mm, counters: remove task argument to sync_mm_rss() and __sync_task_rss_stat()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
9a840895 48#include <linux/ksm.h>
1da177e4 49#include <linux/rmap.h>
b95f1b31 50#include <linux/export.h>
0ff92245 51#include <linux/delayacct.h>
1da177e4 52#include <linux/init.h>
edc79b2a 53#include <linux/writeback.h>
8a9f3ccd 54#include <linux/memcontrol.h>
cddb8a5c 55#include <linux/mmu_notifier.h>
3dc14741
HD
56#include <linux/kallsyms.h>
57#include <linux/swapops.h>
58#include <linux/elf.h>
5a0e3ad6 59#include <linux/gfp.h>
1da177e4 60
6952b61d 61#include <asm/io.h>
1da177e4
LT
62#include <asm/pgalloc.h>
63#include <asm/uaccess.h>
64#include <asm/tlb.h>
65#include <asm/tlbflush.h>
66#include <asm/pgtable.h>
67
42b77728
JB
68#include "internal.h"
69
d41dee36 70#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
71/* use the per-pgdat data instead for discontigmem - mbligh */
72unsigned long max_mapnr;
73struct page *mem_map;
74
75EXPORT_SYMBOL(max_mapnr);
76EXPORT_SYMBOL(mem_map);
77#endif
78
79unsigned long num_physpages;
80/*
81 * A number of key systems in x86 including ioremap() rely on the assumption
82 * that high_memory defines the upper bound on direct map memory, then end
83 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85 * and ZONE_HIGHMEM.
86 */
87void * high_memory;
1da177e4
LT
88
89EXPORT_SYMBOL(num_physpages);
90EXPORT_SYMBOL(high_memory);
1da177e4 91
32a93233
IM
92/*
93 * Randomize the address space (stacks, mmaps, brk, etc.).
94 *
95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96 * as ancient (libc5 based) binaries can segfault. )
97 */
98int randomize_va_space __read_mostly =
99#ifdef CONFIG_COMPAT_BRK
100 1;
101#else
102 2;
103#endif
a62eaf15
AK
104
105static int __init disable_randmaps(char *s)
106{
107 randomize_va_space = 0;
9b41046c 108 return 1;
a62eaf15
AK
109}
110__setup("norandmaps", disable_randmaps);
111
62eede62 112unsigned long zero_pfn __read_mostly;
03f6462a 113unsigned long highest_memmap_pfn __read_mostly;
a13ea5b7
HD
114
115/*
116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
117 */
118static int __init init_zero_pfn(void)
119{
120 zero_pfn = page_to_pfn(ZERO_PAGE(0));
121 return 0;
122}
123core_initcall(init_zero_pfn);
a62eaf15 124
d559db08 125
34e55232
KH
126#if defined(SPLIT_RSS_COUNTING)
127
05af2e10 128static void __sync_task_rss_stat(struct mm_struct *mm)
34e55232
KH
129{
130 int i;
131
132 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
133 if (current->rss_stat.count[i]) {
134 add_mm_counter(mm, i, current->rss_stat.count[i]);
135 current->rss_stat.count[i] = 0;
34e55232
KH
136 }
137 }
05af2e10 138 current->rss_stat.events = 0;
34e55232
KH
139}
140
141static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
142{
143 struct task_struct *task = current;
144
145 if (likely(task->mm == mm))
146 task->rss_stat.count[member] += val;
147 else
148 add_mm_counter(mm, member, val);
149}
150#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
152
153/* sync counter once per 64 page faults */
154#define TASK_RSS_EVENTS_THRESH (64)
155static void check_sync_rss_stat(struct task_struct *task)
156{
157 if (unlikely(task != current))
158 return;
159 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
05af2e10 160 __sync_task_rss_stat(task->mm);
34e55232
KH
161}
162
05af2e10 163void sync_mm_rss(struct mm_struct *mm)
34e55232 164{
05af2e10 165 __sync_task_rss_stat(mm);
34e55232 166}
9547d01b 167#else /* SPLIT_RSS_COUNTING */
34e55232
KH
168
169#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
170#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
171
172static void check_sync_rss_stat(struct task_struct *task)
173{
174}
175
9547d01b
PZ
176#endif /* SPLIT_RSS_COUNTING */
177
178#ifdef HAVE_GENERIC_MMU_GATHER
179
180static int tlb_next_batch(struct mmu_gather *tlb)
181{
182 struct mmu_gather_batch *batch;
183
184 batch = tlb->active;
185 if (batch->next) {
186 tlb->active = batch->next;
187 return 1;
188 }
189
190 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
191 if (!batch)
192 return 0;
193
194 batch->next = NULL;
195 batch->nr = 0;
196 batch->max = MAX_GATHER_BATCH;
197
198 tlb->active->next = batch;
199 tlb->active = batch;
200
201 return 1;
202}
203
204/* tlb_gather_mmu
205 * Called to initialize an (on-stack) mmu_gather structure for page-table
206 * tear-down from @mm. The @fullmm argument is used when @mm is without
207 * users and we're going to destroy the full address space (exit/execve).
208 */
209void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
210{
211 tlb->mm = mm;
212
213 tlb->fullmm = fullmm;
214 tlb->need_flush = 0;
215 tlb->fast_mode = (num_possible_cpus() == 1);
216 tlb->local.next = NULL;
217 tlb->local.nr = 0;
218 tlb->local.max = ARRAY_SIZE(tlb->__pages);
219 tlb->active = &tlb->local;
220
221#ifdef CONFIG_HAVE_RCU_TABLE_FREE
222 tlb->batch = NULL;
223#endif
224}
225
226void tlb_flush_mmu(struct mmu_gather *tlb)
227{
228 struct mmu_gather_batch *batch;
229
230 if (!tlb->need_flush)
231 return;
232 tlb->need_flush = 0;
233 tlb_flush(tlb);
234#ifdef CONFIG_HAVE_RCU_TABLE_FREE
235 tlb_table_flush(tlb);
34e55232
KH
236#endif
237
9547d01b
PZ
238 if (tlb_fast_mode(tlb))
239 return;
240
241 for (batch = &tlb->local; batch; batch = batch->next) {
242 free_pages_and_swap_cache(batch->pages, batch->nr);
243 batch->nr = 0;
244 }
245 tlb->active = &tlb->local;
246}
247
248/* tlb_finish_mmu
249 * Called at the end of the shootdown operation to free up any resources
250 * that were required.
251 */
252void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
253{
254 struct mmu_gather_batch *batch, *next;
255
256 tlb_flush_mmu(tlb);
257
258 /* keep the page table cache within bounds */
259 check_pgt_cache();
260
261 for (batch = tlb->local.next; batch; batch = next) {
262 next = batch->next;
263 free_pages((unsigned long)batch, 0);
264 }
265 tlb->local.next = NULL;
266}
267
268/* __tlb_remove_page
269 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
270 * handling the additional races in SMP caused by other CPUs caching valid
271 * mappings in their TLBs. Returns the number of free page slots left.
272 * When out of page slots we must call tlb_flush_mmu().
273 */
274int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
275{
276 struct mmu_gather_batch *batch;
277
f21760b1 278 VM_BUG_ON(!tlb->need_flush);
9547d01b
PZ
279
280 if (tlb_fast_mode(tlb)) {
281 free_page_and_swap_cache(page);
282 return 1; /* avoid calling tlb_flush_mmu() */
283 }
284
285 batch = tlb->active;
286 batch->pages[batch->nr++] = page;
287 if (batch->nr == batch->max) {
288 if (!tlb_next_batch(tlb))
289 return 0;
0b43c3aa 290 batch = tlb->active;
9547d01b
PZ
291 }
292 VM_BUG_ON(batch->nr > batch->max);
293
294 return batch->max - batch->nr;
295}
296
297#endif /* HAVE_GENERIC_MMU_GATHER */
298
26723911
PZ
299#ifdef CONFIG_HAVE_RCU_TABLE_FREE
300
301/*
302 * See the comment near struct mmu_table_batch.
303 */
304
305static void tlb_remove_table_smp_sync(void *arg)
306{
307 /* Simply deliver the interrupt */
308}
309
310static void tlb_remove_table_one(void *table)
311{
312 /*
313 * This isn't an RCU grace period and hence the page-tables cannot be
314 * assumed to be actually RCU-freed.
315 *
316 * It is however sufficient for software page-table walkers that rely on
317 * IRQ disabling. See the comment near struct mmu_table_batch.
318 */
319 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
320 __tlb_remove_table(table);
321}
322
323static void tlb_remove_table_rcu(struct rcu_head *head)
324{
325 struct mmu_table_batch *batch;
326 int i;
327
328 batch = container_of(head, struct mmu_table_batch, rcu);
329
330 for (i = 0; i < batch->nr; i++)
331 __tlb_remove_table(batch->tables[i]);
332
333 free_page((unsigned long)batch);
334}
335
336void tlb_table_flush(struct mmu_gather *tlb)
337{
338 struct mmu_table_batch **batch = &tlb->batch;
339
340 if (*batch) {
341 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
342 *batch = NULL;
343 }
344}
345
346void tlb_remove_table(struct mmu_gather *tlb, void *table)
347{
348 struct mmu_table_batch **batch = &tlb->batch;
349
350 tlb->need_flush = 1;
351
352 /*
353 * When there's less then two users of this mm there cannot be a
354 * concurrent page-table walk.
355 */
356 if (atomic_read(&tlb->mm->mm_users) < 2) {
357 __tlb_remove_table(table);
358 return;
359 }
360
361 if (*batch == NULL) {
362 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
363 if (*batch == NULL) {
364 tlb_remove_table_one(table);
365 return;
366 }
367 (*batch)->nr = 0;
368 }
369 (*batch)->tables[(*batch)->nr++] = table;
370 if ((*batch)->nr == MAX_TABLE_BATCH)
371 tlb_table_flush(tlb);
372}
373
9547d01b 374#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
26723911 375
1da177e4
LT
376/*
377 * If a p?d_bad entry is found while walking page tables, report
378 * the error, before resetting entry to p?d_none. Usually (but
379 * very seldom) called out from the p?d_none_or_clear_bad macros.
380 */
381
382void pgd_clear_bad(pgd_t *pgd)
383{
384 pgd_ERROR(*pgd);
385 pgd_clear(pgd);
386}
387
388void pud_clear_bad(pud_t *pud)
389{
390 pud_ERROR(*pud);
391 pud_clear(pud);
392}
393
394void pmd_clear_bad(pmd_t *pmd)
395{
396 pmd_ERROR(*pmd);
397 pmd_clear(pmd);
398}
399
400/*
401 * Note: this doesn't free the actual pages themselves. That
402 * has been handled earlier when unmapping all the memory regions.
403 */
9e1b32ca
BH
404static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
405 unsigned long addr)
1da177e4 406{
2f569afd 407 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 408 pmd_clear(pmd);
9e1b32ca 409 pte_free_tlb(tlb, token, addr);
e0da382c 410 tlb->mm->nr_ptes--;
1da177e4
LT
411}
412
e0da382c
HD
413static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
414 unsigned long addr, unsigned long end,
415 unsigned long floor, unsigned long ceiling)
1da177e4
LT
416{
417 pmd_t *pmd;
418 unsigned long next;
e0da382c 419 unsigned long start;
1da177e4 420
e0da382c 421 start = addr;
1da177e4 422 pmd = pmd_offset(pud, addr);
1da177e4
LT
423 do {
424 next = pmd_addr_end(addr, end);
425 if (pmd_none_or_clear_bad(pmd))
426 continue;
9e1b32ca 427 free_pte_range(tlb, pmd, addr);
1da177e4
LT
428 } while (pmd++, addr = next, addr != end);
429
e0da382c
HD
430 start &= PUD_MASK;
431 if (start < floor)
432 return;
433 if (ceiling) {
434 ceiling &= PUD_MASK;
435 if (!ceiling)
436 return;
1da177e4 437 }
e0da382c
HD
438 if (end - 1 > ceiling - 1)
439 return;
440
441 pmd = pmd_offset(pud, start);
442 pud_clear(pud);
9e1b32ca 443 pmd_free_tlb(tlb, pmd, start);
1da177e4
LT
444}
445
e0da382c
HD
446static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
447 unsigned long addr, unsigned long end,
448 unsigned long floor, unsigned long ceiling)
1da177e4
LT
449{
450 pud_t *pud;
451 unsigned long next;
e0da382c 452 unsigned long start;
1da177e4 453
e0da382c 454 start = addr;
1da177e4 455 pud = pud_offset(pgd, addr);
1da177e4
LT
456 do {
457 next = pud_addr_end(addr, end);
458 if (pud_none_or_clear_bad(pud))
459 continue;
e0da382c 460 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
461 } while (pud++, addr = next, addr != end);
462
e0da382c
HD
463 start &= PGDIR_MASK;
464 if (start < floor)
465 return;
466 if (ceiling) {
467 ceiling &= PGDIR_MASK;
468 if (!ceiling)
469 return;
1da177e4 470 }
e0da382c
HD
471 if (end - 1 > ceiling - 1)
472 return;
473
474 pud = pud_offset(pgd, start);
475 pgd_clear(pgd);
9e1b32ca 476 pud_free_tlb(tlb, pud, start);
1da177e4
LT
477}
478
479/*
e0da382c
HD
480 * This function frees user-level page tables of a process.
481 *
1da177e4
LT
482 * Must be called with pagetable lock held.
483 */
42b77728 484void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
485 unsigned long addr, unsigned long end,
486 unsigned long floor, unsigned long ceiling)
1da177e4
LT
487{
488 pgd_t *pgd;
489 unsigned long next;
e0da382c
HD
490
491 /*
492 * The next few lines have given us lots of grief...
493 *
494 * Why are we testing PMD* at this top level? Because often
495 * there will be no work to do at all, and we'd prefer not to
496 * go all the way down to the bottom just to discover that.
497 *
498 * Why all these "- 1"s? Because 0 represents both the bottom
499 * of the address space and the top of it (using -1 for the
500 * top wouldn't help much: the masks would do the wrong thing).
501 * The rule is that addr 0 and floor 0 refer to the bottom of
502 * the address space, but end 0 and ceiling 0 refer to the top
503 * Comparisons need to use "end - 1" and "ceiling - 1" (though
504 * that end 0 case should be mythical).
505 *
506 * Wherever addr is brought up or ceiling brought down, we must
507 * be careful to reject "the opposite 0" before it confuses the
508 * subsequent tests. But what about where end is brought down
509 * by PMD_SIZE below? no, end can't go down to 0 there.
510 *
511 * Whereas we round start (addr) and ceiling down, by different
512 * masks at different levels, in order to test whether a table
513 * now has no other vmas using it, so can be freed, we don't
514 * bother to round floor or end up - the tests don't need that.
515 */
1da177e4 516
e0da382c
HD
517 addr &= PMD_MASK;
518 if (addr < floor) {
519 addr += PMD_SIZE;
520 if (!addr)
521 return;
522 }
523 if (ceiling) {
524 ceiling &= PMD_MASK;
525 if (!ceiling)
526 return;
527 }
528 if (end - 1 > ceiling - 1)
529 end -= PMD_SIZE;
530 if (addr > end - 1)
531 return;
532
42b77728 533 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
534 do {
535 next = pgd_addr_end(addr, end);
536 if (pgd_none_or_clear_bad(pgd))
537 continue;
42b77728 538 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 539 } while (pgd++, addr = next, addr != end);
e0da382c
HD
540}
541
42b77728 542void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 543 unsigned long floor, unsigned long ceiling)
e0da382c
HD
544{
545 while (vma) {
546 struct vm_area_struct *next = vma->vm_next;
547 unsigned long addr = vma->vm_start;
548
8f4f8c16 549 /*
25d9e2d1 550 * Hide vma from rmap and truncate_pagecache before freeing
551 * pgtables
8f4f8c16 552 */
5beb4930 553 unlink_anon_vmas(vma);
8f4f8c16
HD
554 unlink_file_vma(vma);
555
9da61aef 556 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 557 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
e0da382c 558 floor, next? next->vm_start: ceiling);
3bf5ee95
HD
559 } else {
560 /*
561 * Optimization: gather nearby vmas into one call down
562 */
563 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 564 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
565 vma = next;
566 next = vma->vm_next;
5beb4930 567 unlink_anon_vmas(vma);
8f4f8c16 568 unlink_file_vma(vma);
3bf5ee95
HD
569 }
570 free_pgd_range(tlb, addr, vma->vm_end,
571 floor, next? next->vm_start: ceiling);
572 }
e0da382c
HD
573 vma = next;
574 }
1da177e4
LT
575}
576
8ac1f832
AA
577int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
578 pmd_t *pmd, unsigned long address)
1da177e4 579{
2f569afd 580 pgtable_t new = pte_alloc_one(mm, address);
8ac1f832 581 int wait_split_huge_page;
1bb3630e
HD
582 if (!new)
583 return -ENOMEM;
584
362a61ad
NP
585 /*
586 * Ensure all pte setup (eg. pte page lock and page clearing) are
587 * visible before the pte is made visible to other CPUs by being
588 * put into page tables.
589 *
590 * The other side of the story is the pointer chasing in the page
591 * table walking code (when walking the page table without locking;
592 * ie. most of the time). Fortunately, these data accesses consist
593 * of a chain of data-dependent loads, meaning most CPUs (alpha
594 * being the notable exception) will already guarantee loads are
595 * seen in-order. See the alpha page table accessors for the
596 * smp_read_barrier_depends() barriers in page table walking code.
597 */
598 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
599
c74df32c 600 spin_lock(&mm->page_table_lock);
8ac1f832
AA
601 wait_split_huge_page = 0;
602 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1da177e4 603 mm->nr_ptes++;
1da177e4 604 pmd_populate(mm, pmd, new);
2f569afd 605 new = NULL;
8ac1f832
AA
606 } else if (unlikely(pmd_trans_splitting(*pmd)))
607 wait_split_huge_page = 1;
c74df32c 608 spin_unlock(&mm->page_table_lock);
2f569afd
MS
609 if (new)
610 pte_free(mm, new);
8ac1f832
AA
611 if (wait_split_huge_page)
612 wait_split_huge_page(vma->anon_vma, pmd);
1bb3630e 613 return 0;
1da177e4
LT
614}
615
1bb3630e 616int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 617{
1bb3630e
HD
618 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
619 if (!new)
620 return -ENOMEM;
621
362a61ad
NP
622 smp_wmb(); /* See comment in __pte_alloc */
623
1bb3630e 624 spin_lock(&init_mm.page_table_lock);
8ac1f832 625 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 626 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 627 new = NULL;
8ac1f832
AA
628 } else
629 VM_BUG_ON(pmd_trans_splitting(*pmd));
1bb3630e 630 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
631 if (new)
632 pte_free_kernel(&init_mm, new);
1bb3630e 633 return 0;
1da177e4
LT
634}
635
d559db08
KH
636static inline void init_rss_vec(int *rss)
637{
638 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
639}
640
641static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 642{
d559db08
KH
643 int i;
644
34e55232 645 if (current->mm == mm)
05af2e10 646 sync_mm_rss(mm);
d559db08
KH
647 for (i = 0; i < NR_MM_COUNTERS; i++)
648 if (rss[i])
649 add_mm_counter(mm, i, rss[i]);
ae859762
HD
650}
651
b5810039 652/*
6aab341e
LT
653 * This function is called to print an error when a bad pte
654 * is found. For example, we might have a PFN-mapped pte in
655 * a region that doesn't allow it.
b5810039
NP
656 *
657 * The calling function must still handle the error.
658 */
3dc14741
HD
659static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
660 pte_t pte, struct page *page)
b5810039 661{
3dc14741
HD
662 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
663 pud_t *pud = pud_offset(pgd, addr);
664 pmd_t *pmd = pmd_offset(pud, addr);
665 struct address_space *mapping;
666 pgoff_t index;
d936cf9b
HD
667 static unsigned long resume;
668 static unsigned long nr_shown;
669 static unsigned long nr_unshown;
670
671 /*
672 * Allow a burst of 60 reports, then keep quiet for that minute;
673 * or allow a steady drip of one report per second.
674 */
675 if (nr_shown == 60) {
676 if (time_before(jiffies, resume)) {
677 nr_unshown++;
678 return;
679 }
680 if (nr_unshown) {
1e9e6365
HD
681 printk(KERN_ALERT
682 "BUG: Bad page map: %lu messages suppressed\n",
d936cf9b
HD
683 nr_unshown);
684 nr_unshown = 0;
685 }
686 nr_shown = 0;
687 }
688 if (nr_shown++ == 0)
689 resume = jiffies + 60 * HZ;
3dc14741
HD
690
691 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
692 index = linear_page_index(vma, addr);
693
1e9e6365
HD
694 printk(KERN_ALERT
695 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
3dc14741
HD
696 current->comm,
697 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821
WF
698 if (page)
699 dump_page(page);
1e9e6365 700 printk(KERN_ALERT
3dc14741
HD
701 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
702 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
703 /*
704 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
705 */
706 if (vma->vm_ops)
1e9e6365 707 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
3dc14741
HD
708 (unsigned long)vma->vm_ops->fault);
709 if (vma->vm_file && vma->vm_file->f_op)
1e9e6365 710 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
3dc14741 711 (unsigned long)vma->vm_file->f_op->mmap);
b5810039 712 dump_stack();
3dc14741 713 add_taint(TAINT_BAD_PAGE);
b5810039
NP
714}
715
ca16d140 716static inline int is_cow_mapping(vm_flags_t flags)
67121172
LT
717{
718 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
719}
720
62eede62
HD
721#ifndef is_zero_pfn
722static inline int is_zero_pfn(unsigned long pfn)
723{
724 return pfn == zero_pfn;
725}
726#endif
727
728#ifndef my_zero_pfn
729static inline unsigned long my_zero_pfn(unsigned long addr)
730{
731 return zero_pfn;
732}
733#endif
734
ee498ed7 735/*
7e675137 736 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 737 *
7e675137
NP
738 * "Special" mappings do not wish to be associated with a "struct page" (either
739 * it doesn't exist, or it exists but they don't want to touch it). In this
740 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 741 *
7e675137
NP
742 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
743 * pte bit, in which case this function is trivial. Secondly, an architecture
744 * may not have a spare pte bit, which requires a more complicated scheme,
745 * described below.
746 *
747 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
748 * special mapping (even if there are underlying and valid "struct pages").
749 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 750 *
b379d790
JH
751 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
752 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
753 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
754 * mapping will always honor the rule
6aab341e
LT
755 *
756 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
757 *
7e675137
NP
758 * And for normal mappings this is false.
759 *
760 * This restricts such mappings to be a linear translation from virtual address
761 * to pfn. To get around this restriction, we allow arbitrary mappings so long
762 * as the vma is not a COW mapping; in that case, we know that all ptes are
763 * special (because none can have been COWed).
b379d790 764 *
b379d790 765 *
7e675137 766 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
767 *
768 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
769 * page" backing, however the difference is that _all_ pages with a struct
770 * page (that is, those where pfn_valid is true) are refcounted and considered
771 * normal pages by the VM. The disadvantage is that pages are refcounted
772 * (which can be slower and simply not an option for some PFNMAP users). The
773 * advantage is that we don't have to follow the strict linearity rule of
774 * PFNMAP mappings in order to support COWable mappings.
775 *
ee498ed7 776 */
7e675137
NP
777#ifdef __HAVE_ARCH_PTE_SPECIAL
778# define HAVE_PTE_SPECIAL 1
779#else
780# define HAVE_PTE_SPECIAL 0
781#endif
782struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
783 pte_t pte)
ee498ed7 784{
22b31eec 785 unsigned long pfn = pte_pfn(pte);
7e675137
NP
786
787 if (HAVE_PTE_SPECIAL) {
22b31eec
HD
788 if (likely(!pte_special(pte)))
789 goto check_pfn;
a13ea5b7
HD
790 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
791 return NULL;
62eede62 792 if (!is_zero_pfn(pfn))
22b31eec 793 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
794 return NULL;
795 }
796
797 /* !HAVE_PTE_SPECIAL case follows: */
798
b379d790
JH
799 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
800 if (vma->vm_flags & VM_MIXEDMAP) {
801 if (!pfn_valid(pfn))
802 return NULL;
803 goto out;
804 } else {
7e675137
NP
805 unsigned long off;
806 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
807 if (pfn == vma->vm_pgoff + off)
808 return NULL;
809 if (!is_cow_mapping(vma->vm_flags))
810 return NULL;
811 }
6aab341e
LT
812 }
813
62eede62
HD
814 if (is_zero_pfn(pfn))
815 return NULL;
22b31eec
HD
816check_pfn:
817 if (unlikely(pfn > highest_memmap_pfn)) {
818 print_bad_pte(vma, addr, pte, NULL);
819 return NULL;
820 }
6aab341e
LT
821
822 /*
7e675137 823 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 824 * eg. VDSO mappings can cause them to exist.
6aab341e 825 */
b379d790 826out:
6aab341e 827 return pfn_to_page(pfn);
ee498ed7
HD
828}
829
1da177e4
LT
830/*
831 * copy one vm_area from one task to the other. Assumes the page tables
832 * already present in the new task to be cleared in the whole range
833 * covered by this vma.
1da177e4
LT
834 */
835
570a335b 836static inline unsigned long
1da177e4 837copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 838 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 839 unsigned long addr, int *rss)
1da177e4 840{
b5810039 841 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
842 pte_t pte = *src_pte;
843 struct page *page;
1da177e4
LT
844
845 /* pte contains position in swap or file, so copy. */
846 if (unlikely(!pte_present(pte))) {
847 if (!pte_file(pte)) {
0697212a
CL
848 swp_entry_t entry = pte_to_swp_entry(pte);
849
570a335b
HD
850 if (swap_duplicate(entry) < 0)
851 return entry.val;
852
1da177e4
LT
853 /* make sure dst_mm is on swapoff's mmlist. */
854 if (unlikely(list_empty(&dst_mm->mmlist))) {
855 spin_lock(&mmlist_lock);
f412ac08
HD
856 if (list_empty(&dst_mm->mmlist))
857 list_add(&dst_mm->mmlist,
858 &src_mm->mmlist);
1da177e4
LT
859 spin_unlock(&mmlist_lock);
860 }
b084d435
KH
861 if (likely(!non_swap_entry(entry)))
862 rss[MM_SWAPENTS]++;
9f9f1acd
KK
863 else if (is_migration_entry(entry)) {
864 page = migration_entry_to_page(entry);
865
866 if (PageAnon(page))
867 rss[MM_ANONPAGES]++;
868 else
869 rss[MM_FILEPAGES]++;
870
871 if (is_write_migration_entry(entry) &&
872 is_cow_mapping(vm_flags)) {
873 /*
874 * COW mappings require pages in both
875 * parent and child to be set to read.
876 */
877 make_migration_entry_read(&entry);
878 pte = swp_entry_to_pte(entry);
879 set_pte_at(src_mm, addr, src_pte, pte);
880 }
0697212a 881 }
1da177e4 882 }
ae859762 883 goto out_set_pte;
1da177e4
LT
884 }
885
1da177e4
LT
886 /*
887 * If it's a COW mapping, write protect it both
888 * in the parent and the child
889 */
67121172 890 if (is_cow_mapping(vm_flags)) {
1da177e4 891 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 892 pte = pte_wrprotect(pte);
1da177e4
LT
893 }
894
895 /*
896 * If it's a shared mapping, mark it clean in
897 * the child
898 */
899 if (vm_flags & VM_SHARED)
900 pte = pte_mkclean(pte);
901 pte = pte_mkold(pte);
6aab341e
LT
902
903 page = vm_normal_page(vma, addr, pte);
904 if (page) {
905 get_page(page);
21333b2b 906 page_dup_rmap(page);
d559db08
KH
907 if (PageAnon(page))
908 rss[MM_ANONPAGES]++;
909 else
910 rss[MM_FILEPAGES]++;
6aab341e 911 }
ae859762
HD
912
913out_set_pte:
914 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 915 return 0;
1da177e4
LT
916}
917
71e3aac0
AA
918int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
919 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
920 unsigned long addr, unsigned long end)
1da177e4 921{
c36987e2 922 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 923 pte_t *src_pte, *dst_pte;
c74df32c 924 spinlock_t *src_ptl, *dst_ptl;
e040f218 925 int progress = 0;
d559db08 926 int rss[NR_MM_COUNTERS];
570a335b 927 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
928
929again:
d559db08
KH
930 init_rss_vec(rss);
931
c74df32c 932 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
933 if (!dst_pte)
934 return -ENOMEM;
ece0e2b6 935 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 936 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 937 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
938 orig_src_pte = src_pte;
939 orig_dst_pte = dst_pte;
6606c3e0 940 arch_enter_lazy_mmu_mode();
1da177e4 941
1da177e4
LT
942 do {
943 /*
944 * We are holding two locks at this point - either of them
945 * could generate latencies in another task on another CPU.
946 */
e040f218
HD
947 if (progress >= 32) {
948 progress = 0;
949 if (need_resched() ||
95c354fe 950 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
951 break;
952 }
1da177e4
LT
953 if (pte_none(*src_pte)) {
954 progress++;
955 continue;
956 }
570a335b
HD
957 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
958 vma, addr, rss);
959 if (entry.val)
960 break;
1da177e4
LT
961 progress += 8;
962 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 963
6606c3e0 964 arch_leave_lazy_mmu_mode();
c74df32c 965 spin_unlock(src_ptl);
ece0e2b6 966 pte_unmap(orig_src_pte);
d559db08 967 add_mm_rss_vec(dst_mm, rss);
c36987e2 968 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 969 cond_resched();
570a335b
HD
970
971 if (entry.val) {
972 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
973 return -ENOMEM;
974 progress = 0;
975 }
1da177e4
LT
976 if (addr != end)
977 goto again;
978 return 0;
979}
980
981static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
982 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
983 unsigned long addr, unsigned long end)
984{
985 pmd_t *src_pmd, *dst_pmd;
986 unsigned long next;
987
988 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
989 if (!dst_pmd)
990 return -ENOMEM;
991 src_pmd = pmd_offset(src_pud, addr);
992 do {
993 next = pmd_addr_end(addr, end);
71e3aac0
AA
994 if (pmd_trans_huge(*src_pmd)) {
995 int err;
14d1a55c 996 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
71e3aac0
AA
997 err = copy_huge_pmd(dst_mm, src_mm,
998 dst_pmd, src_pmd, addr, vma);
999 if (err == -ENOMEM)
1000 return -ENOMEM;
1001 if (!err)
1002 continue;
1003 /* fall through */
1004 }
1da177e4
LT
1005 if (pmd_none_or_clear_bad(src_pmd))
1006 continue;
1007 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1008 vma, addr, next))
1009 return -ENOMEM;
1010 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1011 return 0;
1012}
1013
1014static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1015 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1016 unsigned long addr, unsigned long end)
1017{
1018 pud_t *src_pud, *dst_pud;
1019 unsigned long next;
1020
1021 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1022 if (!dst_pud)
1023 return -ENOMEM;
1024 src_pud = pud_offset(src_pgd, addr);
1025 do {
1026 next = pud_addr_end(addr, end);
1027 if (pud_none_or_clear_bad(src_pud))
1028 continue;
1029 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1030 vma, addr, next))
1031 return -ENOMEM;
1032 } while (dst_pud++, src_pud++, addr = next, addr != end);
1033 return 0;
1034}
1035
1036int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1037 struct vm_area_struct *vma)
1038{
1039 pgd_t *src_pgd, *dst_pgd;
1040 unsigned long next;
1041 unsigned long addr = vma->vm_start;
1042 unsigned long end = vma->vm_end;
cddb8a5c 1043 int ret;
1da177e4 1044
d992895b
NP
1045 /*
1046 * Don't copy ptes where a page fault will fill them correctly.
1047 * Fork becomes much lighter when there are big shared or private
1048 * readonly mappings. The tradeoff is that copy_page_range is more
1049 * efficient than faulting.
1050 */
4d7672b4 1051 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
d992895b
NP
1052 if (!vma->anon_vma)
1053 return 0;
1054 }
1055
1da177e4
LT
1056 if (is_vm_hugetlb_page(vma))
1057 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1058
34801ba9 1059 if (unlikely(is_pfn_mapping(vma))) {
2ab64037 1060 /*
1061 * We do not free on error cases below as remove_vma
1062 * gets called on error from higher level routine
1063 */
1064 ret = track_pfn_vma_copy(vma);
1065 if (ret)
1066 return ret;
1067 }
1068
cddb8a5c
AA
1069 /*
1070 * We need to invalidate the secondary MMU mappings only when
1071 * there could be a permission downgrade on the ptes of the
1072 * parent mm. And a permission downgrade will only happen if
1073 * is_cow_mapping() returns true.
1074 */
1075 if (is_cow_mapping(vma->vm_flags))
1076 mmu_notifier_invalidate_range_start(src_mm, addr, end);
1077
1078 ret = 0;
1da177e4
LT
1079 dst_pgd = pgd_offset(dst_mm, addr);
1080 src_pgd = pgd_offset(src_mm, addr);
1081 do {
1082 next = pgd_addr_end(addr, end);
1083 if (pgd_none_or_clear_bad(src_pgd))
1084 continue;
cddb8a5c
AA
1085 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1086 vma, addr, next))) {
1087 ret = -ENOMEM;
1088 break;
1089 }
1da177e4 1090 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c
AA
1091
1092 if (is_cow_mapping(vma->vm_flags))
1093 mmu_notifier_invalidate_range_end(src_mm,
1094 vma->vm_start, end);
1095 return ret;
1da177e4
LT
1096}
1097
51c6f666 1098static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1099 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1100 unsigned long addr, unsigned long end,
97a89413 1101 struct zap_details *details)
1da177e4 1102{
b5810039 1103 struct mm_struct *mm = tlb->mm;
d16dfc55 1104 int force_flush = 0;
d559db08 1105 int rss[NR_MM_COUNTERS];
97a89413 1106 spinlock_t *ptl;
5f1a1907 1107 pte_t *start_pte;
97a89413 1108 pte_t *pte;
d559db08 1109
d16dfc55 1110again:
e303297e 1111 init_rss_vec(rss);
5f1a1907
SR
1112 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1113 pte = start_pte;
6606c3e0 1114 arch_enter_lazy_mmu_mode();
1da177e4
LT
1115 do {
1116 pte_t ptent = *pte;
51c6f666 1117 if (pte_none(ptent)) {
1da177e4 1118 continue;
51c6f666 1119 }
6f5e6b9e 1120
1da177e4 1121 if (pte_present(ptent)) {
ee498ed7 1122 struct page *page;
51c6f666 1123
6aab341e 1124 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
1125 if (unlikely(details) && page) {
1126 /*
1127 * unmap_shared_mapping_pages() wants to
1128 * invalidate cache without truncating:
1129 * unmap shared but keep private pages.
1130 */
1131 if (details->check_mapping &&
1132 details->check_mapping != page->mapping)
1133 continue;
1134 /*
1135 * Each page->index must be checked when
1136 * invalidating or truncating nonlinear.
1137 */
1138 if (details->nonlinear_vma &&
1139 (page->index < details->first_index ||
1140 page->index > details->last_index))
1141 continue;
1142 }
b5810039 1143 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1144 tlb->fullmm);
1da177e4
LT
1145 tlb_remove_tlb_entry(tlb, pte, addr);
1146 if (unlikely(!page))
1147 continue;
1148 if (unlikely(details) && details->nonlinear_vma
1149 && linear_page_index(details->nonlinear_vma,
1150 addr) != page->index)
b5810039 1151 set_pte_at(mm, addr, pte,
1da177e4 1152 pgoff_to_pte(page->index));
1da177e4 1153 if (PageAnon(page))
d559db08 1154 rss[MM_ANONPAGES]--;
6237bcd9
HD
1155 else {
1156 if (pte_dirty(ptent))
1157 set_page_dirty(page);
4917e5d0
JW
1158 if (pte_young(ptent) &&
1159 likely(!VM_SequentialReadHint(vma)))
bf3f3bc5 1160 mark_page_accessed(page);
d559db08 1161 rss[MM_FILEPAGES]--;
6237bcd9 1162 }
edc315fd 1163 page_remove_rmap(page);
3dc14741
HD
1164 if (unlikely(page_mapcount(page) < 0))
1165 print_bad_pte(vma, addr, ptent, page);
d16dfc55
PZ
1166 force_flush = !__tlb_remove_page(tlb, page);
1167 if (force_flush)
1168 break;
1da177e4
LT
1169 continue;
1170 }
1171 /*
1172 * If details->check_mapping, we leave swap entries;
1173 * if details->nonlinear_vma, we leave file entries.
1174 */
1175 if (unlikely(details))
1176 continue;
2509ef26
HD
1177 if (pte_file(ptent)) {
1178 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1179 print_bad_pte(vma, addr, ptent, NULL);
b084d435
KH
1180 } else {
1181 swp_entry_t entry = pte_to_swp_entry(ptent);
1182
1183 if (!non_swap_entry(entry))
1184 rss[MM_SWAPENTS]--;
9f9f1acd
KK
1185 else if (is_migration_entry(entry)) {
1186 struct page *page;
1187
1188 page = migration_entry_to_page(entry);
1189
1190 if (PageAnon(page))
1191 rss[MM_ANONPAGES]--;
1192 else
1193 rss[MM_FILEPAGES]--;
1194 }
b084d435
KH
1195 if (unlikely(!free_swap_and_cache(entry)))
1196 print_bad_pte(vma, addr, ptent, NULL);
1197 }
9888a1ca 1198 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1199 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1200
d559db08 1201 add_mm_rss_vec(mm, rss);
6606c3e0 1202 arch_leave_lazy_mmu_mode();
5f1a1907 1203 pte_unmap_unlock(start_pte, ptl);
51c6f666 1204
d16dfc55
PZ
1205 /*
1206 * mmu_gather ran out of room to batch pages, we break out of
1207 * the PTE lock to avoid doing the potential expensive TLB invalidate
1208 * and page-free while holding it.
1209 */
1210 if (force_flush) {
1211 force_flush = 0;
1212 tlb_flush_mmu(tlb);
1213 if (addr != end)
1214 goto again;
1215 }
1216
51c6f666 1217 return addr;
1da177e4
LT
1218}
1219
51c6f666 1220static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1221 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1222 unsigned long addr, unsigned long end,
97a89413 1223 struct zap_details *details)
1da177e4
LT
1224{
1225 pmd_t *pmd;
1226 unsigned long next;
1227
1228 pmd = pmd_offset(pud, addr);
1229 do {
1230 next = pmd_addr_end(addr, end);
71e3aac0 1231 if (pmd_trans_huge(*pmd)) {
1a5a9906 1232 if (next - addr != HPAGE_PMD_SIZE) {
14d1a55c 1233 VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
71e3aac0 1234 split_huge_page_pmd(vma->vm_mm, pmd);
f21760b1 1235 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1236 goto next;
71e3aac0
AA
1237 /* fall through */
1238 }
1a5a9906
AA
1239 /*
1240 * Here there can be other concurrent MADV_DONTNEED or
1241 * trans huge page faults running, and if the pmd is
1242 * none or trans huge it can change under us. This is
1243 * because MADV_DONTNEED holds the mmap_sem in read
1244 * mode.
1245 */
1246 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1247 goto next;
97a89413 1248 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1249next:
97a89413
PZ
1250 cond_resched();
1251 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1252
1253 return addr;
1da177e4
LT
1254}
1255
51c6f666 1256static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
b5810039 1257 struct vm_area_struct *vma, pgd_t *pgd,
1da177e4 1258 unsigned long addr, unsigned long end,
97a89413 1259 struct zap_details *details)
1da177e4
LT
1260{
1261 pud_t *pud;
1262 unsigned long next;
1263
1264 pud = pud_offset(pgd, addr);
1265 do {
1266 next = pud_addr_end(addr, end);
97a89413 1267 if (pud_none_or_clear_bad(pud))
1da177e4 1268 continue;
97a89413
PZ
1269 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1270 } while (pud++, addr = next, addr != end);
51c6f666
RH
1271
1272 return addr;
1da177e4
LT
1273}
1274
51c6f666
RH
1275static unsigned long unmap_page_range(struct mmu_gather *tlb,
1276 struct vm_area_struct *vma,
1da177e4 1277 unsigned long addr, unsigned long end,
97a89413 1278 struct zap_details *details)
1da177e4
LT
1279{
1280 pgd_t *pgd;
1281 unsigned long next;
1282
1283 if (details && !details->check_mapping && !details->nonlinear_vma)
1284 details = NULL;
1285
1286 BUG_ON(addr >= end);
569b846d 1287 mem_cgroup_uncharge_start();
1da177e4
LT
1288 tlb_start_vma(tlb, vma);
1289 pgd = pgd_offset(vma->vm_mm, addr);
1290 do {
1291 next = pgd_addr_end(addr, end);
97a89413 1292 if (pgd_none_or_clear_bad(pgd))
1da177e4 1293 continue;
97a89413
PZ
1294 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1295 } while (pgd++, addr = next, addr != end);
1da177e4 1296 tlb_end_vma(tlb, vma);
569b846d 1297 mem_cgroup_uncharge_end();
51c6f666
RH
1298
1299 return addr;
1da177e4
LT
1300}
1301
1da177e4
LT
1302/**
1303 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1304 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1305 * @vma: the starting vma
1306 * @start_addr: virtual address at which to start unmapping
1307 * @end_addr: virtual address at which to end unmapping
1308 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1309 * @details: details of nonlinear truncation or shared cache invalidation
1310 *
ee39b37b 1311 * Returns the end address of the unmapping (restart addr if interrupted).
1da177e4 1312 *
508034a3 1313 * Unmap all pages in the vma list.
1da177e4 1314 *
1da177e4
LT
1315 * Only addresses between `start' and `end' will be unmapped.
1316 *
1317 * The VMA list must be sorted in ascending virtual address order.
1318 *
1319 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1320 * range after unmap_vmas() returns. So the only responsibility here is to
1321 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1322 * drops the lock and schedules.
1323 */
d16dfc55 1324unsigned long unmap_vmas(struct mmu_gather *tlb,
1da177e4
LT
1325 struct vm_area_struct *vma, unsigned long start_addr,
1326 unsigned long end_addr, unsigned long *nr_accounted,
1327 struct zap_details *details)
1328{
ee39b37b 1329 unsigned long start = start_addr;
cddb8a5c 1330 struct mm_struct *mm = vma->vm_mm;
1da177e4 1331
cddb8a5c 1332 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1da177e4 1333 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1da177e4
LT
1334 unsigned long end;
1335
1336 start = max(vma->vm_start, start_addr);
1337 if (start >= vma->vm_end)
1338 continue;
1339 end = min(vma->vm_end, end_addr);
1340 if (end <= vma->vm_start)
1341 continue;
1342
1343 if (vma->vm_flags & VM_ACCOUNT)
1344 *nr_accounted += (end - start) >> PAGE_SHIFT;
1345
34801ba9 1346 if (unlikely(is_pfn_mapping(vma)))
2ab64037 1347 untrack_pfn_vma(vma, 0, 0);
1348
1da177e4 1349 while (start != end) {
51c6f666 1350 if (unlikely(is_vm_hugetlb_page(vma))) {
a137e1cc
AK
1351 /*
1352 * It is undesirable to test vma->vm_file as it
1353 * should be non-null for valid hugetlb area.
1354 * However, vm_file will be NULL in the error
1355 * cleanup path of do_mmap_pgoff. When
1356 * hugetlbfs ->mmap method fails,
1357 * do_mmap_pgoff() nullifies vma->vm_file
1358 * before calling this function to clean up.
1359 * Since no pte has actually been setup, it is
1360 * safe to do nothing in this case.
1361 */
97a89413 1362 if (vma->vm_file)
a137e1cc 1363 unmap_hugepage_range(vma, start, end, NULL);
a137e1cc 1364
51c6f666
RH
1365 start = end;
1366 } else
97a89413 1367 start = unmap_page_range(tlb, vma, start, end, details);
1da177e4
LT
1368 }
1369 }
97a89413 1370
cddb8a5c 1371 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
ee39b37b 1372 return start; /* which is now the end (or restart) address */
1da177e4
LT
1373}
1374
1375/**
1376 * zap_page_range - remove user pages in a given range
1377 * @vma: vm_area_struct holding the applicable pages
1378 * @address: starting address of pages to zap
1379 * @size: number of bytes to zap
1380 * @details: details of nonlinear truncation or shared cache invalidation
1381 */
ee39b37b 1382unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1383 unsigned long size, struct zap_details *details)
1384{
1385 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1386 struct mmu_gather tlb;
1da177e4
LT
1387 unsigned long end = address + size;
1388 unsigned long nr_accounted = 0;
1389
1da177e4 1390 lru_add_drain();
d16dfc55 1391 tlb_gather_mmu(&tlb, mm, 0);
365e9c87 1392 update_hiwater_rss(mm);
508034a3 1393 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
d16dfc55 1394 tlb_finish_mmu(&tlb, address, end);
ee39b37b 1395 return end;
1da177e4
LT
1396}
1397
c627f9cc
JS
1398/**
1399 * zap_vma_ptes - remove ptes mapping the vma
1400 * @vma: vm_area_struct holding ptes to be zapped
1401 * @address: starting address of pages to zap
1402 * @size: number of bytes to zap
1403 *
1404 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1405 *
1406 * The entire address range must be fully contained within the vma.
1407 *
1408 * Returns 0 if successful.
1409 */
1410int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1411 unsigned long size)
1412{
1413 if (address < vma->vm_start || address + size > vma->vm_end ||
1414 !(vma->vm_flags & VM_PFNMAP))
1415 return -1;
1416 zap_page_range(vma, address, size, NULL);
1417 return 0;
1418}
1419EXPORT_SYMBOL_GPL(zap_vma_ptes);
1420
142762bd
JW
1421/**
1422 * follow_page - look up a page descriptor from a user-virtual address
1423 * @vma: vm_area_struct mapping @address
1424 * @address: virtual address to look up
1425 * @flags: flags modifying lookup behaviour
1426 *
1427 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1428 *
1429 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1430 * an error pointer if there is a mapping to something not represented
1431 * by a page descriptor (see also vm_normal_page()).
1da177e4 1432 */
6aab341e 1433struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
deceb6cd 1434 unsigned int flags)
1da177e4
LT
1435{
1436 pgd_t *pgd;
1437 pud_t *pud;
1438 pmd_t *pmd;
1439 pte_t *ptep, pte;
deceb6cd 1440 spinlock_t *ptl;
1da177e4 1441 struct page *page;
6aab341e 1442 struct mm_struct *mm = vma->vm_mm;
1da177e4 1443
deceb6cd
HD
1444 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1445 if (!IS_ERR(page)) {
1446 BUG_ON(flags & FOLL_GET);
1447 goto out;
1448 }
1da177e4 1449
deceb6cd 1450 page = NULL;
1da177e4
LT
1451 pgd = pgd_offset(mm, address);
1452 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
deceb6cd 1453 goto no_page_table;
1da177e4
LT
1454
1455 pud = pud_offset(pgd, address);
ceb86879 1456 if (pud_none(*pud))
deceb6cd 1457 goto no_page_table;
8a07651e 1458 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
ceb86879
AK
1459 BUG_ON(flags & FOLL_GET);
1460 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1461 goto out;
1462 }
1463 if (unlikely(pud_bad(*pud)))
1464 goto no_page_table;
1465
1da177e4 1466 pmd = pmd_offset(pud, address);
aeed5fce 1467 if (pmd_none(*pmd))
deceb6cd 1468 goto no_page_table;
71e3aac0 1469 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
deceb6cd
HD
1470 BUG_ON(flags & FOLL_GET);
1471 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1da177e4 1472 goto out;
deceb6cd 1473 }
71e3aac0 1474 if (pmd_trans_huge(*pmd)) {
500d65d4
AA
1475 if (flags & FOLL_SPLIT) {
1476 split_huge_page_pmd(mm, pmd);
1477 goto split_fallthrough;
1478 }
71e3aac0
AA
1479 spin_lock(&mm->page_table_lock);
1480 if (likely(pmd_trans_huge(*pmd))) {
1481 if (unlikely(pmd_trans_splitting(*pmd))) {
1482 spin_unlock(&mm->page_table_lock);
1483 wait_split_huge_page(vma->anon_vma, pmd);
1484 } else {
1485 page = follow_trans_huge_pmd(mm, address,
1486 pmd, flags);
1487 spin_unlock(&mm->page_table_lock);
1488 goto out;
1489 }
1490 } else
1491 spin_unlock(&mm->page_table_lock);
1492 /* fall through */
1493 }
500d65d4 1494split_fallthrough:
aeed5fce
HD
1495 if (unlikely(pmd_bad(*pmd)))
1496 goto no_page_table;
1497
deceb6cd 1498 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
1499
1500 pte = *ptep;
deceb6cd 1501 if (!pte_present(pte))
89f5b7da 1502 goto no_page;
deceb6cd
HD
1503 if ((flags & FOLL_WRITE) && !pte_write(pte))
1504 goto unlock;
a13ea5b7 1505
6aab341e 1506 page = vm_normal_page(vma, address, pte);
a13ea5b7
HD
1507 if (unlikely(!page)) {
1508 if ((flags & FOLL_DUMP) ||
62eede62 1509 !is_zero_pfn(pte_pfn(pte)))
a13ea5b7
HD
1510 goto bad_page;
1511 page = pte_page(pte);
1512 }
1da177e4 1513
deceb6cd 1514 if (flags & FOLL_GET)
70b50f94 1515 get_page_foll(page);
deceb6cd
HD
1516 if (flags & FOLL_TOUCH) {
1517 if ((flags & FOLL_WRITE) &&
1518 !pte_dirty(pte) && !PageDirty(page))
1519 set_page_dirty(page);
bd775c42
KM
1520 /*
1521 * pte_mkyoung() would be more correct here, but atomic care
1522 * is needed to avoid losing the dirty bit: it is easier to use
1523 * mark_page_accessed().
1524 */
deceb6cd
HD
1525 mark_page_accessed(page);
1526 }
a1fde08c 1527 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
110d74a9
ML
1528 /*
1529 * The preliminary mapping check is mainly to avoid the
1530 * pointless overhead of lock_page on the ZERO_PAGE
1531 * which might bounce very badly if there is contention.
1532 *
1533 * If the page is already locked, we don't need to
1534 * handle it now - vmscan will handle it later if and
1535 * when it attempts to reclaim the page.
1536 */
1537 if (page->mapping && trylock_page(page)) {
1538 lru_add_drain(); /* push cached pages to LRU */
1539 /*
1540 * Because we lock page here and migration is
1541 * blocked by the pte's page reference, we need
1542 * only check for file-cache page truncation.
1543 */
1544 if (page->mapping)
1545 mlock_vma_page(page);
1546 unlock_page(page);
1547 }
1548 }
deceb6cd
HD
1549unlock:
1550 pte_unmap_unlock(ptep, ptl);
1da177e4 1551out:
deceb6cd 1552 return page;
1da177e4 1553
89f5b7da
LT
1554bad_page:
1555 pte_unmap_unlock(ptep, ptl);
1556 return ERR_PTR(-EFAULT);
1557
1558no_page:
1559 pte_unmap_unlock(ptep, ptl);
1560 if (!pte_none(pte))
1561 return page;
8e4b9a60 1562
deceb6cd
HD
1563no_page_table:
1564 /*
1565 * When core dumping an enormous anonymous area that nobody
8e4b9a60
HD
1566 * has touched so far, we don't want to allocate unnecessary pages or
1567 * page tables. Return error instead of NULL to skip handle_mm_fault,
1568 * then get_dump_page() will return NULL to leave a hole in the dump.
1569 * But we can only make this optimization where a hole would surely
1570 * be zero-filled if handle_mm_fault() actually did handle it.
deceb6cd 1571 */
8e4b9a60
HD
1572 if ((flags & FOLL_DUMP) &&
1573 (!vma->vm_ops || !vma->vm_ops->fault))
1574 return ERR_PTR(-EFAULT);
deceb6cd 1575 return page;
1da177e4
LT
1576}
1577
95042f9e
LT
1578static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1579{
a09a79f6
MP
1580 return stack_guard_page_start(vma, addr) ||
1581 stack_guard_page_end(vma, addr+PAGE_SIZE);
95042f9e
LT
1582}
1583
0014bd99
HY
1584/**
1585 * __get_user_pages() - pin user pages in memory
1586 * @tsk: task_struct of target task
1587 * @mm: mm_struct of target mm
1588 * @start: starting user address
1589 * @nr_pages: number of pages from start to pin
1590 * @gup_flags: flags modifying pin behaviour
1591 * @pages: array that receives pointers to the pages pinned.
1592 * Should be at least nr_pages long. Or NULL, if caller
1593 * only intends to ensure the pages are faulted in.
1594 * @vmas: array of pointers to vmas corresponding to each page.
1595 * Or NULL if the caller does not require them.
1596 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1597 *
1598 * Returns number of pages pinned. This may be fewer than the number
1599 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1600 * were pinned, returns -errno. Each page returned must be released
1601 * with a put_page() call when it is finished with. vmas will only
1602 * remain valid while mmap_sem is held.
1603 *
1604 * Must be called with mmap_sem held for read or write.
1605 *
1606 * __get_user_pages walks a process's page tables and takes a reference to
1607 * each struct page that each user address corresponds to at a given
1608 * instant. That is, it takes the page that would be accessed if a user
1609 * thread accesses the given user virtual address at that instant.
1610 *
1611 * This does not guarantee that the page exists in the user mappings when
1612 * __get_user_pages returns, and there may even be a completely different
1613 * page there in some cases (eg. if mmapped pagecache has been invalidated
1614 * and subsequently re faulted). However it does guarantee that the page
1615 * won't be freed completely. And mostly callers simply care that the page
1616 * contains data that was valid *at some point in time*. Typically, an IO
1617 * or similar operation cannot guarantee anything stronger anyway because
1618 * locks can't be held over the syscall boundary.
1619 *
1620 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1621 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1622 * appropriate) must be called after the page is finished with, and
1623 * before put_page is called.
1624 *
1625 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1626 * or mmap_sem contention, and if waiting is needed to pin all pages,
1627 * *@nonblocking will be set to 0.
1628 *
1629 * In most cases, get_user_pages or get_user_pages_fast should be used
1630 * instead of __get_user_pages. __get_user_pages should be used only if
1631 * you need some special @gup_flags.
1632 */
b291f000 1633int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
58fa879e 1634 unsigned long start, int nr_pages, unsigned int gup_flags,
53a7706d
ML
1635 struct page **pages, struct vm_area_struct **vmas,
1636 int *nonblocking)
1da177e4
LT
1637{
1638 int i;
58fa879e 1639 unsigned long vm_flags;
1da177e4 1640
9d73777e 1641 if (nr_pages <= 0)
900cf086 1642 return 0;
58fa879e
HD
1643
1644 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1645
1da177e4
LT
1646 /*
1647 * Require read or write permissions.
58fa879e 1648 * If FOLL_FORCE is set, we only require the "MAY" flags.
1da177e4 1649 */
58fa879e
HD
1650 vm_flags = (gup_flags & FOLL_WRITE) ?
1651 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1652 vm_flags &= (gup_flags & FOLL_FORCE) ?
1653 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1da177e4
LT
1654 i = 0;
1655
1656 do {
deceb6cd 1657 struct vm_area_struct *vma;
1da177e4
LT
1658
1659 vma = find_extend_vma(mm, start);
e7f22e20 1660 if (!vma && in_gate_area(mm, start)) {
1da177e4 1661 unsigned long pg = start & PAGE_MASK;
1da177e4
LT
1662 pgd_t *pgd;
1663 pud_t *pud;
1664 pmd_t *pmd;
1665 pte_t *pte;
b291f000
NP
1666
1667 /* user gate pages are read-only */
58fa879e 1668 if (gup_flags & FOLL_WRITE)
1da177e4
LT
1669 return i ? : -EFAULT;
1670 if (pg > TASK_SIZE)
1671 pgd = pgd_offset_k(pg);
1672 else
1673 pgd = pgd_offset_gate(mm, pg);
1674 BUG_ON(pgd_none(*pgd));
1675 pud = pud_offset(pgd, pg);
1676 BUG_ON(pud_none(*pud));
1677 pmd = pmd_offset(pud, pg);
690dbe1c
HD
1678 if (pmd_none(*pmd))
1679 return i ? : -EFAULT;
f66055ab 1680 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4 1681 pte = pte_offset_map(pmd, pg);
690dbe1c
HD
1682 if (pte_none(*pte)) {
1683 pte_unmap(pte);
1684 return i ? : -EFAULT;
1685 }
95042f9e 1686 vma = get_gate_vma(mm);
1da177e4 1687 if (pages) {
de51257a
HD
1688 struct page *page;
1689
95042f9e 1690 page = vm_normal_page(vma, start, *pte);
de51257a
HD
1691 if (!page) {
1692 if (!(gup_flags & FOLL_DUMP) &&
1693 is_zero_pfn(pte_pfn(*pte)))
1694 page = pte_page(*pte);
1695 else {
1696 pte_unmap(pte);
1697 return i ? : -EFAULT;
1698 }
1699 }
6aab341e 1700 pages[i] = page;
de51257a 1701 get_page(page);
1da177e4
LT
1702 }
1703 pte_unmap(pte);
95042f9e 1704 goto next_page;
1da177e4
LT
1705 }
1706
b291f000
NP
1707 if (!vma ||
1708 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1c3aff1c 1709 !(vm_flags & vma->vm_flags))
1da177e4
LT
1710 return i ? : -EFAULT;
1711
2a15efc9
HD
1712 if (is_vm_hugetlb_page(vma)) {
1713 i = follow_hugetlb_page(mm, vma, pages, vmas,
58fa879e 1714 &start, &nr_pages, i, gup_flags);
2a15efc9
HD
1715 continue;
1716 }
deceb6cd 1717
1da177e4 1718 do {
08ef4729 1719 struct page *page;
58fa879e 1720 unsigned int foll_flags = gup_flags;
1da177e4 1721
462e00cc 1722 /*
4779280d 1723 * If we have a pending SIGKILL, don't keep faulting
1c3aff1c 1724 * pages and potentially allocating memory.
462e00cc 1725 */
1c3aff1c 1726 if (unlikely(fatal_signal_pending(current)))
4779280d 1727 return i ? i : -ERESTARTSYS;
462e00cc 1728
deceb6cd 1729 cond_resched();
6aab341e 1730 while (!(page = follow_page(vma, start, foll_flags))) {
deceb6cd 1731 int ret;
53a7706d
ML
1732 unsigned int fault_flags = 0;
1733
a09a79f6
MP
1734 /* For mlock, just skip the stack guard page. */
1735 if (foll_flags & FOLL_MLOCK) {
1736 if (stack_guard_page(vma, start))
1737 goto next_page;
1738 }
53a7706d
ML
1739 if (foll_flags & FOLL_WRITE)
1740 fault_flags |= FAULT_FLAG_WRITE;
1741 if (nonblocking)
1742 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
318b275f
GN
1743 if (foll_flags & FOLL_NOWAIT)
1744 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
d06063cc 1745
d26ed650 1746 ret = handle_mm_fault(mm, vma, start,
53a7706d 1747 fault_flags);
d26ed650 1748
83c54070
NP
1749 if (ret & VM_FAULT_ERROR) {
1750 if (ret & VM_FAULT_OOM)
1751 return i ? i : -ENOMEM;
69ebb83e
HY
1752 if (ret & (VM_FAULT_HWPOISON |
1753 VM_FAULT_HWPOISON_LARGE)) {
1754 if (i)
1755 return i;
1756 else if (gup_flags & FOLL_HWPOISON)
1757 return -EHWPOISON;
1758 else
1759 return -EFAULT;
1760 }
1761 if (ret & VM_FAULT_SIGBUS)
83c54070
NP
1762 return i ? i : -EFAULT;
1763 BUG();
1764 }
e7f22e20
SW
1765
1766 if (tsk) {
1767 if (ret & VM_FAULT_MAJOR)
1768 tsk->maj_flt++;
1769 else
1770 tsk->min_flt++;
1771 }
83c54070 1772
53a7706d 1773 if (ret & VM_FAULT_RETRY) {
318b275f
GN
1774 if (nonblocking)
1775 *nonblocking = 0;
53a7706d
ML
1776 return i;
1777 }
1778
a68d2ebc 1779 /*
83c54070
NP
1780 * The VM_FAULT_WRITE bit tells us that
1781 * do_wp_page has broken COW when necessary,
1782 * even if maybe_mkwrite decided not to set
1783 * pte_write. We can thus safely do subsequent
878b63ac
HD
1784 * page lookups as if they were reads. But only
1785 * do so when looping for pte_write is futile:
1786 * in some cases userspace may also be wanting
1787 * to write to the gotten user page, which a
1788 * read fault here might prevent (a readonly
1789 * page might get reCOWed by userspace write).
a68d2ebc 1790 */
878b63ac
HD
1791 if ((ret & VM_FAULT_WRITE) &&
1792 !(vma->vm_flags & VM_WRITE))
deceb6cd 1793 foll_flags &= ~FOLL_WRITE;
83c54070 1794
7f7bbbe5 1795 cond_resched();
1da177e4 1796 }
89f5b7da
LT
1797 if (IS_ERR(page))
1798 return i ? i : PTR_ERR(page);
1da177e4 1799 if (pages) {
08ef4729 1800 pages[i] = page;
03beb076 1801
a6f36be3 1802 flush_anon_page(vma, page, start);
08ef4729 1803 flush_dcache_page(page);
1da177e4 1804 }
95042f9e 1805next_page:
1da177e4
LT
1806 if (vmas)
1807 vmas[i] = vma;
1808 i++;
1809 start += PAGE_SIZE;
9d73777e
PZ
1810 nr_pages--;
1811 } while (nr_pages && start < vma->vm_end);
1812 } while (nr_pages);
1da177e4
LT
1813 return i;
1814}
0014bd99 1815EXPORT_SYMBOL(__get_user_pages);
b291f000 1816
2efaca92
BH
1817/*
1818 * fixup_user_fault() - manually resolve a user page fault
1819 * @tsk: the task_struct to use for page fault accounting, or
1820 * NULL if faults are not to be recorded.
1821 * @mm: mm_struct of target mm
1822 * @address: user address
1823 * @fault_flags:flags to pass down to handle_mm_fault()
1824 *
1825 * This is meant to be called in the specific scenario where for locking reasons
1826 * we try to access user memory in atomic context (within a pagefault_disable()
1827 * section), this returns -EFAULT, and we want to resolve the user fault before
1828 * trying again.
1829 *
1830 * Typically this is meant to be used by the futex code.
1831 *
1832 * The main difference with get_user_pages() is that this function will
1833 * unconditionally call handle_mm_fault() which will in turn perform all the
1834 * necessary SW fixup of the dirty and young bits in the PTE, while
1835 * handle_mm_fault() only guarantees to update these in the struct page.
1836 *
1837 * This is important for some architectures where those bits also gate the
1838 * access permission to the page because they are maintained in software. On
1839 * such architectures, gup() will not be enough to make a subsequent access
1840 * succeed.
1841 *
1842 * This should be called with the mm_sem held for read.
1843 */
1844int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1845 unsigned long address, unsigned int fault_flags)
1846{
1847 struct vm_area_struct *vma;
1848 int ret;
1849
1850 vma = find_extend_vma(mm, address);
1851 if (!vma || address < vma->vm_start)
1852 return -EFAULT;
1853
1854 ret = handle_mm_fault(mm, vma, address, fault_flags);
1855 if (ret & VM_FAULT_ERROR) {
1856 if (ret & VM_FAULT_OOM)
1857 return -ENOMEM;
1858 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1859 return -EHWPOISON;
1860 if (ret & VM_FAULT_SIGBUS)
1861 return -EFAULT;
1862 BUG();
1863 }
1864 if (tsk) {
1865 if (ret & VM_FAULT_MAJOR)
1866 tsk->maj_flt++;
1867 else
1868 tsk->min_flt++;
1869 }
1870 return 0;
1871}
1872
1873/*
d2bf6be8 1874 * get_user_pages() - pin user pages in memory
e7f22e20
SW
1875 * @tsk: the task_struct to use for page fault accounting, or
1876 * NULL if faults are not to be recorded.
d2bf6be8
NP
1877 * @mm: mm_struct of target mm
1878 * @start: starting user address
9d73777e 1879 * @nr_pages: number of pages from start to pin
d2bf6be8
NP
1880 * @write: whether pages will be written to by the caller
1881 * @force: whether to force write access even if user mapping is
1882 * readonly. This will result in the page being COWed even
1883 * in MAP_SHARED mappings. You do not want this.
1884 * @pages: array that receives pointers to the pages pinned.
1885 * Should be at least nr_pages long. Or NULL, if caller
1886 * only intends to ensure the pages are faulted in.
1887 * @vmas: array of pointers to vmas corresponding to each page.
1888 * Or NULL if the caller does not require them.
1889 *
1890 * Returns number of pages pinned. This may be fewer than the number
9d73777e 1891 * requested. If nr_pages is 0 or negative, returns 0. If no pages
d2bf6be8
NP
1892 * were pinned, returns -errno. Each page returned must be released
1893 * with a put_page() call when it is finished with. vmas will only
1894 * remain valid while mmap_sem is held.
1895 *
1896 * Must be called with mmap_sem held for read or write.
1897 *
1898 * get_user_pages walks a process's page tables and takes a reference to
1899 * each struct page that each user address corresponds to at a given
1900 * instant. That is, it takes the page that would be accessed if a user
1901 * thread accesses the given user virtual address at that instant.
1902 *
1903 * This does not guarantee that the page exists in the user mappings when
1904 * get_user_pages returns, and there may even be a completely different
1905 * page there in some cases (eg. if mmapped pagecache has been invalidated
1906 * and subsequently re faulted). However it does guarantee that the page
1907 * won't be freed completely. And mostly callers simply care that the page
1908 * contains data that was valid *at some point in time*. Typically, an IO
1909 * or similar operation cannot guarantee anything stronger anyway because
1910 * locks can't be held over the syscall boundary.
1911 *
1912 * If write=0, the page must not be written to. If the page is written to,
1913 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1914 * after the page is finished with, and before put_page is called.
1915 *
1916 * get_user_pages is typically used for fewer-copy IO operations, to get a
1917 * handle on the memory by some means other than accesses via the user virtual
1918 * addresses. The pages may be submitted for DMA to devices or accessed via
1919 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1920 * use the correct cache flushing APIs.
1921 *
1922 * See also get_user_pages_fast, for performance critical applications.
1923 */
b291f000 1924int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
9d73777e 1925 unsigned long start, int nr_pages, int write, int force,
b291f000
NP
1926 struct page **pages, struct vm_area_struct **vmas)
1927{
58fa879e 1928 int flags = FOLL_TOUCH;
b291f000 1929
58fa879e
HD
1930 if (pages)
1931 flags |= FOLL_GET;
b291f000 1932 if (write)
58fa879e 1933 flags |= FOLL_WRITE;
b291f000 1934 if (force)
58fa879e 1935 flags |= FOLL_FORCE;
b291f000 1936
53a7706d
ML
1937 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1938 NULL);
b291f000 1939}
1da177e4
LT
1940EXPORT_SYMBOL(get_user_pages);
1941
f3e8fccd
HD
1942/**
1943 * get_dump_page() - pin user page in memory while writing it to core dump
1944 * @addr: user address
1945 *
1946 * Returns struct page pointer of user page pinned for dump,
1947 * to be freed afterwards by page_cache_release() or put_page().
1948 *
1949 * Returns NULL on any kind of failure - a hole must then be inserted into
1950 * the corefile, to preserve alignment with its headers; and also returns
1951 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1952 * allowing a hole to be left in the corefile to save diskspace.
1953 *
1954 * Called without mmap_sem, but after all other threads have been killed.
1955 */
1956#ifdef CONFIG_ELF_CORE
1957struct page *get_dump_page(unsigned long addr)
1958{
1959 struct vm_area_struct *vma;
1960 struct page *page;
1961
1962 if (__get_user_pages(current, current->mm, addr, 1,
53a7706d
ML
1963 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1964 NULL) < 1)
f3e8fccd 1965 return NULL;
f3e8fccd
HD
1966 flush_cache_page(vma, addr, page_to_pfn(page));
1967 return page;
1968}
1969#endif /* CONFIG_ELF_CORE */
1970
25ca1d6c 1971pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
920c7a5d 1972 spinlock_t **ptl)
c9cfcddf
LT
1973{
1974 pgd_t * pgd = pgd_offset(mm, addr);
1975 pud_t * pud = pud_alloc(mm, pgd, addr);
1976 if (pud) {
49c91fb0 1977 pmd_t * pmd = pmd_alloc(mm, pud, addr);
f66055ab
AA
1978 if (pmd) {
1979 VM_BUG_ON(pmd_trans_huge(*pmd));
c9cfcddf 1980 return pte_alloc_map_lock(mm, pmd, addr, ptl);
f66055ab 1981 }
c9cfcddf
LT
1982 }
1983 return NULL;
1984}
1985
238f58d8
LT
1986/*
1987 * This is the old fallback for page remapping.
1988 *
1989 * For historical reasons, it only allows reserved pages. Only
1990 * old drivers should use this, and they needed to mark their
1991 * pages reserved for the old functions anyway.
1992 */
423bad60
NP
1993static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1994 struct page *page, pgprot_t prot)
238f58d8 1995{
423bad60 1996 struct mm_struct *mm = vma->vm_mm;
238f58d8 1997 int retval;
c9cfcddf 1998 pte_t *pte;
8a9f3ccd
BS
1999 spinlock_t *ptl;
2000
238f58d8 2001 retval = -EINVAL;
a145dd41 2002 if (PageAnon(page))
5b4e655e 2003 goto out;
238f58d8
LT
2004 retval = -ENOMEM;
2005 flush_dcache_page(page);
c9cfcddf 2006 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 2007 if (!pte)
5b4e655e 2008 goto out;
238f58d8
LT
2009 retval = -EBUSY;
2010 if (!pte_none(*pte))
2011 goto out_unlock;
2012
2013 /* Ok, finally just insert the thing.. */
2014 get_page(page);
34e55232 2015 inc_mm_counter_fast(mm, MM_FILEPAGES);
238f58d8
LT
2016 page_add_file_rmap(page);
2017 set_pte_at(mm, addr, pte, mk_pte(page, prot));
2018
2019 retval = 0;
8a9f3ccd
BS
2020 pte_unmap_unlock(pte, ptl);
2021 return retval;
238f58d8
LT
2022out_unlock:
2023 pte_unmap_unlock(pte, ptl);
2024out:
2025 return retval;
2026}
2027
bfa5bf6d
REB
2028/**
2029 * vm_insert_page - insert single page into user vma
2030 * @vma: user vma to map to
2031 * @addr: target user address of this page
2032 * @page: source kernel page
2033 *
a145dd41
LT
2034 * This allows drivers to insert individual pages they've allocated
2035 * into a user vma.
2036 *
2037 * The page has to be a nice clean _individual_ kernel allocation.
2038 * If you allocate a compound page, you need to have marked it as
2039 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 2040 * (see split_page()).
a145dd41
LT
2041 *
2042 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2043 * took an arbitrary page protection parameter. This doesn't allow
2044 * that. Your vma protection will have to be set up correctly, which
2045 * means that if you want a shared writable mapping, you'd better
2046 * ask for a shared writable mapping!
2047 *
2048 * The page does not need to be reserved.
2049 */
423bad60
NP
2050int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2051 struct page *page)
a145dd41
LT
2052{
2053 if (addr < vma->vm_start || addr >= vma->vm_end)
2054 return -EFAULT;
2055 if (!page_count(page))
2056 return -EINVAL;
4d7672b4 2057 vma->vm_flags |= VM_INSERTPAGE;
423bad60 2058 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 2059}
e3c3374f 2060EXPORT_SYMBOL(vm_insert_page);
a145dd41 2061
423bad60
NP
2062static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2063 unsigned long pfn, pgprot_t prot)
2064{
2065 struct mm_struct *mm = vma->vm_mm;
2066 int retval;
2067 pte_t *pte, entry;
2068 spinlock_t *ptl;
2069
2070 retval = -ENOMEM;
2071 pte = get_locked_pte(mm, addr, &ptl);
2072 if (!pte)
2073 goto out;
2074 retval = -EBUSY;
2075 if (!pte_none(*pte))
2076 goto out_unlock;
2077
2078 /* Ok, finally just insert the thing.. */
2079 entry = pte_mkspecial(pfn_pte(pfn, prot));
2080 set_pte_at(mm, addr, pte, entry);
4b3073e1 2081 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60
NP
2082
2083 retval = 0;
2084out_unlock:
2085 pte_unmap_unlock(pte, ptl);
2086out:
2087 return retval;
2088}
2089
e0dc0d8f
NP
2090/**
2091 * vm_insert_pfn - insert single pfn into user vma
2092 * @vma: user vma to map to
2093 * @addr: target user address of this page
2094 * @pfn: source kernel pfn
2095 *
2096 * Similar to vm_inert_page, this allows drivers to insert individual pages
2097 * they've allocated into a user vma. Same comments apply.
2098 *
2099 * This function should only be called from a vm_ops->fault handler, and
2100 * in that case the handler should return NULL.
0d71d10a
NP
2101 *
2102 * vma cannot be a COW mapping.
2103 *
2104 * As this is called only for pages that do not currently exist, we
2105 * do not need to flush old virtual caches or the TLB.
e0dc0d8f
NP
2106 */
2107int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 2108 unsigned long pfn)
e0dc0d8f 2109{
2ab64037 2110 int ret;
e4b866ed 2111 pgprot_t pgprot = vma->vm_page_prot;
7e675137
NP
2112 /*
2113 * Technically, architectures with pte_special can avoid all these
2114 * restrictions (same for remap_pfn_range). However we would like
2115 * consistency in testing and feature parity among all, so we should
2116 * try to keep these invariants in place for everybody.
2117 */
b379d790
JH
2118 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2119 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2120 (VM_PFNMAP|VM_MIXEDMAP));
2121 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2122 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 2123
423bad60
NP
2124 if (addr < vma->vm_start || addr >= vma->vm_end)
2125 return -EFAULT;
e4b866ed 2126 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
2ab64037 2127 return -EINVAL;
2128
e4b866ed 2129 ret = insert_pfn(vma, addr, pfn, pgprot);
2ab64037 2130
2131 if (ret)
2132 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
2133
2134 return ret;
423bad60
NP
2135}
2136EXPORT_SYMBOL(vm_insert_pfn);
e0dc0d8f 2137
423bad60
NP
2138int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2139 unsigned long pfn)
2140{
2141 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
e0dc0d8f 2142
423bad60
NP
2143 if (addr < vma->vm_start || addr >= vma->vm_end)
2144 return -EFAULT;
e0dc0d8f 2145
423bad60
NP
2146 /*
2147 * If we don't have pte special, then we have to use the pfn_valid()
2148 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2149 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
2150 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2151 * without pte special, it would there be refcounted as a normal page.
423bad60
NP
2152 */
2153 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2154 struct page *page;
2155
2156 page = pfn_to_page(pfn);
2157 return insert_page(vma, addr, page, vma->vm_page_prot);
2158 }
2159 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
e0dc0d8f 2160}
423bad60 2161EXPORT_SYMBOL(vm_insert_mixed);
e0dc0d8f 2162
1da177e4
LT
2163/*
2164 * maps a range of physical memory into the requested pages. the old
2165 * mappings are removed. any references to nonexistent pages results
2166 * in null mappings (currently treated as "copy-on-access")
2167 */
2168static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2169 unsigned long addr, unsigned long end,
2170 unsigned long pfn, pgprot_t prot)
2171{
2172 pte_t *pte;
c74df32c 2173 spinlock_t *ptl;
1da177e4 2174
c74df32c 2175 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
2176 if (!pte)
2177 return -ENOMEM;
6606c3e0 2178 arch_enter_lazy_mmu_mode();
1da177e4
LT
2179 do {
2180 BUG_ON(!pte_none(*pte));
7e675137 2181 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
2182 pfn++;
2183 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 2184 arch_leave_lazy_mmu_mode();
c74df32c 2185 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
2186 return 0;
2187}
2188
2189static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2190 unsigned long addr, unsigned long end,
2191 unsigned long pfn, pgprot_t prot)
2192{
2193 pmd_t *pmd;
2194 unsigned long next;
2195
2196 pfn -= addr >> PAGE_SHIFT;
2197 pmd = pmd_alloc(mm, pud, addr);
2198 if (!pmd)
2199 return -ENOMEM;
f66055ab 2200 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
2201 do {
2202 next = pmd_addr_end(addr, end);
2203 if (remap_pte_range(mm, pmd, addr, next,
2204 pfn + (addr >> PAGE_SHIFT), prot))
2205 return -ENOMEM;
2206 } while (pmd++, addr = next, addr != end);
2207 return 0;
2208}
2209
2210static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2211 unsigned long addr, unsigned long end,
2212 unsigned long pfn, pgprot_t prot)
2213{
2214 pud_t *pud;
2215 unsigned long next;
2216
2217 pfn -= addr >> PAGE_SHIFT;
2218 pud = pud_alloc(mm, pgd, addr);
2219 if (!pud)
2220 return -ENOMEM;
2221 do {
2222 next = pud_addr_end(addr, end);
2223 if (remap_pmd_range(mm, pud, addr, next,
2224 pfn + (addr >> PAGE_SHIFT), prot))
2225 return -ENOMEM;
2226 } while (pud++, addr = next, addr != end);
2227 return 0;
2228}
2229
bfa5bf6d
REB
2230/**
2231 * remap_pfn_range - remap kernel memory to userspace
2232 * @vma: user vma to map to
2233 * @addr: target user address to start at
2234 * @pfn: physical address of kernel memory
2235 * @size: size of map area
2236 * @prot: page protection flags for this mapping
2237 *
2238 * Note: this is only safe if the mm semaphore is held when called.
2239 */
1da177e4
LT
2240int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2241 unsigned long pfn, unsigned long size, pgprot_t prot)
2242{
2243 pgd_t *pgd;
2244 unsigned long next;
2d15cab8 2245 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
2246 struct mm_struct *mm = vma->vm_mm;
2247 int err;
2248
2249 /*
2250 * Physically remapped pages are special. Tell the
2251 * rest of the world about it:
2252 * VM_IO tells people not to look at these pages
2253 * (accesses can have side effects).
0b14c179
HD
2254 * VM_RESERVED is specified all over the place, because
2255 * in 2.4 it kept swapout's vma scan off this vma; but
2256 * in 2.6 the LRU scan won't even find its pages, so this
2257 * flag means no more than count its pages in reserved_vm,
2258 * and omit it from core dump, even when VM_IO turned off.
6aab341e
LT
2259 * VM_PFNMAP tells the core MM that the base pages are just
2260 * raw PFN mappings, and do not have a "struct page" associated
2261 * with them.
fb155c16
LT
2262 *
2263 * There's a horrible special case to handle copy-on-write
2264 * behaviour that some programs depend on. We mark the "original"
2265 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1da177e4 2266 */
4bb9c5c0 2267 if (addr == vma->vm_start && end == vma->vm_end) {
fb155c16 2268 vma->vm_pgoff = pfn;
895791da 2269 vma->vm_flags |= VM_PFN_AT_MMAP;
4bb9c5c0 2270 } else if (is_cow_mapping(vma->vm_flags))
3c8bb73a 2271 return -EINVAL;
fb155c16 2272
6aab341e 2273 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1da177e4 2274
e4b866ed 2275 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
a3670613 2276 if (err) {
2277 /*
2278 * To indicate that track_pfn related cleanup is not
2279 * needed from higher level routine calling unmap_vmas
2280 */
2281 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
895791da 2282 vma->vm_flags &= ~VM_PFN_AT_MMAP;
2ab64037 2283 return -EINVAL;
a3670613 2284 }
2ab64037 2285
1da177e4
LT
2286 BUG_ON(addr >= end);
2287 pfn -= addr >> PAGE_SHIFT;
2288 pgd = pgd_offset(mm, addr);
2289 flush_cache_range(vma, addr, end);
1da177e4
LT
2290 do {
2291 next = pgd_addr_end(addr, end);
2292 err = remap_pud_range(mm, pgd, addr, next,
2293 pfn + (addr >> PAGE_SHIFT), prot);
2294 if (err)
2295 break;
2296 } while (pgd++, addr = next, addr != end);
2ab64037 2297
2298 if (err)
2299 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
2300
1da177e4
LT
2301 return err;
2302}
2303EXPORT_SYMBOL(remap_pfn_range);
2304
aee16b3c
JF
2305static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2306 unsigned long addr, unsigned long end,
2307 pte_fn_t fn, void *data)
2308{
2309 pte_t *pte;
2310 int err;
2f569afd 2311 pgtable_t token;
94909914 2312 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
2313
2314 pte = (mm == &init_mm) ?
2315 pte_alloc_kernel(pmd, addr) :
2316 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2317 if (!pte)
2318 return -ENOMEM;
2319
2320 BUG_ON(pmd_huge(*pmd));
2321
38e0edb1
JF
2322 arch_enter_lazy_mmu_mode();
2323
2f569afd 2324 token = pmd_pgtable(*pmd);
aee16b3c
JF
2325
2326 do {
c36987e2 2327 err = fn(pte++, token, addr, data);
aee16b3c
JF
2328 if (err)
2329 break;
c36987e2 2330 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 2331
38e0edb1
JF
2332 arch_leave_lazy_mmu_mode();
2333
aee16b3c
JF
2334 if (mm != &init_mm)
2335 pte_unmap_unlock(pte-1, ptl);
2336 return err;
2337}
2338
2339static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2340 unsigned long addr, unsigned long end,
2341 pte_fn_t fn, void *data)
2342{
2343 pmd_t *pmd;
2344 unsigned long next;
2345 int err;
2346
ceb86879
AK
2347 BUG_ON(pud_huge(*pud));
2348
aee16b3c
JF
2349 pmd = pmd_alloc(mm, pud, addr);
2350 if (!pmd)
2351 return -ENOMEM;
2352 do {
2353 next = pmd_addr_end(addr, end);
2354 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2355 if (err)
2356 break;
2357 } while (pmd++, addr = next, addr != end);
2358 return err;
2359}
2360
2361static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2362 unsigned long addr, unsigned long end,
2363 pte_fn_t fn, void *data)
2364{
2365 pud_t *pud;
2366 unsigned long next;
2367 int err;
2368
2369 pud = pud_alloc(mm, pgd, addr);
2370 if (!pud)
2371 return -ENOMEM;
2372 do {
2373 next = pud_addr_end(addr, end);
2374 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2375 if (err)
2376 break;
2377 } while (pud++, addr = next, addr != end);
2378 return err;
2379}
2380
2381/*
2382 * Scan a region of virtual memory, filling in page tables as necessary
2383 * and calling a provided function on each leaf page table.
2384 */
2385int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2386 unsigned long size, pte_fn_t fn, void *data)
2387{
2388 pgd_t *pgd;
2389 unsigned long next;
57250a5b 2390 unsigned long end = addr + size;
aee16b3c
JF
2391 int err;
2392
2393 BUG_ON(addr >= end);
2394 pgd = pgd_offset(mm, addr);
2395 do {
2396 next = pgd_addr_end(addr, end);
2397 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2398 if (err)
2399 break;
2400 } while (pgd++, addr = next, addr != end);
57250a5b 2401
aee16b3c
JF
2402 return err;
2403}
2404EXPORT_SYMBOL_GPL(apply_to_page_range);
2405
8f4e2101
HD
2406/*
2407 * handle_pte_fault chooses page fault handler according to an entry
2408 * which was read non-atomically. Before making any commitment, on
2409 * those architectures or configurations (e.g. i386 with PAE) which
a335b2e1 2410 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
8f4e2101
HD
2411 * must check under lock before unmapping the pte and proceeding
2412 * (but do_wp_page is only called after already making such a check;
a335b2e1 2413 * and do_anonymous_page can safely check later on).
8f4e2101 2414 */
4c21e2f2 2415static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
2416 pte_t *page_table, pte_t orig_pte)
2417{
2418 int same = 1;
2419#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2420 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
2421 spinlock_t *ptl = pte_lockptr(mm, pmd);
2422 spin_lock(ptl);
8f4e2101 2423 same = pte_same(*page_table, orig_pte);
4c21e2f2 2424 spin_unlock(ptl);
8f4e2101
HD
2425 }
2426#endif
2427 pte_unmap(page_table);
2428 return same;
2429}
2430
9de455b2 2431static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e
LT
2432{
2433 /*
2434 * If the source page was a PFN mapping, we don't have
2435 * a "struct page" for it. We do a best-effort copy by
2436 * just copying from the original user address. If that
2437 * fails, we just zero-fill it. Live with it.
2438 */
2439 if (unlikely(!src)) {
9b04c5fe 2440 void *kaddr = kmap_atomic(dst);
5d2a2dbb
LT
2441 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2442
2443 /*
2444 * This really shouldn't fail, because the page is there
2445 * in the page tables. But it might just be unreadable,
2446 * in which case we just give up and fill the result with
2447 * zeroes.
2448 */
2449 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
3ecb01df 2450 clear_page(kaddr);
9b04c5fe 2451 kunmap_atomic(kaddr);
c4ec7b0d 2452 flush_dcache_page(dst);
0ed361de
NP
2453 } else
2454 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
2455}
2456
1da177e4
LT
2457/*
2458 * This routine handles present pages, when users try to write
2459 * to a shared page. It is done by copying the page to a new address
2460 * and decrementing the shared-page counter for the old page.
2461 *
1da177e4
LT
2462 * Note that this routine assumes that the protection checks have been
2463 * done by the caller (the low-level page fault routine in most cases).
2464 * Thus we can safely just mark it writable once we've done any necessary
2465 * COW.
2466 *
2467 * We also mark the page dirty at this point even though the page will
2468 * change only once the write actually happens. This avoids a few races,
2469 * and potentially makes it more efficient.
2470 *
8f4e2101
HD
2471 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2472 * but allow concurrent faults), with pte both mapped and locked.
2473 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2474 */
65500d23
HD
2475static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2476 unsigned long address, pte_t *page_table, pmd_t *pmd,
8f4e2101 2477 spinlock_t *ptl, pte_t orig_pte)
e6219ec8 2478 __releases(ptl)
1da177e4 2479{
e5bbe4df 2480 struct page *old_page, *new_page;
1da177e4 2481 pte_t entry;
b009c024 2482 int ret = 0;
a200ee18 2483 int page_mkwrite = 0;
d08b3851 2484 struct page *dirty_page = NULL;
1da177e4 2485
6aab341e 2486 old_page = vm_normal_page(vma, address, orig_pte);
251b97f5
PZ
2487 if (!old_page) {
2488 /*
2489 * VM_MIXEDMAP !pfn_valid() case
2490 *
2491 * We should not cow pages in a shared writeable mapping.
2492 * Just mark the pages writable as we can't do any dirty
2493 * accounting on raw pfn maps.
2494 */
2495 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2496 (VM_WRITE|VM_SHARED))
2497 goto reuse;
6aab341e 2498 goto gotten;
251b97f5 2499 }
1da177e4 2500
d08b3851 2501 /*
ee6a6457
PZ
2502 * Take out anonymous pages first, anonymous shared vmas are
2503 * not dirty accountable.
d08b3851 2504 */
9a840895 2505 if (PageAnon(old_page) && !PageKsm(old_page)) {
ab967d86
HD
2506 if (!trylock_page(old_page)) {
2507 page_cache_get(old_page);
2508 pte_unmap_unlock(page_table, ptl);
2509 lock_page(old_page);
2510 page_table = pte_offset_map_lock(mm, pmd, address,
2511 &ptl);
2512 if (!pte_same(*page_table, orig_pte)) {
2513 unlock_page(old_page);
ab967d86
HD
2514 goto unlock;
2515 }
2516 page_cache_release(old_page);
ee6a6457 2517 }
b009c024 2518 if (reuse_swap_page(old_page)) {
c44b6743
RR
2519 /*
2520 * The page is all ours. Move it to our anon_vma so
2521 * the rmap code will not search our parent or siblings.
2522 * Protected against the rmap code by the page lock.
2523 */
2524 page_move_anon_rmap(old_page, vma, address);
b009c024
ML
2525 unlock_page(old_page);
2526 goto reuse;
2527 }
ab967d86 2528 unlock_page(old_page);
ee6a6457 2529 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2530 (VM_WRITE|VM_SHARED))) {
ee6a6457
PZ
2531 /*
2532 * Only catch write-faults on shared writable pages,
2533 * read-only shared pages can get COWed by
2534 * get_user_pages(.write=1, .force=1).
2535 */
9637a5ef 2536 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
c2ec175c
NP
2537 struct vm_fault vmf;
2538 int tmp;
2539
2540 vmf.virtual_address = (void __user *)(address &
2541 PAGE_MASK);
2542 vmf.pgoff = old_page->index;
2543 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2544 vmf.page = old_page;
2545
9637a5ef
DH
2546 /*
2547 * Notify the address space that the page is about to
2548 * become writable so that it can prohibit this or wait
2549 * for the page to get into an appropriate state.
2550 *
2551 * We do this without the lock held, so that it can
2552 * sleep if it needs to.
2553 */
2554 page_cache_get(old_page);
2555 pte_unmap_unlock(page_table, ptl);
2556
c2ec175c
NP
2557 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2558 if (unlikely(tmp &
2559 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2560 ret = tmp;
9637a5ef 2561 goto unwritable_page;
c2ec175c 2562 }
b827e496
NP
2563 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2564 lock_page(old_page);
2565 if (!old_page->mapping) {
2566 ret = 0; /* retry the fault */
2567 unlock_page(old_page);
2568 goto unwritable_page;
2569 }
2570 } else
2571 VM_BUG_ON(!PageLocked(old_page));
9637a5ef 2572
9637a5ef
DH
2573 /*
2574 * Since we dropped the lock we need to revalidate
2575 * the PTE as someone else may have changed it. If
2576 * they did, we just return, as we can count on the
2577 * MMU to tell us if they didn't also make it writable.
2578 */
2579 page_table = pte_offset_map_lock(mm, pmd, address,
2580 &ptl);
b827e496
NP
2581 if (!pte_same(*page_table, orig_pte)) {
2582 unlock_page(old_page);
9637a5ef 2583 goto unlock;
b827e496 2584 }
a200ee18
PZ
2585
2586 page_mkwrite = 1;
1da177e4 2587 }
d08b3851
PZ
2588 dirty_page = old_page;
2589 get_page(dirty_page);
9637a5ef 2590
251b97f5 2591reuse:
9637a5ef
DH
2592 flush_cache_page(vma, address, pte_pfn(orig_pte));
2593 entry = pte_mkyoung(orig_pte);
2594 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
954ffcb3 2595 if (ptep_set_access_flags(vma, address, page_table, entry,1))
4b3073e1 2596 update_mmu_cache(vma, address, page_table);
72ddc8f7 2597 pte_unmap_unlock(page_table, ptl);
9637a5ef 2598 ret |= VM_FAULT_WRITE;
72ddc8f7
ML
2599
2600 if (!dirty_page)
2601 return ret;
2602
2603 /*
2604 * Yes, Virginia, this is actually required to prevent a race
2605 * with clear_page_dirty_for_io() from clearing the page dirty
2606 * bit after it clear all dirty ptes, but before a racing
2607 * do_wp_page installs a dirty pte.
2608 *
a335b2e1 2609 * __do_fault is protected similarly.
72ddc8f7
ML
2610 */
2611 if (!page_mkwrite) {
2612 wait_on_page_locked(dirty_page);
2613 set_page_dirty_balance(dirty_page, page_mkwrite);
2614 }
2615 put_page(dirty_page);
2616 if (page_mkwrite) {
2617 struct address_space *mapping = dirty_page->mapping;
2618
2619 set_page_dirty(dirty_page);
2620 unlock_page(dirty_page);
2621 page_cache_release(dirty_page);
2622 if (mapping) {
2623 /*
2624 * Some device drivers do not set page.mapping
2625 * but still dirty their pages
2626 */
2627 balance_dirty_pages_ratelimited(mapping);
2628 }
2629 }
2630
2631 /* file_update_time outside page_lock */
2632 if (vma->vm_file)
2633 file_update_time(vma->vm_file);
2634
2635 return ret;
1da177e4 2636 }
1da177e4
LT
2637
2638 /*
2639 * Ok, we need to copy. Oh, well..
2640 */
b5810039 2641 page_cache_get(old_page);
920fc356 2642gotten:
8f4e2101 2643 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2644
2645 if (unlikely(anon_vma_prepare(vma)))
65500d23 2646 goto oom;
a13ea5b7 2647
62eede62 2648 if (is_zero_pfn(pte_pfn(orig_pte))) {
a13ea5b7
HD
2649 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2650 if (!new_page)
2651 goto oom;
2652 } else {
2653 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2654 if (!new_page)
2655 goto oom;
2656 cow_user_page(new_page, old_page, address, vma);
2657 }
2658 __SetPageUptodate(new_page);
2659
2c26fdd7 2660 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
8a9f3ccd
BS
2661 goto oom_free_new;
2662
1da177e4
LT
2663 /*
2664 * Re-check the pte - we dropped the lock
2665 */
8f4e2101 2666 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
65500d23 2667 if (likely(pte_same(*page_table, orig_pte))) {
920fc356 2668 if (old_page) {
920fc356 2669 if (!PageAnon(old_page)) {
34e55232
KH
2670 dec_mm_counter_fast(mm, MM_FILEPAGES);
2671 inc_mm_counter_fast(mm, MM_ANONPAGES);
920fc356
HD
2672 }
2673 } else
34e55232 2674 inc_mm_counter_fast(mm, MM_ANONPAGES);
eca35133 2675 flush_cache_page(vma, address, pte_pfn(orig_pte));
65500d23
HD
2676 entry = mk_pte(new_page, vma->vm_page_prot);
2677 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4ce072f1
SS
2678 /*
2679 * Clear the pte entry and flush it first, before updating the
2680 * pte with the new entry. This will avoid a race condition
2681 * seen in the presence of one thread doing SMC and another
2682 * thread doing COW.
2683 */
828502d3 2684 ptep_clear_flush(vma, address, page_table);
9617d95e 2685 page_add_new_anon_rmap(new_page, vma, address);
828502d3
IE
2686 /*
2687 * We call the notify macro here because, when using secondary
2688 * mmu page tables (such as kvm shadow page tables), we want the
2689 * new page to be mapped directly into the secondary page table.
2690 */
2691 set_pte_at_notify(mm, address, page_table, entry);
4b3073e1 2692 update_mmu_cache(vma, address, page_table);
945754a1
NP
2693 if (old_page) {
2694 /*
2695 * Only after switching the pte to the new page may
2696 * we remove the mapcount here. Otherwise another
2697 * process may come and find the rmap count decremented
2698 * before the pte is switched to the new page, and
2699 * "reuse" the old page writing into it while our pte
2700 * here still points into it and can be read by other
2701 * threads.
2702 *
2703 * The critical issue is to order this
2704 * page_remove_rmap with the ptp_clear_flush above.
2705 * Those stores are ordered by (if nothing else,)
2706 * the barrier present in the atomic_add_negative
2707 * in page_remove_rmap.
2708 *
2709 * Then the TLB flush in ptep_clear_flush ensures that
2710 * no process can access the old page before the
2711 * decremented mapcount is visible. And the old page
2712 * cannot be reused until after the decremented
2713 * mapcount is visible. So transitively, TLBs to
2714 * old page will be flushed before it can be reused.
2715 */
edc315fd 2716 page_remove_rmap(old_page);
945754a1
NP
2717 }
2718
1da177e4
LT
2719 /* Free the old page.. */
2720 new_page = old_page;
f33ea7f4 2721 ret |= VM_FAULT_WRITE;
8a9f3ccd
BS
2722 } else
2723 mem_cgroup_uncharge_page(new_page);
2724
920fc356
HD
2725 if (new_page)
2726 page_cache_release(new_page);
65500d23 2727unlock:
8f4e2101 2728 pte_unmap_unlock(page_table, ptl);
e15f8c01
ML
2729 if (old_page) {
2730 /*
2731 * Don't let another task, with possibly unlocked vma,
2732 * keep the mlocked page.
2733 */
2734 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2735 lock_page(old_page); /* LRU manipulation */
2736 munlock_vma_page(old_page);
2737 unlock_page(old_page);
2738 }
2739 page_cache_release(old_page);
2740 }
f33ea7f4 2741 return ret;
8a9f3ccd 2742oom_free_new:
6dbf6d3b 2743 page_cache_release(new_page);
65500d23 2744oom:
b827e496
NP
2745 if (old_page) {
2746 if (page_mkwrite) {
2747 unlock_page(old_page);
2748 page_cache_release(old_page);
2749 }
920fc356 2750 page_cache_release(old_page);
b827e496 2751 }
1da177e4 2752 return VM_FAULT_OOM;
9637a5ef
DH
2753
2754unwritable_page:
2755 page_cache_release(old_page);
c2ec175c 2756 return ret;
1da177e4
LT
2757}
2758
97a89413 2759static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
2760 unsigned long start_addr, unsigned long end_addr,
2761 struct zap_details *details)
2762{
97a89413 2763 zap_page_range(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
2764}
2765
2766static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2767 struct zap_details *details)
2768{
2769 struct vm_area_struct *vma;
2770 struct prio_tree_iter iter;
2771 pgoff_t vba, vea, zba, zea;
2772
1da177e4
LT
2773 vma_prio_tree_foreach(vma, &iter, root,
2774 details->first_index, details->last_index) {
1da177e4
LT
2775
2776 vba = vma->vm_pgoff;
2777 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2778 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2779 zba = details->first_index;
2780 if (zba < vba)
2781 zba = vba;
2782 zea = details->last_index;
2783 if (zea > vea)
2784 zea = vea;
2785
97a89413 2786 unmap_mapping_range_vma(vma,
1da177e4
LT
2787 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2788 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 2789 details);
1da177e4
LT
2790 }
2791}
2792
2793static inline void unmap_mapping_range_list(struct list_head *head,
2794 struct zap_details *details)
2795{
2796 struct vm_area_struct *vma;
2797
2798 /*
2799 * In nonlinear VMAs there is no correspondence between virtual address
2800 * offset and file offset. So we must perform an exhaustive search
2801 * across *all* the pages in each nonlinear VMA, not just the pages
2802 * whose virtual address lies outside the file truncation point.
2803 */
1da177e4 2804 list_for_each_entry(vma, head, shared.vm_set.list) {
1da177e4 2805 details->nonlinear_vma = vma;
97a89413 2806 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
1da177e4
LT
2807 }
2808}
2809
2810/**
72fd4a35 2811 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
3d41088f 2812 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2813 * @holebegin: byte in first page to unmap, relative to the start of
2814 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 2815 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
2816 * must keep the partial page. In contrast, we must get rid of
2817 * partial pages.
2818 * @holelen: size of prospective hole in bytes. This will be rounded
2819 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2820 * end of the file.
2821 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2822 * but 0 when invalidating pagecache, don't throw away private data.
2823 */
2824void unmap_mapping_range(struct address_space *mapping,
2825 loff_t const holebegin, loff_t const holelen, int even_cows)
2826{
2827 struct zap_details details;
2828 pgoff_t hba = holebegin >> PAGE_SHIFT;
2829 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2830
2831 /* Check for overflow. */
2832 if (sizeof(holelen) > sizeof(hlen)) {
2833 long long holeend =
2834 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2835 if (holeend & ~(long long)ULONG_MAX)
2836 hlen = ULONG_MAX - hba + 1;
2837 }
2838
2839 details.check_mapping = even_cows? NULL: mapping;
2840 details.nonlinear_vma = NULL;
2841 details.first_index = hba;
2842 details.last_index = hba + hlen - 1;
2843 if (details.last_index < details.first_index)
2844 details.last_index = ULONG_MAX;
1da177e4 2845
1da177e4 2846
3d48ae45 2847 mutex_lock(&mapping->i_mmap_mutex);
1da177e4
LT
2848 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2849 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2850 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2851 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
3d48ae45 2852 mutex_unlock(&mapping->i_mmap_mutex);
1da177e4
LT
2853}
2854EXPORT_SYMBOL(unmap_mapping_range);
2855
1da177e4 2856/*
8f4e2101
HD
2857 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2858 * but allow concurrent faults), and pte mapped but not yet locked.
2859 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2860 */
65500d23
HD
2861static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2862 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2863 unsigned int flags, pte_t orig_pte)
1da177e4 2864{
8f4e2101 2865 spinlock_t *ptl;
4969c119 2866 struct page *page, *swapcache = NULL;
65500d23 2867 swp_entry_t entry;
1da177e4 2868 pte_t pte;
d065bd81 2869 int locked;
56039efa 2870 struct mem_cgroup *ptr;
ad8c2ee8 2871 int exclusive = 0;
83c54070 2872 int ret = 0;
1da177e4 2873
4c21e2f2 2874 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
8f4e2101 2875 goto out;
65500d23
HD
2876
2877 entry = pte_to_swp_entry(orig_pte);
d1737fdb
AK
2878 if (unlikely(non_swap_entry(entry))) {
2879 if (is_migration_entry(entry)) {
2880 migration_entry_wait(mm, pmd, address);
2881 } else if (is_hwpoison_entry(entry)) {
2882 ret = VM_FAULT_HWPOISON;
2883 } else {
2884 print_bad_pte(vma, address, orig_pte, NULL);
d99be1a8 2885 ret = VM_FAULT_SIGBUS;
d1737fdb 2886 }
0697212a
CL
2887 goto out;
2888 }
0ff92245 2889 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
2890 page = lookup_swap_cache(entry);
2891 if (!page) {
a5c9b696 2892 grab_swap_token(mm); /* Contend for token _before_ read-in */
02098fea
HD
2893 page = swapin_readahead(entry,
2894 GFP_HIGHUSER_MOVABLE, vma, address);
1da177e4
LT
2895 if (!page) {
2896 /*
8f4e2101
HD
2897 * Back out if somebody else faulted in this pte
2898 * while we released the pte lock.
1da177e4 2899 */
8f4e2101 2900 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2901 if (likely(pte_same(*page_table, orig_pte)))
2902 ret = VM_FAULT_OOM;
0ff92245 2903 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2904 goto unlock;
1da177e4
LT
2905 }
2906
2907 /* Had to read the page from swap area: Major fault */
2908 ret = VM_FAULT_MAJOR;
f8891e5e 2909 count_vm_event(PGMAJFAULT);
456f998e 2910 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
d1737fdb 2911 } else if (PageHWPoison(page)) {
71f72525
WF
2912 /*
2913 * hwpoisoned dirty swapcache pages are kept for killing
2914 * owner processes (which may be unknown at hwpoison time)
2915 */
d1737fdb
AK
2916 ret = VM_FAULT_HWPOISON;
2917 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
4779cb31 2918 goto out_release;
1da177e4
LT
2919 }
2920
d065bd81 2921 locked = lock_page_or_retry(page, mm, flags);
073e587e 2922 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
2923 if (!locked) {
2924 ret |= VM_FAULT_RETRY;
2925 goto out_release;
2926 }
073e587e 2927
4969c119 2928 /*
31c4a3d3
HD
2929 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2930 * release the swapcache from under us. The page pin, and pte_same
2931 * test below, are not enough to exclude that. Even if it is still
2932 * swapcache, we need to check that the page's swap has not changed.
4969c119 2933 */
31c4a3d3 2934 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
4969c119
AA
2935 goto out_page;
2936
2937 if (ksm_might_need_to_copy(page, vma, address)) {
2938 swapcache = page;
2939 page = ksm_does_need_to_copy(page, vma, address);
2940
2941 if (unlikely(!page)) {
2942 ret = VM_FAULT_OOM;
2943 page = swapcache;
2944 swapcache = NULL;
2945 goto out_page;
2946 }
5ad64688
HD
2947 }
2948
2c26fdd7 2949 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
8a9f3ccd 2950 ret = VM_FAULT_OOM;
bc43f75c 2951 goto out_page;
8a9f3ccd
BS
2952 }
2953
1da177e4 2954 /*
8f4e2101 2955 * Back out if somebody else already faulted in this pte.
1da177e4 2956 */
8f4e2101 2957 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
9e9bef07 2958 if (unlikely(!pte_same(*page_table, orig_pte)))
b8107480 2959 goto out_nomap;
b8107480
KK
2960
2961 if (unlikely(!PageUptodate(page))) {
2962 ret = VM_FAULT_SIGBUS;
2963 goto out_nomap;
1da177e4
LT
2964 }
2965
8c7c6e34
KH
2966 /*
2967 * The page isn't present yet, go ahead with the fault.
2968 *
2969 * Be careful about the sequence of operations here.
2970 * To get its accounting right, reuse_swap_page() must be called
2971 * while the page is counted on swap but not yet in mapcount i.e.
2972 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2973 * must be called after the swap_free(), or it will never succeed.
03f3c433
KH
2974 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2975 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2976 * in page->private. In this case, a record in swap_cgroup is silently
2977 * discarded at swap_free().
8c7c6e34 2978 */
1da177e4 2979
34e55232 2980 inc_mm_counter_fast(mm, MM_ANONPAGES);
b084d435 2981 dec_mm_counter_fast(mm, MM_SWAPENTS);
1da177e4 2982 pte = mk_pte(page, vma->vm_page_prot);
30c9f3a9 2983 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
1da177e4 2984 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
30c9f3a9 2985 flags &= ~FAULT_FLAG_WRITE;
9a5b489b 2986 ret |= VM_FAULT_WRITE;
ad8c2ee8 2987 exclusive = 1;
1da177e4 2988 }
1da177e4
LT
2989 flush_icache_page(vma, page);
2990 set_pte_at(mm, address, page_table, pte);
ad8c2ee8 2991 do_page_add_anon_rmap(page, vma, address, exclusive);
03f3c433
KH
2992 /* It's better to call commit-charge after rmap is established */
2993 mem_cgroup_commit_charge_swapin(page, ptr);
1da177e4 2994
c475a8ab 2995 swap_free(entry);
b291f000 2996 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 2997 try_to_free_swap(page);
c475a8ab 2998 unlock_page(page);
4969c119
AA
2999 if (swapcache) {
3000 /*
3001 * Hold the lock to avoid the swap entry to be reused
3002 * until we take the PT lock for the pte_same() check
3003 * (to avoid false positives from pte_same). For
3004 * further safety release the lock after the swap_free
3005 * so that the swap count won't change under a
3006 * parallel locked swapcache.
3007 */
3008 unlock_page(swapcache);
3009 page_cache_release(swapcache);
3010 }
c475a8ab 3011
30c9f3a9 3012 if (flags & FAULT_FLAG_WRITE) {
61469f1d
HD
3013 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3014 if (ret & VM_FAULT_ERROR)
3015 ret &= VM_FAULT_ERROR;
1da177e4
LT
3016 goto out;
3017 }
3018
3019 /* No need to invalidate - it was non-present before */
4b3073e1 3020 update_mmu_cache(vma, address, page_table);
65500d23 3021unlock:
8f4e2101 3022 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
3023out:
3024 return ret;
b8107480 3025out_nomap:
7a81b88c 3026 mem_cgroup_cancel_charge_swapin(ptr);
8f4e2101 3027 pte_unmap_unlock(page_table, ptl);
bc43f75c 3028out_page:
b8107480 3029 unlock_page(page);
4779cb31 3030out_release:
b8107480 3031 page_cache_release(page);
4969c119
AA
3032 if (swapcache) {
3033 unlock_page(swapcache);
3034 page_cache_release(swapcache);
3035 }
65500d23 3036 return ret;
1da177e4
LT
3037}
3038
320b2b8d 3039/*
8ca3eb08
TL
3040 * This is like a special single-page "expand_{down|up}wards()",
3041 * except we must first make sure that 'address{-|+}PAGE_SIZE'
320b2b8d 3042 * doesn't hit another vma.
320b2b8d
LT
3043 */
3044static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3045{
3046 address &= PAGE_MASK;
3047 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
0e8e50e2
LT
3048 struct vm_area_struct *prev = vma->vm_prev;
3049
3050 /*
3051 * Is there a mapping abutting this one below?
3052 *
3053 * That's only ok if it's the same stack mapping
3054 * that has gotten split..
3055 */
3056 if (prev && prev->vm_end == address)
3057 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
320b2b8d 3058
d05f3169 3059 expand_downwards(vma, address - PAGE_SIZE);
320b2b8d 3060 }
8ca3eb08
TL
3061 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3062 struct vm_area_struct *next = vma->vm_next;
3063
3064 /* As VM_GROWSDOWN but s/below/above/ */
3065 if (next && next->vm_start == address + PAGE_SIZE)
3066 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3067
3068 expand_upwards(vma, address + PAGE_SIZE);
3069 }
320b2b8d
LT
3070 return 0;
3071}
3072
1da177e4 3073/*
8f4e2101
HD
3074 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3075 * but allow concurrent faults), and pte mapped but not yet locked.
3076 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3077 */
65500d23
HD
3078static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3079 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3080 unsigned int flags)
1da177e4 3081{
8f4e2101
HD
3082 struct page *page;
3083 spinlock_t *ptl;
1da177e4 3084 pte_t entry;
1da177e4 3085
11ac5524
LT
3086 pte_unmap(page_table);
3087
3088 /* Check if we need to add a guard page to the stack */
3089 if (check_stack_guard_page(vma, address) < 0)
320b2b8d
LT
3090 return VM_FAULT_SIGBUS;
3091
11ac5524 3092 /* Use the zero-page for reads */
62eede62
HD
3093 if (!(flags & FAULT_FLAG_WRITE)) {
3094 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3095 vma->vm_page_prot));
11ac5524 3096 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
a13ea5b7
HD
3097 if (!pte_none(*page_table))
3098 goto unlock;
3099 goto setpte;
3100 }
3101
557ed1fa 3102 /* Allocate our own private page. */
557ed1fa
NP
3103 if (unlikely(anon_vma_prepare(vma)))
3104 goto oom;
3105 page = alloc_zeroed_user_highpage_movable(vma, address);
3106 if (!page)
3107 goto oom;
0ed361de 3108 __SetPageUptodate(page);
8f4e2101 3109
2c26fdd7 3110 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
8a9f3ccd
BS
3111 goto oom_free_page;
3112
557ed1fa 3113 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
3114 if (vma->vm_flags & VM_WRITE)
3115 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 3116
557ed1fa 3117 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1c2fb7a4 3118 if (!pte_none(*page_table))
557ed1fa 3119 goto release;
9ba69294 3120
34e55232 3121 inc_mm_counter_fast(mm, MM_ANONPAGES);
557ed1fa 3122 page_add_new_anon_rmap(page, vma, address);
a13ea5b7 3123setpte:
65500d23 3124 set_pte_at(mm, address, page_table, entry);
1da177e4
LT
3125
3126 /* No need to invalidate - it was non-present before */
4b3073e1 3127 update_mmu_cache(vma, address, page_table);
65500d23 3128unlock:
8f4e2101 3129 pte_unmap_unlock(page_table, ptl);
83c54070 3130 return 0;
8f4e2101 3131release:
8a9f3ccd 3132 mem_cgroup_uncharge_page(page);
8f4e2101
HD
3133 page_cache_release(page);
3134 goto unlock;
8a9f3ccd 3135oom_free_page:
6dbf6d3b 3136 page_cache_release(page);
65500d23 3137oom:
1da177e4
LT
3138 return VM_FAULT_OOM;
3139}
3140
3141/*
54cb8821 3142 * __do_fault() tries to create a new page mapping. It aggressively
1da177e4 3143 * tries to share with existing pages, but makes a separate copy if
54cb8821
NP
3144 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3145 * the next page fault.
1da177e4
LT
3146 *
3147 * As this is called only for pages that do not currently exist, we
3148 * do not need to flush old virtual caches or the TLB.
3149 *
8f4e2101 3150 * We enter with non-exclusive mmap_sem (to exclude vma changes,
16abfa08 3151 * but allow concurrent faults), and pte neither mapped nor locked.
8f4e2101 3152 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3153 */
54cb8821 3154static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
16abfa08 3155 unsigned long address, pmd_t *pmd,
54cb8821 3156 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
1da177e4 3157{
16abfa08 3158 pte_t *page_table;
8f4e2101 3159 spinlock_t *ptl;
d0217ac0 3160 struct page *page;
1d65f86d 3161 struct page *cow_page;
1da177e4 3162 pte_t entry;
1da177e4 3163 int anon = 0;
d08b3851 3164 struct page *dirty_page = NULL;
d0217ac0
NP
3165 struct vm_fault vmf;
3166 int ret;
a200ee18 3167 int page_mkwrite = 0;
54cb8821 3168
1d65f86d
KH
3169 /*
3170 * If we do COW later, allocate page befor taking lock_page()
3171 * on the file cache page. This will reduce lock holding time.
3172 */
3173 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3174
3175 if (unlikely(anon_vma_prepare(vma)))
3176 return VM_FAULT_OOM;
3177
3178 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3179 if (!cow_page)
3180 return VM_FAULT_OOM;
3181
3182 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3183 page_cache_release(cow_page);
3184 return VM_FAULT_OOM;
3185 }
3186 } else
3187 cow_page = NULL;
3188
d0217ac0
NP
3189 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3190 vmf.pgoff = pgoff;
3191 vmf.flags = flags;
3192 vmf.page = NULL;
1da177e4 3193
3c18ddd1 3194 ret = vma->vm_ops->fault(vma, &vmf);
d065bd81
ML
3195 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3196 VM_FAULT_RETRY)))
1d65f86d 3197 goto uncharge_out;
1da177e4 3198
a3b947ea
AK
3199 if (unlikely(PageHWPoison(vmf.page))) {
3200 if (ret & VM_FAULT_LOCKED)
3201 unlock_page(vmf.page);
1d65f86d
KH
3202 ret = VM_FAULT_HWPOISON;
3203 goto uncharge_out;
a3b947ea
AK
3204 }
3205
d00806b1 3206 /*
d0217ac0 3207 * For consistency in subsequent calls, make the faulted page always
d00806b1
NP
3208 * locked.
3209 */
83c54070 3210 if (unlikely(!(ret & VM_FAULT_LOCKED)))
d0217ac0 3211 lock_page(vmf.page);
54cb8821 3212 else
d0217ac0 3213 VM_BUG_ON(!PageLocked(vmf.page));
d00806b1 3214
1da177e4
LT
3215 /*
3216 * Should we do an early C-O-W break?
3217 */
d0217ac0 3218 page = vmf.page;
54cb8821 3219 if (flags & FAULT_FLAG_WRITE) {
9637a5ef 3220 if (!(vma->vm_flags & VM_SHARED)) {
1d65f86d 3221 page = cow_page;
54cb8821 3222 anon = 1;
d0217ac0 3223 copy_user_highpage(page, vmf.page, address, vma);
0ed361de 3224 __SetPageUptodate(page);
9637a5ef 3225 } else {
54cb8821
NP
3226 /*
3227 * If the page will be shareable, see if the backing
9637a5ef 3228 * address space wants to know that the page is about
54cb8821
NP
3229 * to become writable
3230 */
69676147 3231 if (vma->vm_ops->page_mkwrite) {
c2ec175c
NP
3232 int tmp;
3233
69676147 3234 unlock_page(page);
b827e496 3235 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
c2ec175c
NP
3236 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3237 if (unlikely(tmp &
3238 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3239 ret = tmp;
b827e496 3240 goto unwritable_page;
d0217ac0 3241 }
b827e496
NP
3242 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3243 lock_page(page);
3244 if (!page->mapping) {
3245 ret = 0; /* retry the fault */
3246 unlock_page(page);
3247 goto unwritable_page;
3248 }
3249 } else
3250 VM_BUG_ON(!PageLocked(page));
a200ee18 3251 page_mkwrite = 1;
9637a5ef
DH
3252 }
3253 }
54cb8821 3254
1da177e4
LT
3255 }
3256
8f4e2101 3257 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
3258
3259 /*
3260 * This silly early PAGE_DIRTY setting removes a race
3261 * due to the bad i386 page protection. But it's valid
3262 * for other architectures too.
3263 *
30c9f3a9 3264 * Note that if FAULT_FLAG_WRITE is set, we either now have
1da177e4
LT
3265 * an exclusive copy of the page, or this is a shared mapping,
3266 * so we can make it writable and dirty to avoid having to
3267 * handle that later.
3268 */
3269 /* Only go through if we didn't race with anybody else... */
1c2fb7a4 3270 if (likely(pte_same(*page_table, orig_pte))) {
d00806b1
NP
3271 flush_icache_page(vma, page);
3272 entry = mk_pte(page, vma->vm_page_prot);
54cb8821 3273 if (flags & FAULT_FLAG_WRITE)
1da177e4 3274 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1da177e4 3275 if (anon) {
34e55232 3276 inc_mm_counter_fast(mm, MM_ANONPAGES);
64d6519d 3277 page_add_new_anon_rmap(page, vma, address);
f57e88a8 3278 } else {
34e55232 3279 inc_mm_counter_fast(mm, MM_FILEPAGES);
d00806b1 3280 page_add_file_rmap(page);
54cb8821 3281 if (flags & FAULT_FLAG_WRITE) {
d00806b1 3282 dirty_page = page;
d08b3851
PZ
3283 get_page(dirty_page);
3284 }
4294621f 3285 }
64d6519d 3286 set_pte_at(mm, address, page_table, entry);
d00806b1
NP
3287
3288 /* no need to invalidate: a not-present page won't be cached */
4b3073e1 3289 update_mmu_cache(vma, address, page_table);
1da177e4 3290 } else {
1d65f86d
KH
3291 if (cow_page)
3292 mem_cgroup_uncharge_page(cow_page);
d00806b1
NP
3293 if (anon)
3294 page_cache_release(page);
3295 else
54cb8821 3296 anon = 1; /* no anon but release faulted_page */
1da177e4
LT
3297 }
3298
8f4e2101 3299 pte_unmap_unlock(page_table, ptl);
d00806b1 3300
b827e496
NP
3301 if (dirty_page) {
3302 struct address_space *mapping = page->mapping;
8f7b3d15 3303
b827e496
NP
3304 if (set_page_dirty(dirty_page))
3305 page_mkwrite = 1;
3306 unlock_page(dirty_page);
d08b3851 3307 put_page(dirty_page);
b827e496
NP
3308 if (page_mkwrite && mapping) {
3309 /*
3310 * Some device drivers do not set page.mapping but still
3311 * dirty their pages
3312 */
3313 balance_dirty_pages_ratelimited(mapping);
3314 }
3315
3316 /* file_update_time outside page_lock */
3317 if (vma->vm_file)
3318 file_update_time(vma->vm_file);
3319 } else {
3320 unlock_page(vmf.page);
3321 if (anon)
3322 page_cache_release(vmf.page);
d08b3851 3323 }
d00806b1 3324
83c54070 3325 return ret;
b827e496
NP
3326
3327unwritable_page:
3328 page_cache_release(page);
3329 return ret;
1d65f86d
KH
3330uncharge_out:
3331 /* fs's fault handler get error */
3332 if (cow_page) {
3333 mem_cgroup_uncharge_page(cow_page);
3334 page_cache_release(cow_page);
3335 }
3336 return ret;
54cb8821 3337}
d00806b1 3338
54cb8821
NP
3339static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3340 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3341 unsigned int flags, pte_t orig_pte)
54cb8821
NP
3342{
3343 pgoff_t pgoff = (((address & PAGE_MASK)
0da7e01f 3344 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
54cb8821 3345
16abfa08
HD
3346 pte_unmap(page_table);
3347 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
54cb8821
NP
3348}
3349
1da177e4
LT
3350/*
3351 * Fault of a previously existing named mapping. Repopulate the pte
3352 * from the encoded file_pte if possible. This enables swappable
3353 * nonlinear vmas.
8f4e2101
HD
3354 *
3355 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3356 * but allow concurrent faults), and pte mapped but not yet locked.
3357 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3358 */
d0217ac0 3359static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
65500d23 3360 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3361 unsigned int flags, pte_t orig_pte)
1da177e4 3362{
65500d23 3363 pgoff_t pgoff;
1da177e4 3364
30c9f3a9
LT
3365 flags |= FAULT_FLAG_NONLINEAR;
3366
4c21e2f2 3367 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
83c54070 3368 return 0;
1da177e4 3369
2509ef26 3370 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
65500d23
HD
3371 /*
3372 * Page table corrupted: show pte and kill process.
3373 */
3dc14741 3374 print_bad_pte(vma, address, orig_pte, NULL);
d99be1a8 3375 return VM_FAULT_SIGBUS;
65500d23 3376 }
65500d23
HD
3377
3378 pgoff = pte_to_pgoff(orig_pte);
16abfa08 3379 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
1da177e4
LT
3380}
3381
3382/*
3383 * These routines also need to handle stuff like marking pages dirty
3384 * and/or accessed for architectures that don't do it in hardware (most
3385 * RISC architectures). The early dirtying is also good on the i386.
3386 *
3387 * There is also a hook called "update_mmu_cache()" that architectures
3388 * with external mmu caches can use to update those (ie the Sparc or
3389 * PowerPC hashed page tables that act as extended TLBs).
3390 *
c74df32c
HD
3391 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3392 * but allow concurrent faults), and pte mapped but not yet locked.
3393 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3394 */
71e3aac0
AA
3395int handle_pte_fault(struct mm_struct *mm,
3396 struct vm_area_struct *vma, unsigned long address,
3397 pte_t *pte, pmd_t *pmd, unsigned int flags)
1da177e4
LT
3398{
3399 pte_t entry;
8f4e2101 3400 spinlock_t *ptl;
1da177e4 3401
8dab5241 3402 entry = *pte;
1da177e4 3403 if (!pte_present(entry)) {
65500d23 3404 if (pte_none(entry)) {
f4b81804 3405 if (vma->vm_ops) {
3c18ddd1 3406 if (likely(vma->vm_ops->fault))
54cb8821 3407 return do_linear_fault(mm, vma, address,
30c9f3a9 3408 pte, pmd, flags, entry);
f4b81804
JS
3409 }
3410 return do_anonymous_page(mm, vma, address,
30c9f3a9 3411 pte, pmd, flags);
65500d23 3412 }
1da177e4 3413 if (pte_file(entry))
d0217ac0 3414 return do_nonlinear_fault(mm, vma, address,
30c9f3a9 3415 pte, pmd, flags, entry);
65500d23 3416 return do_swap_page(mm, vma, address,
30c9f3a9 3417 pte, pmd, flags, entry);
1da177e4
LT
3418 }
3419
4c21e2f2 3420 ptl = pte_lockptr(mm, pmd);
8f4e2101
HD
3421 spin_lock(ptl);
3422 if (unlikely(!pte_same(*pte, entry)))
3423 goto unlock;
30c9f3a9 3424 if (flags & FAULT_FLAG_WRITE) {
1da177e4 3425 if (!pte_write(entry))
8f4e2101
HD
3426 return do_wp_page(mm, vma, address,
3427 pte, pmd, ptl, entry);
1da177e4
LT
3428 entry = pte_mkdirty(entry);
3429 }
3430 entry = pte_mkyoung(entry);
30c9f3a9 3431 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
4b3073e1 3432 update_mmu_cache(vma, address, pte);
1a44e149
AA
3433 } else {
3434 /*
3435 * This is needed only for protection faults but the arch code
3436 * is not yet telling us if this is a protection fault or not.
3437 * This still avoids useless tlb flushes for .text page faults
3438 * with threads.
3439 */
30c9f3a9 3440 if (flags & FAULT_FLAG_WRITE)
61c77326 3441 flush_tlb_fix_spurious_fault(vma, address);
1a44e149 3442 }
8f4e2101
HD
3443unlock:
3444 pte_unmap_unlock(pte, ptl);
83c54070 3445 return 0;
1da177e4
LT
3446}
3447
3448/*
3449 * By the time we get here, we already hold the mm semaphore
3450 */
83c54070 3451int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 3452 unsigned long address, unsigned int flags)
1da177e4
LT
3453{
3454 pgd_t *pgd;
3455 pud_t *pud;
3456 pmd_t *pmd;
3457 pte_t *pte;
3458
3459 __set_current_state(TASK_RUNNING);
3460
f8891e5e 3461 count_vm_event(PGFAULT);
456f998e 3462 mem_cgroup_count_vm_event(mm, PGFAULT);
1da177e4 3463
34e55232
KH
3464 /* do counter updates before entering really critical section. */
3465 check_sync_rss_stat(current);
3466
ac9b9c66 3467 if (unlikely(is_vm_hugetlb_page(vma)))
30c9f3a9 3468 return hugetlb_fault(mm, vma, address, flags);
1da177e4 3469
1da177e4 3470 pgd = pgd_offset(mm, address);
1da177e4
LT
3471 pud = pud_alloc(mm, pgd, address);
3472 if (!pud)
c74df32c 3473 return VM_FAULT_OOM;
1da177e4
LT
3474 pmd = pmd_alloc(mm, pud, address);
3475 if (!pmd)
c74df32c 3476 return VM_FAULT_OOM;
71e3aac0
AA
3477 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3478 if (!vma->vm_ops)
3479 return do_huge_pmd_anonymous_page(mm, vma, address,
3480 pmd, flags);
3481 } else {
3482 pmd_t orig_pmd = *pmd;
3483 barrier();
3484 if (pmd_trans_huge(orig_pmd)) {
3485 if (flags & FAULT_FLAG_WRITE &&
3486 !pmd_write(orig_pmd) &&
3487 !pmd_trans_splitting(orig_pmd))
3488 return do_huge_pmd_wp_page(mm, vma, address,
3489 pmd, orig_pmd);
3490 return 0;
3491 }
3492 }
3493
3494 /*
3495 * Use __pte_alloc instead of pte_alloc_map, because we can't
3496 * run pte_offset_map on the pmd, if an huge pmd could
3497 * materialize from under us from a different thread.
3498 */
cc03638d 3499 if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
c74df32c 3500 return VM_FAULT_OOM;
71e3aac0
AA
3501 /* if an huge pmd materialized from under us just retry later */
3502 if (unlikely(pmd_trans_huge(*pmd)))
3503 return 0;
3504 /*
3505 * A regular pmd is established and it can't morph into a huge pmd
3506 * from under us anymore at this point because we hold the mmap_sem
3507 * read mode and khugepaged takes it in write mode. So now it's
3508 * safe to run pte_offset_map().
3509 */
3510 pte = pte_offset_map(pmd, address);
1da177e4 3511
30c9f3a9 3512 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
1da177e4
LT
3513}
3514
3515#ifndef __PAGETABLE_PUD_FOLDED
3516/*
3517 * Allocate page upper directory.
872fec16 3518 * We've already handled the fast-path in-line.
1da177e4 3519 */
1bb3630e 3520int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1da177e4 3521{
c74df32c
HD
3522 pud_t *new = pud_alloc_one(mm, address);
3523 if (!new)
1bb3630e 3524 return -ENOMEM;
1da177e4 3525
362a61ad
NP
3526 smp_wmb(); /* See comment in __pte_alloc */
3527
872fec16 3528 spin_lock(&mm->page_table_lock);
1bb3630e 3529 if (pgd_present(*pgd)) /* Another has populated it */
5e541973 3530 pud_free(mm, new);
1bb3630e
HD
3531 else
3532 pgd_populate(mm, pgd, new);
c74df32c 3533 spin_unlock(&mm->page_table_lock);
1bb3630e 3534 return 0;
1da177e4
LT
3535}
3536#endif /* __PAGETABLE_PUD_FOLDED */
3537
3538#ifndef __PAGETABLE_PMD_FOLDED
3539/*
3540 * Allocate page middle directory.
872fec16 3541 * We've already handled the fast-path in-line.
1da177e4 3542 */
1bb3630e 3543int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 3544{
c74df32c
HD
3545 pmd_t *new = pmd_alloc_one(mm, address);
3546 if (!new)
1bb3630e 3547 return -ENOMEM;
1da177e4 3548
362a61ad
NP
3549 smp_wmb(); /* See comment in __pte_alloc */
3550
872fec16 3551 spin_lock(&mm->page_table_lock);
1da177e4 3552#ifndef __ARCH_HAS_4LEVEL_HACK
1bb3630e 3553 if (pud_present(*pud)) /* Another has populated it */
5e541973 3554 pmd_free(mm, new);
1bb3630e
HD
3555 else
3556 pud_populate(mm, pud, new);
1da177e4 3557#else
1bb3630e 3558 if (pgd_present(*pud)) /* Another has populated it */
5e541973 3559 pmd_free(mm, new);
1bb3630e
HD
3560 else
3561 pgd_populate(mm, pud, new);
1da177e4 3562#endif /* __ARCH_HAS_4LEVEL_HACK */
c74df32c 3563 spin_unlock(&mm->page_table_lock);
1bb3630e 3564 return 0;
e0f39591 3565}
1da177e4
LT
3566#endif /* __PAGETABLE_PMD_FOLDED */
3567
3568int make_pages_present(unsigned long addr, unsigned long end)
3569{
3570 int ret, len, write;
3571 struct vm_area_struct * vma;
3572
3573 vma = find_vma(current->mm, addr);
3574 if (!vma)
a477097d 3575 return -ENOMEM;
5ecfda04
ML
3576 /*
3577 * We want to touch writable mappings with a write fault in order
3578 * to break COW, except for shared mappings because these don't COW
3579 * and we would not want to dirty them for nothing.
3580 */
3581 write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
5bcb28b1
ES
3582 BUG_ON(addr >= end);
3583 BUG_ON(end > vma->vm_end);
68e116a3 3584 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
1da177e4
LT
3585 ret = get_user_pages(current, current->mm, addr,
3586 len, write, 0, NULL, NULL);
c11d69d8 3587 if (ret < 0)
1da177e4 3588 return ret;
9978ad58 3589 return ret == len ? 0 : -EFAULT;
1da177e4
LT
3590}
3591
1da177e4
LT
3592#if !defined(__HAVE_ARCH_GATE_AREA)
3593
3594#if defined(AT_SYSINFO_EHDR)
5ce7852c 3595static struct vm_area_struct gate_vma;
1da177e4
LT
3596
3597static int __init gate_vma_init(void)
3598{
3599 gate_vma.vm_mm = NULL;
3600 gate_vma.vm_start = FIXADDR_USER_START;
3601 gate_vma.vm_end = FIXADDR_USER_END;
b6558c4a
RM
3602 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3603 gate_vma.vm_page_prot = __P101;
f47aef55
RM
3604 /*
3605 * Make sure the vDSO gets into every core dump.
3606 * Dumping its contents makes post-mortem fully interpretable later
3607 * without matching up the same kernel and hardware config to see
3608 * what PC values meant.
3609 */
3610 gate_vma.vm_flags |= VM_ALWAYSDUMP;
1da177e4
LT
3611 return 0;
3612}
3613__initcall(gate_vma_init);
3614#endif
3615
31db58b3 3616struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
1da177e4
LT
3617{
3618#ifdef AT_SYSINFO_EHDR
3619 return &gate_vma;
3620#else
3621 return NULL;
3622#endif
3623}
3624
cae5d390 3625int in_gate_area_no_mm(unsigned long addr)
1da177e4
LT
3626{
3627#ifdef AT_SYSINFO_EHDR
3628 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3629 return 1;
3630#endif
3631 return 0;
3632}
3633
3634#endif /* __HAVE_ARCH_GATE_AREA */
0ec76a11 3635
1b36ba81 3636static int __follow_pte(struct mm_struct *mm, unsigned long address,
f8ad0f49
JW
3637 pte_t **ptepp, spinlock_t **ptlp)
3638{
3639 pgd_t *pgd;
3640 pud_t *pud;
3641 pmd_t *pmd;
3642 pte_t *ptep;
3643
3644 pgd = pgd_offset(mm, address);
3645 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3646 goto out;
3647
3648 pud = pud_offset(pgd, address);
3649 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3650 goto out;
3651
3652 pmd = pmd_offset(pud, address);
f66055ab 3653 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49
JW
3654 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3655 goto out;
3656
3657 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3658 if (pmd_huge(*pmd))
3659 goto out;
3660
3661 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3662 if (!ptep)
3663 goto out;
3664 if (!pte_present(*ptep))
3665 goto unlock;
3666 *ptepp = ptep;
3667 return 0;
3668unlock:
3669 pte_unmap_unlock(ptep, *ptlp);
3670out:
3671 return -EINVAL;
3672}
3673
1b36ba81
NK
3674static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3675 pte_t **ptepp, spinlock_t **ptlp)
3676{
3677 int res;
3678
3679 /* (void) is needed to make gcc happy */
3680 (void) __cond_lock(*ptlp,
3681 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3682 return res;
3683}
3684
3b6748e2
JW
3685/**
3686 * follow_pfn - look up PFN at a user virtual address
3687 * @vma: memory mapping
3688 * @address: user virtual address
3689 * @pfn: location to store found PFN
3690 *
3691 * Only IO mappings and raw PFN mappings are allowed.
3692 *
3693 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3694 */
3695int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3696 unsigned long *pfn)
3697{
3698 int ret = -EINVAL;
3699 spinlock_t *ptl;
3700 pte_t *ptep;
3701
3702 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3703 return ret;
3704
3705 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3706 if (ret)
3707 return ret;
3708 *pfn = pte_pfn(*ptep);
3709 pte_unmap_unlock(ptep, ptl);
3710 return 0;
3711}
3712EXPORT_SYMBOL(follow_pfn);
3713
28b2ee20 3714#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 3715int follow_phys(struct vm_area_struct *vma,
3716 unsigned long address, unsigned int flags,
3717 unsigned long *prot, resource_size_t *phys)
28b2ee20 3718{
03668a4d 3719 int ret = -EINVAL;
28b2ee20
RR
3720 pte_t *ptep, pte;
3721 spinlock_t *ptl;
28b2ee20 3722
d87fe660 3723 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3724 goto out;
28b2ee20 3725
03668a4d 3726 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 3727 goto out;
28b2ee20 3728 pte = *ptep;
03668a4d 3729
28b2ee20
RR
3730 if ((flags & FOLL_WRITE) && !pte_write(pte))
3731 goto unlock;
28b2ee20
RR
3732
3733 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 3734 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 3735
03668a4d 3736 ret = 0;
28b2ee20
RR
3737unlock:
3738 pte_unmap_unlock(ptep, ptl);
3739out:
d87fe660 3740 return ret;
28b2ee20
RR
3741}
3742
3743int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3744 void *buf, int len, int write)
3745{
3746 resource_size_t phys_addr;
3747 unsigned long prot = 0;
2bc7273b 3748 void __iomem *maddr;
28b2ee20
RR
3749 int offset = addr & (PAGE_SIZE-1);
3750
d87fe660 3751 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
3752 return -EINVAL;
3753
3754 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3755 if (write)
3756 memcpy_toio(maddr + offset, buf, len);
3757 else
3758 memcpy_fromio(buf, maddr + offset, len);
3759 iounmap(maddr);
3760
3761 return len;
3762}
3763#endif
3764
0ec76a11 3765/*
206cb636
SW
3766 * Access another process' address space as given in mm. If non-NULL, use the
3767 * given task for page fault accounting.
0ec76a11 3768 */
206cb636
SW
3769static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3770 unsigned long addr, void *buf, int len, int write)
0ec76a11 3771{
0ec76a11 3772 struct vm_area_struct *vma;
0ec76a11
DH
3773 void *old_buf = buf;
3774
0ec76a11 3775 down_read(&mm->mmap_sem);
183ff22b 3776 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
3777 while (len) {
3778 int bytes, ret, offset;
3779 void *maddr;
28b2ee20 3780 struct page *page = NULL;
0ec76a11
DH
3781
3782 ret = get_user_pages(tsk, mm, addr, 1,
3783 write, 1, &page, &vma);
28b2ee20
RR
3784 if (ret <= 0) {
3785 /*
3786 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3787 * we can access using slightly different code.
3788 */
3789#ifdef CONFIG_HAVE_IOREMAP_PROT
3790 vma = find_vma(mm, addr);
fe936dfc 3791 if (!vma || vma->vm_start > addr)
28b2ee20
RR
3792 break;
3793 if (vma->vm_ops && vma->vm_ops->access)
3794 ret = vma->vm_ops->access(vma, addr, buf,
3795 len, write);
3796 if (ret <= 0)
3797#endif
3798 break;
3799 bytes = ret;
0ec76a11 3800 } else {
28b2ee20
RR
3801 bytes = len;
3802 offset = addr & (PAGE_SIZE-1);
3803 if (bytes > PAGE_SIZE-offset)
3804 bytes = PAGE_SIZE-offset;
3805
3806 maddr = kmap(page);
3807 if (write) {
3808 copy_to_user_page(vma, page, addr,
3809 maddr + offset, buf, bytes);
3810 set_page_dirty_lock(page);
3811 } else {
3812 copy_from_user_page(vma, page, addr,
3813 buf, maddr + offset, bytes);
3814 }
3815 kunmap(page);
3816 page_cache_release(page);
0ec76a11 3817 }
0ec76a11
DH
3818 len -= bytes;
3819 buf += bytes;
3820 addr += bytes;
3821 }
3822 up_read(&mm->mmap_sem);
0ec76a11
DH
3823
3824 return buf - old_buf;
3825}
03252919 3826
5ddd36b9 3827/**
ae91dbfc 3828 * access_remote_vm - access another process' address space
5ddd36b9
SW
3829 * @mm: the mm_struct of the target address space
3830 * @addr: start address to access
3831 * @buf: source or destination buffer
3832 * @len: number of bytes to transfer
3833 * @write: whether the access is a write
3834 *
3835 * The caller must hold a reference on @mm.
3836 */
3837int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3838 void *buf, int len, int write)
3839{
3840 return __access_remote_vm(NULL, mm, addr, buf, len, write);
3841}
3842
206cb636
SW
3843/*
3844 * Access another process' address space.
3845 * Source/target buffer must be kernel space,
3846 * Do not walk the page table directly, use get_user_pages
3847 */
3848int access_process_vm(struct task_struct *tsk, unsigned long addr,
3849 void *buf, int len, int write)
3850{
3851 struct mm_struct *mm;
3852 int ret;
3853
3854 mm = get_task_mm(tsk);
3855 if (!mm)
3856 return 0;
3857
3858 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3859 mmput(mm);
3860
3861 return ret;
3862}
3863
03252919
AK
3864/*
3865 * Print the name of a VMA.
3866 */
3867void print_vma_addr(char *prefix, unsigned long ip)
3868{
3869 struct mm_struct *mm = current->mm;
3870 struct vm_area_struct *vma;
3871
e8bff74a
IM
3872 /*
3873 * Do not print if we are in atomic
3874 * contexts (in exception stacks, etc.):
3875 */
3876 if (preempt_count())
3877 return;
3878
03252919
AK
3879 down_read(&mm->mmap_sem);
3880 vma = find_vma(mm, ip);
3881 if (vma && vma->vm_file) {
3882 struct file *f = vma->vm_file;
3883 char *buf = (char *)__get_free_page(GFP_KERNEL);
3884 if (buf) {
3885 char *p, *s;
3886
cf28b486 3887 p = d_path(&f->f_path, buf, PAGE_SIZE);
03252919
AK
3888 if (IS_ERR(p))
3889 p = "?";
3890 s = strrchr(p, '/');
3891 if (s)
3892 p = s+1;
3893 printk("%s%s[%lx+%lx]", prefix, p,
3894 vma->vm_start,
3895 vma->vm_end - vma->vm_start);
3896 free_page((unsigned long)buf);
3897 }
3898 }
3899 up_read(&current->mm->mmap_sem);
3900}
3ee1afa3
NP
3901
3902#ifdef CONFIG_PROVE_LOCKING
3903void might_fault(void)
3904{
95156f00
PZ
3905 /*
3906 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3907 * holding the mmap_sem, this is safe because kernel memory doesn't
3908 * get paged out, therefore we'll never actually fault, and the
3909 * below annotations will generate false positives.
3910 */
3911 if (segment_eq(get_fs(), KERNEL_DS))
3912 return;
3913
3ee1afa3
NP
3914 might_sleep();
3915 /*
3916 * it would be nicer only to annotate paths which are not under
3917 * pagefault_disable, however that requires a larger audit and
3918 * providing helpers like get_user_atomic.
3919 */
3920 if (!in_atomic() && current->mm)
3921 might_lock_read(&current->mm->mmap_sem);
3922}
3923EXPORT_SYMBOL(might_fault);
3924#endif
47ad8475
AA
3925
3926#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3927static void clear_gigantic_page(struct page *page,
3928 unsigned long addr,
3929 unsigned int pages_per_huge_page)
3930{
3931 int i;
3932 struct page *p = page;
3933
3934 might_sleep();
3935 for (i = 0; i < pages_per_huge_page;
3936 i++, p = mem_map_next(p, page, i)) {
3937 cond_resched();
3938 clear_user_highpage(p, addr + i * PAGE_SIZE);
3939 }
3940}
3941void clear_huge_page(struct page *page,
3942 unsigned long addr, unsigned int pages_per_huge_page)
3943{
3944 int i;
3945
3946 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3947 clear_gigantic_page(page, addr, pages_per_huge_page);
3948 return;
3949 }
3950
3951 might_sleep();
3952 for (i = 0; i < pages_per_huge_page; i++) {
3953 cond_resched();
3954 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3955 }
3956}
3957
3958static void copy_user_gigantic_page(struct page *dst, struct page *src,
3959 unsigned long addr,
3960 struct vm_area_struct *vma,
3961 unsigned int pages_per_huge_page)
3962{
3963 int i;
3964 struct page *dst_base = dst;
3965 struct page *src_base = src;
3966
3967 for (i = 0; i < pages_per_huge_page; ) {
3968 cond_resched();
3969 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3970
3971 i++;
3972 dst = mem_map_next(dst, dst_base, i);
3973 src = mem_map_next(src, src_base, i);
3974 }
3975}
3976
3977void copy_user_huge_page(struct page *dst, struct page *src,
3978 unsigned long addr, struct vm_area_struct *vma,
3979 unsigned int pages_per_huge_page)
3980{
3981 int i;
3982
3983 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3984 copy_user_gigantic_page(dst, src, addr, vma,
3985 pages_per_huge_page);
3986 return;
3987 }
3988
3989 might_sleep();
3990 for (i = 0; i < pages_per_huge_page; i++) {
3991 cond_resched();
3992 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3993 }
3994}
3995#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */