmd_t *pmd)
396{
397 pmd_ERROR(*pmd);
398 pmd_clear(pmd);
399}
400
401/*
402 * Note: this doesn't free the actual pages themselves. That
403 * has been handled earlier when unmapping all the memory regions.
404 */
9e1b32ca
BH
405static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
406 unsigned long addr)
1da177e4 407{
2f569afd 408 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 409 pmd_clear(pmd);
9e1b32ca 410 pte_free_tlb(tlb, token, addr);
e0da382c 411 tlb->mm->nr_ptes--;
1da177e4
LT
412}
413
e0da382c
HD
414static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
415 unsigned long addr, unsigned long end,
416 unsigned long floor, unsigned long ceiling)
1da177e4
LT
417{
418 pmd_t *pmd;
419 unsigned long next;
e0da382c 420 unsigned long start;
1da177e4 421
e0da382c 422 start = addr;
1da177e4 423 pmd = pmd_offset(pud, addr);
1da177e4
LT
424 do {
425 next = pmd_addr_end(addr, end);
426 if (pmd_none_or_clear_bad(pmd))
427 continue;
9e1b32ca 428 free_pte_range(tlb, pmd, addr);
1da177e4
LT
429 } while (pmd++, addr = next, addr != end);
430
e0da382c
HD
431 start &= PUD_MASK;
432 if (start < floor)
433 return;
434 if (ceiling) {
435 ceiling &= PUD_MASK;
436 if (!ceiling)
437 return;
1da177e4 438 }
e0da382c
HD
439 if (end - 1 > ceiling - 1)
440 return;
441
442 pmd = pmd_offset(pud, start);
443 pud_clear(pud);
9e1b32ca 444 pmd_free_tlb(tlb, pmd, start);
1da177e4
LT
445}
446
e0da382c
HD
447static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
448 unsigned long addr, unsigned long end,
449 unsigned long floor, unsigned long ceiling)
1da177e4
LT
450{
451 pud_t *pud;
452 unsigned long next;
e0da382c 453 unsigned long start;
1da177e4 454
e0da382c 455 start = addr;
1da177e4 456 pud = pud_offset(pgd, addr);
1da177e4
LT
457 do {
458 next = pud_addr_end(addr, end);
459 if (pud_none_or_clear_bad(pud))
460 continue;
e0da382c 461 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
462 } while (pud++, addr = next, addr != end);
463
e0da382c
HD
464 start &= PGDIR_MASK;
465 if (start < floor)
466 return;
467 if (ceiling) {
468 ceiling &= PGDIR_MASK;
469 if (!ceiling)
470 return;
1da177e4 471 }
e0da382c
HD
472 if (end - 1 > ceiling - 1)
473 return;
474
475 pud = pud_offset(pgd, start);
476 pgd_clear(pgd);
9e1b32ca 477 pud_free_tlb(tlb, pud, start);
1da177e4
LT
478}
479
480/*
e0da382c
HD
481 * This function frees user-level page tables of a process.
482 *
1da177e4
LT
483 * Must be called with pagetable lock held.
484 */
42b77728 485void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
486 unsigned long addr, unsigned long end,
487 unsigned long floor, unsigned long ceiling)
1da177e4
LT
488{
489 pgd_t *pgd;
490 unsigned long next;
e0da382c
HD
491
492 /*
493 * The next few lines have given us lots of grief...
494 *
495 * Why are we testing PMD* at this top level? Because often
496 * there will be no work to do at all, and we'd prefer not to
497 * go all the way down to the bottom just to discover that.
498 *
499 * Why all these "- 1"s? Because 0 represents both the bottom
500 * of the address space and the top of it (using -1 for the
501 * top wouldn't help much: the masks would do the wrong thing).
502 * The rule is that addr 0 and floor 0 refer to the bottom of
503 * the address space, but end 0 and ceiling 0 refer to the top
504 * Comparisons need to use "end - 1" and "ceiling - 1" (though
505 * that end 0 case should be mythical).
506 *
507 * Wherever addr is brought up or ceiling brought down, we must
508 * be careful to reject "the opposite 0" before it confuses the
509 * subsequent tests. But what about where end is brought down
510 * by PMD_SIZE below? no, end can't go down to 0 there.
511 *
512 * Whereas we round start (addr) and ceiling down, by different
513 * masks at different levels, in order to test whether a table
514 * now has no other vmas using it, so can be freed, we don't
515 * bother to round floor or end up - the tests don't need that.
516 */
1da177e4 517
e0da382c
HD
518 addr &= PMD_MASK;
519 if (addr < floor) {
520 addr += PMD_SIZE;
521 if (!addr)
522 return;
523 }
524 if (ceiling) {
525 ceiling &= PMD_MASK;
526 if (!ceiling)
527 return;
528 }
529 if (end - 1 > ceiling - 1)
530 end -= PMD_SIZE;
531 if (addr > end - 1)
532 return;
533
42b77728 534 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
535 do {
536 next = pgd_addr_end(addr, end);
537 if (pgd_none_or_clear_bad(pgd))
538 continue;
42b77728 539 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 540 } while (pgd++, addr = next, addr != end);
e0da382c
HD
541}
542
42b77728 543void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 544 unsigned long floor, unsigned long ceiling)
e0da382c
HD
545{
546 while (vma) {
547 struct vm_area_struct *next = vma->vm_next;
548 unsigned long addr = vma->vm_start;
549
8f4f8c16 550 /*
25d9e2d1 551 * Hide vma from rmap and truncate_pagecache before freeing
552 * pgtables
8f4f8c16 553 */
5beb4930 554 unlink_anon_vmas(vma);
8f4f8c16
HD
555 unlink_file_vma(vma);
556
9da61aef 557 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 558 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
e0da382c 559 floor, next? next->vm_start: ceiling);
3bf5ee95
HD
560 } else {
561 /*
562 * Optimization: gather nearby vmas into one call down
563 */
564 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 565 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
566 vma = next;
567 next = vma->vm_next;
5beb4930 568 unlink_anon_vmas(vma);
8f4f8c16 569 unlink_file_vma(vma);
3bf5ee95
HD
570 }
571 free_pgd_range(tlb, addr, vma->vm_end,
572 floor, next? next->vm_start: ceiling);
573 }
e0da382c
HD
574 vma = next;
575 }
1da177e4
LT
576}
577
8ac1f832
AA
578int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
579 pmd_t *pmd, unsigned long address)
1da177e4 580{
2f569afd 581 pgtable_t new = pte_alloc_one(mm, address);
8ac1f832 582 int wait_split_huge_page;
1bb3630e
HD
583 if (!new)
584 return -ENOMEM;
585
362a61ad
NP
586 /*
587 * Ensure all pte setup (eg. pte page lock and page clearing) are
588 * visible before the pte is made visible to other CPUs by being
589 * put into page tables.
590 *
591 * The other side of the story is the pointer chasing in the page
592 * table walking code (when walking the page table without locking;
593 * ie. most of the time). Fortunately, these data accesses consist
594 * of a chain of data-dependent loads, meaning most CPUs (alpha
595 * being the notable exception) will already guarantee loads are
596 * seen in-order. See the alpha page table accessors for the
597 * smp_read_barrier_depends() barriers in page table walking code.
598 */
599 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
600
c74df32c 601 spin_lock(&mm->page_table_lock);
8ac1f832
AA
602 wait_split_huge_page = 0;
603 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1da177e4 604 mm->nr_ptes++;
1da177e4 605 pmd_populate(mm, pmd, new);
2f569afd 606 new = NULL;
8ac1f832
AA
607 } else if (unlikely(pmd_trans_splitting(*pmd)))
608 wait_split_huge_page = 1;
c74df32c 609 spin_unlock(&mm->page_table_lock);
2f569afd
MS
610 if (new)
611 pte_free(mm, new);
8ac1f832
AA
612 if (wait_split_huge_page)
613 wait_split_huge_page(vma->anon_vma, pmd);
1bb3630e 614 return 0;
1da177e4
LT
615}
616
1bb3630e 617int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 618{
1bb3630e
HD
619 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
620 if (!new)
621 return -ENOMEM;
622
362a61ad
NP
623 smp_wmb(); /* See comment in __pte_alloc */
624
1bb3630e 625 spin_lock(&init_mm.page_table_lock);
8ac1f832 626 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 627 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 628 new = NULL;
8ac1f832
AA
629 } else
630 VM_BUG_ON(pmd_trans_splitting(*pmd));
1bb3630e 631 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
632 if (new)
633 pte_free_kernel(&init_mm, new);
1bb3630e 634 return 0;
1da177e4
LT
635}
636
d559db08
KH
637static inline void init_rss_vec(int *rss)
638{
639 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
640}
641
642static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 643{
d559db08
KH
644 int i;
645
34e55232 646 if (current->mm == mm)
05af2e10 647 sync_mm_rss(mm);
d559db08
KH
648 for (i = 0; i < NR_MM_COUNTERS; i++)
649 if (rss[i])
650 add_mm_counter(mm, i, rss[i]);
ae859762
HD
651}
652
b5810039 653/*
6aab341e
LT
654 * This function is called to print an error when a bad pte
655 * is found. For example, we might have a PFN-mapped pte in
656 * a region that doesn't allow it.
b5810039
NP
657 *
658 * The calling function must still handle the error.
659 */
3dc14741
HD
660static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
661 pte_t pte, struct page *page)
b5810039 662{
3dc14741
HD
663 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
664 pud_t *pud = pud_offset(pgd, addr);
665 pmd_t *pmd = pmd_offset(pud, addr);
666 struct address_space *mapping;
667 pgoff_t index;
d936cf9b
HD
668 static unsigned long resume;
669 static unsigned long nr_shown;
670 static unsigned long nr_unshown;
671
672 /*
673 * Allow a burst of 60 reports, then keep quiet for that minute;
674 * or allow a steady drip of one report per second.
675 */
676 if (nr_shown == 60) {
677 if (time_before(jiffies, resume)) {
678 nr_unshown++;
679 return;
680 }
681 if (nr_unshown) {
1e9e6365
HD
682 printk(KERN_ALERT
683 "BUG: Bad page map: %lu messages suppressed\n",
d936cf9b
HD
684 nr_unshown);
685 nr_unshown = 0;
686 }
687 nr_shown = 0;
688 }
689 if (nr_shown++ == 0)
690 resume = jiffies + 60 * HZ;
3dc14741
HD
691
692 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
693 index = linear_page_index(vma, addr);
694
1e9e6365
HD
695 printk(KERN_ALERT
696 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
3dc14741
HD
697 current->comm,
698 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821
WF
699 if (page)
700 dump_page(page);
1e9e6365 701 printk(KERN_ALERT
3dc14741
HD
702 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
703 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
704 /*
705 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
706 */
707 if (vma->vm_ops)
071361d3
JP
708 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
709 vma->vm_ops->fault);
3dc14741 710 if (vma->vm_file && vma->vm_file->f_op)
071361d3
JP
711 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
712 vma->vm_file->f_op->mmap);
b5810039 713 dump_stack();
373d4d09 714 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
715}
716
2ec74c3e 717static inline bool is_cow_mapping(vm_flags_t flags)
67121172
LT
718{
719 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
720}
721
ee498ed7 722/*
7e675137 723 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 724 *
7e675137
NP
725 * "Special" mappings do not wish to be associated with a "struct page" (either
726 * it doesn't exist, or it exists but they don't want to touch it). In this
727 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 728 *
7e675137
NP
729 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
730 * pte bit, in which case this function is trivial. Secondly, an architecture
731 * may not have a spare pte bit, which requires a more complicated scheme,
732 * described below.
733 *
734 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
735 * special mapping (even if there are underlying and valid "struct pages").
736 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 737 *
b379d790
JH
738 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
739 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
740 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
741 * mapping will always honor the rule
6aab341e
LT
742 *
743 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
744 *
7e675137
NP
745 * And for normal mappings this is false.
746 *
747 * This restricts such mappings to be a linear translation from virtual address
748 * to pfn. To get around this restriction, we allow arbitrary mappings so long
749 * as the vma is not a COW mapping; in that case, we know that all ptes are
750 * special (because none can have been COWed).
b379d790 751 *
b379d790 752 *
7e675137 753 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
754 *
755 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
756 * page" backing, however the difference is that _all_ pages with a struct
757 * page (that is, those where pfn_valid is true) are refcounted and considered
758 * normal pages by the VM. The disadvantage is that pages are refcounted
759 * (which can be slower and simply not an option for some PFNMAP users). The
760 * advantage is that we don't have to follow the strict linearity rule of
761 * PFNMAP mappings in order to support COWable mappings.
762 *
ee498ed7 763 */
7e675137
NP
764#ifdef __HAVE_ARCH_PTE_SPECIAL
765# define HAVE_PTE_SPECIAL 1
766#else
767# define HAVE_PTE_SPECIAL 0
768#endif
769struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
770 pte_t pte)
ee498ed7 771{
22b31eec 772 unsigned long pfn = pte_pfn(pte);
7e675137
NP
773
774 if (HAVE_PTE_SPECIAL) {
22b31eec
HD
775 if (likely(!pte_special(pte)))
776 goto check_pfn;
a13ea5b7
HD
777 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
778 return NULL;
62eede62 779 if (!is_zero_pfn(pfn))
22b31eec 780 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
781 return NULL;
782 }
783
784 /* !HAVE_PTE_SPECIAL case follows: */
785
b379d790
JH
786 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
787 if (vma->vm_flags & VM_MIXEDMAP) {
788 if (!pfn_valid(pfn))
789 return NULL;
790 goto out;
791 } else {
7e675137
NP
792 unsigned long off;
793 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
794 if (pfn == vma->vm_pgoff + off)
795 return NULL;
796 if (!is_cow_mapping(vma->vm_flags))
797 return NULL;
798 }
6aab341e
LT
799 }
800
62eede62
HD
801 if (is_zero_pfn(pfn))
802 return NULL;
22b31eec
HD
803check_pfn:
804 if (unlikely(pfn > highest_memmap_pfn)) {
805 print_bad_pte(vma, addr, pte, NULL);
806 return NULL;
807 }
6aab341e
LT
808
809 /*
7e675137 810 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 811 * eg. VDSO mappings can cause them to exist.
6aab341e 812 */
b379d790 813out:
6aab341e 814 return pfn_to_page(pfn);
ee498ed7
HD
815}
816
1da177e4
LT
817/*
818 * copy one vm_area from one task to the other. Assumes the page tables
819 * already present in the new task to be cleared in the whole range
820 * covered by this vma.
1da177e4
LT
821 */
822
570a335b 823static inline unsigned long
1da177e4 824copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 825 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 826 unsigned long addr, int *rss)
1da177e4 827{
b5810039 828 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
829 pte_t pte = *src_pte;
830 struct page *page;
1da177e4
LT
831
832 /* pte contains position in swap or file, so copy. */
833 if (unlikely(!pte_present(pte))) {
834 if (!pte_file(pte)) {
0697212a
CL
835 swp_entry_t entry = pte_to_swp_entry(pte);
836
45422468
HD
837 if (likely(!non_swap_entry(entry))) {
838 if (swap_duplicate(entry) < 0)
839 return entry.val;
840
841 /* make sure dst_mm is on swapoff's mmlist. */
842 if (unlikely(list_empty(&dst_mm->mmlist))) {
843 spin_lock(&mmlist_lock);
844 if (list_empty(&dst_mm->mmlist))
845 list_add(&dst_mm->mmlist,
846 &src_mm->mmlist);
847 spin_unlock(&mmlist_lock);
848 }
b084d435 849 rss[MM_SWAPENTS]++;
45422468 850 } else if (is_migration_entry(entry)) {
9f9f1acd
KK
851 page = migration_entry_to_page(entry);
852
853 if (PageAnon(page))
854 rss[MM_ANONPAGES]++;
855 else
856 rss[MM_FILEPAGES]++;
857
858 if (is_write_migration_entry(entry) &&
859 is_cow_mapping(vm_flags)) {
860 /*
861 * COW mappings require pages in both
862 * parent and child to be set to read.
863 */
864 make_migration_entry_read(&entry);
865 pte = swp_entry_to_pte(entry);
866 set_pte_at(src_mm, addr, src_pte, pte);
867 }
0697212a 868 }
1da177e4 869 }
ae859762 870 goto out_set_pte;
1da177e4
LT
871 }
872
1da177e4
LT
873 /*
874 * If it's a COW mapping, write protect it both
875 * in the parent and the child
876 */
67121172 877 if (is_cow_mapping(vm_flags)) {
1da177e4 878 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 879 pte = pte_wrprotect(pte);
1da177e4
LT
880 }
881
882 /*
883 * If it's a shared mapping, mark it clean in
884 * the child
885 */
886 if (vm_flags & VM_SHARED)
887 pte = pte_mkclean(pte);
888 pte = pte_mkold(pte);
6aab341e
LT
889
890 page = vm_normal_page(vma, addr, pte);
891 if (page) {
892 get_page(page);
21333b2b 893 page_dup_rmap(page);
d559db08
KH
894 if (PageAnon(page))
895 rss[MM_ANONPAGES]++;
896 else
897 rss[MM_FILEPAGES]++;
6aab341e 898 }
ae859762
HD
899
900out_set_pte:
901 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 902 return 0;
1da177e4
LT
903}
904
71e3aac0
AA
905int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
906 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
907 unsigned long addr, unsigned long end)
1da177e4 908{
c36987e2 909 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 910 pte_t *src_pte, *dst_pte;
c74df32c 911 spinlock_t *src_ptl, *dst_ptl;
e040f218 912 int progress = 0;
d559db08 913 int rss[NR_MM_COUNTERS];
570a335b 914 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
915
916again:
d559db08
KH
917 init_rss_vec(rss);
918
c74df32c 919 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
920 if (!dst_pte)
921 return -ENOMEM;
ece0e2b6 922 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 923 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 924 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
925 orig_src_pte = src_pte;
926 orig_dst_pte = dst_pte;
6606c3e0 927 arch_enter_lazy_mmu_mode();
1da177e4 928
1da177e4
LT
929 do {
930 /*
931 * We are holding two locks at this point - either of them
932 * could generate latencies in another task on another CPU.
933 */
e040f218
HD
934 if (progress >= 32) {
935 progress = 0;
936 if (need_resched() ||
95c354fe 937 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
938 break;
939 }
1da177e4
LT
940 if (pte_none(*src_pte)) {
941 progress++;
942 continue;
943 }
570a335b
HD
944 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
945 vma, addr, rss);
946 if (entry.val)
947 break;
1da177e4
LT
948 progress += 8;
949 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 950
6606c3e0 951 arch_leave_lazy_mmu_mode();
c74df32c 952 spin_unlock(src_ptl);
ece0e2b6 953 pte_unmap(orig_src_pte);
d559db08 954 add_mm_rss_vec(dst_mm, rss);
c36987e2 955 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 956 cond_resched();
570a335b
HD
957
958 if (entry.val) {
959 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
960 return -ENOMEM;
961 progress = 0;
962 }
1da177e4
LT
963 if (addr != end)
964 goto again;
965 return 0;
966}
967
968static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
969 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
970 unsigned long addr, unsigned long end)
971{
972 pmd_t *src_pmd, *dst_pmd;
973 unsigned long next;
974
975 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
976 if (!dst_pmd)
977 return -ENOMEM;
978 src_pmd = pmd_offset(src_pud, addr);
979 do {
980 next = pmd_addr_end(addr, end);
71e3aac0
AA
981 if (pmd_trans_huge(*src_pmd)) {
982 int err;
14d1a55c 983 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
71e3aac0
AA
984 err = copy_huge_pmd(dst_mm, src_mm,
985 dst_pmd, src_pmd, addr, vma);
986 if (err == -ENOMEM)
987 return -ENOMEM;
988 if (!err)
989 continue;
990 /* fall through */
991 }
1da177e4
LT
992 if (pmd_none_or_clear_bad(src_pmd))
993 continue;
994 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
995 vma, addr, next))
996 return -ENOMEM;
997 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
998 return 0;
999}
1000
1001static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1002 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1003 unsigned long addr, unsigned long end)
1004{
1005 pud_t *src_pud, *dst_pud;
1006 unsigned long next;
1007
1008 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1009 if (!dst_pud)
1010 return -ENOMEM;
1011 src_pud = pud_offset(src_pgd, addr);
1012 do {
1013 next = pud_addr_end(addr, end);
1014 if (pud_none_or_clear_bad(src_pud))
1015 continue;
1016 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1017 vma, addr, next))
1018 return -ENOMEM;
1019 } while (dst_pud++, src_pud++, addr = next, addr != end);
1020 return 0;
1021}
1022
1023int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1024 struct vm_area_struct *vma)
1025{
1026 pgd_t *src_pgd, *dst_pgd;
1027 unsigned long next;
1028 unsigned long addr = vma->vm_start;
1029 unsigned long end = vma->vm_end;
2ec74c3e
SG
1030 unsigned long mmun_start; /* For mmu_notifiers */
1031 unsigned long mmun_end; /* For mmu_notifiers */
1032 bool is_cow;
cddb8a5c 1033 int ret;
1da177e4 1034
d992895b
NP
1035 /*
1036 * Don't copy ptes where a page fault will fill them correctly.
1037 * Fork becomes much lighter when there are big shared or private
1038 * readonly mappings. The tradeoff is that copy_page_range is more
1039 * efficient than faulting.
1040 */
4b6e1e37
KK
1041 if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1042 VM_PFNMAP | VM_MIXEDMAP))) {
d992895b
NP
1043 if (!vma->anon_vma)
1044 return 0;
1045 }
1046
1da177e4
LT
1047 if (is_vm_hugetlb_page(vma))
1048 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1049
b3b9c293 1050 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
2ab64037 1051 /*
1052 * We do not free on error cases below as remove_vma
1053 * gets called on error from higher level routine
1054 */
5180da41 1055 ret = track_pfn_copy(vma);
2ab64037 1056 if (ret)
1057 return ret;
1058 }
1059
cddb8a5c
AA
1060 /*
1061 * We need to invalidate the secondary MMU mappings only when
1062 * there could be a permission downgrade on the ptes of the
1063 * parent mm. And a permission downgrade will only happen if
1064 * is_cow_mapping() returns true.
1065 */
2ec74c3e
SG
1066 is_cow = is_cow_mapping(vma->vm_flags);
1067 mmun_start = addr;
1068 mmun_end = end;
1069 if (is_cow)
1070 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1071 mmun_end);
cddb8a5c
AA
1072
1073 ret = 0;
1da177e4
LT
1074 dst_pgd = pgd_offset(dst_mm, addr);
1075 src_pgd = pgd_offset(src_mm, addr);
1076 do {
1077 next = pgd_addr_end(addr, end);
1078 if (pgd_none_or_clear_bad(src_pgd))
1079 continue;
cddb8a5c
AA
1080 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1081 vma, addr, next))) {
1082 ret = -ENOMEM;
1083 break;
1084 }
1da177e4 1085 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1086
2ec74c3e
SG
1087 if (is_cow)
1088 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
cddb8a5c 1089 return ret;
1da177e4
LT
1090}
1091
51c6f666 1092static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1093 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1094 unsigned long addr, unsigned long end,
97a89413 1095 struct zap_details *details)
1da177e4 1096{
b5810039 1097 struct mm_struct *mm = tlb->mm;
d16dfc55 1098 int force_flush = 0;
d559db08 1099 int rss[NR_MM_COUNTERS];
97a89413 1100 spinlock_t *ptl;
5f1a1907 1101 pte_t *start_pte;
97a89413 1102 pte_t *pte;
d559db08 1103
d16dfc55 1104again:
e303297e 1105 init_rss_vec(rss);
5f1a1907
SR
1106 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1107 pte = start_pte;
6606c3e0 1108 arch_enter_lazy_mmu_mode();
1da177e4
LT
1109 do {
1110 pte_t ptent = *pte;
51c6f666 1111 if (pte_none(ptent)) {
1da177e4 1112 continue;
51c6f666 1113 }
6f5e6b9e 1114
1da177e4 1115 if (pte_present(ptent)) {
ee498ed7 1116 struct page *page;
51c6f666 1117
6aab341e 1118 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
1119 if (unlikely(details) && page) {
1120 /*
1121 * unmap_shared_mapping_pages() wants to
1122 * invalidate cache without truncating:
1123 * unmap shared but keep private pages.
1124 */
1125 if (details->check_mapping &&
1126 details->check_mapping != page->mapping)
1127 continue;
1128 /*
1129 * Each page->index must be checked when
1130 * invalidating or truncating nonlinear.
1131 */
1132 if (details->nonlinear_vma &&
1133 (page->index < details->first_index ||
1134 page->index > details->last_index))
1135 continue;
1136 }
b5810039 1137 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1138 tlb->fullmm);
1da177e4
LT
1139 tlb_remove_tlb_entry(tlb, pte, addr);
1140 if (unlikely(!page))
1141 continue;
1142 if (unlikely(details) && details->nonlinear_vma
1143 && linear_page_index(details->nonlinear_vma,
1144 addr) != page->index)
b5810039 1145 set_pte_at(mm, addr, pte,
1da177e4 1146 pgoff_to_pte(page->index));
1da177e4 1147 if (PageAnon(page))
d559db08 1148 rss[MM_ANONPAGES]--;
6237bcd9
HD
1149 else {
1150 if (pte_dirty(ptent))
1151 set_page_dirty(page);
4917e5d0
JW
1152 if (pte_young(ptent) &&
1153 likely(!VM_SequentialReadHint(vma)))
bf3f3bc5 1154 mark_page_accessed(page);
d559db08 1155 rss[MM_FILEPAGES]--;
6237bcd9 1156 }
edc315fd 1157 page_remove_rmap(page);
3dc14741
HD
1158 if (unlikely(page_mapcount(page) < 0))
1159 print_bad_pte(vma, addr, ptent, page);
d16dfc55
PZ
1160 force_flush = !__tlb_remove_page(tlb, page);
1161 if (force_flush)
1162 break;
1da177e4
LT
1163 continue;
1164 }
1165 /*
1166 * If details->check_mapping, we leave swap entries;
1167 * if details->nonlinear_vma, we leave file entries.
1168 */
1169 if (unlikely(details))
1170 continue;
2509ef26
HD
1171 if (pte_file(ptent)) {
1172 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1173 print_bad_pte(vma, addr, ptent, NULL);
b084d435
KH
1174 } else {
1175 swp_entry_t entry = pte_to_swp_entry(ptent);
1176
1177 if (!non_swap_entry(entry))
1178 rss[MM_SWAPENTS]--;
9f9f1acd
KK
1179 else if (is_migration_entry(entry)) {
1180 struct page *page;
1181
1182 page = migration_entry_to_page(entry);
1183
1184 if (PageAnon(page))
1185 rss[MM_ANONPAGES]--;
1186 else
1187 rss[MM_FILEPAGES]--;
1188 }
b084d435
KH
1189 if (unlikely(!free_swap_and_cache(entry)))
1190 print_bad_pte(vma, addr, ptent, NULL);
1191 }
9888a1ca 1192 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1193 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1194
d559db08 1195 add_mm_rss_vec(mm, rss);
6606c3e0 1196 arch_leave_lazy_mmu_mode();
5f1a1907 1197 pte_unmap_unlock(start_pte, ptl);
51c6f666 1198
d16dfc55
PZ
1199 /*
1200 * mmu_gather ran out of room to batch pages, we break out of
1201 * the PTE lock to avoid doing the potential expensive TLB invalidate
1202 * and page-free while holding it.
1203 */
1204 if (force_flush) {
8e220cfd
LT
1205 unsigned long old_end;
1206
d16dfc55 1207 force_flush = 0;
597e1c35 1208
8e220cfd
LT
1209 /*
1210 * Flush the TLB just for the previous segment,
1211 * then update the range to be the remaining
1212 * TLB range.
1213 */
1214 old_end = tlb->end;
78077c22 1215 tlb->end = addr;
8e220cfd 1216
d16dfc55 1217 tlb_flush_mmu(tlb);
8e220cfd
LT
1218
1219 tlb->start = addr;
1220 tlb->end = old_end;
1221
1222 if (addr != end)
d16dfc55
PZ
1223 goto again;
1224 }
1225
51c6f666 1226 return addr;
1da177e4
LT
1227}
1228
51c6f666 1229static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1230 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1231 unsigned long addr, unsigned long end,
97a89413 1232 struct zap_details *details)
1da177e4
LT
1233{
1234 pmd_t *pmd;
1235 unsigned long next;
1236
1237 pmd = pmd_offset(pud, addr);
1238 do {
1239 next = pmd_addr_end(addr, end);
71e3aac0 1240 if (pmd_trans_huge(*pmd)) {
1a5a9906 1241 if (next - addr != HPAGE_PMD_SIZE) {
e0897d75
DR
1242#ifdef CONFIG_DEBUG_VM
1243 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1244 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1245 __func__, addr, end,
1246 vma->vm_start,
1247 vma->vm_end);
1248 BUG();
1249 }
1250#endif
e180377f 1251 split_huge_page_pmd(vma, addr, pmd);
f21760b1 1252 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1253 goto next;
71e3aac0
AA
1254 /* fall through */
1255 }
1a5a9906
AA
1256 /*
1257 * Here there can be other concurrent MADV_DONTNEED or
1258 * trans huge page faults running, and if the pmd is
1259 * none or trans huge it can change under us. This is
1260 * because MADV_DONTNEED holds the mmap_sem in read
1261 * mode.
1262 */
1263 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1264 goto next;
97a89413 1265 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1266next:
97a89413
PZ
1267 cond_resched();
1268 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1269
1270 return addr;
1da177e4
LT
1271}
1272
51c6f666 1273static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
b5810039 1274 struct vm_area_struct *vma, pgd_t *pgd,
1da177e4 1275 unsigned long addr, unsigned long end,
97a89413 1276 struct zap_details *details)
1da177e4
LT
1277{
1278 pud_t *pud;
1279 unsigned long next;
1280
1281 pud = pud_offset(pgd, addr);
1282 do {
1283 next = pud_addr_end(addr, end);
97a89413 1284 if (pud_none_or_clear_bad(pud))
1da177e4 1285 continue;
97a89413
PZ
1286 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1287 } while (pud++, addr = next, addr != end);
51c6f666
RH
1288
1289 return addr;
1da177e4
LT
1290}
1291
038c7aa1
AV
1292static void unmap_page_range(struct mmu_gather *tlb,
1293 struct vm_area_struct *vma,
1294 unsigned long addr, unsigned long end,
1295 struct zap_details *details)
1da177e4
LT
1296{
1297 pgd_t *pgd;
1298 unsigned long next;
1299
1300 if (details && !details->check_mapping && !details->nonlinear_vma)
1301 details = NULL;
1302
1303 BUG_ON(addr >= end);
569b846d 1304 mem_cgroup_uncharge_start();
1da177e4
LT
1305 tlb_start_vma(tlb, vma);
1306 pgd = pgd_offset(vma->vm_mm, addr);
1307 do {
1308 next = pgd_addr_end(addr, end);
97a89413 1309 if (pgd_none_or_clear_bad(pgd))
1da177e4 1310 continue;
97a89413
PZ
1311 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1312 } while (pgd++, addr = next, addr != end);
1da177e4 1313 tlb_end_vma(tlb, vma);
569b846d 1314 mem_cgroup_uncharge_end();
1da177e4 1315}
51c6f666 1316
f5cc4eef
AV
1317
1318static void unmap_single_vma(struct mmu_gather *tlb,
1319 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1320 unsigned long end_addr,
f5cc4eef
AV
1321 struct zap_details *details)
1322{
1323 unsigned long start = max(vma->vm_start, start_addr);
1324 unsigned long end;
1325
1326 if (start >= vma->vm_end)
1327 return;
1328 end = min(vma->vm_end, end_addr);
1329 if (end <= vma->vm_start)
1330 return;
1331
cbc91f71
SD
1332 if (vma->vm_file)
1333 uprobe_munmap(vma, start, end);
1334
b3b9c293 1335 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1336 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1337
1338 if (start != end) {
1339 if (unlikely(is_vm_hugetlb_page(vma))) {
1340 /*
1341 * It is undesirable to test vma->vm_file as it
1342 * should be non-null for valid hugetlb area.
1343 * However, vm_file will be NULL in the error
1344 * cleanup path of do_mmap_pgoff. When
1345 * hugetlbfs ->mmap method fails,
1346 * do_mmap_pgoff() nullifies vma->vm_file
1347 * before calling this function to clean up.
1348 * Since no pte has actually been setup, it is
1349 * safe to do nothing in this case.
1350 */
24669e58
AK
1351 if (vma->vm_file) {
1352 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
d833352a 1353 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
24669e58
AK
1354 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1355 }
f5cc4eef
AV
1356 } else
1357 unmap_page_range(tlb, vma, start, end, details);
1358 }
1da177e4
LT
1359}
1360
1da177e4
LT
1361/**
1362 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1363 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1364 * @vma: the starting vma
1365 * @start_addr: virtual address at which to start unmapping
1366 * @end_addr: virtual address at which to end unmapping
1da177e4 1367 *
508034a3 1368 * Unmap all pages in the vma list.
1da177e4 1369 *
1da177e4
LT
1370 * Only addresses between `start' and `end' will be unmapped.
1371 *
1372 * The VMA list must be sorted in ascending virtual address order.
1373 *
1374 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1375 * range after unmap_vmas() returns. So the only responsibility here is to
1376 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1377 * drops the lock and schedules.
1378 */
6e8bb019 1379void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1380 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1381 unsigned long end_addr)
1da177e4 1382{
cddb8a5c 1383 struct mm_struct *mm = vma->vm_mm;
1da177e4 1384
cddb8a5c 1385 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
f5cc4eef 1386 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1387 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
cddb8a5c 1388 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1da177e4
LT
1389}
1390
1391/**
1392 * zap_page_range - remove user pages in a given range
1393 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1394 * @start: starting address of pages to zap
1da177e4
LT
1395 * @size: number of bytes to zap
1396 * @details: details of nonlinear truncation or shared cache invalidation
f5cc4eef
AV
1397 *
1398 * Caller must protect the VMA list
1da177e4 1399 */
7e027b14 1400void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1401 unsigned long size, struct zap_details *details)
1402{
1403 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1404 struct mmu_gather tlb;
7e027b14 1405 unsigned long end = start + size;
1da177e4 1406
1da177e4 1407 lru_add_drain();
8e220cfd 1408 tlb_gather_mmu(&tlb, mm, start, end);
365e9c87 1409 update_hiwater_rss(mm);
7e027b14
LT
1410 mmu_notifier_invalidate_range_start(mm, start, end);
1411 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
4f74d2c8 1412 unmap_single_vma(&tlb, vma, start, end, details);
7e027b14
LT
1413 mmu_notifier_invalidate_range_end(mm, start, end);
1414 tlb_finish_mmu(&tlb, start, end);
1da177e4
LT
1415}
1416
f5cc4eef
AV
1417/**
1418 * zap_page_range_single - remove user pages in a given range
1419 * @vma: vm_area_struct holding the applicable pages
1420 * @address: starting address of pages to zap
1421 * @size: number of bytes to zap
1422 * @details: details of nonlinear truncation or shared cache invalidation
1423 *
1424 * The range must fit into one VMA.
1da177e4 1425 */
f5cc4eef 1426static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1427 unsigned long size, struct zap_details *details)
1428{
1429 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1430 struct mmu_gather tlb;
1da177e4 1431 unsigned long end = address + size;
1da177e4 1432
1da177e4 1433 lru_add_drain();
8e220cfd 1434 tlb_gather_mmu(&tlb, mm, address, end);
365e9c87 1435 update_hiwater_rss(mm);
f5cc4eef 1436 mmu_notifier_invalidate_range_start(mm, address, end);
4f74d2c8 1437 unmap_single_vma(&tlb, vma, address, end, details);
f5cc4eef 1438 mmu_notifier_invalidate_range_end(mm, address, end);
d16dfc55 1439 tlb_finish_mmu(&tlb, address, end);
1da177e4
LT
1440}
1441
c627f9cc
JS
1442/**
1443 * zap_vma_ptes - remove ptes mapping the vma
1444 * @vma: vm_area_struct holding ptes to be zapped
1445 * @address: starting address of pages to zap
1446 * @size: number of bytes to zap
1447 *
1448 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1449 *
1450 * The entire address range must be fully contained within the vma.
1451 *
1452 * Returns 0 if successful.
1453 */
1454int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1455 unsigned long size)
1456{
1457 if (address < vma->vm_start || address + size > vma->vm_end ||
1458 !(vma->vm_flags & VM_PFNMAP))
1459 return -1;
f5cc4eef 1460 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1461 return 0;
1462}
1463EXPORT_SYMBOL_GPL(zap_vma_ptes);
1464
142762bd 1465/**
240aadee 1466 * follow_page_mask - look up a page descriptor from a user-virtual address
142762bd
JW
1467 * @vma: vm_area_struct mapping @address
1468 * @address: virtual address to look up
1469 * @flags: flags modifying lookup behaviour
240aadee 1470 * @page_mask: on output, *page_mask is set according to the size of the page
142762bd
JW
1471 *
1472 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1473 *
1474 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1475 * an error pointer if there is a mapping to something not represented
1476 * by a page descriptor (see also vm_normal_page()).
1da177e4 1477 */
240aadee
ML
1478struct page *follow_page_mask(struct vm_area_struct *vma,
1479 unsigned long address, unsigned int flags,
1480 unsigned int *page_mask)
1da177e4
LT
1481{
1482 pgd_t *pgd;
1483 pud_t *pud;
1484 pmd_t *pmd;
1485 pte_t *ptep, pte;
deceb6cd 1486 spinlock_t *ptl;
1da177e4 1487 struct page *page;
6aab341e 1488 struct mm_struct *mm = vma->vm_mm;
1da177e4 1489
240aadee
ML
1490 *page_mask = 0;
1491
deceb6cd
HD
1492 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1493 if (!IS_ERR(page)) {
1494 BUG_ON(flags & FOLL_GET);
1495 goto out;
1496 }
1da177e4 1497
deceb6cd 1498 page = NULL;
1da177e4
LT
1499 pgd = pgd_offset(mm, address);
1500 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
deceb6cd 1501 goto no_page_table;
1da177e4
LT
1502
1503 pud = pud_offset(pgd, address);
ceb86879 1504 if (pud_none(*pud))
deceb6cd 1505 goto no_page_table;
8a07651e 1506 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
ceb86879
AK
1507 BUG_ON(flags & FOLL_GET);
1508 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1509 goto out;
1510 }
1511 if (unlikely(pud_bad(*pud)))
1512 goto no_page_table;
1513
1da177e4 1514 pmd = pmd_offset(pud, address);
aeed5fce 1515 if (pmd_none(*pmd))
deceb6cd 1516 goto no_page_table;
71e3aac0 1517 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
deceb6cd
HD
1518 BUG_ON(flags & FOLL_GET);
1519 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1da177e4 1520 goto out;
deceb6cd 1521 }
0b9d7052
AA
1522 if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1523 goto no_page_table;
71e3aac0 1524 if (pmd_trans_huge(*pmd)) {
500d65d4 1525 if (flags & FOLL_SPLIT) {
e180377f 1526 split_huge_page_pmd(vma, address, pmd);
500d65d4
AA
1527 goto split_fallthrough;
1528 }
71e3aac0
AA
1529 spin_lock(&mm->page_table_lock);
1530 if (likely(pmd_trans_huge(*pmd))) {
1531 if (unlikely(pmd_trans_splitting(*pmd))) {
1532 spin_unlock(&mm->page_table_lock);
1533 wait_split_huge_page(vma->anon_vma, pmd);
1534 } else {
b676b293 1535 page = follow_trans_huge_pmd(vma, address,
71e3aac0
AA
1536 pmd, flags);
1537 spin_unlock(&mm->page_table_lock);
240aadee 1538 *page_mask = HPAGE_PMD_NR - 1;
71e3aac0
AA
1539 goto out;
1540 }
1541 } else
1542 spin_unlock(&mm->page_table_lock);
1543 /* fall through */
1544 }
500d65d4 1545split_fallthrough:
aeed5fce
HD
1546 if (unlikely(pmd_bad(*pmd)))
1547 goto no_page_table;
1548
deceb6cd 1549 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
1550
1551 pte = *ptep;
5117b3b8
HD
1552 if (!pte_present(pte)) {
1553 swp_entry_t entry;
1554 /*
1555 * KSM's break_ksm() relies upon recognizing a ksm page
1556 * even while it is being migrated, so for that case we
1557 * need migration_entry_wait().
1558 */
1559 if (likely(!(flags & FOLL_MIGRATION)))
1560 goto no_page;
1561 if (pte_none(pte) || pte_file(pte))
1562 goto no_page;
1563 entry = pte_to_swp_entry(pte);
1564 if (!is_migration_entry(entry))
1565 goto no_page;
1566 pte_unmap_unlock(ptep, ptl);
1567 migration_entry_wait(mm, pmd, address);
1568 goto split_fallthrough;
1569 }
0b9d7052
AA
1570 if ((flags & FOLL_NUMA) && pte_numa(pte))
1571 goto no_page;
deceb6cd
HD
1572 if ((flags & FOLL_WRITE) && !pte_write(pte))
1573 goto unlock;
a13ea5b7 1574
6aab341e 1575 page = vm_normal_page(vma, address, pte);
a13ea5b7
HD
1576 if (unlikely(!page)) {
1577 if ((flags & FOLL_DUMP) ||
62eede62 1578 !is_zero_pfn(pte_pfn(pte)))
a13ea5b7
HD
1579 goto bad_page;
1580 page = pte_page(pte);
1581 }
1da177e4 1582
deceb6cd 1583 if (flags & FOLL_GET)
70b50f94 1584 get_page_foll(page);
deceb6cd
HD
1585 if (flags & FOLL_TOUCH) {
1586 if ((flags & FOLL_WRITE) &&
1587 !pte_dirty(pte) && !PageDirty(page))
1588 set_page_dirty(page);
bd775c42
KM
1589 /*
1590 * pte_mkyoung() would be more correct here, but atomic care
1591 * is needed to avoid losing the dirty bit: it is easier to use
1592 * mark_page_accessed().
1593 */
deceb6cd
HD
1594 mark_page_accessed(page);
1595 }
a1fde08c 1596 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
110d74a9
ML
1597 /*
1598 * The preliminary mapping check is mainly to avoid the
1599 * pointless overhead of lock_page on the ZERO_PAGE
1600 * which might bounce very badly if there is contention.
1601 *
1602 * If the page is already locked, we don't need to
1603 * handle it now - vmscan will handle it later if and
1604 * when it attempts to reclaim the page.
1605 */
1606 if (page->mapping && trylock_page(page)) {
1607 lru_add_drain(); /* push cached pages to LRU */
1608 /*
e6c509f8
HD
1609 * Because we lock page here, and migration is
1610 * blocked by the pte's page reference, and we
1611 * know the page is still mapped, we don't even
1612 * need to check for file-cache page truncation.
110d74a9 1613 */
e6c509f8 1614 mlock_vma_page(page);
110d74a9
ML
1615 unlock_page(page);
1616 }
1617 }
deceb6cd
HD
1618unlock:
1619 pte_unmap_unlock(ptep, ptl);
1da177e4 1620out:
deceb6cd 1621 return page;
1da177e4 1622
89f5b7da
LT
1623bad_page:
1624 pte_unmap_unlock(ptep, ptl);
1625 return ERR_PTR(-EFAULT);
1626
1627no_page:
1628 pte_unmap_unlock(ptep, ptl);
1629 if (!pte_none(pte))
1630 return page;
8e4b9a60 1631
deceb6cd
HD
1632no_page_table:
1633 /*
1634 * When core dumping an enormous anonymous area that nobody
8e4b9a60
HD
1635 * has touched so far, we don't want to allocate unnecessary pages or
1636 * page tables. Return error instead of NULL to skip handle_mm_fault,
1637 * then get_dump_page() will return NULL to leave a hole in the dump.
1638 * But we can only make this optimization where a hole would surely
1639 * be zero-filled if handle_mm_fault() actually did handle it.
deceb6cd 1640 */
8e4b9a60
HD
1641 if ((flags & FOLL_DUMP) &&
1642 (!vma->vm_ops || !vma->vm_ops->fault))
1643 return ERR_PTR(-EFAULT);
deceb6cd 1644 return page;
1da177e4
LT
1645}
1646
95042f9e
LT
1647static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1648{
a09a79f6
MP
1649 return stack_guard_page_start(vma, addr) ||
1650 stack_guard_page_end(vma, addr+PAGE_SIZE);
95042f9e
LT
1651}
1652
0014bd99
HY
1653/**
1654 * __get_user_pages() - pin user pages in memory
1655 * @tsk: task_struct of target task
1656 * @mm: mm_struct of target mm
1657 * @start: starting user address
1658 * @nr_pages: number of pages from start to pin
1659 * @gup_flags: flags modifying pin behaviour
1660 * @pages: array that receives pointers to the pages pinned.
1661 * Should be at least nr_pages long. Or NULL, if caller
1662 * only intends to ensure the pages are faulted in.
1663 * @vmas: array of pointers to vmas corresponding to each page.
1664 * Or NULL if the caller does not require them.
1665 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1666 *
1667 * Returns number of pages pinned. This may be fewer than the number
1668 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1669 * were pinned, returns -errno. Each page returned must be released
1670 * with a put_page() call when it is finished with. vmas will only
1671 * remain valid while mmap_sem is held.
1672 *
1673 * Must be called with mmap_sem held for read or write.
1674 *
1675 * __get_user_pages walks a process's page tables and takes a reference to
1676 * each struct page that each user address corresponds to at a given
1677 * instant. That is, it takes the page that would be accessed if a user
1678 * thread accesses the given user virtual address at that instant.
1679 *
1680 * This does not guarantee that the page exists in the user mappings when
1681 * __get_user_pages returns, and there may even be a completely different
1682 * page there in some cases (eg. if mmapped pagecache has been invalidated
1683 * and subsequently re faulted). However it does guarantee that the page
1684 * won't be freed completely. And mostly callers simply care that the page
1685 * contains data that was valid *at some point in time*. Typically, an IO
1686 * or similar operation cannot guarantee anything stronger anyway because
1687 * locks can't be held over the syscall boundary.
1688 *
1689 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1690 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1691 * appropriate) must be called after the page is finished with, and
1692 * before put_page is called.
1693 *
1694 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1695 * or mmap_sem contention, and if waiting is needed to pin all pages,
1696 * *@nonblocking will be set to 0.
1697 *
1698 * In most cases, get_user_pages or get_user_pages_fast should be used
1699 * instead of __get_user_pages. __get_user_pages should be used only if
1700 * you need some special @gup_flags.
1701 */
28a35716
ML
1702long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1703 unsigned long start, unsigned long nr_pages,
1704 unsigned int gup_flags, struct page **pages,
1705 struct vm_area_struct **vmas, int *nonblocking)
1da177e4 1706{
28a35716 1707 long i;
58fa879e 1708 unsigned long vm_flags;
240aadee 1709 unsigned int page_mask;
1da177e4 1710
28a35716 1711 if (!nr_pages)
900cf086 1712 return 0;
58fa879e
HD
1713
1714 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1715
1da177e4
LT
1716 /*
1717 * Require read or write permissions.
58fa879e 1718 * If FOLL_FORCE is set, we only require the "MAY" flags.
1da177e4 1719 */
58fa879e
HD
1720 vm_flags = (gup_flags & FOLL_WRITE) ?
1721 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1722 vm_flags &= (gup_flags & FOLL_FORCE) ?
1723 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
0b9d7052
AA
1724
1725 /*
1726 * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1727 * would be called on PROT_NONE ranges. We must never invoke
1728 * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1729 * page faults would unprotect the PROT_NONE ranges if
1730 * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1731 * bitflag. So to avoid that, don't set FOLL_NUMA if
1732 * FOLL_FORCE is set.
1733 */
1734 if (!(gup_flags & FOLL_FORCE))
1735 gup_flags |= FOLL_NUMA;
1736
1da177e4
LT
1737 i = 0;
1738
1739 do {
deceb6cd 1740 struct vm_area_struct *vma;
1da177e4
LT
1741
1742 vma = find_extend_vma(mm, start);
e7f22e20 1743 if (!vma && in_gate_area(mm, start)) {
1da177e4 1744 unsigned long pg = start & PAGE_MASK;
1da177e4
LT
1745 pgd_t *pgd;
1746 pud_t *pud;
1747 pmd_t *pmd;
1748 pte_t *pte;
b291f000
NP
1749
1750 /* user gate pages are read-only */
58fa879e 1751 if (gup_flags & FOLL_WRITE)
1da177e4
LT
1752 return i ? : -EFAULT;
1753 if (pg > TASK_SIZE)
1754 pgd = pgd_offset_k(pg);
1755 else
1756 pgd = pgd_offset_gate(mm, pg);
1757 BUG_ON(pgd_none(*pgd));
1758 pud = pud_offset(pgd, pg);
1759 BUG_ON(pud_none(*pud));
1760 pmd = pmd_offset(pud, pg);
690dbe1c
HD
1761 if (pmd_none(*pmd))
1762 return i ? : -EFAULT;
f66055ab 1763 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4 1764 pte = pte_offset_map(pmd, pg);
690dbe1c
HD
1765 if (pte_none(*pte)) {
1766 pte_unmap(pte);
1767 return i ? : -EFAULT;
1768 }
95042f9e 1769 vma = get_gate_vma(mm);
1da177e4 1770 if (pages) {
de51257a
HD
1771 struct page *page;
1772
95042f9e 1773 page = vm_normal_page(vma, start, *pte);
de51257a
HD
1774 if (!page) {
1775 if (!(gup_flags & FOLL_DUMP) &&
1776 is_zero_pfn(pte_pfn(*pte)))
1777 page = pte_page(*pte);
1778 else {
1779 pte_unmap(pte);
1780 return i ? : -EFAULT;
1781 }
1782 }
6aab341e 1783 pages[i] = page;
de51257a 1784 get_page(page);
1da177e4
LT
1785 }
1786 pte_unmap(pte);
240aadee 1787 page_mask = 0;
95042f9e 1788 goto next_page;
1da177e4
LT
1789 }
1790
b291f000
NP
1791 if (!vma ||
1792 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1c3aff1c 1793 !(vm_flags & vma->vm_flags))
1da177e4
LT
1794 return i ? : -EFAULT;
1795
2a15efc9
HD
1796 if (is_vm_hugetlb_page(vma)) {
1797 i = follow_hugetlb_page(mm, vma, pages, vmas,
58fa879e 1798 &start, &nr_pages, i, gup_flags);
2a15efc9
HD
1799 continue;
1800 }
deceb6cd 1801
1da177e4 1802 do {
08ef4729 1803 struct page *page;
58fa879e 1804 unsigned int foll_flags = gup_flags;
240aadee 1805 unsigned int page_increm;
1da177e4 1806
462e00cc 1807 /*
4779280d 1808 * If we have a pending SIGKILL, don't keep faulting
1c3aff1c 1809 * pages and potentially allocating memory.
462e00cc 1810 */
1c3aff1c 1811 if (unlikely(fatal_signal_pending(current)))
4779280d 1812 return i ? i : -ERESTARTSYS;
462e00cc 1813
deceb6cd 1814 cond_resched();
240aadee
ML
1815 while (!(page = follow_page_mask(vma, start,
1816 foll_flags, &page_mask))) {
deceb6cd 1817 int ret;
53a7706d
ML
1818 unsigned int fault_flags = 0;
1819
a09a79f6
MP
1820 /* For mlock, just skip the stack guard page. */
1821 if (foll_flags & FOLL_MLOCK) {
1822 if (stack_guard_page(vma, start))
1823 goto next_page;
1824 }
53a7706d
ML
1825 if (foll_flags & FOLL_WRITE)
1826 fault_flags |= FAULT_FLAG_WRITE;
1827 if (nonblocking)
1828 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
318b275f
GN
1829 if (foll_flags & FOLL_NOWAIT)
1830 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
d06063cc 1831
d26ed650 1832 ret = handle_mm_fault(mm, vma, start,
53a7706d 1833 fault_flags);
d26ed650 1834
83c54070
NP
1835 if (ret & VM_FAULT_ERROR) {
1836 if (ret & VM_FAULT_OOM)
1837 return i ? i : -ENOMEM;
69ebb83e
HY
1838 if (ret & (VM_FAULT_HWPOISON |
1839 VM_FAULT_HWPOISON_LARGE)) {
1840 if (i)
1841 return i;
1842 else if (gup_flags & FOLL_HWPOISON)
1843 return -EHWPOISON;
1844 else
1845 return -EFAULT;
1846 }
0c42d1fb
LT
1847 if (ret & (VM_FAULT_SIGBUS |
1848 VM_FAULT_SIGSEGV))
83c54070
NP
1849 return i ? i : -EFAULT;
1850 BUG();
1851 }
e7f22e20
SW
1852
1853 if (tsk) {
1854 if (ret & VM_FAULT_MAJOR)
1855 tsk->maj_flt++;
1856 else
1857 tsk->min_flt++;
1858 }
83c54070 1859
53a7706d 1860 if (ret & VM_FAULT_RETRY) {
318b275f
GN
1861 if (nonblocking)
1862 *nonblocking = 0;
53a7706d
ML
1863 return i;
1864 }
1865
a68d2ebc 1866 /*
83c54070
NP
1867 * The VM_FAULT_WRITE bit tells us that
1868 * do_wp_page has broken COW when necessary,
1869 * even if maybe_mkwrite decided not to set
1870 * pte_write. We can thus safely do subsequent
878b63ac
HD
1871 * page lookups as if they were reads. But only
1872 * do so when looping for pte_write is futile:
1873 * in some cases userspace may also be wanting
1874 * to write to the gotten user page, which a
1875 * read fault here might prevent (a readonly
1876 * page might get reCOWed by userspace write).
a68d2ebc 1877 */
878b63ac
HD
1878 if ((ret & VM_FAULT_WRITE) &&
1879 !(vma->vm_flags & VM_WRITE))
deceb6cd 1880 foll_flags &= ~FOLL_WRITE;
83c54070 1881
7f7bbbe5 1882 cond_resched();
1da177e4 1883 }
89f5b7da
LT
1884 if (IS_ERR(page))
1885 return i ? i : PTR_ERR(page);
1da177e4 1886 if (pages) {
08ef4729 1887 pages[i] = page;
03beb076 1888
a6f36be3 1889 flush_anon_page(vma, page, start);
08ef4729 1890 flush_dcache_page(page);
240aadee 1891 page_mask = 0;
1da177e4 1892 }
95042f9e 1893next_page:
240aadee 1894 if (vmas) {
1da177e4 1895 vmas[i] = vma;
240aadee
ML
1896 page_mask = 0;
1897 }
1898 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
1899 if (page_increm > nr_pages)
1900 page_increm = nr_pages;
1901 i += page_increm;
1902 start += page_increm * PAGE_SIZE;
1903 nr_pages -= page_increm;
9d73777e
PZ
1904 } while (nr_pages && start < vma->vm_end);
1905 } while (nr_pages);
1da177e4
LT
1906 return i;
1907}
0014bd99 1908EXPORT_SYMBOL(__get_user_pages);
b291f000 1909
2efaca92
BH
1910/*
1911 * fixup_user_fault() - manually resolve a user page fault
1912 * @tsk: the task_struct to use for page fault accounting, or
1913 * NULL if faults are not to be recorded.
1914 * @mm: mm_struct of target mm
1915 * @address: user address
1916 * @fault_flags:flags to pass down to handle_mm_fault()
1917 *
1918 * This is meant to be called in the specific scenario where for locking reasons
1919 * we try to access user memory in atomic context (within a pagefault_disable()
1920 * section), this returns -EFAULT, and we want to resolve the user fault before
1921 * trying again.
1922 *
1923 * Typically this is meant to be used by the futex code.
1924 *
1925 * The main difference with get_user_pages() is that this function will
1926 * unconditionally call handle_mm_fault() which will in turn perform all the
1927 * necessary SW fixup of the dirty and young bits in the PTE, while
1928 * handle_mm_fault() only guarantees to update these in the struct page.
1929 *
1930 * This is important for some architectures where those bits also gate the
1931 * access permission to the page because they are maintained in software. On
1932 * such architectures, gup() will not be enough to make a subsequent access
1933 * succeed.
1934 *
1935 * This should be called with the mm_sem held for read.
1936 */
1937int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1938 unsigned long address, unsigned int fault_flags)
1939{
1940 struct vm_area_struct *vma;
96679ed6 1941 vm_flags_t vm_flags;
2efaca92
BH
1942 int ret;
1943
1944 vma = find_extend_vma(mm, address);
1945 if (!vma || address < vma->vm_start)
1946 return -EFAULT;
1947
96679ed6
LT
1948 vm_flags = (fault_flags & FAULT_FLAG_WRITE) ? VM_WRITE : VM_READ;
1949 if (!(vm_flags & vma->vm_flags))
1950 return -EFAULT;
1951
2efaca92
BH
1952 ret = handle_mm_fault(mm, vma, address, fault_flags);
1953 if (ret & VM_FAULT_ERROR) {
1954 if (ret & VM_FAULT_OOM)
1955 return -ENOMEM;
1956 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1957 return -EHWPOISON;
0c42d1fb 1958 if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2efaca92
BH
1959 return -EFAULT;
1960 BUG();
1961 }
1962 if (tsk) {
1963 if (ret & VM_FAULT_MAJOR)
1964 tsk->maj_flt++;
1965 else
1966 tsk->min_flt++;
1967 }
1968 return 0;
1969}
1970
1971/*
d2bf6be8 1972 * get_user_pages() - pin user pages in memory
e7f22e20
SW
1973 * @tsk: the task_struct to use for page fault accounting, or
1974 * NULL if faults are not to be recorded.
d2bf6be8
NP
1975 * @mm: mm_struct of target mm
1976 * @start: starting user address
9d73777e 1977 * @nr_pages: number of pages from start to pin
d2bf6be8
NP
1978 * @write: whether pages will be written to by the caller
1979 * @force: whether to force write access even if user mapping is
1980 * readonly. This will result in the page being COWed even
1981 * in MAP_SHARED mappings. You do not want this.
1982 * @pages: array that receives pointers to the pages pinned.
1983 * Should be at least nr_pages long. Or NULL, if caller
1984 * only intends to ensure the pages are faulted in.
1985 * @vmas: array of pointers to vmas corresponding to each page.
1986 * Or NULL if the caller does not require them.
1987 *
1988 * Returns number of pages pinned. This may be fewer than the number
9d73777e 1989 * requested. If nr_pages is 0 or negative, returns 0. If no pages
d2bf6be8
NP
1990 * were pinned, returns -errno. Each page returned must be released
1991 * with a put_page() call when it is finished with. vmas will only
1992 * remain valid while mmap_sem is held.
1993 *
1994 * Must be called with mmap_sem held for read or write.
1995 *
1996 * get_user_pages walks a process's page tables and takes a reference to
1997 * each struct page that each user address corresponds to at a given
1998 * instant. That is, it takes the page that would be accessed if a user
1999 * thread accesses the given user virtual address at that instant.
2000 *
2001 * This does not guarantee that the page exists in the user mappings when
2002 * get_user_pages returns, and there may even be a completely different
2003 * page there in some cases (eg. if mmapped pagecache has been invalidated
2004 * and subsequently re faulted). However it does guarantee that the page
2005 * won't be freed completely. And mostly callers simply care that the page
2006 * contains data that was valid *at some point in time*. Typically, an IO
2007 * or similar operation cannot guarantee anything stronger anyway because
2008 * locks can't be held over the syscall boundary.
2009 *
2010 * If write=0, the page must not be written to. If the page is written to,
2011 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
2012 * after the page is finished with, and before put_page is called.
2013 *
2014 * get_user_pages is typically used for fewer-copy IO operations, to get a
2015 * handle on the memory by some means other than accesses via the user virtual
2016 * addresses. The pages may be submitted for DMA to devices or accessed via
2017 * their kernel linear mapping (via the kmap APIs). Care should be taken to
2018 * use the correct cache flushing APIs.
2019 *
2020 * See also get_user_pages_fast, for performance critical applications.
2021 */
28a35716
ML
2022long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
2023 unsigned long start, unsigned long nr_pages, int write,
2024 int force, struct page **pages, struct vm_area_struct **vmas)
b291f000 2025{
58fa879e 2026 int flags = FOLL_TOUCH;
b291f000 2027
58fa879e
HD
2028 if (pages)
2029 flags |= FOLL_GET;
b291f000 2030 if (write)
58fa879e 2031 flags |= FOLL_WRITE;
b291f000 2032 if (force)
58fa879e 2033 flags |= FOLL_FORCE;
b291f000 2034
53a7706d
ML
2035 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
2036 NULL);
b291f000 2037}
1da177e4
LT
2038EXPORT_SYMBOL(get_user_pages);
2039
f3e8fccd
HD
2040/**
2041 * get_dump_page() - pin user page in memory while writing it to core dump
2042 * @addr: user address
2043 *
2044 * Returns struct page pointer of user page pinned for dump,
2045 * to be freed afterwards by page_cache_release() or put_page().
2046 *
2047 * Returns NULL on any kind of failure - a hole must then be inserted into
2048 * the corefile, to preserve alignment with its headers; and also returns
2049 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2050 * allowing a hole to be left in the corefile to save diskspace.
2051 *
2052 * Called without mmap_sem, but after all other threads have been killed.
2053 */
2054#ifdef CONFIG_ELF_CORE
2055struct page *get_dump_page(unsigned long addr)
2056{
2057 struct vm_area_struct *vma;
2058 struct page *page;
2059
2060 if (__get_user_pages(current, current->mm, addr, 1,
53a7706d
ML
2061 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2062 NULL) < 1)
f3e8fccd 2063 return NULL;
f3e8fccd
HD
2064 flush_cache_page(vma, addr, page_to_pfn(page));
2065 return page;
2066}
2067#endif /* CONFIG_ELF_CORE */
2068
25ca1d6c 2069pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
920c7a5d 2070 spinlock_t **ptl)
c9cfcddf
LT
2071{
2072 pgd_t * pgd = pgd_offset(mm, addr);
2073 pud_t * pud = pud_alloc(mm, pgd, addr);
2074 if (pud) {
49c91fb0 2075 pmd_t * pmd = pmd_alloc(mm, pud, addr);
f66055ab
AA
2076 if (pmd) {
2077 VM_BUG_ON(pmd_trans_huge(*pmd));
c9cfcddf 2078 return pte_alloc_map_lock(mm, pmd, addr, ptl);
f66055ab 2079 }
c9cfcddf
LT
2080 }
2081 return NULL;
2082}
2083
238f58d8
LT
2084/*
2085 * This is the old fallback for page remapping.
2086 *
2087 * For historical reasons, it only allows reserved pages. Only
2088 * old drivers should use this, and they needed to mark their
2089 * pages reserved for the old functions anyway.
2090 */
423bad60
NP
2091static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2092 struct page *page, pgprot_t prot)
238f58d8 2093{
423bad60 2094 struct mm_struct *mm = vma->vm_mm;
238f58d8 2095 int retval;
c9cfcddf 2096 pte_t *pte;
8a9f3ccd
BS
2097 spinlock_t *ptl;
2098
238f58d8 2099 retval = -EINVAL;
a145dd41 2100 if (PageAnon(page))
5b4e655e 2101 goto out;
238f58d8
LT
2102 retval = -ENOMEM;
2103 flush_dcache_page(page);
c9cfcddf 2104 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 2105 if (!pte)
5b4e655e 2106 goto out;
238f58d8
LT
2107 retval = -EBUSY;
2108 if (!pte_none(*pte))
2109 goto out_unlock;
2110
2111 /* Ok, finally just insert the thing.. */
2112 get_page(page);
34e55232 2113 inc_mm_counter_fast(mm, MM_FILEPAGES);
238f58d8
LT
2114 page_add_file_rmap(page);
2115 set_pte_at(mm, addr, pte, mk_pte(page, prot));
2116
2117 retval = 0;
8a9f3ccd
BS
2118 pte_unmap_unlock(pte, ptl);
2119 return retval;
238f58d8
LT
2120out_unlock:
2121 pte_unmap_unlock(pte, ptl);
2122out:
2123 return retval;
2124}
2125
bfa5bf6d
REB
2126/**
2127 * vm_insert_page - insert single page into user vma
2128 * @vma: user vma to map to
2129 * @addr: target user address of this page
2130 * @page: source kernel page
2131 *
a145dd41
LT
2132 * This allows drivers to insert individual pages they've allocated
2133 * into a user vma.
2134 *
2135 * The page has to be a nice clean _individual_ kernel allocation.
2136 * If you allocate a compound page, you need to have marked it as
2137 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 2138 * (see split_page()).
a145dd41
LT
2139 *
2140 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2141 * took an arbitrary page protection parameter. This doesn't allow
2142 * that. Your vma protection will have to be set up correctly, which
2143 * means that if you want a shared writable mapping, you'd better
2144 * ask for a shared writable mapping!
2145 *
2146 * The page does not need to be reserved.
4b6e1e37
KK
2147 *
2148 * Usually this function is called from f_op->mmap() handler
2149 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2150 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2151 * function from other places, for example from page-fault handler.
a145dd41 2152 */
423bad60
NP
2153int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2154 struct page *page)
a145dd41
LT
2155{
2156 if (addr < vma->vm_start || addr >= vma->vm_end)
2157 return -EFAULT;
2158 if (!page_count(page))
2159 return -EINVAL;
4b6e1e37
KK
2160 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2161 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2162 BUG_ON(vma->vm_flags & VM_PFNMAP);
2163 vma->vm_flags |= VM_MIXEDMAP;
2164 }
423bad60 2165 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 2166}
e3c3374f 2167EXPORT_SYMBOL(vm_insert_page);
a145dd41 2168
423bad60
NP
2169static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2170 unsigned long pfn, pgprot_t prot)
2171{
2172 struct mm_struct *mm = vma->vm_mm;
2173 int retval;
2174 pte_t *pte, entry;
2175 spinlock_t *ptl;
2176
2177 retval = -ENOMEM;
2178 pte = get_locked_pte(mm, addr, &ptl);
2179 if (!pte)
2180 goto out;
2181 retval = -EBUSY;
2182 if (!pte_none(*pte))
2183 goto out_unlock;
2184
2185 /* Ok, finally just insert the thing.. */
2186 entry = pte_mkspecial(pfn_pte(pfn, prot));
2187 set_pte_at(mm, addr, pte, entry);
4b3073e1 2188 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60
NP
2189
2190 retval = 0;
2191out_unlock:
2192 pte_unmap_unlock(pte, ptl);
2193out:
2194 return retval;
2195}
2196
e0dc0d8f
NP
2197/**
2198 * vm_insert_pfn - insert single pfn into user vma
2199 * @vma: user vma to map to
2200 * @addr: target user address of this page
2201 * @pfn: source kernel pfn
2202 *
c462f179 2203 * Similar to vm_insert_page, this allows drivers to insert individual pages
e0dc0d8f
NP
2204 * they've allocated into a user vma. Same comments apply.
2205 *
2206 * This function should only be called from a vm_ops->fault handler, and
2207 * in that case the handler should return NULL.
0d71d10a
NP
2208 *
2209 * vma cannot be a COW mapping.
2210 *
2211 * As this is called only for pages that do not currently exist, we
2212 * do not need to flush old virtual caches or the TLB.
e0dc0d8f
NP
2213 */
2214int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 2215 unsigned long pfn)
e0dc0d8f 2216{
2ab64037 2217 int ret;
e4b866ed 2218 pgprot_t pgprot = vma->vm_page_prot;
7e675137
NP
2219 /*
2220 * Technically, architectures with pte_special can avoid all these
2221 * restrictions (same for remap_pfn_range). However we would like
2222 * consistency in testing and feature parity among all, so we should
2223 * try to keep these invariants in place for everybody.
2224 */
b379d790
JH
2225 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2226 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2227 (VM_PFNMAP|VM_MIXEDMAP));
2228 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2229 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 2230
423bad60
NP
2231 if (addr < vma->vm_start || addr >= vma->vm_end)
2232 return -EFAULT;
5180da41 2233 if (track_pfn_insert(vma, &pgprot, pfn))
2ab64037 2234 return -EINVAL;
2235
e4b866ed 2236 ret = insert_pfn(vma, addr, pfn, pgprot);
2ab64037 2237
2ab64037 2238 return ret;
423bad60
NP
2239}
2240EXPORT_SYMBOL(vm_insert_pfn);
e0dc0d8f 2241
423bad60
NP
2242int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2243 unsigned long pfn)
2244{
2245 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
e0dc0d8f 2246
423bad60
NP
2247 if (addr < vma->vm_start || addr >= vma->vm_end)
2248 return -EFAULT;
e0dc0d8f 2249
423bad60
NP
2250 /*
2251 * If we don't have pte special, then we have to use the pfn_valid()
2252 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2253 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
2254 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2255 * without pte special, it would there be refcounted as a normal page.
423bad60
NP
2256 */
2257 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2258 struct page *page;
2259
2260 page = pfn_to_page(pfn);
2261 return insert_page(vma, addr, page, vma->vm_page_prot);
2262 }
2263 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
e0dc0d8f 2264}
423bad60 2265EXPORT_SYMBOL(vm_insert_mixed);
e0dc0d8f 2266
1da177e4
LT
2267/*
2268 * maps a range of physical memory into the requested pages. the old
2269 * mappings are removed. any references to nonexistent pages results
2270 * in null mappings (currently treated as "copy-on-access")
2271 */
2272static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2273 unsigned long addr, unsigned long end,
2274 unsigned long pfn, pgprot_t prot)
2275{
2276 pte_t *pte;
c74df32c 2277 spinlock_t *ptl;
1da177e4 2278
c74df32c 2279 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
2280 if (!pte)
2281 return -ENOMEM;
6606c3e0 2282 arch_enter_lazy_mmu_mode();
1da177e4
LT
2283 do {
2284 BUG_ON(!pte_none(*pte));
7e675137 2285 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
2286 pfn++;
2287 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 2288 arch_leave_lazy_mmu_mode();
c74df32c 2289 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
2290 return 0;
2291}
2292
2293static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2294 unsigned long addr, unsigned long end,
2295 unsigned long pfn, pgprot_t prot)
2296{
2297 pmd_t *pmd;
2298 unsigned long next;
2299
2300 pfn -= addr >> PAGE_SHIFT;
2301 pmd = pmd_alloc(mm, pud, addr);
2302 if (!pmd)
2303 return -ENOMEM;
f66055ab 2304 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
2305 do {
2306 next = pmd_addr_end(addr, end);
2307 if (remap_pte_range(mm, pmd, addr, next,
2308 pfn + (addr >> PAGE_SHIFT), prot))
2309 return -ENOMEM;
2310 } while (pmd++, addr = next, addr != end);
2311 return 0;
2312}
2313
2314static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2315 unsigned long addr, unsigned long end,
2316 unsigned long pfn, pgprot_t prot)
2317{
2318 pud_t *pud;
2319 unsigned long next;
2320
2321 pfn -= addr >> PAGE_SHIFT;
2322 pud = pud_alloc(mm, pgd, addr);
2323 if (!pud)
2324 return -ENOMEM;
2325 do {
2326 next = pud_addr_end(addr, end);
2327 if (remap_pmd_range(mm, pud, addr, next,
2328 pfn + (addr >> PAGE_SHIFT), prot))
2329 return -ENOMEM;
2330 } while (pud++, addr = next, addr != end);
2331 return 0;
2332}
2333
bfa5bf6d
REB
2334/**
2335 * remap_pfn_range - remap kernel memory to userspace
2336 * @vma: user vma to map to
2337 * @addr: target user address to start at
2338 * @pfn: physical address of kernel memory
2339 * @size: size of map area
2340 * @prot: page protection flags for this mapping
2341 *
2342 * Note: this is only safe if the mm semaphore is held when called.
2343 */
1da177e4
LT
2344int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2345 unsigned long pfn, unsigned long size, pgprot_t prot)
2346{
2347 pgd_t *pgd;
2348 unsigned long next;
2d15cab8 2349 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
2350 struct mm_struct *mm = vma->vm_mm;
2351 int err;
2352
2353 /*
2354 * Physically remapped pages are special. Tell the
2355 * rest of the world about it:
2356 * VM_IO tells people not to look at these pages
2357 * (accesses can have side effects).
6aab341e
LT
2358 * VM_PFNMAP tells the core MM that the base pages are just
2359 * raw PFN mappings, and do not have a "struct page" associated
2360 * with them.
314e51b9
KK
2361 * VM_DONTEXPAND
2362 * Disable vma merging and expanding with mremap().
2363 * VM_DONTDUMP
2364 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
2365 *
2366 * There's a horrible special case to handle copy-on-write
2367 * behaviour that some programs depend on. We mark the "original"
2368 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 2369 * See vm_normal_page() for details.
1da177e4 2370 */
b3b9c293
KK
2371 if (is_cow_mapping(vma->vm_flags)) {
2372 if (addr != vma->vm_start || end != vma->vm_end)
2373 return -EINVAL;
fb155c16 2374 vma->vm_pgoff = pfn;
b3b9c293
KK
2375 }
2376
2377 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2378 if (err)
3c8bb73a 2379 return -EINVAL;
fb155c16 2380
314e51b9 2381 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
2382
2383 BUG_ON(addr >= end);
2384 pfn -= addr >> PAGE_SHIFT;
2385 pgd = pgd_offset(mm, addr);
2386 flush_cache_range(vma, addr, end);
1da177e4
LT
2387 do {
2388 next = pgd_addr_end(addr, end);
2389 err = remap_pud_range(mm, pgd, addr, next,
2390 pfn + (addr >> PAGE_SHIFT), prot);
2391 if (err)
2392 break;
2393 } while (pgd++, addr = next, addr != end);
2ab64037 2394
2395 if (err)
5180da41 2396 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2ab64037 2397
1da177e4
LT
2398 return err;
2399}
2400EXPORT_SYMBOL(remap_pfn_range);
2401
b4cbb197
LT
2402/**
2403 * vm_iomap_memory - remap memory to userspace
2404 * @vma: user vma to map to
2405 * @start: start of area
2406 * @len: size of area
2407 *
2408 * This is a simplified io_remap_pfn_range() for common driver use. The
2409 * driver just needs to give us the physical memory range to be mapped,
2410 * we'll figure out the rest from the vma information.
2411 *
2412 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2413 * whatever write-combining details or similar.
2414 */
2415int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2416{
2417 unsigned long vm_len, pfn, pages;
2418
2419 /* Check that the physical memory area passed in looks valid */
2420 if (start + len < start)
2421 return -EINVAL;
2422 /*
2423 * You *really* shouldn't map things that aren't page-aligned,
2424 * but we've historically allowed it because IO memory might
2425 * just have smaller alignment.
2426 */
2427 len += start & ~PAGE_MASK;
2428 pfn = start >> PAGE_SHIFT;
2429 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2430 if (pfn + pages < pfn)
2431 return -EINVAL;
2432
2433 /* We start the mapping 'vm_pgoff' pages into the area */
2434 if (vma->vm_pgoff > pages)
2435 return -EINVAL;
2436 pfn += vma->vm_pgoff;
2437 pages -= vma->vm_pgoff;
2438
2439 /* Can we fit all of the mapping? */
2440 vm_len = vma->vm_end - vma->vm_start;
2441 if (vm_len >> PAGE_SHIFT > pages)
2442 return -EINVAL;
2443
2444 /* Ok, let it rip */
2445 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2446}
2447EXPORT_SYMBOL(vm_iomap_memory);
2448
aee16b3c
JF
2449static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2450 unsigned long addr, unsigned long end,
2451 pte_fn_t fn, void *data)
2452{
2453 pte_t *pte;
2454 int err;
2f569afd 2455 pgtable_t token;
94909914 2456 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
2457
2458 pte = (mm == &init_mm) ?
2459 pte_alloc_kernel(pmd, addr) :
2460 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2461 if (!pte)
2462 return -ENOMEM;
2463
2464 BUG_ON(pmd_huge(*pmd));
2465
38e0edb1
JF
2466 arch_enter_lazy_mmu_mode();
2467
2f569afd 2468 token = pmd_pgtable(*pmd);
aee16b3c
JF
2469
2470 do {
c36987e2 2471 err = fn(pte++, token, addr, data);
aee16b3c
JF
2472 if (err)
2473 break;
c36987e2 2474 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 2475
38e0edb1
JF
2476 arch_leave_lazy_mmu_mode();
2477
aee16b3c
JF
2478 if (mm != &init_mm)
2479 pte_unmap_unlock(pte-1, ptl);
2480 return err;
2481}
2482
2483static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2484 unsigned long addr, unsigned long end,
2485 pte_fn_t fn, void *data)
2486{
2487 pmd_t *pmd;
2488 unsigned long next;
2489 int err;
2490
ceb86879
AK
2491 BUG_ON(pud_huge(*pud));
2492
aee16b3c
JF
2493 pmd = pmd_alloc(mm, pud, addr);
2494 if (!pmd)
2495 return -ENOMEM;
2496 do {
2497 next = pmd_addr_end(addr, end);
2498 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2499 if (err)
2500 break;
2501 } while (pmd++, addr = next, addr != end);
2502 return err;
2503}
2504
2505static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2506 unsigned long addr, unsigned long end,
2507 pte_fn_t fn, void *data)
2508{
2509 pud_t *pud;
2510 unsigned long next;
2511 int err;
2512
2513 pud = pud_alloc(mm, pgd, addr);
2514 if (!pud)
2515 return -ENOMEM;
2516 do {
2517 next = pud_addr_end(addr, end);
2518 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2519 if (err)
2520 break;
2521 } while (pud++, addr = next, addr != end);
2522 return err;
2523}
2524
2525/*
2526 * Scan a region of virtual memory, filling in page tables as necessary
2527 * and calling a provided function on each leaf page table.
2528 */
2529int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2530 unsigned long size, pte_fn_t fn, void *data)
2531{
2532 pgd_t *pgd;
2533 unsigned long next;
57250a5b 2534 unsigned long end = addr + size;
aee16b3c
JF
2535 int err;
2536
2537 BUG_ON(addr >= end);
2538 pgd = pgd_offset(mm, addr);
2539 do {
2540 next = pgd_addr_end(addr, end);
2541 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2542 if (err)
2543 break;
2544 } while (pgd++, addr = next, addr != end);
57250a5b 2545
aee16b3c
JF
2546 return err;
2547}
2548EXPORT_SYMBOL_GPL(apply_to_page_range);
2549
8f4e2101
HD
2550/*
2551 * handle_pte_fault chooses page fault handler according to an entry
2552 * which was read non-atomically. Before making any commitment, on
2553 * those architectures or configurations (e.g. i386 with PAE) which
a335b2e1 2554 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
8f4e2101
HD
2555 * must check under lock before unmapping the pte and proceeding
2556 * (but do_wp_page is only called after already making such a check;
a335b2e1 2557 * and do_anonymous_page can safely check later on).
8f4e2101 2558 */
4c21e2f2 2559static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
2560 pte_t *page_table, pte_t orig_pte)
2561{
2562 int same = 1;
2563#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2564 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
2565 spinlock_t *ptl = pte_lockptr(mm, pmd);
2566 spin_lock(ptl);
8f4e2101 2567 same = pte_same(*page_table, orig_pte);
4c21e2f2 2568 spin_unlock(ptl);
8f4e2101
HD
2569 }
2570#endif
2571 pte_unmap(page_table);
2572 return same;
2573}
2574
9de455b2 2575static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e
LT
2576{
2577 /*
2578 * If the source page was a PFN mapping, we don't have
2579 * a "struct page" for it. We do a best-effort copy by
2580 * just copying from the original user address. If that
2581 * fails, we just zero-fill it. Live with it.
2582 */
2583 if (unlikely(!src)) {
9b04c5fe 2584 void *kaddr = kmap_atomic(dst);
5d2a2dbb
LT
2585 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2586
2587 /*
2588 * This really shouldn't fail, because the page is there
2589 * in the page tables. But it might just be unreadable,
2590 * in which case we just give up and fill the result with
2591 * zeroes.
2592 */
2593 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
3ecb01df 2594 clear_page(kaddr);
9b04c5fe 2595 kunmap_atomic(kaddr);
c4ec7b0d 2596 flush_dcache_page(dst);
0ed361de
NP
2597 } else
2598 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
2599}
2600
1da177e4
LT
2601/*
2602 * This routine handles present pages, when users try to write
2603 * to a shared page. It is done by copying the page to a new address
2604 * and decrementing the shared-page counter for the old page.
2605 *
1da177e4
LT
2606 * Note that this routine assumes that the protection checks have been
2607 * done by the caller (the low-level page fault routine in most cases).
2608 * Thus we can safely just mark it writable once we've done any necessary
2609 * COW.
2610 *
2611 * We also mark the page dirty at this point even though the page will
2612 * change only once the write actually happens. This avoids a few races,
2613 * and potentially makes it more efficient.
2614 *
8f4e2101
HD
2615 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2616 * but allow concurrent faults), with pte both mapped and locked.
2617 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2618 */
65500d23
HD
2619static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2620 unsigned long address, pte_t *page_table, pmd_t *pmd,
8f4e2101 2621 spinlock_t *ptl, pte_t orig_pte)
e6219ec8 2622 __releases(ptl)
1da177e4 2623{
2ec74c3e 2624 struct page *old_page, *new_page = NULL;
1da177e4 2625 pte_t entry;
b009c024 2626 int ret = 0;
a200ee18 2627 int page_mkwrite = 0;
d08b3851 2628 struct page *dirty_page = NULL;
1756954c
DR
2629 unsigned long mmun_start = 0; /* For mmu_notifiers */
2630 unsigned long mmun_end = 0; /* For mmu_notifiers */
1da177e4 2631
6aab341e 2632 old_page = vm_normal_page(vma, address, orig_pte);
251b97f5
PZ
2633 if (!old_page) {
2634 /*
2635 * VM_MIXEDMAP !pfn_valid() case
2636 *
2637 * We should not cow pages in a shared writeable mapping.
2638 * Just mark the pages writable as we can't do any dirty
2639 * accounting on raw pfn maps.
2640 */
2641 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2642 (VM_WRITE|VM_SHARED))
2643 goto reuse;
6aab341e 2644 goto gotten;
251b97f5 2645 }
1da177e4 2646
d08b3851 2647 /*
ee6a6457
PZ
2648 * Take out anonymous pages first, anonymous shared vmas are
2649 * not dirty accountable.
d08b3851 2650 */
9a840895 2651 if (PageAnon(old_page) && !PageKsm(old_page)) {
ab967d86
HD
2652 if (!trylock_page(old_page)) {
2653 page_cache_get(old_page);
2654 pte_unmap_unlock(page_table, ptl);
2655 lock_page(old_page);
2656 page_table = pte_offset_map_lock(mm, pmd, address,
2657 &ptl);
2658 if (!pte_same(*page_table, orig_pte)) {
2659 unlock_page(old_page);
ab967d86
HD
2660 goto unlock;
2661 }
2662 page_cache_release(old_page);
ee6a6457 2663 }
b009c024 2664 if (reuse_swap_page(old_page)) {
c44b6743
RR
2665 /*
2666 * The page is all ours. Move it to our anon_vma so
2667 * the rmap code will not search our parent or siblings.
2668 * Protected against the rmap code by the page lock.
2669 */
2670 page_move_anon_rmap(old_page, vma, address);
b009c024
ML
2671 unlock_page(old_page);
2672 goto reuse;
2673 }
ab967d86 2674 unlock_page(old_page);
ee6a6457 2675 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2676 (VM_WRITE|VM_SHARED))) {
ee6a6457
PZ
2677 /*
2678 * Only catch write-faults on shared writable pages,
2679 * read-only shared pages can get COWed by
2680 * get_user_pages(.write=1, .force=1).
2681 */
9637a5ef 2682 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
c2ec175c
NP
2683 struct vm_fault vmf;
2684 int tmp;
2685
2686 vmf.virtual_address = (void __user *)(address &
2687 PAGE_MASK);
2688 vmf.pgoff = old_page->index;
2689 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2690 vmf.page = old_page;
2691
9637a5ef
DH
2692 /*
2693 * Notify the address space that the page is about to
2694 * become writable so that it can prohibit this or wait
2695 * for the page to get into an appropriate state.
2696 *
2697 * We do this without the lock held, so that it can
2698 * sleep if it needs to.
2699 */
2700 page_cache_get(old_page);
2701 pte_unmap_unlock(page_table, ptl);
2702
c2ec175c
NP
2703 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2704 if (unlikely(tmp &
2705 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2706 ret = tmp;
9637a5ef 2707 goto unwritable_page;
c2ec175c 2708 }
b827e496
NP
2709 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2710 lock_page(old_page);
2711 if (!old_page->mapping) {
2712 ret = 0; /* retry the fault */
2713 unlock_page(old_page);
2714 goto unwritable_page;
2715 }
2716 } else
2717 VM_BUG_ON(!PageLocked(old_page));
9637a5ef 2718
9637a5ef
DH
2719 /*
2720 * Since we dropped the lock we need to revalidate
2721 * the PTE as someone else may have changed it. If
2722 * they did, we just return, as we can count on the
2723 * MMU to tell us if they didn't also make it writable.
2724 */
2725 page_table = pte_offset_map_lock(mm, pmd, address,
2726 &ptl);
b827e496
NP
2727 if (!pte_same(*page_table, orig_pte)) {
2728 unlock_page(old_page);
9637a5ef 2729 goto unlock;
b827e496 2730 }
a200ee18
PZ
2731
2732 page_mkwrite = 1;
1da177e4 2733 }
d08b3851
PZ
2734 dirty_page = old_page;
2735 get_page(dirty_page);
9637a5ef 2736
251b97f5 2737reuse:
9637a5ef
DH
2738 flush_cache_page(vma, address, pte_pfn(orig_pte));
2739 entry = pte_mkyoung(orig_pte);
2740 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
954ffcb3 2741 if (ptep_set_access_flags(vma, address, page_table, entry,1))
4b3073e1 2742 update_mmu_cache(vma, address, page_table);
72ddc8f7 2743 pte_unmap_unlock(page_table, ptl);
9637a5ef 2744 ret |= VM_FAULT_WRITE;
72ddc8f7
ML
2745
2746 if (!dirty_page)
2747 return ret;
2748
2749 /*
2750 * Yes, Virginia, this is actually required to prevent a race
2751 * with clear_page_dirty_for_io() from clearing the page dirty
2752 * bit after it clear all dirty ptes, but before a racing
2753 * do_wp_page installs a dirty pte.
2754 *
a335b2e1 2755 * __do_fault is protected similarly.
72ddc8f7
ML
2756 */
2757 if (!page_mkwrite) {
2758 wait_on_page_locked(dirty_page);
2759 set_page_dirty_balance(dirty_page, page_mkwrite);
41c4d25f
JK
2760 /* file_update_time outside page_lock */
2761 if (vma->vm_file)
2762 file_update_time(vma->vm_file);
72ddc8f7
ML
2763 }
2764 put_page(dirty_page);
2765 if (page_mkwrite) {
2766 struct address_space *mapping = dirty_page->mapping;
2767
2768 set_page_dirty(dirty_page);
2769 unlock_page(dirty_page);
2770 page_cache_release(dirty_page);
2771 if (mapping) {
2772 /*
2773 * Some device drivers do not set page.mapping
2774 * but still dirty their pages
2775 */
2776 balance_dirty_pages_ratelimited(mapping);
2777 }
2778 }
2779
72ddc8f7 2780 return ret;
1da177e4 2781 }
1da177e4
LT
2782
2783 /*
2784 * Ok, we need to copy. Oh, well..
2785 */
b5810039 2786 page_cache_get(old_page);
920fc356 2787gotten:
8f4e2101 2788 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2789
2790 if (unlikely(anon_vma_prepare(vma)))
65500d23 2791 goto oom;
a13ea5b7 2792
62eede62 2793 if (is_zero_pfn(pte_pfn(orig_pte))) {
a13ea5b7
HD
2794 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2795 if (!new_page)
2796 goto oom;
2797 } else {
2798 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2799 if (!new_page)
2800 goto oom;
2801 cow_user_page(new_page, old_page, address, vma);
2802 }
2803 __SetPageUptodate(new_page);
2804
2c26fdd7 2805 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
8a9f3ccd
BS
2806 goto oom_free_new;
2807
6bdb913f 2808 mmun_start = address & PAGE_MASK;
1756954c 2809 mmun_end = mmun_start + PAGE_SIZE;
6bdb913f
HE
2810 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2811
1da177e4
LT
2812 /*
2813 * Re-check the pte - we dropped the lock
2814 */
8f4e2101 2815 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
65500d23 2816 if (likely(pte_same(*page_table, orig_pte))) {
920fc356 2817 if (old_page) {
920fc356 2818 if (!PageAnon(old_page)) {
34e55232
KH
2819 dec_mm_counter_fast(mm, MM_FILEPAGES);
2820 inc_mm_counter_fast(mm, MM_ANONPAGES);
920fc356
HD
2821 }
2822 } else
34e55232 2823 inc_mm_counter_fast(mm, MM_ANONPAGES);
eca35133 2824 flush_cache_page(vma, address, pte_pfn(orig_pte));
65500d23
HD
2825 entry = mk_pte(new_page, vma->vm_page_prot);
2826 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4ce072f1
SS
2827 /*
2828 * Clear the pte entry and flush it first, before updating the
2829 * pte with the new entry. This will avoid a race condition
2830 * seen in the presence of one thread doing SMC and another
2831 * thread doing COW.
2832 */
828502d3 2833 ptep_clear_flush(vma, address, page_table);
9617d95e 2834 page_add_new_anon_rmap(new_page, vma, address);
828502d3
IE
2835 /*
2836 * We call the notify macro here because, when using secondary
2837 * mmu page tables (such as kvm shadow page tables), we want the
2838 * new page to be mapped directly into the secondary page table.
2839 */
2840 set_pte_at_notify(mm, address, page_table, entry);
4b3073e1 2841 update_mmu_cache(vma, address, page_table);
945754a1
NP
2842 if (old_page) {
2843 /*
2844 * Only after switching the pte to the new page may
2845 * we remove the mapcount here. Otherwise another
2846 * process may come and find the rmap count decremented
2847 * before the pte is switched to the new page, and
2848 * "reuse" the old page writing into it while our pte
2849 * here still points into it and can be read by other
2850 * threads.
2851 *
2852 * The critical issue is to order this
2853 * page_remove_rmap with the ptp_clear_flush above.
2854 * Those stores are ordered by (if nothing else,)
2855 * the barrier present in the atomic_add_negative
2856 * in page_remove_rmap.
2857 *
2858 * Then the TLB flush in ptep_clear_flush ensures that
2859 * no process can access the old page before the
2860 * decremented mapcount is visible. And the old page
2861 * cannot be reused until after the decremented
2862 * mapcount is visible. So transitively, TLBs to
2863 * old page will be flushed before it can be reused.
2864 */
edc315fd 2865 page_remove_rmap(old_page);
945754a1
NP
2866 }
2867
1da177e4
LT
2868 /* Free the old page.. */
2869 new_page = old_page;
f33ea7f4 2870 ret |= VM_FAULT_WRITE;
8a9f3ccd
BS
2871 } else
2872 mem_cgroup_uncharge_page(new_page);
2873
6bdb913f
HE
2874 if (new_page)
2875 page_cache_release(new_page);
65500d23 2876unlock:
8f4e2101 2877 pte_unmap_unlock(page_table, ptl);
1756954c 2878 if (mmun_end > mmun_start)
6bdb913f 2879 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
e15f8c01
ML
2880 if (old_page) {
2881 /*
2882 * Don't let another task, with possibly unlocked vma,
2883 * keep the mlocked page.
2884 */
2885 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2886 lock_page(old_page); /* LRU manipulation */
2887 munlock_vma_page(old_page);
2888 unlock_page(old_page);
2889 }
2890 page_cache_release(old_page);
2891 }
f33ea7f4 2892 return ret;
8a9f3ccd 2893oom_free_new:
6dbf6d3b 2894 page_cache_release(new_page);
65500d23 2895oom:
66521d5a 2896 if (old_page)
920fc356 2897 page_cache_release(old_page);
1da177e4 2898 return VM_FAULT_OOM;
9637a5ef
DH
2899
2900unwritable_page:
2901 page_cache_release(old_page);
c2ec175c 2902 return ret;
1da177e4
LT
2903}
2904
97a89413 2905static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
2906 unsigned long start_addr, unsigned long end_addr,
2907 struct zap_details *details)
2908{
f5cc4eef 2909 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
2910}
2911
6b2dbba8 2912static inline void unmap_mapping_range_tree(struct rb_root *root,
1da177e4
LT
2913 struct zap_details *details)
2914{
2915 struct vm_area_struct *vma;
1da177e4
LT
2916 pgoff_t vba, vea, zba, zea;
2917
6b2dbba8 2918 vma_interval_tree_foreach(vma, root,
1da177e4 2919 details->first_index, details->last_index) {
1da177e4
LT
2920
2921 vba = vma->vm_pgoff;
2922 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2923 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2924 zba = details->first_index;
2925 if (zba < vba)
2926 zba = vba;
2927 zea = details->last_index;
2928 if (zea > vea)
2929 zea = vea;
2930
97a89413 2931 unmap_mapping_range_vma(vma,
1da177e4
LT
2932 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2933 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 2934 details);
1da177e4
LT
2935 }
2936}
2937
2938static inline void unmap_mapping_range_list(struct list_head *head,
2939 struct zap_details *details)
2940{
2941 struct vm_area_struct *vma;
2942
2943 /*
2944 * In nonlinear VMAs there is no correspondence between virtual address
2945 * offset and file offset. So we must perform an exhaustive search
2946 * across *all* the pages in each nonlinear VMA, not just the pages
2947 * whose virtual address lies outside the file truncation point.
2948 */
6b2dbba8 2949 list_for_each_entry(vma, head, shared.nonlinear) {
1da177e4 2950 details->nonlinear_vma = vma;
97a89413 2951 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
1da177e4
LT
2952 }
2953}
2954
2955/**
72fd4a35 2956 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
3d41088f 2957 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2958 * @holebegin: byte in first page to unmap, relative to the start of
2959 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 2960 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
2961 * must keep the partial page. In contrast, we must get rid of
2962 * partial pages.
2963 * @holelen: size of prospective hole in bytes. This will be rounded
2964 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2965 * end of the file.
2966 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2967 * but 0 when invalidating pagecache, don't throw away private data.
2968 */
2969void unmap_mapping_range(struct address_space *mapping,
2970 loff_t const holebegin, loff_t const holelen, int even_cows)
2971{
2972 struct zap_details details;
2973 pgoff_t hba = holebegin >> PAGE_SHIFT;
2974 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2975
2976 /* Check for overflow. */
2977 if (sizeof(holelen) > sizeof(hlen)) {
2978 long long holeend =
2979 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2980 if (holeend & ~(long long)ULONG_MAX)
2981 hlen = ULONG_MAX - hba + 1;
2982 }
2983
2984 details.check_mapping = even_cows? NULL: mapping;
2985 details.nonlinear_vma = NULL;
2986 details.first_index = hba;
2987 details.last_index = hba + hlen - 1;
2988 if (details.last_index < details.first_index)
2989 details.last_index = ULONG_MAX;
1da177e4 2990
1da177e4 2991
3d48ae45 2992 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 2993 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
1da177e4
LT
2994 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2995 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2996 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
3d48ae45 2997 mutex_unlock(&mapping->i_mmap_mutex);
1da177e4
LT
2998}
2999EXPORT_SYMBOL(unmap_mapping_range);
3000
1da177e4 3001/*
8f4e2101
HD
3002 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3003 * but allow concurrent faults), and pte mapped but not yet locked.
3004 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3005 */
65500d23
HD
3006static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
3007 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3008 unsigned int flags, pte_t orig_pte)
1da177e4 3009{
8f4e2101 3010 spinlock_t *ptl;
56f31801 3011 struct page *page, *swapcache;
65500d23 3012 swp_entry_t entry;
1da177e4 3013 pte_t pte;
d065bd81 3014 int locked;
56039efa 3015 struct mem_cgroup *ptr;
ad8c2ee8 3016 int exclusive = 0;
83c54070 3017 int ret = 0;
1da177e4 3018
4c21e2f2 3019 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
8f4e2101 3020 goto out;
65500d23
HD
3021
3022 entry = pte_to_swp_entry(orig_pte);
d1737fdb
AK
3023 if (unlikely(non_swap_entry(entry))) {
3024 if (is_migration_entry(entry)) {
3025 migration_entry_wait(mm, pmd, address);
3026 } else if (is_hwpoison_entry(entry)) {
3027 ret = VM_FAULT_HWPOISON;
3028 } else {
3029 print_bad_pte(vma, address, orig_pte, NULL);
d99be1a8 3030 ret = VM_FAULT_SIGBUS;
d1737fdb 3031 }
0697212a
CL
3032 goto out;
3033 }
0ff92245 3034 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
3035 page = lookup_swap_cache(entry);
3036 if (!page) {
02098fea
HD
3037 page = swapin_readahead(entry,
3038 GFP_HIGHUSER_MOVABLE, vma, address);
1da177e4
LT
3039 if (!page) {
3040 /*
8f4e2101
HD
3041 * Back out if somebody else faulted in this pte
3042 * while we released the pte lock.
1da177e4 3043 */
8f4e2101 3044 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
3045 if (likely(pte_same(*page_table, orig_pte)))
3046 ret = VM_FAULT_OOM;
0ff92245 3047 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 3048 goto unlock;
1da177e4
LT
3049 }
3050
3051 /* Had to read the page from swap area: Major fault */
3052 ret = VM_FAULT_MAJOR;
f8891e5e 3053 count_vm_event(PGMAJFAULT);
456f998e 3054 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
d1737fdb 3055 } else if (PageHWPoison(page)) {
71f72525
WF
3056 /*
3057 * hwpoisoned dirty swapcache pages are kept for killing
3058 * owner processes (which may be unknown at hwpoison time)
3059 */
d1737fdb
AK
3060 ret = VM_FAULT_HWPOISON;
3061 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
56f31801 3062 swapcache = page;
4779cb31 3063 goto out_release;
1da177e4
LT
3064 }
3065
56f31801 3066 swapcache = page;
d065bd81 3067 locked = lock_page_or_retry(page, mm, flags);
e709ffd6 3068
073e587e 3069 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
3070 if (!locked) {
3071 ret |= VM_FAULT_RETRY;
3072 goto out_release;
3073 }
073e587e 3074
4969c119 3075 /*
31c4a3d3
HD
3076 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3077 * release the swapcache from under us. The page pin, and pte_same
3078 * test below, are not enough to exclude that. Even if it is still
3079 * swapcache, we need to check that the page's swap has not changed.
4969c119 3080 */
31c4a3d3 3081 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
4969c119
AA
3082 goto out_page;
3083
cbf86cfe
HD
3084 page = ksm_might_need_to_copy(page, vma, address);
3085 if (unlikely(!page)) {
3086 ret = VM_FAULT_OOM;
3087 page = swapcache;
cbf86cfe 3088 goto out_page;
5ad64688
HD
3089 }
3090
2c26fdd7 3091 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
8a9f3ccd 3092 ret = VM_FAULT_OOM;
bc43f75c 3093 goto out_page;
8a9f3ccd
BS
3094 }
3095
1da177e4 3096 /*
8f4e2101 3097 * Back out if somebody else already faulted in this pte.
1da177e4 3098 */
8f4e2101 3099 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
9e9bef07 3100 if (unlikely(!pte_same(*page_table, orig_pte)))
b8107480 3101 goto out_nomap;
b8107480
KK
3102
3103 if (unlikely(!PageUptodate(page))) {
3104 ret = VM_FAULT_SIGBUS;
3105 goto out_nomap;
1da177e4
LT
3106 }
3107
8c7c6e34
KH
3108 /*
3109 * The page isn't present yet, go ahead with the fault.
3110 *
3111 * Be careful about the sequence of operations here.
3112 * To get its accounting right, reuse_swap_page() must be called
3113 * while the page is counted on swap but not yet in mapcount i.e.
3114 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3115 * must be called after the swap_free(), or it will never succeed.
03f3c433
KH
3116 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3117 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3118 * in page->private. In this case, a record in swap_cgroup is silently
3119 * discarded at swap_free().
8c7c6e34 3120 */
1da177e4 3121
34e55232 3122 inc_mm_counter_fast(mm, MM_ANONPAGES);
b084d435 3123 dec_mm_counter_fast(mm, MM_SWAPENTS);
1da177e4 3124 pte = mk_pte(page, vma->vm_page_prot);
30c9f3a9 3125 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
1da177e4 3126 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
30c9f3a9 3127 flags &= ~FAULT_FLAG_WRITE;
9a5b489b 3128 ret |= VM_FAULT_WRITE;
ad8c2ee8 3129 exclusive = 1;
1da177e4 3130 }
1da177e4
LT
3131 flush_icache_page(vma, page);
3132 set_pte_at(mm, address, page_table, pte);
56f31801 3133 if (page == swapcache)
af34770e 3134 do_page_add_anon_rmap(page, vma, address, exclusive);
56f31801
HD
3135 else /* ksm created a completely new copy */
3136 page_add_new_anon_rmap(page, vma, address);
03f3c433
KH
3137 /* It's better to call commit-charge after rmap is established */
3138 mem_cgroup_commit_charge_swapin(page, ptr);
1da177e4 3139
c475a8ab 3140 swap_free(entry);
b291f000 3141 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 3142 try_to_free_swap(page);
c475a8ab 3143 unlock_page(page);
56f31801 3144 if (page != swapcache) {
4969c119
AA
3145 /*
3146 * Hold the lock to avoid the swap entry to be reused
3147 * until we take the PT lock for the pte_same() check
3148 * (to avoid false positives from pte_same). For
3149 * further safety release the lock after the swap_free
3150 * so that the swap count won't change under a
3151 * parallel locked swapcache.
3152 */
3153 unlock_page(swapcache);
3154 page_cache_release(swapcache);
3155 }
c475a8ab 3156
30c9f3a9 3157 if (flags & FAULT_FLAG_WRITE) {
61469f1d
HD
3158 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3159 if (ret & VM_FAULT_ERROR)
3160 ret &= VM_FAULT_ERROR;
1da177e4
LT
3161 goto out;
3162 }
3163
3164 /* No need to invalidate - it was non-present before */
4b3073e1 3165 update_mmu_cache(vma, address, page_table);
65500d23 3166unlock:
8f4e2101 3167 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
3168out:
3169 return ret;
b8107480 3170out_nomap:
7a81b88c 3171 mem_cgroup_cancel_charge_swapin(ptr);
8f4e2101 3172 pte_unmap_unlock(page_table, ptl);
bc43f75c 3173out_page:
b8107480 3174 unlock_page(page);
4779cb31 3175out_release:
b8107480 3176 page_cache_release(page);
56f31801 3177 if (page != swapcache) {
4969c119
AA
3178 unlock_page(swapcache);
3179 page_cache_release(swapcache);
3180 }
65500d23 3181 return ret;
1da177e4
LT
3182}
3183
320b2b8d 3184/*
8ca3eb08
TL
3185 * This is like a special single-page "expand_{down|up}wards()",
3186 * except we must first make sure that 'address{-|+}PAGE_SIZE'
320b2b8d 3187 * doesn't hit another vma.
320b2b8d
LT
3188 */
3189static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3190{
3191 address &= PAGE_MASK;
3192 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
0e8e50e2
LT
3193 struct vm_area_struct *prev = vma->vm_prev;
3194
3195 /*
3196 * Is there a mapping abutting this one below?
3197 *
3198 * That's only ok if it's the same stack mapping
3199 * that has gotten split..
3200 */
3201 if (prev && prev->vm_end == address)
3202 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
320b2b8d 3203
88b5d12c 3204 return expand_downwards(vma, address - PAGE_SIZE);
320b2b8d 3205 }
8ca3eb08
TL
3206 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3207 struct vm_area_struct *next = vma->vm_next;
3208
3209 /* As VM_GROWSDOWN but s/below/above/ */
3210 if (next && next->vm_start == address + PAGE_SIZE)
3211 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3212
88b5d12c 3213 return expand_upwards(vma, address + PAGE_SIZE);
8ca3eb08 3214 }
320b2b8d
LT
3215 return 0;
3216}
3217
1da177e4 3218/*
8f4e2101
HD
3219 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3220 * but allow concurrent faults), and pte mapped but not yet locked.
3221 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3222 */
65500d23
HD
3223static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3224 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3225 unsigned int flags)
1da177e4 3226{
8f4e2101
HD
3227 struct page *page;
3228 spinlock_t *ptl;
1da177e4 3229 pte_t entry;
1da177e4 3230
11ac5524
LT
3231 pte_unmap(page_table);
3232
3233 /* Check if we need to add a guard page to the stack */
3234 if (check_stack_guard_page(vma, address) < 0)
320b2b8d
LT
3235 return VM_FAULT_SIGBUS;
3236
11ac5524 3237 /* Use the zero-page for reads */
62eede62
HD
3238 if (!(flags & FAULT_FLAG_WRITE)) {
3239 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3240 vma->vm_page_prot));
11ac5524 3241 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
a13ea5b7
HD
3242 if (!pte_none(*page_table))
3243 goto unlock;
3244 goto setpte;
3245 }
3246
557ed1fa 3247 /* Allocate our own private page. */
557ed1fa
NP
3248 if (unlikely(anon_vma_prepare(vma)))
3249 goto oom;
3250 page = alloc_zeroed_user_highpage_movable(vma, address);
3251 if (!page)
3252 goto oom;
52f37629
MK
3253 /*
3254 * The memory barrier inside __SetPageUptodate makes sure that
3255 * preceeding stores to the page contents become visible before
3256 * the set_pte_at() write.
3257 */
0ed361de 3258 __SetPageUptodate(page);
8f4e2101 3259
2c26fdd7 3260 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
8a9f3ccd
BS
3261 goto oom_free_page;
3262
557ed1fa 3263 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
3264 if (vma->vm_flags & VM_WRITE)
3265 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 3266
557ed1fa 3267 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1c2fb7a4 3268 if (!pte_none(*page_table))
557ed1fa 3269 goto release;
9ba69294 3270
34e55232 3271 inc_mm_counter_fast(mm, MM_ANONPAGES);
557ed1fa 3272 page_add_new_anon_rmap(page, vma, address);
a13ea5b7 3273setpte:
65500d23 3274 set_pte_at(mm, address, page_table, entry);
1da177e4
LT
3275
3276 /* No need to invalidate - it was non-present before */
4b3073e1 3277 update_mmu_cache(vma, address, page_table);
65500d23 3278unlock:
8f4e2101 3279 pte_unmap_unlock(page_table, ptl);
83c54070 3280 return 0;
8f4e2101 3281release:
8a9f3ccd 3282 mem_cgroup_uncharge_page(page);
8f4e2101
HD
3283 page_cache_release(page);
3284 goto unlock;
8a9f3ccd 3285oom_free_page:
6dbf6d3b 3286 page_cache_release(page);
65500d23 3287oom:
1da177e4
LT
3288 return VM_FAULT_OOM;
3289}
3290
3291/*
54cb8821 3292 * __do_fault() tries to create a new page mapping. It aggressively
1da177e4 3293 * tries to share with existing pages, but makes a separate copy if
54cb8821
NP
3294 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3295 * the next page fault.
1da177e4
LT
3296 *
3297 * As this is called only for pages that do not currently exist, we
3298 * do not need to flush old virtual caches or the TLB.
3299 *
8f4e2101 3300 * We enter with non-exclusive mmap_sem (to exclude vma changes,
16abfa08 3301 * but allow concurrent faults), and pte neither mapped nor locked.
8f4e2101 3302 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3303 */
54cb8821 3304static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
16abfa08 3305 unsigned long address, pmd_t *pmd,
54cb8821 3306 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
1da177e4 3307{
16abfa08 3308 pte_t *page_table;
8f4e2101 3309 spinlock_t *ptl;
d0217ac0 3310 struct page *page;
1d65f86d 3311 struct page *cow_page;
1da177e4 3312 pte_t entry;
1da177e4 3313 int anon = 0;
d08b3851 3314 struct page *dirty_page = NULL;
d0217ac0
NP
3315 struct vm_fault vmf;
3316 int ret;
a200ee18 3317 int page_mkwrite = 0;
54cb8821 3318
1d65f86d
KH
3319 /*
3320 * If we do COW later, allocate page befor taking lock_page()
3321 * on the file cache page. This will reduce lock holding time.
3322 */
3323 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3324
3325 if (unlikely(anon_vma_prepare(vma)))
3326 return VM_FAULT_OOM;
3327
3328 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3329 if (!cow_page)
3330 return VM_FAULT_OOM;
3331
3332 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3333 page_cache_release(cow_page);
3334 return VM_FAULT_OOM;
3335 }
3336 } else
3337 cow_page = NULL;
3338
d0217ac0
NP
3339 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3340 vmf.pgoff = pgoff;
3341 vmf.flags = flags;
3342 vmf.page = NULL;
1da177e4 3343
3c18ddd1 3344 ret = vma->vm_ops->fault(vma, &vmf);
d065bd81
ML
3345 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3346 VM_FAULT_RETRY)))
1d65f86d 3347 goto uncharge_out;
1da177e4 3348
a3b947ea
AK
3349 if (unlikely(PageHWPoison(vmf.page))) {
3350 if (ret & VM_FAULT_LOCKED)
3351 unlock_page(vmf.page);
1d65f86d
KH
3352 ret = VM_FAULT_HWPOISON;
3353 goto uncharge_out;
a3b947ea
AK
3354 }
3355
d00806b1 3356 /*
d0217ac0 3357 * For consistency in subsequent calls, make the faulted page always
d00806b1
NP
3358 * locked.
3359 */
83c54070 3360 if (unlikely(!(ret & VM_FAULT_LOCKED)))
d0217ac0 3361 lock_page(vmf.page);
54cb8821 3362 else
d0217ac0 3363 VM_BUG_ON(!PageLocked(vmf.page));
d00806b1 3364
1da177e4
LT
3365 /*
3366 * Should we do an early C-O-W break?
3367 */
d0217ac0 3368 page = vmf.page;
54cb8821 3369 if (flags & FAULT_FLAG_WRITE) {
9637a5ef 3370 if (!(vma->vm_flags & VM_SHARED)) {
1d65f86d 3371 page = cow_page;
54cb8821 3372 anon = 1;
d0217ac0 3373 copy_user_highpage(page, vmf.page, address, vma);
0ed361de 3374 __SetPageUptodate(page);
9637a5ef 3375 } else {
54cb8821
NP
3376 /*
3377 * If the page will be shareable, see if the backing
9637a5ef 3378 * address space wants to know that the page is about
54cb8821
NP
3379 * to become writable
3380 */
69676147 3381 if (vma->vm_ops->page_mkwrite) {
c2ec175c
NP
3382 int tmp;
3383
69676147 3384 unlock_page(page);
b827e496 3385 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
c2ec175c
NP
3386 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3387 if (unlikely(tmp &
3388 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3389 ret = tmp;
b827e496 3390 goto unwritable_page;
d0217ac0 3391 }
b827e496
NP
3392 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3393 lock_page(page);
3394 if (!page->mapping) {
3395 ret = 0; /* retry the fault */
3396 unlock_page(page);
3397 goto unwritable_page;
3398 }
3399 } else
3400 VM_BUG_ON(!PageLocked(page));
a200ee18 3401 page_mkwrite = 1;
9637a5ef
DH
3402 }
3403 }
54cb8821 3404
1da177e4
LT
3405 }
3406
8f4e2101 3407 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
3408
3409 /*
3410 * This silly early PAGE_DIRTY setting removes a race
3411 * due to the bad i386 page protection. But it's valid
3412 * for other architectures too.
3413 *
30c9f3a9 3414 * Note that if FAULT_FLAG_WRITE is set, we either now have
1da177e4
LT
3415 * an exclusive copy of the page, or this is a shared mapping,
3416 * so we can make it writable and dirty to avoid having to
3417 * handle that later.
3418 */
3419 /* Only go through if we didn't race with anybody else... */
1c2fb7a4 3420 if (likely(pte_same(*page_table, orig_pte))) {
d00806b1
NP
3421 flush_icache_page(vma, page);
3422 entry = mk_pte(page, vma->vm_page_prot);
54cb8821 3423 if (flags & FAULT_FLAG_WRITE)
1da177e4 3424 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1da177e4 3425 if (anon) {
34e55232 3426 inc_mm_counter_fast(mm, MM_ANONPAGES);
64d6519d 3427 page_add_new_anon_rmap(page, vma, address);
f57e88a8 3428 } else {
34e55232 3429 inc_mm_counter_fast(mm, MM_FILEPAGES);
d00806b1 3430 page_add_file_rmap(page);
54cb8821 3431 if (flags & FAULT_FLAG_WRITE) {
d00806b1 3432 dirty_page = page;
d08b3851
PZ
3433 get_page(dirty_page);
3434 }
4294621f 3435 }
64d6519d 3436 set_pte_at(mm, address, page_table, entry);
d00806b1
NP
3437
3438 /* no need to invalidate: a not-present page won't be cached */
4b3073e1 3439 update_mmu_cache(vma, address, page_table);
1da177e4 3440 } else {
1d65f86d
KH
3441 if (cow_page)
3442 mem_cgroup_uncharge_page(cow_page);
d00806b1
NP
3443 if (anon)
3444 page_cache_release(page);
3445 else
54cb8821 3446 anon = 1; /* no anon but release faulted_page */
1da177e4
LT
3447 }
3448
8f4e2101 3449 pte_unmap_unlock(page_table, ptl);
d00806b1 3450
b827e496
NP
3451 if (dirty_page) {
3452 struct address_space *mapping = page->mapping;
41c4d25f 3453 int dirtied = 0;
8f7b3d15 3454
b827e496 3455 if (set_page_dirty(dirty_page))
41c4d25f 3456 dirtied = 1;
b827e496 3457 unlock_page(dirty_page);
d08b3851 3458 put_page(dirty_page);
41c4d25f 3459 if ((dirtied || page_mkwrite) && mapping) {
b827e496
NP
3460 /*
3461 * Some device drivers do not set page.mapping but still
3462 * dirty their pages
3463 */
3464 balance_dirty_pages_ratelimited(mapping);
3465 }
3466
3467 /* file_update_time outside page_lock */
41c4d25f 3468 if (vma->vm_file && !page_mkwrite)
b827e496
NP
3469 file_update_time(vma->vm_file);
3470 } else {
3471 unlock_page(vmf.page);
3472 if (anon)
3473 page_cache_release(vmf.page);
d08b3851 3474 }
d00806b1 3475
83c54070 3476 return ret;
b827e496
NP
3477
3478unwritable_page:
3479 page_cache_release(page);
3480 return ret;
1d65f86d
KH
3481uncharge_out:
3482 /* fs's fault handler get error */
3483 if (cow_page) {
3484 mem_cgroup_uncharge_page(cow_page);
3485 page_cache_release(cow_page);
3486 }
3487 return ret;
54cb8821 3488}
d00806b1 3489
54cb8821
NP
3490static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3491 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3492 unsigned int flags, pte_t orig_pte)
54cb8821
NP
3493{
3494 pgoff_t pgoff = (((address & PAGE_MASK)
0da7e01f 3495 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
54cb8821 3496
16abfa08
HD
3497 pte_unmap(page_table);
3498 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
54cb8821
NP
3499}
3500
1da177e4
LT
3501/*
3502 * Fault of a previously existing named mapping. Repopulate the pte
3503 * from the encoded file_pte if possible. This enables swappable
3504 * nonlinear vmas.
8f4e2101
HD
3505 *
3506 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3507 * but allow concurrent faults), and pte mapped but not yet locked.
3508 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3509 */
d0217ac0 3510static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
65500d23 3511 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3512 unsigned int flags, pte_t orig_pte)
1da177e4 3513{
65500d23 3514 pgoff_t pgoff;
1da177e4 3515
30c9f3a9
LT
3516 flags |= FAULT_FLAG_NONLINEAR;
3517
4c21e2f2 3518 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
83c54070 3519 return 0;
1da177e4 3520
2509ef26 3521 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
65500d23
HD
3522 /*
3523 * Page table corrupted: show pte and kill process.
3524 */
3dc14741 3525 print_bad_pte(vma, address, orig_pte, NULL);
d99be1a8 3526 return VM_FAULT_SIGBUS;
65500d23 3527 }
65500d23
HD
3528
3529 pgoff = pte_to_pgoff(orig_pte);
16abfa08 3530 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
1da177e4
LT
3531}
3532
9532fec1 3533int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
174dfa40 3534 unsigned long addr, int page_nid)
9532fec1
MG
3535{
3536 get_page(page);
3537
3538 count_vm_numa_event(NUMA_HINT_FAULTS);
174dfa40 3539 if (page_nid == numa_node_id())
9532fec1
MG
3540 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3541
3542 return mpol_misplaced(page, vma, addr);
3543}
3544
d10e63f2
MG
3545int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3546 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3547{
4daae3b4 3548 struct page *page = NULL;
d10e63f2 3549 spinlock_t *ptl;
174dfa40 3550 int page_nid = -1;
cbee9f88 3551 int target_nid;
b8593bfd 3552 bool migrated = false;
d10e63f2
MG
3553
3554 /*
3555 * The "pte" at this point cannot be used safely without
3556 * validation through pte_unmap_same(). It's of NUMA type but
3557 * the pfn may be screwed if the read is non atomic.
3558 *
3559 * ptep_modify_prot_start is not called as this is clearing
3560 * the _PAGE_NUMA bit and it is not really expected that there
3561 * would be concurrent hardware modifications to the PTE.
3562 */
3563 ptl = pte_lockptr(mm, pmd);
3564 spin_lock(ptl);
4daae3b4
MG
3565 if (unlikely(!pte_same(*ptep, pte))) {
3566 pte_unmap_unlock(ptep, ptl);
3567 goto out;
3568 }
3569
d10e63f2
MG
3570 pte = pte_mknonnuma(pte);
3571 set_pte_at(mm, addr, ptep, pte);
3572 update_mmu_cache(vma, addr, ptep);
3573
3574 page = vm_normal_page(vma, addr, pte);
3575 if (!page) {
3576 pte_unmap_unlock(ptep, ptl);
3577 return 0;
3578 }
3579
174dfa40
MG
3580 page_nid = page_to_nid(page);
3581 target_nid = numa_migrate_prep(page, vma, addr, page_nid);
d10e63f2 3582 pte_unmap_unlock(ptep, ptl);
4daae3b4 3583 if (target_nid == -1) {
4daae3b4
MG
3584 put_page(page);
3585 goto out;
3586 }
3587
3588 /* Migrate to the requested node */
b8593bfd
MG
3589 migrated = migrate_misplaced_page(page, target_nid);
3590 if (migrated)
174dfa40 3591 page_nid = target_nid;
4daae3b4
MG
3592
3593out:
174dfa40
MG
3594 if (page_nid != -1)
3595 task_numa_fault(page_nid, 1, migrated);
d10e63f2
MG
3596 return 0;
3597}
3598
3599/* NUMA hinting page fault entry point for regular pmds */
3600#ifdef CONFIG_NUMA_BALANCING
3601static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3602 unsigned long addr, pmd_t *pmdp)
3603{
3604 pmd_t pmd;
3605 pte_t *pte, *orig_pte;
3606 unsigned long _addr = addr & PMD_MASK;
3607 unsigned long offset;
3608 spinlock_t *ptl;
3609 bool numa = false;
3610
3611 spin_lock(&mm->page_table_lock);
3612 pmd = *pmdp;
3613 if (pmd_numa(pmd)) {
3614 set_pmd_at(mm, _addr, pmdp, pmd_mknonnuma(pmd));
3615 numa = true;
3616 }
3617 spin_unlock(&mm->page_table_lock);
3618
3619 if (!numa)
3620 return 0;
3621
3622 /* we're in a page fault so some vma must be in the range */
3623 BUG_ON(!vma);
3624 BUG_ON(vma->vm_start >= _addr + PMD_SIZE);
3625 offset = max(_addr, vma->vm_start) & ~PMD_MASK;
3626 VM_BUG_ON(offset >= PMD_SIZE);
3627 orig_pte = pte = pte_offset_map_lock(mm, pmdp, _addr, &ptl);
3628 pte += offset >> PAGE_SHIFT;
3629 for (addr = _addr + offset; addr < _addr + PMD_SIZE; pte++, addr += PAGE_SIZE) {
3630 pte_t pteval = *pte;
3631 struct page *page;
174dfa40 3632 int page_nid = -1;
9532fec1 3633 int target_nid;
174dfa40
MG
3634 bool migrated = false;
3635
d10e63f2
MG
3636 if (!pte_present(pteval))
3637 continue;
3638 if (!pte_numa(pteval))
3639 continue;
3640 if (addr >= vma->vm_end) {
3641 vma = find_vma(mm, addr);
3642 /* there's a pte present so there must be a vma */
3643 BUG_ON(!vma);
3644 BUG_ON(addr < vma->vm_start);
3645 }
3646 if (pte_numa(pteval)) {
3647 pteval = pte_mknonnuma(pteval);
3648 set_pte_at(mm, addr, pte, pteval);
3649 }
3650 page = vm_normal_page(vma, addr, pteval);
3651 if (unlikely(!page))
3652 continue;
cbee9f88
PZ
3653 /* only check non-shared pages */
3654 if (unlikely(page_mapcount(page) != 1))
3655 continue;
cbee9f88 3656
174dfa40
MG
3657 page_nid = page_to_nid(page);
3658 target_nid = numa_migrate_prep(page, vma, addr, page_nid);
3659 pte_unmap_unlock(pte, ptl);
3660 if (target_nid != -1) {
3661 migrated = migrate_misplaced_page(page, target_nid);
3662 if (migrated)
3663 page_nid = target_nid;
3664 } else {
9532fec1 3665 put_page(page);
9532fec1 3666 }
cbee9f88 3667
174dfa40
MG
3668 if (page_nid != -1)
3669 task_numa_fault(page_nid, 1, migrated);
03c5a6e1 3670
cbee9f88 3671 pte = pte_offset_map_lock(mm, pmdp, addr, &ptl);
d10e63f2
MG
3672 }
3673 pte_unmap_unlock(orig_pte, ptl);
3674
3675 return 0;
3676}
3677#else
3678static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3679 unsigned long addr, pmd_t *pmdp)
3680{
3681 BUG();
b3dd2070 3682 return 0;
d10e63f2
MG
3683}
3684#endif /* CONFIG_NUMA_BALANCING */
3685
1da177e4
LT
3686/*
3687 * These routines also need to handle stuff like marking pages dirty
3688 * and/or accessed for architectures that don't do it in hardware (most
3689 * RISC architectures). The early dirtying is also good on the i386.
3690 *
3691 * There is also a hook called "update_mmu_cache()" that architectures
3692 * with external mmu caches can use to update those (ie the Sparc or
3693 * PowerPC hashed page tables that act as extended TLBs).
3694 *
c74df32c
HD
3695 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3696 * but allow concurrent faults), and pte mapped but not yet locked.
3697 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3698 */
71e3aac0
AA
3699int handle_pte_fault(struct mm_struct *mm,
3700 struct vm_area_struct *vma, unsigned long address,
3701 pte_t *pte, pmd_t *pmd, unsigned int flags)
1da177e4
LT
3702{
3703 pte_t entry;
8f4e2101 3704 spinlock_t *ptl;
1da177e4 3705
8dab5241 3706 entry = *pte;
1da177e4 3707 if (!pte_present(entry)) {
65500d23 3708 if (pte_none(entry)) {
f4b81804 3709 if (vma->vm_ops) {
3c18ddd1 3710 if (likely(vma->vm_ops->fault))
54cb8821 3711 return do_linear_fault(mm, vma, address,
30c9f3a9 3712 pte, pmd, flags, entry);
f4b81804
JS
3713 }
3714 return do_anonymous_page(mm, vma, address,
30c9f3a9 3715 pte, pmd, flags);
65500d23 3716 }
1da177e4 3717 if (pte_file(entry))
d0217ac0 3718 return do_nonlinear_fault(mm, vma, address,
30c9f3a9 3719 pte, pmd, flags, entry);
65500d23 3720 return do_swap_page(mm, vma, address,
30c9f3a9 3721 pte, pmd, flags, entry);
1da177e4
LT
3722 }
3723
d10e63f2
MG
3724 if (pte_numa(entry))
3725 return do_numa_page(mm, vma, address, entry, pte, pmd);
3726
4c21e2f2 3727 ptl = pte_lockptr(mm, pmd);
8f4e2101
HD
3728 spin_lock(ptl);
3729 if (unlikely(!pte_same(*pte, entry)))
3730 goto unlock;
30c9f3a9 3731 if (flags & FAULT_FLAG_WRITE) {
1da177e4 3732 if (!pte_write(entry))
8f4e2101
HD
3733 return do_wp_page(mm, vma, address,
3734 pte, pmd, ptl, entry);
1da177e4
LT
3735 entry = pte_mkdirty(entry);
3736 }
3737 entry = pte_mkyoung(entry);
30c9f3a9 3738 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
4b3073e1 3739 update_mmu_cache(vma, address, pte);
1a44e149
AA
3740 } else {
3741 /*
3742 * This is needed only for protection faults but the arch code
3743 * is not yet telling us if this is a protection fault or not.
3744 * This still avoids useless tlb flushes for .text page faults
3745 * with threads.
3746 */
30c9f3a9 3747 if (flags & FAULT_FLAG_WRITE)
61c77326 3748 flush_tlb_fix_spurious_fault(vma, address);
1a44e149 3749 }
8f4e2101
HD
3750unlock:
3751 pte_unmap_unlock(pte, ptl);
83c54070 3752 return 0;
1da177e4
LT
3753}
3754
3755/*
3756 * By the time we get here, we already hold the mm semaphore
3757 */
11f34787
JW
3758static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3759 unsigned long address, unsigned int flags)
1da177e4
LT
3760{
3761 pgd_t *pgd;
3762 pud_t *pud;
3763 pmd_t *pmd;
3764 pte_t *pte;
3765
ac9b9c66 3766 if (unlikely(is_vm_hugetlb_page(vma)))
30c9f3a9 3767 return hugetlb_fault(mm, vma, address, flags);
1da177e4 3768
1f1d06c3 3769retry:
1da177e4 3770 pgd = pgd_offset(mm, address);
1da177e4
LT
3771 pud = pud_alloc(mm, pgd, address);
3772 if (!pud)
c74df32c 3773 return VM_FAULT_OOM;
1da177e4
LT
3774 pmd = pmd_alloc(mm, pud, address);
3775 if (!pmd)
c74df32c 3776 return VM_FAULT_OOM;
71e3aac0
AA
3777 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3778 if (!vma->vm_ops)
3779 return do_huge_pmd_anonymous_page(mm, vma, address,
3780 pmd, flags);
3781 } else {
3782 pmd_t orig_pmd = *pmd;
1f1d06c3
DR
3783 int ret;
3784
71e3aac0
AA
3785 barrier();
3786 if (pmd_trans_huge(orig_pmd)) {
a1dd450b
WD
3787 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3788
e53289c0
LT
3789 /*
3790 * If the pmd is splitting, return and retry the
3791 * the fault. Alternative: wait until the split
3792 * is done, and goto retry.
3793 */
3794 if (pmd_trans_splitting(orig_pmd))
3795 return 0;
3796
3d59eebc 3797 if (pmd_numa(orig_pmd))
4daae3b4 3798 return do_huge_pmd_numa_page(mm, vma, address,
d10e63f2
MG
3799 orig_pmd, pmd);
3800
3d59eebc 3801 if (dirty && !pmd_write(orig_pmd)) {
1f1d06c3
DR
3802 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3803 orig_pmd);
3804 /*
3805 * If COW results in an oom, the huge pmd will
3806 * have been split, so retry the fault on the
3807 * pte for a smaller charge.
3808 */
3809 if (unlikely(ret & VM_FAULT_OOM))
3810 goto retry;
3811 return ret;
a1dd450b
WD
3812 } else {
3813 huge_pmd_set_accessed(mm, vma, address, pmd,
3814 orig_pmd, dirty);
1f1d06c3 3815 }
d10e63f2 3816
71e3aac0
AA
3817 return 0;
3818 }
3819 }
3820
d10e63f2
MG
3821 if (pmd_numa(*pmd))
3822 return do_pmd_numa_page(mm, vma, address, pmd);
3823
71e3aac0
AA
3824 /*
3825 * Use __pte_alloc instead of pte_alloc_map, because we can't
3826 * run pte_offset_map on the pmd, if an huge pmd could
3827 * materialize from under us from a different thread.
3828 */
4fd01770
MG
3829 if (unlikely(pmd_none(*pmd)) &&
3830 unlikely(__pte_alloc(mm, vma, pmd, address)))
c74df32c 3831 return VM_FAULT_OOM;
71e3aac0
AA
3832 /* if an huge pmd materialized from under us just retry later */
3833 if (unlikely(pmd_trans_huge(*pmd)))
3834 return 0;
3835 /*
3836 * A regular pmd is established and it can't morph into a huge pmd
3837 * from under us anymore at this point because we hold the mmap_sem
3838 * read mode and khugepaged takes it in write mode. So now it's
3839 * safe to run pte_offset_map().
3840 */
3841 pte = pte_offset_map(pmd, address);
1da177e4 3842
30c9f3a9 3843 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
1da177e4
LT
3844}
3845
11f34787
JW
3846int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3847 unsigned long address, unsigned int flags)
3848{
3849 int ret;
3850
3851 __set_current_state(TASK_RUNNING);
3852
3853 count_vm_event(PGFAULT);
3854 mem_cgroup_count_vm_event(mm, PGFAULT);
3855
3856 /* do counter updates before entering really critical section. */
3857 check_sync_rss_stat(current);
3858
3859 /*
3860 * Enable the memcg OOM handling for faults triggered in user
3861 * space. Kernel faults are handled more gracefully.
3862 */
3863 if (flags & FAULT_FLAG_USER)
f8a51179 3864 mem_cgroup_oom_enable();
11f34787
JW
3865
3866 ret = __handle_mm_fault(mm, vma, address, flags);
3867
f8a51179
JW
3868 if (flags & FAULT_FLAG_USER) {
3869 mem_cgroup_oom_disable();
3870 /*
3871 * The task may have entered a memcg OOM situation but
3872 * if the allocation error was handled gracefully (no
3873 * VM_FAULT_OOM), there is no need to kill anything.
3874 * Just clean up the OOM state peacefully.
3875 */
3876 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3877 mem_cgroup_oom_synchronize(false);
3878 }
f79d6a46 3879
11f34787
JW
3880 return ret;
3881}
3882
1da177e4
LT
3883#ifndef __PAGETABLE_PUD_FOLDED
3884/*
3885 * Allocate page upper directory.
872fec16 3886 * We've already handled the fast-path in-line.
1da177e4 3887 */
1bb3630e 3888int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1da177e4 3889{
c74df32c
HD
3890 pud_t *new = pud_alloc_one(mm, address);
3891 if (!new)
1bb3630e 3892 return -ENOMEM;
1da177e4 3893
362a61ad
NP
3894 smp_wmb(); /* See comment in __pte_alloc */
3895
872fec16 3896 spin_lock(&mm->page_table_lock);
1bb3630e 3897 if (pgd_present(*pgd)) /* Another has populated it */
5e541973 3898 pud_free(mm, new);
1bb3630e
HD
3899 else
3900 pgd_populate(mm, pgd, new);
c74df32c 3901 spin_unlock(&mm->page_table_lock);
1bb3630e 3902 return 0;
1da177e4
LT
3903}
3904#endif /* __PAGETABLE_PUD_FOLDED */
3905
3906#ifndef __PAGETABLE_PMD_FOLDED
3907/*
3908 * Allocate page middle directory.
872fec16 3909 * We've already handled the fast-path in-line.
1da177e4 3910 */
1bb3630e 3911int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 3912{
c74df32c
HD
3913 pmd_t *new = pmd_alloc_one(mm, address);
3914 if (!new)
1bb3630e 3915 return -ENOMEM;
1da177e4 3916
362a61ad
NP
3917 smp_wmb(); /* See comment in __pte_alloc */
3918
872fec16 3919 spin_lock(&mm->page_table_lock);
1da177e4 3920#ifndef __ARCH_HAS_4LEVEL_HACK
1bb3630e 3921 if (pud_present(*pud)) /* Another has populated it */
5e541973 3922 pmd_free(mm, new);
1bb3630e
HD
3923 else
3924 pud_populate(mm, pud, new);
1da177e4 3925#else
1bb3630e 3926 if (pgd_present(*pud)) /* Another has populated it */
5e541973 3927 pmd_free(mm, new);
1bb3630e
HD
3928 else
3929 pgd_populate(mm, pud, new);
1da177e4 3930#endif /* __ARCH_HAS_4LEVEL_HACK */
c74df32c 3931 spin_unlock(&mm->page_table_lock);
1bb3630e 3932 return 0;
e0f39591 3933}
1da177e4
LT
3934#endif /* __PAGETABLE_PMD_FOLDED */
3935
1da177e4
LT
3936#if !defined(__HAVE_ARCH_GATE_AREA)
3937
3938#if defined(AT_SYSINFO_EHDR)
5ce7852c 3939static struct vm_area_struct gate_vma;
1da177e4
LT
3940
3941static int __init gate_vma_init(void)
3942{
3943 gate_vma.vm_mm = NULL;
3944 gate_vma.vm_start = FIXADDR_USER_START;
3945 gate_vma.vm_end = FIXADDR_USER_END;
b6558c4a
RM
3946 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3947 gate_vma.vm_page_prot = __P101;
909af768 3948
1da177e4
LT
3949 return 0;
3950}
3951__initcall(gate_vma_init);
3952#endif
3953
31db58b3 3954struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
1da177e4
LT
3955{
3956#ifdef AT_SYSINFO_EHDR
3957 return &gate_vma;
3958#else
3959 return NULL;
3960#endif
3961}
3962
cae5d390 3963int in_gate_area_no_mm(unsigned long addr)
1da177e4
LT
3964{
3965#ifdef AT_SYSINFO_EHDR
3966 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3967 return 1;
3968#endif
3969 return 0;
3970}
3971
3972#endif /* __HAVE_ARCH_GATE_AREA */
0ec76a11 3973
1b36ba81 3974static int __follow_pte(struct mm_struct *mm, unsigned long address,
f8ad0f49
JW
3975 pte_t **ptepp, spinlock_t **ptlp)
3976{
3977 pgd_t *pgd;
3978 pud_t *pud;
3979 pmd_t *pmd;
3980 pte_t *ptep;
3981
3982 pgd = pgd_offset(mm, address);
3983 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3984 goto out;
3985
3986 pud = pud_offset(pgd, address);
3987 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3988 goto out;
3989
3990 pmd = pmd_offset(pud, address);
f66055ab 3991 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49
JW
3992 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3993 goto out;
3994
3995 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3996 if (pmd_huge(*pmd))
3997 goto out;
3998
3999 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4000 if (!ptep)
4001 goto out;
4002 if (!pte_present(*ptep))
4003 goto unlock;
4004 *ptepp = ptep;
4005 return 0;
4006unlock:
4007 pte_unmap_unlock(ptep, *ptlp);
4008out:
4009 return -EINVAL;
4010}
4011
1b36ba81
NK
4012static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4013 pte_t **ptepp, spinlock_t **ptlp)
4014{
4015 int res;
4016
4017 /* (void) is needed to make gcc happy */
4018 (void) __cond_lock(*ptlp,
4019 !(res = __follow_pte(mm, address, ptepp, ptlp)));
4020 return res;
4021}
4022
3b6748e2
JW
4023/**
4024 * follow_pfn - look up PFN at a user virtual address
4025 * @vma: memory mapping
4026 * @address: user virtual address
4027 * @pfn: location to store found PFN
4028 *
4029 * Only IO mappings and raw PFN mappings are allowed.
4030 *
4031 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4032 */
4033int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4034 unsigned long *pfn)
4035{
4036 int ret = -EINVAL;
4037 spinlock_t *ptl;
4038 pte_t *ptep;
4039
4040 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4041 return ret;
4042
4043 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4044 if (ret)
4045 return ret;
4046 *pfn = pte_pfn(*ptep);
4047 pte_unmap_unlock(ptep, ptl);
4048 return 0;
4049}
4050EXPORT_SYMBOL(follow_pfn);
4051
28b2ee20 4052#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 4053int follow_phys(struct vm_area_struct *vma,
4054 unsigned long address, unsigned int flags,
4055 unsigned long *prot, resource_size_t *phys)
28b2ee20 4056{
03668a4d 4057 int ret = -EINVAL;
28b2ee20
RR
4058 pte_t *ptep, pte;
4059 spinlock_t *ptl;
28b2ee20 4060
d87fe660 4061 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4062 goto out;
28b2ee20 4063
03668a4d 4064 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 4065 goto out;
28b2ee20 4066 pte = *ptep;
03668a4d 4067
28b2ee20
RR
4068 if ((flags & FOLL_WRITE) && !pte_write(pte))
4069 goto unlock;
28b2ee20
RR
4070
4071 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 4072 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 4073
03668a4d 4074 ret = 0;
28b2ee20
RR
4075unlock:
4076 pte_unmap_unlock(ptep, ptl);
4077out:
d87fe660 4078 return ret;
28b2ee20
RR
4079}
4080
4081int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4082 void *buf, int len, int write)
4083{
4084 resource_size_t phys_addr;
4085 unsigned long prot = 0;
2bc7273b 4086 void __iomem *maddr;
28b2ee20
RR
4087 int offset = addr & (PAGE_SIZE-1);
4088
d87fe660 4089 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
4090 return -EINVAL;
4091
9113c468 4092 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
28b2ee20
RR
4093 if (write)
4094 memcpy_toio(maddr + offset, buf, len);
4095 else
4096 memcpy_fromio(buf, maddr + offset, len);
4097 iounmap(maddr);
4098
4099 return len;
4100}
f80d1c35 4101EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
4102#endif
4103
0ec76a11 4104/*
206cb636
SW
4105 * Access another process' address space as given in mm. If non-NULL, use the
4106 * given task for page fault accounting.
0ec76a11 4107 */
206cb636
SW
4108static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4109 unsigned long addr, void *buf, int len, int write)
0ec76a11 4110{
0ec76a11 4111 struct vm_area_struct *vma;
0ec76a11
DH
4112 void *old_buf = buf;
4113
0ec76a11 4114 down_read(&mm->mmap_sem);
183ff22b 4115 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
4116 while (len) {
4117 int bytes, ret, offset;
4118 void *maddr;
28b2ee20 4119 struct page *page = NULL;
0ec76a11
DH
4120
4121 ret = get_user_pages(tsk, mm, addr, 1,
4122 write, 1, &page, &vma);
28b2ee20
RR
4123 if (ret <= 0) {
4124 /*
4125 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4126 * we can access using slightly different code.
4127 */
4128#ifdef CONFIG_HAVE_IOREMAP_PROT
4129 vma = find_vma(mm, addr);
fe936dfc 4130 if (!vma || vma->vm_start > addr)
28b2ee20
RR
4131 break;
4132 if (vma->vm_ops && vma->vm_ops->access)
4133 ret = vma->vm_ops->access(vma, addr, buf,
4134 len, write);
4135 if (ret <= 0)
4136#endif
4137 break;
4138 bytes = ret;
0ec76a11 4139 } else {
28b2ee20
RR
4140 bytes = len;
4141 offset = addr & (PAGE_SIZE-1);
4142 if (bytes > PAGE_SIZE-offset)
4143 bytes = PAGE_SIZE-offset;
4144
4145 maddr = kmap(page);
4146 if (write) {
4147 copy_to_user_page(vma, page, addr,
4148 maddr + offset, buf, bytes);
4149 set_page_dirty_lock(page);
4150 } else {
4151 copy_from_user_page(vma, page, addr,
4152 buf, maddr + offset, bytes);
4153 }
4154 kunmap(page);
4155 page_cache_release(page);
0ec76a11 4156 }
0ec76a11
DH
4157 len -= bytes;
4158 buf += bytes;
4159 addr += bytes;
4160 }
4161 up_read(&mm->mmap_sem);
0ec76a11
DH
4162
4163 return buf - old_buf;
4164}
03252919 4165
5ddd36b9 4166/**
ae91dbfc 4167 * access_remote_vm - access another process' address space
5ddd36b9
SW
4168 * @mm: the mm_struct of the target address space
4169 * @addr: start address to access
4170 * @buf: source or destination buffer
4171 * @len: number of bytes to transfer
4172 * @write: whether the access is a write
4173 *
4174 * The caller must hold a reference on @mm.
4175 */
4176int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4177 void *buf, int len, int write)
4178{
4179 return __access_remote_vm(NULL, mm, addr, buf, len, write);
4180}
4181
206cb636
SW
4182/*
4183 * Access another process' address space.
4184 * Source/target buffer must be kernel space,
4185 * Do not walk the page table directly, use get_user_pages
4186 */
4187int access_process_vm(struct task_struct *tsk, unsigned long addr,
4188 void *buf, int len, int write)
4189{
4190 struct mm_struct *mm;
4191 int ret;
4192
4193 mm = get_task_mm(tsk);
4194 if (!mm)
4195 return 0;
4196
4197 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
4198 mmput(mm);
4199
4200 return ret;
4201}
4202
03252919
AK
4203/*
4204 * Print the name of a VMA.
4205 */
4206void print_vma_addr(char *prefix, unsigned long ip)
4207{
4208 struct mm_struct *mm = current->mm;
4209 struct vm_area_struct *vma;
4210
e8bff74a
IM
4211 /*
4212 * Do not print if we are in atomic
4213 * contexts (in exception stacks, etc.):
4214 */
4215 if (preempt_count())
4216 return;
4217
03252919
AK
4218 down_read(&mm->mmap_sem);
4219 vma = find_vma(mm, ip);
4220 if (vma && vma->vm_file) {
4221 struct file *f = vma->vm_file;
4222 char *buf = (char *)__get_free_page(GFP_KERNEL);
4223 if (buf) {
2fbc57c5 4224 char *p;
03252919 4225
cf28b486 4226 p = d_path(&f->f_path, buf, PAGE_SIZE);
03252919
AK
4227 if (IS_ERR(p))
4228 p = "?";
2fbc57c5 4229 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
4230 vma->vm_start,
4231 vma->vm_end - vma->vm_start);
4232 free_page((unsigned long)buf);
4233 }
4234 }
51a07e50 4235 up_read(&mm->mmap_sem);
03252919 4236}
3ee1afa3
NP
4237
4238#ifdef CONFIG_PROVE_LOCKING
4239void might_fault(void)
4240{
95156f00
PZ
4241 /*
4242 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4243 * holding the mmap_sem, this is safe because kernel memory doesn't
4244 * get paged out, therefore we'll never actually fault, and the
4245 * below annotations will generate false positives.
4246 */
4247 if (segment_eq(get_fs(), KERNEL_DS))
4248 return;
4249
3ee1afa3
NP
4250 might_sleep();
4251 /*
4252 * it would be nicer only to annotate paths which are not under
4253 * pagefault_disable, however that requires a larger audit and
4254 * providing helpers like get_user_atomic.
4255 */
4256 if (!in_atomic() && current->mm)
4257 might_lock_read(&current->mm->mmap_sem);
4258}
4259EXPORT_SYMBOL(might_fault);
4260#endif
47ad8475
AA
4261
4262#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4263static void clear_gigantic_page(struct page *page,
4264 unsigned long addr,
4265 unsigned int pages_per_huge_page)
4266{
4267 int i;
4268 struct page *p = page;
4269
4270 might_sleep();
4271 for (i = 0; i < pages_per_huge_page;
4272 i++, p = mem_map_next(p, page, i)) {
4273 cond_resched();
4274 clear_user_highpage(p, addr + i * PAGE_SIZE);
4275 }
4276}
4277void clear_huge_page(struct page *page,
4278 unsigned long addr, unsigned int pages_per_huge_page)
4279{
4280 int i;
4281
4282 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4283 clear_gigantic_page(page, addr, pages_per_huge_page);
4284 return;
4285 }
4286
4287 might_sleep();
4288 for (i = 0; i < pages_per_huge_page; i++) {
4289 cond_resched();
4290 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4291 }
4292}
4293
4294static void copy_user_gigantic_page(struct page *dst, struct page *src,
4295 unsigned long addr,
4296 struct vm_area_struct *vma,
4297 unsigned int pages_per_huge_page)
4298{
4299 int i;
4300 struct page *dst_base = dst;
4301 struct page *src_base = src;
4302
4303 for (i = 0; i < pages_per_huge_page; ) {
4304 cond_resched();
4305 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4306
4307 i++;
4308 dst = mem_map_next(dst, dst_base, i);
4309 src = mem_map_next(src, src_base, i);
4310 }
4311}
4312
4313void copy_user_huge_page(struct page *dst, struct page *src,
4314 unsigned long addr, struct vm_area_struct *vma,
4315 unsigned int pages_per_huge_page)
4316{
4317 int i;
4318
4319 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4320 copy_user_gigantic_page(dst, src, addr, vma,
4321 pages_per_huge_page);
4322 return;
4323 }
4324
4325 might_sleep();
4326 for (i = 0; i < pages_per_huge_page; i++) {
4327 cond_resched();
4328 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4329 }
4330}
4331#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */