mm: numa: split_huge_page: transfer the NUMA type from the pmd to the pte
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
9a840895 48#include <linux/ksm.h>
1da177e4 49#include <linux/rmap.h>
b95f1b31 50#include <linux/export.h>
0ff92245 51#include <linux/delayacct.h>
1da177e4 52#include <linux/init.h>
edc79b2a 53#include <linux/writeback.h>
8a9f3ccd 54#include <linux/memcontrol.h>
cddb8a5c 55#include <linux/mmu_notifier.h>
3dc14741
HD
56#include <linux/kallsyms.h>
57#include <linux/swapops.h>
58#include <linux/elf.h>
5a0e3ad6 59#include <linux/gfp.h>
1da177e4 60
6952b61d 61#include <asm/io.h>
1da177e4
LT
62#include <asm/pgalloc.h>
63#include <asm/uaccess.h>
64#include <asm/tlb.h>
65#include <asm/tlbflush.h>
66#include <asm/pgtable.h>
67
42b77728
JB
68#include "internal.h"
69
d41dee36 70#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
71/* use the per-pgdat data instead for discontigmem - mbligh */
72unsigned long max_mapnr;
73struct page *mem_map;
74
75EXPORT_SYMBOL(max_mapnr);
76EXPORT_SYMBOL(mem_map);
77#endif
78
79unsigned long num_physpages;
80/*
81 * A number of key systems in x86 including ioremap() rely on the assumption
82 * that high_memory defines the upper bound on direct map memory, then end
83 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85 * and ZONE_HIGHMEM.
86 */
87void * high_memory;
1da177e4
LT
88
89EXPORT_SYMBOL(num_physpages);
90EXPORT_SYMBOL(high_memory);
1da177e4 91
32a93233
IM
92/*
93 * Randomize the address space (stacks, mmaps, brk, etc.).
94 *
95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96 * as ancient (libc5 based) binaries can segfault. )
97 */
98int randomize_va_space __read_mostly =
99#ifdef CONFIG_COMPAT_BRK
100 1;
101#else
102 2;
103#endif
a62eaf15
AK
104
105static int __init disable_randmaps(char *s)
106{
107 randomize_va_space = 0;
9b41046c 108 return 1;
a62eaf15
AK
109}
110__setup("norandmaps", disable_randmaps);
111
62eede62 112unsigned long zero_pfn __read_mostly;
03f6462a 113unsigned long highest_memmap_pfn __read_mostly;
a13ea5b7
HD
114
115/*
116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
117 */
118static int __init init_zero_pfn(void)
119{
120 zero_pfn = page_to_pfn(ZERO_PAGE(0));
121 return 0;
122}
123core_initcall(init_zero_pfn);
a62eaf15 124
d559db08 125
34e55232
KH
126#if defined(SPLIT_RSS_COUNTING)
127
ea48cf78 128void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
129{
130 int i;
131
132 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
133 if (current->rss_stat.count[i]) {
134 add_mm_counter(mm, i, current->rss_stat.count[i]);
135 current->rss_stat.count[i] = 0;
34e55232
KH
136 }
137 }
05af2e10 138 current->rss_stat.events = 0;
34e55232
KH
139}
140
141static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
142{
143 struct task_struct *task = current;
144
145 if (likely(task->mm == mm))
146 task->rss_stat.count[member] += val;
147 else
148 add_mm_counter(mm, member, val);
149}
150#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
152
153/* sync counter once per 64 page faults */
154#define TASK_RSS_EVENTS_THRESH (64)
155static void check_sync_rss_stat(struct task_struct *task)
156{
157 if (unlikely(task != current))
158 return;
159 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 160 sync_mm_rss(task->mm);
34e55232 161}
9547d01b 162#else /* SPLIT_RSS_COUNTING */
34e55232
KH
163
164#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
165#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
166
167static void check_sync_rss_stat(struct task_struct *task)
168{
169}
170
9547d01b
PZ
171#endif /* SPLIT_RSS_COUNTING */
172
173#ifdef HAVE_GENERIC_MMU_GATHER
174
175static int tlb_next_batch(struct mmu_gather *tlb)
176{
177 struct mmu_gather_batch *batch;
178
179 batch = tlb->active;
180 if (batch->next) {
181 tlb->active = batch->next;
182 return 1;
183 }
184
185 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
186 if (!batch)
187 return 0;
188
189 batch->next = NULL;
190 batch->nr = 0;
191 batch->max = MAX_GATHER_BATCH;
192
193 tlb->active->next = batch;
194 tlb->active = batch;
195
196 return 1;
197}
198
199/* tlb_gather_mmu
200 * Called to initialize an (on-stack) mmu_gather structure for page-table
201 * tear-down from @mm. The @fullmm argument is used when @mm is without
202 * users and we're going to destroy the full address space (exit/execve).
203 */
204void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
205{
206 tlb->mm = mm;
207
208 tlb->fullmm = fullmm;
597e1c35
AS
209 tlb->start = -1UL;
210 tlb->end = 0;
9547d01b
PZ
211 tlb->need_flush = 0;
212 tlb->fast_mode = (num_possible_cpus() == 1);
213 tlb->local.next = NULL;
214 tlb->local.nr = 0;
215 tlb->local.max = ARRAY_SIZE(tlb->__pages);
216 tlb->active = &tlb->local;
217
218#ifdef CONFIG_HAVE_RCU_TABLE_FREE
219 tlb->batch = NULL;
220#endif
221}
222
223void tlb_flush_mmu(struct mmu_gather *tlb)
224{
225 struct mmu_gather_batch *batch;
226
227 if (!tlb->need_flush)
228 return;
229 tlb->need_flush = 0;
230 tlb_flush(tlb);
231#ifdef CONFIG_HAVE_RCU_TABLE_FREE
232 tlb_table_flush(tlb);
34e55232
KH
233#endif
234
9547d01b
PZ
235 if (tlb_fast_mode(tlb))
236 return;
237
238 for (batch = &tlb->local; batch; batch = batch->next) {
239 free_pages_and_swap_cache(batch->pages, batch->nr);
240 batch->nr = 0;
241 }
242 tlb->active = &tlb->local;
243}
244
245/* tlb_finish_mmu
246 * Called at the end of the shootdown operation to free up any resources
247 * that were required.
248 */
249void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
250{
251 struct mmu_gather_batch *batch, *next;
252
597e1c35
AS
253 tlb->start = start;
254 tlb->end = end;
9547d01b
PZ
255 tlb_flush_mmu(tlb);
256
257 /* keep the page table cache within bounds */
258 check_pgt_cache();
259
260 for (batch = tlb->local.next; batch; batch = next) {
261 next = batch->next;
262 free_pages((unsigned long)batch, 0);
263 }
264 tlb->local.next = NULL;
265}
266
267/* __tlb_remove_page
268 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
269 * handling the additional races in SMP caused by other CPUs caching valid
270 * mappings in their TLBs. Returns the number of free page slots left.
271 * When out of page slots we must call tlb_flush_mmu().
272 */
273int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
274{
275 struct mmu_gather_batch *batch;
276
f21760b1 277 VM_BUG_ON(!tlb->need_flush);
9547d01b
PZ
278
279 if (tlb_fast_mode(tlb)) {
280 free_page_and_swap_cache(page);
281 return 1; /* avoid calling tlb_flush_mmu() */
282 }
283
284 batch = tlb->active;
285 batch->pages[batch->nr++] = page;
286 if (batch->nr == batch->max) {
287 if (!tlb_next_batch(tlb))
288 return 0;
0b43c3aa 289 batch = tlb->active;
9547d01b
PZ
290 }
291 VM_BUG_ON(batch->nr > batch->max);
292
293 return batch->max - batch->nr;
294}
295
296#endif /* HAVE_GENERIC_MMU_GATHER */
297
26723911
PZ
298#ifdef CONFIG_HAVE_RCU_TABLE_FREE
299
300/*
301 * See the comment near struct mmu_table_batch.
302 */
303
304static void tlb_remove_table_smp_sync(void *arg)
305{
306 /* Simply deliver the interrupt */
307}
308
309static void tlb_remove_table_one(void *table)
310{
311 /*
312 * This isn't an RCU grace period and hence the page-tables cannot be
313 * assumed to be actually RCU-freed.
314 *
315 * It is however sufficient for software page-table walkers that rely on
316 * IRQ disabling. See the comment near struct mmu_table_batch.
317 */
318 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
319 __tlb_remove_table(table);
320}
321
322static void tlb_remove_table_rcu(struct rcu_head *head)
323{
324 struct mmu_table_batch *batch;
325 int i;
326
327 batch = container_of(head, struct mmu_table_batch, rcu);
328
329 for (i = 0; i < batch->nr; i++)
330 __tlb_remove_table(batch->tables[i]);
331
332 free_page((unsigned long)batch);
333}
334
335void tlb_table_flush(struct mmu_gather *tlb)
336{
337 struct mmu_table_batch **batch = &tlb->batch;
338
339 if (*batch) {
340 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
341 *batch = NULL;
342 }
343}
344
345void tlb_remove_table(struct mmu_gather *tlb, void *table)
346{
347 struct mmu_table_batch **batch = &tlb->batch;
348
349 tlb->need_flush = 1;
350
351 /*
352 * When there's less then two users of this mm there cannot be a
353 * concurrent page-table walk.
354 */
355 if (atomic_read(&tlb->mm->mm_users) < 2) {
356 __tlb_remove_table(table);
357 return;
358 }
359
360 if (*batch == NULL) {
361 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
362 if (*batch == NULL) {
363 tlb_remove_table_one(table);
364 return;
365 }
366 (*batch)->nr = 0;
367 }
368 (*batch)->tables[(*batch)->nr++] = table;
369 if ((*batch)->nr == MAX_TABLE_BATCH)
370 tlb_table_flush(tlb);
371}
372
9547d01b 373#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
26723911 374
1da177e4
LT
375/*
376 * If a p?d_bad entry is found while walking page tables, report
377 * the error, before resetting entry to p?d_none. Usually (but
378 * very seldom) called out from the p?d_none_or_clear_bad macros.
379 */
380
381void pgd_clear_bad(pgd_t *pgd)
382{
383 pgd_ERROR(*pgd);
384 pgd_clear(pgd);
385}
386
387void pud_clear_bad(pud_t *pud)
388{
389 pud_ERROR(*pud);
390 pud_clear(pud);
391}
392
393void pmd_clear_bad(pmd_t *pmd)
394{
395 pmd_ERROR(*pmd);
396 pmd_clear(pmd);
397}
398
399/*
400 * Note: this doesn't free the actual pages themselves. That
401 * has been handled earlier when unmapping all the memory regions.
402 */
9e1b32ca
BH
403static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
404 unsigned long addr)
1da177e4 405{
2f569afd 406 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 407 pmd_clear(pmd);
9e1b32ca 408 pte_free_tlb(tlb, token, addr);
e0da382c 409 tlb->mm->nr_ptes--;
1da177e4
LT
410}
411
e0da382c
HD
412static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
413 unsigned long addr, unsigned long end,
414 unsigned long floor, unsigned long ceiling)
1da177e4
LT
415{
416 pmd_t *pmd;
417 unsigned long next;
e0da382c 418 unsigned long start;
1da177e4 419
e0da382c 420 start = addr;
1da177e4 421 pmd = pmd_offset(pud, addr);
1da177e4
LT
422 do {
423 next = pmd_addr_end(addr, end);
424 if (pmd_none_or_clear_bad(pmd))
425 continue;
9e1b32ca 426 free_pte_range(tlb, pmd, addr);
1da177e4
LT
427 } while (pmd++, addr = next, addr != end);
428
e0da382c
HD
429 start &= PUD_MASK;
430 if (start < floor)
431 return;
432 if (ceiling) {
433 ceiling &= PUD_MASK;
434 if (!ceiling)
435 return;
1da177e4 436 }
e0da382c
HD
437 if (end - 1 > ceiling - 1)
438 return;
439
440 pmd = pmd_offset(pud, start);
441 pud_clear(pud);
9e1b32ca 442 pmd_free_tlb(tlb, pmd, start);
1da177e4
LT
443}
444
e0da382c
HD
445static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
446 unsigned long addr, unsigned long end,
447 unsigned long floor, unsigned long ceiling)
1da177e4
LT
448{
449 pud_t *pud;
450 unsigned long next;
e0da382c 451 unsigned long start;
1da177e4 452
e0da382c 453 start = addr;
1da177e4 454 pud = pud_offset(pgd, addr);
1da177e4
LT
455 do {
456 next = pud_addr_end(addr, end);
457 if (pud_none_or_clear_bad(pud))
458 continue;
e0da382c 459 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
460 } while (pud++, addr = next, addr != end);
461
e0da382c
HD
462 start &= PGDIR_MASK;
463 if (start < floor)
464 return;
465 if (ceiling) {
466 ceiling &= PGDIR_MASK;
467 if (!ceiling)
468 return;
1da177e4 469 }
e0da382c
HD
470 if (end - 1 > ceiling - 1)
471 return;
472
473 pud = pud_offset(pgd, start);
474 pgd_clear(pgd);
9e1b32ca 475 pud_free_tlb(tlb, pud, start);
1da177e4
LT
476}
477
478/*
e0da382c
HD
479 * This function frees user-level page tables of a process.
480 *
1da177e4
LT
481 * Must be called with pagetable lock held.
482 */
42b77728 483void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
484 unsigned long addr, unsigned long end,
485 unsigned long floor, unsigned long ceiling)
1da177e4
LT
486{
487 pgd_t *pgd;
488 unsigned long next;
e0da382c
HD
489
490 /*
491 * The next few lines have given us lots of grief...
492 *
493 * Why are we testing PMD* at this top level? Because often
494 * there will be no work to do at all, and we'd prefer not to
495 * go all the way down to the bottom just to discover that.
496 *
497 * Why all these "- 1"s? Because 0 represents both the bottom
498 * of the address space and the top of it (using -1 for the
499 * top wouldn't help much: the masks would do the wrong thing).
500 * The rule is that addr 0 and floor 0 refer to the bottom of
501 * the address space, but end 0 and ceiling 0 refer to the top
502 * Comparisons need to use "end - 1" and "ceiling - 1" (though
503 * that end 0 case should be mythical).
504 *
505 * Wherever addr is brought up or ceiling brought down, we must
506 * be careful to reject "the opposite 0" before it confuses the
507 * subsequent tests. But what about where end is brought down
508 * by PMD_SIZE below? no, end can't go down to 0 there.
509 *
510 * Whereas we round start (addr) and ceiling down, by different
511 * masks at different levels, in order to test whether a table
512 * now has no other vmas using it, so can be freed, we don't
513 * bother to round floor or end up - the tests don't need that.
514 */
1da177e4 515
e0da382c
HD
516 addr &= PMD_MASK;
517 if (addr < floor) {
518 addr += PMD_SIZE;
519 if (!addr)
520 return;
521 }
522 if (ceiling) {
523 ceiling &= PMD_MASK;
524 if (!ceiling)
525 return;
526 }
527 if (end - 1 > ceiling - 1)
528 end -= PMD_SIZE;
529 if (addr > end - 1)
530 return;
531
42b77728 532 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
533 do {
534 next = pgd_addr_end(addr, end);
535 if (pgd_none_or_clear_bad(pgd))
536 continue;
42b77728 537 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 538 } while (pgd++, addr = next, addr != end);
e0da382c
HD
539}
540
42b77728 541void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 542 unsigned long floor, unsigned long ceiling)
e0da382c
HD
543{
544 while (vma) {
545 struct vm_area_struct *next = vma->vm_next;
546 unsigned long addr = vma->vm_start;
547
8f4f8c16 548 /*
25d9e2d1 549 * Hide vma from rmap and truncate_pagecache before freeing
550 * pgtables
8f4f8c16 551 */
5beb4930 552 unlink_anon_vmas(vma);
8f4f8c16
HD
553 unlink_file_vma(vma);
554
9da61aef 555 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 556 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
e0da382c 557 floor, next? next->vm_start: ceiling);
3bf5ee95
HD
558 } else {
559 /*
560 * Optimization: gather nearby vmas into one call down
561 */
562 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 563 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
564 vma = next;
565 next = vma->vm_next;
5beb4930 566 unlink_anon_vmas(vma);
8f4f8c16 567 unlink_file_vma(vma);
3bf5ee95
HD
568 }
569 free_pgd_range(tlb, addr, vma->vm_end,
570 floor, next? next->vm_start: ceiling);
571 }
e0da382c
HD
572 vma = next;
573 }
1da177e4
LT
574}
575
8ac1f832
AA
576int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
577 pmd_t *pmd, unsigned long address)
1da177e4 578{
2f569afd 579 pgtable_t new = pte_alloc_one(mm, address);
8ac1f832 580 int wait_split_huge_page;
1bb3630e
HD
581 if (!new)
582 return -ENOMEM;
583
362a61ad
NP
584 /*
585 * Ensure all pte setup (eg. pte page lock and page clearing) are
586 * visible before the pte is made visible to other CPUs by being
587 * put into page tables.
588 *
589 * The other side of the story is the pointer chasing in the page
590 * table walking code (when walking the page table without locking;
591 * ie. most of the time). Fortunately, these data accesses consist
592 * of a chain of data-dependent loads, meaning most CPUs (alpha
593 * being the notable exception) will already guarantee loads are
594 * seen in-order. See the alpha page table accessors for the
595 * smp_read_barrier_depends() barriers in page table walking code.
596 */
597 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
598
c74df32c 599 spin_lock(&mm->page_table_lock);
8ac1f832
AA
600 wait_split_huge_page = 0;
601 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1da177e4 602 mm->nr_ptes++;
1da177e4 603 pmd_populate(mm, pmd, new);
2f569afd 604 new = NULL;
8ac1f832
AA
605 } else if (unlikely(pmd_trans_splitting(*pmd)))
606 wait_split_huge_page = 1;
c74df32c 607 spin_unlock(&mm->page_table_lock);
2f569afd
MS
608 if (new)
609 pte_free(mm, new);
8ac1f832
AA
610 if (wait_split_huge_page)
611 wait_split_huge_page(vma->anon_vma, pmd);
1bb3630e 612 return 0;
1da177e4
LT
613}
614
1bb3630e 615int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 616{
1bb3630e
HD
617 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
618 if (!new)
619 return -ENOMEM;
620
362a61ad
NP
621 smp_wmb(); /* See comment in __pte_alloc */
622
1bb3630e 623 spin_lock(&init_mm.page_table_lock);
8ac1f832 624 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 625 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 626 new = NULL;
8ac1f832
AA
627 } else
628 VM_BUG_ON(pmd_trans_splitting(*pmd));
1bb3630e 629 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
630 if (new)
631 pte_free_kernel(&init_mm, new);
1bb3630e 632 return 0;
1da177e4
LT
633}
634
d559db08
KH
635static inline void init_rss_vec(int *rss)
636{
637 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
638}
639
640static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 641{
d559db08
KH
642 int i;
643
34e55232 644 if (current->mm == mm)
05af2e10 645 sync_mm_rss(mm);
d559db08
KH
646 for (i = 0; i < NR_MM_COUNTERS; i++)
647 if (rss[i])
648 add_mm_counter(mm, i, rss[i]);
ae859762
HD
649}
650
b5810039 651/*
6aab341e
LT
652 * This function is called to print an error when a bad pte
653 * is found. For example, we might have a PFN-mapped pte in
654 * a region that doesn't allow it.
b5810039
NP
655 *
656 * The calling function must still handle the error.
657 */
3dc14741
HD
658static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
659 pte_t pte, struct page *page)
b5810039 660{
3dc14741
HD
661 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
662 pud_t *pud = pud_offset(pgd, addr);
663 pmd_t *pmd = pmd_offset(pud, addr);
664 struct address_space *mapping;
665 pgoff_t index;
d936cf9b
HD
666 static unsigned long resume;
667 static unsigned long nr_shown;
668 static unsigned long nr_unshown;
669
670 /*
671 * Allow a burst of 60 reports, then keep quiet for that minute;
672 * or allow a steady drip of one report per second.
673 */
674 if (nr_shown == 60) {
675 if (time_before(jiffies, resume)) {
676 nr_unshown++;
677 return;
678 }
679 if (nr_unshown) {
1e9e6365
HD
680 printk(KERN_ALERT
681 "BUG: Bad page map: %lu messages suppressed\n",
d936cf9b
HD
682 nr_unshown);
683 nr_unshown = 0;
684 }
685 nr_shown = 0;
686 }
687 if (nr_shown++ == 0)
688 resume = jiffies + 60 * HZ;
3dc14741
HD
689
690 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
691 index = linear_page_index(vma, addr);
692
1e9e6365
HD
693 printk(KERN_ALERT
694 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
3dc14741
HD
695 current->comm,
696 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821
WF
697 if (page)
698 dump_page(page);
1e9e6365 699 printk(KERN_ALERT
3dc14741
HD
700 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
701 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
702 /*
703 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
704 */
705 if (vma->vm_ops)
1e9e6365 706 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
3dc14741
HD
707 (unsigned long)vma->vm_ops->fault);
708 if (vma->vm_file && vma->vm_file->f_op)
1e9e6365 709 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
3dc14741 710 (unsigned long)vma->vm_file->f_op->mmap);
b5810039 711 dump_stack();
3dc14741 712 add_taint(TAINT_BAD_PAGE);
b5810039
NP
713}
714
2ec74c3e 715static inline bool is_cow_mapping(vm_flags_t flags)
67121172
LT
716{
717 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
718}
719
62eede62
HD
720#ifndef is_zero_pfn
721static inline int is_zero_pfn(unsigned long pfn)
722{
723 return pfn == zero_pfn;
724}
725#endif
726
727#ifndef my_zero_pfn
728static inline unsigned long my_zero_pfn(unsigned long addr)
729{
730 return zero_pfn;
731}
732#endif
733
ee498ed7 734/*
7e675137 735 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 736 *
7e675137
NP
737 * "Special" mappings do not wish to be associated with a "struct page" (either
738 * it doesn't exist, or it exists but they don't want to touch it). In this
739 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 740 *
7e675137
NP
741 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
742 * pte bit, in which case this function is trivial. Secondly, an architecture
743 * may not have a spare pte bit, which requires a more complicated scheme,
744 * described below.
745 *
746 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
747 * special mapping (even if there are underlying and valid "struct pages").
748 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 749 *
b379d790
JH
750 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
751 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
752 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
753 * mapping will always honor the rule
6aab341e
LT
754 *
755 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
756 *
7e675137
NP
757 * And for normal mappings this is false.
758 *
759 * This restricts such mappings to be a linear translation from virtual address
760 * to pfn. To get around this restriction, we allow arbitrary mappings so long
761 * as the vma is not a COW mapping; in that case, we know that all ptes are
762 * special (because none can have been COWed).
b379d790 763 *
b379d790 764 *
7e675137 765 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
766 *
767 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
768 * page" backing, however the difference is that _all_ pages with a struct
769 * page (that is, those where pfn_valid is true) are refcounted and considered
770 * normal pages by the VM. The disadvantage is that pages are refcounted
771 * (which can be slower and simply not an option for some PFNMAP users). The
772 * advantage is that we don't have to follow the strict linearity rule of
773 * PFNMAP mappings in order to support COWable mappings.
774 *
ee498ed7 775 */
7e675137
NP
776#ifdef __HAVE_ARCH_PTE_SPECIAL
777# define HAVE_PTE_SPECIAL 1
778#else
779# define HAVE_PTE_SPECIAL 0
780#endif
781struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
782 pte_t pte)
ee498ed7 783{
22b31eec 784 unsigned long pfn = pte_pfn(pte);
7e675137
NP
785
786 if (HAVE_PTE_SPECIAL) {
22b31eec
HD
787 if (likely(!pte_special(pte)))
788 goto check_pfn;
a13ea5b7
HD
789 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
790 return NULL;
62eede62 791 if (!is_zero_pfn(pfn))
22b31eec 792 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
793 return NULL;
794 }
795
796 /* !HAVE_PTE_SPECIAL case follows: */
797
b379d790
JH
798 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
799 if (vma->vm_flags & VM_MIXEDMAP) {
800 if (!pfn_valid(pfn))
801 return NULL;
802 goto out;
803 } else {
7e675137
NP
804 unsigned long off;
805 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
806 if (pfn == vma->vm_pgoff + off)
807 return NULL;
808 if (!is_cow_mapping(vma->vm_flags))
809 return NULL;
810 }
6aab341e
LT
811 }
812
62eede62
HD
813 if (is_zero_pfn(pfn))
814 return NULL;
22b31eec
HD
815check_pfn:
816 if (unlikely(pfn > highest_memmap_pfn)) {
817 print_bad_pte(vma, addr, pte, NULL);
818 return NULL;
819 }
6aab341e
LT
820
821 /*
7e675137 822 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 823 * eg. VDSO mappings can cause them to exist.
6aab341e 824 */
b379d790 825out:
6aab341e 826 return pfn_to_page(pfn);
ee498ed7
HD
827}
828
1da177e4
LT
829/*
830 * copy one vm_area from one task to the other. Assumes the page tables
831 * already present in the new task to be cleared in the whole range
832 * covered by this vma.
1da177e4
LT
833 */
834
570a335b 835static inline unsigned long
1da177e4 836copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 837 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 838 unsigned long addr, int *rss)
1da177e4 839{
b5810039 840 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
841 pte_t pte = *src_pte;
842 struct page *page;
1da177e4
LT
843
844 /* pte contains position in swap or file, so copy. */
845 if (unlikely(!pte_present(pte))) {
846 if (!pte_file(pte)) {
0697212a
CL
847 swp_entry_t entry = pte_to_swp_entry(pte);
848
570a335b
HD
849 if (swap_duplicate(entry) < 0)
850 return entry.val;
851
1da177e4
LT
852 /* make sure dst_mm is on swapoff's mmlist. */
853 if (unlikely(list_empty(&dst_mm->mmlist))) {
854 spin_lock(&mmlist_lock);
f412ac08
HD
855 if (list_empty(&dst_mm->mmlist))
856 list_add(&dst_mm->mmlist,
857 &src_mm->mmlist);
1da177e4
LT
858 spin_unlock(&mmlist_lock);
859 }
b084d435
KH
860 if (likely(!non_swap_entry(entry)))
861 rss[MM_SWAPENTS]++;
9f9f1acd
KK
862 else if (is_migration_entry(entry)) {
863 page = migration_entry_to_page(entry);
864
865 if (PageAnon(page))
866 rss[MM_ANONPAGES]++;
867 else
868 rss[MM_FILEPAGES]++;
869
870 if (is_write_migration_entry(entry) &&
871 is_cow_mapping(vm_flags)) {
872 /*
873 * COW mappings require pages in both
874 * parent and child to be set to read.
875 */
876 make_migration_entry_read(&entry);
877 pte = swp_entry_to_pte(entry);
878 set_pte_at(src_mm, addr, src_pte, pte);
879 }
0697212a 880 }
1da177e4 881 }
ae859762 882 goto out_set_pte;
1da177e4
LT
883 }
884
1da177e4
LT
885 /*
886 * If it's a COW mapping, write protect it both
887 * in the parent and the child
888 */
67121172 889 if (is_cow_mapping(vm_flags)) {
1da177e4 890 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 891 pte = pte_wrprotect(pte);
1da177e4
LT
892 }
893
894 /*
895 * If it's a shared mapping, mark it clean in
896 * the child
897 */
898 if (vm_flags & VM_SHARED)
899 pte = pte_mkclean(pte);
900 pte = pte_mkold(pte);
6aab341e
LT
901
902 page = vm_normal_page(vma, addr, pte);
903 if (page) {
904 get_page(page);
21333b2b 905 page_dup_rmap(page);
d559db08
KH
906 if (PageAnon(page))
907 rss[MM_ANONPAGES]++;
908 else
909 rss[MM_FILEPAGES]++;
6aab341e 910 }
ae859762
HD
911
912out_set_pte:
913 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 914 return 0;
1da177e4
LT
915}
916
71e3aac0
AA
917int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
918 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
919 unsigned long addr, unsigned long end)
1da177e4 920{
c36987e2 921 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 922 pte_t *src_pte, *dst_pte;
c74df32c 923 spinlock_t *src_ptl, *dst_ptl;
e040f218 924 int progress = 0;
d559db08 925 int rss[NR_MM_COUNTERS];
570a335b 926 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
927
928again:
d559db08
KH
929 init_rss_vec(rss);
930
c74df32c 931 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
932 if (!dst_pte)
933 return -ENOMEM;
ece0e2b6 934 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 935 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 936 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
937 orig_src_pte = src_pte;
938 orig_dst_pte = dst_pte;
6606c3e0 939 arch_enter_lazy_mmu_mode();
1da177e4 940
1da177e4
LT
941 do {
942 /*
943 * We are holding two locks at this point - either of them
944 * could generate latencies in another task on another CPU.
945 */
e040f218
HD
946 if (progress >= 32) {
947 progress = 0;
948 if (need_resched() ||
95c354fe 949 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
950 break;
951 }
1da177e4
LT
952 if (pte_none(*src_pte)) {
953 progress++;
954 continue;
955 }
570a335b
HD
956 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
957 vma, addr, rss);
958 if (entry.val)
959 break;
1da177e4
LT
960 progress += 8;
961 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 962
6606c3e0 963 arch_leave_lazy_mmu_mode();
c74df32c 964 spin_unlock(src_ptl);
ece0e2b6 965 pte_unmap(orig_src_pte);
d559db08 966 add_mm_rss_vec(dst_mm, rss);
c36987e2 967 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 968 cond_resched();
570a335b
HD
969
970 if (entry.val) {
971 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
972 return -ENOMEM;
973 progress = 0;
974 }
1da177e4
LT
975 if (addr != end)
976 goto again;
977 return 0;
978}
979
980static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
981 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
982 unsigned long addr, unsigned long end)
983{
984 pmd_t *src_pmd, *dst_pmd;
985 unsigned long next;
986
987 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
988 if (!dst_pmd)
989 return -ENOMEM;
990 src_pmd = pmd_offset(src_pud, addr);
991 do {
992 next = pmd_addr_end(addr, end);
71e3aac0
AA
993 if (pmd_trans_huge(*src_pmd)) {
994 int err;
14d1a55c 995 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
71e3aac0
AA
996 err = copy_huge_pmd(dst_mm, src_mm,
997 dst_pmd, src_pmd, addr, vma);
998 if (err == -ENOMEM)
999 return -ENOMEM;
1000 if (!err)
1001 continue;
1002 /* fall through */
1003 }
1da177e4
LT
1004 if (pmd_none_or_clear_bad(src_pmd))
1005 continue;
1006 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1007 vma, addr, next))
1008 return -ENOMEM;
1009 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1010 return 0;
1011}
1012
1013static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1014 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1015 unsigned long addr, unsigned long end)
1016{
1017 pud_t *src_pud, *dst_pud;
1018 unsigned long next;
1019
1020 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1021 if (!dst_pud)
1022 return -ENOMEM;
1023 src_pud = pud_offset(src_pgd, addr);
1024 do {
1025 next = pud_addr_end(addr, end);
1026 if (pud_none_or_clear_bad(src_pud))
1027 continue;
1028 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1029 vma, addr, next))
1030 return -ENOMEM;
1031 } while (dst_pud++, src_pud++, addr = next, addr != end);
1032 return 0;
1033}
1034
1035int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1036 struct vm_area_struct *vma)
1037{
1038 pgd_t *src_pgd, *dst_pgd;
1039 unsigned long next;
1040 unsigned long addr = vma->vm_start;
1041 unsigned long end = vma->vm_end;
2ec74c3e
SG
1042 unsigned long mmun_start; /* For mmu_notifiers */
1043 unsigned long mmun_end; /* For mmu_notifiers */
1044 bool is_cow;
cddb8a5c 1045 int ret;
1da177e4 1046
d992895b
NP
1047 /*
1048 * Don't copy ptes where a page fault will fill them correctly.
1049 * Fork becomes much lighter when there are big shared or private
1050 * readonly mappings. The tradeoff is that copy_page_range is more
1051 * efficient than faulting.
1052 */
4b6e1e37
KK
1053 if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1054 VM_PFNMAP | VM_MIXEDMAP))) {
d992895b
NP
1055 if (!vma->anon_vma)
1056 return 0;
1057 }
1058
1da177e4
LT
1059 if (is_vm_hugetlb_page(vma))
1060 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1061
b3b9c293 1062 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
2ab64037 1063 /*
1064 * We do not free on error cases below as remove_vma
1065 * gets called on error from higher level routine
1066 */
5180da41 1067 ret = track_pfn_copy(vma);
2ab64037 1068 if (ret)
1069 return ret;
1070 }
1071
cddb8a5c
AA
1072 /*
1073 * We need to invalidate the secondary MMU mappings only when
1074 * there could be a permission downgrade on the ptes of the
1075 * parent mm. And a permission downgrade will only happen if
1076 * is_cow_mapping() returns true.
1077 */
2ec74c3e
SG
1078 is_cow = is_cow_mapping(vma->vm_flags);
1079 mmun_start = addr;
1080 mmun_end = end;
1081 if (is_cow)
1082 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1083 mmun_end);
cddb8a5c
AA
1084
1085 ret = 0;
1da177e4
LT
1086 dst_pgd = pgd_offset(dst_mm, addr);
1087 src_pgd = pgd_offset(src_mm, addr);
1088 do {
1089 next = pgd_addr_end(addr, end);
1090 if (pgd_none_or_clear_bad(src_pgd))
1091 continue;
cddb8a5c
AA
1092 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1093 vma, addr, next))) {
1094 ret = -ENOMEM;
1095 break;
1096 }
1da177e4 1097 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1098
2ec74c3e
SG
1099 if (is_cow)
1100 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
cddb8a5c 1101 return ret;
1da177e4
LT
1102}
1103
51c6f666 1104static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1105 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1106 unsigned long addr, unsigned long end,
97a89413 1107 struct zap_details *details)
1da177e4 1108{
b5810039 1109 struct mm_struct *mm = tlb->mm;
d16dfc55 1110 int force_flush = 0;
d559db08 1111 int rss[NR_MM_COUNTERS];
97a89413 1112 spinlock_t *ptl;
5f1a1907 1113 pte_t *start_pte;
97a89413 1114 pte_t *pte;
d559db08 1115
d16dfc55 1116again:
e303297e 1117 init_rss_vec(rss);
5f1a1907
SR
1118 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1119 pte = start_pte;
6606c3e0 1120 arch_enter_lazy_mmu_mode();
1da177e4
LT
1121 do {
1122 pte_t ptent = *pte;
51c6f666 1123 if (pte_none(ptent)) {
1da177e4 1124 continue;
51c6f666 1125 }
6f5e6b9e 1126
1da177e4 1127 if (pte_present(ptent)) {
ee498ed7 1128 struct page *page;
51c6f666 1129
6aab341e 1130 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
1131 if (unlikely(details) && page) {
1132 /*
1133 * unmap_shared_mapping_pages() wants to
1134 * invalidate cache without truncating:
1135 * unmap shared but keep private pages.
1136 */
1137 if (details->check_mapping &&
1138 details->check_mapping != page->mapping)
1139 continue;
1140 /*
1141 * Each page->index must be checked when
1142 * invalidating or truncating nonlinear.
1143 */
1144 if (details->nonlinear_vma &&
1145 (page->index < details->first_index ||
1146 page->index > details->last_index))
1147 continue;
1148 }
b5810039 1149 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1150 tlb->fullmm);
1da177e4
LT
1151 tlb_remove_tlb_entry(tlb, pte, addr);
1152 if (unlikely(!page))
1153 continue;
1154 if (unlikely(details) && details->nonlinear_vma
1155 && linear_page_index(details->nonlinear_vma,
1156 addr) != page->index)
b5810039 1157 set_pte_at(mm, addr, pte,
1da177e4 1158 pgoff_to_pte(page->index));
1da177e4 1159 if (PageAnon(page))
d559db08 1160 rss[MM_ANONPAGES]--;
6237bcd9
HD
1161 else {
1162 if (pte_dirty(ptent))
1163 set_page_dirty(page);
4917e5d0
JW
1164 if (pte_young(ptent) &&
1165 likely(!VM_SequentialReadHint(vma)))
bf3f3bc5 1166 mark_page_accessed(page);
d559db08 1167 rss[MM_FILEPAGES]--;
6237bcd9 1168 }
edc315fd 1169 page_remove_rmap(page);
3dc14741
HD
1170 if (unlikely(page_mapcount(page) < 0))
1171 print_bad_pte(vma, addr, ptent, page);
d16dfc55
PZ
1172 force_flush = !__tlb_remove_page(tlb, page);
1173 if (force_flush)
1174 break;
1da177e4
LT
1175 continue;
1176 }
1177 /*
1178 * If details->check_mapping, we leave swap entries;
1179 * if details->nonlinear_vma, we leave file entries.
1180 */
1181 if (unlikely(details))
1182 continue;
2509ef26
HD
1183 if (pte_file(ptent)) {
1184 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1185 print_bad_pte(vma, addr, ptent, NULL);
b084d435
KH
1186 } else {
1187 swp_entry_t entry = pte_to_swp_entry(ptent);
1188
1189 if (!non_swap_entry(entry))
1190 rss[MM_SWAPENTS]--;
9f9f1acd
KK
1191 else if (is_migration_entry(entry)) {
1192 struct page *page;
1193
1194 page = migration_entry_to_page(entry);
1195
1196 if (PageAnon(page))
1197 rss[MM_ANONPAGES]--;
1198 else
1199 rss[MM_FILEPAGES]--;
1200 }
b084d435
KH
1201 if (unlikely(!free_swap_and_cache(entry)))
1202 print_bad_pte(vma, addr, ptent, NULL);
1203 }
9888a1ca 1204 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1205 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1206
d559db08 1207 add_mm_rss_vec(mm, rss);
6606c3e0 1208 arch_leave_lazy_mmu_mode();
5f1a1907 1209 pte_unmap_unlock(start_pte, ptl);
51c6f666 1210
d16dfc55
PZ
1211 /*
1212 * mmu_gather ran out of room to batch pages, we break out of
1213 * the PTE lock to avoid doing the potential expensive TLB invalidate
1214 * and page-free while holding it.
1215 */
1216 if (force_flush) {
1217 force_flush = 0;
597e1c35
AS
1218
1219#ifdef HAVE_GENERIC_MMU_GATHER
1220 tlb->start = addr;
1221 tlb->end = end;
1222#endif
d16dfc55
PZ
1223 tlb_flush_mmu(tlb);
1224 if (addr != end)
1225 goto again;
1226 }
1227
51c6f666 1228 return addr;
1da177e4
LT
1229}
1230
51c6f666 1231static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1232 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1233 unsigned long addr, unsigned long end,
97a89413 1234 struct zap_details *details)
1da177e4
LT
1235{
1236 pmd_t *pmd;
1237 unsigned long next;
1238
1239 pmd = pmd_offset(pud, addr);
1240 do {
1241 next = pmd_addr_end(addr, end);
71e3aac0 1242 if (pmd_trans_huge(*pmd)) {
1a5a9906 1243 if (next - addr != HPAGE_PMD_SIZE) {
e0897d75
DR
1244#ifdef CONFIG_DEBUG_VM
1245 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1246 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1247 __func__, addr, end,
1248 vma->vm_start,
1249 vma->vm_end);
1250 BUG();
1251 }
1252#endif
71e3aac0 1253 split_huge_page_pmd(vma->vm_mm, pmd);
f21760b1 1254 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1255 goto next;
71e3aac0
AA
1256 /* fall through */
1257 }
1a5a9906
AA
1258 /*
1259 * Here there can be other concurrent MADV_DONTNEED or
1260 * trans huge page faults running, and if the pmd is
1261 * none or trans huge it can change under us. This is
1262 * because MADV_DONTNEED holds the mmap_sem in read
1263 * mode.
1264 */
1265 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1266 goto next;
97a89413 1267 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1268next:
97a89413
PZ
1269 cond_resched();
1270 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1271
1272 return addr;
1da177e4
LT
1273}
1274
51c6f666 1275static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
b5810039 1276 struct vm_area_struct *vma, pgd_t *pgd,
1da177e4 1277 unsigned long addr, unsigned long end,
97a89413 1278 struct zap_details *details)
1da177e4
LT
1279{
1280 pud_t *pud;
1281 unsigned long next;
1282
1283 pud = pud_offset(pgd, addr);
1284 do {
1285 next = pud_addr_end(addr, end);
97a89413 1286 if (pud_none_or_clear_bad(pud))
1da177e4 1287 continue;
97a89413
PZ
1288 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1289 } while (pud++, addr = next, addr != end);
51c6f666
RH
1290
1291 return addr;
1da177e4
LT
1292}
1293
038c7aa1
AV
1294static void unmap_page_range(struct mmu_gather *tlb,
1295 struct vm_area_struct *vma,
1296 unsigned long addr, unsigned long end,
1297 struct zap_details *details)
1da177e4
LT
1298{
1299 pgd_t *pgd;
1300 unsigned long next;
1301
1302 if (details && !details->check_mapping && !details->nonlinear_vma)
1303 details = NULL;
1304
1305 BUG_ON(addr >= end);
569b846d 1306 mem_cgroup_uncharge_start();
1da177e4
LT
1307 tlb_start_vma(tlb, vma);
1308 pgd = pgd_offset(vma->vm_mm, addr);
1309 do {
1310 next = pgd_addr_end(addr, end);
97a89413 1311 if (pgd_none_or_clear_bad(pgd))
1da177e4 1312 continue;
97a89413
PZ
1313 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1314 } while (pgd++, addr = next, addr != end);
1da177e4 1315 tlb_end_vma(tlb, vma);
569b846d 1316 mem_cgroup_uncharge_end();
1da177e4 1317}
51c6f666 1318
f5cc4eef
AV
1319
1320static void unmap_single_vma(struct mmu_gather *tlb,
1321 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1322 unsigned long end_addr,
f5cc4eef
AV
1323 struct zap_details *details)
1324{
1325 unsigned long start = max(vma->vm_start, start_addr);
1326 unsigned long end;
1327
1328 if (start >= vma->vm_end)
1329 return;
1330 end = min(vma->vm_end, end_addr);
1331 if (end <= vma->vm_start)
1332 return;
1333
cbc91f71
SD
1334 if (vma->vm_file)
1335 uprobe_munmap(vma, start, end);
1336
b3b9c293 1337 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1338 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1339
1340 if (start != end) {
1341 if (unlikely(is_vm_hugetlb_page(vma))) {
1342 /*
1343 * It is undesirable to test vma->vm_file as it
1344 * should be non-null for valid hugetlb area.
1345 * However, vm_file will be NULL in the error
1346 * cleanup path of do_mmap_pgoff. When
1347 * hugetlbfs ->mmap method fails,
1348 * do_mmap_pgoff() nullifies vma->vm_file
1349 * before calling this function to clean up.
1350 * Since no pte has actually been setup, it is
1351 * safe to do nothing in this case.
1352 */
24669e58
AK
1353 if (vma->vm_file) {
1354 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
d833352a 1355 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
24669e58
AK
1356 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1357 }
f5cc4eef
AV
1358 } else
1359 unmap_page_range(tlb, vma, start, end, details);
1360 }
1da177e4
LT
1361}
1362
1da177e4
LT
1363/**
1364 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1365 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1366 * @vma: the starting vma
1367 * @start_addr: virtual address at which to start unmapping
1368 * @end_addr: virtual address at which to end unmapping
1da177e4 1369 *
508034a3 1370 * Unmap all pages in the vma list.
1da177e4 1371 *
1da177e4
LT
1372 * Only addresses between `start' and `end' will be unmapped.
1373 *
1374 * The VMA list must be sorted in ascending virtual address order.
1375 *
1376 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1377 * range after unmap_vmas() returns. So the only responsibility here is to
1378 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1379 * drops the lock and schedules.
1380 */
6e8bb019 1381void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1382 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1383 unsigned long end_addr)
1da177e4 1384{
cddb8a5c 1385 struct mm_struct *mm = vma->vm_mm;
1da177e4 1386
cddb8a5c 1387 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
f5cc4eef 1388 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1389 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
cddb8a5c 1390 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1da177e4
LT
1391}
1392
1393/**
1394 * zap_page_range - remove user pages in a given range
1395 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1396 * @start: starting address of pages to zap
1da177e4
LT
1397 * @size: number of bytes to zap
1398 * @details: details of nonlinear truncation or shared cache invalidation
f5cc4eef
AV
1399 *
1400 * Caller must protect the VMA list
1da177e4 1401 */
7e027b14 1402void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1403 unsigned long size, struct zap_details *details)
1404{
1405 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1406 struct mmu_gather tlb;
7e027b14 1407 unsigned long end = start + size;
1da177e4 1408
1da177e4 1409 lru_add_drain();
d16dfc55 1410 tlb_gather_mmu(&tlb, mm, 0);
365e9c87 1411 update_hiwater_rss(mm);
7e027b14
LT
1412 mmu_notifier_invalidate_range_start(mm, start, end);
1413 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
4f74d2c8 1414 unmap_single_vma(&tlb, vma, start, end, details);
7e027b14
LT
1415 mmu_notifier_invalidate_range_end(mm, start, end);
1416 tlb_finish_mmu(&tlb, start, end);
1da177e4
LT
1417}
1418
f5cc4eef
AV
1419/**
1420 * zap_page_range_single - remove user pages in a given range
1421 * @vma: vm_area_struct holding the applicable pages
1422 * @address: starting address of pages to zap
1423 * @size: number of bytes to zap
1424 * @details: details of nonlinear truncation or shared cache invalidation
1425 *
1426 * The range must fit into one VMA.
1da177e4 1427 */
f5cc4eef 1428static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1429 unsigned long size, struct zap_details *details)
1430{
1431 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1432 struct mmu_gather tlb;
1da177e4 1433 unsigned long end = address + size;
1da177e4 1434
1da177e4 1435 lru_add_drain();
d16dfc55 1436 tlb_gather_mmu(&tlb, mm, 0);
365e9c87 1437 update_hiwater_rss(mm);
f5cc4eef 1438 mmu_notifier_invalidate_range_start(mm, address, end);
4f74d2c8 1439 unmap_single_vma(&tlb, vma, address, end, details);
f5cc4eef 1440 mmu_notifier_invalidate_range_end(mm, address, end);
d16dfc55 1441 tlb_finish_mmu(&tlb, address, end);
1da177e4
LT
1442}
1443
c627f9cc
JS
1444/**
1445 * zap_vma_ptes - remove ptes mapping the vma
1446 * @vma: vm_area_struct holding ptes to be zapped
1447 * @address: starting address of pages to zap
1448 * @size: number of bytes to zap
1449 *
1450 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1451 *
1452 * The entire address range must be fully contained within the vma.
1453 *
1454 * Returns 0 if successful.
1455 */
1456int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1457 unsigned long size)
1458{
1459 if (address < vma->vm_start || address + size > vma->vm_end ||
1460 !(vma->vm_flags & VM_PFNMAP))
1461 return -1;
f5cc4eef 1462 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1463 return 0;
1464}
1465EXPORT_SYMBOL_GPL(zap_vma_ptes);
1466
142762bd
JW
1467/**
1468 * follow_page - look up a page descriptor from a user-virtual address
1469 * @vma: vm_area_struct mapping @address
1470 * @address: virtual address to look up
1471 * @flags: flags modifying lookup behaviour
1472 *
1473 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1474 *
1475 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1476 * an error pointer if there is a mapping to something not represented
1477 * by a page descriptor (see also vm_normal_page()).
1da177e4 1478 */
6aab341e 1479struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
deceb6cd 1480 unsigned int flags)
1da177e4
LT
1481{
1482 pgd_t *pgd;
1483 pud_t *pud;
1484 pmd_t *pmd;
1485 pte_t *ptep, pte;
deceb6cd 1486 spinlock_t *ptl;
1da177e4 1487 struct page *page;
6aab341e 1488 struct mm_struct *mm = vma->vm_mm;
1da177e4 1489
deceb6cd
HD
1490 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1491 if (!IS_ERR(page)) {
1492 BUG_ON(flags & FOLL_GET);
1493 goto out;
1494 }
1da177e4 1495
deceb6cd 1496 page = NULL;
1da177e4
LT
1497 pgd = pgd_offset(mm, address);
1498 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
deceb6cd 1499 goto no_page_table;
1da177e4
LT
1500
1501 pud = pud_offset(pgd, address);
ceb86879 1502 if (pud_none(*pud))
deceb6cd 1503 goto no_page_table;
8a07651e 1504 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
ceb86879
AK
1505 BUG_ON(flags & FOLL_GET);
1506 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1507 goto out;
1508 }
1509 if (unlikely(pud_bad(*pud)))
1510 goto no_page_table;
1511
1da177e4 1512 pmd = pmd_offset(pud, address);
aeed5fce 1513 if (pmd_none(*pmd))
deceb6cd 1514 goto no_page_table;
71e3aac0 1515 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
deceb6cd
HD
1516 BUG_ON(flags & FOLL_GET);
1517 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1da177e4 1518 goto out;
deceb6cd 1519 }
0b9d7052
AA
1520 if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1521 goto no_page_table;
71e3aac0 1522 if (pmd_trans_huge(*pmd)) {
500d65d4
AA
1523 if (flags & FOLL_SPLIT) {
1524 split_huge_page_pmd(mm, pmd);
1525 goto split_fallthrough;
1526 }
71e3aac0
AA
1527 spin_lock(&mm->page_table_lock);
1528 if (likely(pmd_trans_huge(*pmd))) {
1529 if (unlikely(pmd_trans_splitting(*pmd))) {
1530 spin_unlock(&mm->page_table_lock);
1531 wait_split_huge_page(vma->anon_vma, pmd);
1532 } else {
b676b293 1533 page = follow_trans_huge_pmd(vma, address,
71e3aac0
AA
1534 pmd, flags);
1535 spin_unlock(&mm->page_table_lock);
1536 goto out;
1537 }
1538 } else
1539 spin_unlock(&mm->page_table_lock);
1540 /* fall through */
1541 }
500d65d4 1542split_fallthrough:
aeed5fce
HD
1543 if (unlikely(pmd_bad(*pmd)))
1544 goto no_page_table;
1545
deceb6cd 1546 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
1547
1548 pte = *ptep;
deceb6cd 1549 if (!pte_present(pte))
89f5b7da 1550 goto no_page;
0b9d7052
AA
1551 if ((flags & FOLL_NUMA) && pte_numa(pte))
1552 goto no_page;
deceb6cd
HD
1553 if ((flags & FOLL_WRITE) && !pte_write(pte))
1554 goto unlock;
a13ea5b7 1555
6aab341e 1556 page = vm_normal_page(vma, address, pte);
a13ea5b7
HD
1557 if (unlikely(!page)) {
1558 if ((flags & FOLL_DUMP) ||
62eede62 1559 !is_zero_pfn(pte_pfn(pte)))
a13ea5b7
HD
1560 goto bad_page;
1561 page = pte_page(pte);
1562 }
1da177e4 1563
deceb6cd 1564 if (flags & FOLL_GET)
70b50f94 1565 get_page_foll(page);
deceb6cd
HD
1566 if (flags & FOLL_TOUCH) {
1567 if ((flags & FOLL_WRITE) &&
1568 !pte_dirty(pte) && !PageDirty(page))
1569 set_page_dirty(page);
bd775c42
KM
1570 /*
1571 * pte_mkyoung() would be more correct here, but atomic care
1572 * is needed to avoid losing the dirty bit: it is easier to use
1573 * mark_page_accessed().
1574 */
deceb6cd
HD
1575 mark_page_accessed(page);
1576 }
a1fde08c 1577 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
110d74a9
ML
1578 /*
1579 * The preliminary mapping check is mainly to avoid the
1580 * pointless overhead of lock_page on the ZERO_PAGE
1581 * which might bounce very badly if there is contention.
1582 *
1583 * If the page is already locked, we don't need to
1584 * handle it now - vmscan will handle it later if and
1585 * when it attempts to reclaim the page.
1586 */
1587 if (page->mapping && trylock_page(page)) {
1588 lru_add_drain(); /* push cached pages to LRU */
1589 /*
e6c509f8
HD
1590 * Because we lock page here, and migration is
1591 * blocked by the pte's page reference, and we
1592 * know the page is still mapped, we don't even
1593 * need to check for file-cache page truncation.
110d74a9 1594 */
e6c509f8 1595 mlock_vma_page(page);
110d74a9
ML
1596 unlock_page(page);
1597 }
1598 }
deceb6cd
HD
1599unlock:
1600 pte_unmap_unlock(ptep, ptl);
1da177e4 1601out:
deceb6cd 1602 return page;
1da177e4 1603
89f5b7da
LT
1604bad_page:
1605 pte_unmap_unlock(ptep, ptl);
1606 return ERR_PTR(-EFAULT);
1607
1608no_page:
1609 pte_unmap_unlock(ptep, ptl);
1610 if (!pte_none(pte))
1611 return page;
8e4b9a60 1612
deceb6cd
HD
1613no_page_table:
1614 /*
1615 * When core dumping an enormous anonymous area that nobody
8e4b9a60
HD
1616 * has touched so far, we don't want to allocate unnecessary pages or
1617 * page tables. Return error instead of NULL to skip handle_mm_fault,
1618 * then get_dump_page() will return NULL to leave a hole in the dump.
1619 * But we can only make this optimization where a hole would surely
1620 * be zero-filled if handle_mm_fault() actually did handle it.
deceb6cd 1621 */
8e4b9a60
HD
1622 if ((flags & FOLL_DUMP) &&
1623 (!vma->vm_ops || !vma->vm_ops->fault))
1624 return ERR_PTR(-EFAULT);
deceb6cd 1625 return page;
1da177e4
LT
1626}
1627
95042f9e
LT
1628static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1629{
a09a79f6
MP
1630 return stack_guard_page_start(vma, addr) ||
1631 stack_guard_page_end(vma, addr+PAGE_SIZE);
95042f9e
LT
1632}
1633
0014bd99
HY
1634/**
1635 * __get_user_pages() - pin user pages in memory
1636 * @tsk: task_struct of target task
1637 * @mm: mm_struct of target mm
1638 * @start: starting user address
1639 * @nr_pages: number of pages from start to pin
1640 * @gup_flags: flags modifying pin behaviour
1641 * @pages: array that receives pointers to the pages pinned.
1642 * Should be at least nr_pages long. Or NULL, if caller
1643 * only intends to ensure the pages are faulted in.
1644 * @vmas: array of pointers to vmas corresponding to each page.
1645 * Or NULL if the caller does not require them.
1646 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1647 *
1648 * Returns number of pages pinned. This may be fewer than the number
1649 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1650 * were pinned, returns -errno. Each page returned must be released
1651 * with a put_page() call when it is finished with. vmas will only
1652 * remain valid while mmap_sem is held.
1653 *
1654 * Must be called with mmap_sem held for read or write.
1655 *
1656 * __get_user_pages walks a process's page tables and takes a reference to
1657 * each struct page that each user address corresponds to at a given
1658 * instant. That is, it takes the page that would be accessed if a user
1659 * thread accesses the given user virtual address at that instant.
1660 *
1661 * This does not guarantee that the page exists in the user mappings when
1662 * __get_user_pages returns, and there may even be a completely different
1663 * page there in some cases (eg. if mmapped pagecache has been invalidated
1664 * and subsequently re faulted). However it does guarantee that the page
1665 * won't be freed completely. And mostly callers simply care that the page
1666 * contains data that was valid *at some point in time*. Typically, an IO
1667 * or similar operation cannot guarantee anything stronger anyway because
1668 * locks can't be held over the syscall boundary.
1669 *
1670 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1671 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1672 * appropriate) must be called after the page is finished with, and
1673 * before put_page is called.
1674 *
1675 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1676 * or mmap_sem contention, and if waiting is needed to pin all pages,
1677 * *@nonblocking will be set to 0.
1678 *
1679 * In most cases, get_user_pages or get_user_pages_fast should be used
1680 * instead of __get_user_pages. __get_user_pages should be used only if
1681 * you need some special @gup_flags.
1682 */
b291f000 1683int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
58fa879e 1684 unsigned long start, int nr_pages, unsigned int gup_flags,
53a7706d
ML
1685 struct page **pages, struct vm_area_struct **vmas,
1686 int *nonblocking)
1da177e4
LT
1687{
1688 int i;
58fa879e 1689 unsigned long vm_flags;
1da177e4 1690
9d73777e 1691 if (nr_pages <= 0)
900cf086 1692 return 0;
58fa879e
HD
1693
1694 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1695
1da177e4
LT
1696 /*
1697 * Require read or write permissions.
58fa879e 1698 * If FOLL_FORCE is set, we only require the "MAY" flags.
1da177e4 1699 */
58fa879e
HD
1700 vm_flags = (gup_flags & FOLL_WRITE) ?
1701 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1702 vm_flags &= (gup_flags & FOLL_FORCE) ?
1703 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
0b9d7052
AA
1704
1705 /*
1706 * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1707 * would be called on PROT_NONE ranges. We must never invoke
1708 * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1709 * page faults would unprotect the PROT_NONE ranges if
1710 * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1711 * bitflag. So to avoid that, don't set FOLL_NUMA if
1712 * FOLL_FORCE is set.
1713 */
1714 if (!(gup_flags & FOLL_FORCE))
1715 gup_flags |= FOLL_NUMA;
1716
1da177e4
LT
1717 i = 0;
1718
1719 do {
deceb6cd 1720 struct vm_area_struct *vma;
1da177e4
LT
1721
1722 vma = find_extend_vma(mm, start);
e7f22e20 1723 if (!vma && in_gate_area(mm, start)) {
1da177e4 1724 unsigned long pg = start & PAGE_MASK;
1da177e4
LT
1725 pgd_t *pgd;
1726 pud_t *pud;
1727 pmd_t *pmd;
1728 pte_t *pte;
b291f000
NP
1729
1730 /* user gate pages are read-only */
58fa879e 1731 if (gup_flags & FOLL_WRITE)
1da177e4
LT
1732 return i ? : -EFAULT;
1733 if (pg > TASK_SIZE)
1734 pgd = pgd_offset_k(pg);
1735 else
1736 pgd = pgd_offset_gate(mm, pg);
1737 BUG_ON(pgd_none(*pgd));
1738 pud = pud_offset(pgd, pg);
1739 BUG_ON(pud_none(*pud));
1740 pmd = pmd_offset(pud, pg);
690dbe1c
HD
1741 if (pmd_none(*pmd))
1742 return i ? : -EFAULT;
f66055ab 1743 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4 1744 pte = pte_offset_map(pmd, pg);
690dbe1c
HD
1745 if (pte_none(*pte)) {
1746 pte_unmap(pte);
1747 return i ? : -EFAULT;
1748 }
95042f9e 1749 vma = get_gate_vma(mm);
1da177e4 1750 if (pages) {
de51257a
HD
1751 struct page *page;
1752
95042f9e 1753 page = vm_normal_page(vma, start, *pte);
de51257a
HD
1754 if (!page) {
1755 if (!(gup_flags & FOLL_DUMP) &&
1756 is_zero_pfn(pte_pfn(*pte)))
1757 page = pte_page(*pte);
1758 else {
1759 pte_unmap(pte);
1760 return i ? : -EFAULT;
1761 }
1762 }
6aab341e 1763 pages[i] = page;
de51257a 1764 get_page(page);
1da177e4
LT
1765 }
1766 pte_unmap(pte);
95042f9e 1767 goto next_page;
1da177e4
LT
1768 }
1769
b291f000
NP
1770 if (!vma ||
1771 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1c3aff1c 1772 !(vm_flags & vma->vm_flags))
1da177e4
LT
1773 return i ? : -EFAULT;
1774
2a15efc9
HD
1775 if (is_vm_hugetlb_page(vma)) {
1776 i = follow_hugetlb_page(mm, vma, pages, vmas,
58fa879e 1777 &start, &nr_pages, i, gup_flags);
2a15efc9
HD
1778 continue;
1779 }
deceb6cd 1780
1da177e4 1781 do {
08ef4729 1782 struct page *page;
58fa879e 1783 unsigned int foll_flags = gup_flags;
1da177e4 1784
462e00cc 1785 /*
4779280d 1786 * If we have a pending SIGKILL, don't keep faulting
1c3aff1c 1787 * pages and potentially allocating memory.
462e00cc 1788 */
1c3aff1c 1789 if (unlikely(fatal_signal_pending(current)))
4779280d 1790 return i ? i : -ERESTARTSYS;
462e00cc 1791
deceb6cd 1792 cond_resched();
6aab341e 1793 while (!(page = follow_page(vma, start, foll_flags))) {
deceb6cd 1794 int ret;
53a7706d
ML
1795 unsigned int fault_flags = 0;
1796
a09a79f6
MP
1797 /* For mlock, just skip the stack guard page. */
1798 if (foll_flags & FOLL_MLOCK) {
1799 if (stack_guard_page(vma, start))
1800 goto next_page;
1801 }
53a7706d
ML
1802 if (foll_flags & FOLL_WRITE)
1803 fault_flags |= FAULT_FLAG_WRITE;
1804 if (nonblocking)
1805 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
318b275f
GN
1806 if (foll_flags & FOLL_NOWAIT)
1807 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
d06063cc 1808
d26ed650 1809 ret = handle_mm_fault(mm, vma, start,
53a7706d 1810 fault_flags);
d26ed650 1811
83c54070
NP
1812 if (ret & VM_FAULT_ERROR) {
1813 if (ret & VM_FAULT_OOM)
1814 return i ? i : -ENOMEM;
69ebb83e
HY
1815 if (ret & (VM_FAULT_HWPOISON |
1816 VM_FAULT_HWPOISON_LARGE)) {
1817 if (i)
1818 return i;
1819 else if (gup_flags & FOLL_HWPOISON)
1820 return -EHWPOISON;
1821 else
1822 return -EFAULT;
1823 }
1824 if (ret & VM_FAULT_SIGBUS)
83c54070
NP
1825 return i ? i : -EFAULT;
1826 BUG();
1827 }
e7f22e20
SW
1828
1829 if (tsk) {
1830 if (ret & VM_FAULT_MAJOR)
1831 tsk->maj_flt++;
1832 else
1833 tsk->min_flt++;
1834 }
83c54070 1835
53a7706d 1836 if (ret & VM_FAULT_RETRY) {
318b275f
GN
1837 if (nonblocking)
1838 *nonblocking = 0;
53a7706d
ML
1839 return i;
1840 }
1841
a68d2ebc 1842 /*
83c54070
NP
1843 * The VM_FAULT_WRITE bit tells us that
1844 * do_wp_page has broken COW when necessary,
1845 * even if maybe_mkwrite decided not to set
1846 * pte_write. We can thus safely do subsequent
878b63ac
HD
1847 * page lookups as if they were reads. But only
1848 * do so when looping for pte_write is futile:
1849 * in some cases userspace may also be wanting
1850 * to write to the gotten user page, which a
1851 * read fault here might prevent (a readonly
1852 * page might get reCOWed by userspace write).
a68d2ebc 1853 */
878b63ac
HD
1854 if ((ret & VM_FAULT_WRITE) &&
1855 !(vma->vm_flags & VM_WRITE))
deceb6cd 1856 foll_flags &= ~FOLL_WRITE;
83c54070 1857
7f7bbbe5 1858 cond_resched();
1da177e4 1859 }
89f5b7da
LT
1860 if (IS_ERR(page))
1861 return i ? i : PTR_ERR(page);
1da177e4 1862 if (pages) {
08ef4729 1863 pages[i] = page;
03beb076 1864
a6f36be3 1865 flush_anon_page(vma, page, start);
08ef4729 1866 flush_dcache_page(page);
1da177e4 1867 }
95042f9e 1868next_page:
1da177e4
LT
1869 if (vmas)
1870 vmas[i] = vma;
1871 i++;
1872 start += PAGE_SIZE;
9d73777e
PZ
1873 nr_pages--;
1874 } while (nr_pages && start < vma->vm_end);
1875 } while (nr_pages);
1da177e4
LT
1876 return i;
1877}
0014bd99 1878EXPORT_SYMBOL(__get_user_pages);
b291f000 1879
2efaca92
BH
1880/*
1881 * fixup_user_fault() - manually resolve a user page fault
1882 * @tsk: the task_struct to use for page fault accounting, or
1883 * NULL if faults are not to be recorded.
1884 * @mm: mm_struct of target mm
1885 * @address: user address
1886 * @fault_flags:flags to pass down to handle_mm_fault()
1887 *
1888 * This is meant to be called in the specific scenario where for locking reasons
1889 * we try to access user memory in atomic context (within a pagefault_disable()
1890 * section), this returns -EFAULT, and we want to resolve the user fault before
1891 * trying again.
1892 *
1893 * Typically this is meant to be used by the futex code.
1894 *
1895 * The main difference with get_user_pages() is that this function will
1896 * unconditionally call handle_mm_fault() which will in turn perform all the
1897 * necessary SW fixup of the dirty and young bits in the PTE, while
1898 * handle_mm_fault() only guarantees to update these in the struct page.
1899 *
1900 * This is important for some architectures where those bits also gate the
1901 * access permission to the page because they are maintained in software. On
1902 * such architectures, gup() will not be enough to make a subsequent access
1903 * succeed.
1904 *
1905 * This should be called with the mm_sem held for read.
1906 */
1907int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1908 unsigned long address, unsigned int fault_flags)
1909{
1910 struct vm_area_struct *vma;
1911 int ret;
1912
1913 vma = find_extend_vma(mm, address);
1914 if (!vma || address < vma->vm_start)
1915 return -EFAULT;
1916
1917 ret = handle_mm_fault(mm, vma, address, fault_flags);
1918 if (ret & VM_FAULT_ERROR) {
1919 if (ret & VM_FAULT_OOM)
1920 return -ENOMEM;
1921 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1922 return -EHWPOISON;
1923 if (ret & VM_FAULT_SIGBUS)
1924 return -EFAULT;
1925 BUG();
1926 }
1927 if (tsk) {
1928 if (ret & VM_FAULT_MAJOR)
1929 tsk->maj_flt++;
1930 else
1931 tsk->min_flt++;
1932 }
1933 return 0;
1934}
1935
1936/*
d2bf6be8 1937 * get_user_pages() - pin user pages in memory
e7f22e20
SW
1938 * @tsk: the task_struct to use for page fault accounting, or
1939 * NULL if faults are not to be recorded.
d2bf6be8
NP
1940 * @mm: mm_struct of target mm
1941 * @start: starting user address
9d73777e 1942 * @nr_pages: number of pages from start to pin
d2bf6be8
NP
1943 * @write: whether pages will be written to by the caller
1944 * @force: whether to force write access even if user mapping is
1945 * readonly. This will result in the page being COWed even
1946 * in MAP_SHARED mappings. You do not want this.
1947 * @pages: array that receives pointers to the pages pinned.
1948 * Should be at least nr_pages long. Or NULL, if caller
1949 * only intends to ensure the pages are faulted in.
1950 * @vmas: array of pointers to vmas corresponding to each page.
1951 * Or NULL if the caller does not require them.
1952 *
1953 * Returns number of pages pinned. This may be fewer than the number
9d73777e 1954 * requested. If nr_pages is 0 or negative, returns 0. If no pages
d2bf6be8
NP
1955 * were pinned, returns -errno. Each page returned must be released
1956 * with a put_page() call when it is finished with. vmas will only
1957 * remain valid while mmap_sem is held.
1958 *
1959 * Must be called with mmap_sem held for read or write.
1960 *
1961 * get_user_pages walks a process's page tables and takes a reference to
1962 * each struct page that each user address corresponds to at a given
1963 * instant. That is, it takes the page that would be accessed if a user
1964 * thread accesses the given user virtual address at that instant.
1965 *
1966 * This does not guarantee that the page exists in the user mappings when
1967 * get_user_pages returns, and there may even be a completely different
1968 * page there in some cases (eg. if mmapped pagecache has been invalidated
1969 * and subsequently re faulted). However it does guarantee that the page
1970 * won't be freed completely. And mostly callers simply care that the page
1971 * contains data that was valid *at some point in time*. Typically, an IO
1972 * or similar operation cannot guarantee anything stronger anyway because
1973 * locks can't be held over the syscall boundary.
1974 *
1975 * If write=0, the page must not be written to. If the page is written to,
1976 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1977 * after the page is finished with, and before put_page is called.
1978 *
1979 * get_user_pages is typically used for fewer-copy IO operations, to get a
1980 * handle on the memory by some means other than accesses via the user virtual
1981 * addresses. The pages may be submitted for DMA to devices or accessed via
1982 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1983 * use the correct cache flushing APIs.
1984 *
1985 * See also get_user_pages_fast, for performance critical applications.
1986 */
b291f000 1987int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
9d73777e 1988 unsigned long start, int nr_pages, int write, int force,
b291f000
NP
1989 struct page **pages, struct vm_area_struct **vmas)
1990{
58fa879e 1991 int flags = FOLL_TOUCH;
b291f000 1992
58fa879e
HD
1993 if (pages)
1994 flags |= FOLL_GET;
b291f000 1995 if (write)
58fa879e 1996 flags |= FOLL_WRITE;
b291f000 1997 if (force)
58fa879e 1998 flags |= FOLL_FORCE;
b291f000 1999
53a7706d
ML
2000 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
2001 NULL);
b291f000 2002}
1da177e4
LT
2003EXPORT_SYMBOL(get_user_pages);
2004
f3e8fccd
HD
2005/**
2006 * get_dump_page() - pin user page in memory while writing it to core dump
2007 * @addr: user address
2008 *
2009 * Returns struct page pointer of user page pinned for dump,
2010 * to be freed afterwards by page_cache_release() or put_page().
2011 *
2012 * Returns NULL on any kind of failure - a hole must then be inserted into
2013 * the corefile, to preserve alignment with its headers; and also returns
2014 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2015 * allowing a hole to be left in the corefile to save diskspace.
2016 *
2017 * Called without mmap_sem, but after all other threads have been killed.
2018 */
2019#ifdef CONFIG_ELF_CORE
2020struct page *get_dump_page(unsigned long addr)
2021{
2022 struct vm_area_struct *vma;
2023 struct page *page;
2024
2025 if (__get_user_pages(current, current->mm, addr, 1,
53a7706d
ML
2026 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2027 NULL) < 1)
f3e8fccd 2028 return NULL;
f3e8fccd
HD
2029 flush_cache_page(vma, addr, page_to_pfn(page));
2030 return page;
2031}
2032#endif /* CONFIG_ELF_CORE */
2033
25ca1d6c 2034pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
920c7a5d 2035 spinlock_t **ptl)
c9cfcddf
LT
2036{
2037 pgd_t * pgd = pgd_offset(mm, addr);
2038 pud_t * pud = pud_alloc(mm, pgd, addr);
2039 if (pud) {
49c91fb0 2040 pmd_t * pmd = pmd_alloc(mm, pud, addr);
f66055ab
AA
2041 if (pmd) {
2042 VM_BUG_ON(pmd_trans_huge(*pmd));
c9cfcddf 2043 return pte_alloc_map_lock(mm, pmd, addr, ptl);
f66055ab 2044 }
c9cfcddf
LT
2045 }
2046 return NULL;
2047}
2048
238f58d8
LT
2049/*
2050 * This is the old fallback for page remapping.
2051 *
2052 * For historical reasons, it only allows reserved pages. Only
2053 * old drivers should use this, and they needed to mark their
2054 * pages reserved for the old functions anyway.
2055 */
423bad60
NP
2056static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2057 struct page *page, pgprot_t prot)
238f58d8 2058{
423bad60 2059 struct mm_struct *mm = vma->vm_mm;
238f58d8 2060 int retval;
c9cfcddf 2061 pte_t *pte;
8a9f3ccd
BS
2062 spinlock_t *ptl;
2063
238f58d8 2064 retval = -EINVAL;
a145dd41 2065 if (PageAnon(page))
5b4e655e 2066 goto out;
238f58d8
LT
2067 retval = -ENOMEM;
2068 flush_dcache_page(page);
c9cfcddf 2069 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 2070 if (!pte)
5b4e655e 2071 goto out;
238f58d8
LT
2072 retval = -EBUSY;
2073 if (!pte_none(*pte))
2074 goto out_unlock;
2075
2076 /* Ok, finally just insert the thing.. */
2077 get_page(page);
34e55232 2078 inc_mm_counter_fast(mm, MM_FILEPAGES);
238f58d8
LT
2079 page_add_file_rmap(page);
2080 set_pte_at(mm, addr, pte, mk_pte(page, prot));
2081
2082 retval = 0;
8a9f3ccd
BS
2083 pte_unmap_unlock(pte, ptl);
2084 return retval;
238f58d8
LT
2085out_unlock:
2086 pte_unmap_unlock(pte, ptl);
2087out:
2088 return retval;
2089}
2090
bfa5bf6d
REB
2091/**
2092 * vm_insert_page - insert single page into user vma
2093 * @vma: user vma to map to
2094 * @addr: target user address of this page
2095 * @page: source kernel page
2096 *
a145dd41
LT
2097 * This allows drivers to insert individual pages they've allocated
2098 * into a user vma.
2099 *
2100 * The page has to be a nice clean _individual_ kernel allocation.
2101 * If you allocate a compound page, you need to have marked it as
2102 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 2103 * (see split_page()).
a145dd41
LT
2104 *
2105 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2106 * took an arbitrary page protection parameter. This doesn't allow
2107 * that. Your vma protection will have to be set up correctly, which
2108 * means that if you want a shared writable mapping, you'd better
2109 * ask for a shared writable mapping!
2110 *
2111 * The page does not need to be reserved.
4b6e1e37
KK
2112 *
2113 * Usually this function is called from f_op->mmap() handler
2114 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2115 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2116 * function from other places, for example from page-fault handler.
a145dd41 2117 */
423bad60
NP
2118int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2119 struct page *page)
a145dd41
LT
2120{
2121 if (addr < vma->vm_start || addr >= vma->vm_end)
2122 return -EFAULT;
2123 if (!page_count(page))
2124 return -EINVAL;
4b6e1e37
KK
2125 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2126 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2127 BUG_ON(vma->vm_flags & VM_PFNMAP);
2128 vma->vm_flags |= VM_MIXEDMAP;
2129 }
423bad60 2130 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 2131}
e3c3374f 2132EXPORT_SYMBOL(vm_insert_page);
a145dd41 2133
423bad60
NP
2134static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2135 unsigned long pfn, pgprot_t prot)
2136{
2137 struct mm_struct *mm = vma->vm_mm;
2138 int retval;
2139 pte_t *pte, entry;
2140 spinlock_t *ptl;
2141
2142 retval = -ENOMEM;
2143 pte = get_locked_pte(mm, addr, &ptl);
2144 if (!pte)
2145 goto out;
2146 retval = -EBUSY;
2147 if (!pte_none(*pte))
2148 goto out_unlock;
2149
2150 /* Ok, finally just insert the thing.. */
2151 entry = pte_mkspecial(pfn_pte(pfn, prot));
2152 set_pte_at(mm, addr, pte, entry);
4b3073e1 2153 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60
NP
2154
2155 retval = 0;
2156out_unlock:
2157 pte_unmap_unlock(pte, ptl);
2158out:
2159 return retval;
2160}
2161
e0dc0d8f
NP
2162/**
2163 * vm_insert_pfn - insert single pfn into user vma
2164 * @vma: user vma to map to
2165 * @addr: target user address of this page
2166 * @pfn: source kernel pfn
2167 *
c462f179 2168 * Similar to vm_insert_page, this allows drivers to insert individual pages
e0dc0d8f
NP
2169 * they've allocated into a user vma. Same comments apply.
2170 *
2171 * This function should only be called from a vm_ops->fault handler, and
2172 * in that case the handler should return NULL.
0d71d10a
NP
2173 *
2174 * vma cannot be a COW mapping.
2175 *
2176 * As this is called only for pages that do not currently exist, we
2177 * do not need to flush old virtual caches or the TLB.
e0dc0d8f
NP
2178 */
2179int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 2180 unsigned long pfn)
e0dc0d8f 2181{
2ab64037 2182 int ret;
e4b866ed 2183 pgprot_t pgprot = vma->vm_page_prot;
7e675137
NP
2184 /*
2185 * Technically, architectures with pte_special can avoid all these
2186 * restrictions (same for remap_pfn_range). However we would like
2187 * consistency in testing and feature parity among all, so we should
2188 * try to keep these invariants in place for everybody.
2189 */
b379d790
JH
2190 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2191 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2192 (VM_PFNMAP|VM_MIXEDMAP));
2193 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2194 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 2195
423bad60
NP
2196 if (addr < vma->vm_start || addr >= vma->vm_end)
2197 return -EFAULT;
5180da41 2198 if (track_pfn_insert(vma, &pgprot, pfn))
2ab64037 2199 return -EINVAL;
2200
e4b866ed 2201 ret = insert_pfn(vma, addr, pfn, pgprot);
2ab64037 2202
2ab64037 2203 return ret;
423bad60
NP
2204}
2205EXPORT_SYMBOL(vm_insert_pfn);
e0dc0d8f 2206
423bad60
NP
2207int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2208 unsigned long pfn)
2209{
2210 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
e0dc0d8f 2211
423bad60
NP
2212 if (addr < vma->vm_start || addr >= vma->vm_end)
2213 return -EFAULT;
e0dc0d8f 2214
423bad60
NP
2215 /*
2216 * If we don't have pte special, then we have to use the pfn_valid()
2217 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2218 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
2219 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2220 * without pte special, it would there be refcounted as a normal page.
423bad60
NP
2221 */
2222 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2223 struct page *page;
2224
2225 page = pfn_to_page(pfn);
2226 return insert_page(vma, addr, page, vma->vm_page_prot);
2227 }
2228 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
e0dc0d8f 2229}
423bad60 2230EXPORT_SYMBOL(vm_insert_mixed);
e0dc0d8f 2231
1da177e4
LT
2232/*
2233 * maps a range of physical memory into the requested pages. the old
2234 * mappings are removed. any references to nonexistent pages results
2235 * in null mappings (currently treated as "copy-on-access")
2236 */
2237static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2238 unsigned long addr, unsigned long end,
2239 unsigned long pfn, pgprot_t prot)
2240{
2241 pte_t *pte;
c74df32c 2242 spinlock_t *ptl;
1da177e4 2243
c74df32c 2244 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
2245 if (!pte)
2246 return -ENOMEM;
6606c3e0 2247 arch_enter_lazy_mmu_mode();
1da177e4
LT
2248 do {
2249 BUG_ON(!pte_none(*pte));
7e675137 2250 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
2251 pfn++;
2252 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 2253 arch_leave_lazy_mmu_mode();
c74df32c 2254 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
2255 return 0;
2256}
2257
2258static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2259 unsigned long addr, unsigned long end,
2260 unsigned long pfn, pgprot_t prot)
2261{
2262 pmd_t *pmd;
2263 unsigned long next;
2264
2265 pfn -= addr >> PAGE_SHIFT;
2266 pmd = pmd_alloc(mm, pud, addr);
2267 if (!pmd)
2268 return -ENOMEM;
f66055ab 2269 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
2270 do {
2271 next = pmd_addr_end(addr, end);
2272 if (remap_pte_range(mm, pmd, addr, next,
2273 pfn + (addr >> PAGE_SHIFT), prot))
2274 return -ENOMEM;
2275 } while (pmd++, addr = next, addr != end);
2276 return 0;
2277}
2278
2279static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2280 unsigned long addr, unsigned long end,
2281 unsigned long pfn, pgprot_t prot)
2282{
2283 pud_t *pud;
2284 unsigned long next;
2285
2286 pfn -= addr >> PAGE_SHIFT;
2287 pud = pud_alloc(mm, pgd, addr);
2288 if (!pud)
2289 return -ENOMEM;
2290 do {
2291 next = pud_addr_end(addr, end);
2292 if (remap_pmd_range(mm, pud, addr, next,
2293 pfn + (addr >> PAGE_SHIFT), prot))
2294 return -ENOMEM;
2295 } while (pud++, addr = next, addr != end);
2296 return 0;
2297}
2298
bfa5bf6d
REB
2299/**
2300 * remap_pfn_range - remap kernel memory to userspace
2301 * @vma: user vma to map to
2302 * @addr: target user address to start at
2303 * @pfn: physical address of kernel memory
2304 * @size: size of map area
2305 * @prot: page protection flags for this mapping
2306 *
2307 * Note: this is only safe if the mm semaphore is held when called.
2308 */
1da177e4
LT
2309int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2310 unsigned long pfn, unsigned long size, pgprot_t prot)
2311{
2312 pgd_t *pgd;
2313 unsigned long next;
2d15cab8 2314 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
2315 struct mm_struct *mm = vma->vm_mm;
2316 int err;
2317
2318 /*
2319 * Physically remapped pages are special. Tell the
2320 * rest of the world about it:
2321 * VM_IO tells people not to look at these pages
2322 * (accesses can have side effects).
6aab341e
LT
2323 * VM_PFNMAP tells the core MM that the base pages are just
2324 * raw PFN mappings, and do not have a "struct page" associated
2325 * with them.
314e51b9
KK
2326 * VM_DONTEXPAND
2327 * Disable vma merging and expanding with mremap().
2328 * VM_DONTDUMP
2329 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
2330 *
2331 * There's a horrible special case to handle copy-on-write
2332 * behaviour that some programs depend on. We mark the "original"
2333 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 2334 * See vm_normal_page() for details.
1da177e4 2335 */
b3b9c293
KK
2336 if (is_cow_mapping(vma->vm_flags)) {
2337 if (addr != vma->vm_start || end != vma->vm_end)
2338 return -EINVAL;
fb155c16 2339 vma->vm_pgoff = pfn;
b3b9c293
KK
2340 }
2341
2342 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2343 if (err)
3c8bb73a 2344 return -EINVAL;
fb155c16 2345
314e51b9 2346 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
2347
2348 BUG_ON(addr >= end);
2349 pfn -= addr >> PAGE_SHIFT;
2350 pgd = pgd_offset(mm, addr);
2351 flush_cache_range(vma, addr, end);
1da177e4
LT
2352 do {
2353 next = pgd_addr_end(addr, end);
2354 err = remap_pud_range(mm, pgd, addr, next,
2355 pfn + (addr >> PAGE_SHIFT), prot);
2356 if (err)
2357 break;
2358 } while (pgd++, addr = next, addr != end);
2ab64037 2359
2360 if (err)
5180da41 2361 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2ab64037 2362
1da177e4
LT
2363 return err;
2364}
2365EXPORT_SYMBOL(remap_pfn_range);
2366
aee16b3c
JF
2367static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2368 unsigned long addr, unsigned long end,
2369 pte_fn_t fn, void *data)
2370{
2371 pte_t *pte;
2372 int err;
2f569afd 2373 pgtable_t token;
94909914 2374 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
2375
2376 pte = (mm == &init_mm) ?
2377 pte_alloc_kernel(pmd, addr) :
2378 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2379 if (!pte)
2380 return -ENOMEM;
2381
2382 BUG_ON(pmd_huge(*pmd));
2383
38e0edb1
JF
2384 arch_enter_lazy_mmu_mode();
2385
2f569afd 2386 token = pmd_pgtable(*pmd);
aee16b3c
JF
2387
2388 do {
c36987e2 2389 err = fn(pte++, token, addr, data);
aee16b3c
JF
2390 if (err)
2391 break;
c36987e2 2392 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 2393
38e0edb1
JF
2394 arch_leave_lazy_mmu_mode();
2395
aee16b3c
JF
2396 if (mm != &init_mm)
2397 pte_unmap_unlock(pte-1, ptl);
2398 return err;
2399}
2400
2401static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2402 unsigned long addr, unsigned long end,
2403 pte_fn_t fn, void *data)
2404{
2405 pmd_t *pmd;
2406 unsigned long next;
2407 int err;
2408
ceb86879
AK
2409 BUG_ON(pud_huge(*pud));
2410
aee16b3c
JF
2411 pmd = pmd_alloc(mm, pud, addr);
2412 if (!pmd)
2413 return -ENOMEM;
2414 do {
2415 next = pmd_addr_end(addr, end);
2416 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2417 if (err)
2418 break;
2419 } while (pmd++, addr = next, addr != end);
2420 return err;
2421}
2422
2423static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2424 unsigned long addr, unsigned long end,
2425 pte_fn_t fn, void *data)
2426{
2427 pud_t *pud;
2428 unsigned long next;
2429 int err;
2430
2431 pud = pud_alloc(mm, pgd, addr);
2432 if (!pud)
2433 return -ENOMEM;
2434 do {
2435 next = pud_addr_end(addr, end);
2436 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2437 if (err)
2438 break;
2439 } while (pud++, addr = next, addr != end);
2440 return err;
2441}
2442
2443/*
2444 * Scan a region of virtual memory, filling in page tables as necessary
2445 * and calling a provided function on each leaf page table.
2446 */
2447int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2448 unsigned long size, pte_fn_t fn, void *data)
2449{
2450 pgd_t *pgd;
2451 unsigned long next;
57250a5b 2452 unsigned long end = addr + size;
aee16b3c
JF
2453 int err;
2454
2455 BUG_ON(addr >= end);
2456 pgd = pgd_offset(mm, addr);
2457 do {
2458 next = pgd_addr_end(addr, end);
2459 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2460 if (err)
2461 break;
2462 } while (pgd++, addr = next, addr != end);
57250a5b 2463
aee16b3c
JF
2464 return err;
2465}
2466EXPORT_SYMBOL_GPL(apply_to_page_range);
2467
8f4e2101
HD
2468/*
2469 * handle_pte_fault chooses page fault handler according to an entry
2470 * which was read non-atomically. Before making any commitment, on
2471 * those architectures or configurations (e.g. i386 with PAE) which
a335b2e1 2472 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
8f4e2101
HD
2473 * must check under lock before unmapping the pte and proceeding
2474 * (but do_wp_page is only called after already making such a check;
a335b2e1 2475 * and do_anonymous_page can safely check later on).
8f4e2101 2476 */
4c21e2f2 2477static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
2478 pte_t *page_table, pte_t orig_pte)
2479{
2480 int same = 1;
2481#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2482 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
2483 spinlock_t *ptl = pte_lockptr(mm, pmd);
2484 spin_lock(ptl);
8f4e2101 2485 same = pte_same(*page_table, orig_pte);
4c21e2f2 2486 spin_unlock(ptl);
8f4e2101
HD
2487 }
2488#endif
2489 pte_unmap(page_table);
2490 return same;
2491}
2492
9de455b2 2493static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e
LT
2494{
2495 /*
2496 * If the source page was a PFN mapping, we don't have
2497 * a "struct page" for it. We do a best-effort copy by
2498 * just copying from the original user address. If that
2499 * fails, we just zero-fill it. Live with it.
2500 */
2501 if (unlikely(!src)) {
9b04c5fe 2502 void *kaddr = kmap_atomic(dst);
5d2a2dbb
LT
2503 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2504
2505 /*
2506 * This really shouldn't fail, because the page is there
2507 * in the page tables. But it might just be unreadable,
2508 * in which case we just give up and fill the result with
2509 * zeroes.
2510 */
2511 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
3ecb01df 2512 clear_page(kaddr);
9b04c5fe 2513 kunmap_atomic(kaddr);
c4ec7b0d 2514 flush_dcache_page(dst);
0ed361de
NP
2515 } else
2516 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
2517}
2518
1da177e4
LT
2519/*
2520 * This routine handles present pages, when users try to write
2521 * to a shared page. It is done by copying the page to a new address
2522 * and decrementing the shared-page counter for the old page.
2523 *
1da177e4
LT
2524 * Note that this routine assumes that the protection checks have been
2525 * done by the caller (the low-level page fault routine in most cases).
2526 * Thus we can safely just mark it writable once we've done any necessary
2527 * COW.
2528 *
2529 * We also mark the page dirty at this point even though the page will
2530 * change only once the write actually happens. This avoids a few races,
2531 * and potentially makes it more efficient.
2532 *
8f4e2101
HD
2533 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2534 * but allow concurrent faults), with pte both mapped and locked.
2535 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2536 */
65500d23
HD
2537static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2538 unsigned long address, pte_t *page_table, pmd_t *pmd,
8f4e2101 2539 spinlock_t *ptl, pte_t orig_pte)
e6219ec8 2540 __releases(ptl)
1da177e4 2541{
2ec74c3e 2542 struct page *old_page, *new_page = NULL;
1da177e4 2543 pte_t entry;
b009c024 2544 int ret = 0;
a200ee18 2545 int page_mkwrite = 0;
d08b3851 2546 struct page *dirty_page = NULL;
1756954c
DR
2547 unsigned long mmun_start = 0; /* For mmu_notifiers */
2548 unsigned long mmun_end = 0; /* For mmu_notifiers */
1da177e4 2549
6aab341e 2550 old_page = vm_normal_page(vma, address, orig_pte);
251b97f5
PZ
2551 if (!old_page) {
2552 /*
2553 * VM_MIXEDMAP !pfn_valid() case
2554 *
2555 * We should not cow pages in a shared writeable mapping.
2556 * Just mark the pages writable as we can't do any dirty
2557 * accounting on raw pfn maps.
2558 */
2559 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2560 (VM_WRITE|VM_SHARED))
2561 goto reuse;
6aab341e 2562 goto gotten;
251b97f5 2563 }
1da177e4 2564
d08b3851 2565 /*
ee6a6457
PZ
2566 * Take out anonymous pages first, anonymous shared vmas are
2567 * not dirty accountable.
d08b3851 2568 */
9a840895 2569 if (PageAnon(old_page) && !PageKsm(old_page)) {
ab967d86
HD
2570 if (!trylock_page(old_page)) {
2571 page_cache_get(old_page);
2572 pte_unmap_unlock(page_table, ptl);
2573 lock_page(old_page);
2574 page_table = pte_offset_map_lock(mm, pmd, address,
2575 &ptl);
2576 if (!pte_same(*page_table, orig_pte)) {
2577 unlock_page(old_page);
ab967d86
HD
2578 goto unlock;
2579 }
2580 page_cache_release(old_page);
ee6a6457 2581 }
b009c024 2582 if (reuse_swap_page(old_page)) {
c44b6743
RR
2583 /*
2584 * The page is all ours. Move it to our anon_vma so
2585 * the rmap code will not search our parent or siblings.
2586 * Protected against the rmap code by the page lock.
2587 */
2588 page_move_anon_rmap(old_page, vma, address);
b009c024
ML
2589 unlock_page(old_page);
2590 goto reuse;
2591 }
ab967d86 2592 unlock_page(old_page);
ee6a6457 2593 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2594 (VM_WRITE|VM_SHARED))) {
ee6a6457
PZ
2595 /*
2596 * Only catch write-faults on shared writable pages,
2597 * read-only shared pages can get COWed by
2598 * get_user_pages(.write=1, .force=1).
2599 */
9637a5ef 2600 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
c2ec175c
NP
2601 struct vm_fault vmf;
2602 int tmp;
2603
2604 vmf.virtual_address = (void __user *)(address &
2605 PAGE_MASK);
2606 vmf.pgoff = old_page->index;
2607 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2608 vmf.page = old_page;
2609
9637a5ef
DH
2610 /*
2611 * Notify the address space that the page is about to
2612 * become writable so that it can prohibit this or wait
2613 * for the page to get into an appropriate state.
2614 *
2615 * We do this without the lock held, so that it can
2616 * sleep if it needs to.
2617 */
2618 page_cache_get(old_page);
2619 pte_unmap_unlock(page_table, ptl);
2620
c2ec175c
NP
2621 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2622 if (unlikely(tmp &
2623 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2624 ret = tmp;
9637a5ef 2625 goto unwritable_page;
c2ec175c 2626 }
b827e496
NP
2627 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2628 lock_page(old_page);
2629 if (!old_page->mapping) {
2630 ret = 0; /* retry the fault */
2631 unlock_page(old_page);
2632 goto unwritable_page;
2633 }
2634 } else
2635 VM_BUG_ON(!PageLocked(old_page));
9637a5ef 2636
9637a5ef
DH
2637 /*
2638 * Since we dropped the lock we need to revalidate
2639 * the PTE as someone else may have changed it. If
2640 * they did, we just return, as we can count on the
2641 * MMU to tell us if they didn't also make it writable.
2642 */
2643 page_table = pte_offset_map_lock(mm, pmd, address,
2644 &ptl);
b827e496
NP
2645 if (!pte_same(*page_table, orig_pte)) {
2646 unlock_page(old_page);
9637a5ef 2647 goto unlock;
b827e496 2648 }
a200ee18
PZ
2649
2650 page_mkwrite = 1;
1da177e4 2651 }
d08b3851
PZ
2652 dirty_page = old_page;
2653 get_page(dirty_page);
9637a5ef 2654
251b97f5 2655reuse:
9637a5ef
DH
2656 flush_cache_page(vma, address, pte_pfn(orig_pte));
2657 entry = pte_mkyoung(orig_pte);
2658 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
954ffcb3 2659 if (ptep_set_access_flags(vma, address, page_table, entry,1))
4b3073e1 2660 update_mmu_cache(vma, address, page_table);
72ddc8f7 2661 pte_unmap_unlock(page_table, ptl);
9637a5ef 2662 ret |= VM_FAULT_WRITE;
72ddc8f7
ML
2663
2664 if (!dirty_page)
2665 return ret;
2666
2667 /*
2668 * Yes, Virginia, this is actually required to prevent a race
2669 * with clear_page_dirty_for_io() from clearing the page dirty
2670 * bit after it clear all dirty ptes, but before a racing
2671 * do_wp_page installs a dirty pte.
2672 *
a335b2e1 2673 * __do_fault is protected similarly.
72ddc8f7
ML
2674 */
2675 if (!page_mkwrite) {
2676 wait_on_page_locked(dirty_page);
2677 set_page_dirty_balance(dirty_page, page_mkwrite);
41c4d25f
JK
2678 /* file_update_time outside page_lock */
2679 if (vma->vm_file)
2680 file_update_time(vma->vm_file);
72ddc8f7
ML
2681 }
2682 put_page(dirty_page);
2683 if (page_mkwrite) {
2684 struct address_space *mapping = dirty_page->mapping;
2685
2686 set_page_dirty(dirty_page);
2687 unlock_page(dirty_page);
2688 page_cache_release(dirty_page);
2689 if (mapping) {
2690 /*
2691 * Some device drivers do not set page.mapping
2692 * but still dirty their pages
2693 */
2694 balance_dirty_pages_ratelimited(mapping);
2695 }
2696 }
2697
72ddc8f7 2698 return ret;
1da177e4 2699 }
1da177e4
LT
2700
2701 /*
2702 * Ok, we need to copy. Oh, well..
2703 */
b5810039 2704 page_cache_get(old_page);
920fc356 2705gotten:
8f4e2101 2706 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2707
2708 if (unlikely(anon_vma_prepare(vma)))
65500d23 2709 goto oom;
a13ea5b7 2710
62eede62 2711 if (is_zero_pfn(pte_pfn(orig_pte))) {
a13ea5b7
HD
2712 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2713 if (!new_page)
2714 goto oom;
2715 } else {
2716 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2717 if (!new_page)
2718 goto oom;
2719 cow_user_page(new_page, old_page, address, vma);
2720 }
2721 __SetPageUptodate(new_page);
2722
2c26fdd7 2723 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
8a9f3ccd
BS
2724 goto oom_free_new;
2725
6bdb913f 2726 mmun_start = address & PAGE_MASK;
1756954c 2727 mmun_end = mmun_start + PAGE_SIZE;
6bdb913f
HE
2728 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2729
1da177e4
LT
2730 /*
2731 * Re-check the pte - we dropped the lock
2732 */
8f4e2101 2733 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
65500d23 2734 if (likely(pte_same(*page_table, orig_pte))) {
920fc356 2735 if (old_page) {
920fc356 2736 if (!PageAnon(old_page)) {
34e55232
KH
2737 dec_mm_counter_fast(mm, MM_FILEPAGES);
2738 inc_mm_counter_fast(mm, MM_ANONPAGES);
920fc356
HD
2739 }
2740 } else
34e55232 2741 inc_mm_counter_fast(mm, MM_ANONPAGES);
eca35133 2742 flush_cache_page(vma, address, pte_pfn(orig_pte));
65500d23
HD
2743 entry = mk_pte(new_page, vma->vm_page_prot);
2744 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4ce072f1
SS
2745 /*
2746 * Clear the pte entry and flush it first, before updating the
2747 * pte with the new entry. This will avoid a race condition
2748 * seen in the presence of one thread doing SMC and another
2749 * thread doing COW.
2750 */
828502d3 2751 ptep_clear_flush(vma, address, page_table);
9617d95e 2752 page_add_new_anon_rmap(new_page, vma, address);
828502d3
IE
2753 /*
2754 * We call the notify macro here because, when using secondary
2755 * mmu page tables (such as kvm shadow page tables), we want the
2756 * new page to be mapped directly into the secondary page table.
2757 */
2758 set_pte_at_notify(mm, address, page_table, entry);
4b3073e1 2759 update_mmu_cache(vma, address, page_table);
945754a1
NP
2760 if (old_page) {
2761 /*
2762 * Only after switching the pte to the new page may
2763 * we remove the mapcount here. Otherwise another
2764 * process may come and find the rmap count decremented
2765 * before the pte is switched to the new page, and
2766 * "reuse" the old page writing into it while our pte
2767 * here still points into it and can be read by other
2768 * threads.
2769 *
2770 * The critical issue is to order this
2771 * page_remove_rmap with the ptp_clear_flush above.
2772 * Those stores are ordered by (if nothing else,)
2773 * the barrier present in the atomic_add_negative
2774 * in page_remove_rmap.
2775 *
2776 * Then the TLB flush in ptep_clear_flush ensures that
2777 * no process can access the old page before the
2778 * decremented mapcount is visible. And the old page
2779 * cannot be reused until after the decremented
2780 * mapcount is visible. So transitively, TLBs to
2781 * old page will be flushed before it can be reused.
2782 */
edc315fd 2783 page_remove_rmap(old_page);
945754a1
NP
2784 }
2785
1da177e4
LT
2786 /* Free the old page.. */
2787 new_page = old_page;
f33ea7f4 2788 ret |= VM_FAULT_WRITE;
8a9f3ccd
BS
2789 } else
2790 mem_cgroup_uncharge_page(new_page);
2791
6bdb913f
HE
2792 if (new_page)
2793 page_cache_release(new_page);
65500d23 2794unlock:
8f4e2101 2795 pte_unmap_unlock(page_table, ptl);
1756954c 2796 if (mmun_end > mmun_start)
6bdb913f 2797 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
e15f8c01
ML
2798 if (old_page) {
2799 /*
2800 * Don't let another task, with possibly unlocked vma,
2801 * keep the mlocked page.
2802 */
2803 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2804 lock_page(old_page); /* LRU manipulation */
2805 munlock_vma_page(old_page);
2806 unlock_page(old_page);
2807 }
2808 page_cache_release(old_page);
2809 }
f33ea7f4 2810 return ret;
8a9f3ccd 2811oom_free_new:
6dbf6d3b 2812 page_cache_release(new_page);
65500d23 2813oom:
b827e496
NP
2814 if (old_page) {
2815 if (page_mkwrite) {
2816 unlock_page(old_page);
2817 page_cache_release(old_page);
2818 }
920fc356 2819 page_cache_release(old_page);
b827e496 2820 }
1da177e4 2821 return VM_FAULT_OOM;
9637a5ef
DH
2822
2823unwritable_page:
2824 page_cache_release(old_page);
c2ec175c 2825 return ret;
1da177e4
LT
2826}
2827
97a89413 2828static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
2829 unsigned long start_addr, unsigned long end_addr,
2830 struct zap_details *details)
2831{
f5cc4eef 2832 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
2833}
2834
6b2dbba8 2835static inline void unmap_mapping_range_tree(struct rb_root *root,
1da177e4
LT
2836 struct zap_details *details)
2837{
2838 struct vm_area_struct *vma;
1da177e4
LT
2839 pgoff_t vba, vea, zba, zea;
2840
6b2dbba8 2841 vma_interval_tree_foreach(vma, root,
1da177e4 2842 details->first_index, details->last_index) {
1da177e4
LT
2843
2844 vba = vma->vm_pgoff;
2845 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2846 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2847 zba = details->first_index;
2848 if (zba < vba)
2849 zba = vba;
2850 zea = details->last_index;
2851 if (zea > vea)
2852 zea = vea;
2853
97a89413 2854 unmap_mapping_range_vma(vma,
1da177e4
LT
2855 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2856 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 2857 details);
1da177e4
LT
2858 }
2859}
2860
2861static inline void unmap_mapping_range_list(struct list_head *head,
2862 struct zap_details *details)
2863{
2864 struct vm_area_struct *vma;
2865
2866 /*
2867 * In nonlinear VMAs there is no correspondence between virtual address
2868 * offset and file offset. So we must perform an exhaustive search
2869 * across *all* the pages in each nonlinear VMA, not just the pages
2870 * whose virtual address lies outside the file truncation point.
2871 */
6b2dbba8 2872 list_for_each_entry(vma, head, shared.nonlinear) {
1da177e4 2873 details->nonlinear_vma = vma;
97a89413 2874 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
1da177e4
LT
2875 }
2876}
2877
2878/**
72fd4a35 2879 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
3d41088f 2880 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2881 * @holebegin: byte in first page to unmap, relative to the start of
2882 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 2883 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
2884 * must keep the partial page. In contrast, we must get rid of
2885 * partial pages.
2886 * @holelen: size of prospective hole in bytes. This will be rounded
2887 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2888 * end of the file.
2889 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2890 * but 0 when invalidating pagecache, don't throw away private data.
2891 */
2892void unmap_mapping_range(struct address_space *mapping,
2893 loff_t const holebegin, loff_t const holelen, int even_cows)
2894{
2895 struct zap_details details;
2896 pgoff_t hba = holebegin >> PAGE_SHIFT;
2897 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2898
2899 /* Check for overflow. */
2900 if (sizeof(holelen) > sizeof(hlen)) {
2901 long long holeend =
2902 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2903 if (holeend & ~(long long)ULONG_MAX)
2904 hlen = ULONG_MAX - hba + 1;
2905 }
2906
2907 details.check_mapping = even_cows? NULL: mapping;
2908 details.nonlinear_vma = NULL;
2909 details.first_index = hba;
2910 details.last_index = hba + hlen - 1;
2911 if (details.last_index < details.first_index)
2912 details.last_index = ULONG_MAX;
1da177e4 2913
1da177e4 2914
3d48ae45 2915 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 2916 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
1da177e4
LT
2917 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2918 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2919 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
3d48ae45 2920 mutex_unlock(&mapping->i_mmap_mutex);
1da177e4
LT
2921}
2922EXPORT_SYMBOL(unmap_mapping_range);
2923
1da177e4 2924/*
8f4e2101
HD
2925 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2926 * but allow concurrent faults), and pte mapped but not yet locked.
2927 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2928 */
65500d23
HD
2929static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2930 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2931 unsigned int flags, pte_t orig_pte)
1da177e4 2932{
8f4e2101 2933 spinlock_t *ptl;
4969c119 2934 struct page *page, *swapcache = NULL;
65500d23 2935 swp_entry_t entry;
1da177e4 2936 pte_t pte;
d065bd81 2937 int locked;
56039efa 2938 struct mem_cgroup *ptr;
ad8c2ee8 2939 int exclusive = 0;
83c54070 2940 int ret = 0;
1da177e4 2941
4c21e2f2 2942 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
8f4e2101 2943 goto out;
65500d23
HD
2944
2945 entry = pte_to_swp_entry(orig_pte);
d1737fdb
AK
2946 if (unlikely(non_swap_entry(entry))) {
2947 if (is_migration_entry(entry)) {
2948 migration_entry_wait(mm, pmd, address);
2949 } else if (is_hwpoison_entry(entry)) {
2950 ret = VM_FAULT_HWPOISON;
2951 } else {
2952 print_bad_pte(vma, address, orig_pte, NULL);
d99be1a8 2953 ret = VM_FAULT_SIGBUS;
d1737fdb 2954 }
0697212a
CL
2955 goto out;
2956 }
0ff92245 2957 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
2958 page = lookup_swap_cache(entry);
2959 if (!page) {
02098fea
HD
2960 page = swapin_readahead(entry,
2961 GFP_HIGHUSER_MOVABLE, vma, address);
1da177e4
LT
2962 if (!page) {
2963 /*
8f4e2101
HD
2964 * Back out if somebody else faulted in this pte
2965 * while we released the pte lock.
1da177e4 2966 */
8f4e2101 2967 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2968 if (likely(pte_same(*page_table, orig_pte)))
2969 ret = VM_FAULT_OOM;
0ff92245 2970 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2971 goto unlock;
1da177e4
LT
2972 }
2973
2974 /* Had to read the page from swap area: Major fault */
2975 ret = VM_FAULT_MAJOR;
f8891e5e 2976 count_vm_event(PGMAJFAULT);
456f998e 2977 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
d1737fdb 2978 } else if (PageHWPoison(page)) {
71f72525
WF
2979 /*
2980 * hwpoisoned dirty swapcache pages are kept for killing
2981 * owner processes (which may be unknown at hwpoison time)
2982 */
d1737fdb
AK
2983 ret = VM_FAULT_HWPOISON;
2984 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
4779cb31 2985 goto out_release;
1da177e4
LT
2986 }
2987
d065bd81 2988 locked = lock_page_or_retry(page, mm, flags);
e709ffd6 2989
073e587e 2990 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
2991 if (!locked) {
2992 ret |= VM_FAULT_RETRY;
2993 goto out_release;
2994 }
073e587e 2995
4969c119 2996 /*
31c4a3d3
HD
2997 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2998 * release the swapcache from under us. The page pin, and pte_same
2999 * test below, are not enough to exclude that. Even if it is still
3000 * swapcache, we need to check that the page's swap has not changed.
4969c119 3001 */
31c4a3d3 3002 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
4969c119
AA
3003 goto out_page;
3004
3005 if (ksm_might_need_to_copy(page, vma, address)) {
3006 swapcache = page;
3007 page = ksm_does_need_to_copy(page, vma, address);
3008
3009 if (unlikely(!page)) {
3010 ret = VM_FAULT_OOM;
3011 page = swapcache;
3012 swapcache = NULL;
3013 goto out_page;
3014 }
5ad64688
HD
3015 }
3016
2c26fdd7 3017 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
8a9f3ccd 3018 ret = VM_FAULT_OOM;
bc43f75c 3019 goto out_page;
8a9f3ccd
BS
3020 }
3021
1da177e4 3022 /*
8f4e2101 3023 * Back out if somebody else already faulted in this pte.
1da177e4 3024 */
8f4e2101 3025 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
9e9bef07 3026 if (unlikely(!pte_same(*page_table, orig_pte)))
b8107480 3027 goto out_nomap;
b8107480
KK
3028
3029 if (unlikely(!PageUptodate(page))) {
3030 ret = VM_FAULT_SIGBUS;
3031 goto out_nomap;
1da177e4
LT
3032 }
3033
8c7c6e34
KH
3034 /*
3035 * The page isn't present yet, go ahead with the fault.
3036 *
3037 * Be careful about the sequence of operations here.
3038 * To get its accounting right, reuse_swap_page() must be called
3039 * while the page is counted on swap but not yet in mapcount i.e.
3040 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3041 * must be called after the swap_free(), or it will never succeed.
03f3c433
KH
3042 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3043 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3044 * in page->private. In this case, a record in swap_cgroup is silently
3045 * discarded at swap_free().
8c7c6e34 3046 */
1da177e4 3047
34e55232 3048 inc_mm_counter_fast(mm, MM_ANONPAGES);
b084d435 3049 dec_mm_counter_fast(mm, MM_SWAPENTS);
1da177e4 3050 pte = mk_pte(page, vma->vm_page_prot);
30c9f3a9 3051 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
1da177e4 3052 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
30c9f3a9 3053 flags &= ~FAULT_FLAG_WRITE;
9a5b489b 3054 ret |= VM_FAULT_WRITE;
ad8c2ee8 3055 exclusive = 1;
1da177e4 3056 }
1da177e4
LT
3057 flush_icache_page(vma, page);
3058 set_pte_at(mm, address, page_table, pte);
ad8c2ee8 3059 do_page_add_anon_rmap(page, vma, address, exclusive);
03f3c433
KH
3060 /* It's better to call commit-charge after rmap is established */
3061 mem_cgroup_commit_charge_swapin(page, ptr);
1da177e4 3062
c475a8ab 3063 swap_free(entry);
b291f000 3064 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 3065 try_to_free_swap(page);
c475a8ab 3066 unlock_page(page);
4969c119
AA
3067 if (swapcache) {
3068 /*
3069 * Hold the lock to avoid the swap entry to be reused
3070 * until we take the PT lock for the pte_same() check
3071 * (to avoid false positives from pte_same). For
3072 * further safety release the lock after the swap_free
3073 * so that the swap count won't change under a
3074 * parallel locked swapcache.
3075 */
3076 unlock_page(swapcache);
3077 page_cache_release(swapcache);
3078 }
c475a8ab 3079
30c9f3a9 3080 if (flags & FAULT_FLAG_WRITE) {
61469f1d
HD
3081 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3082 if (ret & VM_FAULT_ERROR)
3083 ret &= VM_FAULT_ERROR;
1da177e4
LT
3084 goto out;
3085 }
3086
3087 /* No need to invalidate - it was non-present before */
4b3073e1 3088 update_mmu_cache(vma, address, page_table);
65500d23 3089unlock:
8f4e2101 3090 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
3091out:
3092 return ret;
b8107480 3093out_nomap:
7a81b88c 3094 mem_cgroup_cancel_charge_swapin(ptr);
8f4e2101 3095 pte_unmap_unlock(page_table, ptl);
bc43f75c 3096out_page:
b8107480 3097 unlock_page(page);
4779cb31 3098out_release:
b8107480 3099 page_cache_release(page);
4969c119
AA
3100 if (swapcache) {
3101 unlock_page(swapcache);
3102 page_cache_release(swapcache);
3103 }
65500d23 3104 return ret;
1da177e4
LT
3105}
3106
320b2b8d 3107/*
8ca3eb08
TL
3108 * This is like a special single-page "expand_{down|up}wards()",
3109 * except we must first make sure that 'address{-|+}PAGE_SIZE'
320b2b8d 3110 * doesn't hit another vma.
320b2b8d
LT
3111 */
3112static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3113{
3114 address &= PAGE_MASK;
3115 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
0e8e50e2
LT
3116 struct vm_area_struct *prev = vma->vm_prev;
3117
3118 /*
3119 * Is there a mapping abutting this one below?
3120 *
3121 * That's only ok if it's the same stack mapping
3122 * that has gotten split..
3123 */
3124 if (prev && prev->vm_end == address)
3125 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
320b2b8d 3126
d05f3169 3127 expand_downwards(vma, address - PAGE_SIZE);
320b2b8d 3128 }
8ca3eb08
TL
3129 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3130 struct vm_area_struct *next = vma->vm_next;
3131
3132 /* As VM_GROWSDOWN but s/below/above/ */
3133 if (next && next->vm_start == address + PAGE_SIZE)
3134 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3135
3136 expand_upwards(vma, address + PAGE_SIZE);
3137 }
320b2b8d
LT
3138 return 0;
3139}
3140
1da177e4 3141/*
8f4e2101
HD
3142 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3143 * but allow concurrent faults), and pte mapped but not yet locked.
3144 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3145 */
65500d23
HD
3146static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3147 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3148 unsigned int flags)
1da177e4 3149{
8f4e2101
HD
3150 struct page *page;
3151 spinlock_t *ptl;
1da177e4 3152 pte_t entry;
1da177e4 3153
11ac5524
LT
3154 pte_unmap(page_table);
3155
3156 /* Check if we need to add a guard page to the stack */
3157 if (check_stack_guard_page(vma, address) < 0)
320b2b8d
LT
3158 return VM_FAULT_SIGBUS;
3159
11ac5524 3160 /* Use the zero-page for reads */
62eede62
HD
3161 if (!(flags & FAULT_FLAG_WRITE)) {
3162 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3163 vma->vm_page_prot));
11ac5524 3164 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
a13ea5b7
HD
3165 if (!pte_none(*page_table))
3166 goto unlock;
3167 goto setpte;
3168 }
3169
557ed1fa 3170 /* Allocate our own private page. */
557ed1fa
NP
3171 if (unlikely(anon_vma_prepare(vma)))
3172 goto oom;
3173 page = alloc_zeroed_user_highpage_movable(vma, address);
3174 if (!page)
3175 goto oom;
0ed361de 3176 __SetPageUptodate(page);
8f4e2101 3177
2c26fdd7 3178 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
8a9f3ccd
BS
3179 goto oom_free_page;
3180
557ed1fa 3181 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
3182 if (vma->vm_flags & VM_WRITE)
3183 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 3184
557ed1fa 3185 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1c2fb7a4 3186 if (!pte_none(*page_table))
557ed1fa 3187 goto release;
9ba69294 3188
34e55232 3189 inc_mm_counter_fast(mm, MM_ANONPAGES);
557ed1fa 3190 page_add_new_anon_rmap(page, vma, address);
a13ea5b7 3191setpte:
65500d23 3192 set_pte_at(mm, address, page_table, entry);
1da177e4
LT
3193
3194 /* No need to invalidate - it was non-present before */
4b3073e1 3195 update_mmu_cache(vma, address, page_table);
65500d23 3196unlock:
8f4e2101 3197 pte_unmap_unlock(page_table, ptl);
83c54070 3198 return 0;
8f4e2101 3199release:
8a9f3ccd 3200 mem_cgroup_uncharge_page(page);
8f4e2101
HD
3201 page_cache_release(page);
3202 goto unlock;
8a9f3ccd 3203oom_free_page:
6dbf6d3b 3204 page_cache_release(page);
65500d23 3205oom:
1da177e4
LT
3206 return VM_FAULT_OOM;
3207}
3208
3209/*
54cb8821 3210 * __do_fault() tries to create a new page mapping. It aggressively
1da177e4 3211 * tries to share with existing pages, but makes a separate copy if
54cb8821
NP
3212 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3213 * the next page fault.
1da177e4
LT
3214 *
3215 * As this is called only for pages that do not currently exist, we
3216 * do not need to flush old virtual caches or the TLB.
3217 *
8f4e2101 3218 * We enter with non-exclusive mmap_sem (to exclude vma changes,
16abfa08 3219 * but allow concurrent faults), and pte neither mapped nor locked.
8f4e2101 3220 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3221 */
54cb8821 3222static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
16abfa08 3223 unsigned long address, pmd_t *pmd,
54cb8821 3224 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
1da177e4 3225{
16abfa08 3226 pte_t *page_table;
8f4e2101 3227 spinlock_t *ptl;
d0217ac0 3228 struct page *page;
1d65f86d 3229 struct page *cow_page;
1da177e4 3230 pte_t entry;
1da177e4 3231 int anon = 0;
d08b3851 3232 struct page *dirty_page = NULL;
d0217ac0
NP
3233 struct vm_fault vmf;
3234 int ret;
a200ee18 3235 int page_mkwrite = 0;
54cb8821 3236
1d65f86d
KH
3237 /*
3238 * If we do COW later, allocate page befor taking lock_page()
3239 * on the file cache page. This will reduce lock holding time.
3240 */
3241 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3242
3243 if (unlikely(anon_vma_prepare(vma)))
3244 return VM_FAULT_OOM;
3245
3246 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3247 if (!cow_page)
3248 return VM_FAULT_OOM;
3249
3250 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3251 page_cache_release(cow_page);
3252 return VM_FAULT_OOM;
3253 }
3254 } else
3255 cow_page = NULL;
3256
d0217ac0
NP
3257 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3258 vmf.pgoff = pgoff;
3259 vmf.flags = flags;
3260 vmf.page = NULL;
1da177e4 3261
3c18ddd1 3262 ret = vma->vm_ops->fault(vma, &vmf);
d065bd81
ML
3263 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3264 VM_FAULT_RETRY)))
1d65f86d 3265 goto uncharge_out;
1da177e4 3266
a3b947ea
AK
3267 if (unlikely(PageHWPoison(vmf.page))) {
3268 if (ret & VM_FAULT_LOCKED)
3269 unlock_page(vmf.page);
1d65f86d
KH
3270 ret = VM_FAULT_HWPOISON;
3271 goto uncharge_out;
a3b947ea
AK
3272 }
3273
d00806b1 3274 /*
d0217ac0 3275 * For consistency in subsequent calls, make the faulted page always
d00806b1
NP
3276 * locked.
3277 */
83c54070 3278 if (unlikely(!(ret & VM_FAULT_LOCKED)))
d0217ac0 3279 lock_page(vmf.page);
54cb8821 3280 else
d0217ac0 3281 VM_BUG_ON(!PageLocked(vmf.page));
d00806b1 3282
1da177e4
LT
3283 /*
3284 * Should we do an early C-O-W break?
3285 */
d0217ac0 3286 page = vmf.page;
54cb8821 3287 if (flags & FAULT_FLAG_WRITE) {
9637a5ef 3288 if (!(vma->vm_flags & VM_SHARED)) {
1d65f86d 3289 page = cow_page;
54cb8821 3290 anon = 1;
d0217ac0 3291 copy_user_highpage(page, vmf.page, address, vma);
0ed361de 3292 __SetPageUptodate(page);
9637a5ef 3293 } else {
54cb8821
NP
3294 /*
3295 * If the page will be shareable, see if the backing
9637a5ef 3296 * address space wants to know that the page is about
54cb8821
NP
3297 * to become writable
3298 */
69676147 3299 if (vma->vm_ops->page_mkwrite) {
c2ec175c
NP
3300 int tmp;
3301
69676147 3302 unlock_page(page);
b827e496 3303 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
c2ec175c
NP
3304 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3305 if (unlikely(tmp &
3306 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3307 ret = tmp;
b827e496 3308 goto unwritable_page;
d0217ac0 3309 }
b827e496
NP
3310 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3311 lock_page(page);
3312 if (!page->mapping) {
3313 ret = 0; /* retry the fault */
3314 unlock_page(page);
3315 goto unwritable_page;
3316 }
3317 } else
3318 VM_BUG_ON(!PageLocked(page));
a200ee18 3319 page_mkwrite = 1;
9637a5ef
DH
3320 }
3321 }
54cb8821 3322
1da177e4
LT
3323 }
3324
8f4e2101 3325 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
3326
3327 /*
3328 * This silly early PAGE_DIRTY setting removes a race
3329 * due to the bad i386 page protection. But it's valid
3330 * for other architectures too.
3331 *
30c9f3a9 3332 * Note that if FAULT_FLAG_WRITE is set, we either now have
1da177e4
LT
3333 * an exclusive copy of the page, or this is a shared mapping,
3334 * so we can make it writable and dirty to avoid having to
3335 * handle that later.
3336 */
3337 /* Only go through if we didn't race with anybody else... */
1c2fb7a4 3338 if (likely(pte_same(*page_table, orig_pte))) {
d00806b1
NP
3339 flush_icache_page(vma, page);
3340 entry = mk_pte(page, vma->vm_page_prot);
54cb8821 3341 if (flags & FAULT_FLAG_WRITE)
1da177e4 3342 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1da177e4 3343 if (anon) {
34e55232 3344 inc_mm_counter_fast(mm, MM_ANONPAGES);
64d6519d 3345 page_add_new_anon_rmap(page, vma, address);
f57e88a8 3346 } else {
34e55232 3347 inc_mm_counter_fast(mm, MM_FILEPAGES);
d00806b1 3348 page_add_file_rmap(page);
54cb8821 3349 if (flags & FAULT_FLAG_WRITE) {
d00806b1 3350 dirty_page = page;
d08b3851
PZ
3351 get_page(dirty_page);
3352 }
4294621f 3353 }
64d6519d 3354 set_pte_at(mm, address, page_table, entry);
d00806b1
NP
3355
3356 /* no need to invalidate: a not-present page won't be cached */
4b3073e1 3357 update_mmu_cache(vma, address, page_table);
1da177e4 3358 } else {
1d65f86d
KH
3359 if (cow_page)
3360 mem_cgroup_uncharge_page(cow_page);
d00806b1
NP
3361 if (anon)
3362 page_cache_release(page);
3363 else
54cb8821 3364 anon = 1; /* no anon but release faulted_page */
1da177e4
LT
3365 }
3366
8f4e2101 3367 pte_unmap_unlock(page_table, ptl);
d00806b1 3368
b827e496
NP
3369 if (dirty_page) {
3370 struct address_space *mapping = page->mapping;
41c4d25f 3371 int dirtied = 0;
8f7b3d15 3372
b827e496 3373 if (set_page_dirty(dirty_page))
41c4d25f 3374 dirtied = 1;
b827e496 3375 unlock_page(dirty_page);
d08b3851 3376 put_page(dirty_page);
41c4d25f 3377 if ((dirtied || page_mkwrite) && mapping) {
b827e496
NP
3378 /*
3379 * Some device drivers do not set page.mapping but still
3380 * dirty their pages
3381 */
3382 balance_dirty_pages_ratelimited(mapping);
3383 }
3384
3385 /* file_update_time outside page_lock */
41c4d25f 3386 if (vma->vm_file && !page_mkwrite)
b827e496
NP
3387 file_update_time(vma->vm_file);
3388 } else {
3389 unlock_page(vmf.page);
3390 if (anon)
3391 page_cache_release(vmf.page);
d08b3851 3392 }
d00806b1 3393
83c54070 3394 return ret;
b827e496
NP
3395
3396unwritable_page:
3397 page_cache_release(page);
3398 return ret;
1d65f86d
KH
3399uncharge_out:
3400 /* fs's fault handler get error */
3401 if (cow_page) {
3402 mem_cgroup_uncharge_page(cow_page);
3403 page_cache_release(cow_page);
3404 }
3405 return ret;
54cb8821 3406}
d00806b1 3407
54cb8821
NP
3408static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3409 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3410 unsigned int flags, pte_t orig_pte)
54cb8821
NP
3411{
3412 pgoff_t pgoff = (((address & PAGE_MASK)
0da7e01f 3413 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
54cb8821 3414
16abfa08
HD
3415 pte_unmap(page_table);
3416 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
54cb8821
NP
3417}
3418
1da177e4
LT
3419/*
3420 * Fault of a previously existing named mapping. Repopulate the pte
3421 * from the encoded file_pte if possible. This enables swappable
3422 * nonlinear vmas.
8f4e2101
HD
3423 *
3424 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3425 * but allow concurrent faults), and pte mapped but not yet locked.
3426 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3427 */
d0217ac0 3428static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
65500d23 3429 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3430 unsigned int flags, pte_t orig_pte)
1da177e4 3431{
65500d23 3432 pgoff_t pgoff;
1da177e4 3433
30c9f3a9
LT
3434 flags |= FAULT_FLAG_NONLINEAR;
3435
4c21e2f2 3436 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
83c54070 3437 return 0;
1da177e4 3438
2509ef26 3439 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
65500d23
HD
3440 /*
3441 * Page table corrupted: show pte and kill process.
3442 */
3dc14741 3443 print_bad_pte(vma, address, orig_pte, NULL);
d99be1a8 3444 return VM_FAULT_SIGBUS;
65500d23 3445 }
65500d23
HD
3446
3447 pgoff = pte_to_pgoff(orig_pte);
16abfa08 3448 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
1da177e4
LT
3449}
3450
3451/*
3452 * These routines also need to handle stuff like marking pages dirty
3453 * and/or accessed for architectures that don't do it in hardware (most
3454 * RISC architectures). The early dirtying is also good on the i386.
3455 *
3456 * There is also a hook called "update_mmu_cache()" that architectures
3457 * with external mmu caches can use to update those (ie the Sparc or
3458 * PowerPC hashed page tables that act as extended TLBs).
3459 *
c74df32c
HD
3460 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3461 * but allow concurrent faults), and pte mapped but not yet locked.
3462 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3463 */
71e3aac0
AA
3464int handle_pte_fault(struct mm_struct *mm,
3465 struct vm_area_struct *vma, unsigned long address,
3466 pte_t *pte, pmd_t *pmd, unsigned int flags)
1da177e4
LT
3467{
3468 pte_t entry;
8f4e2101 3469 spinlock_t *ptl;
1da177e4 3470
8dab5241 3471 entry = *pte;
1da177e4 3472 if (!pte_present(entry)) {
65500d23 3473 if (pte_none(entry)) {
f4b81804 3474 if (vma->vm_ops) {
3c18ddd1 3475 if (likely(vma->vm_ops->fault))
54cb8821 3476 return do_linear_fault(mm, vma, address,
30c9f3a9 3477 pte, pmd, flags, entry);
f4b81804
JS
3478 }
3479 return do_anonymous_page(mm, vma, address,
30c9f3a9 3480 pte, pmd, flags);
65500d23 3481 }
1da177e4 3482 if (pte_file(entry))
d0217ac0 3483 return do_nonlinear_fault(mm, vma, address,
30c9f3a9 3484 pte, pmd, flags, entry);
65500d23 3485 return do_swap_page(mm, vma, address,
30c9f3a9 3486 pte, pmd, flags, entry);
1da177e4
LT
3487 }
3488
4c21e2f2 3489 ptl = pte_lockptr(mm, pmd);
8f4e2101
HD
3490 spin_lock(ptl);
3491 if (unlikely(!pte_same(*pte, entry)))
3492 goto unlock;
30c9f3a9 3493 if (flags & FAULT_FLAG_WRITE) {
1da177e4 3494 if (!pte_write(entry))
8f4e2101
HD
3495 return do_wp_page(mm, vma, address,
3496 pte, pmd, ptl, entry);
1da177e4
LT
3497 entry = pte_mkdirty(entry);
3498 }
3499 entry = pte_mkyoung(entry);
30c9f3a9 3500 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
4b3073e1 3501 update_mmu_cache(vma, address, pte);
1a44e149
AA
3502 } else {
3503 /*
3504 * This is needed only for protection faults but the arch code
3505 * is not yet telling us if this is a protection fault or not.
3506 * This still avoids useless tlb flushes for .text page faults
3507 * with threads.
3508 */
30c9f3a9 3509 if (flags & FAULT_FLAG_WRITE)
61c77326 3510 flush_tlb_fix_spurious_fault(vma, address);
1a44e149 3511 }
8f4e2101
HD
3512unlock:
3513 pte_unmap_unlock(pte, ptl);
83c54070 3514 return 0;
1da177e4
LT
3515}
3516
3517/*
3518 * By the time we get here, we already hold the mm semaphore
3519 */
83c54070 3520int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 3521 unsigned long address, unsigned int flags)
1da177e4
LT
3522{
3523 pgd_t *pgd;
3524 pud_t *pud;
3525 pmd_t *pmd;
3526 pte_t *pte;
3527
3528 __set_current_state(TASK_RUNNING);
3529
f8891e5e 3530 count_vm_event(PGFAULT);
456f998e 3531 mem_cgroup_count_vm_event(mm, PGFAULT);
1da177e4 3532
34e55232
KH
3533 /* do counter updates before entering really critical section. */
3534 check_sync_rss_stat(current);
3535
ac9b9c66 3536 if (unlikely(is_vm_hugetlb_page(vma)))
30c9f3a9 3537 return hugetlb_fault(mm, vma, address, flags);
1da177e4 3538
1f1d06c3 3539retry:
1da177e4 3540 pgd = pgd_offset(mm, address);
1da177e4
LT
3541 pud = pud_alloc(mm, pgd, address);
3542 if (!pud)
c74df32c 3543 return VM_FAULT_OOM;
1da177e4
LT
3544 pmd = pmd_alloc(mm, pud, address);
3545 if (!pmd)
c74df32c 3546 return VM_FAULT_OOM;
71e3aac0
AA
3547 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3548 if (!vma->vm_ops)
3549 return do_huge_pmd_anonymous_page(mm, vma, address,
3550 pmd, flags);
3551 } else {
3552 pmd_t orig_pmd = *pmd;
1f1d06c3
DR
3553 int ret;
3554
71e3aac0
AA
3555 barrier();
3556 if (pmd_trans_huge(orig_pmd)) {
3557 if (flags & FAULT_FLAG_WRITE &&
3558 !pmd_write(orig_pmd) &&
1f1d06c3
DR
3559 !pmd_trans_splitting(orig_pmd)) {
3560 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3561 orig_pmd);
3562 /*
3563 * If COW results in an oom, the huge pmd will
3564 * have been split, so retry the fault on the
3565 * pte for a smaller charge.
3566 */
3567 if (unlikely(ret & VM_FAULT_OOM))
3568 goto retry;
3569 return ret;
3570 }
71e3aac0
AA
3571 return 0;
3572 }
3573 }
3574
3575 /*
3576 * Use __pte_alloc instead of pte_alloc_map, because we can't
3577 * run pte_offset_map on the pmd, if an huge pmd could
3578 * materialize from under us from a different thread.
3579 */
4fd01770
MG
3580 if (unlikely(pmd_none(*pmd)) &&
3581 unlikely(__pte_alloc(mm, vma, pmd, address)))
c74df32c 3582 return VM_FAULT_OOM;
71e3aac0
AA
3583 /* if an huge pmd materialized from under us just retry later */
3584 if (unlikely(pmd_trans_huge(*pmd)))
3585 return 0;
3586 /*
3587 * A regular pmd is established and it can't morph into a huge pmd
3588 * from under us anymore at this point because we hold the mmap_sem
3589 * read mode and khugepaged takes it in write mode. So now it's
3590 * safe to run pte_offset_map().
3591 */
3592 pte = pte_offset_map(pmd, address);
1da177e4 3593
30c9f3a9 3594 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
1da177e4
LT
3595}
3596
3597#ifndef __PAGETABLE_PUD_FOLDED
3598/*
3599 * Allocate page upper directory.
872fec16 3600 * We've already handled the fast-path in-line.
1da177e4 3601 */
1bb3630e 3602int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1da177e4 3603{
c74df32c
HD
3604 pud_t *new = pud_alloc_one(mm, address);
3605 if (!new)
1bb3630e 3606 return -ENOMEM;
1da177e4 3607
362a61ad
NP
3608 smp_wmb(); /* See comment in __pte_alloc */
3609
872fec16 3610 spin_lock(&mm->page_table_lock);
1bb3630e 3611 if (pgd_present(*pgd)) /* Another has populated it */
5e541973 3612 pud_free(mm, new);
1bb3630e
HD
3613 else
3614 pgd_populate(mm, pgd, new);
c74df32c 3615 spin_unlock(&mm->page_table_lock);
1bb3630e 3616 return 0;
1da177e4
LT
3617}
3618#endif /* __PAGETABLE_PUD_FOLDED */
3619
3620#ifndef __PAGETABLE_PMD_FOLDED
3621/*
3622 * Allocate page middle directory.
872fec16 3623 * We've already handled the fast-path in-line.
1da177e4 3624 */
1bb3630e 3625int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 3626{
c74df32c
HD
3627 pmd_t *new = pmd_alloc_one(mm, address);
3628 if (!new)
1bb3630e 3629 return -ENOMEM;
1da177e4 3630
362a61ad
NP
3631 smp_wmb(); /* See comment in __pte_alloc */
3632
872fec16 3633 spin_lock(&mm->page_table_lock);
1da177e4 3634#ifndef __ARCH_HAS_4LEVEL_HACK
1bb3630e 3635 if (pud_present(*pud)) /* Another has populated it */
5e541973 3636 pmd_free(mm, new);
1bb3630e
HD
3637 else
3638 pud_populate(mm, pud, new);
1da177e4 3639#else
1bb3630e 3640 if (pgd_present(*pud)) /* Another has populated it */
5e541973 3641 pmd_free(mm, new);
1bb3630e
HD
3642 else
3643 pgd_populate(mm, pud, new);
1da177e4 3644#endif /* __ARCH_HAS_4LEVEL_HACK */
c74df32c 3645 spin_unlock(&mm->page_table_lock);
1bb3630e 3646 return 0;
e0f39591 3647}
1da177e4
LT
3648#endif /* __PAGETABLE_PMD_FOLDED */
3649
3650int make_pages_present(unsigned long addr, unsigned long end)
3651{
3652 int ret, len, write;
3653 struct vm_area_struct * vma;
3654
3655 vma = find_vma(current->mm, addr);
3656 if (!vma)
a477097d 3657 return -ENOMEM;
5ecfda04
ML
3658 /*
3659 * We want to touch writable mappings with a write fault in order
3660 * to break COW, except for shared mappings because these don't COW
3661 * and we would not want to dirty them for nothing.
3662 */
3663 write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
5bcb28b1
ES
3664 BUG_ON(addr >= end);
3665 BUG_ON(end > vma->vm_end);
68e116a3 3666 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
1da177e4
LT
3667 ret = get_user_pages(current, current->mm, addr,
3668 len, write, 0, NULL, NULL);
c11d69d8 3669 if (ret < 0)
1da177e4 3670 return ret;
9978ad58 3671 return ret == len ? 0 : -EFAULT;
1da177e4
LT
3672}
3673
1da177e4
LT
3674#if !defined(__HAVE_ARCH_GATE_AREA)
3675
3676#if defined(AT_SYSINFO_EHDR)
5ce7852c 3677static struct vm_area_struct gate_vma;
1da177e4
LT
3678
3679static int __init gate_vma_init(void)
3680{
3681 gate_vma.vm_mm = NULL;
3682 gate_vma.vm_start = FIXADDR_USER_START;
3683 gate_vma.vm_end = FIXADDR_USER_END;
b6558c4a
RM
3684 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3685 gate_vma.vm_page_prot = __P101;
909af768 3686
1da177e4
LT
3687 return 0;
3688}
3689__initcall(gate_vma_init);
3690#endif
3691
31db58b3 3692struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
1da177e4
LT
3693{
3694#ifdef AT_SYSINFO_EHDR
3695 return &gate_vma;
3696#else
3697 return NULL;
3698#endif
3699}
3700
cae5d390 3701int in_gate_area_no_mm(unsigned long addr)
1da177e4
LT
3702{
3703#ifdef AT_SYSINFO_EHDR
3704 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3705 return 1;
3706#endif
3707 return 0;
3708}
3709
3710#endif /* __HAVE_ARCH_GATE_AREA */
0ec76a11 3711
1b36ba81 3712static int __follow_pte(struct mm_struct *mm, unsigned long address,
f8ad0f49
JW
3713 pte_t **ptepp, spinlock_t **ptlp)
3714{
3715 pgd_t *pgd;
3716 pud_t *pud;
3717 pmd_t *pmd;
3718 pte_t *ptep;
3719
3720 pgd = pgd_offset(mm, address);
3721 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3722 goto out;
3723
3724 pud = pud_offset(pgd, address);
3725 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3726 goto out;
3727
3728 pmd = pmd_offset(pud, address);
f66055ab 3729 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49
JW
3730 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3731 goto out;
3732
3733 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3734 if (pmd_huge(*pmd))
3735 goto out;
3736
3737 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3738 if (!ptep)
3739 goto out;
3740 if (!pte_present(*ptep))
3741 goto unlock;
3742 *ptepp = ptep;
3743 return 0;
3744unlock:
3745 pte_unmap_unlock(ptep, *ptlp);
3746out:
3747 return -EINVAL;
3748}
3749
1b36ba81
NK
3750static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3751 pte_t **ptepp, spinlock_t **ptlp)
3752{
3753 int res;
3754
3755 /* (void) is needed to make gcc happy */
3756 (void) __cond_lock(*ptlp,
3757 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3758 return res;
3759}
3760
3b6748e2
JW
3761/**
3762 * follow_pfn - look up PFN at a user virtual address
3763 * @vma: memory mapping
3764 * @address: user virtual address
3765 * @pfn: location to store found PFN
3766 *
3767 * Only IO mappings and raw PFN mappings are allowed.
3768 *
3769 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3770 */
3771int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3772 unsigned long *pfn)
3773{
3774 int ret = -EINVAL;
3775 spinlock_t *ptl;
3776 pte_t *ptep;
3777
3778 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3779 return ret;
3780
3781 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3782 if (ret)
3783 return ret;
3784 *pfn = pte_pfn(*ptep);
3785 pte_unmap_unlock(ptep, ptl);
3786 return 0;
3787}
3788EXPORT_SYMBOL(follow_pfn);
3789
28b2ee20 3790#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 3791int follow_phys(struct vm_area_struct *vma,
3792 unsigned long address, unsigned int flags,
3793 unsigned long *prot, resource_size_t *phys)
28b2ee20 3794{
03668a4d 3795 int ret = -EINVAL;
28b2ee20
RR
3796 pte_t *ptep, pte;
3797 spinlock_t *ptl;
28b2ee20 3798
d87fe660 3799 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3800 goto out;
28b2ee20 3801
03668a4d 3802 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 3803 goto out;
28b2ee20 3804 pte = *ptep;
03668a4d 3805
28b2ee20
RR
3806 if ((flags & FOLL_WRITE) && !pte_write(pte))
3807 goto unlock;
28b2ee20
RR
3808
3809 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 3810 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 3811
03668a4d 3812 ret = 0;
28b2ee20
RR
3813unlock:
3814 pte_unmap_unlock(ptep, ptl);
3815out:
d87fe660 3816 return ret;
28b2ee20
RR
3817}
3818
3819int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3820 void *buf, int len, int write)
3821{
3822 resource_size_t phys_addr;
3823 unsigned long prot = 0;
2bc7273b 3824 void __iomem *maddr;
28b2ee20
RR
3825 int offset = addr & (PAGE_SIZE-1);
3826
d87fe660 3827 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
3828 return -EINVAL;
3829
3830 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3831 if (write)
3832 memcpy_toio(maddr + offset, buf, len);
3833 else
3834 memcpy_fromio(buf, maddr + offset, len);
3835 iounmap(maddr);
3836
3837 return len;
3838}
3839#endif
3840
0ec76a11 3841/*
206cb636
SW
3842 * Access another process' address space as given in mm. If non-NULL, use the
3843 * given task for page fault accounting.
0ec76a11 3844 */
206cb636
SW
3845static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3846 unsigned long addr, void *buf, int len, int write)
0ec76a11 3847{
0ec76a11 3848 struct vm_area_struct *vma;
0ec76a11
DH
3849 void *old_buf = buf;
3850
0ec76a11 3851 down_read(&mm->mmap_sem);
183ff22b 3852 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
3853 while (len) {
3854 int bytes, ret, offset;
3855 void *maddr;
28b2ee20 3856 struct page *page = NULL;
0ec76a11
DH
3857
3858 ret = get_user_pages(tsk, mm, addr, 1,
3859 write, 1, &page, &vma);
28b2ee20
RR
3860 if (ret <= 0) {
3861 /*
3862 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3863 * we can access using slightly different code.
3864 */
3865#ifdef CONFIG_HAVE_IOREMAP_PROT
3866 vma = find_vma(mm, addr);
fe936dfc 3867 if (!vma || vma->vm_start > addr)
28b2ee20
RR
3868 break;
3869 if (vma->vm_ops && vma->vm_ops->access)
3870 ret = vma->vm_ops->access(vma, addr, buf,
3871 len, write);
3872 if (ret <= 0)
3873#endif
3874 break;
3875 bytes = ret;
0ec76a11 3876 } else {
28b2ee20
RR
3877 bytes = len;
3878 offset = addr & (PAGE_SIZE-1);
3879 if (bytes > PAGE_SIZE-offset)
3880 bytes = PAGE_SIZE-offset;
3881
3882 maddr = kmap(page);
3883 if (write) {
3884 copy_to_user_page(vma, page, addr,
3885 maddr + offset, buf, bytes);
3886 set_page_dirty_lock(page);
3887 } else {
3888 copy_from_user_page(vma, page, addr,
3889 buf, maddr + offset, bytes);
3890 }
3891 kunmap(page);
3892 page_cache_release(page);
0ec76a11 3893 }
0ec76a11
DH
3894 len -= bytes;
3895 buf += bytes;
3896 addr += bytes;
3897 }
3898 up_read(&mm->mmap_sem);
0ec76a11
DH
3899
3900 return buf - old_buf;
3901}
03252919 3902
5ddd36b9 3903/**
ae91dbfc 3904 * access_remote_vm - access another process' address space
5ddd36b9
SW
3905 * @mm: the mm_struct of the target address space
3906 * @addr: start address to access
3907 * @buf: source or destination buffer
3908 * @len: number of bytes to transfer
3909 * @write: whether the access is a write
3910 *
3911 * The caller must hold a reference on @mm.
3912 */
3913int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3914 void *buf, int len, int write)
3915{
3916 return __access_remote_vm(NULL, mm, addr, buf, len, write);
3917}
3918
206cb636
SW
3919/*
3920 * Access another process' address space.
3921 * Source/target buffer must be kernel space,
3922 * Do not walk the page table directly, use get_user_pages
3923 */
3924int access_process_vm(struct task_struct *tsk, unsigned long addr,
3925 void *buf, int len, int write)
3926{
3927 struct mm_struct *mm;
3928 int ret;
3929
3930 mm = get_task_mm(tsk);
3931 if (!mm)
3932 return 0;
3933
3934 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3935 mmput(mm);
3936
3937 return ret;
3938}
3939
03252919
AK
3940/*
3941 * Print the name of a VMA.
3942 */
3943void print_vma_addr(char *prefix, unsigned long ip)
3944{
3945 struct mm_struct *mm = current->mm;
3946 struct vm_area_struct *vma;
3947
e8bff74a
IM
3948 /*
3949 * Do not print if we are in atomic
3950 * contexts (in exception stacks, etc.):
3951 */
3952 if (preempt_count())
3953 return;
3954
03252919
AK
3955 down_read(&mm->mmap_sem);
3956 vma = find_vma(mm, ip);
3957 if (vma && vma->vm_file) {
3958 struct file *f = vma->vm_file;
3959 char *buf = (char *)__get_free_page(GFP_KERNEL);
3960 if (buf) {
3961 char *p, *s;
3962
cf28b486 3963 p = d_path(&f->f_path, buf, PAGE_SIZE);
03252919
AK
3964 if (IS_ERR(p))
3965 p = "?";
3966 s = strrchr(p, '/');
3967 if (s)
3968 p = s+1;
3969 printk("%s%s[%lx+%lx]", prefix, p,
3970 vma->vm_start,
3971 vma->vm_end - vma->vm_start);
3972 free_page((unsigned long)buf);
3973 }
3974 }
51a07e50 3975 up_read(&mm->mmap_sem);
03252919 3976}
3ee1afa3
NP
3977
3978#ifdef CONFIG_PROVE_LOCKING
3979void might_fault(void)
3980{
95156f00
PZ
3981 /*
3982 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3983 * holding the mmap_sem, this is safe because kernel memory doesn't
3984 * get paged out, therefore we'll never actually fault, and the
3985 * below annotations will generate false positives.
3986 */
3987 if (segment_eq(get_fs(), KERNEL_DS))
3988 return;
3989
3ee1afa3
NP
3990 might_sleep();
3991 /*
3992 * it would be nicer only to annotate paths which are not under
3993 * pagefault_disable, however that requires a larger audit and
3994 * providing helpers like get_user_atomic.
3995 */
3996 if (!in_atomic() && current->mm)
3997 might_lock_read(&current->mm->mmap_sem);
3998}
3999EXPORT_SYMBOL(might_fault);
4000#endif
47ad8475
AA
4001
4002#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4003static void clear_gigantic_page(struct page *page,
4004 unsigned long addr,
4005 unsigned int pages_per_huge_page)
4006{
4007 int i;
4008 struct page *p = page;
4009
4010 might_sleep();
4011 for (i = 0; i < pages_per_huge_page;
4012 i++, p = mem_map_next(p, page, i)) {
4013 cond_resched();
4014 clear_user_highpage(p, addr + i * PAGE_SIZE);
4015 }
4016}
4017void clear_huge_page(struct page *page,
4018 unsigned long addr, unsigned int pages_per_huge_page)
4019{
4020 int i;
4021
4022 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4023 clear_gigantic_page(page, addr, pages_per_huge_page);
4024 return;
4025 }
4026
4027 might_sleep();
4028 for (i = 0; i < pages_per_huge_page; i++) {
4029 cond_resched();
4030 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4031 }
4032}
4033
4034static void copy_user_gigantic_page(struct page *dst, struct page *src,
4035 unsigned long addr,
4036 struct vm_area_struct *vma,
4037 unsigned int pages_per_huge_page)
4038{
4039 int i;
4040 struct page *dst_base = dst;
4041 struct page *src_base = src;
4042
4043 for (i = 0; i < pages_per_huge_page; ) {
4044 cond_resched();
4045 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4046
4047 i++;
4048 dst = mem_map_next(dst, dst_base, i);
4049 src = mem_map_next(src, src_base, i);
4050 }
4051}
4052
4053void copy_user_huge_page(struct page *dst, struct page *src,
4054 unsigned long addr, struct vm_area_struct *vma,
4055 unsigned int pages_per_huge_page)
4056{
4057 int i;
4058
4059 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4060 copy_user_gigantic_page(dst, src, addr, vma,
4061 pages_per_huge_page);
4062 return;
4063 }
4064
4065 might_sleep();
4066 for (i = 0; i < pages_per_huge_page; i++) {
4067 cond_resched();
4068 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4069 }
4070}
4071#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */