kill generic_file_direct_IO()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
48#include <linux/rmap.h>
49#include <linux/module.h>
0ff92245 50#include <linux/delayacct.h>
1da177e4 51#include <linux/init.h>
edc79b2a 52#include <linux/writeback.h>
8a9f3ccd 53#include <linux/memcontrol.h>
1da177e4
LT
54
55#include <asm/pgalloc.h>
56#include <asm/uaccess.h>
57#include <asm/tlb.h>
58#include <asm/tlbflush.h>
59#include <asm/pgtable.h>
60
61#include <linux/swapops.h>
62#include <linux/elf.h>
63
d41dee36 64#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
65/* use the per-pgdat data instead for discontigmem - mbligh */
66unsigned long max_mapnr;
67struct page *mem_map;
68
69EXPORT_SYMBOL(max_mapnr);
70EXPORT_SYMBOL(mem_map);
71#endif
72
73unsigned long num_physpages;
74/*
75 * A number of key systems in x86 including ioremap() rely on the assumption
76 * that high_memory defines the upper bound on direct map memory, then end
77 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
78 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
79 * and ZONE_HIGHMEM.
80 */
81void * high_memory;
1da177e4
LT
82
83EXPORT_SYMBOL(num_physpages);
84EXPORT_SYMBOL(high_memory);
1da177e4 85
32a93233
IM
86/*
87 * Randomize the address space (stacks, mmaps, brk, etc.).
88 *
89 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
90 * as ancient (libc5 based) binaries can segfault. )
91 */
92int randomize_va_space __read_mostly =
93#ifdef CONFIG_COMPAT_BRK
94 1;
95#else
96 2;
97#endif
a62eaf15
AK
98
99static int __init disable_randmaps(char *s)
100{
101 randomize_va_space = 0;
9b41046c 102 return 1;
a62eaf15
AK
103}
104__setup("norandmaps", disable_randmaps);
105
106
1da177e4
LT
107/*
108 * If a p?d_bad entry is found while walking page tables, report
109 * the error, before resetting entry to p?d_none. Usually (but
110 * very seldom) called out from the p?d_none_or_clear_bad macros.
111 */
112
113void pgd_clear_bad(pgd_t *pgd)
114{
115 pgd_ERROR(*pgd);
116 pgd_clear(pgd);
117}
118
119void pud_clear_bad(pud_t *pud)
120{
121 pud_ERROR(*pud);
122 pud_clear(pud);
123}
124
125void pmd_clear_bad(pmd_t *pmd)
126{
127 pmd_ERROR(*pmd);
128 pmd_clear(pmd);
129}
130
131/*
132 * Note: this doesn't free the actual pages themselves. That
133 * has been handled earlier when unmapping all the memory regions.
134 */
e0da382c 135static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
1da177e4 136{
2f569afd 137 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 138 pmd_clear(pmd);
2f569afd 139 pte_free_tlb(tlb, token);
e0da382c 140 tlb->mm->nr_ptes--;
1da177e4
LT
141}
142
e0da382c
HD
143static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
144 unsigned long addr, unsigned long end,
145 unsigned long floor, unsigned long ceiling)
1da177e4
LT
146{
147 pmd_t *pmd;
148 unsigned long next;
e0da382c 149 unsigned long start;
1da177e4 150
e0da382c 151 start = addr;
1da177e4 152 pmd = pmd_offset(pud, addr);
1da177e4
LT
153 do {
154 next = pmd_addr_end(addr, end);
155 if (pmd_none_or_clear_bad(pmd))
156 continue;
e0da382c 157 free_pte_range(tlb, pmd);
1da177e4
LT
158 } while (pmd++, addr = next, addr != end);
159
e0da382c
HD
160 start &= PUD_MASK;
161 if (start < floor)
162 return;
163 if (ceiling) {
164 ceiling &= PUD_MASK;
165 if (!ceiling)
166 return;
1da177e4 167 }
e0da382c
HD
168 if (end - 1 > ceiling - 1)
169 return;
170
171 pmd = pmd_offset(pud, start);
172 pud_clear(pud);
173 pmd_free_tlb(tlb, pmd);
1da177e4
LT
174}
175
e0da382c
HD
176static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
177 unsigned long addr, unsigned long end,
178 unsigned long floor, unsigned long ceiling)
1da177e4
LT
179{
180 pud_t *pud;
181 unsigned long next;
e0da382c 182 unsigned long start;
1da177e4 183
e0da382c 184 start = addr;
1da177e4 185 pud = pud_offset(pgd, addr);
1da177e4
LT
186 do {
187 next = pud_addr_end(addr, end);
188 if (pud_none_or_clear_bad(pud))
189 continue;
e0da382c 190 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
191 } while (pud++, addr = next, addr != end);
192
e0da382c
HD
193 start &= PGDIR_MASK;
194 if (start < floor)
195 return;
196 if (ceiling) {
197 ceiling &= PGDIR_MASK;
198 if (!ceiling)
199 return;
1da177e4 200 }
e0da382c
HD
201 if (end - 1 > ceiling - 1)
202 return;
203
204 pud = pud_offset(pgd, start);
205 pgd_clear(pgd);
206 pud_free_tlb(tlb, pud);
1da177e4
LT
207}
208
209/*
e0da382c
HD
210 * This function frees user-level page tables of a process.
211 *
1da177e4
LT
212 * Must be called with pagetable lock held.
213 */
3bf5ee95 214void free_pgd_range(struct mmu_gather **tlb,
e0da382c
HD
215 unsigned long addr, unsigned long end,
216 unsigned long floor, unsigned long ceiling)
1da177e4
LT
217{
218 pgd_t *pgd;
219 unsigned long next;
e0da382c
HD
220 unsigned long start;
221
222 /*
223 * The next few lines have given us lots of grief...
224 *
225 * Why are we testing PMD* at this top level? Because often
226 * there will be no work to do at all, and we'd prefer not to
227 * go all the way down to the bottom just to discover that.
228 *
229 * Why all these "- 1"s? Because 0 represents both the bottom
230 * of the address space and the top of it (using -1 for the
231 * top wouldn't help much: the masks would do the wrong thing).
232 * The rule is that addr 0 and floor 0 refer to the bottom of
233 * the address space, but end 0 and ceiling 0 refer to the top
234 * Comparisons need to use "end - 1" and "ceiling - 1" (though
235 * that end 0 case should be mythical).
236 *
237 * Wherever addr is brought up or ceiling brought down, we must
238 * be careful to reject "the opposite 0" before it confuses the
239 * subsequent tests. But what about where end is brought down
240 * by PMD_SIZE below? no, end can't go down to 0 there.
241 *
242 * Whereas we round start (addr) and ceiling down, by different
243 * masks at different levels, in order to test whether a table
244 * now has no other vmas using it, so can be freed, we don't
245 * bother to round floor or end up - the tests don't need that.
246 */
1da177e4 247
e0da382c
HD
248 addr &= PMD_MASK;
249 if (addr < floor) {
250 addr += PMD_SIZE;
251 if (!addr)
252 return;
253 }
254 if (ceiling) {
255 ceiling &= PMD_MASK;
256 if (!ceiling)
257 return;
258 }
259 if (end - 1 > ceiling - 1)
260 end -= PMD_SIZE;
261 if (addr > end - 1)
262 return;
263
264 start = addr;
3bf5ee95 265 pgd = pgd_offset((*tlb)->mm, addr);
1da177e4
LT
266 do {
267 next = pgd_addr_end(addr, end);
268 if (pgd_none_or_clear_bad(pgd))
269 continue;
3bf5ee95 270 free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
1da177e4 271 } while (pgd++, addr = next, addr != end);
e0da382c
HD
272}
273
274void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
3bf5ee95 275 unsigned long floor, unsigned long ceiling)
e0da382c
HD
276{
277 while (vma) {
278 struct vm_area_struct *next = vma->vm_next;
279 unsigned long addr = vma->vm_start;
280
8f4f8c16
HD
281 /*
282 * Hide vma from rmap and vmtruncate before freeing pgtables
283 */
284 anon_vma_unlink(vma);
285 unlink_file_vma(vma);
286
9da61aef 287 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 288 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
e0da382c 289 floor, next? next->vm_start: ceiling);
3bf5ee95
HD
290 } else {
291 /*
292 * Optimization: gather nearby vmas into one call down
293 */
294 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 295 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
296 vma = next;
297 next = vma->vm_next;
8f4f8c16
HD
298 anon_vma_unlink(vma);
299 unlink_file_vma(vma);
3bf5ee95
HD
300 }
301 free_pgd_range(tlb, addr, vma->vm_end,
302 floor, next? next->vm_start: ceiling);
303 }
e0da382c
HD
304 vma = next;
305 }
1da177e4
LT
306}
307
1bb3630e 308int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
1da177e4 309{
2f569afd 310 pgtable_t new = pte_alloc_one(mm, address);
1bb3630e
HD
311 if (!new)
312 return -ENOMEM;
313
362a61ad
NP
314 /*
315 * Ensure all pte setup (eg. pte page lock and page clearing) are
316 * visible before the pte is made visible to other CPUs by being
317 * put into page tables.
318 *
319 * The other side of the story is the pointer chasing in the page
320 * table walking code (when walking the page table without locking;
321 * ie. most of the time). Fortunately, these data accesses consist
322 * of a chain of data-dependent loads, meaning most CPUs (alpha
323 * being the notable exception) will already guarantee loads are
324 * seen in-order. See the alpha page table accessors for the
325 * smp_read_barrier_depends() barriers in page table walking code.
326 */
327 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
328
c74df32c 329 spin_lock(&mm->page_table_lock);
2f569afd 330 if (!pmd_present(*pmd)) { /* Has another populated it ? */
1da177e4 331 mm->nr_ptes++;
1da177e4 332 pmd_populate(mm, pmd, new);
2f569afd 333 new = NULL;
1da177e4 334 }
c74df32c 335 spin_unlock(&mm->page_table_lock);
2f569afd
MS
336 if (new)
337 pte_free(mm, new);
1bb3630e 338 return 0;
1da177e4
LT
339}
340
1bb3630e 341int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 342{
1bb3630e
HD
343 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
344 if (!new)
345 return -ENOMEM;
346
362a61ad
NP
347 smp_wmb(); /* See comment in __pte_alloc */
348
1bb3630e 349 spin_lock(&init_mm.page_table_lock);
2f569afd 350 if (!pmd_present(*pmd)) { /* Has another populated it ? */
1bb3630e 351 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd
MS
352 new = NULL;
353 }
1bb3630e 354 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
355 if (new)
356 pte_free_kernel(&init_mm, new);
1bb3630e 357 return 0;
1da177e4
LT
358}
359
ae859762
HD
360static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
361{
362 if (file_rss)
363 add_mm_counter(mm, file_rss, file_rss);
364 if (anon_rss)
365 add_mm_counter(mm, anon_rss, anon_rss);
366}
367
b5810039 368/*
6aab341e
LT
369 * This function is called to print an error when a bad pte
370 * is found. For example, we might have a PFN-mapped pte in
371 * a region that doesn't allow it.
b5810039
NP
372 *
373 * The calling function must still handle the error.
374 */
375void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
376{
377 printk(KERN_ERR "Bad pte = %08llx, process = %s, "
378 "vm_flags = %lx, vaddr = %lx\n",
379 (long long)pte_val(pte),
380 (vma->vm_mm == current->mm ? current->comm : "???"),
381 vma->vm_flags, vaddr);
382 dump_stack();
383}
384
67121172
LT
385static inline int is_cow_mapping(unsigned int flags)
386{
387 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
388}
389
ee498ed7 390/*
7e675137 391 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 392 *
7e675137
NP
393 * "Special" mappings do not wish to be associated with a "struct page" (either
394 * it doesn't exist, or it exists but they don't want to touch it). In this
395 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 396 *
7e675137
NP
397 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
398 * pte bit, in which case this function is trivial. Secondly, an architecture
399 * may not have a spare pte bit, which requires a more complicated scheme,
400 * described below.
401 *
402 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
403 * special mapping (even if there are underlying and valid "struct pages").
404 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 405 *
b379d790
JH
406 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
407 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
408 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
409 * mapping will always honor the rule
6aab341e
LT
410 *
411 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
412 *
7e675137
NP
413 * And for normal mappings this is false.
414 *
415 * This restricts such mappings to be a linear translation from virtual address
416 * to pfn. To get around this restriction, we allow arbitrary mappings so long
417 * as the vma is not a COW mapping; in that case, we know that all ptes are
418 * special (because none can have been COWed).
b379d790 419 *
b379d790 420 *
7e675137 421 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
422 *
423 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
424 * page" backing, however the difference is that _all_ pages with a struct
425 * page (that is, those where pfn_valid is true) are refcounted and considered
426 * normal pages by the VM. The disadvantage is that pages are refcounted
427 * (which can be slower and simply not an option for some PFNMAP users). The
428 * advantage is that we don't have to follow the strict linearity rule of
429 * PFNMAP mappings in order to support COWable mappings.
430 *
ee498ed7 431 */
7e675137
NP
432#ifdef __HAVE_ARCH_PTE_SPECIAL
433# define HAVE_PTE_SPECIAL 1
434#else
435# define HAVE_PTE_SPECIAL 0
436#endif
437struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
438 pte_t pte)
ee498ed7 439{
7e675137
NP
440 unsigned long pfn;
441
442 if (HAVE_PTE_SPECIAL) {
443 if (likely(!pte_special(pte))) {
444 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
445 return pte_page(pte);
446 }
447 VM_BUG_ON(!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
448 return NULL;
449 }
450
451 /* !HAVE_PTE_SPECIAL case follows: */
452
453 pfn = pte_pfn(pte);
6aab341e 454
b379d790
JH
455 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
456 if (vma->vm_flags & VM_MIXEDMAP) {
457 if (!pfn_valid(pfn))
458 return NULL;
459 goto out;
460 } else {
7e675137
NP
461 unsigned long off;
462 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
463 if (pfn == vma->vm_pgoff + off)
464 return NULL;
465 if (!is_cow_mapping(vma->vm_flags))
466 return NULL;
467 }
6aab341e
LT
468 }
469
7e675137 470 VM_BUG_ON(!pfn_valid(pfn));
6aab341e
LT
471
472 /*
7e675137 473 * NOTE! We still have PageReserved() pages in the page tables.
6aab341e 474 *
7e675137 475 * eg. VDSO mappings can cause them to exist.
6aab341e 476 */
b379d790 477out:
6aab341e 478 return pfn_to_page(pfn);
ee498ed7
HD
479}
480
1da177e4
LT
481/*
482 * copy one vm_area from one task to the other. Assumes the page tables
483 * already present in the new task to be cleared in the whole range
484 * covered by this vma.
1da177e4
LT
485 */
486
8c103762 487static inline void
1da177e4 488copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 489 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 490 unsigned long addr, int *rss)
1da177e4 491{
b5810039 492 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
493 pte_t pte = *src_pte;
494 struct page *page;
1da177e4
LT
495
496 /* pte contains position in swap or file, so copy. */
497 if (unlikely(!pte_present(pte))) {
498 if (!pte_file(pte)) {
0697212a
CL
499 swp_entry_t entry = pte_to_swp_entry(pte);
500
501 swap_duplicate(entry);
1da177e4
LT
502 /* make sure dst_mm is on swapoff's mmlist. */
503 if (unlikely(list_empty(&dst_mm->mmlist))) {
504 spin_lock(&mmlist_lock);
f412ac08
HD
505 if (list_empty(&dst_mm->mmlist))
506 list_add(&dst_mm->mmlist,
507 &src_mm->mmlist);
1da177e4
LT
508 spin_unlock(&mmlist_lock);
509 }
0697212a
CL
510 if (is_write_migration_entry(entry) &&
511 is_cow_mapping(vm_flags)) {
512 /*
513 * COW mappings require pages in both parent
514 * and child to be set to read.
515 */
516 make_migration_entry_read(&entry);
517 pte = swp_entry_to_pte(entry);
518 set_pte_at(src_mm, addr, src_pte, pte);
519 }
1da177e4 520 }
ae859762 521 goto out_set_pte;
1da177e4
LT
522 }
523
1da177e4
LT
524 /*
525 * If it's a COW mapping, write protect it both
526 * in the parent and the child
527 */
67121172 528 if (is_cow_mapping(vm_flags)) {
1da177e4 529 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 530 pte = pte_wrprotect(pte);
1da177e4
LT
531 }
532
533 /*
534 * If it's a shared mapping, mark it clean in
535 * the child
536 */
537 if (vm_flags & VM_SHARED)
538 pte = pte_mkclean(pte);
539 pte = pte_mkold(pte);
6aab341e
LT
540
541 page = vm_normal_page(vma, addr, pte);
542 if (page) {
543 get_page(page);
c97a9e10 544 page_dup_rmap(page, vma, addr);
6aab341e
LT
545 rss[!!PageAnon(page)]++;
546 }
ae859762
HD
547
548out_set_pte:
549 set_pte_at(dst_mm, addr, dst_pte, pte);
1da177e4
LT
550}
551
552static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
553 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
554 unsigned long addr, unsigned long end)
555{
556 pte_t *src_pte, *dst_pte;
c74df32c 557 spinlock_t *src_ptl, *dst_ptl;
e040f218 558 int progress = 0;
8c103762 559 int rss[2];
1da177e4
LT
560
561again:
ae859762 562 rss[1] = rss[0] = 0;
c74df32c 563 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
564 if (!dst_pte)
565 return -ENOMEM;
566 src_pte = pte_offset_map_nested(src_pmd, addr);
4c21e2f2 567 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 568 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
6606c3e0 569 arch_enter_lazy_mmu_mode();
1da177e4 570
1da177e4
LT
571 do {
572 /*
573 * We are holding two locks at this point - either of them
574 * could generate latencies in another task on another CPU.
575 */
e040f218
HD
576 if (progress >= 32) {
577 progress = 0;
578 if (need_resched() ||
95c354fe 579 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
580 break;
581 }
1da177e4
LT
582 if (pte_none(*src_pte)) {
583 progress++;
584 continue;
585 }
8c103762 586 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
1da177e4
LT
587 progress += 8;
588 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 589
6606c3e0 590 arch_leave_lazy_mmu_mode();
c74df32c 591 spin_unlock(src_ptl);
1da177e4 592 pte_unmap_nested(src_pte - 1);
ae859762 593 add_mm_rss(dst_mm, rss[0], rss[1]);
c74df32c
HD
594 pte_unmap_unlock(dst_pte - 1, dst_ptl);
595 cond_resched();
1da177e4
LT
596 if (addr != end)
597 goto again;
598 return 0;
599}
600
601static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
602 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
603 unsigned long addr, unsigned long end)
604{
605 pmd_t *src_pmd, *dst_pmd;
606 unsigned long next;
607
608 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
609 if (!dst_pmd)
610 return -ENOMEM;
611 src_pmd = pmd_offset(src_pud, addr);
612 do {
613 next = pmd_addr_end(addr, end);
614 if (pmd_none_or_clear_bad(src_pmd))
615 continue;
616 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
617 vma, addr, next))
618 return -ENOMEM;
619 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
620 return 0;
621}
622
623static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
624 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
625 unsigned long addr, unsigned long end)
626{
627 pud_t *src_pud, *dst_pud;
628 unsigned long next;
629
630 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
631 if (!dst_pud)
632 return -ENOMEM;
633 src_pud = pud_offset(src_pgd, addr);
634 do {
635 next = pud_addr_end(addr, end);
636 if (pud_none_or_clear_bad(src_pud))
637 continue;
638 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
639 vma, addr, next))
640 return -ENOMEM;
641 } while (dst_pud++, src_pud++, addr = next, addr != end);
642 return 0;
643}
644
645int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
646 struct vm_area_struct *vma)
647{
648 pgd_t *src_pgd, *dst_pgd;
649 unsigned long next;
650 unsigned long addr = vma->vm_start;
651 unsigned long end = vma->vm_end;
652
d992895b
NP
653 /*
654 * Don't copy ptes where a page fault will fill them correctly.
655 * Fork becomes much lighter when there are big shared or private
656 * readonly mappings. The tradeoff is that copy_page_range is more
657 * efficient than faulting.
658 */
4d7672b4 659 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
d992895b
NP
660 if (!vma->anon_vma)
661 return 0;
662 }
663
1da177e4
LT
664 if (is_vm_hugetlb_page(vma))
665 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
666
667 dst_pgd = pgd_offset(dst_mm, addr);
668 src_pgd = pgd_offset(src_mm, addr);
669 do {
670 next = pgd_addr_end(addr, end);
671 if (pgd_none_or_clear_bad(src_pgd))
672 continue;
673 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
674 vma, addr, next))
675 return -ENOMEM;
676 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
677 return 0;
678}
679
51c6f666 680static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 681 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 682 unsigned long addr, unsigned long end,
51c6f666 683 long *zap_work, struct zap_details *details)
1da177e4 684{
b5810039 685 struct mm_struct *mm = tlb->mm;
1da177e4 686 pte_t *pte;
508034a3 687 spinlock_t *ptl;
ae859762
HD
688 int file_rss = 0;
689 int anon_rss = 0;
1da177e4 690
508034a3 691 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
6606c3e0 692 arch_enter_lazy_mmu_mode();
1da177e4
LT
693 do {
694 pte_t ptent = *pte;
51c6f666
RH
695 if (pte_none(ptent)) {
696 (*zap_work)--;
1da177e4 697 continue;
51c6f666 698 }
6f5e6b9e
HD
699
700 (*zap_work) -= PAGE_SIZE;
701
1da177e4 702 if (pte_present(ptent)) {
ee498ed7 703 struct page *page;
51c6f666 704
6aab341e 705 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
706 if (unlikely(details) && page) {
707 /*
708 * unmap_shared_mapping_pages() wants to
709 * invalidate cache without truncating:
710 * unmap shared but keep private pages.
711 */
712 if (details->check_mapping &&
713 details->check_mapping != page->mapping)
714 continue;
715 /*
716 * Each page->index must be checked when
717 * invalidating or truncating nonlinear.
718 */
719 if (details->nonlinear_vma &&
720 (page->index < details->first_index ||
721 page->index > details->last_index))
722 continue;
723 }
b5810039 724 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 725 tlb->fullmm);
1da177e4
LT
726 tlb_remove_tlb_entry(tlb, pte, addr);
727 if (unlikely(!page))
728 continue;
729 if (unlikely(details) && details->nonlinear_vma
730 && linear_page_index(details->nonlinear_vma,
731 addr) != page->index)
b5810039 732 set_pte_at(mm, addr, pte,
1da177e4 733 pgoff_to_pte(page->index));
1da177e4 734 if (PageAnon(page))
86d912f4 735 anon_rss--;
6237bcd9
HD
736 else {
737 if (pte_dirty(ptent))
738 set_page_dirty(page);
739 if (pte_young(ptent))
daa88c8d 740 SetPageReferenced(page);
86d912f4 741 file_rss--;
6237bcd9 742 }
7de6b805 743 page_remove_rmap(page, vma);
1da177e4
LT
744 tlb_remove_page(tlb, page);
745 continue;
746 }
747 /*
748 * If details->check_mapping, we leave swap entries;
749 * if details->nonlinear_vma, we leave file entries.
750 */
751 if (unlikely(details))
752 continue;
753 if (!pte_file(ptent))
754 free_swap_and_cache(pte_to_swp_entry(ptent));
9888a1ca 755 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
51c6f666 756 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
ae859762 757
86d912f4 758 add_mm_rss(mm, file_rss, anon_rss);
6606c3e0 759 arch_leave_lazy_mmu_mode();
508034a3 760 pte_unmap_unlock(pte - 1, ptl);
51c6f666
RH
761
762 return addr;
1da177e4
LT
763}
764
51c6f666 765static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 766 struct vm_area_struct *vma, pud_t *pud,
1da177e4 767 unsigned long addr, unsigned long end,
51c6f666 768 long *zap_work, struct zap_details *details)
1da177e4
LT
769{
770 pmd_t *pmd;
771 unsigned long next;
772
773 pmd = pmd_offset(pud, addr);
774 do {
775 next = pmd_addr_end(addr, end);
51c6f666
RH
776 if (pmd_none_or_clear_bad(pmd)) {
777 (*zap_work)--;
1da177e4 778 continue;
51c6f666
RH
779 }
780 next = zap_pte_range(tlb, vma, pmd, addr, next,
781 zap_work, details);
782 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
783
784 return addr;
1da177e4
LT
785}
786
51c6f666 787static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
b5810039 788 struct vm_area_struct *vma, pgd_t *pgd,
1da177e4 789 unsigned long addr, unsigned long end,
51c6f666 790 long *zap_work, struct zap_details *details)
1da177e4
LT
791{
792 pud_t *pud;
793 unsigned long next;
794
795 pud = pud_offset(pgd, addr);
796 do {
797 next = pud_addr_end(addr, end);
51c6f666
RH
798 if (pud_none_or_clear_bad(pud)) {
799 (*zap_work)--;
1da177e4 800 continue;
51c6f666
RH
801 }
802 next = zap_pmd_range(tlb, vma, pud, addr, next,
803 zap_work, details);
804 } while (pud++, addr = next, (addr != end && *zap_work > 0));
805
806 return addr;
1da177e4
LT
807}
808
51c6f666
RH
809static unsigned long unmap_page_range(struct mmu_gather *tlb,
810 struct vm_area_struct *vma,
1da177e4 811 unsigned long addr, unsigned long end,
51c6f666 812 long *zap_work, struct zap_details *details)
1da177e4
LT
813{
814 pgd_t *pgd;
815 unsigned long next;
816
817 if (details && !details->check_mapping && !details->nonlinear_vma)
818 details = NULL;
819
820 BUG_ON(addr >= end);
821 tlb_start_vma(tlb, vma);
822 pgd = pgd_offset(vma->vm_mm, addr);
823 do {
824 next = pgd_addr_end(addr, end);
51c6f666
RH
825 if (pgd_none_or_clear_bad(pgd)) {
826 (*zap_work)--;
1da177e4 827 continue;
51c6f666
RH
828 }
829 next = zap_pud_range(tlb, vma, pgd, addr, next,
830 zap_work, details);
831 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
1da177e4 832 tlb_end_vma(tlb, vma);
51c6f666
RH
833
834 return addr;
1da177e4
LT
835}
836
837#ifdef CONFIG_PREEMPT
838# define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
839#else
840/* No preempt: go for improved straight-line efficiency */
841# define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
842#endif
843
844/**
845 * unmap_vmas - unmap a range of memory covered by a list of vma's
846 * @tlbp: address of the caller's struct mmu_gather
1da177e4
LT
847 * @vma: the starting vma
848 * @start_addr: virtual address at which to start unmapping
849 * @end_addr: virtual address at which to end unmapping
850 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
851 * @details: details of nonlinear truncation or shared cache invalidation
852 *
ee39b37b 853 * Returns the end address of the unmapping (restart addr if interrupted).
1da177e4 854 *
508034a3 855 * Unmap all pages in the vma list.
1da177e4 856 *
508034a3
HD
857 * We aim to not hold locks for too long (for scheduling latency reasons).
858 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
1da177e4
LT
859 * return the ending mmu_gather to the caller.
860 *
861 * Only addresses between `start' and `end' will be unmapped.
862 *
863 * The VMA list must be sorted in ascending virtual address order.
864 *
865 * unmap_vmas() assumes that the caller will flush the whole unmapped address
866 * range after unmap_vmas() returns. So the only responsibility here is to
867 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
868 * drops the lock and schedules.
869 */
508034a3 870unsigned long unmap_vmas(struct mmu_gather **tlbp,
1da177e4
LT
871 struct vm_area_struct *vma, unsigned long start_addr,
872 unsigned long end_addr, unsigned long *nr_accounted,
873 struct zap_details *details)
874{
51c6f666 875 long zap_work = ZAP_BLOCK_SIZE;
1da177e4
LT
876 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
877 int tlb_start_valid = 0;
ee39b37b 878 unsigned long start = start_addr;
1da177e4 879 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
4d6ddfa9 880 int fullmm = (*tlbp)->fullmm;
1da177e4
LT
881
882 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1da177e4
LT
883 unsigned long end;
884
885 start = max(vma->vm_start, start_addr);
886 if (start >= vma->vm_end)
887 continue;
888 end = min(vma->vm_end, end_addr);
889 if (end <= vma->vm_start)
890 continue;
891
892 if (vma->vm_flags & VM_ACCOUNT)
893 *nr_accounted += (end - start) >> PAGE_SHIFT;
894
1da177e4 895 while (start != end) {
1da177e4
LT
896 if (!tlb_start_valid) {
897 tlb_start = start;
898 tlb_start_valid = 1;
899 }
900
51c6f666 901 if (unlikely(is_vm_hugetlb_page(vma))) {
1da177e4 902 unmap_hugepage_range(vma, start, end);
51c6f666
RH
903 zap_work -= (end - start) /
904 (HPAGE_SIZE / PAGE_SIZE);
905 start = end;
906 } else
907 start = unmap_page_range(*tlbp, vma,
908 start, end, &zap_work, details);
909
910 if (zap_work > 0) {
911 BUG_ON(start != end);
912 break;
1da177e4
LT
913 }
914
1da177e4
LT
915 tlb_finish_mmu(*tlbp, tlb_start, start);
916
917 if (need_resched() ||
95c354fe 918 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1da177e4 919 if (i_mmap_lock) {
508034a3 920 *tlbp = NULL;
1da177e4
LT
921 goto out;
922 }
1da177e4 923 cond_resched();
1da177e4
LT
924 }
925
508034a3 926 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1da177e4 927 tlb_start_valid = 0;
51c6f666 928 zap_work = ZAP_BLOCK_SIZE;
1da177e4
LT
929 }
930 }
931out:
ee39b37b 932 return start; /* which is now the end (or restart) address */
1da177e4
LT
933}
934
935/**
936 * zap_page_range - remove user pages in a given range
937 * @vma: vm_area_struct holding the applicable pages
938 * @address: starting address of pages to zap
939 * @size: number of bytes to zap
940 * @details: details of nonlinear truncation or shared cache invalidation
941 */
ee39b37b 942unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
943 unsigned long size, struct zap_details *details)
944{
945 struct mm_struct *mm = vma->vm_mm;
946 struct mmu_gather *tlb;
947 unsigned long end = address + size;
948 unsigned long nr_accounted = 0;
949
1da177e4 950 lru_add_drain();
1da177e4 951 tlb = tlb_gather_mmu(mm, 0);
365e9c87 952 update_hiwater_rss(mm);
508034a3
HD
953 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
954 if (tlb)
955 tlb_finish_mmu(tlb, address, end);
ee39b37b 956 return end;
1da177e4
LT
957}
958
959/*
960 * Do a quick page-table lookup for a single page.
1da177e4 961 */
6aab341e 962struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
deceb6cd 963 unsigned int flags)
1da177e4
LT
964{
965 pgd_t *pgd;
966 pud_t *pud;
967 pmd_t *pmd;
968 pte_t *ptep, pte;
deceb6cd 969 spinlock_t *ptl;
1da177e4 970 struct page *page;
6aab341e 971 struct mm_struct *mm = vma->vm_mm;
1da177e4 972
deceb6cd
HD
973 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
974 if (!IS_ERR(page)) {
975 BUG_ON(flags & FOLL_GET);
976 goto out;
977 }
1da177e4 978
deceb6cd 979 page = NULL;
1da177e4
LT
980 pgd = pgd_offset(mm, address);
981 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
deceb6cd 982 goto no_page_table;
1da177e4
LT
983
984 pud = pud_offset(pgd, address);
985 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
deceb6cd 986 goto no_page_table;
1da177e4
LT
987
988 pmd = pmd_offset(pud, address);
aeed5fce 989 if (pmd_none(*pmd))
deceb6cd
HD
990 goto no_page_table;
991
992 if (pmd_huge(*pmd)) {
993 BUG_ON(flags & FOLL_GET);
994 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1da177e4 995 goto out;
deceb6cd 996 }
1da177e4 997
aeed5fce
HD
998 if (unlikely(pmd_bad(*pmd)))
999 goto no_page_table;
1000
deceb6cd 1001 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
1002
1003 pte = *ptep;
deceb6cd 1004 if (!pte_present(pte))
89f5b7da 1005 goto no_page;
deceb6cd
HD
1006 if ((flags & FOLL_WRITE) && !pte_write(pte))
1007 goto unlock;
6aab341e
LT
1008 page = vm_normal_page(vma, address, pte);
1009 if (unlikely(!page))
89f5b7da 1010 goto bad_page;
1da177e4 1011
deceb6cd
HD
1012 if (flags & FOLL_GET)
1013 get_page(page);
1014 if (flags & FOLL_TOUCH) {
1015 if ((flags & FOLL_WRITE) &&
1016 !pte_dirty(pte) && !PageDirty(page))
1017 set_page_dirty(page);
1018 mark_page_accessed(page);
1019 }
1020unlock:
1021 pte_unmap_unlock(ptep, ptl);
1da177e4 1022out:
deceb6cd 1023 return page;
1da177e4 1024
89f5b7da
LT
1025bad_page:
1026 pte_unmap_unlock(ptep, ptl);
1027 return ERR_PTR(-EFAULT);
1028
1029no_page:
1030 pte_unmap_unlock(ptep, ptl);
1031 if (!pte_none(pte))
1032 return page;
1033 /* Fall through to ZERO_PAGE handling */
deceb6cd
HD
1034no_page_table:
1035 /*
1036 * When core dumping an enormous anonymous area that nobody
1037 * has touched so far, we don't want to allocate page tables.
1038 */
1039 if (flags & FOLL_ANON) {
557ed1fa 1040 page = ZERO_PAGE(0);
deceb6cd
HD
1041 if (flags & FOLL_GET)
1042 get_page(page);
1043 BUG_ON(flags & FOLL_WRITE);
1044 }
1045 return page;
1da177e4
LT
1046}
1047
672ca28e
LT
1048/* Can we do the FOLL_ANON optimization? */
1049static inline int use_zero_page(struct vm_area_struct *vma)
1050{
1051 /*
1052 * We don't want to optimize FOLL_ANON for make_pages_present()
1053 * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
1054 * we want to get the page from the page tables to make sure
1055 * that we serialize and update with any other user of that
1056 * mapping.
1057 */
1058 if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
1059 return 0;
1060 /*
1061 * And if we have a fault or a nopfn routine, it's not an
1062 * anonymous region.
1063 */
1064 return !vma->vm_ops ||
1065 (!vma->vm_ops->fault && !vma->vm_ops->nopfn);
1066}
1067
1da177e4
LT
1068int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1069 unsigned long start, int len, int write, int force,
1070 struct page **pages, struct vm_area_struct **vmas)
1071{
1072 int i;
deceb6cd 1073 unsigned int vm_flags;
1da177e4 1074
900cf086
JC
1075 if (len <= 0)
1076 return 0;
1da177e4
LT
1077 /*
1078 * Require read or write permissions.
1079 * If 'force' is set, we only require the "MAY" flags.
1080 */
deceb6cd
HD
1081 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1082 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1da177e4
LT
1083 i = 0;
1084
1085 do {
deceb6cd
HD
1086 struct vm_area_struct *vma;
1087 unsigned int foll_flags;
1da177e4
LT
1088
1089 vma = find_extend_vma(mm, start);
1090 if (!vma && in_gate_area(tsk, start)) {
1091 unsigned long pg = start & PAGE_MASK;
1092 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1093 pgd_t *pgd;
1094 pud_t *pud;
1095 pmd_t *pmd;
1096 pte_t *pte;
1097 if (write) /* user gate pages are read-only */
1098 return i ? : -EFAULT;
1099 if (pg > TASK_SIZE)
1100 pgd = pgd_offset_k(pg);
1101 else
1102 pgd = pgd_offset_gate(mm, pg);
1103 BUG_ON(pgd_none(*pgd));
1104 pud = pud_offset(pgd, pg);
1105 BUG_ON(pud_none(*pud));
1106 pmd = pmd_offset(pud, pg);
690dbe1c
HD
1107 if (pmd_none(*pmd))
1108 return i ? : -EFAULT;
1da177e4 1109 pte = pte_offset_map(pmd, pg);
690dbe1c
HD
1110 if (pte_none(*pte)) {
1111 pte_unmap(pte);
1112 return i ? : -EFAULT;
1113 }
1da177e4 1114 if (pages) {
fa2a455b 1115 struct page *page = vm_normal_page(gate_vma, start, *pte);
6aab341e
LT
1116 pages[i] = page;
1117 if (page)
1118 get_page(page);
1da177e4
LT
1119 }
1120 pte_unmap(pte);
1121 if (vmas)
1122 vmas[i] = gate_vma;
1123 i++;
1124 start += PAGE_SIZE;
1125 len--;
1126 continue;
1127 }
1128
1ff80389 1129 if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
deceb6cd 1130 || !(vm_flags & vma->vm_flags))
1da177e4
LT
1131 return i ? : -EFAULT;
1132
1133 if (is_vm_hugetlb_page(vma)) {
1134 i = follow_hugetlb_page(mm, vma, pages, vmas,
5b23dbe8 1135 &start, &len, i, write);
1da177e4
LT
1136 continue;
1137 }
deceb6cd
HD
1138
1139 foll_flags = FOLL_TOUCH;
1140 if (pages)
1141 foll_flags |= FOLL_GET;
672ca28e 1142 if (!write && use_zero_page(vma))
deceb6cd
HD
1143 foll_flags |= FOLL_ANON;
1144
1da177e4 1145 do {
08ef4729 1146 struct page *page;
1da177e4 1147
462e00cc
ES
1148 /*
1149 * If tsk is ooming, cut off its access to large memory
1150 * allocations. It has a pending SIGKILL, but it can't
1151 * be processed until returning to user space.
1152 */
1153 if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
7a36a752 1154 return i ? i : -ENOMEM;
462e00cc 1155
deceb6cd
HD
1156 if (write)
1157 foll_flags |= FOLL_WRITE;
a68d2ebc 1158
deceb6cd 1159 cond_resched();
6aab341e 1160 while (!(page = follow_page(vma, start, foll_flags))) {
deceb6cd 1161 int ret;
83c54070 1162 ret = handle_mm_fault(mm, vma, start,
deceb6cd 1163 foll_flags & FOLL_WRITE);
83c54070
NP
1164 if (ret & VM_FAULT_ERROR) {
1165 if (ret & VM_FAULT_OOM)
1166 return i ? i : -ENOMEM;
1167 else if (ret & VM_FAULT_SIGBUS)
1168 return i ? i : -EFAULT;
1169 BUG();
1170 }
1171 if (ret & VM_FAULT_MAJOR)
1172 tsk->maj_flt++;
1173 else
1174 tsk->min_flt++;
1175
a68d2ebc 1176 /*
83c54070
NP
1177 * The VM_FAULT_WRITE bit tells us that
1178 * do_wp_page has broken COW when necessary,
1179 * even if maybe_mkwrite decided not to set
1180 * pte_write. We can thus safely do subsequent
1181 * page lookups as if they were reads.
a68d2ebc
LT
1182 */
1183 if (ret & VM_FAULT_WRITE)
deceb6cd 1184 foll_flags &= ~FOLL_WRITE;
83c54070 1185
7f7bbbe5 1186 cond_resched();
1da177e4 1187 }
89f5b7da
LT
1188 if (IS_ERR(page))
1189 return i ? i : PTR_ERR(page);
1da177e4 1190 if (pages) {
08ef4729 1191 pages[i] = page;
03beb076 1192
a6f36be3 1193 flush_anon_page(vma, page, start);
08ef4729 1194 flush_dcache_page(page);
1da177e4
LT
1195 }
1196 if (vmas)
1197 vmas[i] = vma;
1198 i++;
1199 start += PAGE_SIZE;
1200 len--;
08ef4729 1201 } while (len && start < vma->vm_end);
08ef4729 1202 } while (len);
1da177e4
LT
1203 return i;
1204}
1da177e4
LT
1205EXPORT_SYMBOL(get_user_pages);
1206
920c7a5d
HH
1207pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1208 spinlock_t **ptl)
c9cfcddf
LT
1209{
1210 pgd_t * pgd = pgd_offset(mm, addr);
1211 pud_t * pud = pud_alloc(mm, pgd, addr);
1212 if (pud) {
49c91fb0 1213 pmd_t * pmd = pmd_alloc(mm, pud, addr);
c9cfcddf
LT
1214 if (pmd)
1215 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1216 }
1217 return NULL;
1218}
1219
238f58d8
LT
1220/*
1221 * This is the old fallback for page remapping.
1222 *
1223 * For historical reasons, it only allows reserved pages. Only
1224 * old drivers should use this, and they needed to mark their
1225 * pages reserved for the old functions anyway.
1226 */
423bad60
NP
1227static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1228 struct page *page, pgprot_t prot)
238f58d8 1229{
423bad60 1230 struct mm_struct *mm = vma->vm_mm;
238f58d8 1231 int retval;
c9cfcddf 1232 pte_t *pte;
8a9f3ccd
BS
1233 spinlock_t *ptl;
1234
e1a1cd59 1235 retval = mem_cgroup_charge(page, mm, GFP_KERNEL);
8a9f3ccd
BS
1236 if (retval)
1237 goto out;
238f58d8
LT
1238
1239 retval = -EINVAL;
a145dd41 1240 if (PageAnon(page))
8a9f3ccd 1241 goto out_uncharge;
238f58d8
LT
1242 retval = -ENOMEM;
1243 flush_dcache_page(page);
c9cfcddf 1244 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1245 if (!pte)
8a9f3ccd 1246 goto out_uncharge;
238f58d8
LT
1247 retval = -EBUSY;
1248 if (!pte_none(*pte))
1249 goto out_unlock;
1250
1251 /* Ok, finally just insert the thing.. */
1252 get_page(page);
1253 inc_mm_counter(mm, file_rss);
1254 page_add_file_rmap(page);
1255 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1256
1257 retval = 0;
8a9f3ccd
BS
1258 pte_unmap_unlock(pte, ptl);
1259 return retval;
238f58d8
LT
1260out_unlock:
1261 pte_unmap_unlock(pte, ptl);
8a9f3ccd
BS
1262out_uncharge:
1263 mem_cgroup_uncharge_page(page);
238f58d8
LT
1264out:
1265 return retval;
1266}
1267
bfa5bf6d
REB
1268/**
1269 * vm_insert_page - insert single page into user vma
1270 * @vma: user vma to map to
1271 * @addr: target user address of this page
1272 * @page: source kernel page
1273 *
a145dd41
LT
1274 * This allows drivers to insert individual pages they've allocated
1275 * into a user vma.
1276 *
1277 * The page has to be a nice clean _individual_ kernel allocation.
1278 * If you allocate a compound page, you need to have marked it as
1279 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1280 * (see split_page()).
a145dd41
LT
1281 *
1282 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1283 * took an arbitrary page protection parameter. This doesn't allow
1284 * that. Your vma protection will have to be set up correctly, which
1285 * means that if you want a shared writable mapping, you'd better
1286 * ask for a shared writable mapping!
1287 *
1288 * The page does not need to be reserved.
1289 */
423bad60
NP
1290int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1291 struct page *page)
a145dd41
LT
1292{
1293 if (addr < vma->vm_start || addr >= vma->vm_end)
1294 return -EFAULT;
1295 if (!page_count(page))
1296 return -EINVAL;
4d7672b4 1297 vma->vm_flags |= VM_INSERTPAGE;
423bad60 1298 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1299}
e3c3374f 1300EXPORT_SYMBOL(vm_insert_page);
a145dd41 1301
423bad60
NP
1302static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1303 unsigned long pfn, pgprot_t prot)
1304{
1305 struct mm_struct *mm = vma->vm_mm;
1306 int retval;
1307 pte_t *pte, entry;
1308 spinlock_t *ptl;
1309
1310 retval = -ENOMEM;
1311 pte = get_locked_pte(mm, addr, &ptl);
1312 if (!pte)
1313 goto out;
1314 retval = -EBUSY;
1315 if (!pte_none(*pte))
1316 goto out_unlock;
1317
1318 /* Ok, finally just insert the thing.. */
1319 entry = pte_mkspecial(pfn_pte(pfn, prot));
1320 set_pte_at(mm, addr, pte, entry);
1321 update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1322
1323 retval = 0;
1324out_unlock:
1325 pte_unmap_unlock(pte, ptl);
1326out:
1327 return retval;
1328}
1329
e0dc0d8f
NP
1330/**
1331 * vm_insert_pfn - insert single pfn into user vma
1332 * @vma: user vma to map to
1333 * @addr: target user address of this page
1334 * @pfn: source kernel pfn
1335 *
1336 * Similar to vm_inert_page, this allows drivers to insert individual pages
1337 * they've allocated into a user vma. Same comments apply.
1338 *
1339 * This function should only be called from a vm_ops->fault handler, and
1340 * in that case the handler should return NULL.
1341 */
1342int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 1343 unsigned long pfn)
e0dc0d8f 1344{
7e675137
NP
1345 /*
1346 * Technically, architectures with pte_special can avoid all these
1347 * restrictions (same for remap_pfn_range). However we would like
1348 * consistency in testing and feature parity among all, so we should
1349 * try to keep these invariants in place for everybody.
1350 */
b379d790
JH
1351 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1352 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1353 (VM_PFNMAP|VM_MIXEDMAP));
1354 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1355 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 1356
423bad60
NP
1357 if (addr < vma->vm_start || addr >= vma->vm_end)
1358 return -EFAULT;
1359 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1360}
1361EXPORT_SYMBOL(vm_insert_pfn);
e0dc0d8f 1362
423bad60
NP
1363int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1364 unsigned long pfn)
1365{
1366 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
e0dc0d8f 1367
423bad60
NP
1368 if (addr < vma->vm_start || addr >= vma->vm_end)
1369 return -EFAULT;
e0dc0d8f 1370
423bad60
NP
1371 /*
1372 * If we don't have pte special, then we have to use the pfn_valid()
1373 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1374 * refcount the page if pfn_valid is true (hence insert_page rather
1375 * than insert_pfn).
1376 */
1377 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1378 struct page *page;
1379
1380 page = pfn_to_page(pfn);
1381 return insert_page(vma, addr, page, vma->vm_page_prot);
1382 }
1383 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
e0dc0d8f 1384}
423bad60 1385EXPORT_SYMBOL(vm_insert_mixed);
e0dc0d8f 1386
1da177e4
LT
1387/*
1388 * maps a range of physical memory into the requested pages. the old
1389 * mappings are removed. any references to nonexistent pages results
1390 * in null mappings (currently treated as "copy-on-access")
1391 */
1392static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1393 unsigned long addr, unsigned long end,
1394 unsigned long pfn, pgprot_t prot)
1395{
1396 pte_t *pte;
c74df32c 1397 spinlock_t *ptl;
1da177e4 1398
c74df32c 1399 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1400 if (!pte)
1401 return -ENOMEM;
6606c3e0 1402 arch_enter_lazy_mmu_mode();
1da177e4
LT
1403 do {
1404 BUG_ON(!pte_none(*pte));
7e675137 1405 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1406 pfn++;
1407 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1408 arch_leave_lazy_mmu_mode();
c74df32c 1409 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
1410 return 0;
1411}
1412
1413static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1414 unsigned long addr, unsigned long end,
1415 unsigned long pfn, pgprot_t prot)
1416{
1417 pmd_t *pmd;
1418 unsigned long next;
1419
1420 pfn -= addr >> PAGE_SHIFT;
1421 pmd = pmd_alloc(mm, pud, addr);
1422 if (!pmd)
1423 return -ENOMEM;
1424 do {
1425 next = pmd_addr_end(addr, end);
1426 if (remap_pte_range(mm, pmd, addr, next,
1427 pfn + (addr >> PAGE_SHIFT), prot))
1428 return -ENOMEM;
1429 } while (pmd++, addr = next, addr != end);
1430 return 0;
1431}
1432
1433static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1434 unsigned long addr, unsigned long end,
1435 unsigned long pfn, pgprot_t prot)
1436{
1437 pud_t *pud;
1438 unsigned long next;
1439
1440 pfn -= addr >> PAGE_SHIFT;
1441 pud = pud_alloc(mm, pgd, addr);
1442 if (!pud)
1443 return -ENOMEM;
1444 do {
1445 next = pud_addr_end(addr, end);
1446 if (remap_pmd_range(mm, pud, addr, next,
1447 pfn + (addr >> PAGE_SHIFT), prot))
1448 return -ENOMEM;
1449 } while (pud++, addr = next, addr != end);
1450 return 0;
1451}
1452
bfa5bf6d
REB
1453/**
1454 * remap_pfn_range - remap kernel memory to userspace
1455 * @vma: user vma to map to
1456 * @addr: target user address to start at
1457 * @pfn: physical address of kernel memory
1458 * @size: size of map area
1459 * @prot: page protection flags for this mapping
1460 *
1461 * Note: this is only safe if the mm semaphore is held when called.
1462 */
1da177e4
LT
1463int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1464 unsigned long pfn, unsigned long size, pgprot_t prot)
1465{
1466 pgd_t *pgd;
1467 unsigned long next;
2d15cab8 1468 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
1469 struct mm_struct *mm = vma->vm_mm;
1470 int err;
1471
1472 /*
1473 * Physically remapped pages are special. Tell the
1474 * rest of the world about it:
1475 * VM_IO tells people not to look at these pages
1476 * (accesses can have side effects).
0b14c179
HD
1477 * VM_RESERVED is specified all over the place, because
1478 * in 2.4 it kept swapout's vma scan off this vma; but
1479 * in 2.6 the LRU scan won't even find its pages, so this
1480 * flag means no more than count its pages in reserved_vm,
1481 * and omit it from core dump, even when VM_IO turned off.
6aab341e
LT
1482 * VM_PFNMAP tells the core MM that the base pages are just
1483 * raw PFN mappings, and do not have a "struct page" associated
1484 * with them.
fb155c16
LT
1485 *
1486 * There's a horrible special case to handle copy-on-write
1487 * behaviour that some programs depend on. We mark the "original"
1488 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1da177e4 1489 */
67121172 1490 if (is_cow_mapping(vma->vm_flags)) {
fb155c16 1491 if (addr != vma->vm_start || end != vma->vm_end)
7fc7e2ee 1492 return -EINVAL;
fb155c16
LT
1493 vma->vm_pgoff = pfn;
1494 }
1495
6aab341e 1496 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1da177e4
LT
1497
1498 BUG_ON(addr >= end);
1499 pfn -= addr >> PAGE_SHIFT;
1500 pgd = pgd_offset(mm, addr);
1501 flush_cache_range(vma, addr, end);
1da177e4
LT
1502 do {
1503 next = pgd_addr_end(addr, end);
1504 err = remap_pud_range(mm, pgd, addr, next,
1505 pfn + (addr >> PAGE_SHIFT), prot);
1506 if (err)
1507 break;
1508 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1509 return err;
1510}
1511EXPORT_SYMBOL(remap_pfn_range);
1512
aee16b3c
JF
1513static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1514 unsigned long addr, unsigned long end,
1515 pte_fn_t fn, void *data)
1516{
1517 pte_t *pte;
1518 int err;
2f569afd 1519 pgtable_t token;
94909914 1520 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
1521
1522 pte = (mm == &init_mm) ?
1523 pte_alloc_kernel(pmd, addr) :
1524 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1525 if (!pte)
1526 return -ENOMEM;
1527
1528 BUG_ON(pmd_huge(*pmd));
1529
2f569afd 1530 token = pmd_pgtable(*pmd);
aee16b3c
JF
1531
1532 do {
2f569afd 1533 err = fn(pte, token, addr, data);
aee16b3c
JF
1534 if (err)
1535 break;
1536 } while (pte++, addr += PAGE_SIZE, addr != end);
1537
1538 if (mm != &init_mm)
1539 pte_unmap_unlock(pte-1, ptl);
1540 return err;
1541}
1542
1543static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1544 unsigned long addr, unsigned long end,
1545 pte_fn_t fn, void *data)
1546{
1547 pmd_t *pmd;
1548 unsigned long next;
1549 int err;
1550
1551 pmd = pmd_alloc(mm, pud, addr);
1552 if (!pmd)
1553 return -ENOMEM;
1554 do {
1555 next = pmd_addr_end(addr, end);
1556 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1557 if (err)
1558 break;
1559 } while (pmd++, addr = next, addr != end);
1560 return err;
1561}
1562
1563static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1564 unsigned long addr, unsigned long end,
1565 pte_fn_t fn, void *data)
1566{
1567 pud_t *pud;
1568 unsigned long next;
1569 int err;
1570
1571 pud = pud_alloc(mm, pgd, addr);
1572 if (!pud)
1573 return -ENOMEM;
1574 do {
1575 next = pud_addr_end(addr, end);
1576 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1577 if (err)
1578 break;
1579 } while (pud++, addr = next, addr != end);
1580 return err;
1581}
1582
1583/*
1584 * Scan a region of virtual memory, filling in page tables as necessary
1585 * and calling a provided function on each leaf page table.
1586 */
1587int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1588 unsigned long size, pte_fn_t fn, void *data)
1589{
1590 pgd_t *pgd;
1591 unsigned long next;
1592 unsigned long end = addr + size;
1593 int err;
1594
1595 BUG_ON(addr >= end);
1596 pgd = pgd_offset(mm, addr);
1597 do {
1598 next = pgd_addr_end(addr, end);
1599 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1600 if (err)
1601 break;
1602 } while (pgd++, addr = next, addr != end);
1603 return err;
1604}
1605EXPORT_SYMBOL_GPL(apply_to_page_range);
1606
8f4e2101
HD
1607/*
1608 * handle_pte_fault chooses page fault handler according to an entry
1609 * which was read non-atomically. Before making any commitment, on
1610 * those architectures or configurations (e.g. i386 with PAE) which
1611 * might give a mix of unmatched parts, do_swap_page and do_file_page
1612 * must check under lock before unmapping the pte and proceeding
1613 * (but do_wp_page is only called after already making such a check;
1614 * and do_anonymous_page and do_no_page can safely check later on).
1615 */
4c21e2f2 1616static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
1617 pte_t *page_table, pte_t orig_pte)
1618{
1619 int same = 1;
1620#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1621 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
1622 spinlock_t *ptl = pte_lockptr(mm, pmd);
1623 spin_lock(ptl);
8f4e2101 1624 same = pte_same(*page_table, orig_pte);
4c21e2f2 1625 spin_unlock(ptl);
8f4e2101
HD
1626 }
1627#endif
1628 pte_unmap(page_table);
1629 return same;
1630}
1631
1da177e4
LT
1632/*
1633 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1634 * servicing faults for write access. In the normal case, do always want
1635 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1636 * that do not have writing enabled, when used by access_process_vm.
1637 */
1638static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1639{
1640 if (likely(vma->vm_flags & VM_WRITE))
1641 pte = pte_mkwrite(pte);
1642 return pte;
1643}
1644
9de455b2 1645static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e
LT
1646{
1647 /*
1648 * If the source page was a PFN mapping, we don't have
1649 * a "struct page" for it. We do a best-effort copy by
1650 * just copying from the original user address. If that
1651 * fails, we just zero-fill it. Live with it.
1652 */
1653 if (unlikely(!src)) {
1654 void *kaddr = kmap_atomic(dst, KM_USER0);
5d2a2dbb
LT
1655 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1656
1657 /*
1658 * This really shouldn't fail, because the page is there
1659 * in the page tables. But it might just be unreadable,
1660 * in which case we just give up and fill the result with
1661 * zeroes.
1662 */
1663 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
6aab341e
LT
1664 memset(kaddr, 0, PAGE_SIZE);
1665 kunmap_atomic(kaddr, KM_USER0);
c4ec7b0d 1666 flush_dcache_page(dst);
0ed361de
NP
1667 } else
1668 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
1669}
1670
1da177e4
LT
1671/*
1672 * This routine handles present pages, when users try to write
1673 * to a shared page. It is done by copying the page to a new address
1674 * and decrementing the shared-page counter for the old page.
1675 *
1da177e4
LT
1676 * Note that this routine assumes that the protection checks have been
1677 * done by the caller (the low-level page fault routine in most cases).
1678 * Thus we can safely just mark it writable once we've done any necessary
1679 * COW.
1680 *
1681 * We also mark the page dirty at this point even though the page will
1682 * change only once the write actually happens. This avoids a few races,
1683 * and potentially makes it more efficient.
1684 *
8f4e2101
HD
1685 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1686 * but allow concurrent faults), with pte both mapped and locked.
1687 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 1688 */
65500d23
HD
1689static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1690 unsigned long address, pte_t *page_table, pmd_t *pmd,
8f4e2101 1691 spinlock_t *ptl, pte_t orig_pte)
1da177e4 1692{
e5bbe4df 1693 struct page *old_page, *new_page;
1da177e4 1694 pte_t entry;
83c54070 1695 int reuse = 0, ret = 0;
a200ee18 1696 int page_mkwrite = 0;
d08b3851 1697 struct page *dirty_page = NULL;
1da177e4 1698
6aab341e 1699 old_page = vm_normal_page(vma, address, orig_pte);
251b97f5
PZ
1700 if (!old_page) {
1701 /*
1702 * VM_MIXEDMAP !pfn_valid() case
1703 *
1704 * We should not cow pages in a shared writeable mapping.
1705 * Just mark the pages writable as we can't do any dirty
1706 * accounting on raw pfn maps.
1707 */
1708 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1709 (VM_WRITE|VM_SHARED))
1710 goto reuse;
6aab341e 1711 goto gotten;
251b97f5 1712 }
1da177e4 1713
d08b3851 1714 /*
ee6a6457
PZ
1715 * Take out anonymous pages first, anonymous shared vmas are
1716 * not dirty accountable.
d08b3851 1717 */
ee6a6457
PZ
1718 if (PageAnon(old_page)) {
1719 if (!TestSetPageLocked(old_page)) {
1720 reuse = can_share_swap_page(old_page);
1721 unlock_page(old_page);
1722 }
1723 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 1724 (VM_WRITE|VM_SHARED))) {
ee6a6457
PZ
1725 /*
1726 * Only catch write-faults on shared writable pages,
1727 * read-only shared pages can get COWed by
1728 * get_user_pages(.write=1, .force=1).
1729 */
9637a5ef
DH
1730 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1731 /*
1732 * Notify the address space that the page is about to
1733 * become writable so that it can prohibit this or wait
1734 * for the page to get into an appropriate state.
1735 *
1736 * We do this without the lock held, so that it can
1737 * sleep if it needs to.
1738 */
1739 page_cache_get(old_page);
1740 pte_unmap_unlock(page_table, ptl);
1741
1742 if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1743 goto unwritable_page;
1744
9637a5ef
DH
1745 /*
1746 * Since we dropped the lock we need to revalidate
1747 * the PTE as someone else may have changed it. If
1748 * they did, we just return, as we can count on the
1749 * MMU to tell us if they didn't also make it writable.
1750 */
1751 page_table = pte_offset_map_lock(mm, pmd, address,
1752 &ptl);
c3704ceb 1753 page_cache_release(old_page);
9637a5ef
DH
1754 if (!pte_same(*page_table, orig_pte))
1755 goto unlock;
a200ee18
PZ
1756
1757 page_mkwrite = 1;
1da177e4 1758 }
d08b3851
PZ
1759 dirty_page = old_page;
1760 get_page(dirty_page);
9637a5ef 1761 reuse = 1;
9637a5ef
DH
1762 }
1763
1764 if (reuse) {
251b97f5 1765reuse:
9637a5ef
DH
1766 flush_cache_page(vma, address, pte_pfn(orig_pte));
1767 entry = pte_mkyoung(orig_pte);
1768 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
954ffcb3 1769 if (ptep_set_access_flags(vma, address, page_table, entry,1))
8dab5241 1770 update_mmu_cache(vma, address, entry);
9637a5ef
DH
1771 ret |= VM_FAULT_WRITE;
1772 goto unlock;
1da177e4 1773 }
1da177e4
LT
1774
1775 /*
1776 * Ok, we need to copy. Oh, well..
1777 */
b5810039 1778 page_cache_get(old_page);
920fc356 1779gotten:
8f4e2101 1780 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
1781
1782 if (unlikely(anon_vma_prepare(vma)))
65500d23 1783 goto oom;
557ed1fa
NP
1784 VM_BUG_ON(old_page == ZERO_PAGE(0));
1785 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1786 if (!new_page)
1787 goto oom;
1788 cow_user_page(new_page, old_page, address, vma);
0ed361de 1789 __SetPageUptodate(new_page);
65500d23 1790
e1a1cd59 1791 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
8a9f3ccd
BS
1792 goto oom_free_new;
1793
1da177e4
LT
1794 /*
1795 * Re-check the pte - we dropped the lock
1796 */
8f4e2101 1797 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
65500d23 1798 if (likely(pte_same(*page_table, orig_pte))) {
920fc356 1799 if (old_page) {
920fc356
HD
1800 if (!PageAnon(old_page)) {
1801 dec_mm_counter(mm, file_rss);
1802 inc_mm_counter(mm, anon_rss);
1803 }
1804 } else
4294621f 1805 inc_mm_counter(mm, anon_rss);
eca35133 1806 flush_cache_page(vma, address, pte_pfn(orig_pte));
65500d23
HD
1807 entry = mk_pte(new_page, vma->vm_page_prot);
1808 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4ce072f1
SS
1809 /*
1810 * Clear the pte entry and flush it first, before updating the
1811 * pte with the new entry. This will avoid a race condition
1812 * seen in the presence of one thread doing SMC and another
1813 * thread doing COW.
1814 */
1815 ptep_clear_flush(vma, address, page_table);
1816 set_pte_at(mm, address, page_table, entry);
65500d23 1817 update_mmu_cache(vma, address, entry);
1da177e4 1818 lru_cache_add_active(new_page);
9617d95e 1819 page_add_new_anon_rmap(new_page, vma, address);
1da177e4 1820
945754a1
NP
1821 if (old_page) {
1822 /*
1823 * Only after switching the pte to the new page may
1824 * we remove the mapcount here. Otherwise another
1825 * process may come and find the rmap count decremented
1826 * before the pte is switched to the new page, and
1827 * "reuse" the old page writing into it while our pte
1828 * here still points into it and can be read by other
1829 * threads.
1830 *
1831 * The critical issue is to order this
1832 * page_remove_rmap with the ptp_clear_flush above.
1833 * Those stores are ordered by (if nothing else,)
1834 * the barrier present in the atomic_add_negative
1835 * in page_remove_rmap.
1836 *
1837 * Then the TLB flush in ptep_clear_flush ensures that
1838 * no process can access the old page before the
1839 * decremented mapcount is visible. And the old page
1840 * cannot be reused until after the decremented
1841 * mapcount is visible. So transitively, TLBs to
1842 * old page will be flushed before it can be reused.
1843 */
1844 page_remove_rmap(old_page, vma);
1845 }
1846
1da177e4
LT
1847 /* Free the old page.. */
1848 new_page = old_page;
f33ea7f4 1849 ret |= VM_FAULT_WRITE;
8a9f3ccd
BS
1850 } else
1851 mem_cgroup_uncharge_page(new_page);
1852
920fc356
HD
1853 if (new_page)
1854 page_cache_release(new_page);
1855 if (old_page)
1856 page_cache_release(old_page);
65500d23 1857unlock:
8f4e2101 1858 pte_unmap_unlock(page_table, ptl);
d08b3851 1859 if (dirty_page) {
8f7b3d15
AS
1860 if (vma->vm_file)
1861 file_update_time(vma->vm_file);
1862
79352894
NP
1863 /*
1864 * Yes, Virginia, this is actually required to prevent a race
1865 * with clear_page_dirty_for_io() from clearing the page dirty
1866 * bit after it clear all dirty ptes, but before a racing
1867 * do_wp_page installs a dirty pte.
1868 *
1869 * do_no_page is protected similarly.
1870 */
1871 wait_on_page_locked(dirty_page);
a200ee18 1872 set_page_dirty_balance(dirty_page, page_mkwrite);
d08b3851
PZ
1873 put_page(dirty_page);
1874 }
f33ea7f4 1875 return ret;
8a9f3ccd 1876oom_free_new:
6dbf6d3b 1877 page_cache_release(new_page);
65500d23 1878oom:
920fc356
HD
1879 if (old_page)
1880 page_cache_release(old_page);
1da177e4 1881 return VM_FAULT_OOM;
9637a5ef
DH
1882
1883unwritable_page:
1884 page_cache_release(old_page);
1885 return VM_FAULT_SIGBUS;
1da177e4
LT
1886}
1887
1888/*
1889 * Helper functions for unmap_mapping_range().
1890 *
1891 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1892 *
1893 * We have to restart searching the prio_tree whenever we drop the lock,
1894 * since the iterator is only valid while the lock is held, and anyway
1895 * a later vma might be split and reinserted earlier while lock dropped.
1896 *
1897 * The list of nonlinear vmas could be handled more efficiently, using
1898 * a placeholder, but handle it in the same way until a need is shown.
1899 * It is important to search the prio_tree before nonlinear list: a vma
1900 * may become nonlinear and be shifted from prio_tree to nonlinear list
1901 * while the lock is dropped; but never shifted from list to prio_tree.
1902 *
1903 * In order to make forward progress despite restarting the search,
1904 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1905 * quickly skip it next time around. Since the prio_tree search only
1906 * shows us those vmas affected by unmapping the range in question, we
1907 * can't efficiently keep all vmas in step with mapping->truncate_count:
1908 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1909 * mapping->truncate_count and vma->vm_truncate_count are protected by
1910 * i_mmap_lock.
1911 *
1912 * In order to make forward progress despite repeatedly restarting some
ee39b37b 1913 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1da177e4
LT
1914 * and restart from that address when we reach that vma again. It might
1915 * have been split or merged, shrunk or extended, but never shifted: so
1916 * restart_addr remains valid so long as it remains in the vma's range.
1917 * unmap_mapping_range forces truncate_count to leap over page-aligned
1918 * values so we can save vma's restart_addr in its truncate_count field.
1919 */
1920#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1921
1922static void reset_vma_truncate_counts(struct address_space *mapping)
1923{
1924 struct vm_area_struct *vma;
1925 struct prio_tree_iter iter;
1926
1927 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1928 vma->vm_truncate_count = 0;
1929 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1930 vma->vm_truncate_count = 0;
1931}
1932
1933static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1934 unsigned long start_addr, unsigned long end_addr,
1935 struct zap_details *details)
1936{
1937 unsigned long restart_addr;
1938 int need_break;
1939
d00806b1
NP
1940 /*
1941 * files that support invalidating or truncating portions of the
d0217ac0 1942 * file from under mmaped areas must have their ->fault function
83c54070
NP
1943 * return a locked page (and set VM_FAULT_LOCKED in the return).
1944 * This provides synchronisation against concurrent unmapping here.
d00806b1 1945 */
d00806b1 1946
1da177e4
LT
1947again:
1948 restart_addr = vma->vm_truncate_count;
1949 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1950 start_addr = restart_addr;
1951 if (start_addr >= end_addr) {
1952 /* Top of vma has been split off since last time */
1953 vma->vm_truncate_count = details->truncate_count;
1954 return 0;
1955 }
1956 }
1957
ee39b37b
HD
1958 restart_addr = zap_page_range(vma, start_addr,
1959 end_addr - start_addr, details);
95c354fe 1960 need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
1da177e4 1961
ee39b37b 1962 if (restart_addr >= end_addr) {
1da177e4
LT
1963 /* We have now completed this vma: mark it so */
1964 vma->vm_truncate_count = details->truncate_count;
1965 if (!need_break)
1966 return 0;
1967 } else {
1968 /* Note restart_addr in vma's truncate_count field */
ee39b37b 1969 vma->vm_truncate_count = restart_addr;
1da177e4
LT
1970 if (!need_break)
1971 goto again;
1972 }
1973
1974 spin_unlock(details->i_mmap_lock);
1975 cond_resched();
1976 spin_lock(details->i_mmap_lock);
1977 return -EINTR;
1978}
1979
1980static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1981 struct zap_details *details)
1982{
1983 struct vm_area_struct *vma;
1984 struct prio_tree_iter iter;
1985 pgoff_t vba, vea, zba, zea;
1986
1987restart:
1988 vma_prio_tree_foreach(vma, &iter, root,
1989 details->first_index, details->last_index) {
1990 /* Skip quickly over those we have already dealt with */
1991 if (vma->vm_truncate_count == details->truncate_count)
1992 continue;
1993
1994 vba = vma->vm_pgoff;
1995 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1996 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1997 zba = details->first_index;
1998 if (zba < vba)
1999 zba = vba;
2000 zea = details->last_index;
2001 if (zea > vea)
2002 zea = vea;
2003
2004 if (unmap_mapping_range_vma(vma,
2005 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2006 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2007 details) < 0)
2008 goto restart;
2009 }
2010}
2011
2012static inline void unmap_mapping_range_list(struct list_head *head,
2013 struct zap_details *details)
2014{
2015 struct vm_area_struct *vma;
2016
2017 /*
2018 * In nonlinear VMAs there is no correspondence between virtual address
2019 * offset and file offset. So we must perform an exhaustive search
2020 * across *all* the pages in each nonlinear VMA, not just the pages
2021 * whose virtual address lies outside the file truncation point.
2022 */
2023restart:
2024 list_for_each_entry(vma, head, shared.vm_set.list) {
2025 /* Skip quickly over those we have already dealt with */
2026 if (vma->vm_truncate_count == details->truncate_count)
2027 continue;
2028 details->nonlinear_vma = vma;
2029 if (unmap_mapping_range_vma(vma, vma->vm_start,
2030 vma->vm_end, details) < 0)
2031 goto restart;
2032 }
2033}
2034
2035/**
72fd4a35 2036 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
3d41088f 2037 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2038 * @holebegin: byte in first page to unmap, relative to the start of
2039 * the underlying file. This will be rounded down to a PAGE_SIZE
2040 * boundary. Note that this is different from vmtruncate(), which
2041 * must keep the partial page. In contrast, we must get rid of
2042 * partial pages.
2043 * @holelen: size of prospective hole in bytes. This will be rounded
2044 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2045 * end of the file.
2046 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2047 * but 0 when invalidating pagecache, don't throw away private data.
2048 */
2049void unmap_mapping_range(struct address_space *mapping,
2050 loff_t const holebegin, loff_t const holelen, int even_cows)
2051{
2052 struct zap_details details;
2053 pgoff_t hba = holebegin >> PAGE_SHIFT;
2054 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2055
2056 /* Check for overflow. */
2057 if (sizeof(holelen) > sizeof(hlen)) {
2058 long long holeend =
2059 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2060 if (holeend & ~(long long)ULONG_MAX)
2061 hlen = ULONG_MAX - hba + 1;
2062 }
2063
2064 details.check_mapping = even_cows? NULL: mapping;
2065 details.nonlinear_vma = NULL;
2066 details.first_index = hba;
2067 details.last_index = hba + hlen - 1;
2068 if (details.last_index < details.first_index)
2069 details.last_index = ULONG_MAX;
2070 details.i_mmap_lock = &mapping->i_mmap_lock;
2071
2072 spin_lock(&mapping->i_mmap_lock);
2073
d00806b1 2074 /* Protect against endless unmapping loops */
1da177e4 2075 mapping->truncate_count++;
1da177e4
LT
2076 if (unlikely(is_restart_addr(mapping->truncate_count))) {
2077 if (mapping->truncate_count == 0)
2078 reset_vma_truncate_counts(mapping);
2079 mapping->truncate_count++;
2080 }
2081 details.truncate_count = mapping->truncate_count;
2082
2083 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2084 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2085 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2086 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2087 spin_unlock(&mapping->i_mmap_lock);
2088}
2089EXPORT_SYMBOL(unmap_mapping_range);
2090
bfa5bf6d
REB
2091/**
2092 * vmtruncate - unmap mappings "freed" by truncate() syscall
2093 * @inode: inode of the file used
2094 * @offset: file offset to start truncating
1da177e4
LT
2095 *
2096 * NOTE! We have to be ready to update the memory sharing
2097 * between the file and the memory map for a potential last
2098 * incomplete page. Ugly, but necessary.
2099 */
2100int vmtruncate(struct inode * inode, loff_t offset)
2101{
61d5048f
CH
2102 if (inode->i_size < offset) {
2103 unsigned long limit;
2104
2105 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2106 if (limit != RLIM_INFINITY && offset > limit)
2107 goto out_sig;
2108 if (offset > inode->i_sb->s_maxbytes)
2109 goto out_big;
2110 i_size_write(inode, offset);
2111 } else {
2112 struct address_space *mapping = inode->i_mapping;
1da177e4 2113
61d5048f
CH
2114 /*
2115 * truncation of in-use swapfiles is disallowed - it would
2116 * cause subsequent swapout to scribble on the now-freed
2117 * blocks.
2118 */
2119 if (IS_SWAPFILE(inode))
2120 return -ETXTBSY;
2121 i_size_write(inode, offset);
2122
2123 /*
2124 * unmap_mapping_range is called twice, first simply for
2125 * efficiency so that truncate_inode_pages does fewer
2126 * single-page unmaps. However after this first call, and
2127 * before truncate_inode_pages finishes, it is possible for
2128 * private pages to be COWed, which remain after
2129 * truncate_inode_pages finishes, hence the second
2130 * unmap_mapping_range call must be made for correctness.
2131 */
2132 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2133 truncate_inode_pages(mapping, offset);
2134 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2135 }
d00806b1 2136
1da177e4
LT
2137 if (inode->i_op && inode->i_op->truncate)
2138 inode->i_op->truncate(inode);
2139 return 0;
61d5048f 2140
1da177e4
LT
2141out_sig:
2142 send_sig(SIGXFSZ, current, 0);
2143out_big:
2144 return -EFBIG;
1da177e4 2145}
1da177e4
LT
2146EXPORT_SYMBOL(vmtruncate);
2147
f6b3ec23
BP
2148int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2149{
2150 struct address_space *mapping = inode->i_mapping;
2151
2152 /*
2153 * If the underlying filesystem is not going to provide
2154 * a way to truncate a range of blocks (punch a hole) -
2155 * we should return failure right now.
2156 */
2157 if (!inode->i_op || !inode->i_op->truncate_range)
2158 return -ENOSYS;
2159
1b1dcc1b 2160 mutex_lock(&inode->i_mutex);
f6b3ec23
BP
2161 down_write(&inode->i_alloc_sem);
2162 unmap_mapping_range(mapping, offset, (end - offset), 1);
2163 truncate_inode_pages_range(mapping, offset, end);
d00806b1 2164 unmap_mapping_range(mapping, offset, (end - offset), 1);
f6b3ec23
BP
2165 inode->i_op->truncate_range(inode, offset, end);
2166 up_write(&inode->i_alloc_sem);
1b1dcc1b 2167 mutex_unlock(&inode->i_mutex);
f6b3ec23
BP
2168
2169 return 0;
2170}
f6b3ec23 2171
1da177e4 2172/*
8f4e2101
HD
2173 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2174 * but allow concurrent faults), and pte mapped but not yet locked.
2175 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2176 */
65500d23
HD
2177static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2178 unsigned long address, pte_t *page_table, pmd_t *pmd,
2179 int write_access, pte_t orig_pte)
1da177e4 2180{
8f4e2101 2181 spinlock_t *ptl;
1da177e4 2182 struct page *page;
65500d23 2183 swp_entry_t entry;
1da177e4 2184 pte_t pte;
83c54070 2185 int ret = 0;
1da177e4 2186
4c21e2f2 2187 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
8f4e2101 2188 goto out;
65500d23
HD
2189
2190 entry = pte_to_swp_entry(orig_pte);
0697212a
CL
2191 if (is_migration_entry(entry)) {
2192 migration_entry_wait(mm, pmd, address);
2193 goto out;
2194 }
0ff92245 2195 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
2196 page = lookup_swap_cache(entry);
2197 if (!page) {
098fe651 2198 grab_swap_token(); /* Contend for token _before_ read-in */
02098fea
HD
2199 page = swapin_readahead(entry,
2200 GFP_HIGHUSER_MOVABLE, vma, address);
1da177e4
LT
2201 if (!page) {
2202 /*
8f4e2101
HD
2203 * Back out if somebody else faulted in this pte
2204 * while we released the pte lock.
1da177e4 2205 */
8f4e2101 2206 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2207 if (likely(pte_same(*page_table, orig_pte)))
2208 ret = VM_FAULT_OOM;
0ff92245 2209 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2210 goto unlock;
1da177e4
LT
2211 }
2212
2213 /* Had to read the page from swap area: Major fault */
2214 ret = VM_FAULT_MAJOR;
f8891e5e 2215 count_vm_event(PGMAJFAULT);
1da177e4
LT
2216 }
2217
e1a1cd59 2218 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
8a9f3ccd
BS
2219 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2220 ret = VM_FAULT_OOM;
2221 goto out;
2222 }
2223
1da177e4
LT
2224 mark_page_accessed(page);
2225 lock_page(page);
20a1022d 2226 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
2227
2228 /*
8f4e2101 2229 * Back out if somebody else already faulted in this pte.
1da177e4 2230 */
8f4e2101 2231 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
9e9bef07 2232 if (unlikely(!pte_same(*page_table, orig_pte)))
b8107480 2233 goto out_nomap;
b8107480
KK
2234
2235 if (unlikely(!PageUptodate(page))) {
2236 ret = VM_FAULT_SIGBUS;
2237 goto out_nomap;
1da177e4
LT
2238 }
2239
2240 /* The page isn't present yet, go ahead with the fault. */
1da177e4 2241
4294621f 2242 inc_mm_counter(mm, anon_rss);
1da177e4
LT
2243 pte = mk_pte(page, vma->vm_page_prot);
2244 if (write_access && can_share_swap_page(page)) {
2245 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2246 write_access = 0;
2247 }
1da177e4
LT
2248
2249 flush_icache_page(vma, page);
2250 set_pte_at(mm, address, page_table, pte);
2251 page_add_anon_rmap(page, vma, address);
2252
c475a8ab
HD
2253 swap_free(entry);
2254 if (vm_swap_full())
2255 remove_exclusive_swap_page(page);
2256 unlock_page(page);
2257
1da177e4 2258 if (write_access) {
61469f1d
HD
2259 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2260 if (ret & VM_FAULT_ERROR)
2261 ret &= VM_FAULT_ERROR;
1da177e4
LT
2262 goto out;
2263 }
2264
2265 /* No need to invalidate - it was non-present before */
2266 update_mmu_cache(vma, address, pte);
65500d23 2267unlock:
8f4e2101 2268 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2269out:
2270 return ret;
b8107480 2271out_nomap:
8a9f3ccd 2272 mem_cgroup_uncharge_page(page);
8f4e2101 2273 pte_unmap_unlock(page_table, ptl);
b8107480
KK
2274 unlock_page(page);
2275 page_cache_release(page);
65500d23 2276 return ret;
1da177e4
LT
2277}
2278
2279/*
8f4e2101
HD
2280 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2281 * but allow concurrent faults), and pte mapped but not yet locked.
2282 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2283 */
65500d23
HD
2284static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2285 unsigned long address, pte_t *page_table, pmd_t *pmd,
2286 int write_access)
1da177e4 2287{
8f4e2101
HD
2288 struct page *page;
2289 spinlock_t *ptl;
1da177e4 2290 pte_t entry;
1da177e4 2291
557ed1fa
NP
2292 /* Allocate our own private page. */
2293 pte_unmap(page_table);
8f4e2101 2294
557ed1fa
NP
2295 if (unlikely(anon_vma_prepare(vma)))
2296 goto oom;
2297 page = alloc_zeroed_user_highpage_movable(vma, address);
2298 if (!page)
2299 goto oom;
0ed361de 2300 __SetPageUptodate(page);
8f4e2101 2301
e1a1cd59 2302 if (mem_cgroup_charge(page, mm, GFP_KERNEL))
8a9f3ccd
BS
2303 goto oom_free_page;
2304
557ed1fa
NP
2305 entry = mk_pte(page, vma->vm_page_prot);
2306 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1da177e4 2307
557ed1fa
NP
2308 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2309 if (!pte_none(*page_table))
2310 goto release;
2311 inc_mm_counter(mm, anon_rss);
2312 lru_cache_add_active(page);
2313 page_add_new_anon_rmap(page, vma, address);
65500d23 2314 set_pte_at(mm, address, page_table, entry);
1da177e4
LT
2315
2316 /* No need to invalidate - it was non-present before */
65500d23 2317 update_mmu_cache(vma, address, entry);
65500d23 2318unlock:
8f4e2101 2319 pte_unmap_unlock(page_table, ptl);
83c54070 2320 return 0;
8f4e2101 2321release:
8a9f3ccd 2322 mem_cgroup_uncharge_page(page);
8f4e2101
HD
2323 page_cache_release(page);
2324 goto unlock;
8a9f3ccd 2325oom_free_page:
6dbf6d3b 2326 page_cache_release(page);
65500d23 2327oom:
1da177e4
LT
2328 return VM_FAULT_OOM;
2329}
2330
2331/*
54cb8821 2332 * __do_fault() tries to create a new page mapping. It aggressively
1da177e4 2333 * tries to share with existing pages, but makes a separate copy if
54cb8821
NP
2334 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2335 * the next page fault.
1da177e4
LT
2336 *
2337 * As this is called only for pages that do not currently exist, we
2338 * do not need to flush old virtual caches or the TLB.
2339 *
8f4e2101 2340 * We enter with non-exclusive mmap_sem (to exclude vma changes,
16abfa08 2341 * but allow concurrent faults), and pte neither mapped nor locked.
8f4e2101 2342 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2343 */
54cb8821 2344static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
16abfa08 2345 unsigned long address, pmd_t *pmd,
54cb8821 2346 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
1da177e4 2347{
16abfa08 2348 pte_t *page_table;
8f4e2101 2349 spinlock_t *ptl;
d0217ac0 2350 struct page *page;
1da177e4 2351 pte_t entry;
1da177e4 2352 int anon = 0;
d08b3851 2353 struct page *dirty_page = NULL;
d0217ac0
NP
2354 struct vm_fault vmf;
2355 int ret;
a200ee18 2356 int page_mkwrite = 0;
54cb8821 2357
d0217ac0
NP
2358 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2359 vmf.pgoff = pgoff;
2360 vmf.flags = flags;
2361 vmf.page = NULL;
1da177e4 2362
3c18ddd1
NP
2363 ret = vma->vm_ops->fault(vma, &vmf);
2364 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2365 return ret;
1da177e4 2366
d00806b1 2367 /*
d0217ac0 2368 * For consistency in subsequent calls, make the faulted page always
d00806b1
NP
2369 * locked.
2370 */
83c54070 2371 if (unlikely(!(ret & VM_FAULT_LOCKED)))
d0217ac0 2372 lock_page(vmf.page);
54cb8821 2373 else
d0217ac0 2374 VM_BUG_ON(!PageLocked(vmf.page));
d00806b1 2375
1da177e4
LT
2376 /*
2377 * Should we do an early C-O-W break?
2378 */
d0217ac0 2379 page = vmf.page;
54cb8821 2380 if (flags & FAULT_FLAG_WRITE) {
9637a5ef 2381 if (!(vma->vm_flags & VM_SHARED)) {
54cb8821 2382 anon = 1;
d00806b1 2383 if (unlikely(anon_vma_prepare(vma))) {
d0217ac0 2384 ret = VM_FAULT_OOM;
54cb8821 2385 goto out;
d00806b1 2386 }
83c54070
NP
2387 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2388 vma, address);
d00806b1 2389 if (!page) {
d0217ac0 2390 ret = VM_FAULT_OOM;
54cb8821 2391 goto out;
d00806b1 2392 }
d0217ac0 2393 copy_user_highpage(page, vmf.page, address, vma);
0ed361de 2394 __SetPageUptodate(page);
9637a5ef 2395 } else {
54cb8821
NP
2396 /*
2397 * If the page will be shareable, see if the backing
9637a5ef 2398 * address space wants to know that the page is about
54cb8821
NP
2399 * to become writable
2400 */
69676147
MF
2401 if (vma->vm_ops->page_mkwrite) {
2402 unlock_page(page);
2403 if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
d0217ac0
NP
2404 ret = VM_FAULT_SIGBUS;
2405 anon = 1; /* no anon but release vmf.page */
69676147
MF
2406 goto out_unlocked;
2407 }
2408 lock_page(page);
d0217ac0
NP
2409 /*
2410 * XXX: this is not quite right (racy vs
2411 * invalidate) to unlock and relock the page
2412 * like this, however a better fix requires
2413 * reworking page_mkwrite locking API, which
2414 * is better done later.
2415 */
2416 if (!page->mapping) {
83c54070 2417 ret = 0;
d0217ac0
NP
2418 anon = 1; /* no anon but release vmf.page */
2419 goto out;
2420 }
a200ee18 2421 page_mkwrite = 1;
9637a5ef
DH
2422 }
2423 }
54cb8821 2424
1da177e4
LT
2425 }
2426
e1a1cd59 2427 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
8a9f3ccd
BS
2428 ret = VM_FAULT_OOM;
2429 goto out;
2430 }
2431
8f4e2101 2432 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2433
2434 /*
2435 * This silly early PAGE_DIRTY setting removes a race
2436 * due to the bad i386 page protection. But it's valid
2437 * for other architectures too.
2438 *
2439 * Note that if write_access is true, we either now have
2440 * an exclusive copy of the page, or this is a shared mapping,
2441 * so we can make it writable and dirty to avoid having to
2442 * handle that later.
2443 */
2444 /* Only go through if we didn't race with anybody else... */
54cb8821 2445 if (likely(pte_same(*page_table, orig_pte))) {
d00806b1
NP
2446 flush_icache_page(vma, page);
2447 entry = mk_pte(page, vma->vm_page_prot);
54cb8821 2448 if (flags & FAULT_FLAG_WRITE)
1da177e4
LT
2449 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2450 set_pte_at(mm, address, page_table, entry);
2451 if (anon) {
d00806b1
NP
2452 inc_mm_counter(mm, anon_rss);
2453 lru_cache_add_active(page);
2454 page_add_new_anon_rmap(page, vma, address);
f57e88a8 2455 } else {
4294621f 2456 inc_mm_counter(mm, file_rss);
d00806b1 2457 page_add_file_rmap(page);
54cb8821 2458 if (flags & FAULT_FLAG_WRITE) {
d00806b1 2459 dirty_page = page;
d08b3851
PZ
2460 get_page(dirty_page);
2461 }
4294621f 2462 }
d00806b1
NP
2463
2464 /* no need to invalidate: a not-present page won't be cached */
2465 update_mmu_cache(vma, address, entry);
1da177e4 2466 } else {
8a9f3ccd 2467 mem_cgroup_uncharge_page(page);
d00806b1
NP
2468 if (anon)
2469 page_cache_release(page);
2470 else
54cb8821 2471 anon = 1; /* no anon but release faulted_page */
1da177e4
LT
2472 }
2473
8f4e2101 2474 pte_unmap_unlock(page_table, ptl);
d00806b1
NP
2475
2476out:
d0217ac0 2477 unlock_page(vmf.page);
69676147 2478out_unlocked:
d00806b1 2479 if (anon)
d0217ac0 2480 page_cache_release(vmf.page);
d00806b1 2481 else if (dirty_page) {
8f7b3d15
AS
2482 if (vma->vm_file)
2483 file_update_time(vma->vm_file);
2484
a200ee18 2485 set_page_dirty_balance(dirty_page, page_mkwrite);
d08b3851
PZ
2486 put_page(dirty_page);
2487 }
d00806b1 2488
83c54070 2489 return ret;
54cb8821 2490}
d00806b1 2491
54cb8821
NP
2492static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2493 unsigned long address, pte_t *page_table, pmd_t *pmd,
2494 int write_access, pte_t orig_pte)
2495{
2496 pgoff_t pgoff = (((address & PAGE_MASK)
0da7e01f 2497 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
54cb8821
NP
2498 unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2499
16abfa08
HD
2500 pte_unmap(page_table);
2501 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
54cb8821
NP
2502}
2503
1da177e4 2504
f4b81804
JS
2505/*
2506 * do_no_pfn() tries to create a new page mapping for a page without
2507 * a struct_page backing it
2508 *
2509 * As this is called only for pages that do not currently exist, we
2510 * do not need to flush old virtual caches or the TLB.
2511 *
2512 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2513 * but allow concurrent faults), and pte mapped but not yet locked.
2514 * We return with mmap_sem still held, but pte unmapped and unlocked.
2515 *
2516 * It is expected that the ->nopfn handler always returns the same pfn
2517 * for a given virtual mapping.
2518 *
2519 * Mark this `noinline' to prevent it from bloating the main pagefault code.
2520 */
2521static noinline int do_no_pfn(struct mm_struct *mm, struct vm_area_struct *vma,
2522 unsigned long address, pte_t *page_table, pmd_t *pmd,
2523 int write_access)
2524{
2525 spinlock_t *ptl;
2526 pte_t entry;
2527 unsigned long pfn;
f4b81804
JS
2528
2529 pte_unmap(page_table);
b379d790
JH
2530 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2531 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
f4b81804
JS
2532
2533 pfn = vma->vm_ops->nopfn(vma, address & PAGE_MASK);
b379d790
JH
2534
2535 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2536
22cd25ed 2537 if (unlikely(pfn == NOPFN_OOM))
f4b81804 2538 return VM_FAULT_OOM;
22cd25ed 2539 else if (unlikely(pfn == NOPFN_SIGBUS))
f4b81804 2540 return VM_FAULT_SIGBUS;
22cd25ed 2541 else if (unlikely(pfn == NOPFN_REFAULT))
83c54070 2542 return 0;
f4b81804
JS
2543
2544 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2545
2546 /* Only go through if we didn't race with anybody else... */
2547 if (pte_none(*page_table)) {
2548 entry = pfn_pte(pfn, vma->vm_page_prot);
2549 if (write_access)
2550 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2551 set_pte_at(mm, address, page_table, entry);
2552 }
2553 pte_unmap_unlock(page_table, ptl);
83c54070 2554 return 0;
f4b81804
JS
2555}
2556
1da177e4
LT
2557/*
2558 * Fault of a previously existing named mapping. Repopulate the pte
2559 * from the encoded file_pte if possible. This enables swappable
2560 * nonlinear vmas.
8f4e2101
HD
2561 *
2562 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2563 * but allow concurrent faults), and pte mapped but not yet locked.
2564 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2565 */
d0217ac0 2566static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
65500d23
HD
2567 unsigned long address, pte_t *page_table, pmd_t *pmd,
2568 int write_access, pte_t orig_pte)
1da177e4 2569{
d0217ac0
NP
2570 unsigned int flags = FAULT_FLAG_NONLINEAR |
2571 (write_access ? FAULT_FLAG_WRITE : 0);
65500d23 2572 pgoff_t pgoff;
1da177e4 2573
4c21e2f2 2574 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
83c54070 2575 return 0;
1da177e4 2576
d0217ac0
NP
2577 if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
2578 !(vma->vm_flags & VM_CAN_NONLINEAR))) {
65500d23
HD
2579 /*
2580 * Page table corrupted: show pte and kill process.
2581 */
b5810039 2582 print_bad_pte(vma, orig_pte, address);
65500d23
HD
2583 return VM_FAULT_OOM;
2584 }
65500d23
HD
2585
2586 pgoff = pte_to_pgoff(orig_pte);
16abfa08 2587 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
1da177e4
LT
2588}
2589
2590/*
2591 * These routines also need to handle stuff like marking pages dirty
2592 * and/or accessed for architectures that don't do it in hardware (most
2593 * RISC architectures). The early dirtying is also good on the i386.
2594 *
2595 * There is also a hook called "update_mmu_cache()" that architectures
2596 * with external mmu caches can use to update those (ie the Sparc or
2597 * PowerPC hashed page tables that act as extended TLBs).
2598 *
c74df32c
HD
2599 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2600 * but allow concurrent faults), and pte mapped but not yet locked.
2601 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4
LT
2602 */
2603static inline int handle_pte_fault(struct mm_struct *mm,
65500d23
HD
2604 struct vm_area_struct *vma, unsigned long address,
2605 pte_t *pte, pmd_t *pmd, int write_access)
1da177e4
LT
2606{
2607 pte_t entry;
8f4e2101 2608 spinlock_t *ptl;
1da177e4 2609
8dab5241 2610 entry = *pte;
1da177e4 2611 if (!pte_present(entry)) {
65500d23 2612 if (pte_none(entry)) {
f4b81804 2613 if (vma->vm_ops) {
3c18ddd1 2614 if (likely(vma->vm_ops->fault))
54cb8821
NP
2615 return do_linear_fault(mm, vma, address,
2616 pte, pmd, write_access, entry);
f4b81804
JS
2617 if (unlikely(vma->vm_ops->nopfn))
2618 return do_no_pfn(mm, vma, address, pte,
2619 pmd, write_access);
2620 }
2621 return do_anonymous_page(mm, vma, address,
2622 pte, pmd, write_access);
65500d23 2623 }
1da177e4 2624 if (pte_file(entry))
d0217ac0 2625 return do_nonlinear_fault(mm, vma, address,
65500d23
HD
2626 pte, pmd, write_access, entry);
2627 return do_swap_page(mm, vma, address,
2628 pte, pmd, write_access, entry);
1da177e4
LT
2629 }
2630
4c21e2f2 2631 ptl = pte_lockptr(mm, pmd);
8f4e2101
HD
2632 spin_lock(ptl);
2633 if (unlikely(!pte_same(*pte, entry)))
2634 goto unlock;
1da177e4
LT
2635 if (write_access) {
2636 if (!pte_write(entry))
8f4e2101
HD
2637 return do_wp_page(mm, vma, address,
2638 pte, pmd, ptl, entry);
1da177e4
LT
2639 entry = pte_mkdirty(entry);
2640 }
2641 entry = pte_mkyoung(entry);
8dab5241 2642 if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
1a44e149 2643 update_mmu_cache(vma, address, entry);
1a44e149
AA
2644 } else {
2645 /*
2646 * This is needed only for protection faults but the arch code
2647 * is not yet telling us if this is a protection fault or not.
2648 * This still avoids useless tlb flushes for .text page faults
2649 * with threads.
2650 */
2651 if (write_access)
2652 flush_tlb_page(vma, address);
2653 }
8f4e2101
HD
2654unlock:
2655 pte_unmap_unlock(pte, ptl);
83c54070 2656 return 0;
1da177e4
LT
2657}
2658
2659/*
2660 * By the time we get here, we already hold the mm semaphore
2661 */
83c54070 2662int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1da177e4
LT
2663 unsigned long address, int write_access)
2664{
2665 pgd_t *pgd;
2666 pud_t *pud;
2667 pmd_t *pmd;
2668 pte_t *pte;
2669
2670 __set_current_state(TASK_RUNNING);
2671
f8891e5e 2672 count_vm_event(PGFAULT);
1da177e4 2673
ac9b9c66
HD
2674 if (unlikely(is_vm_hugetlb_page(vma)))
2675 return hugetlb_fault(mm, vma, address, write_access);
1da177e4 2676
1da177e4 2677 pgd = pgd_offset(mm, address);
1da177e4
LT
2678 pud = pud_alloc(mm, pgd, address);
2679 if (!pud)
c74df32c 2680 return VM_FAULT_OOM;
1da177e4
LT
2681 pmd = pmd_alloc(mm, pud, address);
2682 if (!pmd)
c74df32c 2683 return VM_FAULT_OOM;
1da177e4
LT
2684 pte = pte_alloc_map(mm, pmd, address);
2685 if (!pte)
c74df32c 2686 return VM_FAULT_OOM;
1da177e4 2687
c74df32c 2688 return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
1da177e4
LT
2689}
2690
2691#ifndef __PAGETABLE_PUD_FOLDED
2692/*
2693 * Allocate page upper directory.
872fec16 2694 * We've already handled the fast-path in-line.
1da177e4 2695 */
1bb3630e 2696int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1da177e4 2697{
c74df32c
HD
2698 pud_t *new = pud_alloc_one(mm, address);
2699 if (!new)
1bb3630e 2700 return -ENOMEM;
1da177e4 2701
362a61ad
NP
2702 smp_wmb(); /* See comment in __pte_alloc */
2703
872fec16 2704 spin_lock(&mm->page_table_lock);
1bb3630e 2705 if (pgd_present(*pgd)) /* Another has populated it */
5e541973 2706 pud_free(mm, new);
1bb3630e
HD
2707 else
2708 pgd_populate(mm, pgd, new);
c74df32c 2709 spin_unlock(&mm->page_table_lock);
1bb3630e 2710 return 0;
1da177e4
LT
2711}
2712#endif /* __PAGETABLE_PUD_FOLDED */
2713
2714#ifndef __PAGETABLE_PMD_FOLDED
2715/*
2716 * Allocate page middle directory.
872fec16 2717 * We've already handled the fast-path in-line.
1da177e4 2718 */
1bb3630e 2719int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 2720{
c74df32c
HD
2721 pmd_t *new = pmd_alloc_one(mm, address);
2722 if (!new)
1bb3630e 2723 return -ENOMEM;
1da177e4 2724
362a61ad
NP
2725 smp_wmb(); /* See comment in __pte_alloc */
2726
872fec16 2727 spin_lock(&mm->page_table_lock);
1da177e4 2728#ifndef __ARCH_HAS_4LEVEL_HACK
1bb3630e 2729 if (pud_present(*pud)) /* Another has populated it */
5e541973 2730 pmd_free(mm, new);
1bb3630e
HD
2731 else
2732 pud_populate(mm, pud, new);
1da177e4 2733#else
1bb3630e 2734 if (pgd_present(*pud)) /* Another has populated it */
5e541973 2735 pmd_free(mm, new);
1bb3630e
HD
2736 else
2737 pgd_populate(mm, pud, new);
1da177e4 2738#endif /* __ARCH_HAS_4LEVEL_HACK */
c74df32c 2739 spin_unlock(&mm->page_table_lock);
1bb3630e 2740 return 0;
e0f39591 2741}
1da177e4
LT
2742#endif /* __PAGETABLE_PMD_FOLDED */
2743
2744int make_pages_present(unsigned long addr, unsigned long end)
2745{
2746 int ret, len, write;
2747 struct vm_area_struct * vma;
2748
2749 vma = find_vma(current->mm, addr);
2750 if (!vma)
2751 return -1;
2752 write = (vma->vm_flags & VM_WRITE) != 0;
5bcb28b1
ES
2753 BUG_ON(addr >= end);
2754 BUG_ON(end > vma->vm_end);
68e116a3 2755 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
1da177e4
LT
2756 ret = get_user_pages(current, current->mm, addr,
2757 len, write, 0, NULL, NULL);
2758 if (ret < 0)
2759 return ret;
2760 return ret == len ? 0 : -1;
2761}
2762
1da177e4
LT
2763#if !defined(__HAVE_ARCH_GATE_AREA)
2764
2765#if defined(AT_SYSINFO_EHDR)
5ce7852c 2766static struct vm_area_struct gate_vma;
1da177e4
LT
2767
2768static int __init gate_vma_init(void)
2769{
2770 gate_vma.vm_mm = NULL;
2771 gate_vma.vm_start = FIXADDR_USER_START;
2772 gate_vma.vm_end = FIXADDR_USER_END;
b6558c4a
RM
2773 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2774 gate_vma.vm_page_prot = __P101;
f47aef55
RM
2775 /*
2776 * Make sure the vDSO gets into every core dump.
2777 * Dumping its contents makes post-mortem fully interpretable later
2778 * without matching up the same kernel and hardware config to see
2779 * what PC values meant.
2780 */
2781 gate_vma.vm_flags |= VM_ALWAYSDUMP;
1da177e4
LT
2782 return 0;
2783}
2784__initcall(gate_vma_init);
2785#endif
2786
2787struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2788{
2789#ifdef AT_SYSINFO_EHDR
2790 return &gate_vma;
2791#else
2792 return NULL;
2793#endif
2794}
2795
2796int in_gate_area_no_task(unsigned long addr)
2797{
2798#ifdef AT_SYSINFO_EHDR
2799 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2800 return 1;
2801#endif
2802 return 0;
2803}
2804
2805#endif /* __HAVE_ARCH_GATE_AREA */
0ec76a11
DH
2806
2807/*
2808 * Access another process' address space.
2809 * Source/target buffer must be kernel space,
2810 * Do not walk the page table directly, use get_user_pages
2811 */
2812int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2813{
2814 struct mm_struct *mm;
2815 struct vm_area_struct *vma;
2816 struct page *page;
2817 void *old_buf = buf;
2818
2819 mm = get_task_mm(tsk);
2820 if (!mm)
2821 return 0;
2822
2823 down_read(&mm->mmap_sem);
183ff22b 2824 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
2825 while (len) {
2826 int bytes, ret, offset;
2827 void *maddr;
2828
2829 ret = get_user_pages(tsk, mm, addr, 1,
2830 write, 1, &page, &vma);
2831 if (ret <= 0)
2832 break;
2833
2834 bytes = len;
2835 offset = addr & (PAGE_SIZE-1);
2836 if (bytes > PAGE_SIZE-offset)
2837 bytes = PAGE_SIZE-offset;
2838
2839 maddr = kmap(page);
2840 if (write) {
2841 copy_to_user_page(vma, page, addr,
2842 maddr + offset, buf, bytes);
2843 set_page_dirty_lock(page);
2844 } else {
2845 copy_from_user_page(vma, page, addr,
2846 buf, maddr + offset, bytes);
2847 }
2848 kunmap(page);
2849 page_cache_release(page);
2850 len -= bytes;
2851 buf += bytes;
2852 addr += bytes;
2853 }
2854 up_read(&mm->mmap_sem);
2855 mmput(mm);
2856
2857 return buf - old_buf;
2858}
03252919
AK
2859
2860/*
2861 * Print the name of a VMA.
2862 */
2863void print_vma_addr(char *prefix, unsigned long ip)
2864{
2865 struct mm_struct *mm = current->mm;
2866 struct vm_area_struct *vma;
2867
e8bff74a
IM
2868 /*
2869 * Do not print if we are in atomic
2870 * contexts (in exception stacks, etc.):
2871 */
2872 if (preempt_count())
2873 return;
2874
03252919
AK
2875 down_read(&mm->mmap_sem);
2876 vma = find_vma(mm, ip);
2877 if (vma && vma->vm_file) {
2878 struct file *f = vma->vm_file;
2879 char *buf = (char *)__get_free_page(GFP_KERNEL);
2880 if (buf) {
2881 char *p, *s;
2882
cf28b486 2883 p = d_path(&f->f_path, buf, PAGE_SIZE);
03252919
AK
2884 if (IS_ERR(p))
2885 p = "?";
2886 s = strrchr(p, '/');
2887 if (s)
2888 p = s+1;
2889 printk("%s%s[%lx+%lx]", prefix, p,
2890 vma->vm_start,
2891 vma->vm_end - vma->vm_start);
2892 free_page((unsigned long)buf);
2893 }
2894 }
2895 up_read(&current->mm->mmap_sem);
2896}