kmod: make __request_module() killable
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
9a840895 48#include <linux/ksm.h>
1da177e4 49#include <linux/rmap.h>
b95f1b31 50#include <linux/export.h>
0ff92245 51#include <linux/delayacct.h>
1da177e4 52#include <linux/init.h>
edc79b2a 53#include <linux/writeback.h>
8a9f3ccd 54#include <linux/memcontrol.h>
cddb8a5c 55#include <linux/mmu_notifier.h>
3dc14741
HD
56#include <linux/kallsyms.h>
57#include <linux/swapops.h>
58#include <linux/elf.h>
5a0e3ad6 59#include <linux/gfp.h>
1da177e4 60
6952b61d 61#include <asm/io.h>
1da177e4
LT
62#include <asm/pgalloc.h>
63#include <asm/uaccess.h>
64#include <asm/tlb.h>
65#include <asm/tlbflush.h>
66#include <asm/pgtable.h>
67
42b77728
JB
68#include "internal.h"
69
d41dee36 70#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
71/* use the per-pgdat data instead for discontigmem - mbligh */
72unsigned long max_mapnr;
73struct page *mem_map;
74
75EXPORT_SYMBOL(max_mapnr);
76EXPORT_SYMBOL(mem_map);
77#endif
78
79unsigned long num_physpages;
80/*
81 * A number of key systems in x86 including ioremap() rely on the assumption
82 * that high_memory defines the upper bound on direct map memory, then end
83 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85 * and ZONE_HIGHMEM.
86 */
87void * high_memory;
1da177e4
LT
88
89EXPORT_SYMBOL(num_physpages);
90EXPORT_SYMBOL(high_memory);
1da177e4 91
32a93233
IM
92/*
93 * Randomize the address space (stacks, mmaps, brk, etc.).
94 *
95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96 * as ancient (libc5 based) binaries can segfault. )
97 */
98int randomize_va_space __read_mostly =
99#ifdef CONFIG_COMPAT_BRK
100 1;
101#else
102 2;
103#endif
a62eaf15
AK
104
105static int __init disable_randmaps(char *s)
106{
107 randomize_va_space = 0;
9b41046c 108 return 1;
a62eaf15
AK
109}
110__setup("norandmaps", disable_randmaps);
111
62eede62 112unsigned long zero_pfn __read_mostly;
03f6462a 113unsigned long highest_memmap_pfn __read_mostly;
a13ea5b7
HD
114
115/*
116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
117 */
118static int __init init_zero_pfn(void)
119{
120 zero_pfn = page_to_pfn(ZERO_PAGE(0));
121 return 0;
122}
123core_initcall(init_zero_pfn);
a62eaf15 124
d559db08 125
34e55232
KH
126#if defined(SPLIT_RSS_COUNTING)
127
ea48cf78 128void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
129{
130 int i;
131
132 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
133 if (current->rss_stat.count[i]) {
134 add_mm_counter(mm, i, current->rss_stat.count[i]);
135 current->rss_stat.count[i] = 0;
34e55232
KH
136 }
137 }
05af2e10 138 current->rss_stat.events = 0;
34e55232
KH
139}
140
141static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
142{
143 struct task_struct *task = current;
144
145 if (likely(task->mm == mm))
146 task->rss_stat.count[member] += val;
147 else
148 add_mm_counter(mm, member, val);
149}
150#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
152
153/* sync counter once per 64 page faults */
154#define TASK_RSS_EVENTS_THRESH (64)
155static void check_sync_rss_stat(struct task_struct *task)
156{
157 if (unlikely(task != current))
158 return;
159 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 160 sync_mm_rss(task->mm);
34e55232 161}
9547d01b 162#else /* SPLIT_RSS_COUNTING */
34e55232
KH
163
164#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
165#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
166
167static void check_sync_rss_stat(struct task_struct *task)
168{
169}
170
9547d01b
PZ
171#endif /* SPLIT_RSS_COUNTING */
172
173#ifdef HAVE_GENERIC_MMU_GATHER
174
175static int tlb_next_batch(struct mmu_gather *tlb)
176{
177 struct mmu_gather_batch *batch;
178
179 batch = tlb->active;
180 if (batch->next) {
181 tlb->active = batch->next;
182 return 1;
183 }
184
185 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
186 if (!batch)
187 return 0;
188
189 batch->next = NULL;
190 batch->nr = 0;
191 batch->max = MAX_GATHER_BATCH;
192
193 tlb->active->next = batch;
194 tlb->active = batch;
195
196 return 1;
197}
198
199/* tlb_gather_mmu
200 * Called to initialize an (on-stack) mmu_gather structure for page-table
201 * tear-down from @mm. The @fullmm argument is used when @mm is without
202 * users and we're going to destroy the full address space (exit/execve).
203 */
204void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
205{
206 tlb->mm = mm;
207
208 tlb->fullmm = fullmm;
209 tlb->need_flush = 0;
210 tlb->fast_mode = (num_possible_cpus() == 1);
211 tlb->local.next = NULL;
212 tlb->local.nr = 0;
213 tlb->local.max = ARRAY_SIZE(tlb->__pages);
214 tlb->active = &tlb->local;
215
216#ifdef CONFIG_HAVE_RCU_TABLE_FREE
217 tlb->batch = NULL;
218#endif
219}
220
221void tlb_flush_mmu(struct mmu_gather *tlb)
222{
223 struct mmu_gather_batch *batch;
224
225 if (!tlb->need_flush)
226 return;
227 tlb->need_flush = 0;
228 tlb_flush(tlb);
229#ifdef CONFIG_HAVE_RCU_TABLE_FREE
230 tlb_table_flush(tlb);
34e55232
KH
231#endif
232
9547d01b
PZ
233 if (tlb_fast_mode(tlb))
234 return;
235
236 for (batch = &tlb->local; batch; batch = batch->next) {
237 free_pages_and_swap_cache(batch->pages, batch->nr);
238 batch->nr = 0;
239 }
240 tlb->active = &tlb->local;
241}
242
243/* tlb_finish_mmu
244 * Called at the end of the shootdown operation to free up any resources
245 * that were required.
246 */
247void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
248{
249 struct mmu_gather_batch *batch, *next;
250
251 tlb_flush_mmu(tlb);
252
253 /* keep the page table cache within bounds */
254 check_pgt_cache();
255
256 for (batch = tlb->local.next; batch; batch = next) {
257 next = batch->next;
258 free_pages((unsigned long)batch, 0);
259 }
260 tlb->local.next = NULL;
261}
262
263/* __tlb_remove_page
264 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
265 * handling the additional races in SMP caused by other CPUs caching valid
266 * mappings in their TLBs. Returns the number of free page slots left.
267 * When out of page slots we must call tlb_flush_mmu().
268 */
269int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
270{
271 struct mmu_gather_batch *batch;
272
f21760b1 273 VM_BUG_ON(!tlb->need_flush);
9547d01b
PZ
274
275 if (tlb_fast_mode(tlb)) {
276 free_page_and_swap_cache(page);
277 return 1; /* avoid calling tlb_flush_mmu() */
278 }
279
280 batch = tlb->active;
281 batch->pages[batch->nr++] = page;
282 if (batch->nr == batch->max) {
283 if (!tlb_next_batch(tlb))
284 return 0;
0b43c3aa 285 batch = tlb->active;
9547d01b
PZ
286 }
287 VM_BUG_ON(batch->nr > batch->max);
288
289 return batch->max - batch->nr;
290}
291
292#endif /* HAVE_GENERIC_MMU_GATHER */
293
26723911
PZ
294#ifdef CONFIG_HAVE_RCU_TABLE_FREE
295
296/*
297 * See the comment near struct mmu_table_batch.
298 */
299
300static void tlb_remove_table_smp_sync(void *arg)
301{
302 /* Simply deliver the interrupt */
303}
304
305static void tlb_remove_table_one(void *table)
306{
307 /*
308 * This isn't an RCU grace period and hence the page-tables cannot be
309 * assumed to be actually RCU-freed.
310 *
311 * It is however sufficient for software page-table walkers that rely on
312 * IRQ disabling. See the comment near struct mmu_table_batch.
313 */
314 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
315 __tlb_remove_table(table);
316}
317
318static void tlb_remove_table_rcu(struct rcu_head *head)
319{
320 struct mmu_table_batch *batch;
321 int i;
322
323 batch = container_of(head, struct mmu_table_batch, rcu);
324
325 for (i = 0; i < batch->nr; i++)
326 __tlb_remove_table(batch->tables[i]);
327
328 free_page((unsigned long)batch);
329}
330
331void tlb_table_flush(struct mmu_gather *tlb)
332{
333 struct mmu_table_batch **batch = &tlb->batch;
334
335 if (*batch) {
336 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
337 *batch = NULL;
338 }
339}
340
341void tlb_remove_table(struct mmu_gather *tlb, void *table)
342{
343 struct mmu_table_batch **batch = &tlb->batch;
344
345 tlb->need_flush = 1;
346
347 /*
348 * When there's less then two users of this mm there cannot be a
349 * concurrent page-table walk.
350 */
351 if (atomic_read(&tlb->mm->mm_users) < 2) {
352 __tlb_remove_table(table);
353 return;
354 }
355
356 if (*batch == NULL) {
357 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
358 if (*batch == NULL) {
359 tlb_remove_table_one(table);
360 return;
361 }
362 (*batch)->nr = 0;
363 }
364 (*batch)->tables[(*batch)->nr++] = table;
365 if ((*batch)->nr == MAX_TABLE_BATCH)
366 tlb_table_flush(tlb);
367}
368
9547d01b 369#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
26723911 370
1da177e4
LT
371/*
372 * If a p?d_bad entry is found while walking page tables, report
373 * the error, before resetting entry to p?d_none. Usually (but
374 * very seldom) called out from the p?d_none_or_clear_bad macros.
375 */
376
377void pgd_clear_bad(pgd_t *pgd)
378{
379 pgd_ERROR(*pgd);
380 pgd_clear(pgd);
381}
382
383void pud_clear_bad(pud_t *pud)
384{
385 pud_ERROR(*pud);
386 pud_clear(pud);
387}
388
389void pmd_clear_bad(pmd_t *pmd)
390{
391 pmd_ERROR(*pmd);
392 pmd_clear(pmd);
393}
394
395/*
396 * Note: this doesn't free the actual pages themselves. That
397 * has been handled earlier when unmapping all the memory regions.
398 */
9e1b32ca
BH
399static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
400 unsigned long addr)
1da177e4 401{
2f569afd 402 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 403 pmd_clear(pmd);
9e1b32ca 404 pte_free_tlb(tlb, token, addr);
e0da382c 405 tlb->mm->nr_ptes--;
1da177e4
LT
406}
407
e0da382c
HD
408static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
409 unsigned long addr, unsigned long end,
410 unsigned long floor, unsigned long ceiling)
1da177e4
LT
411{
412 pmd_t *pmd;
413 unsigned long next;
e0da382c 414 unsigned long start;
1da177e4 415
e0da382c 416 start = addr;
1da177e4 417 pmd = pmd_offset(pud, addr);
1da177e4
LT
418 do {
419 next = pmd_addr_end(addr, end);
420 if (pmd_none_or_clear_bad(pmd))
421 continue;
9e1b32ca 422 free_pte_range(tlb, pmd, addr);
1da177e4
LT
423 } while (pmd++, addr = next, addr != end);
424
e0da382c
HD
425 start &= PUD_MASK;
426 if (start < floor)
427 return;
428 if (ceiling) {
429 ceiling &= PUD_MASK;
430 if (!ceiling)
431 return;
1da177e4 432 }
e0da382c
HD
433 if (end - 1 > ceiling - 1)
434 return;
435
436 pmd = pmd_offset(pud, start);
437 pud_clear(pud);
9e1b32ca 438 pmd_free_tlb(tlb, pmd, start);
1da177e4
LT
439}
440
e0da382c
HD
441static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
442 unsigned long addr, unsigned long end,
443 unsigned long floor, unsigned long ceiling)
1da177e4
LT
444{
445 pud_t *pud;
446 unsigned long next;
e0da382c 447 unsigned long start;
1da177e4 448
e0da382c 449 start = addr;
1da177e4 450 pud = pud_offset(pgd, addr);
1da177e4
LT
451 do {
452 next = pud_addr_end(addr, end);
453 if (pud_none_or_clear_bad(pud))
454 continue;
e0da382c 455 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
456 } while (pud++, addr = next, addr != end);
457
e0da382c
HD
458 start &= PGDIR_MASK;
459 if (start < floor)
460 return;
461 if (ceiling) {
462 ceiling &= PGDIR_MASK;
463 if (!ceiling)
464 return;
1da177e4 465 }
e0da382c
HD
466 if (end - 1 > ceiling - 1)
467 return;
468
469 pud = pud_offset(pgd, start);
470 pgd_clear(pgd);
9e1b32ca 471 pud_free_tlb(tlb, pud, start);
1da177e4
LT
472}
473
474/*
e0da382c
HD
475 * This function frees user-level page tables of a process.
476 *
1da177e4
LT
477 * Must be called with pagetable lock held.
478 */
42b77728 479void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
480 unsigned long addr, unsigned long end,
481 unsigned long floor, unsigned long ceiling)
1da177e4
LT
482{
483 pgd_t *pgd;
484 unsigned long next;
e0da382c
HD
485
486 /*
487 * The next few lines have given us lots of grief...
488 *
489 * Why are we testing PMD* at this top level? Because often
490 * there will be no work to do at all, and we'd prefer not to
491 * go all the way down to the bottom just to discover that.
492 *
493 * Why all these "- 1"s? Because 0 represents both the bottom
494 * of the address space and the top of it (using -1 for the
495 * top wouldn't help much: the masks would do the wrong thing).
496 * The rule is that addr 0 and floor 0 refer to the bottom of
497 * the address space, but end 0 and ceiling 0 refer to the top
498 * Comparisons need to use "end - 1" and "ceiling - 1" (though
499 * that end 0 case should be mythical).
500 *
501 * Wherever addr is brought up or ceiling brought down, we must
502 * be careful to reject "the opposite 0" before it confuses the
503 * subsequent tests. But what about where end is brought down
504 * by PMD_SIZE below? no, end can't go down to 0 there.
505 *
506 * Whereas we round start (addr) and ceiling down, by different
507 * masks at different levels, in order to test whether a table
508 * now has no other vmas using it, so can be freed, we don't
509 * bother to round floor or end up - the tests don't need that.
510 */
1da177e4 511
e0da382c
HD
512 addr &= PMD_MASK;
513 if (addr < floor) {
514 addr += PMD_SIZE;
515 if (!addr)
516 return;
517 }
518 if (ceiling) {
519 ceiling &= PMD_MASK;
520 if (!ceiling)
521 return;
522 }
523 if (end - 1 > ceiling - 1)
524 end -= PMD_SIZE;
525 if (addr > end - 1)
526 return;
527
42b77728 528 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
529 do {
530 next = pgd_addr_end(addr, end);
531 if (pgd_none_or_clear_bad(pgd))
532 continue;
42b77728 533 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 534 } while (pgd++, addr = next, addr != end);
e0da382c
HD
535}
536
42b77728 537void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 538 unsigned long floor, unsigned long ceiling)
e0da382c
HD
539{
540 while (vma) {
541 struct vm_area_struct *next = vma->vm_next;
542 unsigned long addr = vma->vm_start;
543
8f4f8c16 544 /*
25d9e2d1 545 * Hide vma from rmap and truncate_pagecache before freeing
546 * pgtables
8f4f8c16 547 */
5beb4930 548 unlink_anon_vmas(vma);
8f4f8c16
HD
549 unlink_file_vma(vma);
550
9da61aef 551 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 552 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
e0da382c 553 floor, next? next->vm_start: ceiling);
3bf5ee95
HD
554 } else {
555 /*
556 * Optimization: gather nearby vmas into one call down
557 */
558 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 559 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
560 vma = next;
561 next = vma->vm_next;
5beb4930 562 unlink_anon_vmas(vma);
8f4f8c16 563 unlink_file_vma(vma);
3bf5ee95
HD
564 }
565 free_pgd_range(tlb, addr, vma->vm_end,
566 floor, next? next->vm_start: ceiling);
567 }
e0da382c
HD
568 vma = next;
569 }
1da177e4
LT
570}
571
8ac1f832
AA
572int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
573 pmd_t *pmd, unsigned long address)
1da177e4 574{
2f569afd 575 pgtable_t new = pte_alloc_one(mm, address);
8ac1f832 576 int wait_split_huge_page;
1bb3630e
HD
577 if (!new)
578 return -ENOMEM;
579
362a61ad
NP
580 /*
581 * Ensure all pte setup (eg. pte page lock and page clearing) are
582 * visible before the pte is made visible to other CPUs by being
583 * put into page tables.
584 *
585 * The other side of the story is the pointer chasing in the page
586 * table walking code (when walking the page table without locking;
587 * ie. most of the time). Fortunately, these data accesses consist
588 * of a chain of data-dependent loads, meaning most CPUs (alpha
589 * being the notable exception) will already guarantee loads are
590 * seen in-order. See the alpha page table accessors for the
591 * smp_read_barrier_depends() barriers in page table walking code.
592 */
593 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
594
c74df32c 595 spin_lock(&mm->page_table_lock);
8ac1f832
AA
596 wait_split_huge_page = 0;
597 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1da177e4 598 mm->nr_ptes++;
1da177e4 599 pmd_populate(mm, pmd, new);
2f569afd 600 new = NULL;
8ac1f832
AA
601 } else if (unlikely(pmd_trans_splitting(*pmd)))
602 wait_split_huge_page = 1;
c74df32c 603 spin_unlock(&mm->page_table_lock);
2f569afd
MS
604 if (new)
605 pte_free(mm, new);
8ac1f832
AA
606 if (wait_split_huge_page)
607 wait_split_huge_page(vma->anon_vma, pmd);
1bb3630e 608 return 0;
1da177e4
LT
609}
610
1bb3630e 611int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 612{
1bb3630e
HD
613 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
614 if (!new)
615 return -ENOMEM;
616
362a61ad
NP
617 smp_wmb(); /* See comment in __pte_alloc */
618
1bb3630e 619 spin_lock(&init_mm.page_table_lock);
8ac1f832 620 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 621 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 622 new = NULL;
8ac1f832
AA
623 } else
624 VM_BUG_ON(pmd_trans_splitting(*pmd));
1bb3630e 625 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
626 if (new)
627 pte_free_kernel(&init_mm, new);
1bb3630e 628 return 0;
1da177e4
LT
629}
630
d559db08
KH
631static inline void init_rss_vec(int *rss)
632{
633 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
634}
635
636static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 637{
d559db08
KH
638 int i;
639
34e55232 640 if (current->mm == mm)
05af2e10 641 sync_mm_rss(mm);
d559db08
KH
642 for (i = 0; i < NR_MM_COUNTERS; i++)
643 if (rss[i])
644 add_mm_counter(mm, i, rss[i]);
ae859762
HD
645}
646
b5810039 647/*
6aab341e
LT
648 * This function is called to print an error when a bad pte
649 * is found. For example, we might have a PFN-mapped pte in
650 * a region that doesn't allow it.
b5810039
NP
651 *
652 * The calling function must still handle the error.
653 */
3dc14741
HD
654static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
655 pte_t pte, struct page *page)
b5810039 656{
3dc14741
HD
657 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
658 pud_t *pud = pud_offset(pgd, addr);
659 pmd_t *pmd = pmd_offset(pud, addr);
660 struct address_space *mapping;
661 pgoff_t index;
d936cf9b
HD
662 static unsigned long resume;
663 static unsigned long nr_shown;
664 static unsigned long nr_unshown;
665
666 /*
667 * Allow a burst of 60 reports, then keep quiet for that minute;
668 * or allow a steady drip of one report per second.
669 */
670 if (nr_shown == 60) {
671 if (time_before(jiffies, resume)) {
672 nr_unshown++;
673 return;
674 }
675 if (nr_unshown) {
1e9e6365
HD
676 printk(KERN_ALERT
677 "BUG: Bad page map: %lu messages suppressed\n",
d936cf9b
HD
678 nr_unshown);
679 nr_unshown = 0;
680 }
681 nr_shown = 0;
682 }
683 if (nr_shown++ == 0)
684 resume = jiffies + 60 * HZ;
3dc14741
HD
685
686 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
687 index = linear_page_index(vma, addr);
688
1e9e6365
HD
689 printk(KERN_ALERT
690 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
3dc14741
HD
691 current->comm,
692 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821
WF
693 if (page)
694 dump_page(page);
1e9e6365 695 printk(KERN_ALERT
3dc14741
HD
696 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
697 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
698 /*
699 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
700 */
701 if (vma->vm_ops)
1e9e6365 702 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
3dc14741
HD
703 (unsigned long)vma->vm_ops->fault);
704 if (vma->vm_file && vma->vm_file->f_op)
1e9e6365 705 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
3dc14741 706 (unsigned long)vma->vm_file->f_op->mmap);
b5810039 707 dump_stack();
3dc14741 708 add_taint(TAINT_BAD_PAGE);
b5810039
NP
709}
710
ca16d140 711static inline int is_cow_mapping(vm_flags_t flags)
67121172
LT
712{
713 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
714}
715
62eede62
HD
716#ifndef is_zero_pfn
717static inline int is_zero_pfn(unsigned long pfn)
718{
719 return pfn == zero_pfn;
720}
721#endif
722
723#ifndef my_zero_pfn
724static inline unsigned long my_zero_pfn(unsigned long addr)
725{
726 return zero_pfn;
727}
728#endif
729
ee498ed7 730/*
7e675137 731 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 732 *
7e675137
NP
733 * "Special" mappings do not wish to be associated with a "struct page" (either
734 * it doesn't exist, or it exists but they don't want to touch it). In this
735 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 736 *
7e675137
NP
737 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
738 * pte bit, in which case this function is trivial. Secondly, an architecture
739 * may not have a spare pte bit, which requires a more complicated scheme,
740 * described below.
741 *
742 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
743 * special mapping (even if there are underlying and valid "struct pages").
744 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 745 *
b379d790
JH
746 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
747 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
748 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
749 * mapping will always honor the rule
6aab341e
LT
750 *
751 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
752 *
7e675137
NP
753 * And for normal mappings this is false.
754 *
755 * This restricts such mappings to be a linear translation from virtual address
756 * to pfn. To get around this restriction, we allow arbitrary mappings so long
757 * as the vma is not a COW mapping; in that case, we know that all ptes are
758 * special (because none can have been COWed).
b379d790 759 *
b379d790 760 *
7e675137 761 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
762 *
763 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
764 * page" backing, however the difference is that _all_ pages with a struct
765 * page (that is, those where pfn_valid is true) are refcounted and considered
766 * normal pages by the VM. The disadvantage is that pages are refcounted
767 * (which can be slower and simply not an option for some PFNMAP users). The
768 * advantage is that we don't have to follow the strict linearity rule of
769 * PFNMAP mappings in order to support COWable mappings.
770 *
ee498ed7 771 */
7e675137
NP
772#ifdef __HAVE_ARCH_PTE_SPECIAL
773# define HAVE_PTE_SPECIAL 1
774#else
775# define HAVE_PTE_SPECIAL 0
776#endif
777struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
778 pte_t pte)
ee498ed7 779{
22b31eec 780 unsigned long pfn = pte_pfn(pte);
7e675137
NP
781
782 if (HAVE_PTE_SPECIAL) {
22b31eec
HD
783 if (likely(!pte_special(pte)))
784 goto check_pfn;
a13ea5b7
HD
785 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
786 return NULL;
62eede62 787 if (!is_zero_pfn(pfn))
22b31eec 788 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
789 return NULL;
790 }
791
792 /* !HAVE_PTE_SPECIAL case follows: */
793
b379d790
JH
794 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
795 if (vma->vm_flags & VM_MIXEDMAP) {
796 if (!pfn_valid(pfn))
797 return NULL;
798 goto out;
799 } else {
7e675137
NP
800 unsigned long off;
801 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
802 if (pfn == vma->vm_pgoff + off)
803 return NULL;
804 if (!is_cow_mapping(vma->vm_flags))
805 return NULL;
806 }
6aab341e
LT
807 }
808
62eede62
HD
809 if (is_zero_pfn(pfn))
810 return NULL;
22b31eec
HD
811check_pfn:
812 if (unlikely(pfn > highest_memmap_pfn)) {
813 print_bad_pte(vma, addr, pte, NULL);
814 return NULL;
815 }
6aab341e
LT
816
817 /*
7e675137 818 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 819 * eg. VDSO mappings can cause them to exist.
6aab341e 820 */
b379d790 821out:
6aab341e 822 return pfn_to_page(pfn);
ee498ed7
HD
823}
824
1da177e4
LT
825/*
826 * copy one vm_area from one task to the other. Assumes the page tables
827 * already present in the new task to be cleared in the whole range
828 * covered by this vma.
1da177e4
LT
829 */
830
570a335b 831static inline unsigned long
1da177e4 832copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 833 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 834 unsigned long addr, int *rss)
1da177e4 835{
b5810039 836 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
837 pte_t pte = *src_pte;
838 struct page *page;
1da177e4
LT
839
840 /* pte contains position in swap or file, so copy. */
841 if (unlikely(!pte_present(pte))) {
842 if (!pte_file(pte)) {
0697212a
CL
843 swp_entry_t entry = pte_to_swp_entry(pte);
844
570a335b
HD
845 if (swap_duplicate(entry) < 0)
846 return entry.val;
847
1da177e4
LT
848 /* make sure dst_mm is on swapoff's mmlist. */
849 if (unlikely(list_empty(&dst_mm->mmlist))) {
850 spin_lock(&mmlist_lock);
f412ac08
HD
851 if (list_empty(&dst_mm->mmlist))
852 list_add(&dst_mm->mmlist,
853 &src_mm->mmlist);
1da177e4
LT
854 spin_unlock(&mmlist_lock);
855 }
b084d435
KH
856 if (likely(!non_swap_entry(entry)))
857 rss[MM_SWAPENTS]++;
9f9f1acd
KK
858 else if (is_migration_entry(entry)) {
859 page = migration_entry_to_page(entry);
860
861 if (PageAnon(page))
862 rss[MM_ANONPAGES]++;
863 else
864 rss[MM_FILEPAGES]++;
865
866 if (is_write_migration_entry(entry) &&
867 is_cow_mapping(vm_flags)) {
868 /*
869 * COW mappings require pages in both
870 * parent and child to be set to read.
871 */
872 make_migration_entry_read(&entry);
873 pte = swp_entry_to_pte(entry);
874 set_pte_at(src_mm, addr, src_pte, pte);
875 }
0697212a 876 }
1da177e4 877 }
ae859762 878 goto out_set_pte;
1da177e4
LT
879 }
880
1da177e4
LT
881 /*
882 * If it's a COW mapping, write protect it both
883 * in the parent and the child
884 */
67121172 885 if (is_cow_mapping(vm_flags)) {
1da177e4 886 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 887 pte = pte_wrprotect(pte);
1da177e4
LT
888 }
889
890 /*
891 * If it's a shared mapping, mark it clean in
892 * the child
893 */
894 if (vm_flags & VM_SHARED)
895 pte = pte_mkclean(pte);
896 pte = pte_mkold(pte);
6aab341e
LT
897
898 page = vm_normal_page(vma, addr, pte);
899 if (page) {
900 get_page(page);
21333b2b 901 page_dup_rmap(page);
d559db08
KH
902 if (PageAnon(page))
903 rss[MM_ANONPAGES]++;
904 else
905 rss[MM_FILEPAGES]++;
6aab341e 906 }
ae859762
HD
907
908out_set_pte:
909 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 910 return 0;
1da177e4
LT
911}
912
71e3aac0
AA
913int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
914 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
915 unsigned long addr, unsigned long end)
1da177e4 916{
c36987e2 917 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 918 pte_t *src_pte, *dst_pte;
c74df32c 919 spinlock_t *src_ptl, *dst_ptl;
e040f218 920 int progress = 0;
d559db08 921 int rss[NR_MM_COUNTERS];
570a335b 922 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
923
924again:
d559db08
KH
925 init_rss_vec(rss);
926
c74df32c 927 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
928 if (!dst_pte)
929 return -ENOMEM;
ece0e2b6 930 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 931 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 932 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
933 orig_src_pte = src_pte;
934 orig_dst_pte = dst_pte;
6606c3e0 935 arch_enter_lazy_mmu_mode();
1da177e4 936
1da177e4
LT
937 do {
938 /*
939 * We are holding two locks at this point - either of them
940 * could generate latencies in another task on another CPU.
941 */
e040f218
HD
942 if (progress >= 32) {
943 progress = 0;
944 if (need_resched() ||
95c354fe 945 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
946 break;
947 }
1da177e4
LT
948 if (pte_none(*src_pte)) {
949 progress++;
950 continue;
951 }
570a335b
HD
952 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
953 vma, addr, rss);
954 if (entry.val)
955 break;
1da177e4
LT
956 progress += 8;
957 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 958
6606c3e0 959 arch_leave_lazy_mmu_mode();
c74df32c 960 spin_unlock(src_ptl);
ece0e2b6 961 pte_unmap(orig_src_pte);
d559db08 962 add_mm_rss_vec(dst_mm, rss);
c36987e2 963 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 964 cond_resched();
570a335b
HD
965
966 if (entry.val) {
967 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
968 return -ENOMEM;
969 progress = 0;
970 }
1da177e4
LT
971 if (addr != end)
972 goto again;
973 return 0;
974}
975
976static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
977 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
978 unsigned long addr, unsigned long end)
979{
980 pmd_t *src_pmd, *dst_pmd;
981 unsigned long next;
982
983 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
984 if (!dst_pmd)
985 return -ENOMEM;
986 src_pmd = pmd_offset(src_pud, addr);
987 do {
988 next = pmd_addr_end(addr, end);
71e3aac0
AA
989 if (pmd_trans_huge(*src_pmd)) {
990 int err;
14d1a55c 991 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
71e3aac0
AA
992 err = copy_huge_pmd(dst_mm, src_mm,
993 dst_pmd, src_pmd, addr, vma);
994 if (err == -ENOMEM)
995 return -ENOMEM;
996 if (!err)
997 continue;
998 /* fall through */
999 }
1da177e4
LT
1000 if (pmd_none_or_clear_bad(src_pmd))
1001 continue;
1002 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1003 vma, addr, next))
1004 return -ENOMEM;
1005 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1006 return 0;
1007}
1008
1009static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1010 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1011 unsigned long addr, unsigned long end)
1012{
1013 pud_t *src_pud, *dst_pud;
1014 unsigned long next;
1015
1016 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1017 if (!dst_pud)
1018 return -ENOMEM;
1019 src_pud = pud_offset(src_pgd, addr);
1020 do {
1021 next = pud_addr_end(addr, end);
1022 if (pud_none_or_clear_bad(src_pud))
1023 continue;
1024 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1025 vma, addr, next))
1026 return -ENOMEM;
1027 } while (dst_pud++, src_pud++, addr = next, addr != end);
1028 return 0;
1029}
1030
1031int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1032 struct vm_area_struct *vma)
1033{
1034 pgd_t *src_pgd, *dst_pgd;
1035 unsigned long next;
1036 unsigned long addr = vma->vm_start;
1037 unsigned long end = vma->vm_end;
cddb8a5c 1038 int ret;
1da177e4 1039
d992895b
NP
1040 /*
1041 * Don't copy ptes where a page fault will fill them correctly.
1042 * Fork becomes much lighter when there are big shared or private
1043 * readonly mappings. The tradeoff is that copy_page_range is more
1044 * efficient than faulting.
1045 */
4d7672b4 1046 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
d992895b
NP
1047 if (!vma->anon_vma)
1048 return 0;
1049 }
1050
1da177e4
LT
1051 if (is_vm_hugetlb_page(vma))
1052 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1053
34801ba9 1054 if (unlikely(is_pfn_mapping(vma))) {
2ab64037 1055 /*
1056 * We do not free on error cases below as remove_vma
1057 * gets called on error from higher level routine
1058 */
1059 ret = track_pfn_vma_copy(vma);
1060 if (ret)
1061 return ret;
1062 }
1063
cddb8a5c
AA
1064 /*
1065 * We need to invalidate the secondary MMU mappings only when
1066 * there could be a permission downgrade on the ptes of the
1067 * parent mm. And a permission downgrade will only happen if
1068 * is_cow_mapping() returns true.
1069 */
1070 if (is_cow_mapping(vma->vm_flags))
1071 mmu_notifier_invalidate_range_start(src_mm, addr, end);
1072
1073 ret = 0;
1da177e4
LT
1074 dst_pgd = pgd_offset(dst_mm, addr);
1075 src_pgd = pgd_offset(src_mm, addr);
1076 do {
1077 next = pgd_addr_end(addr, end);
1078 if (pgd_none_or_clear_bad(src_pgd))
1079 continue;
cddb8a5c
AA
1080 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1081 vma, addr, next))) {
1082 ret = -ENOMEM;
1083 break;
1084 }
1da177e4 1085 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c
AA
1086
1087 if (is_cow_mapping(vma->vm_flags))
1088 mmu_notifier_invalidate_range_end(src_mm,
1089 vma->vm_start, end);
1090 return ret;
1da177e4
LT
1091}
1092
51c6f666 1093static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1094 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1095 unsigned long addr, unsigned long end,
97a89413 1096 struct zap_details *details)
1da177e4 1097{
b5810039 1098 struct mm_struct *mm = tlb->mm;
d16dfc55 1099 int force_flush = 0;
d559db08 1100 int rss[NR_MM_COUNTERS];
97a89413 1101 spinlock_t *ptl;
5f1a1907 1102 pte_t *start_pte;
97a89413 1103 pte_t *pte;
d559db08 1104
d16dfc55 1105again:
e303297e 1106 init_rss_vec(rss);
5f1a1907
SR
1107 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1108 pte = start_pte;
6606c3e0 1109 arch_enter_lazy_mmu_mode();
1da177e4
LT
1110 do {
1111 pte_t ptent = *pte;
51c6f666 1112 if (pte_none(ptent)) {
1da177e4 1113 continue;
51c6f666 1114 }
6f5e6b9e 1115
1da177e4 1116 if (pte_present(ptent)) {
ee498ed7 1117 struct page *page;
51c6f666 1118
6aab341e 1119 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
1120 if (unlikely(details) && page) {
1121 /*
1122 * unmap_shared_mapping_pages() wants to
1123 * invalidate cache without truncating:
1124 * unmap shared but keep private pages.
1125 */
1126 if (details->check_mapping &&
1127 details->check_mapping != page->mapping)
1128 continue;
1129 /*
1130 * Each page->index must be checked when
1131 * invalidating or truncating nonlinear.
1132 */
1133 if (details->nonlinear_vma &&
1134 (page->index < details->first_index ||
1135 page->index > details->last_index))
1136 continue;
1137 }
b5810039 1138 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1139 tlb->fullmm);
1da177e4
LT
1140 tlb_remove_tlb_entry(tlb, pte, addr);
1141 if (unlikely(!page))
1142 continue;
1143 if (unlikely(details) && details->nonlinear_vma
1144 && linear_page_index(details->nonlinear_vma,
1145 addr) != page->index)
b5810039 1146 set_pte_at(mm, addr, pte,
1da177e4 1147 pgoff_to_pte(page->index));
1da177e4 1148 if (PageAnon(page))
d559db08 1149 rss[MM_ANONPAGES]--;
6237bcd9
HD
1150 else {
1151 if (pte_dirty(ptent))
1152 set_page_dirty(page);
4917e5d0
JW
1153 if (pte_young(ptent) &&
1154 likely(!VM_SequentialReadHint(vma)))
bf3f3bc5 1155 mark_page_accessed(page);
d559db08 1156 rss[MM_FILEPAGES]--;
6237bcd9 1157 }
edc315fd 1158 page_remove_rmap(page);
3dc14741
HD
1159 if (unlikely(page_mapcount(page) < 0))
1160 print_bad_pte(vma, addr, ptent, page);
d16dfc55
PZ
1161 force_flush = !__tlb_remove_page(tlb, page);
1162 if (force_flush)
1163 break;
1da177e4
LT
1164 continue;
1165 }
1166 /*
1167 * If details->check_mapping, we leave swap entries;
1168 * if details->nonlinear_vma, we leave file entries.
1169 */
1170 if (unlikely(details))
1171 continue;
2509ef26
HD
1172 if (pte_file(ptent)) {
1173 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1174 print_bad_pte(vma, addr, ptent, NULL);
b084d435
KH
1175 } else {
1176 swp_entry_t entry = pte_to_swp_entry(ptent);
1177
1178 if (!non_swap_entry(entry))
1179 rss[MM_SWAPENTS]--;
9f9f1acd
KK
1180 else if (is_migration_entry(entry)) {
1181 struct page *page;
1182
1183 page = migration_entry_to_page(entry);
1184
1185 if (PageAnon(page))
1186 rss[MM_ANONPAGES]--;
1187 else
1188 rss[MM_FILEPAGES]--;
1189 }
b084d435
KH
1190 if (unlikely(!free_swap_and_cache(entry)))
1191 print_bad_pte(vma, addr, ptent, NULL);
1192 }
9888a1ca 1193 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1194 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1195
d559db08 1196 add_mm_rss_vec(mm, rss);
6606c3e0 1197 arch_leave_lazy_mmu_mode();
5f1a1907 1198 pte_unmap_unlock(start_pte, ptl);
51c6f666 1199
d16dfc55
PZ
1200 /*
1201 * mmu_gather ran out of room to batch pages, we break out of
1202 * the PTE lock to avoid doing the potential expensive TLB invalidate
1203 * and page-free while holding it.
1204 */
1205 if (force_flush) {
1206 force_flush = 0;
1207 tlb_flush_mmu(tlb);
1208 if (addr != end)
1209 goto again;
1210 }
1211
51c6f666 1212 return addr;
1da177e4
LT
1213}
1214
51c6f666 1215static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1216 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1217 unsigned long addr, unsigned long end,
97a89413 1218 struct zap_details *details)
1da177e4
LT
1219{
1220 pmd_t *pmd;
1221 unsigned long next;
1222
1223 pmd = pmd_offset(pud, addr);
1224 do {
1225 next = pmd_addr_end(addr, end);
71e3aac0 1226 if (pmd_trans_huge(*pmd)) {
1a5a9906 1227 if (next - addr != HPAGE_PMD_SIZE) {
14d1a55c 1228 VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
71e3aac0 1229 split_huge_page_pmd(vma->vm_mm, pmd);
f21760b1 1230 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1231 goto next;
71e3aac0
AA
1232 /* fall through */
1233 }
1a5a9906
AA
1234 /*
1235 * Here there can be other concurrent MADV_DONTNEED or
1236 * trans huge page faults running, and if the pmd is
1237 * none or trans huge it can change under us. This is
1238 * because MADV_DONTNEED holds the mmap_sem in read
1239 * mode.
1240 */
1241 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1242 goto next;
97a89413 1243 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1244next:
97a89413
PZ
1245 cond_resched();
1246 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1247
1248 return addr;
1da177e4
LT
1249}
1250
51c6f666 1251static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
b5810039 1252 struct vm_area_struct *vma, pgd_t *pgd,
1da177e4 1253 unsigned long addr, unsigned long end,
97a89413 1254 struct zap_details *details)
1da177e4
LT
1255{
1256 pud_t *pud;
1257 unsigned long next;
1258
1259 pud = pud_offset(pgd, addr);
1260 do {
1261 next = pud_addr_end(addr, end);
97a89413 1262 if (pud_none_or_clear_bad(pud))
1da177e4 1263 continue;
97a89413
PZ
1264 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1265 } while (pud++, addr = next, addr != end);
51c6f666
RH
1266
1267 return addr;
1da177e4
LT
1268}
1269
038c7aa1
AV
1270static void unmap_page_range(struct mmu_gather *tlb,
1271 struct vm_area_struct *vma,
1272 unsigned long addr, unsigned long end,
1273 struct zap_details *details)
1da177e4
LT
1274{
1275 pgd_t *pgd;
1276 unsigned long next;
1277
1278 if (details && !details->check_mapping && !details->nonlinear_vma)
1279 details = NULL;
1280
1281 BUG_ON(addr >= end);
569b846d 1282 mem_cgroup_uncharge_start();
1da177e4
LT
1283 tlb_start_vma(tlb, vma);
1284 pgd = pgd_offset(vma->vm_mm, addr);
1285 do {
1286 next = pgd_addr_end(addr, end);
97a89413 1287 if (pgd_none_or_clear_bad(pgd))
1da177e4 1288 continue;
97a89413
PZ
1289 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1290 } while (pgd++, addr = next, addr != end);
1da177e4 1291 tlb_end_vma(tlb, vma);
569b846d 1292 mem_cgroup_uncharge_end();
1da177e4 1293}
51c6f666 1294
f5cc4eef
AV
1295
1296static void unmap_single_vma(struct mmu_gather *tlb,
1297 struct vm_area_struct *vma, unsigned long start_addr,
1298 unsigned long end_addr, unsigned long *nr_accounted,
1299 struct zap_details *details)
1300{
1301 unsigned long start = max(vma->vm_start, start_addr);
1302 unsigned long end;
1303
1304 if (start >= vma->vm_end)
1305 return;
1306 end = min(vma->vm_end, end_addr);
1307 if (end <= vma->vm_start)
1308 return;
1309
1310 if (vma->vm_flags & VM_ACCOUNT)
1311 *nr_accounted += (end - start) >> PAGE_SHIFT;
1312
1313 if (unlikely(is_pfn_mapping(vma)))
1314 untrack_pfn_vma(vma, 0, 0);
1315
1316 if (start != end) {
1317 if (unlikely(is_vm_hugetlb_page(vma))) {
1318 /*
1319 * It is undesirable to test vma->vm_file as it
1320 * should be non-null for valid hugetlb area.
1321 * However, vm_file will be NULL in the error
1322 * cleanup path of do_mmap_pgoff. When
1323 * hugetlbfs ->mmap method fails,
1324 * do_mmap_pgoff() nullifies vma->vm_file
1325 * before calling this function to clean up.
1326 * Since no pte has actually been setup, it is
1327 * safe to do nothing in this case.
1328 */
1329 if (vma->vm_file)
1330 unmap_hugepage_range(vma, start, end, NULL);
1331 } else
1332 unmap_page_range(tlb, vma, start, end, details);
1333 }
1da177e4
LT
1334}
1335
1da177e4
LT
1336/**
1337 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1338 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1339 * @vma: the starting vma
1340 * @start_addr: virtual address at which to start unmapping
1341 * @end_addr: virtual address at which to end unmapping
1342 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1343 * @details: details of nonlinear truncation or shared cache invalidation
1344 *
508034a3 1345 * Unmap all pages in the vma list.
1da177e4 1346 *
1da177e4
LT
1347 * Only addresses between `start' and `end' will be unmapped.
1348 *
1349 * The VMA list must be sorted in ascending virtual address order.
1350 *
1351 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1352 * range after unmap_vmas() returns. So the only responsibility here is to
1353 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1354 * drops the lock and schedules.
1355 */
6e8bb019 1356void unmap_vmas(struct mmu_gather *tlb,
1da177e4
LT
1357 struct vm_area_struct *vma, unsigned long start_addr,
1358 unsigned long end_addr, unsigned long *nr_accounted,
1359 struct zap_details *details)
1360{
cddb8a5c 1361 struct mm_struct *mm = vma->vm_mm;
1da177e4 1362
cddb8a5c 1363 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
f5cc4eef
AV
1364 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1365 unmap_single_vma(tlb, vma, start_addr, end_addr, nr_accounted,
1366 details);
cddb8a5c 1367 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1da177e4
LT
1368}
1369
1370/**
1371 * zap_page_range - remove user pages in a given range
1372 * @vma: vm_area_struct holding the applicable pages
1373 * @address: starting address of pages to zap
1374 * @size: number of bytes to zap
1375 * @details: details of nonlinear truncation or shared cache invalidation
f5cc4eef
AV
1376 *
1377 * Caller must protect the VMA list
1da177e4 1378 */
14f5ff5d 1379void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1380 unsigned long size, struct zap_details *details)
1381{
1382 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1383 struct mmu_gather tlb;
1da177e4
LT
1384 unsigned long end = address + size;
1385 unsigned long nr_accounted = 0;
1386
1da177e4 1387 lru_add_drain();
d16dfc55 1388 tlb_gather_mmu(&tlb, mm, 0);
365e9c87 1389 update_hiwater_rss(mm);
14f5ff5d 1390 unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
d16dfc55 1391 tlb_finish_mmu(&tlb, address, end);
1da177e4
LT
1392}
1393
f5cc4eef
AV
1394/**
1395 * zap_page_range_single - remove user pages in a given range
1396 * @vma: vm_area_struct holding the applicable pages
1397 * @address: starting address of pages to zap
1398 * @size: number of bytes to zap
1399 * @details: details of nonlinear truncation or shared cache invalidation
1400 *
1401 * The range must fit into one VMA.
1da177e4 1402 */
f5cc4eef 1403static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1404 unsigned long size, struct zap_details *details)
1405{
1406 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1407 struct mmu_gather tlb;
1da177e4
LT
1408 unsigned long end = address + size;
1409 unsigned long nr_accounted = 0;
1410
1da177e4 1411 lru_add_drain();
d16dfc55 1412 tlb_gather_mmu(&tlb, mm, 0);
365e9c87 1413 update_hiwater_rss(mm);
f5cc4eef
AV
1414 mmu_notifier_invalidate_range_start(mm, address, end);
1415 unmap_single_vma(&tlb, vma, address, end, &nr_accounted, details);
1416 mmu_notifier_invalidate_range_end(mm, address, end);
d16dfc55 1417 tlb_finish_mmu(&tlb, address, end);
1da177e4
LT
1418}
1419
c627f9cc
JS
1420/**
1421 * zap_vma_ptes - remove ptes mapping the vma
1422 * @vma: vm_area_struct holding ptes to be zapped
1423 * @address: starting address of pages to zap
1424 * @size: number of bytes to zap
1425 *
1426 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1427 *
1428 * The entire address range must be fully contained within the vma.
1429 *
1430 * Returns 0 if successful.
1431 */
1432int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1433 unsigned long size)
1434{
1435 if (address < vma->vm_start || address + size > vma->vm_end ||
1436 !(vma->vm_flags & VM_PFNMAP))
1437 return -1;
f5cc4eef 1438 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1439 return 0;
1440}
1441EXPORT_SYMBOL_GPL(zap_vma_ptes);
1442
142762bd
JW
1443/**
1444 * follow_page - look up a page descriptor from a user-virtual address
1445 * @vma: vm_area_struct mapping @address
1446 * @address: virtual address to look up
1447 * @flags: flags modifying lookup behaviour
1448 *
1449 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1450 *
1451 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1452 * an error pointer if there is a mapping to something not represented
1453 * by a page descriptor (see also vm_normal_page()).
1da177e4 1454 */
6aab341e 1455struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
deceb6cd 1456 unsigned int flags)
1da177e4
LT
1457{
1458 pgd_t *pgd;
1459 pud_t *pud;
1460 pmd_t *pmd;
1461 pte_t *ptep, pte;
deceb6cd 1462 spinlock_t *ptl;
1da177e4 1463 struct page *page;
6aab341e 1464 struct mm_struct *mm = vma->vm_mm;
1da177e4 1465
deceb6cd
HD
1466 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1467 if (!IS_ERR(page)) {
1468 BUG_ON(flags & FOLL_GET);
1469 goto out;
1470 }
1da177e4 1471
deceb6cd 1472 page = NULL;
1da177e4
LT
1473 pgd = pgd_offset(mm, address);
1474 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
deceb6cd 1475 goto no_page_table;
1da177e4
LT
1476
1477 pud = pud_offset(pgd, address);
ceb86879 1478 if (pud_none(*pud))
deceb6cd 1479 goto no_page_table;
8a07651e 1480 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
ceb86879
AK
1481 BUG_ON(flags & FOLL_GET);
1482 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1483 goto out;
1484 }
1485 if (unlikely(pud_bad(*pud)))
1486 goto no_page_table;
1487
1da177e4 1488 pmd = pmd_offset(pud, address);
aeed5fce 1489 if (pmd_none(*pmd))
deceb6cd 1490 goto no_page_table;
71e3aac0 1491 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
deceb6cd
HD
1492 BUG_ON(flags & FOLL_GET);
1493 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1da177e4 1494 goto out;
deceb6cd 1495 }
71e3aac0 1496 if (pmd_trans_huge(*pmd)) {
500d65d4
AA
1497 if (flags & FOLL_SPLIT) {
1498 split_huge_page_pmd(mm, pmd);
1499 goto split_fallthrough;
1500 }
71e3aac0
AA
1501 spin_lock(&mm->page_table_lock);
1502 if (likely(pmd_trans_huge(*pmd))) {
1503 if (unlikely(pmd_trans_splitting(*pmd))) {
1504 spin_unlock(&mm->page_table_lock);
1505 wait_split_huge_page(vma->anon_vma, pmd);
1506 } else {
1507 page = follow_trans_huge_pmd(mm, address,
1508 pmd, flags);
1509 spin_unlock(&mm->page_table_lock);
1510 goto out;
1511 }
1512 } else
1513 spin_unlock(&mm->page_table_lock);
1514 /* fall through */
1515 }
500d65d4 1516split_fallthrough:
aeed5fce
HD
1517 if (unlikely(pmd_bad(*pmd)))
1518 goto no_page_table;
1519
deceb6cd 1520 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
1521
1522 pte = *ptep;
deceb6cd 1523 if (!pte_present(pte))
89f5b7da 1524 goto no_page;
deceb6cd
HD
1525 if ((flags & FOLL_WRITE) && !pte_write(pte))
1526 goto unlock;
a13ea5b7 1527
6aab341e 1528 page = vm_normal_page(vma, address, pte);
a13ea5b7
HD
1529 if (unlikely(!page)) {
1530 if ((flags & FOLL_DUMP) ||
62eede62 1531 !is_zero_pfn(pte_pfn(pte)))
a13ea5b7
HD
1532 goto bad_page;
1533 page = pte_page(pte);
1534 }
1da177e4 1535
deceb6cd 1536 if (flags & FOLL_GET)
70b50f94 1537 get_page_foll(page);
deceb6cd
HD
1538 if (flags & FOLL_TOUCH) {
1539 if ((flags & FOLL_WRITE) &&
1540 !pte_dirty(pte) && !PageDirty(page))
1541 set_page_dirty(page);
bd775c42
KM
1542 /*
1543 * pte_mkyoung() would be more correct here, but atomic care
1544 * is needed to avoid losing the dirty bit: it is easier to use
1545 * mark_page_accessed().
1546 */
deceb6cd
HD
1547 mark_page_accessed(page);
1548 }
a1fde08c 1549 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
110d74a9
ML
1550 /*
1551 * The preliminary mapping check is mainly to avoid the
1552 * pointless overhead of lock_page on the ZERO_PAGE
1553 * which might bounce very badly if there is contention.
1554 *
1555 * If the page is already locked, we don't need to
1556 * handle it now - vmscan will handle it later if and
1557 * when it attempts to reclaim the page.
1558 */
1559 if (page->mapping && trylock_page(page)) {
1560 lru_add_drain(); /* push cached pages to LRU */
1561 /*
1562 * Because we lock page here and migration is
1563 * blocked by the pte's page reference, we need
1564 * only check for file-cache page truncation.
1565 */
1566 if (page->mapping)
1567 mlock_vma_page(page);
1568 unlock_page(page);
1569 }
1570 }
deceb6cd
HD
1571unlock:
1572 pte_unmap_unlock(ptep, ptl);
1da177e4 1573out:
deceb6cd 1574 return page;
1da177e4 1575
89f5b7da
LT
1576bad_page:
1577 pte_unmap_unlock(ptep, ptl);
1578 return ERR_PTR(-EFAULT);
1579
1580no_page:
1581 pte_unmap_unlock(ptep, ptl);
1582 if (!pte_none(pte))
1583 return page;
8e4b9a60 1584
deceb6cd
HD
1585no_page_table:
1586 /*
1587 * When core dumping an enormous anonymous area that nobody
8e4b9a60
HD
1588 * has touched so far, we don't want to allocate unnecessary pages or
1589 * page tables. Return error instead of NULL to skip handle_mm_fault,
1590 * then get_dump_page() will return NULL to leave a hole in the dump.
1591 * But we can only make this optimization where a hole would surely
1592 * be zero-filled if handle_mm_fault() actually did handle it.
deceb6cd 1593 */
8e4b9a60
HD
1594 if ((flags & FOLL_DUMP) &&
1595 (!vma->vm_ops || !vma->vm_ops->fault))
1596 return ERR_PTR(-EFAULT);
deceb6cd 1597 return page;
1da177e4
LT
1598}
1599
95042f9e
LT
1600static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1601{
a09a79f6
MP
1602 return stack_guard_page_start(vma, addr) ||
1603 stack_guard_page_end(vma, addr+PAGE_SIZE);
95042f9e
LT
1604}
1605
0014bd99
HY
1606/**
1607 * __get_user_pages() - pin user pages in memory
1608 * @tsk: task_struct of target task
1609 * @mm: mm_struct of target mm
1610 * @start: starting user address
1611 * @nr_pages: number of pages from start to pin
1612 * @gup_flags: flags modifying pin behaviour
1613 * @pages: array that receives pointers to the pages pinned.
1614 * Should be at least nr_pages long. Or NULL, if caller
1615 * only intends to ensure the pages are faulted in.
1616 * @vmas: array of pointers to vmas corresponding to each page.
1617 * Or NULL if the caller does not require them.
1618 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1619 *
1620 * Returns number of pages pinned. This may be fewer than the number
1621 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1622 * were pinned, returns -errno. Each page returned must be released
1623 * with a put_page() call when it is finished with. vmas will only
1624 * remain valid while mmap_sem is held.
1625 *
1626 * Must be called with mmap_sem held for read or write.
1627 *
1628 * __get_user_pages walks a process's page tables and takes a reference to
1629 * each struct page that each user address corresponds to at a given
1630 * instant. That is, it takes the page that would be accessed if a user
1631 * thread accesses the given user virtual address at that instant.
1632 *
1633 * This does not guarantee that the page exists in the user mappings when
1634 * __get_user_pages returns, and there may even be a completely different
1635 * page there in some cases (eg. if mmapped pagecache has been invalidated
1636 * and subsequently re faulted). However it does guarantee that the page
1637 * won't be freed completely. And mostly callers simply care that the page
1638 * contains data that was valid *at some point in time*. Typically, an IO
1639 * or similar operation cannot guarantee anything stronger anyway because
1640 * locks can't be held over the syscall boundary.
1641 *
1642 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1643 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1644 * appropriate) must be called after the page is finished with, and
1645 * before put_page is called.
1646 *
1647 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1648 * or mmap_sem contention, and if waiting is needed to pin all pages,
1649 * *@nonblocking will be set to 0.
1650 *
1651 * In most cases, get_user_pages or get_user_pages_fast should be used
1652 * instead of __get_user_pages. __get_user_pages should be used only if
1653 * you need some special @gup_flags.
1654 */
b291f000 1655int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
58fa879e 1656 unsigned long start, int nr_pages, unsigned int gup_flags,
53a7706d
ML
1657 struct page **pages, struct vm_area_struct **vmas,
1658 int *nonblocking)
1da177e4
LT
1659{
1660 int i;
58fa879e 1661 unsigned long vm_flags;
1da177e4 1662
9d73777e 1663 if (nr_pages <= 0)
900cf086 1664 return 0;
58fa879e
HD
1665
1666 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1667
1da177e4
LT
1668 /*
1669 * Require read or write permissions.
58fa879e 1670 * If FOLL_FORCE is set, we only require the "MAY" flags.
1da177e4 1671 */
58fa879e
HD
1672 vm_flags = (gup_flags & FOLL_WRITE) ?
1673 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1674 vm_flags &= (gup_flags & FOLL_FORCE) ?
1675 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1da177e4
LT
1676 i = 0;
1677
1678 do {
deceb6cd 1679 struct vm_area_struct *vma;
1da177e4
LT
1680
1681 vma = find_extend_vma(mm, start);
e7f22e20 1682 if (!vma && in_gate_area(mm, start)) {
1da177e4 1683 unsigned long pg = start & PAGE_MASK;
1da177e4
LT
1684 pgd_t *pgd;
1685 pud_t *pud;
1686 pmd_t *pmd;
1687 pte_t *pte;
b291f000
NP
1688
1689 /* user gate pages are read-only */
58fa879e 1690 if (gup_flags & FOLL_WRITE)
1da177e4
LT
1691 return i ? : -EFAULT;
1692 if (pg > TASK_SIZE)
1693 pgd = pgd_offset_k(pg);
1694 else
1695 pgd = pgd_offset_gate(mm, pg);
1696 BUG_ON(pgd_none(*pgd));
1697 pud = pud_offset(pgd, pg);
1698 BUG_ON(pud_none(*pud));
1699 pmd = pmd_offset(pud, pg);
690dbe1c
HD
1700 if (pmd_none(*pmd))
1701 return i ? : -EFAULT;
f66055ab 1702 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4 1703 pte = pte_offset_map(pmd, pg);
690dbe1c
HD
1704 if (pte_none(*pte)) {
1705 pte_unmap(pte);
1706 return i ? : -EFAULT;
1707 }
95042f9e 1708 vma = get_gate_vma(mm);
1da177e4 1709 if (pages) {
de51257a
HD
1710 struct page *page;
1711
95042f9e 1712 page = vm_normal_page(vma, start, *pte);
de51257a
HD
1713 if (!page) {
1714 if (!(gup_flags & FOLL_DUMP) &&
1715 is_zero_pfn(pte_pfn(*pte)))
1716 page = pte_page(*pte);
1717 else {
1718 pte_unmap(pte);
1719 return i ? : -EFAULT;
1720 }
1721 }
6aab341e 1722 pages[i] = page;
de51257a 1723 get_page(page);
1da177e4
LT
1724 }
1725 pte_unmap(pte);
95042f9e 1726 goto next_page;
1da177e4
LT
1727 }
1728
b291f000
NP
1729 if (!vma ||
1730 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1c3aff1c 1731 !(vm_flags & vma->vm_flags))
1da177e4
LT
1732 return i ? : -EFAULT;
1733
2a15efc9
HD
1734 if (is_vm_hugetlb_page(vma)) {
1735 i = follow_hugetlb_page(mm, vma, pages, vmas,
58fa879e 1736 &start, &nr_pages, i, gup_flags);
2a15efc9
HD
1737 continue;
1738 }
deceb6cd 1739
1da177e4 1740 do {
08ef4729 1741 struct page *page;
58fa879e 1742 unsigned int foll_flags = gup_flags;
1da177e4 1743
462e00cc 1744 /*
4779280d 1745 * If we have a pending SIGKILL, don't keep faulting
1c3aff1c 1746 * pages and potentially allocating memory.
462e00cc 1747 */
1c3aff1c 1748 if (unlikely(fatal_signal_pending(current)))
4779280d 1749 return i ? i : -ERESTARTSYS;
462e00cc 1750
deceb6cd 1751 cond_resched();
6aab341e 1752 while (!(page = follow_page(vma, start, foll_flags))) {
deceb6cd 1753 int ret;
53a7706d
ML
1754 unsigned int fault_flags = 0;
1755
a09a79f6
MP
1756 /* For mlock, just skip the stack guard page. */
1757 if (foll_flags & FOLL_MLOCK) {
1758 if (stack_guard_page(vma, start))
1759 goto next_page;
1760 }
53a7706d
ML
1761 if (foll_flags & FOLL_WRITE)
1762 fault_flags |= FAULT_FLAG_WRITE;
1763 if (nonblocking)
1764 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
318b275f
GN
1765 if (foll_flags & FOLL_NOWAIT)
1766 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
d06063cc 1767
d26ed650 1768 ret = handle_mm_fault(mm, vma, start,
53a7706d 1769 fault_flags);
d26ed650 1770
83c54070
NP
1771 if (ret & VM_FAULT_ERROR) {
1772 if (ret & VM_FAULT_OOM)
1773 return i ? i : -ENOMEM;
69ebb83e
HY
1774 if (ret & (VM_FAULT_HWPOISON |
1775 VM_FAULT_HWPOISON_LARGE)) {
1776 if (i)
1777 return i;
1778 else if (gup_flags & FOLL_HWPOISON)
1779 return -EHWPOISON;
1780 else
1781 return -EFAULT;
1782 }
1783 if (ret & VM_FAULT_SIGBUS)
83c54070
NP
1784 return i ? i : -EFAULT;
1785 BUG();
1786 }
e7f22e20
SW
1787
1788 if (tsk) {
1789 if (ret & VM_FAULT_MAJOR)
1790 tsk->maj_flt++;
1791 else
1792 tsk->min_flt++;
1793 }
83c54070 1794
53a7706d 1795 if (ret & VM_FAULT_RETRY) {
318b275f
GN
1796 if (nonblocking)
1797 *nonblocking = 0;
53a7706d
ML
1798 return i;
1799 }
1800
a68d2ebc 1801 /*
83c54070
NP
1802 * The VM_FAULT_WRITE bit tells us that
1803 * do_wp_page has broken COW when necessary,
1804 * even if maybe_mkwrite decided not to set
1805 * pte_write. We can thus safely do subsequent
878b63ac
HD
1806 * page lookups as if they were reads. But only
1807 * do so when looping for pte_write is futile:
1808 * in some cases userspace may also be wanting
1809 * to write to the gotten user page, which a
1810 * read fault here might prevent (a readonly
1811 * page might get reCOWed by userspace write).
a68d2ebc 1812 */
878b63ac
HD
1813 if ((ret & VM_FAULT_WRITE) &&
1814 !(vma->vm_flags & VM_WRITE))
deceb6cd 1815 foll_flags &= ~FOLL_WRITE;
83c54070 1816
7f7bbbe5 1817 cond_resched();
1da177e4 1818 }
89f5b7da
LT
1819 if (IS_ERR(page))
1820 return i ? i : PTR_ERR(page);
1da177e4 1821 if (pages) {
08ef4729 1822 pages[i] = page;
03beb076 1823
a6f36be3 1824 flush_anon_page(vma, page, start);
08ef4729 1825 flush_dcache_page(page);
1da177e4 1826 }
95042f9e 1827next_page:
1da177e4
LT
1828 if (vmas)
1829 vmas[i] = vma;
1830 i++;
1831 start += PAGE_SIZE;
9d73777e
PZ
1832 nr_pages--;
1833 } while (nr_pages && start < vma->vm_end);
1834 } while (nr_pages);
1da177e4
LT
1835 return i;
1836}
0014bd99 1837EXPORT_SYMBOL(__get_user_pages);
b291f000 1838
2efaca92
BH
1839/*
1840 * fixup_user_fault() - manually resolve a user page fault
1841 * @tsk: the task_struct to use for page fault accounting, or
1842 * NULL if faults are not to be recorded.
1843 * @mm: mm_struct of target mm
1844 * @address: user address
1845 * @fault_flags:flags to pass down to handle_mm_fault()
1846 *
1847 * This is meant to be called in the specific scenario where for locking reasons
1848 * we try to access user memory in atomic context (within a pagefault_disable()
1849 * section), this returns -EFAULT, and we want to resolve the user fault before
1850 * trying again.
1851 *
1852 * Typically this is meant to be used by the futex code.
1853 *
1854 * The main difference with get_user_pages() is that this function will
1855 * unconditionally call handle_mm_fault() which will in turn perform all the
1856 * necessary SW fixup of the dirty and young bits in the PTE, while
1857 * handle_mm_fault() only guarantees to update these in the struct page.
1858 *
1859 * This is important for some architectures where those bits also gate the
1860 * access permission to the page because they are maintained in software. On
1861 * such architectures, gup() will not be enough to make a subsequent access
1862 * succeed.
1863 *
1864 * This should be called with the mm_sem held for read.
1865 */
1866int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1867 unsigned long address, unsigned int fault_flags)
1868{
1869 struct vm_area_struct *vma;
1870 int ret;
1871
1872 vma = find_extend_vma(mm, address);
1873 if (!vma || address < vma->vm_start)
1874 return -EFAULT;
1875
1876 ret = handle_mm_fault(mm, vma, address, fault_flags);
1877 if (ret & VM_FAULT_ERROR) {
1878 if (ret & VM_FAULT_OOM)
1879 return -ENOMEM;
1880 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1881 return -EHWPOISON;
1882 if (ret & VM_FAULT_SIGBUS)
1883 return -EFAULT;
1884 BUG();
1885 }
1886 if (tsk) {
1887 if (ret & VM_FAULT_MAJOR)
1888 tsk->maj_flt++;
1889 else
1890 tsk->min_flt++;
1891 }
1892 return 0;
1893}
1894
1895/*
d2bf6be8 1896 * get_user_pages() - pin user pages in memory
e7f22e20
SW
1897 * @tsk: the task_struct to use for page fault accounting, or
1898 * NULL if faults are not to be recorded.
d2bf6be8
NP
1899 * @mm: mm_struct of target mm
1900 * @start: starting user address
9d73777e 1901 * @nr_pages: number of pages from start to pin
d2bf6be8
NP
1902 * @write: whether pages will be written to by the caller
1903 * @force: whether to force write access even if user mapping is
1904 * readonly. This will result in the page being COWed even
1905 * in MAP_SHARED mappings. You do not want this.
1906 * @pages: array that receives pointers to the pages pinned.
1907 * Should be at least nr_pages long. Or NULL, if caller
1908 * only intends to ensure the pages are faulted in.
1909 * @vmas: array of pointers to vmas corresponding to each page.
1910 * Or NULL if the caller does not require them.
1911 *
1912 * Returns number of pages pinned. This may be fewer than the number
9d73777e 1913 * requested. If nr_pages is 0 or negative, returns 0. If no pages
d2bf6be8
NP
1914 * were pinned, returns -errno. Each page returned must be released
1915 * with a put_page() call when it is finished with. vmas will only
1916 * remain valid while mmap_sem is held.
1917 *
1918 * Must be called with mmap_sem held for read or write.
1919 *
1920 * get_user_pages walks a process's page tables and takes a reference to
1921 * each struct page that each user address corresponds to at a given
1922 * instant. That is, it takes the page that would be accessed if a user
1923 * thread accesses the given user virtual address at that instant.
1924 *
1925 * This does not guarantee that the page exists in the user mappings when
1926 * get_user_pages returns, and there may even be a completely different
1927 * page there in some cases (eg. if mmapped pagecache has been invalidated
1928 * and subsequently re faulted). However it does guarantee that the page
1929 * won't be freed completely. And mostly callers simply care that the page
1930 * contains data that was valid *at some point in time*. Typically, an IO
1931 * or similar operation cannot guarantee anything stronger anyway because
1932 * locks can't be held over the syscall boundary.
1933 *
1934 * If write=0, the page must not be written to. If the page is written to,
1935 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1936 * after the page is finished with, and before put_page is called.
1937 *
1938 * get_user_pages is typically used for fewer-copy IO operations, to get a
1939 * handle on the memory by some means other than accesses via the user virtual
1940 * addresses. The pages may be submitted for DMA to devices or accessed via
1941 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1942 * use the correct cache flushing APIs.
1943 *
1944 * See also get_user_pages_fast, for performance critical applications.
1945 */
b291f000 1946int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
9d73777e 1947 unsigned long start, int nr_pages, int write, int force,
b291f000
NP
1948 struct page **pages, struct vm_area_struct **vmas)
1949{
58fa879e 1950 int flags = FOLL_TOUCH;
b291f000 1951
58fa879e
HD
1952 if (pages)
1953 flags |= FOLL_GET;
b291f000 1954 if (write)
58fa879e 1955 flags |= FOLL_WRITE;
b291f000 1956 if (force)
58fa879e 1957 flags |= FOLL_FORCE;
b291f000 1958
53a7706d
ML
1959 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1960 NULL);
b291f000 1961}
1da177e4
LT
1962EXPORT_SYMBOL(get_user_pages);
1963
f3e8fccd
HD
1964/**
1965 * get_dump_page() - pin user page in memory while writing it to core dump
1966 * @addr: user address
1967 *
1968 * Returns struct page pointer of user page pinned for dump,
1969 * to be freed afterwards by page_cache_release() or put_page().
1970 *
1971 * Returns NULL on any kind of failure - a hole must then be inserted into
1972 * the corefile, to preserve alignment with its headers; and also returns
1973 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1974 * allowing a hole to be left in the corefile to save diskspace.
1975 *
1976 * Called without mmap_sem, but after all other threads have been killed.
1977 */
1978#ifdef CONFIG_ELF_CORE
1979struct page *get_dump_page(unsigned long addr)
1980{
1981 struct vm_area_struct *vma;
1982 struct page *page;
1983
1984 if (__get_user_pages(current, current->mm, addr, 1,
53a7706d
ML
1985 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1986 NULL) < 1)
f3e8fccd 1987 return NULL;
f3e8fccd
HD
1988 flush_cache_page(vma, addr, page_to_pfn(page));
1989 return page;
1990}
1991#endif /* CONFIG_ELF_CORE */
1992
25ca1d6c 1993pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
920c7a5d 1994 spinlock_t **ptl)
c9cfcddf
LT
1995{
1996 pgd_t * pgd = pgd_offset(mm, addr);
1997 pud_t * pud = pud_alloc(mm, pgd, addr);
1998 if (pud) {
49c91fb0 1999 pmd_t * pmd = pmd_alloc(mm, pud, addr);
f66055ab
AA
2000 if (pmd) {
2001 VM_BUG_ON(pmd_trans_huge(*pmd));
c9cfcddf 2002 return pte_alloc_map_lock(mm, pmd, addr, ptl);
f66055ab 2003 }
c9cfcddf
LT
2004 }
2005 return NULL;
2006}
2007
238f58d8
LT
2008/*
2009 * This is the old fallback for page remapping.
2010 *
2011 * For historical reasons, it only allows reserved pages. Only
2012 * old drivers should use this, and they needed to mark their
2013 * pages reserved for the old functions anyway.
2014 */
423bad60
NP
2015static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2016 struct page *page, pgprot_t prot)
238f58d8 2017{
423bad60 2018 struct mm_struct *mm = vma->vm_mm;
238f58d8 2019 int retval;
c9cfcddf 2020 pte_t *pte;
8a9f3ccd
BS
2021 spinlock_t *ptl;
2022
238f58d8 2023 retval = -EINVAL;
a145dd41 2024 if (PageAnon(page))
5b4e655e 2025 goto out;
238f58d8
LT
2026 retval = -ENOMEM;
2027 flush_dcache_page(page);
c9cfcddf 2028 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 2029 if (!pte)
5b4e655e 2030 goto out;
238f58d8
LT
2031 retval = -EBUSY;
2032 if (!pte_none(*pte))
2033 goto out_unlock;
2034
2035 /* Ok, finally just insert the thing.. */
2036 get_page(page);
34e55232 2037 inc_mm_counter_fast(mm, MM_FILEPAGES);
238f58d8
LT
2038 page_add_file_rmap(page);
2039 set_pte_at(mm, addr, pte, mk_pte(page, prot));
2040
2041 retval = 0;
8a9f3ccd
BS
2042 pte_unmap_unlock(pte, ptl);
2043 return retval;
238f58d8
LT
2044out_unlock:
2045 pte_unmap_unlock(pte, ptl);
2046out:
2047 return retval;
2048}
2049
bfa5bf6d
REB
2050/**
2051 * vm_insert_page - insert single page into user vma
2052 * @vma: user vma to map to
2053 * @addr: target user address of this page
2054 * @page: source kernel page
2055 *
a145dd41
LT
2056 * This allows drivers to insert individual pages they've allocated
2057 * into a user vma.
2058 *
2059 * The page has to be a nice clean _individual_ kernel allocation.
2060 * If you allocate a compound page, you need to have marked it as
2061 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 2062 * (see split_page()).
a145dd41
LT
2063 *
2064 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2065 * took an arbitrary page protection parameter. This doesn't allow
2066 * that. Your vma protection will have to be set up correctly, which
2067 * means that if you want a shared writable mapping, you'd better
2068 * ask for a shared writable mapping!
2069 *
2070 * The page does not need to be reserved.
2071 */
423bad60
NP
2072int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2073 struct page *page)
a145dd41
LT
2074{
2075 if (addr < vma->vm_start || addr >= vma->vm_end)
2076 return -EFAULT;
2077 if (!page_count(page))
2078 return -EINVAL;
4d7672b4 2079 vma->vm_flags |= VM_INSERTPAGE;
423bad60 2080 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 2081}
e3c3374f 2082EXPORT_SYMBOL(vm_insert_page);
a145dd41 2083
423bad60
NP
2084static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2085 unsigned long pfn, pgprot_t prot)
2086{
2087 struct mm_struct *mm = vma->vm_mm;
2088 int retval;
2089 pte_t *pte, entry;
2090 spinlock_t *ptl;
2091
2092 retval = -ENOMEM;
2093 pte = get_locked_pte(mm, addr, &ptl);
2094 if (!pte)
2095 goto out;
2096 retval = -EBUSY;
2097 if (!pte_none(*pte))
2098 goto out_unlock;
2099
2100 /* Ok, finally just insert the thing.. */
2101 entry = pte_mkspecial(pfn_pte(pfn, prot));
2102 set_pte_at(mm, addr, pte, entry);
4b3073e1 2103 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60
NP
2104
2105 retval = 0;
2106out_unlock:
2107 pte_unmap_unlock(pte, ptl);
2108out:
2109 return retval;
2110}
2111
e0dc0d8f
NP
2112/**
2113 * vm_insert_pfn - insert single pfn into user vma
2114 * @vma: user vma to map to
2115 * @addr: target user address of this page
2116 * @pfn: source kernel pfn
2117 *
2118 * Similar to vm_inert_page, this allows drivers to insert individual pages
2119 * they've allocated into a user vma. Same comments apply.
2120 *
2121 * This function should only be called from a vm_ops->fault handler, and
2122 * in that case the handler should return NULL.
0d71d10a
NP
2123 *
2124 * vma cannot be a COW mapping.
2125 *
2126 * As this is called only for pages that do not currently exist, we
2127 * do not need to flush old virtual caches or the TLB.
e0dc0d8f
NP
2128 */
2129int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 2130 unsigned long pfn)
e0dc0d8f 2131{
2ab64037 2132 int ret;
e4b866ed 2133 pgprot_t pgprot = vma->vm_page_prot;
7e675137
NP
2134 /*
2135 * Technically, architectures with pte_special can avoid all these
2136 * restrictions (same for remap_pfn_range). However we would like
2137 * consistency in testing and feature parity among all, so we should
2138 * try to keep these invariants in place for everybody.
2139 */
b379d790
JH
2140 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2141 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2142 (VM_PFNMAP|VM_MIXEDMAP));
2143 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2144 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 2145
423bad60
NP
2146 if (addr < vma->vm_start || addr >= vma->vm_end)
2147 return -EFAULT;
e4b866ed 2148 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
2ab64037 2149 return -EINVAL;
2150
e4b866ed 2151 ret = insert_pfn(vma, addr, pfn, pgprot);
2ab64037 2152
2153 if (ret)
2154 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
2155
2156 return ret;
423bad60
NP
2157}
2158EXPORT_SYMBOL(vm_insert_pfn);
e0dc0d8f 2159
423bad60
NP
2160int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2161 unsigned long pfn)
2162{
2163 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
e0dc0d8f 2164
423bad60
NP
2165 if (addr < vma->vm_start || addr >= vma->vm_end)
2166 return -EFAULT;
e0dc0d8f 2167
423bad60
NP
2168 /*
2169 * If we don't have pte special, then we have to use the pfn_valid()
2170 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2171 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
2172 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2173 * without pte special, it would there be refcounted as a normal page.
423bad60
NP
2174 */
2175 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2176 struct page *page;
2177
2178 page = pfn_to_page(pfn);
2179 return insert_page(vma, addr, page, vma->vm_page_prot);
2180 }
2181 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
e0dc0d8f 2182}
423bad60 2183EXPORT_SYMBOL(vm_insert_mixed);
e0dc0d8f 2184
1da177e4
LT
2185/*
2186 * maps a range of physical memory into the requested pages. the old
2187 * mappings are removed. any references to nonexistent pages results
2188 * in null mappings (currently treated as "copy-on-access")
2189 */
2190static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2191 unsigned long addr, unsigned long end,
2192 unsigned long pfn, pgprot_t prot)
2193{
2194 pte_t *pte;
c74df32c 2195 spinlock_t *ptl;
1da177e4 2196
c74df32c 2197 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
2198 if (!pte)
2199 return -ENOMEM;
6606c3e0 2200 arch_enter_lazy_mmu_mode();
1da177e4
LT
2201 do {
2202 BUG_ON(!pte_none(*pte));
7e675137 2203 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
2204 pfn++;
2205 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 2206 arch_leave_lazy_mmu_mode();
c74df32c 2207 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
2208 return 0;
2209}
2210
2211static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2212 unsigned long addr, unsigned long end,
2213 unsigned long pfn, pgprot_t prot)
2214{
2215 pmd_t *pmd;
2216 unsigned long next;
2217
2218 pfn -= addr >> PAGE_SHIFT;
2219 pmd = pmd_alloc(mm, pud, addr);
2220 if (!pmd)
2221 return -ENOMEM;
f66055ab 2222 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
2223 do {
2224 next = pmd_addr_end(addr, end);
2225 if (remap_pte_range(mm, pmd, addr, next,
2226 pfn + (addr >> PAGE_SHIFT), prot))
2227 return -ENOMEM;
2228 } while (pmd++, addr = next, addr != end);
2229 return 0;
2230}
2231
2232static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2233 unsigned long addr, unsigned long end,
2234 unsigned long pfn, pgprot_t prot)
2235{
2236 pud_t *pud;
2237 unsigned long next;
2238
2239 pfn -= addr >> PAGE_SHIFT;
2240 pud = pud_alloc(mm, pgd, addr);
2241 if (!pud)
2242 return -ENOMEM;
2243 do {
2244 next = pud_addr_end(addr, end);
2245 if (remap_pmd_range(mm, pud, addr, next,
2246 pfn + (addr >> PAGE_SHIFT), prot))
2247 return -ENOMEM;
2248 } while (pud++, addr = next, addr != end);
2249 return 0;
2250}
2251
bfa5bf6d
REB
2252/**
2253 * remap_pfn_range - remap kernel memory to userspace
2254 * @vma: user vma to map to
2255 * @addr: target user address to start at
2256 * @pfn: physical address of kernel memory
2257 * @size: size of map area
2258 * @prot: page protection flags for this mapping
2259 *
2260 * Note: this is only safe if the mm semaphore is held when called.
2261 */
1da177e4
LT
2262int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2263 unsigned long pfn, unsigned long size, pgprot_t prot)
2264{
2265 pgd_t *pgd;
2266 unsigned long next;
2d15cab8 2267 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
2268 struct mm_struct *mm = vma->vm_mm;
2269 int err;
2270
2271 /*
2272 * Physically remapped pages are special. Tell the
2273 * rest of the world about it:
2274 * VM_IO tells people not to look at these pages
2275 * (accesses can have side effects).
0b14c179
HD
2276 * VM_RESERVED is specified all over the place, because
2277 * in 2.4 it kept swapout's vma scan off this vma; but
2278 * in 2.6 the LRU scan won't even find its pages, so this
2279 * flag means no more than count its pages in reserved_vm,
2280 * and omit it from core dump, even when VM_IO turned off.
6aab341e
LT
2281 * VM_PFNMAP tells the core MM that the base pages are just
2282 * raw PFN mappings, and do not have a "struct page" associated
2283 * with them.
fb155c16
LT
2284 *
2285 * There's a horrible special case to handle copy-on-write
2286 * behaviour that some programs depend on. We mark the "original"
2287 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1da177e4 2288 */
4bb9c5c0 2289 if (addr == vma->vm_start && end == vma->vm_end) {
fb155c16 2290 vma->vm_pgoff = pfn;
895791da 2291 vma->vm_flags |= VM_PFN_AT_MMAP;
4bb9c5c0 2292 } else if (is_cow_mapping(vma->vm_flags))
3c8bb73a 2293 return -EINVAL;
fb155c16 2294
6aab341e 2295 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1da177e4 2296
e4b866ed 2297 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
a3670613 2298 if (err) {
2299 /*
2300 * To indicate that track_pfn related cleanup is not
2301 * needed from higher level routine calling unmap_vmas
2302 */
2303 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
895791da 2304 vma->vm_flags &= ~VM_PFN_AT_MMAP;
2ab64037 2305 return -EINVAL;
a3670613 2306 }
2ab64037 2307
1da177e4
LT
2308 BUG_ON(addr >= end);
2309 pfn -= addr >> PAGE_SHIFT;
2310 pgd = pgd_offset(mm, addr);
2311 flush_cache_range(vma, addr, end);
1da177e4
LT
2312 do {
2313 next = pgd_addr_end(addr, end);
2314 err = remap_pud_range(mm, pgd, addr, next,
2315 pfn + (addr >> PAGE_SHIFT), prot);
2316 if (err)
2317 break;
2318 } while (pgd++, addr = next, addr != end);
2ab64037 2319
2320 if (err)
2321 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
2322
1da177e4
LT
2323 return err;
2324}
2325EXPORT_SYMBOL(remap_pfn_range);
2326
aee16b3c
JF
2327static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2328 unsigned long addr, unsigned long end,
2329 pte_fn_t fn, void *data)
2330{
2331 pte_t *pte;
2332 int err;
2f569afd 2333 pgtable_t token;
94909914 2334 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
2335
2336 pte = (mm == &init_mm) ?
2337 pte_alloc_kernel(pmd, addr) :
2338 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2339 if (!pte)
2340 return -ENOMEM;
2341
2342 BUG_ON(pmd_huge(*pmd));
2343
38e0edb1
JF
2344 arch_enter_lazy_mmu_mode();
2345
2f569afd 2346 token = pmd_pgtable(*pmd);
aee16b3c
JF
2347
2348 do {
c36987e2 2349 err = fn(pte++, token, addr, data);
aee16b3c
JF
2350 if (err)
2351 break;
c36987e2 2352 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 2353
38e0edb1
JF
2354 arch_leave_lazy_mmu_mode();
2355
aee16b3c
JF
2356 if (mm != &init_mm)
2357 pte_unmap_unlock(pte-1, ptl);
2358 return err;
2359}
2360
2361static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2362 unsigned long addr, unsigned long end,
2363 pte_fn_t fn, void *data)
2364{
2365 pmd_t *pmd;
2366 unsigned long next;
2367 int err;
2368
ceb86879
AK
2369 BUG_ON(pud_huge(*pud));
2370
aee16b3c
JF
2371 pmd = pmd_alloc(mm, pud, addr);
2372 if (!pmd)
2373 return -ENOMEM;
2374 do {
2375 next = pmd_addr_end(addr, end);
2376 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2377 if (err)
2378 break;
2379 } while (pmd++, addr = next, addr != end);
2380 return err;
2381}
2382
2383static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2384 unsigned long addr, unsigned long end,
2385 pte_fn_t fn, void *data)
2386{
2387 pud_t *pud;
2388 unsigned long next;
2389 int err;
2390
2391 pud = pud_alloc(mm, pgd, addr);
2392 if (!pud)
2393 return -ENOMEM;
2394 do {
2395 next = pud_addr_end(addr, end);
2396 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2397 if (err)
2398 break;
2399 } while (pud++, addr = next, addr != end);
2400 return err;
2401}
2402
2403/*
2404 * Scan a region of virtual memory, filling in page tables as necessary
2405 * and calling a provided function on each leaf page table.
2406 */
2407int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2408 unsigned long size, pte_fn_t fn, void *data)
2409{
2410 pgd_t *pgd;
2411 unsigned long next;
57250a5b 2412 unsigned long end = addr + size;
aee16b3c
JF
2413 int err;
2414
2415 BUG_ON(addr >= end);
2416 pgd = pgd_offset(mm, addr);
2417 do {
2418 next = pgd_addr_end(addr, end);
2419 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2420 if (err)
2421 break;
2422 } while (pgd++, addr = next, addr != end);
57250a5b 2423
aee16b3c
JF
2424 return err;
2425}
2426EXPORT_SYMBOL_GPL(apply_to_page_range);
2427
8f4e2101
HD
2428/*
2429 * handle_pte_fault chooses page fault handler according to an entry
2430 * which was read non-atomically. Before making any commitment, on
2431 * those architectures or configurations (e.g. i386 with PAE) which
a335b2e1 2432 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
8f4e2101
HD
2433 * must check under lock before unmapping the pte and proceeding
2434 * (but do_wp_page is only called after already making such a check;
a335b2e1 2435 * and do_anonymous_page can safely check later on).
8f4e2101 2436 */
4c21e2f2 2437static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
2438 pte_t *page_table, pte_t orig_pte)
2439{
2440 int same = 1;
2441#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2442 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
2443 spinlock_t *ptl = pte_lockptr(mm, pmd);
2444 spin_lock(ptl);
8f4e2101 2445 same = pte_same(*page_table, orig_pte);
4c21e2f2 2446 spin_unlock(ptl);
8f4e2101
HD
2447 }
2448#endif
2449 pte_unmap(page_table);
2450 return same;
2451}
2452
9de455b2 2453static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e
LT
2454{
2455 /*
2456 * If the source page was a PFN mapping, we don't have
2457 * a "struct page" for it. We do a best-effort copy by
2458 * just copying from the original user address. If that
2459 * fails, we just zero-fill it. Live with it.
2460 */
2461 if (unlikely(!src)) {
9b04c5fe 2462 void *kaddr = kmap_atomic(dst);
5d2a2dbb
LT
2463 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2464
2465 /*
2466 * This really shouldn't fail, because the page is there
2467 * in the page tables. But it might just be unreadable,
2468 * in which case we just give up and fill the result with
2469 * zeroes.
2470 */
2471 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
3ecb01df 2472 clear_page(kaddr);
9b04c5fe 2473 kunmap_atomic(kaddr);
c4ec7b0d 2474 flush_dcache_page(dst);
0ed361de
NP
2475 } else
2476 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
2477}
2478
1da177e4
LT
2479/*
2480 * This routine handles present pages, when users try to write
2481 * to a shared page. It is done by copying the page to a new address
2482 * and decrementing the shared-page counter for the old page.
2483 *
1da177e4
LT
2484 * Note that this routine assumes that the protection checks have been
2485 * done by the caller (the low-level page fault routine in most cases).
2486 * Thus we can safely just mark it writable once we've done any necessary
2487 * COW.
2488 *
2489 * We also mark the page dirty at this point even though the page will
2490 * change only once the write actually happens. This avoids a few races,
2491 * and potentially makes it more efficient.
2492 *
8f4e2101
HD
2493 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2494 * but allow concurrent faults), with pte both mapped and locked.
2495 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2496 */
65500d23
HD
2497static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2498 unsigned long address, pte_t *page_table, pmd_t *pmd,
8f4e2101 2499 spinlock_t *ptl, pte_t orig_pte)
e6219ec8 2500 __releases(ptl)
1da177e4 2501{
e5bbe4df 2502 struct page *old_page, *new_page;
1da177e4 2503 pte_t entry;
b009c024 2504 int ret = 0;
a200ee18 2505 int page_mkwrite = 0;
d08b3851 2506 struct page *dirty_page = NULL;
1da177e4 2507
6aab341e 2508 old_page = vm_normal_page(vma, address, orig_pte);
251b97f5
PZ
2509 if (!old_page) {
2510 /*
2511 * VM_MIXEDMAP !pfn_valid() case
2512 *
2513 * We should not cow pages in a shared writeable mapping.
2514 * Just mark the pages writable as we can't do any dirty
2515 * accounting on raw pfn maps.
2516 */
2517 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2518 (VM_WRITE|VM_SHARED))
2519 goto reuse;
6aab341e 2520 goto gotten;
251b97f5 2521 }
1da177e4 2522
d08b3851 2523 /*
ee6a6457
PZ
2524 * Take out anonymous pages first, anonymous shared vmas are
2525 * not dirty accountable.
d08b3851 2526 */
9a840895 2527 if (PageAnon(old_page) && !PageKsm(old_page)) {
ab967d86
HD
2528 if (!trylock_page(old_page)) {
2529 page_cache_get(old_page);
2530 pte_unmap_unlock(page_table, ptl);
2531 lock_page(old_page);
2532 page_table = pte_offset_map_lock(mm, pmd, address,
2533 &ptl);
2534 if (!pte_same(*page_table, orig_pte)) {
2535 unlock_page(old_page);
ab967d86
HD
2536 goto unlock;
2537 }
2538 page_cache_release(old_page);
ee6a6457 2539 }
b009c024 2540 if (reuse_swap_page(old_page)) {
c44b6743
RR
2541 /*
2542 * The page is all ours. Move it to our anon_vma so
2543 * the rmap code will not search our parent or siblings.
2544 * Protected against the rmap code by the page lock.
2545 */
2546 page_move_anon_rmap(old_page, vma, address);
b009c024
ML
2547 unlock_page(old_page);
2548 goto reuse;
2549 }
ab967d86 2550 unlock_page(old_page);
ee6a6457 2551 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2552 (VM_WRITE|VM_SHARED))) {
ee6a6457
PZ
2553 /*
2554 * Only catch write-faults on shared writable pages,
2555 * read-only shared pages can get COWed by
2556 * get_user_pages(.write=1, .force=1).
2557 */
9637a5ef 2558 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
c2ec175c
NP
2559 struct vm_fault vmf;
2560 int tmp;
2561
2562 vmf.virtual_address = (void __user *)(address &
2563 PAGE_MASK);
2564 vmf.pgoff = old_page->index;
2565 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2566 vmf.page = old_page;
2567
9637a5ef
DH
2568 /*
2569 * Notify the address space that the page is about to
2570 * become writable so that it can prohibit this or wait
2571 * for the page to get into an appropriate state.
2572 *
2573 * We do this without the lock held, so that it can
2574 * sleep if it needs to.
2575 */
2576 page_cache_get(old_page);
2577 pte_unmap_unlock(page_table, ptl);
2578
c2ec175c
NP
2579 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2580 if (unlikely(tmp &
2581 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2582 ret = tmp;
9637a5ef 2583 goto unwritable_page;
c2ec175c 2584 }
b827e496
NP
2585 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2586 lock_page(old_page);
2587 if (!old_page->mapping) {
2588 ret = 0; /* retry the fault */
2589 unlock_page(old_page);
2590 goto unwritable_page;
2591 }
2592 } else
2593 VM_BUG_ON(!PageLocked(old_page));
9637a5ef 2594
9637a5ef
DH
2595 /*
2596 * Since we dropped the lock we need to revalidate
2597 * the PTE as someone else may have changed it. If
2598 * they did, we just return, as we can count on the
2599 * MMU to tell us if they didn't also make it writable.
2600 */
2601 page_table = pte_offset_map_lock(mm, pmd, address,
2602 &ptl);
b827e496
NP
2603 if (!pte_same(*page_table, orig_pte)) {
2604 unlock_page(old_page);
9637a5ef 2605 goto unlock;
b827e496 2606 }
a200ee18
PZ
2607
2608 page_mkwrite = 1;
1da177e4 2609 }
d08b3851
PZ
2610 dirty_page = old_page;
2611 get_page(dirty_page);
9637a5ef 2612
251b97f5 2613reuse:
9637a5ef
DH
2614 flush_cache_page(vma, address, pte_pfn(orig_pte));
2615 entry = pte_mkyoung(orig_pte);
2616 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
954ffcb3 2617 if (ptep_set_access_flags(vma, address, page_table, entry,1))
4b3073e1 2618 update_mmu_cache(vma, address, page_table);
72ddc8f7 2619 pte_unmap_unlock(page_table, ptl);
9637a5ef 2620 ret |= VM_FAULT_WRITE;
72ddc8f7
ML
2621
2622 if (!dirty_page)
2623 return ret;
2624
2625 /*
2626 * Yes, Virginia, this is actually required to prevent a race
2627 * with clear_page_dirty_for_io() from clearing the page dirty
2628 * bit after it clear all dirty ptes, but before a racing
2629 * do_wp_page installs a dirty pte.
2630 *
a335b2e1 2631 * __do_fault is protected similarly.
72ddc8f7
ML
2632 */
2633 if (!page_mkwrite) {
2634 wait_on_page_locked(dirty_page);
2635 set_page_dirty_balance(dirty_page, page_mkwrite);
2636 }
2637 put_page(dirty_page);
2638 if (page_mkwrite) {
2639 struct address_space *mapping = dirty_page->mapping;
2640
2641 set_page_dirty(dirty_page);
2642 unlock_page(dirty_page);
2643 page_cache_release(dirty_page);
2644 if (mapping) {
2645 /*
2646 * Some device drivers do not set page.mapping
2647 * but still dirty their pages
2648 */
2649 balance_dirty_pages_ratelimited(mapping);
2650 }
2651 }
2652
2653 /* file_update_time outside page_lock */
2654 if (vma->vm_file)
2655 file_update_time(vma->vm_file);
2656
2657 return ret;
1da177e4 2658 }
1da177e4
LT
2659
2660 /*
2661 * Ok, we need to copy. Oh, well..
2662 */
b5810039 2663 page_cache_get(old_page);
920fc356 2664gotten:
8f4e2101 2665 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2666
2667 if (unlikely(anon_vma_prepare(vma)))
65500d23 2668 goto oom;
a13ea5b7 2669
62eede62 2670 if (is_zero_pfn(pte_pfn(orig_pte))) {
a13ea5b7
HD
2671 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2672 if (!new_page)
2673 goto oom;
2674 } else {
2675 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2676 if (!new_page)
2677 goto oom;
2678 cow_user_page(new_page, old_page, address, vma);
2679 }
2680 __SetPageUptodate(new_page);
2681
2c26fdd7 2682 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
8a9f3ccd
BS
2683 goto oom_free_new;
2684
1da177e4
LT
2685 /*
2686 * Re-check the pte - we dropped the lock
2687 */
8f4e2101 2688 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
65500d23 2689 if (likely(pte_same(*page_table, orig_pte))) {
920fc356 2690 if (old_page) {
920fc356 2691 if (!PageAnon(old_page)) {
34e55232
KH
2692 dec_mm_counter_fast(mm, MM_FILEPAGES);
2693 inc_mm_counter_fast(mm, MM_ANONPAGES);
920fc356
HD
2694 }
2695 } else
34e55232 2696 inc_mm_counter_fast(mm, MM_ANONPAGES);
eca35133 2697 flush_cache_page(vma, address, pte_pfn(orig_pte));
65500d23
HD
2698 entry = mk_pte(new_page, vma->vm_page_prot);
2699 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4ce072f1
SS
2700 /*
2701 * Clear the pte entry and flush it first, before updating the
2702 * pte with the new entry. This will avoid a race condition
2703 * seen in the presence of one thread doing SMC and another
2704 * thread doing COW.
2705 */
828502d3 2706 ptep_clear_flush(vma, address, page_table);
9617d95e 2707 page_add_new_anon_rmap(new_page, vma, address);
828502d3
IE
2708 /*
2709 * We call the notify macro here because, when using secondary
2710 * mmu page tables (such as kvm shadow page tables), we want the
2711 * new page to be mapped directly into the secondary page table.
2712 */
2713 set_pte_at_notify(mm, address, page_table, entry);
4b3073e1 2714 update_mmu_cache(vma, address, page_table);
945754a1
NP
2715 if (old_page) {
2716 /*
2717 * Only after switching the pte to the new page may
2718 * we remove the mapcount here. Otherwise another
2719 * process may come and find the rmap count decremented
2720 * before the pte is switched to the new page, and
2721 * "reuse" the old page writing into it while our pte
2722 * here still points into it and can be read by other
2723 * threads.
2724 *
2725 * The critical issue is to order this
2726 * page_remove_rmap with the ptp_clear_flush above.
2727 * Those stores are ordered by (if nothing else,)
2728 * the barrier present in the atomic_add_negative
2729 * in page_remove_rmap.
2730 *
2731 * Then the TLB flush in ptep_clear_flush ensures that
2732 * no process can access the old page before the
2733 * decremented mapcount is visible. And the old page
2734 * cannot be reused until after the decremented
2735 * mapcount is visible. So transitively, TLBs to
2736 * old page will be flushed before it can be reused.
2737 */
edc315fd 2738 page_remove_rmap(old_page);
945754a1
NP
2739 }
2740
1da177e4
LT
2741 /* Free the old page.. */
2742 new_page = old_page;
f33ea7f4 2743 ret |= VM_FAULT_WRITE;
8a9f3ccd
BS
2744 } else
2745 mem_cgroup_uncharge_page(new_page);
2746
920fc356
HD
2747 if (new_page)
2748 page_cache_release(new_page);
65500d23 2749unlock:
8f4e2101 2750 pte_unmap_unlock(page_table, ptl);
e15f8c01
ML
2751 if (old_page) {
2752 /*
2753 * Don't let another task, with possibly unlocked vma,
2754 * keep the mlocked page.
2755 */
2756 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2757 lock_page(old_page); /* LRU manipulation */
2758 munlock_vma_page(old_page);
2759 unlock_page(old_page);
2760 }
2761 page_cache_release(old_page);
2762 }
f33ea7f4 2763 return ret;
8a9f3ccd 2764oom_free_new:
6dbf6d3b 2765 page_cache_release(new_page);
65500d23 2766oom:
b827e496
NP
2767 if (old_page) {
2768 if (page_mkwrite) {
2769 unlock_page(old_page);
2770 page_cache_release(old_page);
2771 }
920fc356 2772 page_cache_release(old_page);
b827e496 2773 }
1da177e4 2774 return VM_FAULT_OOM;
9637a5ef
DH
2775
2776unwritable_page:
2777 page_cache_release(old_page);
c2ec175c 2778 return ret;
1da177e4
LT
2779}
2780
97a89413 2781static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
2782 unsigned long start_addr, unsigned long end_addr,
2783 struct zap_details *details)
2784{
f5cc4eef 2785 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
2786}
2787
2788static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2789 struct zap_details *details)
2790{
2791 struct vm_area_struct *vma;
2792 struct prio_tree_iter iter;
2793 pgoff_t vba, vea, zba, zea;
2794
1da177e4
LT
2795 vma_prio_tree_foreach(vma, &iter, root,
2796 details->first_index, details->last_index) {
1da177e4
LT
2797
2798 vba = vma->vm_pgoff;
2799 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2800 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2801 zba = details->first_index;
2802 if (zba < vba)
2803 zba = vba;
2804 zea = details->last_index;
2805 if (zea > vea)
2806 zea = vea;
2807
97a89413 2808 unmap_mapping_range_vma(vma,
1da177e4
LT
2809 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2810 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 2811 details);
1da177e4
LT
2812 }
2813}
2814
2815static inline void unmap_mapping_range_list(struct list_head *head,
2816 struct zap_details *details)
2817{
2818 struct vm_area_struct *vma;
2819
2820 /*
2821 * In nonlinear VMAs there is no correspondence between virtual address
2822 * offset and file offset. So we must perform an exhaustive search
2823 * across *all* the pages in each nonlinear VMA, not just the pages
2824 * whose virtual address lies outside the file truncation point.
2825 */
1da177e4 2826 list_for_each_entry(vma, head, shared.vm_set.list) {
1da177e4 2827 details->nonlinear_vma = vma;
97a89413 2828 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
1da177e4
LT
2829 }
2830}
2831
2832/**
72fd4a35 2833 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
3d41088f 2834 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2835 * @holebegin: byte in first page to unmap, relative to the start of
2836 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 2837 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
2838 * must keep the partial page. In contrast, we must get rid of
2839 * partial pages.
2840 * @holelen: size of prospective hole in bytes. This will be rounded
2841 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2842 * end of the file.
2843 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2844 * but 0 when invalidating pagecache, don't throw away private data.
2845 */
2846void unmap_mapping_range(struct address_space *mapping,
2847 loff_t const holebegin, loff_t const holelen, int even_cows)
2848{
2849 struct zap_details details;
2850 pgoff_t hba = holebegin >> PAGE_SHIFT;
2851 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2852
2853 /* Check for overflow. */
2854 if (sizeof(holelen) > sizeof(hlen)) {
2855 long long holeend =
2856 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2857 if (holeend & ~(long long)ULONG_MAX)
2858 hlen = ULONG_MAX - hba + 1;
2859 }
2860
2861 details.check_mapping = even_cows? NULL: mapping;
2862 details.nonlinear_vma = NULL;
2863 details.first_index = hba;
2864 details.last_index = hba + hlen - 1;
2865 if (details.last_index < details.first_index)
2866 details.last_index = ULONG_MAX;
1da177e4 2867
1da177e4 2868
3d48ae45 2869 mutex_lock(&mapping->i_mmap_mutex);
1da177e4
LT
2870 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2871 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2872 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2873 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
3d48ae45 2874 mutex_unlock(&mapping->i_mmap_mutex);
1da177e4
LT
2875}
2876EXPORT_SYMBOL(unmap_mapping_range);
2877
1da177e4 2878/*
8f4e2101
HD
2879 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2880 * but allow concurrent faults), and pte mapped but not yet locked.
2881 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2882 */
65500d23
HD
2883static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2884 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2885 unsigned int flags, pte_t orig_pte)
1da177e4 2886{
8f4e2101 2887 spinlock_t *ptl;
4969c119 2888 struct page *page, *swapcache = NULL;
65500d23 2889 swp_entry_t entry;
1da177e4 2890 pte_t pte;
d065bd81 2891 int locked;
56039efa 2892 struct mem_cgroup *ptr;
ad8c2ee8 2893 int exclusive = 0;
83c54070 2894 int ret = 0;
1da177e4 2895
4c21e2f2 2896 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
8f4e2101 2897 goto out;
65500d23
HD
2898
2899 entry = pte_to_swp_entry(orig_pte);
d1737fdb
AK
2900 if (unlikely(non_swap_entry(entry))) {
2901 if (is_migration_entry(entry)) {
2902 migration_entry_wait(mm, pmd, address);
2903 } else if (is_hwpoison_entry(entry)) {
2904 ret = VM_FAULT_HWPOISON;
2905 } else {
2906 print_bad_pte(vma, address, orig_pte, NULL);
d99be1a8 2907 ret = VM_FAULT_SIGBUS;
d1737fdb 2908 }
0697212a
CL
2909 goto out;
2910 }
0ff92245 2911 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
2912 page = lookup_swap_cache(entry);
2913 if (!page) {
a5c9b696 2914 grab_swap_token(mm); /* Contend for token _before_ read-in */
02098fea
HD
2915 page = swapin_readahead(entry,
2916 GFP_HIGHUSER_MOVABLE, vma, address);
1da177e4
LT
2917 if (!page) {
2918 /*
8f4e2101
HD
2919 * Back out if somebody else faulted in this pte
2920 * while we released the pte lock.
1da177e4 2921 */
8f4e2101 2922 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2923 if (likely(pte_same(*page_table, orig_pte)))
2924 ret = VM_FAULT_OOM;
0ff92245 2925 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2926 goto unlock;
1da177e4
LT
2927 }
2928
2929 /* Had to read the page from swap area: Major fault */
2930 ret = VM_FAULT_MAJOR;
f8891e5e 2931 count_vm_event(PGMAJFAULT);
456f998e 2932 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
d1737fdb 2933 } else if (PageHWPoison(page)) {
71f72525
WF
2934 /*
2935 * hwpoisoned dirty swapcache pages are kept for killing
2936 * owner processes (which may be unknown at hwpoison time)
2937 */
d1737fdb
AK
2938 ret = VM_FAULT_HWPOISON;
2939 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
4779cb31 2940 goto out_release;
1da177e4
LT
2941 }
2942
d065bd81 2943 locked = lock_page_or_retry(page, mm, flags);
073e587e 2944 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
2945 if (!locked) {
2946 ret |= VM_FAULT_RETRY;
2947 goto out_release;
2948 }
073e587e 2949
4969c119 2950 /*
31c4a3d3
HD
2951 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2952 * release the swapcache from under us. The page pin, and pte_same
2953 * test below, are not enough to exclude that. Even if it is still
2954 * swapcache, we need to check that the page's swap has not changed.
4969c119 2955 */
31c4a3d3 2956 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
4969c119
AA
2957 goto out_page;
2958
2959 if (ksm_might_need_to_copy(page, vma, address)) {
2960 swapcache = page;
2961 page = ksm_does_need_to_copy(page, vma, address);
2962
2963 if (unlikely(!page)) {
2964 ret = VM_FAULT_OOM;
2965 page = swapcache;
2966 swapcache = NULL;
2967 goto out_page;
2968 }
5ad64688
HD
2969 }
2970
2c26fdd7 2971 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
8a9f3ccd 2972 ret = VM_FAULT_OOM;
bc43f75c 2973 goto out_page;
8a9f3ccd
BS
2974 }
2975
1da177e4 2976 /*
8f4e2101 2977 * Back out if somebody else already faulted in this pte.
1da177e4 2978 */
8f4e2101 2979 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
9e9bef07 2980 if (unlikely(!pte_same(*page_table, orig_pte)))
b8107480 2981 goto out_nomap;
b8107480
KK
2982
2983 if (unlikely(!PageUptodate(page))) {
2984 ret = VM_FAULT_SIGBUS;
2985 goto out_nomap;
1da177e4
LT
2986 }
2987
8c7c6e34
KH
2988 /*
2989 * The page isn't present yet, go ahead with the fault.
2990 *
2991 * Be careful about the sequence of operations here.
2992 * To get its accounting right, reuse_swap_page() must be called
2993 * while the page is counted on swap but not yet in mapcount i.e.
2994 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2995 * must be called after the swap_free(), or it will never succeed.
03f3c433
KH
2996 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2997 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2998 * in page->private. In this case, a record in swap_cgroup is silently
2999 * discarded at swap_free().
8c7c6e34 3000 */
1da177e4 3001
34e55232 3002 inc_mm_counter_fast(mm, MM_ANONPAGES);
b084d435 3003 dec_mm_counter_fast(mm, MM_SWAPENTS);
1da177e4 3004 pte = mk_pte(page, vma->vm_page_prot);
30c9f3a9 3005 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
1da177e4 3006 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
30c9f3a9 3007 flags &= ~FAULT_FLAG_WRITE;
9a5b489b 3008 ret |= VM_FAULT_WRITE;
ad8c2ee8 3009 exclusive = 1;
1da177e4 3010 }
1da177e4
LT
3011 flush_icache_page(vma, page);
3012 set_pte_at(mm, address, page_table, pte);
ad8c2ee8 3013 do_page_add_anon_rmap(page, vma, address, exclusive);
03f3c433
KH
3014 /* It's better to call commit-charge after rmap is established */
3015 mem_cgroup_commit_charge_swapin(page, ptr);
1da177e4 3016
c475a8ab 3017 swap_free(entry);
b291f000 3018 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 3019 try_to_free_swap(page);
c475a8ab 3020 unlock_page(page);
4969c119
AA
3021 if (swapcache) {
3022 /*
3023 * Hold the lock to avoid the swap entry to be reused
3024 * until we take the PT lock for the pte_same() check
3025 * (to avoid false positives from pte_same). For
3026 * further safety release the lock after the swap_free
3027 * so that the swap count won't change under a
3028 * parallel locked swapcache.
3029 */
3030 unlock_page(swapcache);
3031 page_cache_release(swapcache);
3032 }
c475a8ab 3033
30c9f3a9 3034 if (flags & FAULT_FLAG_WRITE) {
61469f1d
HD
3035 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3036 if (ret & VM_FAULT_ERROR)
3037 ret &= VM_FAULT_ERROR;
1da177e4
LT
3038 goto out;
3039 }
3040
3041 /* No need to invalidate - it was non-present before */
4b3073e1 3042 update_mmu_cache(vma, address, page_table);
65500d23 3043unlock:
8f4e2101 3044 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
3045out:
3046 return ret;
b8107480 3047out_nomap:
7a81b88c 3048 mem_cgroup_cancel_charge_swapin(ptr);
8f4e2101 3049 pte_unmap_unlock(page_table, ptl);
bc43f75c 3050out_page:
b8107480 3051 unlock_page(page);
4779cb31 3052out_release:
b8107480 3053 page_cache_release(page);
4969c119
AA
3054 if (swapcache) {
3055 unlock_page(swapcache);
3056 page_cache_release(swapcache);
3057 }
65500d23 3058 return ret;
1da177e4
LT
3059}
3060
320b2b8d 3061/*
8ca3eb08
TL
3062 * This is like a special single-page "expand_{down|up}wards()",
3063 * except we must first make sure that 'address{-|+}PAGE_SIZE'
320b2b8d 3064 * doesn't hit another vma.
320b2b8d
LT
3065 */
3066static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3067{
3068 address &= PAGE_MASK;
3069 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
0e8e50e2
LT
3070 struct vm_area_struct *prev = vma->vm_prev;
3071
3072 /*
3073 * Is there a mapping abutting this one below?
3074 *
3075 * That's only ok if it's the same stack mapping
3076 * that has gotten split..
3077 */
3078 if (prev && prev->vm_end == address)
3079 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
320b2b8d 3080
d05f3169 3081 expand_downwards(vma, address - PAGE_SIZE);
320b2b8d 3082 }
8ca3eb08
TL
3083 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3084 struct vm_area_struct *next = vma->vm_next;
3085
3086 /* As VM_GROWSDOWN but s/below/above/ */
3087 if (next && next->vm_start == address + PAGE_SIZE)
3088 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3089
3090 expand_upwards(vma, address + PAGE_SIZE);
3091 }
320b2b8d
LT
3092 return 0;
3093}
3094
1da177e4 3095/*
8f4e2101
HD
3096 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3097 * but allow concurrent faults), and pte mapped but not yet locked.
3098 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3099 */
65500d23
HD
3100static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3101 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3102 unsigned int flags)
1da177e4 3103{
8f4e2101
HD
3104 struct page *page;
3105 spinlock_t *ptl;
1da177e4 3106 pte_t entry;
1da177e4 3107
11ac5524
LT
3108 pte_unmap(page_table);
3109
3110 /* Check if we need to add a guard page to the stack */
3111 if (check_stack_guard_page(vma, address) < 0)
320b2b8d
LT
3112 return VM_FAULT_SIGBUS;
3113
11ac5524 3114 /* Use the zero-page for reads */
62eede62
HD
3115 if (!(flags & FAULT_FLAG_WRITE)) {
3116 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3117 vma->vm_page_prot));
11ac5524 3118 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
a13ea5b7
HD
3119 if (!pte_none(*page_table))
3120 goto unlock;
3121 goto setpte;
3122 }
3123
557ed1fa 3124 /* Allocate our own private page. */
557ed1fa
NP
3125 if (unlikely(anon_vma_prepare(vma)))
3126 goto oom;
3127 page = alloc_zeroed_user_highpage_movable(vma, address);
3128 if (!page)
3129 goto oom;
0ed361de 3130 __SetPageUptodate(page);
8f4e2101 3131
2c26fdd7 3132 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
8a9f3ccd
BS
3133 goto oom_free_page;
3134
557ed1fa 3135 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
3136 if (vma->vm_flags & VM_WRITE)
3137 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 3138
557ed1fa 3139 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1c2fb7a4 3140 if (!pte_none(*page_table))
557ed1fa 3141 goto release;
9ba69294 3142
34e55232 3143 inc_mm_counter_fast(mm, MM_ANONPAGES);
557ed1fa 3144 page_add_new_anon_rmap(page, vma, address);
a13ea5b7 3145setpte:
65500d23 3146 set_pte_at(mm, address, page_table, entry);
1da177e4
LT
3147
3148 /* No need to invalidate - it was non-present before */
4b3073e1 3149 update_mmu_cache(vma, address, page_table);
65500d23 3150unlock:
8f4e2101 3151 pte_unmap_unlock(page_table, ptl);
83c54070 3152 return 0;
8f4e2101 3153release:
8a9f3ccd 3154 mem_cgroup_uncharge_page(page);
8f4e2101
HD
3155 page_cache_release(page);
3156 goto unlock;
8a9f3ccd 3157oom_free_page:
6dbf6d3b 3158 page_cache_release(page);
65500d23 3159oom:
1da177e4
LT
3160 return VM_FAULT_OOM;
3161}
3162
3163/*
54cb8821 3164 * __do_fault() tries to create a new page mapping. It aggressively
1da177e4 3165 * tries to share with existing pages, but makes a separate copy if
54cb8821
NP
3166 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3167 * the next page fault.
1da177e4
LT
3168 *
3169 * As this is called only for pages that do not currently exist, we
3170 * do not need to flush old virtual caches or the TLB.
3171 *
8f4e2101 3172 * We enter with non-exclusive mmap_sem (to exclude vma changes,
16abfa08 3173 * but allow concurrent faults), and pte neither mapped nor locked.
8f4e2101 3174 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3175 */
54cb8821 3176static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
16abfa08 3177 unsigned long address, pmd_t *pmd,
54cb8821 3178 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
1da177e4 3179{
16abfa08 3180 pte_t *page_table;
8f4e2101 3181 spinlock_t *ptl;
d0217ac0 3182 struct page *page;
1d65f86d 3183 struct page *cow_page;
1da177e4 3184 pte_t entry;
1da177e4 3185 int anon = 0;
d08b3851 3186 struct page *dirty_page = NULL;
d0217ac0
NP
3187 struct vm_fault vmf;
3188 int ret;
a200ee18 3189 int page_mkwrite = 0;
54cb8821 3190
1d65f86d
KH
3191 /*
3192 * If we do COW later, allocate page befor taking lock_page()
3193 * on the file cache page. This will reduce lock holding time.
3194 */
3195 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3196
3197 if (unlikely(anon_vma_prepare(vma)))
3198 return VM_FAULT_OOM;
3199
3200 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3201 if (!cow_page)
3202 return VM_FAULT_OOM;
3203
3204 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3205 page_cache_release(cow_page);
3206 return VM_FAULT_OOM;
3207 }
3208 } else
3209 cow_page = NULL;
3210
d0217ac0
NP
3211 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3212 vmf.pgoff = pgoff;
3213 vmf.flags = flags;
3214 vmf.page = NULL;
1da177e4 3215
3c18ddd1 3216 ret = vma->vm_ops->fault(vma, &vmf);
d065bd81
ML
3217 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3218 VM_FAULT_RETRY)))
1d65f86d 3219 goto uncharge_out;
1da177e4 3220
a3b947ea
AK
3221 if (unlikely(PageHWPoison(vmf.page))) {
3222 if (ret & VM_FAULT_LOCKED)
3223 unlock_page(vmf.page);
1d65f86d
KH
3224 ret = VM_FAULT_HWPOISON;
3225 goto uncharge_out;
a3b947ea
AK
3226 }
3227
d00806b1 3228 /*
d0217ac0 3229 * For consistency in subsequent calls, make the faulted page always
d00806b1
NP
3230 * locked.
3231 */
83c54070 3232 if (unlikely(!(ret & VM_FAULT_LOCKED)))
d0217ac0 3233 lock_page(vmf.page);
54cb8821 3234 else
d0217ac0 3235 VM_BUG_ON(!PageLocked(vmf.page));
d00806b1 3236
1da177e4
LT
3237 /*
3238 * Should we do an early C-O-W break?
3239 */
d0217ac0 3240 page = vmf.page;
54cb8821 3241 if (flags & FAULT_FLAG_WRITE) {
9637a5ef 3242 if (!(vma->vm_flags & VM_SHARED)) {
1d65f86d 3243 page = cow_page;
54cb8821 3244 anon = 1;
d0217ac0 3245 copy_user_highpage(page, vmf.page, address, vma);
0ed361de 3246 __SetPageUptodate(page);
9637a5ef 3247 } else {
54cb8821
NP
3248 /*
3249 * If the page will be shareable, see if the backing
9637a5ef 3250 * address space wants to know that the page is about
54cb8821
NP
3251 * to become writable
3252 */
69676147 3253 if (vma->vm_ops->page_mkwrite) {
c2ec175c
NP
3254 int tmp;
3255
69676147 3256 unlock_page(page);
b827e496 3257 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
c2ec175c
NP
3258 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3259 if (unlikely(tmp &
3260 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3261 ret = tmp;
b827e496 3262 goto unwritable_page;
d0217ac0 3263 }
b827e496
NP
3264 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3265 lock_page(page);
3266 if (!page->mapping) {
3267 ret = 0; /* retry the fault */
3268 unlock_page(page);
3269 goto unwritable_page;
3270 }
3271 } else
3272 VM_BUG_ON(!PageLocked(page));
a200ee18 3273 page_mkwrite = 1;
9637a5ef
DH
3274 }
3275 }
54cb8821 3276
1da177e4
LT
3277 }
3278
8f4e2101 3279 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
3280
3281 /*
3282 * This silly early PAGE_DIRTY setting removes a race
3283 * due to the bad i386 page protection. But it's valid
3284 * for other architectures too.
3285 *
30c9f3a9 3286 * Note that if FAULT_FLAG_WRITE is set, we either now have
1da177e4
LT
3287 * an exclusive copy of the page, or this is a shared mapping,
3288 * so we can make it writable and dirty to avoid having to
3289 * handle that later.
3290 */
3291 /* Only go through if we didn't race with anybody else... */
1c2fb7a4 3292 if (likely(pte_same(*page_table, orig_pte))) {
d00806b1
NP
3293 flush_icache_page(vma, page);
3294 entry = mk_pte(page, vma->vm_page_prot);
54cb8821 3295 if (flags & FAULT_FLAG_WRITE)
1da177e4 3296 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1da177e4 3297 if (anon) {
34e55232 3298 inc_mm_counter_fast(mm, MM_ANONPAGES);
64d6519d 3299 page_add_new_anon_rmap(page, vma, address);
f57e88a8 3300 } else {
34e55232 3301 inc_mm_counter_fast(mm, MM_FILEPAGES);
d00806b1 3302 page_add_file_rmap(page);
54cb8821 3303 if (flags & FAULT_FLAG_WRITE) {
d00806b1 3304 dirty_page = page;
d08b3851
PZ
3305 get_page(dirty_page);
3306 }
4294621f 3307 }
64d6519d 3308 set_pte_at(mm, address, page_table, entry);
d00806b1
NP
3309
3310 /* no need to invalidate: a not-present page won't be cached */
4b3073e1 3311 update_mmu_cache(vma, address, page_table);
1da177e4 3312 } else {
1d65f86d
KH
3313 if (cow_page)
3314 mem_cgroup_uncharge_page(cow_page);
d00806b1
NP
3315 if (anon)
3316 page_cache_release(page);
3317 else
54cb8821 3318 anon = 1; /* no anon but release faulted_page */
1da177e4
LT
3319 }
3320
8f4e2101 3321 pte_unmap_unlock(page_table, ptl);
d00806b1 3322
b827e496
NP
3323 if (dirty_page) {
3324 struct address_space *mapping = page->mapping;
8f7b3d15 3325
b827e496
NP
3326 if (set_page_dirty(dirty_page))
3327 page_mkwrite = 1;
3328 unlock_page(dirty_page);
d08b3851 3329 put_page(dirty_page);
b827e496
NP
3330 if (page_mkwrite && mapping) {
3331 /*
3332 * Some device drivers do not set page.mapping but still
3333 * dirty their pages
3334 */
3335 balance_dirty_pages_ratelimited(mapping);
3336 }
3337
3338 /* file_update_time outside page_lock */
3339 if (vma->vm_file)
3340 file_update_time(vma->vm_file);
3341 } else {
3342 unlock_page(vmf.page);
3343 if (anon)
3344 page_cache_release(vmf.page);
d08b3851 3345 }
d00806b1 3346
83c54070 3347 return ret;
b827e496
NP
3348
3349unwritable_page:
3350 page_cache_release(page);
3351 return ret;
1d65f86d
KH
3352uncharge_out:
3353 /* fs's fault handler get error */
3354 if (cow_page) {
3355 mem_cgroup_uncharge_page(cow_page);
3356 page_cache_release(cow_page);
3357 }
3358 return ret;
54cb8821 3359}
d00806b1 3360
54cb8821
NP
3361static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3362 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3363 unsigned int flags, pte_t orig_pte)
54cb8821
NP
3364{
3365 pgoff_t pgoff = (((address & PAGE_MASK)
0da7e01f 3366 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
54cb8821 3367
16abfa08
HD
3368 pte_unmap(page_table);
3369 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
54cb8821
NP
3370}
3371
1da177e4
LT
3372/*
3373 * Fault of a previously existing named mapping. Repopulate the pte
3374 * from the encoded file_pte if possible. This enables swappable
3375 * nonlinear vmas.
8f4e2101
HD
3376 *
3377 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3378 * but allow concurrent faults), and pte mapped but not yet locked.
3379 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3380 */
d0217ac0 3381static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
65500d23 3382 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3383 unsigned int flags, pte_t orig_pte)
1da177e4 3384{
65500d23 3385 pgoff_t pgoff;
1da177e4 3386
30c9f3a9
LT
3387 flags |= FAULT_FLAG_NONLINEAR;
3388
4c21e2f2 3389 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
83c54070 3390 return 0;
1da177e4 3391
2509ef26 3392 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
65500d23
HD
3393 /*
3394 * Page table corrupted: show pte and kill process.
3395 */
3dc14741 3396 print_bad_pte(vma, address, orig_pte, NULL);
d99be1a8 3397 return VM_FAULT_SIGBUS;
65500d23 3398 }
65500d23
HD
3399
3400 pgoff = pte_to_pgoff(orig_pte);
16abfa08 3401 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
1da177e4
LT
3402}
3403
3404/*
3405 * These routines also need to handle stuff like marking pages dirty
3406 * and/or accessed for architectures that don't do it in hardware (most
3407 * RISC architectures). The early dirtying is also good on the i386.
3408 *
3409 * There is also a hook called "update_mmu_cache()" that architectures
3410 * with external mmu caches can use to update those (ie the Sparc or
3411 * PowerPC hashed page tables that act as extended TLBs).
3412 *
c74df32c
HD
3413 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3414 * but allow concurrent faults), and pte mapped but not yet locked.
3415 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3416 */
71e3aac0
AA
3417int handle_pte_fault(struct mm_struct *mm,
3418 struct vm_area_struct *vma, unsigned long address,
3419 pte_t *pte, pmd_t *pmd, unsigned int flags)
1da177e4
LT
3420{
3421 pte_t entry;
8f4e2101 3422 spinlock_t *ptl;
1da177e4 3423
8dab5241 3424 entry = *pte;
1da177e4 3425 if (!pte_present(entry)) {
65500d23 3426 if (pte_none(entry)) {
f4b81804 3427 if (vma->vm_ops) {
3c18ddd1 3428 if (likely(vma->vm_ops->fault))
54cb8821 3429 return do_linear_fault(mm, vma, address,
30c9f3a9 3430 pte, pmd, flags, entry);
f4b81804
JS
3431 }
3432 return do_anonymous_page(mm, vma, address,
30c9f3a9 3433 pte, pmd, flags);
65500d23 3434 }
1da177e4 3435 if (pte_file(entry))
d0217ac0 3436 return do_nonlinear_fault(mm, vma, address,
30c9f3a9 3437 pte, pmd, flags, entry);
65500d23 3438 return do_swap_page(mm, vma, address,
30c9f3a9 3439 pte, pmd, flags, entry);
1da177e4
LT
3440 }
3441
4c21e2f2 3442 ptl = pte_lockptr(mm, pmd);
8f4e2101
HD
3443 spin_lock(ptl);
3444 if (unlikely(!pte_same(*pte, entry)))
3445 goto unlock;
30c9f3a9 3446 if (flags & FAULT_FLAG_WRITE) {
1da177e4 3447 if (!pte_write(entry))
8f4e2101
HD
3448 return do_wp_page(mm, vma, address,
3449 pte, pmd, ptl, entry);
1da177e4
LT
3450 entry = pte_mkdirty(entry);
3451 }
3452 entry = pte_mkyoung(entry);
30c9f3a9 3453 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
4b3073e1 3454 update_mmu_cache(vma, address, pte);
1a44e149
AA
3455 } else {
3456 /*
3457 * This is needed only for protection faults but the arch code
3458 * is not yet telling us if this is a protection fault or not.
3459 * This still avoids useless tlb flushes for .text page faults
3460 * with threads.
3461 */
30c9f3a9 3462 if (flags & FAULT_FLAG_WRITE)
61c77326 3463 flush_tlb_fix_spurious_fault(vma, address);
1a44e149 3464 }
8f4e2101
HD
3465unlock:
3466 pte_unmap_unlock(pte, ptl);
83c54070 3467 return 0;
1da177e4
LT
3468}
3469
3470/*
3471 * By the time we get here, we already hold the mm semaphore
3472 */
83c54070 3473int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 3474 unsigned long address, unsigned int flags)
1da177e4
LT
3475{
3476 pgd_t *pgd;
3477 pud_t *pud;
3478 pmd_t *pmd;
3479 pte_t *pte;
3480
3481 __set_current_state(TASK_RUNNING);
3482
f8891e5e 3483 count_vm_event(PGFAULT);
456f998e 3484 mem_cgroup_count_vm_event(mm, PGFAULT);
1da177e4 3485
34e55232
KH
3486 /* do counter updates before entering really critical section. */
3487 check_sync_rss_stat(current);
3488
ac9b9c66 3489 if (unlikely(is_vm_hugetlb_page(vma)))
30c9f3a9 3490 return hugetlb_fault(mm, vma, address, flags);
1da177e4 3491
1da177e4 3492 pgd = pgd_offset(mm, address);
1da177e4
LT
3493 pud = pud_alloc(mm, pgd, address);
3494 if (!pud)
c74df32c 3495 return VM_FAULT_OOM;
1da177e4
LT
3496 pmd = pmd_alloc(mm, pud, address);
3497 if (!pmd)
c74df32c 3498 return VM_FAULT_OOM;
71e3aac0
AA
3499 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3500 if (!vma->vm_ops)
3501 return do_huge_pmd_anonymous_page(mm, vma, address,
3502 pmd, flags);
3503 } else {
3504 pmd_t orig_pmd = *pmd;
3505 barrier();
3506 if (pmd_trans_huge(orig_pmd)) {
3507 if (flags & FAULT_FLAG_WRITE &&
3508 !pmd_write(orig_pmd) &&
3509 !pmd_trans_splitting(orig_pmd))
3510 return do_huge_pmd_wp_page(mm, vma, address,
3511 pmd, orig_pmd);
3512 return 0;
3513 }
3514 }
3515
3516 /*
3517 * Use __pte_alloc instead of pte_alloc_map, because we can't
3518 * run pte_offset_map on the pmd, if an huge pmd could
3519 * materialize from under us from a different thread.
3520 */
cc03638d 3521 if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
c74df32c 3522 return VM_FAULT_OOM;
71e3aac0
AA
3523 /* if an huge pmd materialized from under us just retry later */
3524 if (unlikely(pmd_trans_huge(*pmd)))
3525 return 0;
3526 /*
3527 * A regular pmd is established and it can't morph into a huge pmd
3528 * from under us anymore at this point because we hold the mmap_sem
3529 * read mode and khugepaged takes it in write mode. So now it's
3530 * safe to run pte_offset_map().
3531 */
3532 pte = pte_offset_map(pmd, address);
1da177e4 3533
30c9f3a9 3534 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
1da177e4
LT
3535}
3536
3537#ifndef __PAGETABLE_PUD_FOLDED
3538/*
3539 * Allocate page upper directory.
872fec16 3540 * We've already handled the fast-path in-line.
1da177e4 3541 */
1bb3630e 3542int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1da177e4 3543{
c74df32c
HD
3544 pud_t *new = pud_alloc_one(mm, address);
3545 if (!new)
1bb3630e 3546 return -ENOMEM;
1da177e4 3547
362a61ad
NP
3548 smp_wmb(); /* See comment in __pte_alloc */
3549
872fec16 3550 spin_lock(&mm->page_table_lock);
1bb3630e 3551 if (pgd_present(*pgd)) /* Another has populated it */
5e541973 3552 pud_free(mm, new);
1bb3630e
HD
3553 else
3554 pgd_populate(mm, pgd, new);
c74df32c 3555 spin_unlock(&mm->page_table_lock);
1bb3630e 3556 return 0;
1da177e4
LT
3557}
3558#endif /* __PAGETABLE_PUD_FOLDED */
3559
3560#ifndef __PAGETABLE_PMD_FOLDED
3561/*
3562 * Allocate page middle directory.
872fec16 3563 * We've already handled the fast-path in-line.
1da177e4 3564 */
1bb3630e 3565int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 3566{
c74df32c
HD
3567 pmd_t *new = pmd_alloc_one(mm, address);
3568 if (!new)
1bb3630e 3569 return -ENOMEM;
1da177e4 3570
362a61ad
NP
3571 smp_wmb(); /* See comment in __pte_alloc */
3572
872fec16 3573 spin_lock(&mm->page_table_lock);
1da177e4 3574#ifndef __ARCH_HAS_4LEVEL_HACK
1bb3630e 3575 if (pud_present(*pud)) /* Another has populated it */
5e541973 3576 pmd_free(mm, new);
1bb3630e
HD
3577 else
3578 pud_populate(mm, pud, new);
1da177e4 3579#else
1bb3630e 3580 if (pgd_present(*pud)) /* Another has populated it */
5e541973 3581 pmd_free(mm, new);
1bb3630e
HD
3582 else
3583 pgd_populate(mm, pud, new);
1da177e4 3584#endif /* __ARCH_HAS_4LEVEL_HACK */
c74df32c 3585 spin_unlock(&mm->page_table_lock);
1bb3630e 3586 return 0;
e0f39591 3587}
1da177e4
LT
3588#endif /* __PAGETABLE_PMD_FOLDED */
3589
3590int make_pages_present(unsigned long addr, unsigned long end)
3591{
3592 int ret, len, write;
3593 struct vm_area_struct * vma;
3594
3595 vma = find_vma(current->mm, addr);
3596 if (!vma)
a477097d 3597 return -ENOMEM;
5ecfda04
ML
3598 /*
3599 * We want to touch writable mappings with a write fault in order
3600 * to break COW, except for shared mappings because these don't COW
3601 * and we would not want to dirty them for nothing.
3602 */
3603 write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
5bcb28b1
ES
3604 BUG_ON(addr >= end);
3605 BUG_ON(end > vma->vm_end);
68e116a3 3606 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
1da177e4
LT
3607 ret = get_user_pages(current, current->mm, addr,
3608 len, write, 0, NULL, NULL);
c11d69d8 3609 if (ret < 0)
1da177e4 3610 return ret;
9978ad58 3611 return ret == len ? 0 : -EFAULT;
1da177e4
LT
3612}
3613
1da177e4
LT
3614#if !defined(__HAVE_ARCH_GATE_AREA)
3615
3616#if defined(AT_SYSINFO_EHDR)
5ce7852c 3617static struct vm_area_struct gate_vma;
1da177e4
LT
3618
3619static int __init gate_vma_init(void)
3620{
3621 gate_vma.vm_mm = NULL;
3622 gate_vma.vm_start = FIXADDR_USER_START;
3623 gate_vma.vm_end = FIXADDR_USER_END;
b6558c4a
RM
3624 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3625 gate_vma.vm_page_prot = __P101;
f47aef55
RM
3626 /*
3627 * Make sure the vDSO gets into every core dump.
3628 * Dumping its contents makes post-mortem fully interpretable later
3629 * without matching up the same kernel and hardware config to see
3630 * what PC values meant.
3631 */
3632 gate_vma.vm_flags |= VM_ALWAYSDUMP;
1da177e4
LT
3633 return 0;
3634}
3635__initcall(gate_vma_init);
3636#endif
3637
31db58b3 3638struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
1da177e4
LT
3639{
3640#ifdef AT_SYSINFO_EHDR
3641 return &gate_vma;
3642#else
3643 return NULL;
3644#endif
3645}
3646
cae5d390 3647int in_gate_area_no_mm(unsigned long addr)
1da177e4
LT
3648{
3649#ifdef AT_SYSINFO_EHDR
3650 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3651 return 1;
3652#endif
3653 return 0;
3654}
3655
3656#endif /* __HAVE_ARCH_GATE_AREA */
0ec76a11 3657
1b36ba81 3658static int __follow_pte(struct mm_struct *mm, unsigned long address,
f8ad0f49
JW
3659 pte_t **ptepp, spinlock_t **ptlp)
3660{
3661 pgd_t *pgd;
3662 pud_t *pud;
3663 pmd_t *pmd;
3664 pte_t *ptep;
3665
3666 pgd = pgd_offset(mm, address);
3667 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3668 goto out;
3669
3670 pud = pud_offset(pgd, address);
3671 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3672 goto out;
3673
3674 pmd = pmd_offset(pud, address);
f66055ab 3675 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49
JW
3676 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3677 goto out;
3678
3679 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3680 if (pmd_huge(*pmd))
3681 goto out;
3682
3683 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3684 if (!ptep)
3685 goto out;
3686 if (!pte_present(*ptep))
3687 goto unlock;
3688 *ptepp = ptep;
3689 return 0;
3690unlock:
3691 pte_unmap_unlock(ptep, *ptlp);
3692out:
3693 return -EINVAL;
3694}
3695
1b36ba81
NK
3696static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3697 pte_t **ptepp, spinlock_t **ptlp)
3698{
3699 int res;
3700
3701 /* (void) is needed to make gcc happy */
3702 (void) __cond_lock(*ptlp,
3703 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3704 return res;
3705}
3706
3b6748e2
JW
3707/**
3708 * follow_pfn - look up PFN at a user virtual address
3709 * @vma: memory mapping
3710 * @address: user virtual address
3711 * @pfn: location to store found PFN
3712 *
3713 * Only IO mappings and raw PFN mappings are allowed.
3714 *
3715 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3716 */
3717int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3718 unsigned long *pfn)
3719{
3720 int ret = -EINVAL;
3721 spinlock_t *ptl;
3722 pte_t *ptep;
3723
3724 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3725 return ret;
3726
3727 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3728 if (ret)
3729 return ret;
3730 *pfn = pte_pfn(*ptep);
3731 pte_unmap_unlock(ptep, ptl);
3732 return 0;
3733}
3734EXPORT_SYMBOL(follow_pfn);
3735
28b2ee20 3736#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 3737int follow_phys(struct vm_area_struct *vma,
3738 unsigned long address, unsigned int flags,
3739 unsigned long *prot, resource_size_t *phys)
28b2ee20 3740{
03668a4d 3741 int ret = -EINVAL;
28b2ee20
RR
3742 pte_t *ptep, pte;
3743 spinlock_t *ptl;
28b2ee20 3744
d87fe660 3745 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3746 goto out;
28b2ee20 3747
03668a4d 3748 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 3749 goto out;
28b2ee20 3750 pte = *ptep;
03668a4d 3751
28b2ee20
RR
3752 if ((flags & FOLL_WRITE) && !pte_write(pte))
3753 goto unlock;
28b2ee20
RR
3754
3755 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 3756 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 3757
03668a4d 3758 ret = 0;
28b2ee20
RR
3759unlock:
3760 pte_unmap_unlock(ptep, ptl);
3761out:
d87fe660 3762 return ret;
28b2ee20
RR
3763}
3764
3765int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3766 void *buf, int len, int write)
3767{
3768 resource_size_t phys_addr;
3769 unsigned long prot = 0;
2bc7273b 3770 void __iomem *maddr;
28b2ee20
RR
3771 int offset = addr & (PAGE_SIZE-1);
3772
d87fe660 3773 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
3774 return -EINVAL;
3775
3776 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3777 if (write)
3778 memcpy_toio(maddr + offset, buf, len);
3779 else
3780 memcpy_fromio(buf, maddr + offset, len);
3781 iounmap(maddr);
3782
3783 return len;
3784}
3785#endif
3786
0ec76a11 3787/*
206cb636
SW
3788 * Access another process' address space as given in mm. If non-NULL, use the
3789 * given task for page fault accounting.
0ec76a11 3790 */
206cb636
SW
3791static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3792 unsigned long addr, void *buf, int len, int write)
0ec76a11 3793{
0ec76a11 3794 struct vm_area_struct *vma;
0ec76a11
DH
3795 void *old_buf = buf;
3796
0ec76a11 3797 down_read(&mm->mmap_sem);
183ff22b 3798 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
3799 while (len) {
3800 int bytes, ret, offset;
3801 void *maddr;
28b2ee20 3802 struct page *page = NULL;
0ec76a11
DH
3803
3804 ret = get_user_pages(tsk, mm, addr, 1,
3805 write, 1, &page, &vma);
28b2ee20
RR
3806 if (ret <= 0) {
3807 /*
3808 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3809 * we can access using slightly different code.
3810 */
3811#ifdef CONFIG_HAVE_IOREMAP_PROT
3812 vma = find_vma(mm, addr);
fe936dfc 3813 if (!vma || vma->vm_start > addr)
28b2ee20
RR
3814 break;
3815 if (vma->vm_ops && vma->vm_ops->access)
3816 ret = vma->vm_ops->access(vma, addr, buf,
3817 len, write);
3818 if (ret <= 0)
3819#endif
3820 break;
3821 bytes = ret;
0ec76a11 3822 } else {
28b2ee20
RR
3823 bytes = len;
3824 offset = addr & (PAGE_SIZE-1);
3825 if (bytes > PAGE_SIZE-offset)
3826 bytes = PAGE_SIZE-offset;
3827
3828 maddr = kmap(page);
3829 if (write) {
3830 copy_to_user_page(vma, page, addr,
3831 maddr + offset, buf, bytes);
3832 set_page_dirty_lock(page);
3833 } else {
3834 copy_from_user_page(vma, page, addr,
3835 buf, maddr + offset, bytes);
3836 }
3837 kunmap(page);
3838 page_cache_release(page);
0ec76a11 3839 }
0ec76a11
DH
3840 len -= bytes;
3841 buf += bytes;
3842 addr += bytes;
3843 }
3844 up_read(&mm->mmap_sem);
0ec76a11
DH
3845
3846 return buf - old_buf;
3847}
03252919 3848
5ddd36b9 3849/**
ae91dbfc 3850 * access_remote_vm - access another process' address space
5ddd36b9
SW
3851 * @mm: the mm_struct of the target address space
3852 * @addr: start address to access
3853 * @buf: source or destination buffer
3854 * @len: number of bytes to transfer
3855 * @write: whether the access is a write
3856 *
3857 * The caller must hold a reference on @mm.
3858 */
3859int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3860 void *buf, int len, int write)
3861{
3862 return __access_remote_vm(NULL, mm, addr, buf, len, write);
3863}
3864
206cb636
SW
3865/*
3866 * Access another process' address space.
3867 * Source/target buffer must be kernel space,
3868 * Do not walk the page table directly, use get_user_pages
3869 */
3870int access_process_vm(struct task_struct *tsk, unsigned long addr,
3871 void *buf, int len, int write)
3872{
3873 struct mm_struct *mm;
3874 int ret;
3875
3876 mm = get_task_mm(tsk);
3877 if (!mm)
3878 return 0;
3879
3880 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3881 mmput(mm);
3882
3883 return ret;
3884}
3885
03252919
AK
3886/*
3887 * Print the name of a VMA.
3888 */
3889void print_vma_addr(char *prefix, unsigned long ip)
3890{
3891 struct mm_struct *mm = current->mm;
3892 struct vm_area_struct *vma;
3893
e8bff74a
IM
3894 /*
3895 * Do not print if we are in atomic
3896 * contexts (in exception stacks, etc.):
3897 */
3898 if (preempt_count())
3899 return;
3900
03252919
AK
3901 down_read(&mm->mmap_sem);
3902 vma = find_vma(mm, ip);
3903 if (vma && vma->vm_file) {
3904 struct file *f = vma->vm_file;
3905 char *buf = (char *)__get_free_page(GFP_KERNEL);
3906 if (buf) {
3907 char *p, *s;
3908
cf28b486 3909 p = d_path(&f->f_path, buf, PAGE_SIZE);
03252919
AK
3910 if (IS_ERR(p))
3911 p = "?";
3912 s = strrchr(p, '/');
3913 if (s)
3914 p = s+1;
3915 printk("%s%s[%lx+%lx]", prefix, p,
3916 vma->vm_start,
3917 vma->vm_end - vma->vm_start);
3918 free_page((unsigned long)buf);
3919 }
3920 }
3921 up_read(&current->mm->mmap_sem);
3922}
3ee1afa3
NP
3923
3924#ifdef CONFIG_PROVE_LOCKING
3925void might_fault(void)
3926{
95156f00
PZ
3927 /*
3928 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3929 * holding the mmap_sem, this is safe because kernel memory doesn't
3930 * get paged out, therefore we'll never actually fault, and the
3931 * below annotations will generate false positives.
3932 */
3933 if (segment_eq(get_fs(), KERNEL_DS))
3934 return;
3935
3ee1afa3
NP
3936 might_sleep();
3937 /*
3938 * it would be nicer only to annotate paths which are not under
3939 * pagefault_disable, however that requires a larger audit and
3940 * providing helpers like get_user_atomic.
3941 */
3942 if (!in_atomic() && current->mm)
3943 might_lock_read(&current->mm->mmap_sem);
3944}
3945EXPORT_SYMBOL(might_fault);
3946#endif
47ad8475
AA
3947
3948#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3949static void clear_gigantic_page(struct page *page,
3950 unsigned long addr,
3951 unsigned int pages_per_huge_page)
3952{
3953 int i;
3954 struct page *p = page;
3955
3956 might_sleep();
3957 for (i = 0; i < pages_per_huge_page;
3958 i++, p = mem_map_next(p, page, i)) {
3959 cond_resched();
3960 clear_user_highpage(p, addr + i * PAGE_SIZE);
3961 }
3962}
3963void clear_huge_page(struct page *page,
3964 unsigned long addr, unsigned int pages_per_huge_page)
3965{
3966 int i;
3967
3968 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3969 clear_gigantic_page(page, addr, pages_per_huge_page);
3970 return;
3971 }
3972
3973 might_sleep();
3974 for (i = 0; i < pages_per_huge_page; i++) {
3975 cond_resched();
3976 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3977 }
3978}
3979
3980static void copy_user_gigantic_page(struct page *dst, struct page *src,
3981 unsigned long addr,
3982 struct vm_area_struct *vma,
3983 unsigned int pages_per_huge_page)
3984{
3985 int i;
3986 struct page *dst_base = dst;
3987 struct page *src_base = src;
3988
3989 for (i = 0; i < pages_per_huge_page; ) {
3990 cond_resched();
3991 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3992
3993 i++;
3994 dst = mem_map_next(dst, dst_base, i);
3995 src = mem_map_next(src, src_base, i);
3996 }
3997}
3998
3999void copy_user_huge_page(struct page *dst, struct page *src,
4000 unsigned long addr, struct vm_area_struct *vma,
4001 unsigned int pages_per_huge_page)
4002{
4003 int i;
4004
4005 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4006 copy_user_gigantic_page(dst, src, addr, vma,
4007 pages_per_huge_page);
4008 return;
4009 }
4010
4011 might_sleep();
4012 for (i = 0; i < pages_per_huge_page; i++) {
4013 cond_resched();
4014 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4015 }
4016}
4017#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */