Merge branch 'isdn-fix' of master.kernel.org:/pub/scm/linux/kernel/git/jgarzik/misc-2.6
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
48#include <linux/rmap.h>
49#include <linux/module.h>
0ff92245 50#include <linux/delayacct.h>
1da177e4 51#include <linux/init.h>
edc79b2a 52#include <linux/writeback.h>
1da177e4
LT
53
54#include <asm/pgalloc.h>
55#include <asm/uaccess.h>
56#include <asm/tlb.h>
57#include <asm/tlbflush.h>
58#include <asm/pgtable.h>
59
60#include <linux/swapops.h>
61#include <linux/elf.h>
62
d41dee36 63#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
64/* use the per-pgdat data instead for discontigmem - mbligh */
65unsigned long max_mapnr;
66struct page *mem_map;
67
68EXPORT_SYMBOL(max_mapnr);
69EXPORT_SYMBOL(mem_map);
70#endif
71
72unsigned long num_physpages;
73/*
74 * A number of key systems in x86 including ioremap() rely on the assumption
75 * that high_memory defines the upper bound on direct map memory, then end
76 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
77 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
78 * and ZONE_HIGHMEM.
79 */
80void * high_memory;
1da177e4
LT
81
82EXPORT_SYMBOL(num_physpages);
83EXPORT_SYMBOL(high_memory);
1da177e4 84
a62eaf15
AK
85int randomize_va_space __read_mostly = 1;
86
87static int __init disable_randmaps(char *s)
88{
89 randomize_va_space = 0;
9b41046c 90 return 1;
a62eaf15
AK
91}
92__setup("norandmaps", disable_randmaps);
93
94
1da177e4
LT
95/*
96 * If a p?d_bad entry is found while walking page tables, report
97 * the error, before resetting entry to p?d_none. Usually (but
98 * very seldom) called out from the p?d_none_or_clear_bad macros.
99 */
100
101void pgd_clear_bad(pgd_t *pgd)
102{
103 pgd_ERROR(*pgd);
104 pgd_clear(pgd);
105}
106
107void pud_clear_bad(pud_t *pud)
108{
109 pud_ERROR(*pud);
110 pud_clear(pud);
111}
112
113void pmd_clear_bad(pmd_t *pmd)
114{
115 pmd_ERROR(*pmd);
116 pmd_clear(pmd);
117}
118
119/*
120 * Note: this doesn't free the actual pages themselves. That
121 * has been handled earlier when unmapping all the memory regions.
122 */
e0da382c 123static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
1da177e4 124{
e0da382c
HD
125 struct page *page = pmd_page(*pmd);
126 pmd_clear(pmd);
4c21e2f2 127 pte_lock_deinit(page);
e0da382c 128 pte_free_tlb(tlb, page);
df849a15 129 dec_zone_page_state(page, NR_PAGETABLE);
e0da382c 130 tlb->mm->nr_ptes--;
1da177e4
LT
131}
132
e0da382c
HD
133static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
134 unsigned long addr, unsigned long end,
135 unsigned long floor, unsigned long ceiling)
1da177e4
LT
136{
137 pmd_t *pmd;
138 unsigned long next;
e0da382c 139 unsigned long start;
1da177e4 140
e0da382c 141 start = addr;
1da177e4 142 pmd = pmd_offset(pud, addr);
1da177e4
LT
143 do {
144 next = pmd_addr_end(addr, end);
145 if (pmd_none_or_clear_bad(pmd))
146 continue;
e0da382c 147 free_pte_range(tlb, pmd);
1da177e4
LT
148 } while (pmd++, addr = next, addr != end);
149
e0da382c
HD
150 start &= PUD_MASK;
151 if (start < floor)
152 return;
153 if (ceiling) {
154 ceiling &= PUD_MASK;
155 if (!ceiling)
156 return;
1da177e4 157 }
e0da382c
HD
158 if (end - 1 > ceiling - 1)
159 return;
160
161 pmd = pmd_offset(pud, start);
162 pud_clear(pud);
163 pmd_free_tlb(tlb, pmd);
1da177e4
LT
164}
165
e0da382c
HD
166static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
167 unsigned long addr, unsigned long end,
168 unsigned long floor, unsigned long ceiling)
1da177e4
LT
169{
170 pud_t *pud;
171 unsigned long next;
e0da382c 172 unsigned long start;
1da177e4 173
e0da382c 174 start = addr;
1da177e4 175 pud = pud_offset(pgd, addr);
1da177e4
LT
176 do {
177 next = pud_addr_end(addr, end);
178 if (pud_none_or_clear_bad(pud))
179 continue;
e0da382c 180 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
181 } while (pud++, addr = next, addr != end);
182
e0da382c
HD
183 start &= PGDIR_MASK;
184 if (start < floor)
185 return;
186 if (ceiling) {
187 ceiling &= PGDIR_MASK;
188 if (!ceiling)
189 return;
1da177e4 190 }
e0da382c
HD
191 if (end - 1 > ceiling - 1)
192 return;
193
194 pud = pud_offset(pgd, start);
195 pgd_clear(pgd);
196 pud_free_tlb(tlb, pud);
1da177e4
LT
197}
198
199/*
e0da382c
HD
200 * This function frees user-level page tables of a process.
201 *
1da177e4
LT
202 * Must be called with pagetable lock held.
203 */
3bf5ee95 204void free_pgd_range(struct mmu_gather **tlb,
e0da382c
HD
205 unsigned long addr, unsigned long end,
206 unsigned long floor, unsigned long ceiling)
1da177e4
LT
207{
208 pgd_t *pgd;
209 unsigned long next;
e0da382c
HD
210 unsigned long start;
211
212 /*
213 * The next few lines have given us lots of grief...
214 *
215 * Why are we testing PMD* at this top level? Because often
216 * there will be no work to do at all, and we'd prefer not to
217 * go all the way down to the bottom just to discover that.
218 *
219 * Why all these "- 1"s? Because 0 represents both the bottom
220 * of the address space and the top of it (using -1 for the
221 * top wouldn't help much: the masks would do the wrong thing).
222 * The rule is that addr 0 and floor 0 refer to the bottom of
223 * the address space, but end 0 and ceiling 0 refer to the top
224 * Comparisons need to use "end - 1" and "ceiling - 1" (though
225 * that end 0 case should be mythical).
226 *
227 * Wherever addr is brought up or ceiling brought down, we must
228 * be careful to reject "the opposite 0" before it confuses the
229 * subsequent tests. But what about where end is brought down
230 * by PMD_SIZE below? no, end can't go down to 0 there.
231 *
232 * Whereas we round start (addr) and ceiling down, by different
233 * masks at different levels, in order to test whether a table
234 * now has no other vmas using it, so can be freed, we don't
235 * bother to round floor or end up - the tests don't need that.
236 */
1da177e4 237
e0da382c
HD
238 addr &= PMD_MASK;
239 if (addr < floor) {
240 addr += PMD_SIZE;
241 if (!addr)
242 return;
243 }
244 if (ceiling) {
245 ceiling &= PMD_MASK;
246 if (!ceiling)
247 return;
248 }
249 if (end - 1 > ceiling - 1)
250 end -= PMD_SIZE;
251 if (addr > end - 1)
252 return;
253
254 start = addr;
3bf5ee95 255 pgd = pgd_offset((*tlb)->mm, addr);
1da177e4
LT
256 do {
257 next = pgd_addr_end(addr, end);
258 if (pgd_none_or_clear_bad(pgd))
259 continue;
3bf5ee95 260 free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
1da177e4 261 } while (pgd++, addr = next, addr != end);
e0da382c 262
4d6ddfa9 263 if (!(*tlb)->fullmm)
3bf5ee95 264 flush_tlb_pgtables((*tlb)->mm, start, end);
e0da382c
HD
265}
266
267void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
3bf5ee95 268 unsigned long floor, unsigned long ceiling)
e0da382c
HD
269{
270 while (vma) {
271 struct vm_area_struct *next = vma->vm_next;
272 unsigned long addr = vma->vm_start;
273
8f4f8c16
HD
274 /*
275 * Hide vma from rmap and vmtruncate before freeing pgtables
276 */
277 anon_vma_unlink(vma);
278 unlink_file_vma(vma);
279
9da61aef 280 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 281 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
e0da382c 282 floor, next? next->vm_start: ceiling);
3bf5ee95
HD
283 } else {
284 /*
285 * Optimization: gather nearby vmas into one call down
286 */
287 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 288 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
289 vma = next;
290 next = vma->vm_next;
8f4f8c16
HD
291 anon_vma_unlink(vma);
292 unlink_file_vma(vma);
3bf5ee95
HD
293 }
294 free_pgd_range(tlb, addr, vma->vm_end,
295 floor, next? next->vm_start: ceiling);
296 }
e0da382c
HD
297 vma = next;
298 }
1da177e4
LT
299}
300
1bb3630e 301int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
1da177e4 302{
c74df32c 303 struct page *new = pte_alloc_one(mm, address);
1bb3630e
HD
304 if (!new)
305 return -ENOMEM;
306
4c21e2f2 307 pte_lock_init(new);
c74df32c 308 spin_lock(&mm->page_table_lock);
4c21e2f2
HD
309 if (pmd_present(*pmd)) { /* Another has populated it */
310 pte_lock_deinit(new);
1bb3630e 311 pte_free(new);
4c21e2f2 312 } else {
1da177e4 313 mm->nr_ptes++;
df849a15 314 inc_zone_page_state(new, NR_PAGETABLE);
1da177e4
LT
315 pmd_populate(mm, pmd, new);
316 }
c74df32c 317 spin_unlock(&mm->page_table_lock);
1bb3630e 318 return 0;
1da177e4
LT
319}
320
1bb3630e 321int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 322{
1bb3630e
HD
323 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
324 if (!new)
325 return -ENOMEM;
326
327 spin_lock(&init_mm.page_table_lock);
328 if (pmd_present(*pmd)) /* Another has populated it */
329 pte_free_kernel(new);
330 else
331 pmd_populate_kernel(&init_mm, pmd, new);
332 spin_unlock(&init_mm.page_table_lock);
333 return 0;
1da177e4
LT
334}
335
ae859762
HD
336static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
337{
338 if (file_rss)
339 add_mm_counter(mm, file_rss, file_rss);
340 if (anon_rss)
341 add_mm_counter(mm, anon_rss, anon_rss);
342}
343
b5810039 344/*
6aab341e
LT
345 * This function is called to print an error when a bad pte
346 * is found. For example, we might have a PFN-mapped pte in
347 * a region that doesn't allow it.
b5810039
NP
348 *
349 * The calling function must still handle the error.
350 */
351void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
352{
353 printk(KERN_ERR "Bad pte = %08llx, process = %s, "
354 "vm_flags = %lx, vaddr = %lx\n",
355 (long long)pte_val(pte),
356 (vma->vm_mm == current->mm ? current->comm : "???"),
357 vma->vm_flags, vaddr);
358 dump_stack();
359}
360
67121172
LT
361static inline int is_cow_mapping(unsigned int flags)
362{
363 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
364}
365
ee498ed7 366/*
6aab341e
LT
367 * This function gets the "struct page" associated with a pte.
368 *
369 * NOTE! Some mappings do not have "struct pages". A raw PFN mapping
370 * will have each page table entry just pointing to a raw page frame
371 * number, and as far as the VM layer is concerned, those do not have
372 * pages associated with them - even if the PFN might point to memory
373 * that otherwise is perfectly fine and has a "struct page".
374 *
375 * The way we recognize those mappings is through the rules set up
376 * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set,
377 * and the vm_pgoff will point to the first PFN mapped: thus every
378 * page that is a raw mapping will always honor the rule
379 *
380 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
381 *
382 * and if that isn't true, the page has been COW'ed (in which case it
383 * _does_ have a "struct page" associated with it even if it is in a
384 * VM_PFNMAP range).
ee498ed7 385 */
6aab341e 386struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
ee498ed7 387{
6aab341e
LT
388 unsigned long pfn = pte_pfn(pte);
389
b7ab795b 390 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
6aab341e
LT
391 unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT;
392 if (pfn == vma->vm_pgoff + off)
393 return NULL;
67121172 394 if (!is_cow_mapping(vma->vm_flags))
fb155c16 395 return NULL;
6aab341e
LT
396 }
397
315ab19a
NP
398 /*
399 * Add some anal sanity checks for now. Eventually,
400 * we should just do "return pfn_to_page(pfn)", but
401 * in the meantime we check that we get a valid pfn,
402 * and that the resulting page looks ok.
403 */
6aab341e
LT
404 if (unlikely(!pfn_valid(pfn))) {
405 print_bad_pte(vma, pte, addr);
406 return NULL;
407 }
408
409 /*
410 * NOTE! We still have PageReserved() pages in the page
411 * tables.
412 *
413 * The PAGE_ZERO() pages and various VDSO mappings can
414 * cause them to exist.
415 */
416 return pfn_to_page(pfn);
ee498ed7
HD
417}
418
1da177e4
LT
419/*
420 * copy one vm_area from one task to the other. Assumes the page tables
421 * already present in the new task to be cleared in the whole range
422 * covered by this vma.
1da177e4
LT
423 */
424
8c103762 425static inline void
1da177e4 426copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 427 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 428 unsigned long addr, int *rss)
1da177e4 429{
b5810039 430 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
431 pte_t pte = *src_pte;
432 struct page *page;
1da177e4
LT
433
434 /* pte contains position in swap or file, so copy. */
435 if (unlikely(!pte_present(pte))) {
436 if (!pte_file(pte)) {
0697212a
CL
437 swp_entry_t entry = pte_to_swp_entry(pte);
438
439 swap_duplicate(entry);
1da177e4
LT
440 /* make sure dst_mm is on swapoff's mmlist. */
441 if (unlikely(list_empty(&dst_mm->mmlist))) {
442 spin_lock(&mmlist_lock);
f412ac08
HD
443 if (list_empty(&dst_mm->mmlist))
444 list_add(&dst_mm->mmlist,
445 &src_mm->mmlist);
1da177e4
LT
446 spin_unlock(&mmlist_lock);
447 }
0697212a
CL
448 if (is_write_migration_entry(entry) &&
449 is_cow_mapping(vm_flags)) {
450 /*
451 * COW mappings require pages in both parent
452 * and child to be set to read.
453 */
454 make_migration_entry_read(&entry);
455 pte = swp_entry_to_pte(entry);
456 set_pte_at(src_mm, addr, src_pte, pte);
457 }
1da177e4 458 }
ae859762 459 goto out_set_pte;
1da177e4
LT
460 }
461
1da177e4
LT
462 /*
463 * If it's a COW mapping, write protect it both
464 * in the parent and the child
465 */
67121172 466 if (is_cow_mapping(vm_flags)) {
1da177e4 467 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 468 pte = pte_wrprotect(pte);
1da177e4
LT
469 }
470
471 /*
472 * If it's a shared mapping, mark it clean in
473 * the child
474 */
475 if (vm_flags & VM_SHARED)
476 pte = pte_mkclean(pte);
477 pte = pte_mkold(pte);
6aab341e
LT
478
479 page = vm_normal_page(vma, addr, pte);
480 if (page) {
481 get_page(page);
c97a9e10 482 page_dup_rmap(page, vma, addr);
6aab341e
LT
483 rss[!!PageAnon(page)]++;
484 }
ae859762
HD
485
486out_set_pte:
487 set_pte_at(dst_mm, addr, dst_pte, pte);
1da177e4
LT
488}
489
490static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
491 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
492 unsigned long addr, unsigned long end)
493{
494 pte_t *src_pte, *dst_pte;
c74df32c 495 spinlock_t *src_ptl, *dst_ptl;
e040f218 496 int progress = 0;
8c103762 497 int rss[2];
1da177e4
LT
498
499again:
ae859762 500 rss[1] = rss[0] = 0;
c74df32c 501 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
502 if (!dst_pte)
503 return -ENOMEM;
504 src_pte = pte_offset_map_nested(src_pmd, addr);
4c21e2f2 505 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 506 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
6606c3e0 507 arch_enter_lazy_mmu_mode();
1da177e4 508
1da177e4
LT
509 do {
510 /*
511 * We are holding two locks at this point - either of them
512 * could generate latencies in another task on another CPU.
513 */
e040f218
HD
514 if (progress >= 32) {
515 progress = 0;
516 if (need_resched() ||
c74df32c
HD
517 need_lockbreak(src_ptl) ||
518 need_lockbreak(dst_ptl))
e040f218
HD
519 break;
520 }
1da177e4
LT
521 if (pte_none(*src_pte)) {
522 progress++;
523 continue;
524 }
8c103762 525 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
1da177e4
LT
526 progress += 8;
527 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 528
6606c3e0 529 arch_leave_lazy_mmu_mode();
c74df32c 530 spin_unlock(src_ptl);
1da177e4 531 pte_unmap_nested(src_pte - 1);
ae859762 532 add_mm_rss(dst_mm, rss[0], rss[1]);
c74df32c
HD
533 pte_unmap_unlock(dst_pte - 1, dst_ptl);
534 cond_resched();
1da177e4
LT
535 if (addr != end)
536 goto again;
537 return 0;
538}
539
540static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
541 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
542 unsigned long addr, unsigned long end)
543{
544 pmd_t *src_pmd, *dst_pmd;
545 unsigned long next;
546
547 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
548 if (!dst_pmd)
549 return -ENOMEM;
550 src_pmd = pmd_offset(src_pud, addr);
551 do {
552 next = pmd_addr_end(addr, end);
553 if (pmd_none_or_clear_bad(src_pmd))
554 continue;
555 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
556 vma, addr, next))
557 return -ENOMEM;
558 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
559 return 0;
560}
561
562static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
563 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
564 unsigned long addr, unsigned long end)
565{
566 pud_t *src_pud, *dst_pud;
567 unsigned long next;
568
569 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
570 if (!dst_pud)
571 return -ENOMEM;
572 src_pud = pud_offset(src_pgd, addr);
573 do {
574 next = pud_addr_end(addr, end);
575 if (pud_none_or_clear_bad(src_pud))
576 continue;
577 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
578 vma, addr, next))
579 return -ENOMEM;
580 } while (dst_pud++, src_pud++, addr = next, addr != end);
581 return 0;
582}
583
584int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
585 struct vm_area_struct *vma)
586{
587 pgd_t *src_pgd, *dst_pgd;
588 unsigned long next;
589 unsigned long addr = vma->vm_start;
590 unsigned long end = vma->vm_end;
591
d992895b
NP
592 /*
593 * Don't copy ptes where a page fault will fill them correctly.
594 * Fork becomes much lighter when there are big shared or private
595 * readonly mappings. The tradeoff is that copy_page_range is more
596 * efficient than faulting.
597 */
4d7672b4 598 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
d992895b
NP
599 if (!vma->anon_vma)
600 return 0;
601 }
602
1da177e4
LT
603 if (is_vm_hugetlb_page(vma))
604 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
605
606 dst_pgd = pgd_offset(dst_mm, addr);
607 src_pgd = pgd_offset(src_mm, addr);
608 do {
609 next = pgd_addr_end(addr, end);
610 if (pgd_none_or_clear_bad(src_pgd))
611 continue;
612 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
613 vma, addr, next))
614 return -ENOMEM;
615 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
616 return 0;
617}
618
51c6f666 619static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 620 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 621 unsigned long addr, unsigned long end,
51c6f666 622 long *zap_work, struct zap_details *details)
1da177e4 623{
b5810039 624 struct mm_struct *mm = tlb->mm;
1da177e4 625 pte_t *pte;
508034a3 626 spinlock_t *ptl;
ae859762
HD
627 int file_rss = 0;
628 int anon_rss = 0;
1da177e4 629
508034a3 630 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
6606c3e0 631 arch_enter_lazy_mmu_mode();
1da177e4
LT
632 do {
633 pte_t ptent = *pte;
51c6f666
RH
634 if (pte_none(ptent)) {
635 (*zap_work)--;
1da177e4 636 continue;
51c6f666 637 }
6f5e6b9e
HD
638
639 (*zap_work) -= PAGE_SIZE;
640
1da177e4 641 if (pte_present(ptent)) {
ee498ed7 642 struct page *page;
51c6f666 643
6aab341e 644 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
645 if (unlikely(details) && page) {
646 /*
647 * unmap_shared_mapping_pages() wants to
648 * invalidate cache without truncating:
649 * unmap shared but keep private pages.
650 */
651 if (details->check_mapping &&
652 details->check_mapping != page->mapping)
653 continue;
654 /*
655 * Each page->index must be checked when
656 * invalidating or truncating nonlinear.
657 */
658 if (details->nonlinear_vma &&
659 (page->index < details->first_index ||
660 page->index > details->last_index))
661 continue;
662 }
b5810039 663 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 664 tlb->fullmm);
1da177e4
LT
665 tlb_remove_tlb_entry(tlb, pte, addr);
666 if (unlikely(!page))
667 continue;
668 if (unlikely(details) && details->nonlinear_vma
669 && linear_page_index(details->nonlinear_vma,
670 addr) != page->index)
b5810039 671 set_pte_at(mm, addr, pte,
1da177e4 672 pgoff_to_pte(page->index));
1da177e4 673 if (PageAnon(page))
86d912f4 674 anon_rss--;
6237bcd9
HD
675 else {
676 if (pte_dirty(ptent))
677 set_page_dirty(page);
678 if (pte_young(ptent))
daa88c8d 679 SetPageReferenced(page);
86d912f4 680 file_rss--;
6237bcd9 681 }
7de6b805 682 page_remove_rmap(page, vma);
1da177e4
LT
683 tlb_remove_page(tlb, page);
684 continue;
685 }
686 /*
687 * If details->check_mapping, we leave swap entries;
688 * if details->nonlinear_vma, we leave file entries.
689 */
690 if (unlikely(details))
691 continue;
692 if (!pte_file(ptent))
693 free_swap_and_cache(pte_to_swp_entry(ptent));
9888a1ca 694 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
51c6f666 695 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
ae859762 696
86d912f4 697 add_mm_rss(mm, file_rss, anon_rss);
6606c3e0 698 arch_leave_lazy_mmu_mode();
508034a3 699 pte_unmap_unlock(pte - 1, ptl);
51c6f666
RH
700
701 return addr;
1da177e4
LT
702}
703
51c6f666 704static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 705 struct vm_area_struct *vma, pud_t *pud,
1da177e4 706 unsigned long addr, unsigned long end,
51c6f666 707 long *zap_work, struct zap_details *details)
1da177e4
LT
708{
709 pmd_t *pmd;
710 unsigned long next;
711
712 pmd = pmd_offset(pud, addr);
713 do {
714 next = pmd_addr_end(addr, end);
51c6f666
RH
715 if (pmd_none_or_clear_bad(pmd)) {
716 (*zap_work)--;
1da177e4 717 continue;
51c6f666
RH
718 }
719 next = zap_pte_range(tlb, vma, pmd, addr, next,
720 zap_work, details);
721 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
722
723 return addr;
1da177e4
LT
724}
725
51c6f666 726static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
b5810039 727 struct vm_area_struct *vma, pgd_t *pgd,
1da177e4 728 unsigned long addr, unsigned long end,
51c6f666 729 long *zap_work, struct zap_details *details)
1da177e4
LT
730{
731 pud_t *pud;
732 unsigned long next;
733
734 pud = pud_offset(pgd, addr);
735 do {
736 next = pud_addr_end(addr, end);
51c6f666
RH
737 if (pud_none_or_clear_bad(pud)) {
738 (*zap_work)--;
1da177e4 739 continue;
51c6f666
RH
740 }
741 next = zap_pmd_range(tlb, vma, pud, addr, next,
742 zap_work, details);
743 } while (pud++, addr = next, (addr != end && *zap_work > 0));
744
745 return addr;
1da177e4
LT
746}
747
51c6f666
RH
748static unsigned long unmap_page_range(struct mmu_gather *tlb,
749 struct vm_area_struct *vma,
1da177e4 750 unsigned long addr, unsigned long end,
51c6f666 751 long *zap_work, struct zap_details *details)
1da177e4
LT
752{
753 pgd_t *pgd;
754 unsigned long next;
755
756 if (details && !details->check_mapping && !details->nonlinear_vma)
757 details = NULL;
758
759 BUG_ON(addr >= end);
760 tlb_start_vma(tlb, vma);
761 pgd = pgd_offset(vma->vm_mm, addr);
762 do {
763 next = pgd_addr_end(addr, end);
51c6f666
RH
764 if (pgd_none_or_clear_bad(pgd)) {
765 (*zap_work)--;
1da177e4 766 continue;
51c6f666
RH
767 }
768 next = zap_pud_range(tlb, vma, pgd, addr, next,
769 zap_work, details);
770 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
1da177e4 771 tlb_end_vma(tlb, vma);
51c6f666
RH
772
773 return addr;
1da177e4
LT
774}
775
776#ifdef CONFIG_PREEMPT
777# define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
778#else
779/* No preempt: go for improved straight-line efficiency */
780# define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
781#endif
782
783/**
784 * unmap_vmas - unmap a range of memory covered by a list of vma's
785 * @tlbp: address of the caller's struct mmu_gather
1da177e4
LT
786 * @vma: the starting vma
787 * @start_addr: virtual address at which to start unmapping
788 * @end_addr: virtual address at which to end unmapping
789 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
790 * @details: details of nonlinear truncation or shared cache invalidation
791 *
ee39b37b 792 * Returns the end address of the unmapping (restart addr if interrupted).
1da177e4 793 *
508034a3 794 * Unmap all pages in the vma list.
1da177e4 795 *
508034a3
HD
796 * We aim to not hold locks for too long (for scheduling latency reasons).
797 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
1da177e4
LT
798 * return the ending mmu_gather to the caller.
799 *
800 * Only addresses between `start' and `end' will be unmapped.
801 *
802 * The VMA list must be sorted in ascending virtual address order.
803 *
804 * unmap_vmas() assumes that the caller will flush the whole unmapped address
805 * range after unmap_vmas() returns. So the only responsibility here is to
806 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
807 * drops the lock and schedules.
808 */
508034a3 809unsigned long unmap_vmas(struct mmu_gather **tlbp,
1da177e4
LT
810 struct vm_area_struct *vma, unsigned long start_addr,
811 unsigned long end_addr, unsigned long *nr_accounted,
812 struct zap_details *details)
813{
51c6f666 814 long zap_work = ZAP_BLOCK_SIZE;
1da177e4
LT
815 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
816 int tlb_start_valid = 0;
ee39b37b 817 unsigned long start = start_addr;
1da177e4 818 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
4d6ddfa9 819 int fullmm = (*tlbp)->fullmm;
1da177e4
LT
820
821 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1da177e4
LT
822 unsigned long end;
823
824 start = max(vma->vm_start, start_addr);
825 if (start >= vma->vm_end)
826 continue;
827 end = min(vma->vm_end, end_addr);
828 if (end <= vma->vm_start)
829 continue;
830
831 if (vma->vm_flags & VM_ACCOUNT)
832 *nr_accounted += (end - start) >> PAGE_SHIFT;
833
1da177e4 834 while (start != end) {
1da177e4
LT
835 if (!tlb_start_valid) {
836 tlb_start = start;
837 tlb_start_valid = 1;
838 }
839
51c6f666 840 if (unlikely(is_vm_hugetlb_page(vma))) {
1da177e4 841 unmap_hugepage_range(vma, start, end);
51c6f666
RH
842 zap_work -= (end - start) /
843 (HPAGE_SIZE / PAGE_SIZE);
844 start = end;
845 } else
846 start = unmap_page_range(*tlbp, vma,
847 start, end, &zap_work, details);
848
849 if (zap_work > 0) {
850 BUG_ON(start != end);
851 break;
1da177e4
LT
852 }
853
1da177e4
LT
854 tlb_finish_mmu(*tlbp, tlb_start, start);
855
856 if (need_resched() ||
1da177e4
LT
857 (i_mmap_lock && need_lockbreak(i_mmap_lock))) {
858 if (i_mmap_lock) {
508034a3 859 *tlbp = NULL;
1da177e4
LT
860 goto out;
861 }
1da177e4 862 cond_resched();
1da177e4
LT
863 }
864
508034a3 865 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1da177e4 866 tlb_start_valid = 0;
51c6f666 867 zap_work = ZAP_BLOCK_SIZE;
1da177e4
LT
868 }
869 }
870out:
ee39b37b 871 return start; /* which is now the end (or restart) address */
1da177e4
LT
872}
873
874/**
875 * zap_page_range - remove user pages in a given range
876 * @vma: vm_area_struct holding the applicable pages
877 * @address: starting address of pages to zap
878 * @size: number of bytes to zap
879 * @details: details of nonlinear truncation or shared cache invalidation
880 */
ee39b37b 881unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
882 unsigned long size, struct zap_details *details)
883{
884 struct mm_struct *mm = vma->vm_mm;
885 struct mmu_gather *tlb;
886 unsigned long end = address + size;
887 unsigned long nr_accounted = 0;
888
1da177e4 889 lru_add_drain();
1da177e4 890 tlb = tlb_gather_mmu(mm, 0);
365e9c87 891 update_hiwater_rss(mm);
508034a3
HD
892 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
893 if (tlb)
894 tlb_finish_mmu(tlb, address, end);
ee39b37b 895 return end;
1da177e4
LT
896}
897
898/*
899 * Do a quick page-table lookup for a single page.
1da177e4 900 */
6aab341e 901struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
deceb6cd 902 unsigned int flags)
1da177e4
LT
903{
904 pgd_t *pgd;
905 pud_t *pud;
906 pmd_t *pmd;
907 pte_t *ptep, pte;
deceb6cd 908 spinlock_t *ptl;
1da177e4 909 struct page *page;
6aab341e 910 struct mm_struct *mm = vma->vm_mm;
1da177e4 911
deceb6cd
HD
912 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
913 if (!IS_ERR(page)) {
914 BUG_ON(flags & FOLL_GET);
915 goto out;
916 }
1da177e4 917
deceb6cd 918 page = NULL;
1da177e4
LT
919 pgd = pgd_offset(mm, address);
920 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
deceb6cd 921 goto no_page_table;
1da177e4
LT
922
923 pud = pud_offset(pgd, address);
924 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
deceb6cd 925 goto no_page_table;
1da177e4
LT
926
927 pmd = pmd_offset(pud, address);
928 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
deceb6cd
HD
929 goto no_page_table;
930
931 if (pmd_huge(*pmd)) {
932 BUG_ON(flags & FOLL_GET);
933 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1da177e4 934 goto out;
deceb6cd 935 }
1da177e4 936
deceb6cd 937 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
938 if (!ptep)
939 goto out;
940
941 pte = *ptep;
deceb6cd
HD
942 if (!pte_present(pte))
943 goto unlock;
944 if ((flags & FOLL_WRITE) && !pte_write(pte))
945 goto unlock;
6aab341e
LT
946 page = vm_normal_page(vma, address, pte);
947 if (unlikely(!page))
deceb6cd 948 goto unlock;
1da177e4 949
deceb6cd
HD
950 if (flags & FOLL_GET)
951 get_page(page);
952 if (flags & FOLL_TOUCH) {
953 if ((flags & FOLL_WRITE) &&
954 !pte_dirty(pte) && !PageDirty(page))
955 set_page_dirty(page);
956 mark_page_accessed(page);
957 }
958unlock:
959 pte_unmap_unlock(ptep, ptl);
1da177e4 960out:
deceb6cd 961 return page;
1da177e4 962
deceb6cd
HD
963no_page_table:
964 /*
965 * When core dumping an enormous anonymous area that nobody
966 * has touched so far, we don't want to allocate page tables.
967 */
968 if (flags & FOLL_ANON) {
969 page = ZERO_PAGE(address);
970 if (flags & FOLL_GET)
971 get_page(page);
972 BUG_ON(flags & FOLL_WRITE);
973 }
974 return page;
1da177e4
LT
975}
976
1da177e4
LT
977int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
978 unsigned long start, int len, int write, int force,
979 struct page **pages, struct vm_area_struct **vmas)
980{
981 int i;
deceb6cd 982 unsigned int vm_flags;
1da177e4
LT
983
984 /*
985 * Require read or write permissions.
986 * If 'force' is set, we only require the "MAY" flags.
987 */
deceb6cd
HD
988 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
989 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1da177e4
LT
990 i = 0;
991
992 do {
deceb6cd
HD
993 struct vm_area_struct *vma;
994 unsigned int foll_flags;
1da177e4
LT
995
996 vma = find_extend_vma(mm, start);
997 if (!vma && in_gate_area(tsk, start)) {
998 unsigned long pg = start & PAGE_MASK;
999 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1000 pgd_t *pgd;
1001 pud_t *pud;
1002 pmd_t *pmd;
1003 pte_t *pte;
1004 if (write) /* user gate pages are read-only */
1005 return i ? : -EFAULT;
1006 if (pg > TASK_SIZE)
1007 pgd = pgd_offset_k(pg);
1008 else
1009 pgd = pgd_offset_gate(mm, pg);
1010 BUG_ON(pgd_none(*pgd));
1011 pud = pud_offset(pgd, pg);
1012 BUG_ON(pud_none(*pud));
1013 pmd = pmd_offset(pud, pg);
690dbe1c
HD
1014 if (pmd_none(*pmd))
1015 return i ? : -EFAULT;
1da177e4 1016 pte = pte_offset_map(pmd, pg);
690dbe1c
HD
1017 if (pte_none(*pte)) {
1018 pte_unmap(pte);
1019 return i ? : -EFAULT;
1020 }
1da177e4 1021 if (pages) {
fa2a455b 1022 struct page *page = vm_normal_page(gate_vma, start, *pte);
6aab341e
LT
1023 pages[i] = page;
1024 if (page)
1025 get_page(page);
1da177e4
LT
1026 }
1027 pte_unmap(pte);
1028 if (vmas)
1029 vmas[i] = gate_vma;
1030 i++;
1031 start += PAGE_SIZE;
1032 len--;
1033 continue;
1034 }
1035
1ff80389 1036 if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
deceb6cd 1037 || !(vm_flags & vma->vm_flags))
1da177e4
LT
1038 return i ? : -EFAULT;
1039
1040 if (is_vm_hugetlb_page(vma)) {
1041 i = follow_hugetlb_page(mm, vma, pages, vmas,
1042 &start, &len, i);
1043 continue;
1044 }
deceb6cd
HD
1045
1046 foll_flags = FOLL_TOUCH;
1047 if (pages)
1048 foll_flags |= FOLL_GET;
1049 if (!write && !(vma->vm_flags & VM_LOCKED) &&
1050 (!vma->vm_ops || !vma->vm_ops->nopage))
1051 foll_flags |= FOLL_ANON;
1052
1da177e4 1053 do {
08ef4729 1054 struct page *page;
1da177e4 1055
462e00cc
ES
1056 /*
1057 * If tsk is ooming, cut off its access to large memory
1058 * allocations. It has a pending SIGKILL, but it can't
1059 * be processed until returning to user space.
1060 */
1061 if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
1062 return -ENOMEM;
1063
deceb6cd
HD
1064 if (write)
1065 foll_flags |= FOLL_WRITE;
a68d2ebc 1066
deceb6cd 1067 cond_resched();
6aab341e 1068 while (!(page = follow_page(vma, start, foll_flags))) {
deceb6cd
HD
1069 int ret;
1070 ret = __handle_mm_fault(mm, vma, start,
1071 foll_flags & FOLL_WRITE);
a68d2ebc
LT
1072 /*
1073 * The VM_FAULT_WRITE bit tells us that do_wp_page has
1074 * broken COW when necessary, even if maybe_mkwrite
1075 * decided not to set pte_write. We can thus safely do
1076 * subsequent page lookups as if they were reads.
1077 */
1078 if (ret & VM_FAULT_WRITE)
deceb6cd 1079 foll_flags &= ~FOLL_WRITE;
a68d2ebc
LT
1080
1081 switch (ret & ~VM_FAULT_WRITE) {
1da177e4
LT
1082 case VM_FAULT_MINOR:
1083 tsk->min_flt++;
1084 break;
1085 case VM_FAULT_MAJOR:
1086 tsk->maj_flt++;
1087 break;
1088 case VM_FAULT_SIGBUS:
1089 return i ? i : -EFAULT;
1090 case VM_FAULT_OOM:
1091 return i ? i : -ENOMEM;
1092 default:
1093 BUG();
1094 }
7f7bbbe5 1095 cond_resched();
1da177e4
LT
1096 }
1097 if (pages) {
08ef4729 1098 pages[i] = page;
03beb076 1099
a6f36be3 1100 flush_anon_page(vma, page, start);
08ef4729 1101 flush_dcache_page(page);
1da177e4
LT
1102 }
1103 if (vmas)
1104 vmas[i] = vma;
1105 i++;
1106 start += PAGE_SIZE;
1107 len--;
08ef4729 1108 } while (len && start < vma->vm_end);
08ef4729 1109 } while (len);
1da177e4
LT
1110 return i;
1111}
1da177e4
LT
1112EXPORT_SYMBOL(get_user_pages);
1113
1114static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1115 unsigned long addr, unsigned long end, pgprot_t prot)
1116{
1117 pte_t *pte;
c74df32c 1118 spinlock_t *ptl;
5fcf7bb7 1119 int err = 0;
1da177e4 1120
c74df32c 1121 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4 1122 if (!pte)
5fcf7bb7 1123 return -EAGAIN;
6606c3e0 1124 arch_enter_lazy_mmu_mode();
1da177e4 1125 do {
b5810039
NP
1126 struct page *page = ZERO_PAGE(addr);
1127 pte_t zero_pte = pte_wrprotect(mk_pte(page, prot));
5fcf7bb7
HD
1128
1129 if (unlikely(!pte_none(*pte))) {
1130 err = -EEXIST;
1131 pte++;
1132 break;
1133 }
b5810039
NP
1134 page_cache_get(page);
1135 page_add_file_rmap(page);
1136 inc_mm_counter(mm, file_rss);
1da177e4
LT
1137 set_pte_at(mm, addr, pte, zero_pte);
1138 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1139 arch_leave_lazy_mmu_mode();
c74df32c 1140 pte_unmap_unlock(pte - 1, ptl);
5fcf7bb7 1141 return err;
1da177e4
LT
1142}
1143
1144static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
1145 unsigned long addr, unsigned long end, pgprot_t prot)
1146{
1147 pmd_t *pmd;
1148 unsigned long next;
5fcf7bb7 1149 int err;
1da177e4
LT
1150
1151 pmd = pmd_alloc(mm, pud, addr);
1152 if (!pmd)
5fcf7bb7 1153 return -EAGAIN;
1da177e4
LT
1154 do {
1155 next = pmd_addr_end(addr, end);
5fcf7bb7
HD
1156 err = zeromap_pte_range(mm, pmd, addr, next, prot);
1157 if (err)
1158 break;
1da177e4 1159 } while (pmd++, addr = next, addr != end);
5fcf7bb7 1160 return err;
1da177e4
LT
1161}
1162
1163static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1164 unsigned long addr, unsigned long end, pgprot_t prot)
1165{
1166 pud_t *pud;
1167 unsigned long next;
5fcf7bb7 1168 int err;
1da177e4
LT
1169
1170 pud = pud_alloc(mm, pgd, addr);
1171 if (!pud)
5fcf7bb7 1172 return -EAGAIN;
1da177e4
LT
1173 do {
1174 next = pud_addr_end(addr, end);
5fcf7bb7
HD
1175 err = zeromap_pmd_range(mm, pud, addr, next, prot);
1176 if (err)
1177 break;
1da177e4 1178 } while (pud++, addr = next, addr != end);
5fcf7bb7 1179 return err;
1da177e4
LT
1180}
1181
1182int zeromap_page_range(struct vm_area_struct *vma,
1183 unsigned long addr, unsigned long size, pgprot_t prot)
1184{
1185 pgd_t *pgd;
1186 unsigned long next;
1187 unsigned long end = addr + size;
1188 struct mm_struct *mm = vma->vm_mm;
1189 int err;
1190
1191 BUG_ON(addr >= end);
1192 pgd = pgd_offset(mm, addr);
1193 flush_cache_range(vma, addr, end);
1da177e4
LT
1194 do {
1195 next = pgd_addr_end(addr, end);
1196 err = zeromap_pud_range(mm, pgd, addr, next, prot);
1197 if (err)
1198 break;
1199 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1200 return err;
1201}
1202
49c91fb0 1203pte_t * fastcall get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)
c9cfcddf
LT
1204{
1205 pgd_t * pgd = pgd_offset(mm, addr);
1206 pud_t * pud = pud_alloc(mm, pgd, addr);
1207 if (pud) {
49c91fb0 1208 pmd_t * pmd = pmd_alloc(mm, pud, addr);
c9cfcddf
LT
1209 if (pmd)
1210 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1211 }
1212 return NULL;
1213}
1214
238f58d8
LT
1215/*
1216 * This is the old fallback for page remapping.
1217 *
1218 * For historical reasons, it only allows reserved pages. Only
1219 * old drivers should use this, and they needed to mark their
1220 * pages reserved for the old functions anyway.
1221 */
1222static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot)
1223{
1224 int retval;
c9cfcddf 1225 pte_t *pte;
238f58d8
LT
1226 spinlock_t *ptl;
1227
1228 retval = -EINVAL;
a145dd41 1229 if (PageAnon(page))
238f58d8
LT
1230 goto out;
1231 retval = -ENOMEM;
1232 flush_dcache_page(page);
c9cfcddf 1233 pte = get_locked_pte(mm, addr, &ptl);
238f58d8
LT
1234 if (!pte)
1235 goto out;
1236 retval = -EBUSY;
1237 if (!pte_none(*pte))
1238 goto out_unlock;
1239
1240 /* Ok, finally just insert the thing.. */
1241 get_page(page);
1242 inc_mm_counter(mm, file_rss);
1243 page_add_file_rmap(page);
1244 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1245
1246 retval = 0;
1247out_unlock:
1248 pte_unmap_unlock(pte, ptl);
1249out:
1250 return retval;
1251}
1252
bfa5bf6d
REB
1253/**
1254 * vm_insert_page - insert single page into user vma
1255 * @vma: user vma to map to
1256 * @addr: target user address of this page
1257 * @page: source kernel page
1258 *
a145dd41
LT
1259 * This allows drivers to insert individual pages they've allocated
1260 * into a user vma.
1261 *
1262 * The page has to be a nice clean _individual_ kernel allocation.
1263 * If you allocate a compound page, you need to have marked it as
1264 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1265 * (see split_page()).
a145dd41
LT
1266 *
1267 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1268 * took an arbitrary page protection parameter. This doesn't allow
1269 * that. Your vma protection will have to be set up correctly, which
1270 * means that if you want a shared writable mapping, you'd better
1271 * ask for a shared writable mapping!
1272 *
1273 * The page does not need to be reserved.
1274 */
1275int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page)
1276{
1277 if (addr < vma->vm_start || addr >= vma->vm_end)
1278 return -EFAULT;
1279 if (!page_count(page))
1280 return -EINVAL;
4d7672b4 1281 vma->vm_flags |= VM_INSERTPAGE;
a145dd41
LT
1282 return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot);
1283}
e3c3374f 1284EXPORT_SYMBOL(vm_insert_page);
a145dd41 1285
e0dc0d8f
NP
1286/**
1287 * vm_insert_pfn - insert single pfn into user vma
1288 * @vma: user vma to map to
1289 * @addr: target user address of this page
1290 * @pfn: source kernel pfn
1291 *
1292 * Similar to vm_inert_page, this allows drivers to insert individual pages
1293 * they've allocated into a user vma. Same comments apply.
1294 *
1295 * This function should only be called from a vm_ops->fault handler, and
1296 * in that case the handler should return NULL.
1297 */
1298int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1299 unsigned long pfn)
1300{
1301 struct mm_struct *mm = vma->vm_mm;
1302 int retval;
1303 pte_t *pte, entry;
1304 spinlock_t *ptl;
1305
1306 BUG_ON(!(vma->vm_flags & VM_PFNMAP));
1307 BUG_ON(is_cow_mapping(vma->vm_flags));
1308
1309 retval = -ENOMEM;
1310 pte = get_locked_pte(mm, addr, &ptl);
1311 if (!pte)
1312 goto out;
1313 retval = -EBUSY;
1314 if (!pte_none(*pte))
1315 goto out_unlock;
1316
1317 /* Ok, finally just insert the thing.. */
1318 entry = pfn_pte(pfn, vma->vm_page_prot);
1319 set_pte_at(mm, addr, pte, entry);
1320 update_mmu_cache(vma, addr, entry);
1321
1322 retval = 0;
1323out_unlock:
1324 pte_unmap_unlock(pte, ptl);
1325
1326out:
1327 return retval;
1328}
1329EXPORT_SYMBOL(vm_insert_pfn);
1330
1da177e4
LT
1331/*
1332 * maps a range of physical memory into the requested pages. the old
1333 * mappings are removed. any references to nonexistent pages results
1334 * in null mappings (currently treated as "copy-on-access")
1335 */
1336static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1337 unsigned long addr, unsigned long end,
1338 unsigned long pfn, pgprot_t prot)
1339{
1340 pte_t *pte;
c74df32c 1341 spinlock_t *ptl;
1da177e4 1342
c74df32c 1343 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1344 if (!pte)
1345 return -ENOMEM;
6606c3e0 1346 arch_enter_lazy_mmu_mode();
1da177e4
LT
1347 do {
1348 BUG_ON(!pte_none(*pte));
b5810039 1349 set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1da177e4
LT
1350 pfn++;
1351 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1352 arch_leave_lazy_mmu_mode();
c74df32c 1353 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
1354 return 0;
1355}
1356
1357static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1358 unsigned long addr, unsigned long end,
1359 unsigned long pfn, pgprot_t prot)
1360{
1361 pmd_t *pmd;
1362 unsigned long next;
1363
1364 pfn -= addr >> PAGE_SHIFT;
1365 pmd = pmd_alloc(mm, pud, addr);
1366 if (!pmd)
1367 return -ENOMEM;
1368 do {
1369 next = pmd_addr_end(addr, end);
1370 if (remap_pte_range(mm, pmd, addr, next,
1371 pfn + (addr >> PAGE_SHIFT), prot))
1372 return -ENOMEM;
1373 } while (pmd++, addr = next, addr != end);
1374 return 0;
1375}
1376
1377static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1378 unsigned long addr, unsigned long end,
1379 unsigned long pfn, pgprot_t prot)
1380{
1381 pud_t *pud;
1382 unsigned long next;
1383
1384 pfn -= addr >> PAGE_SHIFT;
1385 pud = pud_alloc(mm, pgd, addr);
1386 if (!pud)
1387 return -ENOMEM;
1388 do {
1389 next = pud_addr_end(addr, end);
1390 if (remap_pmd_range(mm, pud, addr, next,
1391 pfn + (addr >> PAGE_SHIFT), prot))
1392 return -ENOMEM;
1393 } while (pud++, addr = next, addr != end);
1394 return 0;
1395}
1396
bfa5bf6d
REB
1397/**
1398 * remap_pfn_range - remap kernel memory to userspace
1399 * @vma: user vma to map to
1400 * @addr: target user address to start at
1401 * @pfn: physical address of kernel memory
1402 * @size: size of map area
1403 * @prot: page protection flags for this mapping
1404 *
1405 * Note: this is only safe if the mm semaphore is held when called.
1406 */
1da177e4
LT
1407int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1408 unsigned long pfn, unsigned long size, pgprot_t prot)
1409{
1410 pgd_t *pgd;
1411 unsigned long next;
2d15cab8 1412 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
1413 struct mm_struct *mm = vma->vm_mm;
1414 int err;
1415
1416 /*
1417 * Physically remapped pages are special. Tell the
1418 * rest of the world about it:
1419 * VM_IO tells people not to look at these pages
1420 * (accesses can have side effects).
0b14c179
HD
1421 * VM_RESERVED is specified all over the place, because
1422 * in 2.4 it kept swapout's vma scan off this vma; but
1423 * in 2.6 the LRU scan won't even find its pages, so this
1424 * flag means no more than count its pages in reserved_vm,
1425 * and omit it from core dump, even when VM_IO turned off.
6aab341e
LT
1426 * VM_PFNMAP tells the core MM that the base pages are just
1427 * raw PFN mappings, and do not have a "struct page" associated
1428 * with them.
fb155c16
LT
1429 *
1430 * There's a horrible special case to handle copy-on-write
1431 * behaviour that some programs depend on. We mark the "original"
1432 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1da177e4 1433 */
67121172 1434 if (is_cow_mapping(vma->vm_flags)) {
fb155c16 1435 if (addr != vma->vm_start || end != vma->vm_end)
7fc7e2ee 1436 return -EINVAL;
fb155c16
LT
1437 vma->vm_pgoff = pfn;
1438 }
1439
6aab341e 1440 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1da177e4
LT
1441
1442 BUG_ON(addr >= end);
1443 pfn -= addr >> PAGE_SHIFT;
1444 pgd = pgd_offset(mm, addr);
1445 flush_cache_range(vma, addr, end);
1da177e4
LT
1446 do {
1447 next = pgd_addr_end(addr, end);
1448 err = remap_pud_range(mm, pgd, addr, next,
1449 pfn + (addr >> PAGE_SHIFT), prot);
1450 if (err)
1451 break;
1452 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1453 return err;
1454}
1455EXPORT_SYMBOL(remap_pfn_range);
1456
aee16b3c
JF
1457static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1458 unsigned long addr, unsigned long end,
1459 pte_fn_t fn, void *data)
1460{
1461 pte_t *pte;
1462 int err;
1463 struct page *pmd_page;
94909914 1464 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
1465
1466 pte = (mm == &init_mm) ?
1467 pte_alloc_kernel(pmd, addr) :
1468 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1469 if (!pte)
1470 return -ENOMEM;
1471
1472 BUG_ON(pmd_huge(*pmd));
1473
1474 pmd_page = pmd_page(*pmd);
1475
1476 do {
1477 err = fn(pte, pmd_page, addr, data);
1478 if (err)
1479 break;
1480 } while (pte++, addr += PAGE_SIZE, addr != end);
1481
1482 if (mm != &init_mm)
1483 pte_unmap_unlock(pte-1, ptl);
1484 return err;
1485}
1486
1487static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1488 unsigned long addr, unsigned long end,
1489 pte_fn_t fn, void *data)
1490{
1491 pmd_t *pmd;
1492 unsigned long next;
1493 int err;
1494
1495 pmd = pmd_alloc(mm, pud, addr);
1496 if (!pmd)
1497 return -ENOMEM;
1498 do {
1499 next = pmd_addr_end(addr, end);
1500 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1501 if (err)
1502 break;
1503 } while (pmd++, addr = next, addr != end);
1504 return err;
1505}
1506
1507static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1508 unsigned long addr, unsigned long end,
1509 pte_fn_t fn, void *data)
1510{
1511 pud_t *pud;
1512 unsigned long next;
1513 int err;
1514
1515 pud = pud_alloc(mm, pgd, addr);
1516 if (!pud)
1517 return -ENOMEM;
1518 do {
1519 next = pud_addr_end(addr, end);
1520 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1521 if (err)
1522 break;
1523 } while (pud++, addr = next, addr != end);
1524 return err;
1525}
1526
1527/*
1528 * Scan a region of virtual memory, filling in page tables as necessary
1529 * and calling a provided function on each leaf page table.
1530 */
1531int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1532 unsigned long size, pte_fn_t fn, void *data)
1533{
1534 pgd_t *pgd;
1535 unsigned long next;
1536 unsigned long end = addr + size;
1537 int err;
1538
1539 BUG_ON(addr >= end);
1540 pgd = pgd_offset(mm, addr);
1541 do {
1542 next = pgd_addr_end(addr, end);
1543 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1544 if (err)
1545 break;
1546 } while (pgd++, addr = next, addr != end);
1547 return err;
1548}
1549EXPORT_SYMBOL_GPL(apply_to_page_range);
1550
8f4e2101
HD
1551/*
1552 * handle_pte_fault chooses page fault handler according to an entry
1553 * which was read non-atomically. Before making any commitment, on
1554 * those architectures or configurations (e.g. i386 with PAE) which
1555 * might give a mix of unmatched parts, do_swap_page and do_file_page
1556 * must check under lock before unmapping the pte and proceeding
1557 * (but do_wp_page is only called after already making such a check;
1558 * and do_anonymous_page and do_no_page can safely check later on).
1559 */
4c21e2f2 1560static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
1561 pte_t *page_table, pte_t orig_pte)
1562{
1563 int same = 1;
1564#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1565 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
1566 spinlock_t *ptl = pte_lockptr(mm, pmd);
1567 spin_lock(ptl);
8f4e2101 1568 same = pte_same(*page_table, orig_pte);
4c21e2f2 1569 spin_unlock(ptl);
8f4e2101
HD
1570 }
1571#endif
1572 pte_unmap(page_table);
1573 return same;
1574}
1575
1da177e4
LT
1576/*
1577 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1578 * servicing faults for write access. In the normal case, do always want
1579 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1580 * that do not have writing enabled, when used by access_process_vm.
1581 */
1582static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1583{
1584 if (likely(vma->vm_flags & VM_WRITE))
1585 pte = pte_mkwrite(pte);
1586 return pte;
1587}
1588
9de455b2 1589static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e
LT
1590{
1591 /*
1592 * If the source page was a PFN mapping, we don't have
1593 * a "struct page" for it. We do a best-effort copy by
1594 * just copying from the original user address. If that
1595 * fails, we just zero-fill it. Live with it.
1596 */
1597 if (unlikely(!src)) {
1598 void *kaddr = kmap_atomic(dst, KM_USER0);
5d2a2dbb
LT
1599 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1600
1601 /*
1602 * This really shouldn't fail, because the page is there
1603 * in the page tables. But it might just be unreadable,
1604 * in which case we just give up and fill the result with
1605 * zeroes.
1606 */
1607 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
6aab341e
LT
1608 memset(kaddr, 0, PAGE_SIZE);
1609 kunmap_atomic(kaddr, KM_USER0);
c4ec7b0d 1610 flush_dcache_page(dst);
6aab341e 1611 return;
9de455b2 1612
6aab341e 1613 }
9de455b2 1614 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
1615}
1616
1da177e4
LT
1617/*
1618 * This routine handles present pages, when users try to write
1619 * to a shared page. It is done by copying the page to a new address
1620 * and decrementing the shared-page counter for the old page.
1621 *
1da177e4
LT
1622 * Note that this routine assumes that the protection checks have been
1623 * done by the caller (the low-level page fault routine in most cases).
1624 * Thus we can safely just mark it writable once we've done any necessary
1625 * COW.
1626 *
1627 * We also mark the page dirty at this point even though the page will
1628 * change only once the write actually happens. This avoids a few races,
1629 * and potentially makes it more efficient.
1630 *
8f4e2101
HD
1631 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1632 * but allow concurrent faults), with pte both mapped and locked.
1633 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 1634 */
65500d23
HD
1635static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1636 unsigned long address, pte_t *page_table, pmd_t *pmd,
8f4e2101 1637 spinlock_t *ptl, pte_t orig_pte)
1da177e4 1638{
e5bbe4df 1639 struct page *old_page, *new_page;
1da177e4 1640 pte_t entry;
d08b3851
PZ
1641 int reuse = 0, ret = VM_FAULT_MINOR;
1642 struct page *dirty_page = NULL;
1da177e4 1643
6aab341e 1644 old_page = vm_normal_page(vma, address, orig_pte);
6aab341e
LT
1645 if (!old_page)
1646 goto gotten;
1da177e4 1647
d08b3851 1648 /*
ee6a6457
PZ
1649 * Take out anonymous pages first, anonymous shared vmas are
1650 * not dirty accountable.
d08b3851 1651 */
ee6a6457
PZ
1652 if (PageAnon(old_page)) {
1653 if (!TestSetPageLocked(old_page)) {
1654 reuse = can_share_swap_page(old_page);
1655 unlock_page(old_page);
1656 }
1657 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 1658 (VM_WRITE|VM_SHARED))) {
ee6a6457
PZ
1659 /*
1660 * Only catch write-faults on shared writable pages,
1661 * read-only shared pages can get COWed by
1662 * get_user_pages(.write=1, .force=1).
1663 */
9637a5ef
DH
1664 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1665 /*
1666 * Notify the address space that the page is about to
1667 * become writable so that it can prohibit this or wait
1668 * for the page to get into an appropriate state.
1669 *
1670 * We do this without the lock held, so that it can
1671 * sleep if it needs to.
1672 */
1673 page_cache_get(old_page);
1674 pte_unmap_unlock(page_table, ptl);
1675
1676 if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1677 goto unwritable_page;
1678
9637a5ef
DH
1679 /*
1680 * Since we dropped the lock we need to revalidate
1681 * the PTE as someone else may have changed it. If
1682 * they did, we just return, as we can count on the
1683 * MMU to tell us if they didn't also make it writable.
1684 */
1685 page_table = pte_offset_map_lock(mm, pmd, address,
1686 &ptl);
c3704ceb 1687 page_cache_release(old_page);
9637a5ef
DH
1688 if (!pte_same(*page_table, orig_pte))
1689 goto unlock;
1da177e4 1690 }
d08b3851
PZ
1691 dirty_page = old_page;
1692 get_page(dirty_page);
9637a5ef 1693 reuse = 1;
9637a5ef
DH
1694 }
1695
1696 if (reuse) {
1697 flush_cache_page(vma, address, pte_pfn(orig_pte));
1698 entry = pte_mkyoung(orig_pte);
1699 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
8dab5241
BH
1700 if (ptep_set_access_flags(vma, address, page_table, entry,1)) {
1701 update_mmu_cache(vma, address, entry);
1702 lazy_mmu_prot_update(entry);
1703 }
9637a5ef
DH
1704 ret |= VM_FAULT_WRITE;
1705 goto unlock;
1da177e4 1706 }
1da177e4
LT
1707
1708 /*
1709 * Ok, we need to copy. Oh, well..
1710 */
b5810039 1711 page_cache_get(old_page);
920fc356 1712gotten:
8f4e2101 1713 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
1714
1715 if (unlikely(anon_vma_prepare(vma)))
65500d23 1716 goto oom;
e5bbe4df 1717 if (old_page == ZERO_PAGE(address)) {
769848c0 1718 new_page = alloc_zeroed_user_highpage_movable(vma, address);
1da177e4 1719 if (!new_page)
65500d23 1720 goto oom;
1da177e4 1721 } else {
769848c0 1722 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1da177e4 1723 if (!new_page)
65500d23 1724 goto oom;
9de455b2 1725 cow_user_page(new_page, old_page, address, vma);
1da177e4 1726 }
65500d23 1727
1da177e4
LT
1728 /*
1729 * Re-check the pte - we dropped the lock
1730 */
8f4e2101 1731 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
65500d23 1732 if (likely(pte_same(*page_table, orig_pte))) {
920fc356 1733 if (old_page) {
7de6b805 1734 page_remove_rmap(old_page, vma);
920fc356
HD
1735 if (!PageAnon(old_page)) {
1736 dec_mm_counter(mm, file_rss);
1737 inc_mm_counter(mm, anon_rss);
1738 }
1739 } else
4294621f 1740 inc_mm_counter(mm, anon_rss);
eca35133 1741 flush_cache_page(vma, address, pte_pfn(orig_pte));
65500d23
HD
1742 entry = mk_pte(new_page, vma->vm_page_prot);
1743 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
c38c8db7 1744 lazy_mmu_prot_update(entry);
4ce072f1
SS
1745 /*
1746 * Clear the pte entry and flush it first, before updating the
1747 * pte with the new entry. This will avoid a race condition
1748 * seen in the presence of one thread doing SMC and another
1749 * thread doing COW.
1750 */
1751 ptep_clear_flush(vma, address, page_table);
1752 set_pte_at(mm, address, page_table, entry);
65500d23 1753 update_mmu_cache(vma, address, entry);
1da177e4 1754 lru_cache_add_active(new_page);
9617d95e 1755 page_add_new_anon_rmap(new_page, vma, address);
1da177e4
LT
1756
1757 /* Free the old page.. */
1758 new_page = old_page;
f33ea7f4 1759 ret |= VM_FAULT_WRITE;
1da177e4 1760 }
920fc356
HD
1761 if (new_page)
1762 page_cache_release(new_page);
1763 if (old_page)
1764 page_cache_release(old_page);
65500d23 1765unlock:
8f4e2101 1766 pte_unmap_unlock(page_table, ptl);
d08b3851 1767 if (dirty_page) {
edc79b2a 1768 set_page_dirty_balance(dirty_page);
d08b3851
PZ
1769 put_page(dirty_page);
1770 }
f33ea7f4 1771 return ret;
65500d23 1772oom:
920fc356
HD
1773 if (old_page)
1774 page_cache_release(old_page);
1da177e4 1775 return VM_FAULT_OOM;
9637a5ef
DH
1776
1777unwritable_page:
1778 page_cache_release(old_page);
1779 return VM_FAULT_SIGBUS;
1da177e4
LT
1780}
1781
1782/*
1783 * Helper functions for unmap_mapping_range().
1784 *
1785 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1786 *
1787 * We have to restart searching the prio_tree whenever we drop the lock,
1788 * since the iterator is only valid while the lock is held, and anyway
1789 * a later vma might be split and reinserted earlier while lock dropped.
1790 *
1791 * The list of nonlinear vmas could be handled more efficiently, using
1792 * a placeholder, but handle it in the same way until a need is shown.
1793 * It is important to search the prio_tree before nonlinear list: a vma
1794 * may become nonlinear and be shifted from prio_tree to nonlinear list
1795 * while the lock is dropped; but never shifted from list to prio_tree.
1796 *
1797 * In order to make forward progress despite restarting the search,
1798 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1799 * quickly skip it next time around. Since the prio_tree search only
1800 * shows us those vmas affected by unmapping the range in question, we
1801 * can't efficiently keep all vmas in step with mapping->truncate_count:
1802 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1803 * mapping->truncate_count and vma->vm_truncate_count are protected by
1804 * i_mmap_lock.
1805 *
1806 * In order to make forward progress despite repeatedly restarting some
ee39b37b 1807 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1da177e4
LT
1808 * and restart from that address when we reach that vma again. It might
1809 * have been split or merged, shrunk or extended, but never shifted: so
1810 * restart_addr remains valid so long as it remains in the vma's range.
1811 * unmap_mapping_range forces truncate_count to leap over page-aligned
1812 * values so we can save vma's restart_addr in its truncate_count field.
1813 */
1814#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1815
1816static void reset_vma_truncate_counts(struct address_space *mapping)
1817{
1818 struct vm_area_struct *vma;
1819 struct prio_tree_iter iter;
1820
1821 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1822 vma->vm_truncate_count = 0;
1823 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1824 vma->vm_truncate_count = 0;
1825}
1826
1827static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1828 unsigned long start_addr, unsigned long end_addr,
1829 struct zap_details *details)
1830{
1831 unsigned long restart_addr;
1832 int need_break;
1833
1834again:
1835 restart_addr = vma->vm_truncate_count;
1836 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1837 start_addr = restart_addr;
1838 if (start_addr >= end_addr) {
1839 /* Top of vma has been split off since last time */
1840 vma->vm_truncate_count = details->truncate_count;
1841 return 0;
1842 }
1843 }
1844
ee39b37b
HD
1845 restart_addr = zap_page_range(vma, start_addr,
1846 end_addr - start_addr, details);
1da177e4
LT
1847 need_break = need_resched() ||
1848 need_lockbreak(details->i_mmap_lock);
1849
ee39b37b 1850 if (restart_addr >= end_addr) {
1da177e4
LT
1851 /* We have now completed this vma: mark it so */
1852 vma->vm_truncate_count = details->truncate_count;
1853 if (!need_break)
1854 return 0;
1855 } else {
1856 /* Note restart_addr in vma's truncate_count field */
ee39b37b 1857 vma->vm_truncate_count = restart_addr;
1da177e4
LT
1858 if (!need_break)
1859 goto again;
1860 }
1861
1862 spin_unlock(details->i_mmap_lock);
1863 cond_resched();
1864 spin_lock(details->i_mmap_lock);
1865 return -EINTR;
1866}
1867
1868static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1869 struct zap_details *details)
1870{
1871 struct vm_area_struct *vma;
1872 struct prio_tree_iter iter;
1873 pgoff_t vba, vea, zba, zea;
1874
1875restart:
1876 vma_prio_tree_foreach(vma, &iter, root,
1877 details->first_index, details->last_index) {
1878 /* Skip quickly over those we have already dealt with */
1879 if (vma->vm_truncate_count == details->truncate_count)
1880 continue;
1881
1882 vba = vma->vm_pgoff;
1883 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1884 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1885 zba = details->first_index;
1886 if (zba < vba)
1887 zba = vba;
1888 zea = details->last_index;
1889 if (zea > vea)
1890 zea = vea;
1891
1892 if (unmap_mapping_range_vma(vma,
1893 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1894 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1895 details) < 0)
1896 goto restart;
1897 }
1898}
1899
1900static inline void unmap_mapping_range_list(struct list_head *head,
1901 struct zap_details *details)
1902{
1903 struct vm_area_struct *vma;
1904
1905 /*
1906 * In nonlinear VMAs there is no correspondence between virtual address
1907 * offset and file offset. So we must perform an exhaustive search
1908 * across *all* the pages in each nonlinear VMA, not just the pages
1909 * whose virtual address lies outside the file truncation point.
1910 */
1911restart:
1912 list_for_each_entry(vma, head, shared.vm_set.list) {
1913 /* Skip quickly over those we have already dealt with */
1914 if (vma->vm_truncate_count == details->truncate_count)
1915 continue;
1916 details->nonlinear_vma = vma;
1917 if (unmap_mapping_range_vma(vma, vma->vm_start,
1918 vma->vm_end, details) < 0)
1919 goto restart;
1920 }
1921}
1922
1923/**
72fd4a35 1924 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
3d41088f 1925 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
1926 * @holebegin: byte in first page to unmap, relative to the start of
1927 * the underlying file. This will be rounded down to a PAGE_SIZE
1928 * boundary. Note that this is different from vmtruncate(), which
1929 * must keep the partial page. In contrast, we must get rid of
1930 * partial pages.
1931 * @holelen: size of prospective hole in bytes. This will be rounded
1932 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
1933 * end of the file.
1934 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1935 * but 0 when invalidating pagecache, don't throw away private data.
1936 */
1937void unmap_mapping_range(struct address_space *mapping,
1938 loff_t const holebegin, loff_t const holelen, int even_cows)
1939{
1940 struct zap_details details;
1941 pgoff_t hba = holebegin >> PAGE_SHIFT;
1942 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1943
1944 /* Check for overflow. */
1945 if (sizeof(holelen) > sizeof(hlen)) {
1946 long long holeend =
1947 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1948 if (holeend & ~(long long)ULONG_MAX)
1949 hlen = ULONG_MAX - hba + 1;
1950 }
1951
1952 details.check_mapping = even_cows? NULL: mapping;
1953 details.nonlinear_vma = NULL;
1954 details.first_index = hba;
1955 details.last_index = hba + hlen - 1;
1956 if (details.last_index < details.first_index)
1957 details.last_index = ULONG_MAX;
1958 details.i_mmap_lock = &mapping->i_mmap_lock;
1959
1960 spin_lock(&mapping->i_mmap_lock);
1961
1962 /* serialize i_size write against truncate_count write */
1963 smp_wmb();
1964 /* Protect against page faults, and endless unmapping loops */
1965 mapping->truncate_count++;
1966 /*
1967 * For archs where spin_lock has inclusive semantics like ia64
1968 * this smp_mb() will prevent to read pagetable contents
1969 * before the truncate_count increment is visible to
1970 * other cpus.
1971 */
1972 smp_mb();
1973 if (unlikely(is_restart_addr(mapping->truncate_count))) {
1974 if (mapping->truncate_count == 0)
1975 reset_vma_truncate_counts(mapping);
1976 mapping->truncate_count++;
1977 }
1978 details.truncate_count = mapping->truncate_count;
1979
1980 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1981 unmap_mapping_range_tree(&mapping->i_mmap, &details);
1982 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1983 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1984 spin_unlock(&mapping->i_mmap_lock);
1985}
1986EXPORT_SYMBOL(unmap_mapping_range);
1987
bfa5bf6d
REB
1988/**
1989 * vmtruncate - unmap mappings "freed" by truncate() syscall
1990 * @inode: inode of the file used
1991 * @offset: file offset to start truncating
1da177e4
LT
1992 *
1993 * NOTE! We have to be ready to update the memory sharing
1994 * between the file and the memory map for a potential last
1995 * incomplete page. Ugly, but necessary.
1996 */
1997int vmtruncate(struct inode * inode, loff_t offset)
1998{
1999 struct address_space *mapping = inode->i_mapping;
2000 unsigned long limit;
2001
2002 if (inode->i_size < offset)
2003 goto do_expand;
2004 /*
2005 * truncation of in-use swapfiles is disallowed - it would cause
2006 * subsequent swapout to scribble on the now-freed blocks.
2007 */
2008 if (IS_SWAPFILE(inode))
2009 goto out_busy;
2010 i_size_write(inode, offset);
2011 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2012 truncate_inode_pages(mapping, offset);
2013 goto out_truncate;
2014
2015do_expand:
2016 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2017 if (limit != RLIM_INFINITY && offset > limit)
2018 goto out_sig;
2019 if (offset > inode->i_sb->s_maxbytes)
2020 goto out_big;
2021 i_size_write(inode, offset);
2022
2023out_truncate:
2024 if (inode->i_op && inode->i_op->truncate)
2025 inode->i_op->truncate(inode);
2026 return 0;
2027out_sig:
2028 send_sig(SIGXFSZ, current, 0);
2029out_big:
2030 return -EFBIG;
2031out_busy:
2032 return -ETXTBSY;
2033}
1da177e4
LT
2034EXPORT_SYMBOL(vmtruncate);
2035
f6b3ec23
BP
2036int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2037{
2038 struct address_space *mapping = inode->i_mapping;
2039
2040 /*
2041 * If the underlying filesystem is not going to provide
2042 * a way to truncate a range of blocks (punch a hole) -
2043 * we should return failure right now.
2044 */
2045 if (!inode->i_op || !inode->i_op->truncate_range)
2046 return -ENOSYS;
2047
1b1dcc1b 2048 mutex_lock(&inode->i_mutex);
f6b3ec23
BP
2049 down_write(&inode->i_alloc_sem);
2050 unmap_mapping_range(mapping, offset, (end - offset), 1);
2051 truncate_inode_pages_range(mapping, offset, end);
2052 inode->i_op->truncate_range(inode, offset, end);
2053 up_write(&inode->i_alloc_sem);
1b1dcc1b 2054 mutex_unlock(&inode->i_mutex);
f6b3ec23
BP
2055
2056 return 0;
2057}
f6b3ec23 2058
bfa5bf6d
REB
2059/**
2060 * swapin_readahead - swap in pages in hope we need them soon
2061 * @entry: swap entry of this memory
2062 * @addr: address to start
2063 * @vma: user vma this addresses belong to
2064 *
1da177e4
LT
2065 * Primitive swap readahead code. We simply read an aligned block of
2066 * (1 << page_cluster) entries in the swap area. This method is chosen
2067 * because it doesn't cost us any seek time. We also make sure to queue
bfa5bf6d 2068 * the 'original' request together with the readahead ones...
1da177e4
LT
2069 *
2070 * This has been extended to use the NUMA policies from the mm triggering
2071 * the readahead.
2072 *
2073 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
2074 */
2075void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
2076{
2077#ifdef CONFIG_NUMA
2078 struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
2079#endif
2080 int i, num;
2081 struct page *new_page;
2082 unsigned long offset;
2083
2084 /*
2085 * Get the number of handles we should do readahead io to.
2086 */
2087 num = valid_swaphandles(entry, &offset);
2088 for (i = 0; i < num; offset++, i++) {
2089 /* Ok, do the async read-ahead now */
2090 new_page = read_swap_cache_async(swp_entry(swp_type(entry),
2091 offset), vma, addr);
2092 if (!new_page)
2093 break;
2094 page_cache_release(new_page);
2095#ifdef CONFIG_NUMA
2096 /*
2097 * Find the next applicable VMA for the NUMA policy.
2098 */
2099 addr += PAGE_SIZE;
2100 if (addr == 0)
2101 vma = NULL;
2102 if (vma) {
2103 if (addr >= vma->vm_end) {
2104 vma = next_vma;
2105 next_vma = vma ? vma->vm_next : NULL;
2106 }
2107 if (vma && addr < vma->vm_start)
2108 vma = NULL;
2109 } else {
2110 if (next_vma && addr >= next_vma->vm_start) {
2111 vma = next_vma;
2112 next_vma = vma->vm_next;
2113 }
2114 }
2115#endif
2116 }
2117 lru_add_drain(); /* Push any new pages onto the LRU now */
2118}
2119
2120/*
8f4e2101
HD
2121 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2122 * but allow concurrent faults), and pte mapped but not yet locked.
2123 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2124 */
65500d23
HD
2125static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2126 unsigned long address, pte_t *page_table, pmd_t *pmd,
2127 int write_access, pte_t orig_pte)
1da177e4 2128{
8f4e2101 2129 spinlock_t *ptl;
1da177e4 2130 struct page *page;
65500d23 2131 swp_entry_t entry;
1da177e4
LT
2132 pte_t pte;
2133 int ret = VM_FAULT_MINOR;
2134
4c21e2f2 2135 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
8f4e2101 2136 goto out;
65500d23
HD
2137
2138 entry = pte_to_swp_entry(orig_pte);
0697212a
CL
2139 if (is_migration_entry(entry)) {
2140 migration_entry_wait(mm, pmd, address);
2141 goto out;
2142 }
0ff92245 2143 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
2144 page = lookup_swap_cache(entry);
2145 if (!page) {
098fe651 2146 grab_swap_token(); /* Contend for token _before_ read-in */
1da177e4
LT
2147 swapin_readahead(entry, address, vma);
2148 page = read_swap_cache_async(entry, vma, address);
2149 if (!page) {
2150 /*
8f4e2101
HD
2151 * Back out if somebody else faulted in this pte
2152 * while we released the pte lock.
1da177e4 2153 */
8f4e2101 2154 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2155 if (likely(pte_same(*page_table, orig_pte)))
2156 ret = VM_FAULT_OOM;
0ff92245 2157 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2158 goto unlock;
1da177e4
LT
2159 }
2160
2161 /* Had to read the page from swap area: Major fault */
2162 ret = VM_FAULT_MAJOR;
f8891e5e 2163 count_vm_event(PGMAJFAULT);
1da177e4
LT
2164 }
2165
0ff92245 2166 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
2167 mark_page_accessed(page);
2168 lock_page(page);
2169
2170 /*
8f4e2101 2171 * Back out if somebody else already faulted in this pte.
1da177e4 2172 */
8f4e2101 2173 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
9e9bef07 2174 if (unlikely(!pte_same(*page_table, orig_pte)))
b8107480 2175 goto out_nomap;
b8107480
KK
2176
2177 if (unlikely(!PageUptodate(page))) {
2178 ret = VM_FAULT_SIGBUS;
2179 goto out_nomap;
1da177e4
LT
2180 }
2181
2182 /* The page isn't present yet, go ahead with the fault. */
1da177e4 2183
4294621f 2184 inc_mm_counter(mm, anon_rss);
1da177e4
LT
2185 pte = mk_pte(page, vma->vm_page_prot);
2186 if (write_access && can_share_swap_page(page)) {
2187 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2188 write_access = 0;
2189 }
1da177e4
LT
2190
2191 flush_icache_page(vma, page);
2192 set_pte_at(mm, address, page_table, pte);
2193 page_add_anon_rmap(page, vma, address);
2194
c475a8ab
HD
2195 swap_free(entry);
2196 if (vm_swap_full())
2197 remove_exclusive_swap_page(page);
2198 unlock_page(page);
2199
1da177e4
LT
2200 if (write_access) {
2201 if (do_wp_page(mm, vma, address,
8f4e2101 2202 page_table, pmd, ptl, pte) == VM_FAULT_OOM)
1da177e4
LT
2203 ret = VM_FAULT_OOM;
2204 goto out;
2205 }
2206
2207 /* No need to invalidate - it was non-present before */
2208 update_mmu_cache(vma, address, pte);
2209 lazy_mmu_prot_update(pte);
65500d23 2210unlock:
8f4e2101 2211 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2212out:
2213 return ret;
b8107480 2214out_nomap:
8f4e2101 2215 pte_unmap_unlock(page_table, ptl);
b8107480
KK
2216 unlock_page(page);
2217 page_cache_release(page);
65500d23 2218 return ret;
1da177e4
LT
2219}
2220
2221/*
8f4e2101
HD
2222 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2223 * but allow concurrent faults), and pte mapped but not yet locked.
2224 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2225 */
65500d23
HD
2226static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2227 unsigned long address, pte_t *page_table, pmd_t *pmd,
2228 int write_access)
1da177e4 2229{
8f4e2101
HD
2230 struct page *page;
2231 spinlock_t *ptl;
1da177e4 2232 pte_t entry;
1da177e4 2233
6aab341e 2234 if (write_access) {
1da177e4
LT
2235 /* Allocate our own private page. */
2236 pte_unmap(page_table);
1da177e4
LT
2237
2238 if (unlikely(anon_vma_prepare(vma)))
65500d23 2239 goto oom;
769848c0 2240 page = alloc_zeroed_user_highpage_movable(vma, address);
1da177e4 2241 if (!page)
65500d23 2242 goto oom;
1da177e4 2243
65500d23
HD
2244 entry = mk_pte(page, vma->vm_page_prot);
2245 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
8f4e2101
HD
2246
2247 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2248 if (!pte_none(*page_table))
2249 goto release;
2250 inc_mm_counter(mm, anon_rss);
1da177e4 2251 lru_cache_add_active(page);
9617d95e 2252 page_add_new_anon_rmap(page, vma, address);
b5810039 2253 } else {
8f4e2101
HD
2254 /* Map the ZERO_PAGE - vm_page_prot is readonly */
2255 page = ZERO_PAGE(address);
2256 page_cache_get(page);
2257 entry = mk_pte(page, vma->vm_page_prot);
2258
4c21e2f2 2259 ptl = pte_lockptr(mm, pmd);
8f4e2101
HD
2260 spin_lock(ptl);
2261 if (!pte_none(*page_table))
2262 goto release;
b5810039
NP
2263 inc_mm_counter(mm, file_rss);
2264 page_add_file_rmap(page);
1da177e4
LT
2265 }
2266
65500d23 2267 set_pte_at(mm, address, page_table, entry);
1da177e4
LT
2268
2269 /* No need to invalidate - it was non-present before */
65500d23 2270 update_mmu_cache(vma, address, entry);
1da177e4 2271 lazy_mmu_prot_update(entry);
65500d23 2272unlock:
8f4e2101 2273 pte_unmap_unlock(page_table, ptl);
1da177e4 2274 return VM_FAULT_MINOR;
8f4e2101
HD
2275release:
2276 page_cache_release(page);
2277 goto unlock;
65500d23 2278oom:
1da177e4
LT
2279 return VM_FAULT_OOM;
2280}
2281
2282/*
2283 * do_no_page() tries to create a new page mapping. It aggressively
2284 * tries to share with existing pages, but makes a separate copy if
2285 * the "write_access" parameter is true in order to avoid the next
2286 * page fault.
2287 *
2288 * As this is called only for pages that do not currently exist, we
2289 * do not need to flush old virtual caches or the TLB.
2290 *
8f4e2101
HD
2291 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2292 * but allow concurrent faults), and pte mapped but not yet locked.
2293 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2294 */
65500d23
HD
2295static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2296 unsigned long address, pte_t *page_table, pmd_t *pmd,
2297 int write_access)
1da177e4 2298{
8f4e2101 2299 spinlock_t *ptl;
65500d23 2300 struct page *new_page;
1da177e4
LT
2301 struct address_space *mapping = NULL;
2302 pte_t entry;
2303 unsigned int sequence = 0;
2304 int ret = VM_FAULT_MINOR;
2305 int anon = 0;
d08b3851 2306 struct page *dirty_page = NULL;
1da177e4 2307
1da177e4 2308 pte_unmap(page_table);
325f04db
HD
2309 BUG_ON(vma->vm_flags & VM_PFNMAP);
2310
1da177e4
LT
2311 if (vma->vm_file) {
2312 mapping = vma->vm_file->f_mapping;
2313 sequence = mapping->truncate_count;
2314 smp_rmb(); /* serializes i_size against truncate_count */
2315 }
2316retry:
1da177e4
LT
2317 new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
2318 /*
2319 * No smp_rmb is needed here as long as there's a full
2320 * spin_lock/unlock sequence inside the ->nopage callback
2321 * (for the pagecache lookup) that acts as an implicit
2322 * smp_mb() and prevents the i_size read to happen
2323 * after the next truncate_count read.
2324 */
2325
7f7bbbe5
BH
2326 /* no page was available -- either SIGBUS, OOM or REFAULT */
2327 if (unlikely(new_page == NOPAGE_SIGBUS))
1da177e4 2328 return VM_FAULT_SIGBUS;
7f7bbbe5 2329 else if (unlikely(new_page == NOPAGE_OOM))
1da177e4 2330 return VM_FAULT_OOM;
7f7bbbe5
BH
2331 else if (unlikely(new_page == NOPAGE_REFAULT))
2332 return VM_FAULT_MINOR;
1da177e4
LT
2333
2334 /*
2335 * Should we do an early C-O-W break?
2336 */
9637a5ef
DH
2337 if (write_access) {
2338 if (!(vma->vm_flags & VM_SHARED)) {
2339 struct page *page;
1da177e4 2340
9637a5ef
DH
2341 if (unlikely(anon_vma_prepare(vma)))
2342 goto oom;
769848c0
MG
2343 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2344 vma, address);
9637a5ef
DH
2345 if (!page)
2346 goto oom;
9de455b2 2347 copy_user_highpage(page, new_page, address, vma);
9637a5ef
DH
2348 page_cache_release(new_page);
2349 new_page = page;
2350 anon = 1;
2351
2352 } else {
2353 /* if the page will be shareable, see if the backing
2354 * address space wants to know that the page is about
2355 * to become writable */
2356 if (vma->vm_ops->page_mkwrite &&
2357 vma->vm_ops->page_mkwrite(vma, new_page) < 0
2358 ) {
2359 page_cache_release(new_page);
2360 return VM_FAULT_SIGBUS;
2361 }
2362 }
1da177e4
LT
2363 }
2364
8f4e2101 2365 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2366 /*
2367 * For a file-backed vma, someone could have truncated or otherwise
2368 * invalidated this page. If unmap_mapping_range got called,
2369 * retry getting the page.
2370 */
2371 if (mapping && unlikely(sequence != mapping->truncate_count)) {
8f4e2101 2372 pte_unmap_unlock(page_table, ptl);
1da177e4 2373 page_cache_release(new_page);
65500d23
HD
2374 cond_resched();
2375 sequence = mapping->truncate_count;
2376 smp_rmb();
1da177e4
LT
2377 goto retry;
2378 }
1da177e4
LT
2379
2380 /*
2381 * This silly early PAGE_DIRTY setting removes a race
2382 * due to the bad i386 page protection. But it's valid
2383 * for other architectures too.
2384 *
2385 * Note that if write_access is true, we either now have
2386 * an exclusive copy of the page, or this is a shared mapping,
2387 * so we can make it writable and dirty to avoid having to
2388 * handle that later.
2389 */
2390 /* Only go through if we didn't race with anybody else... */
2391 if (pte_none(*page_table)) {
1da177e4
LT
2392 flush_icache_page(vma, new_page);
2393 entry = mk_pte(new_page, vma->vm_page_prot);
2394 if (write_access)
2395 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2396 set_pte_at(mm, address, page_table, entry);
2397 if (anon) {
4294621f 2398 inc_mm_counter(mm, anon_rss);
1da177e4 2399 lru_cache_add_active(new_page);
9617d95e 2400 page_add_new_anon_rmap(new_page, vma, address);
f57e88a8 2401 } else {
4294621f 2402 inc_mm_counter(mm, file_rss);
1da177e4 2403 page_add_file_rmap(new_page);
d08b3851
PZ
2404 if (write_access) {
2405 dirty_page = new_page;
2406 get_page(dirty_page);
2407 }
4294621f 2408 }
1da177e4
LT
2409 } else {
2410 /* One of our sibling threads was faster, back out. */
1da177e4 2411 page_cache_release(new_page);
65500d23 2412 goto unlock;
1da177e4
LT
2413 }
2414
2415 /* no need to invalidate: a not-present page shouldn't be cached */
2416 update_mmu_cache(vma, address, entry);
2417 lazy_mmu_prot_update(entry);
65500d23 2418unlock:
8f4e2101 2419 pte_unmap_unlock(page_table, ptl);
d08b3851 2420 if (dirty_page) {
edc79b2a 2421 set_page_dirty_balance(dirty_page);
d08b3851
PZ
2422 put_page(dirty_page);
2423 }
1da177e4
LT
2424 return ret;
2425oom:
2426 page_cache_release(new_page);
65500d23 2427 return VM_FAULT_OOM;
1da177e4
LT
2428}
2429
f4b81804
JS
2430/*
2431 * do_no_pfn() tries to create a new page mapping for a page without
2432 * a struct_page backing it
2433 *
2434 * As this is called only for pages that do not currently exist, we
2435 * do not need to flush old virtual caches or the TLB.
2436 *
2437 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2438 * but allow concurrent faults), and pte mapped but not yet locked.
2439 * We return with mmap_sem still held, but pte unmapped and unlocked.
2440 *
2441 * It is expected that the ->nopfn handler always returns the same pfn
2442 * for a given virtual mapping.
2443 *
2444 * Mark this `noinline' to prevent it from bloating the main pagefault code.
2445 */
2446static noinline int do_no_pfn(struct mm_struct *mm, struct vm_area_struct *vma,
2447 unsigned long address, pte_t *page_table, pmd_t *pmd,
2448 int write_access)
2449{
2450 spinlock_t *ptl;
2451 pte_t entry;
2452 unsigned long pfn;
2453 int ret = VM_FAULT_MINOR;
2454
2455 pte_unmap(page_table);
2456 BUG_ON(!(vma->vm_flags & VM_PFNMAP));
2457 BUG_ON(is_cow_mapping(vma->vm_flags));
2458
2459 pfn = vma->vm_ops->nopfn(vma, address & PAGE_MASK);
22cd25ed 2460 if (unlikely(pfn == NOPFN_OOM))
f4b81804 2461 return VM_FAULT_OOM;
22cd25ed 2462 else if (unlikely(pfn == NOPFN_SIGBUS))
f4b81804 2463 return VM_FAULT_SIGBUS;
22cd25ed
BH
2464 else if (unlikely(pfn == NOPFN_REFAULT))
2465 return VM_FAULT_MINOR;
f4b81804
JS
2466
2467 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2468
2469 /* Only go through if we didn't race with anybody else... */
2470 if (pte_none(*page_table)) {
2471 entry = pfn_pte(pfn, vma->vm_page_prot);
2472 if (write_access)
2473 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2474 set_pte_at(mm, address, page_table, entry);
2475 }
2476 pte_unmap_unlock(page_table, ptl);
2477 return ret;
2478}
2479
1da177e4
LT
2480/*
2481 * Fault of a previously existing named mapping. Repopulate the pte
2482 * from the encoded file_pte if possible. This enables swappable
2483 * nonlinear vmas.
8f4e2101
HD
2484 *
2485 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2486 * but allow concurrent faults), and pte mapped but not yet locked.
2487 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2488 */
65500d23
HD
2489static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma,
2490 unsigned long address, pte_t *page_table, pmd_t *pmd,
2491 int write_access, pte_t orig_pte)
1da177e4 2492{
65500d23 2493 pgoff_t pgoff;
1da177e4
LT
2494 int err;
2495
4c21e2f2 2496 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
8f4e2101 2497 return VM_FAULT_MINOR;
1da177e4 2498
65500d23
HD
2499 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
2500 /*
2501 * Page table corrupted: show pte and kill process.
2502 */
b5810039 2503 print_bad_pte(vma, orig_pte, address);
65500d23
HD
2504 return VM_FAULT_OOM;
2505 }
2506 /* We can then assume vm->vm_ops && vma->vm_ops->populate */
2507
2508 pgoff = pte_to_pgoff(orig_pte);
2509 err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE,
2510 vma->vm_page_prot, pgoff, 0);
1da177e4
LT
2511 if (err == -ENOMEM)
2512 return VM_FAULT_OOM;
2513 if (err)
2514 return VM_FAULT_SIGBUS;
2515 return VM_FAULT_MAJOR;
2516}
2517
2518/*
2519 * These routines also need to handle stuff like marking pages dirty
2520 * and/or accessed for architectures that don't do it in hardware (most
2521 * RISC architectures). The early dirtying is also good on the i386.
2522 *
2523 * There is also a hook called "update_mmu_cache()" that architectures
2524 * with external mmu caches can use to update those (ie the Sparc or
2525 * PowerPC hashed page tables that act as extended TLBs).
2526 *
c74df32c
HD
2527 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2528 * but allow concurrent faults), and pte mapped but not yet locked.
2529 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4
LT
2530 */
2531static inline int handle_pte_fault(struct mm_struct *mm,
65500d23
HD
2532 struct vm_area_struct *vma, unsigned long address,
2533 pte_t *pte, pmd_t *pmd, int write_access)
1da177e4
LT
2534{
2535 pte_t entry;
8f4e2101 2536 spinlock_t *ptl;
1da177e4 2537
8dab5241 2538 entry = *pte;
1da177e4 2539 if (!pte_present(entry)) {
65500d23 2540 if (pte_none(entry)) {
f4b81804
JS
2541 if (vma->vm_ops) {
2542 if (vma->vm_ops->nopage)
2543 return do_no_page(mm, vma, address,
2544 pte, pmd,
2545 write_access);
2546 if (unlikely(vma->vm_ops->nopfn))
2547 return do_no_pfn(mm, vma, address, pte,
2548 pmd, write_access);
2549 }
2550 return do_anonymous_page(mm, vma, address,
2551 pte, pmd, write_access);
65500d23 2552 }
1da177e4 2553 if (pte_file(entry))
65500d23
HD
2554 return do_file_page(mm, vma, address,
2555 pte, pmd, write_access, entry);
2556 return do_swap_page(mm, vma, address,
2557 pte, pmd, write_access, entry);
1da177e4
LT
2558 }
2559
4c21e2f2 2560 ptl = pte_lockptr(mm, pmd);
8f4e2101
HD
2561 spin_lock(ptl);
2562 if (unlikely(!pte_same(*pte, entry)))
2563 goto unlock;
1da177e4
LT
2564 if (write_access) {
2565 if (!pte_write(entry))
8f4e2101
HD
2566 return do_wp_page(mm, vma, address,
2567 pte, pmd, ptl, entry);
1da177e4
LT
2568 entry = pte_mkdirty(entry);
2569 }
2570 entry = pte_mkyoung(entry);
8dab5241 2571 if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
1a44e149
AA
2572 update_mmu_cache(vma, address, entry);
2573 lazy_mmu_prot_update(entry);
2574 } else {
2575 /*
2576 * This is needed only for protection faults but the arch code
2577 * is not yet telling us if this is a protection fault or not.
2578 * This still avoids useless tlb flushes for .text page faults
2579 * with threads.
2580 */
2581 if (write_access)
2582 flush_tlb_page(vma, address);
2583 }
8f4e2101
HD
2584unlock:
2585 pte_unmap_unlock(pte, ptl);
1da177e4
LT
2586 return VM_FAULT_MINOR;
2587}
2588
2589/*
2590 * By the time we get here, we already hold the mm semaphore
2591 */
65500d23 2592int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1da177e4
LT
2593 unsigned long address, int write_access)
2594{
2595 pgd_t *pgd;
2596 pud_t *pud;
2597 pmd_t *pmd;
2598 pte_t *pte;
2599
2600 __set_current_state(TASK_RUNNING);
2601
f8891e5e 2602 count_vm_event(PGFAULT);
1da177e4 2603
ac9b9c66
HD
2604 if (unlikely(is_vm_hugetlb_page(vma)))
2605 return hugetlb_fault(mm, vma, address, write_access);
1da177e4 2606
1da177e4 2607 pgd = pgd_offset(mm, address);
1da177e4
LT
2608 pud = pud_alloc(mm, pgd, address);
2609 if (!pud)
c74df32c 2610 return VM_FAULT_OOM;
1da177e4
LT
2611 pmd = pmd_alloc(mm, pud, address);
2612 if (!pmd)
c74df32c 2613 return VM_FAULT_OOM;
1da177e4
LT
2614 pte = pte_alloc_map(mm, pmd, address);
2615 if (!pte)
c74df32c 2616 return VM_FAULT_OOM;
1da177e4 2617
c74df32c 2618 return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
1da177e4
LT
2619}
2620
67207b96
AB
2621EXPORT_SYMBOL_GPL(__handle_mm_fault);
2622
1da177e4
LT
2623#ifndef __PAGETABLE_PUD_FOLDED
2624/*
2625 * Allocate page upper directory.
872fec16 2626 * We've already handled the fast-path in-line.
1da177e4 2627 */
1bb3630e 2628int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1da177e4 2629{
c74df32c
HD
2630 pud_t *new = pud_alloc_one(mm, address);
2631 if (!new)
1bb3630e 2632 return -ENOMEM;
1da177e4 2633
872fec16 2634 spin_lock(&mm->page_table_lock);
1bb3630e 2635 if (pgd_present(*pgd)) /* Another has populated it */
1da177e4 2636 pud_free(new);
1bb3630e
HD
2637 else
2638 pgd_populate(mm, pgd, new);
c74df32c 2639 spin_unlock(&mm->page_table_lock);
1bb3630e 2640 return 0;
1da177e4
LT
2641}
2642#endif /* __PAGETABLE_PUD_FOLDED */
2643
2644#ifndef __PAGETABLE_PMD_FOLDED
2645/*
2646 * Allocate page middle directory.
872fec16 2647 * We've already handled the fast-path in-line.
1da177e4 2648 */
1bb3630e 2649int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 2650{
c74df32c
HD
2651 pmd_t *new = pmd_alloc_one(mm, address);
2652 if (!new)
1bb3630e 2653 return -ENOMEM;
1da177e4 2654
872fec16 2655 spin_lock(&mm->page_table_lock);
1da177e4 2656#ifndef __ARCH_HAS_4LEVEL_HACK
1bb3630e 2657 if (pud_present(*pud)) /* Another has populated it */
1da177e4 2658 pmd_free(new);
1bb3630e
HD
2659 else
2660 pud_populate(mm, pud, new);
1da177e4 2661#else
1bb3630e 2662 if (pgd_present(*pud)) /* Another has populated it */
1da177e4 2663 pmd_free(new);
1bb3630e
HD
2664 else
2665 pgd_populate(mm, pud, new);
1da177e4 2666#endif /* __ARCH_HAS_4LEVEL_HACK */
c74df32c 2667 spin_unlock(&mm->page_table_lock);
1bb3630e 2668 return 0;
e0f39591 2669}
1da177e4
LT
2670#endif /* __PAGETABLE_PMD_FOLDED */
2671
2672int make_pages_present(unsigned long addr, unsigned long end)
2673{
2674 int ret, len, write;
2675 struct vm_area_struct * vma;
2676
2677 vma = find_vma(current->mm, addr);
2678 if (!vma)
2679 return -1;
2680 write = (vma->vm_flags & VM_WRITE) != 0;
5bcb28b1
ES
2681 BUG_ON(addr >= end);
2682 BUG_ON(end > vma->vm_end);
68e116a3 2683 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
1da177e4
LT
2684 ret = get_user_pages(current, current->mm, addr,
2685 len, write, 0, NULL, NULL);
2686 if (ret < 0)
2687 return ret;
2688 return ret == len ? 0 : -1;
2689}
2690
2691/*
2692 * Map a vmalloc()-space virtual address to the physical page.
2693 */
2694struct page * vmalloc_to_page(void * vmalloc_addr)
2695{
2696 unsigned long addr = (unsigned long) vmalloc_addr;
2697 struct page *page = NULL;
2698 pgd_t *pgd = pgd_offset_k(addr);
2699 pud_t *pud;
2700 pmd_t *pmd;
2701 pte_t *ptep, pte;
2702
2703 if (!pgd_none(*pgd)) {
2704 pud = pud_offset(pgd, addr);
2705 if (!pud_none(*pud)) {
2706 pmd = pmd_offset(pud, addr);
2707 if (!pmd_none(*pmd)) {
2708 ptep = pte_offset_map(pmd, addr);
2709 pte = *ptep;
2710 if (pte_present(pte))
2711 page = pte_page(pte);
2712 pte_unmap(ptep);
2713 }
2714 }
2715 }
2716 return page;
2717}
2718
2719EXPORT_SYMBOL(vmalloc_to_page);
2720
2721/*
2722 * Map a vmalloc()-space virtual address to the physical page frame number.
2723 */
2724unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2725{
2726 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2727}
2728
2729EXPORT_SYMBOL(vmalloc_to_pfn);
2730
1da177e4
LT
2731#if !defined(__HAVE_ARCH_GATE_AREA)
2732
2733#if defined(AT_SYSINFO_EHDR)
5ce7852c 2734static struct vm_area_struct gate_vma;
1da177e4
LT
2735
2736static int __init gate_vma_init(void)
2737{
2738 gate_vma.vm_mm = NULL;
2739 gate_vma.vm_start = FIXADDR_USER_START;
2740 gate_vma.vm_end = FIXADDR_USER_END;
b6558c4a
RM
2741 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2742 gate_vma.vm_page_prot = __P101;
f47aef55
RM
2743 /*
2744 * Make sure the vDSO gets into every core dump.
2745 * Dumping its contents makes post-mortem fully interpretable later
2746 * without matching up the same kernel and hardware config to see
2747 * what PC values meant.
2748 */
2749 gate_vma.vm_flags |= VM_ALWAYSDUMP;
1da177e4
LT
2750 return 0;
2751}
2752__initcall(gate_vma_init);
2753#endif
2754
2755struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2756{
2757#ifdef AT_SYSINFO_EHDR
2758 return &gate_vma;
2759#else
2760 return NULL;
2761#endif
2762}
2763
2764int in_gate_area_no_task(unsigned long addr)
2765{
2766#ifdef AT_SYSINFO_EHDR
2767 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2768 return 1;
2769#endif
2770 return 0;
2771}
2772
2773#endif /* __HAVE_ARCH_GATE_AREA */
0ec76a11
DH
2774
2775/*
2776 * Access another process' address space.
2777 * Source/target buffer must be kernel space,
2778 * Do not walk the page table directly, use get_user_pages
2779 */
2780int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2781{
2782 struct mm_struct *mm;
2783 struct vm_area_struct *vma;
2784 struct page *page;
2785 void *old_buf = buf;
2786
2787 mm = get_task_mm(tsk);
2788 if (!mm)
2789 return 0;
2790
2791 down_read(&mm->mmap_sem);
2792 /* ignore errors, just check how much was sucessfully transfered */
2793 while (len) {
2794 int bytes, ret, offset;
2795 void *maddr;
2796
2797 ret = get_user_pages(tsk, mm, addr, 1,
2798 write, 1, &page, &vma);
2799 if (ret <= 0)
2800 break;
2801
2802 bytes = len;
2803 offset = addr & (PAGE_SIZE-1);
2804 if (bytes > PAGE_SIZE-offset)
2805 bytes = PAGE_SIZE-offset;
2806
2807 maddr = kmap(page);
2808 if (write) {
2809 copy_to_user_page(vma, page, addr,
2810 maddr + offset, buf, bytes);
2811 set_page_dirty_lock(page);
2812 } else {
2813 copy_from_user_page(vma, page, addr,
2814 buf, maddr + offset, bytes);
2815 }
2816 kunmap(page);
2817 page_cache_release(page);
2818 len -= bytes;
2819 buf += bytes;
2820 addr += bytes;
2821 }
2822 up_read(&mm->mmap_sem);
2823 mmput(mm);
2824
2825 return buf - old_buf;
2826}