vmstat: mlocked pages statistics
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
48#include <linux/rmap.h>
49#include <linux/module.h>
0ff92245 50#include <linux/delayacct.h>
1da177e4 51#include <linux/init.h>
edc79b2a 52#include <linux/writeback.h>
8a9f3ccd 53#include <linux/memcontrol.h>
cddb8a5c 54#include <linux/mmu_notifier.h>
1da177e4
LT
55
56#include <asm/pgalloc.h>
57#include <asm/uaccess.h>
58#include <asm/tlb.h>
59#include <asm/tlbflush.h>
60#include <asm/pgtable.h>
61
62#include <linux/swapops.h>
63#include <linux/elf.h>
64
42b77728
JB
65#include "internal.h"
66
b291f000
NP
67#include "internal.h"
68
d41dee36 69#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
70/* use the per-pgdat data instead for discontigmem - mbligh */
71unsigned long max_mapnr;
72struct page *mem_map;
73
74EXPORT_SYMBOL(max_mapnr);
75EXPORT_SYMBOL(mem_map);
76#endif
77
78unsigned long num_physpages;
79/*
80 * A number of key systems in x86 including ioremap() rely on the assumption
81 * that high_memory defines the upper bound on direct map memory, then end
82 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
83 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
84 * and ZONE_HIGHMEM.
85 */
86void * high_memory;
1da177e4
LT
87
88EXPORT_SYMBOL(num_physpages);
89EXPORT_SYMBOL(high_memory);
1da177e4 90
32a93233
IM
91/*
92 * Randomize the address space (stacks, mmaps, brk, etc.).
93 *
94 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
95 * as ancient (libc5 based) binaries can segfault. )
96 */
97int randomize_va_space __read_mostly =
98#ifdef CONFIG_COMPAT_BRK
99 1;
100#else
101 2;
102#endif
a62eaf15
AK
103
104static int __init disable_randmaps(char *s)
105{
106 randomize_va_space = 0;
9b41046c 107 return 1;
a62eaf15
AK
108}
109__setup("norandmaps", disable_randmaps);
110
111
1da177e4
LT
112/*
113 * If a p?d_bad entry is found while walking page tables, report
114 * the error, before resetting entry to p?d_none. Usually (but
115 * very seldom) called out from the p?d_none_or_clear_bad macros.
116 */
117
118void pgd_clear_bad(pgd_t *pgd)
119{
120 pgd_ERROR(*pgd);
121 pgd_clear(pgd);
122}
123
124void pud_clear_bad(pud_t *pud)
125{
126 pud_ERROR(*pud);
127 pud_clear(pud);
128}
129
130void pmd_clear_bad(pmd_t *pmd)
131{
132 pmd_ERROR(*pmd);
133 pmd_clear(pmd);
134}
135
136/*
137 * Note: this doesn't free the actual pages themselves. That
138 * has been handled earlier when unmapping all the memory regions.
139 */
e0da382c 140static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
1da177e4 141{
2f569afd 142 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 143 pmd_clear(pmd);
2f569afd 144 pte_free_tlb(tlb, token);
e0da382c 145 tlb->mm->nr_ptes--;
1da177e4
LT
146}
147
e0da382c
HD
148static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
149 unsigned long addr, unsigned long end,
150 unsigned long floor, unsigned long ceiling)
1da177e4
LT
151{
152 pmd_t *pmd;
153 unsigned long next;
e0da382c 154 unsigned long start;
1da177e4 155
e0da382c 156 start = addr;
1da177e4 157 pmd = pmd_offset(pud, addr);
1da177e4
LT
158 do {
159 next = pmd_addr_end(addr, end);
160 if (pmd_none_or_clear_bad(pmd))
161 continue;
e0da382c 162 free_pte_range(tlb, pmd);
1da177e4
LT
163 } while (pmd++, addr = next, addr != end);
164
e0da382c
HD
165 start &= PUD_MASK;
166 if (start < floor)
167 return;
168 if (ceiling) {
169 ceiling &= PUD_MASK;
170 if (!ceiling)
171 return;
1da177e4 172 }
e0da382c
HD
173 if (end - 1 > ceiling - 1)
174 return;
175
176 pmd = pmd_offset(pud, start);
177 pud_clear(pud);
178 pmd_free_tlb(tlb, pmd);
1da177e4
LT
179}
180
e0da382c
HD
181static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
182 unsigned long addr, unsigned long end,
183 unsigned long floor, unsigned long ceiling)
1da177e4
LT
184{
185 pud_t *pud;
186 unsigned long next;
e0da382c 187 unsigned long start;
1da177e4 188
e0da382c 189 start = addr;
1da177e4 190 pud = pud_offset(pgd, addr);
1da177e4
LT
191 do {
192 next = pud_addr_end(addr, end);
193 if (pud_none_or_clear_bad(pud))
194 continue;
e0da382c 195 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
196 } while (pud++, addr = next, addr != end);
197
e0da382c
HD
198 start &= PGDIR_MASK;
199 if (start < floor)
200 return;
201 if (ceiling) {
202 ceiling &= PGDIR_MASK;
203 if (!ceiling)
204 return;
1da177e4 205 }
e0da382c
HD
206 if (end - 1 > ceiling - 1)
207 return;
208
209 pud = pud_offset(pgd, start);
210 pgd_clear(pgd);
211 pud_free_tlb(tlb, pud);
1da177e4
LT
212}
213
214/*
e0da382c
HD
215 * This function frees user-level page tables of a process.
216 *
1da177e4
LT
217 * Must be called with pagetable lock held.
218 */
42b77728 219void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
220 unsigned long addr, unsigned long end,
221 unsigned long floor, unsigned long ceiling)
1da177e4
LT
222{
223 pgd_t *pgd;
224 unsigned long next;
e0da382c
HD
225 unsigned long start;
226
227 /*
228 * The next few lines have given us lots of grief...
229 *
230 * Why are we testing PMD* at this top level? Because often
231 * there will be no work to do at all, and we'd prefer not to
232 * go all the way down to the bottom just to discover that.
233 *
234 * Why all these "- 1"s? Because 0 represents both the bottom
235 * of the address space and the top of it (using -1 for the
236 * top wouldn't help much: the masks would do the wrong thing).
237 * The rule is that addr 0 and floor 0 refer to the bottom of
238 * the address space, but end 0 and ceiling 0 refer to the top
239 * Comparisons need to use "end - 1" and "ceiling - 1" (though
240 * that end 0 case should be mythical).
241 *
242 * Wherever addr is brought up or ceiling brought down, we must
243 * be careful to reject "the opposite 0" before it confuses the
244 * subsequent tests. But what about where end is brought down
245 * by PMD_SIZE below? no, end can't go down to 0 there.
246 *
247 * Whereas we round start (addr) and ceiling down, by different
248 * masks at different levels, in order to test whether a table
249 * now has no other vmas using it, so can be freed, we don't
250 * bother to round floor or end up - the tests don't need that.
251 */
1da177e4 252
e0da382c
HD
253 addr &= PMD_MASK;
254 if (addr < floor) {
255 addr += PMD_SIZE;
256 if (!addr)
257 return;
258 }
259 if (ceiling) {
260 ceiling &= PMD_MASK;
261 if (!ceiling)
262 return;
263 }
264 if (end - 1 > ceiling - 1)
265 end -= PMD_SIZE;
266 if (addr > end - 1)
267 return;
268
269 start = addr;
42b77728 270 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
271 do {
272 next = pgd_addr_end(addr, end);
273 if (pgd_none_or_clear_bad(pgd))
274 continue;
42b77728 275 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 276 } while (pgd++, addr = next, addr != end);
e0da382c
HD
277}
278
42b77728 279void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 280 unsigned long floor, unsigned long ceiling)
e0da382c
HD
281{
282 while (vma) {
283 struct vm_area_struct *next = vma->vm_next;
284 unsigned long addr = vma->vm_start;
285
8f4f8c16
HD
286 /*
287 * Hide vma from rmap and vmtruncate before freeing pgtables
288 */
289 anon_vma_unlink(vma);
290 unlink_file_vma(vma);
291
9da61aef 292 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 293 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
e0da382c 294 floor, next? next->vm_start: ceiling);
3bf5ee95
HD
295 } else {
296 /*
297 * Optimization: gather nearby vmas into one call down
298 */
299 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 300 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
301 vma = next;
302 next = vma->vm_next;
8f4f8c16
HD
303 anon_vma_unlink(vma);
304 unlink_file_vma(vma);
3bf5ee95
HD
305 }
306 free_pgd_range(tlb, addr, vma->vm_end,
307 floor, next? next->vm_start: ceiling);
308 }
e0da382c
HD
309 vma = next;
310 }
1da177e4
LT
311}
312
1bb3630e 313int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
1da177e4 314{
2f569afd 315 pgtable_t new = pte_alloc_one(mm, address);
1bb3630e
HD
316 if (!new)
317 return -ENOMEM;
318
362a61ad
NP
319 /*
320 * Ensure all pte setup (eg. pte page lock and page clearing) are
321 * visible before the pte is made visible to other CPUs by being
322 * put into page tables.
323 *
324 * The other side of the story is the pointer chasing in the page
325 * table walking code (when walking the page table without locking;
326 * ie. most of the time). Fortunately, these data accesses consist
327 * of a chain of data-dependent loads, meaning most CPUs (alpha
328 * being the notable exception) will already guarantee loads are
329 * seen in-order. See the alpha page table accessors for the
330 * smp_read_barrier_depends() barriers in page table walking code.
331 */
332 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
333
c74df32c 334 spin_lock(&mm->page_table_lock);
2f569afd 335 if (!pmd_present(*pmd)) { /* Has another populated it ? */
1da177e4 336 mm->nr_ptes++;
1da177e4 337 pmd_populate(mm, pmd, new);
2f569afd 338 new = NULL;
1da177e4 339 }
c74df32c 340 spin_unlock(&mm->page_table_lock);
2f569afd
MS
341 if (new)
342 pte_free(mm, new);
1bb3630e 343 return 0;
1da177e4
LT
344}
345
1bb3630e 346int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 347{
1bb3630e
HD
348 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
349 if (!new)
350 return -ENOMEM;
351
362a61ad
NP
352 smp_wmb(); /* See comment in __pte_alloc */
353
1bb3630e 354 spin_lock(&init_mm.page_table_lock);
2f569afd 355 if (!pmd_present(*pmd)) { /* Has another populated it ? */
1bb3630e 356 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd
MS
357 new = NULL;
358 }
1bb3630e 359 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
360 if (new)
361 pte_free_kernel(&init_mm, new);
1bb3630e 362 return 0;
1da177e4
LT
363}
364
ae859762
HD
365static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
366{
367 if (file_rss)
368 add_mm_counter(mm, file_rss, file_rss);
369 if (anon_rss)
370 add_mm_counter(mm, anon_rss, anon_rss);
371}
372
b5810039 373/*
6aab341e
LT
374 * This function is called to print an error when a bad pte
375 * is found. For example, we might have a PFN-mapped pte in
376 * a region that doesn't allow it.
b5810039
NP
377 *
378 * The calling function must still handle the error.
379 */
15f59ada
AB
380static void print_bad_pte(struct vm_area_struct *vma, pte_t pte,
381 unsigned long vaddr)
b5810039
NP
382{
383 printk(KERN_ERR "Bad pte = %08llx, process = %s, "
384 "vm_flags = %lx, vaddr = %lx\n",
385 (long long)pte_val(pte),
386 (vma->vm_mm == current->mm ? current->comm : "???"),
387 vma->vm_flags, vaddr);
388 dump_stack();
389}
390
67121172
LT
391static inline int is_cow_mapping(unsigned int flags)
392{
393 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
394}
395
ee498ed7 396/*
7e675137 397 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 398 *
7e675137
NP
399 * "Special" mappings do not wish to be associated with a "struct page" (either
400 * it doesn't exist, or it exists but they don't want to touch it). In this
401 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 402 *
7e675137
NP
403 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
404 * pte bit, in which case this function is trivial. Secondly, an architecture
405 * may not have a spare pte bit, which requires a more complicated scheme,
406 * described below.
407 *
408 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
409 * special mapping (even if there are underlying and valid "struct pages").
410 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 411 *
b379d790
JH
412 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
413 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
414 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
415 * mapping will always honor the rule
6aab341e
LT
416 *
417 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
418 *
7e675137
NP
419 * And for normal mappings this is false.
420 *
421 * This restricts such mappings to be a linear translation from virtual address
422 * to pfn. To get around this restriction, we allow arbitrary mappings so long
423 * as the vma is not a COW mapping; in that case, we know that all ptes are
424 * special (because none can have been COWed).
b379d790 425 *
b379d790 426 *
7e675137 427 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
428 *
429 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
430 * page" backing, however the difference is that _all_ pages with a struct
431 * page (that is, those where pfn_valid is true) are refcounted and considered
432 * normal pages by the VM. The disadvantage is that pages are refcounted
433 * (which can be slower and simply not an option for some PFNMAP users). The
434 * advantage is that we don't have to follow the strict linearity rule of
435 * PFNMAP mappings in order to support COWable mappings.
436 *
ee498ed7 437 */
7e675137
NP
438#ifdef __HAVE_ARCH_PTE_SPECIAL
439# define HAVE_PTE_SPECIAL 1
440#else
441# define HAVE_PTE_SPECIAL 0
442#endif
443struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
444 pte_t pte)
ee498ed7 445{
7e675137
NP
446 unsigned long pfn;
447
448 if (HAVE_PTE_SPECIAL) {
449 if (likely(!pte_special(pte))) {
450 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
451 return pte_page(pte);
452 }
453 VM_BUG_ON(!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
454 return NULL;
455 }
456
457 /* !HAVE_PTE_SPECIAL case follows: */
458
459 pfn = pte_pfn(pte);
6aab341e 460
b379d790
JH
461 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
462 if (vma->vm_flags & VM_MIXEDMAP) {
463 if (!pfn_valid(pfn))
464 return NULL;
465 goto out;
466 } else {
7e675137
NP
467 unsigned long off;
468 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
469 if (pfn == vma->vm_pgoff + off)
470 return NULL;
471 if (!is_cow_mapping(vma->vm_flags))
472 return NULL;
473 }
6aab341e
LT
474 }
475
7e675137 476 VM_BUG_ON(!pfn_valid(pfn));
6aab341e
LT
477
478 /*
7e675137 479 * NOTE! We still have PageReserved() pages in the page tables.
6aab341e 480 *
7e675137 481 * eg. VDSO mappings can cause them to exist.
6aab341e 482 */
b379d790 483out:
6aab341e 484 return pfn_to_page(pfn);
ee498ed7
HD
485}
486
1da177e4
LT
487/*
488 * copy one vm_area from one task to the other. Assumes the page tables
489 * already present in the new task to be cleared in the whole range
490 * covered by this vma.
1da177e4
LT
491 */
492
8c103762 493static inline void
1da177e4 494copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 495 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 496 unsigned long addr, int *rss)
1da177e4 497{
b5810039 498 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
499 pte_t pte = *src_pte;
500 struct page *page;
1da177e4
LT
501
502 /* pte contains position in swap or file, so copy. */
503 if (unlikely(!pte_present(pte))) {
504 if (!pte_file(pte)) {
0697212a
CL
505 swp_entry_t entry = pte_to_swp_entry(pte);
506
507 swap_duplicate(entry);
1da177e4
LT
508 /* make sure dst_mm is on swapoff's mmlist. */
509 if (unlikely(list_empty(&dst_mm->mmlist))) {
510 spin_lock(&mmlist_lock);
f412ac08
HD
511 if (list_empty(&dst_mm->mmlist))
512 list_add(&dst_mm->mmlist,
513 &src_mm->mmlist);
1da177e4
LT
514 spin_unlock(&mmlist_lock);
515 }
0697212a
CL
516 if (is_write_migration_entry(entry) &&
517 is_cow_mapping(vm_flags)) {
518 /*
519 * COW mappings require pages in both parent
520 * and child to be set to read.
521 */
522 make_migration_entry_read(&entry);
523 pte = swp_entry_to_pte(entry);
524 set_pte_at(src_mm, addr, src_pte, pte);
525 }
1da177e4 526 }
ae859762 527 goto out_set_pte;
1da177e4
LT
528 }
529
1da177e4
LT
530 /*
531 * If it's a COW mapping, write protect it both
532 * in the parent and the child
533 */
67121172 534 if (is_cow_mapping(vm_flags)) {
1da177e4 535 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 536 pte = pte_wrprotect(pte);
1da177e4
LT
537 }
538
539 /*
540 * If it's a shared mapping, mark it clean in
541 * the child
542 */
543 if (vm_flags & VM_SHARED)
544 pte = pte_mkclean(pte);
545 pte = pte_mkold(pte);
6aab341e
LT
546
547 page = vm_normal_page(vma, addr, pte);
548 if (page) {
549 get_page(page);
c97a9e10 550 page_dup_rmap(page, vma, addr);
6aab341e
LT
551 rss[!!PageAnon(page)]++;
552 }
ae859762
HD
553
554out_set_pte:
555 set_pte_at(dst_mm, addr, dst_pte, pte);
1da177e4
LT
556}
557
558static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
559 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
560 unsigned long addr, unsigned long end)
561{
562 pte_t *src_pte, *dst_pte;
c74df32c 563 spinlock_t *src_ptl, *dst_ptl;
e040f218 564 int progress = 0;
8c103762 565 int rss[2];
1da177e4
LT
566
567again:
ae859762 568 rss[1] = rss[0] = 0;
c74df32c 569 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
570 if (!dst_pte)
571 return -ENOMEM;
572 src_pte = pte_offset_map_nested(src_pmd, addr);
4c21e2f2 573 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 574 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
6606c3e0 575 arch_enter_lazy_mmu_mode();
1da177e4 576
1da177e4
LT
577 do {
578 /*
579 * We are holding two locks at this point - either of them
580 * could generate latencies in another task on another CPU.
581 */
e040f218
HD
582 if (progress >= 32) {
583 progress = 0;
584 if (need_resched() ||
95c354fe 585 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
586 break;
587 }
1da177e4
LT
588 if (pte_none(*src_pte)) {
589 progress++;
590 continue;
591 }
8c103762 592 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
1da177e4
LT
593 progress += 8;
594 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 595
6606c3e0 596 arch_leave_lazy_mmu_mode();
c74df32c 597 spin_unlock(src_ptl);
1da177e4 598 pte_unmap_nested(src_pte - 1);
ae859762 599 add_mm_rss(dst_mm, rss[0], rss[1]);
c74df32c
HD
600 pte_unmap_unlock(dst_pte - 1, dst_ptl);
601 cond_resched();
1da177e4
LT
602 if (addr != end)
603 goto again;
604 return 0;
605}
606
607static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
608 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
609 unsigned long addr, unsigned long end)
610{
611 pmd_t *src_pmd, *dst_pmd;
612 unsigned long next;
613
614 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
615 if (!dst_pmd)
616 return -ENOMEM;
617 src_pmd = pmd_offset(src_pud, addr);
618 do {
619 next = pmd_addr_end(addr, end);
620 if (pmd_none_or_clear_bad(src_pmd))
621 continue;
622 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
623 vma, addr, next))
624 return -ENOMEM;
625 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
626 return 0;
627}
628
629static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
630 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
631 unsigned long addr, unsigned long end)
632{
633 pud_t *src_pud, *dst_pud;
634 unsigned long next;
635
636 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
637 if (!dst_pud)
638 return -ENOMEM;
639 src_pud = pud_offset(src_pgd, addr);
640 do {
641 next = pud_addr_end(addr, end);
642 if (pud_none_or_clear_bad(src_pud))
643 continue;
644 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
645 vma, addr, next))
646 return -ENOMEM;
647 } while (dst_pud++, src_pud++, addr = next, addr != end);
648 return 0;
649}
650
651int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
652 struct vm_area_struct *vma)
653{
654 pgd_t *src_pgd, *dst_pgd;
655 unsigned long next;
656 unsigned long addr = vma->vm_start;
657 unsigned long end = vma->vm_end;
cddb8a5c 658 int ret;
1da177e4 659
d992895b
NP
660 /*
661 * Don't copy ptes where a page fault will fill them correctly.
662 * Fork becomes much lighter when there are big shared or private
663 * readonly mappings. The tradeoff is that copy_page_range is more
664 * efficient than faulting.
665 */
4d7672b4 666 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
d992895b
NP
667 if (!vma->anon_vma)
668 return 0;
669 }
670
1da177e4
LT
671 if (is_vm_hugetlb_page(vma))
672 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
673
cddb8a5c
AA
674 /*
675 * We need to invalidate the secondary MMU mappings only when
676 * there could be a permission downgrade on the ptes of the
677 * parent mm. And a permission downgrade will only happen if
678 * is_cow_mapping() returns true.
679 */
680 if (is_cow_mapping(vma->vm_flags))
681 mmu_notifier_invalidate_range_start(src_mm, addr, end);
682
683 ret = 0;
1da177e4
LT
684 dst_pgd = pgd_offset(dst_mm, addr);
685 src_pgd = pgd_offset(src_mm, addr);
686 do {
687 next = pgd_addr_end(addr, end);
688 if (pgd_none_or_clear_bad(src_pgd))
689 continue;
cddb8a5c
AA
690 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
691 vma, addr, next))) {
692 ret = -ENOMEM;
693 break;
694 }
1da177e4 695 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c
AA
696
697 if (is_cow_mapping(vma->vm_flags))
698 mmu_notifier_invalidate_range_end(src_mm,
699 vma->vm_start, end);
700 return ret;
1da177e4
LT
701}
702
51c6f666 703static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 704 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 705 unsigned long addr, unsigned long end,
51c6f666 706 long *zap_work, struct zap_details *details)
1da177e4 707{
b5810039 708 struct mm_struct *mm = tlb->mm;
1da177e4 709 pte_t *pte;
508034a3 710 spinlock_t *ptl;
ae859762
HD
711 int file_rss = 0;
712 int anon_rss = 0;
1da177e4 713
508034a3 714 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
6606c3e0 715 arch_enter_lazy_mmu_mode();
1da177e4
LT
716 do {
717 pte_t ptent = *pte;
51c6f666
RH
718 if (pte_none(ptent)) {
719 (*zap_work)--;
1da177e4 720 continue;
51c6f666 721 }
6f5e6b9e
HD
722
723 (*zap_work) -= PAGE_SIZE;
724
1da177e4 725 if (pte_present(ptent)) {
ee498ed7 726 struct page *page;
51c6f666 727
6aab341e 728 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
729 if (unlikely(details) && page) {
730 /*
731 * unmap_shared_mapping_pages() wants to
732 * invalidate cache without truncating:
733 * unmap shared but keep private pages.
734 */
735 if (details->check_mapping &&
736 details->check_mapping != page->mapping)
737 continue;
738 /*
739 * Each page->index must be checked when
740 * invalidating or truncating nonlinear.
741 */
742 if (details->nonlinear_vma &&
743 (page->index < details->first_index ||
744 page->index > details->last_index))
745 continue;
746 }
b5810039 747 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 748 tlb->fullmm);
1da177e4
LT
749 tlb_remove_tlb_entry(tlb, pte, addr);
750 if (unlikely(!page))
751 continue;
752 if (unlikely(details) && details->nonlinear_vma
753 && linear_page_index(details->nonlinear_vma,
754 addr) != page->index)
b5810039 755 set_pte_at(mm, addr, pte,
1da177e4 756 pgoff_to_pte(page->index));
1da177e4 757 if (PageAnon(page))
86d912f4 758 anon_rss--;
6237bcd9
HD
759 else {
760 if (pte_dirty(ptent))
761 set_page_dirty(page);
762 if (pte_young(ptent))
daa88c8d 763 SetPageReferenced(page);
86d912f4 764 file_rss--;
6237bcd9 765 }
7de6b805 766 page_remove_rmap(page, vma);
1da177e4
LT
767 tlb_remove_page(tlb, page);
768 continue;
769 }
770 /*
771 * If details->check_mapping, we leave swap entries;
772 * if details->nonlinear_vma, we leave file entries.
773 */
774 if (unlikely(details))
775 continue;
776 if (!pte_file(ptent))
777 free_swap_and_cache(pte_to_swp_entry(ptent));
9888a1ca 778 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
51c6f666 779 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
ae859762 780
86d912f4 781 add_mm_rss(mm, file_rss, anon_rss);
6606c3e0 782 arch_leave_lazy_mmu_mode();
508034a3 783 pte_unmap_unlock(pte - 1, ptl);
51c6f666
RH
784
785 return addr;
1da177e4
LT
786}
787
51c6f666 788static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 789 struct vm_area_struct *vma, pud_t *pud,
1da177e4 790 unsigned long addr, unsigned long end,
51c6f666 791 long *zap_work, struct zap_details *details)
1da177e4
LT
792{
793 pmd_t *pmd;
794 unsigned long next;
795
796 pmd = pmd_offset(pud, addr);
797 do {
798 next = pmd_addr_end(addr, end);
51c6f666
RH
799 if (pmd_none_or_clear_bad(pmd)) {
800 (*zap_work)--;
1da177e4 801 continue;
51c6f666
RH
802 }
803 next = zap_pte_range(tlb, vma, pmd, addr, next,
804 zap_work, details);
805 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
806
807 return addr;
1da177e4
LT
808}
809
51c6f666 810static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
b5810039 811 struct vm_area_struct *vma, pgd_t *pgd,
1da177e4 812 unsigned long addr, unsigned long end,
51c6f666 813 long *zap_work, struct zap_details *details)
1da177e4
LT
814{
815 pud_t *pud;
816 unsigned long next;
817
818 pud = pud_offset(pgd, addr);
819 do {
820 next = pud_addr_end(addr, end);
51c6f666
RH
821 if (pud_none_or_clear_bad(pud)) {
822 (*zap_work)--;
1da177e4 823 continue;
51c6f666
RH
824 }
825 next = zap_pmd_range(tlb, vma, pud, addr, next,
826 zap_work, details);
827 } while (pud++, addr = next, (addr != end && *zap_work > 0));
828
829 return addr;
1da177e4
LT
830}
831
51c6f666
RH
832static unsigned long unmap_page_range(struct mmu_gather *tlb,
833 struct vm_area_struct *vma,
1da177e4 834 unsigned long addr, unsigned long end,
51c6f666 835 long *zap_work, struct zap_details *details)
1da177e4
LT
836{
837 pgd_t *pgd;
838 unsigned long next;
839
840 if (details && !details->check_mapping && !details->nonlinear_vma)
841 details = NULL;
842
843 BUG_ON(addr >= end);
844 tlb_start_vma(tlb, vma);
845 pgd = pgd_offset(vma->vm_mm, addr);
846 do {
847 next = pgd_addr_end(addr, end);
51c6f666
RH
848 if (pgd_none_or_clear_bad(pgd)) {
849 (*zap_work)--;
1da177e4 850 continue;
51c6f666
RH
851 }
852 next = zap_pud_range(tlb, vma, pgd, addr, next,
853 zap_work, details);
854 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
1da177e4 855 tlb_end_vma(tlb, vma);
51c6f666
RH
856
857 return addr;
1da177e4
LT
858}
859
860#ifdef CONFIG_PREEMPT
861# define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
862#else
863/* No preempt: go for improved straight-line efficiency */
864# define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
865#endif
866
867/**
868 * unmap_vmas - unmap a range of memory covered by a list of vma's
869 * @tlbp: address of the caller's struct mmu_gather
1da177e4
LT
870 * @vma: the starting vma
871 * @start_addr: virtual address at which to start unmapping
872 * @end_addr: virtual address at which to end unmapping
873 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
874 * @details: details of nonlinear truncation or shared cache invalidation
875 *
ee39b37b 876 * Returns the end address of the unmapping (restart addr if interrupted).
1da177e4 877 *
508034a3 878 * Unmap all pages in the vma list.
1da177e4 879 *
508034a3
HD
880 * We aim to not hold locks for too long (for scheduling latency reasons).
881 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
1da177e4
LT
882 * return the ending mmu_gather to the caller.
883 *
884 * Only addresses between `start' and `end' will be unmapped.
885 *
886 * The VMA list must be sorted in ascending virtual address order.
887 *
888 * unmap_vmas() assumes that the caller will flush the whole unmapped address
889 * range after unmap_vmas() returns. So the only responsibility here is to
890 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
891 * drops the lock and schedules.
892 */
508034a3 893unsigned long unmap_vmas(struct mmu_gather **tlbp,
1da177e4
LT
894 struct vm_area_struct *vma, unsigned long start_addr,
895 unsigned long end_addr, unsigned long *nr_accounted,
896 struct zap_details *details)
897{
51c6f666 898 long zap_work = ZAP_BLOCK_SIZE;
1da177e4
LT
899 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
900 int tlb_start_valid = 0;
ee39b37b 901 unsigned long start = start_addr;
1da177e4 902 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
4d6ddfa9 903 int fullmm = (*tlbp)->fullmm;
cddb8a5c 904 struct mm_struct *mm = vma->vm_mm;
1da177e4 905
cddb8a5c 906 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1da177e4 907 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1da177e4
LT
908 unsigned long end;
909
910 start = max(vma->vm_start, start_addr);
911 if (start >= vma->vm_end)
912 continue;
913 end = min(vma->vm_end, end_addr);
914 if (end <= vma->vm_start)
915 continue;
916
917 if (vma->vm_flags & VM_ACCOUNT)
918 *nr_accounted += (end - start) >> PAGE_SHIFT;
919
1da177e4 920 while (start != end) {
1da177e4
LT
921 if (!tlb_start_valid) {
922 tlb_start = start;
923 tlb_start_valid = 1;
924 }
925
51c6f666 926 if (unlikely(is_vm_hugetlb_page(vma))) {
a137e1cc
AK
927 /*
928 * It is undesirable to test vma->vm_file as it
929 * should be non-null for valid hugetlb area.
930 * However, vm_file will be NULL in the error
931 * cleanup path of do_mmap_pgoff. When
932 * hugetlbfs ->mmap method fails,
933 * do_mmap_pgoff() nullifies vma->vm_file
934 * before calling this function to clean up.
935 * Since no pte has actually been setup, it is
936 * safe to do nothing in this case.
937 */
938 if (vma->vm_file) {
939 unmap_hugepage_range(vma, start, end, NULL);
940 zap_work -= (end - start) /
a5516438 941 pages_per_huge_page(hstate_vma(vma));
a137e1cc
AK
942 }
943
51c6f666
RH
944 start = end;
945 } else
946 start = unmap_page_range(*tlbp, vma,
947 start, end, &zap_work, details);
948
949 if (zap_work > 0) {
950 BUG_ON(start != end);
951 break;
1da177e4
LT
952 }
953
1da177e4
LT
954 tlb_finish_mmu(*tlbp, tlb_start, start);
955
956 if (need_resched() ||
95c354fe 957 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1da177e4 958 if (i_mmap_lock) {
508034a3 959 *tlbp = NULL;
1da177e4
LT
960 goto out;
961 }
1da177e4 962 cond_resched();
1da177e4
LT
963 }
964
508034a3 965 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1da177e4 966 tlb_start_valid = 0;
51c6f666 967 zap_work = ZAP_BLOCK_SIZE;
1da177e4
LT
968 }
969 }
970out:
cddb8a5c 971 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
ee39b37b 972 return start; /* which is now the end (or restart) address */
1da177e4
LT
973}
974
975/**
976 * zap_page_range - remove user pages in a given range
977 * @vma: vm_area_struct holding the applicable pages
978 * @address: starting address of pages to zap
979 * @size: number of bytes to zap
980 * @details: details of nonlinear truncation or shared cache invalidation
981 */
ee39b37b 982unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
983 unsigned long size, struct zap_details *details)
984{
985 struct mm_struct *mm = vma->vm_mm;
986 struct mmu_gather *tlb;
987 unsigned long end = address + size;
988 unsigned long nr_accounted = 0;
989
1da177e4 990 lru_add_drain();
1da177e4 991 tlb = tlb_gather_mmu(mm, 0);
365e9c87 992 update_hiwater_rss(mm);
508034a3
HD
993 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
994 if (tlb)
995 tlb_finish_mmu(tlb, address, end);
ee39b37b 996 return end;
1da177e4
LT
997}
998
c627f9cc
JS
999/**
1000 * zap_vma_ptes - remove ptes mapping the vma
1001 * @vma: vm_area_struct holding ptes to be zapped
1002 * @address: starting address of pages to zap
1003 * @size: number of bytes to zap
1004 *
1005 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1006 *
1007 * The entire address range must be fully contained within the vma.
1008 *
1009 * Returns 0 if successful.
1010 */
1011int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1012 unsigned long size)
1013{
1014 if (address < vma->vm_start || address + size > vma->vm_end ||
1015 !(vma->vm_flags & VM_PFNMAP))
1016 return -1;
1017 zap_page_range(vma, address, size, NULL);
1018 return 0;
1019}
1020EXPORT_SYMBOL_GPL(zap_vma_ptes);
1021
1da177e4
LT
1022/*
1023 * Do a quick page-table lookup for a single page.
1da177e4 1024 */
6aab341e 1025struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
deceb6cd 1026 unsigned int flags)
1da177e4
LT
1027{
1028 pgd_t *pgd;
1029 pud_t *pud;
1030 pmd_t *pmd;
1031 pte_t *ptep, pte;
deceb6cd 1032 spinlock_t *ptl;
1da177e4 1033 struct page *page;
6aab341e 1034 struct mm_struct *mm = vma->vm_mm;
1da177e4 1035
deceb6cd
HD
1036 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1037 if (!IS_ERR(page)) {
1038 BUG_ON(flags & FOLL_GET);
1039 goto out;
1040 }
1da177e4 1041
deceb6cd 1042 page = NULL;
1da177e4
LT
1043 pgd = pgd_offset(mm, address);
1044 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
deceb6cd 1045 goto no_page_table;
1da177e4
LT
1046
1047 pud = pud_offset(pgd, address);
ceb86879 1048 if (pud_none(*pud))
deceb6cd 1049 goto no_page_table;
ceb86879
AK
1050 if (pud_huge(*pud)) {
1051 BUG_ON(flags & FOLL_GET);
1052 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1053 goto out;
1054 }
1055 if (unlikely(pud_bad(*pud)))
1056 goto no_page_table;
1057
1da177e4 1058 pmd = pmd_offset(pud, address);
aeed5fce 1059 if (pmd_none(*pmd))
deceb6cd 1060 goto no_page_table;
deceb6cd
HD
1061 if (pmd_huge(*pmd)) {
1062 BUG_ON(flags & FOLL_GET);
1063 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1da177e4 1064 goto out;
deceb6cd 1065 }
aeed5fce
HD
1066 if (unlikely(pmd_bad(*pmd)))
1067 goto no_page_table;
1068
deceb6cd 1069 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
1070
1071 pte = *ptep;
deceb6cd 1072 if (!pte_present(pte))
89f5b7da 1073 goto no_page;
deceb6cd
HD
1074 if ((flags & FOLL_WRITE) && !pte_write(pte))
1075 goto unlock;
6aab341e
LT
1076 page = vm_normal_page(vma, address, pte);
1077 if (unlikely(!page))
89f5b7da 1078 goto bad_page;
1da177e4 1079
deceb6cd
HD
1080 if (flags & FOLL_GET)
1081 get_page(page);
1082 if (flags & FOLL_TOUCH) {
1083 if ((flags & FOLL_WRITE) &&
1084 !pte_dirty(pte) && !PageDirty(page))
1085 set_page_dirty(page);
1086 mark_page_accessed(page);
1087 }
1088unlock:
1089 pte_unmap_unlock(ptep, ptl);
1da177e4 1090out:
deceb6cd 1091 return page;
1da177e4 1092
89f5b7da
LT
1093bad_page:
1094 pte_unmap_unlock(ptep, ptl);
1095 return ERR_PTR(-EFAULT);
1096
1097no_page:
1098 pte_unmap_unlock(ptep, ptl);
1099 if (!pte_none(pte))
1100 return page;
1101 /* Fall through to ZERO_PAGE handling */
deceb6cd
HD
1102no_page_table:
1103 /*
1104 * When core dumping an enormous anonymous area that nobody
1105 * has touched so far, we don't want to allocate page tables.
1106 */
1107 if (flags & FOLL_ANON) {
557ed1fa 1108 page = ZERO_PAGE(0);
deceb6cd
HD
1109 if (flags & FOLL_GET)
1110 get_page(page);
1111 BUG_ON(flags & FOLL_WRITE);
1112 }
1113 return page;
1da177e4
LT
1114}
1115
672ca28e
LT
1116/* Can we do the FOLL_ANON optimization? */
1117static inline int use_zero_page(struct vm_area_struct *vma)
1118{
1119 /*
1120 * We don't want to optimize FOLL_ANON for make_pages_present()
1121 * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
1122 * we want to get the page from the page tables to make sure
1123 * that we serialize and update with any other user of that
1124 * mapping.
1125 */
1126 if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
1127 return 0;
1128 /*
0d71d10a 1129 * And if we have a fault routine, it's not an anonymous region.
672ca28e 1130 */
0d71d10a 1131 return !vma->vm_ops || !vma->vm_ops->fault;
672ca28e
LT
1132}
1133
b291f000
NP
1134
1135
1136int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1137 unsigned long start, int len, int flags,
1da177e4
LT
1138 struct page **pages, struct vm_area_struct **vmas)
1139{
1140 int i;
b291f000
NP
1141 unsigned int vm_flags = 0;
1142 int write = !!(flags & GUP_FLAGS_WRITE);
1143 int force = !!(flags & GUP_FLAGS_FORCE);
1144 int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS);
1da177e4 1145
900cf086
JC
1146 if (len <= 0)
1147 return 0;
1da177e4
LT
1148 /*
1149 * Require read or write permissions.
1150 * If 'force' is set, we only require the "MAY" flags.
1151 */
deceb6cd
HD
1152 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1153 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1da177e4
LT
1154 i = 0;
1155
1156 do {
deceb6cd
HD
1157 struct vm_area_struct *vma;
1158 unsigned int foll_flags;
1da177e4
LT
1159
1160 vma = find_extend_vma(mm, start);
1161 if (!vma && in_gate_area(tsk, start)) {
1162 unsigned long pg = start & PAGE_MASK;
1163 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1164 pgd_t *pgd;
1165 pud_t *pud;
1166 pmd_t *pmd;
1167 pte_t *pte;
b291f000
NP
1168
1169 /* user gate pages are read-only */
1170 if (!ignore && write)
1da177e4
LT
1171 return i ? : -EFAULT;
1172 if (pg > TASK_SIZE)
1173 pgd = pgd_offset_k(pg);
1174 else
1175 pgd = pgd_offset_gate(mm, pg);
1176 BUG_ON(pgd_none(*pgd));
1177 pud = pud_offset(pgd, pg);
1178 BUG_ON(pud_none(*pud));
1179 pmd = pmd_offset(pud, pg);
690dbe1c
HD
1180 if (pmd_none(*pmd))
1181 return i ? : -EFAULT;
1da177e4 1182 pte = pte_offset_map(pmd, pg);
690dbe1c
HD
1183 if (pte_none(*pte)) {
1184 pte_unmap(pte);
1185 return i ? : -EFAULT;
1186 }
1da177e4 1187 if (pages) {
fa2a455b 1188 struct page *page = vm_normal_page(gate_vma, start, *pte);
6aab341e
LT
1189 pages[i] = page;
1190 if (page)
1191 get_page(page);
1da177e4
LT
1192 }
1193 pte_unmap(pte);
1194 if (vmas)
1195 vmas[i] = gate_vma;
1196 i++;
1197 start += PAGE_SIZE;
1198 len--;
1199 continue;
1200 }
1201
b291f000
NP
1202 if (!vma ||
1203 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1204 (!ignore && !(vm_flags & vma->vm_flags)))
1da177e4
LT
1205 return i ? : -EFAULT;
1206
1207 if (is_vm_hugetlb_page(vma)) {
1208 i = follow_hugetlb_page(mm, vma, pages, vmas,
5b23dbe8 1209 &start, &len, i, write);
1da177e4
LT
1210 continue;
1211 }
deceb6cd
HD
1212
1213 foll_flags = FOLL_TOUCH;
1214 if (pages)
1215 foll_flags |= FOLL_GET;
672ca28e 1216 if (!write && use_zero_page(vma))
deceb6cd
HD
1217 foll_flags |= FOLL_ANON;
1218
1da177e4 1219 do {
08ef4729 1220 struct page *page;
1da177e4 1221
462e00cc
ES
1222 /*
1223 * If tsk is ooming, cut off its access to large memory
1224 * allocations. It has a pending SIGKILL, but it can't
1225 * be processed until returning to user space.
1226 */
1227 if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
7a36a752 1228 return i ? i : -ENOMEM;
462e00cc 1229
deceb6cd
HD
1230 if (write)
1231 foll_flags |= FOLL_WRITE;
a68d2ebc 1232
deceb6cd 1233 cond_resched();
6aab341e 1234 while (!(page = follow_page(vma, start, foll_flags))) {
deceb6cd 1235 int ret;
83c54070 1236 ret = handle_mm_fault(mm, vma, start,
deceb6cd 1237 foll_flags & FOLL_WRITE);
83c54070
NP
1238 if (ret & VM_FAULT_ERROR) {
1239 if (ret & VM_FAULT_OOM)
1240 return i ? i : -ENOMEM;
1241 else if (ret & VM_FAULT_SIGBUS)
1242 return i ? i : -EFAULT;
1243 BUG();
1244 }
1245 if (ret & VM_FAULT_MAJOR)
1246 tsk->maj_flt++;
1247 else
1248 tsk->min_flt++;
1249
a68d2ebc 1250 /*
83c54070
NP
1251 * The VM_FAULT_WRITE bit tells us that
1252 * do_wp_page has broken COW when necessary,
1253 * even if maybe_mkwrite decided not to set
1254 * pte_write. We can thus safely do subsequent
1255 * page lookups as if they were reads.
a68d2ebc
LT
1256 */
1257 if (ret & VM_FAULT_WRITE)
deceb6cd 1258 foll_flags &= ~FOLL_WRITE;
83c54070 1259
7f7bbbe5 1260 cond_resched();
1da177e4 1261 }
89f5b7da
LT
1262 if (IS_ERR(page))
1263 return i ? i : PTR_ERR(page);
1da177e4 1264 if (pages) {
08ef4729 1265 pages[i] = page;
03beb076 1266
a6f36be3 1267 flush_anon_page(vma, page, start);
08ef4729 1268 flush_dcache_page(page);
1da177e4
LT
1269 }
1270 if (vmas)
1271 vmas[i] = vma;
1272 i++;
1273 start += PAGE_SIZE;
1274 len--;
08ef4729 1275 } while (len && start < vma->vm_end);
08ef4729 1276 } while (len);
1da177e4
LT
1277 return i;
1278}
b291f000
NP
1279
1280int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1281 unsigned long start, int len, int write, int force,
1282 struct page **pages, struct vm_area_struct **vmas)
1283{
1284 int flags = 0;
1285
1286 if (write)
1287 flags |= GUP_FLAGS_WRITE;
1288 if (force)
1289 flags |= GUP_FLAGS_FORCE;
1290
1291 return __get_user_pages(tsk, mm,
1292 start, len, flags,
1293 pages, vmas);
1294}
1295
1da177e4
LT
1296EXPORT_SYMBOL(get_user_pages);
1297
920c7a5d
HH
1298pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1299 spinlock_t **ptl)
c9cfcddf
LT
1300{
1301 pgd_t * pgd = pgd_offset(mm, addr);
1302 pud_t * pud = pud_alloc(mm, pgd, addr);
1303 if (pud) {
49c91fb0 1304 pmd_t * pmd = pmd_alloc(mm, pud, addr);
c9cfcddf
LT
1305 if (pmd)
1306 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1307 }
1308 return NULL;
1309}
1310
238f58d8
LT
1311/*
1312 * This is the old fallback for page remapping.
1313 *
1314 * For historical reasons, it only allows reserved pages. Only
1315 * old drivers should use this, and they needed to mark their
1316 * pages reserved for the old functions anyway.
1317 */
423bad60
NP
1318static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1319 struct page *page, pgprot_t prot)
238f58d8 1320{
423bad60 1321 struct mm_struct *mm = vma->vm_mm;
238f58d8 1322 int retval;
c9cfcddf 1323 pte_t *pte;
8a9f3ccd
BS
1324 spinlock_t *ptl;
1325
e1a1cd59 1326 retval = mem_cgroup_charge(page, mm, GFP_KERNEL);
8a9f3ccd
BS
1327 if (retval)
1328 goto out;
238f58d8
LT
1329
1330 retval = -EINVAL;
a145dd41 1331 if (PageAnon(page))
8a9f3ccd 1332 goto out_uncharge;
238f58d8
LT
1333 retval = -ENOMEM;
1334 flush_dcache_page(page);
c9cfcddf 1335 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1336 if (!pte)
8a9f3ccd 1337 goto out_uncharge;
238f58d8
LT
1338 retval = -EBUSY;
1339 if (!pte_none(*pte))
1340 goto out_unlock;
1341
1342 /* Ok, finally just insert the thing.. */
1343 get_page(page);
1344 inc_mm_counter(mm, file_rss);
1345 page_add_file_rmap(page);
1346 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1347
1348 retval = 0;
8a9f3ccd
BS
1349 pte_unmap_unlock(pte, ptl);
1350 return retval;
238f58d8
LT
1351out_unlock:
1352 pte_unmap_unlock(pte, ptl);
8a9f3ccd
BS
1353out_uncharge:
1354 mem_cgroup_uncharge_page(page);
238f58d8
LT
1355out:
1356 return retval;
1357}
1358
bfa5bf6d
REB
1359/**
1360 * vm_insert_page - insert single page into user vma
1361 * @vma: user vma to map to
1362 * @addr: target user address of this page
1363 * @page: source kernel page
1364 *
a145dd41
LT
1365 * This allows drivers to insert individual pages they've allocated
1366 * into a user vma.
1367 *
1368 * The page has to be a nice clean _individual_ kernel allocation.
1369 * If you allocate a compound page, you need to have marked it as
1370 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1371 * (see split_page()).
a145dd41
LT
1372 *
1373 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1374 * took an arbitrary page protection parameter. This doesn't allow
1375 * that. Your vma protection will have to be set up correctly, which
1376 * means that if you want a shared writable mapping, you'd better
1377 * ask for a shared writable mapping!
1378 *
1379 * The page does not need to be reserved.
1380 */
423bad60
NP
1381int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1382 struct page *page)
a145dd41
LT
1383{
1384 if (addr < vma->vm_start || addr >= vma->vm_end)
1385 return -EFAULT;
1386 if (!page_count(page))
1387 return -EINVAL;
4d7672b4 1388 vma->vm_flags |= VM_INSERTPAGE;
423bad60 1389 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1390}
e3c3374f 1391EXPORT_SYMBOL(vm_insert_page);
a145dd41 1392
423bad60
NP
1393static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1394 unsigned long pfn, pgprot_t prot)
1395{
1396 struct mm_struct *mm = vma->vm_mm;
1397 int retval;
1398 pte_t *pte, entry;
1399 spinlock_t *ptl;
1400
1401 retval = -ENOMEM;
1402 pte = get_locked_pte(mm, addr, &ptl);
1403 if (!pte)
1404 goto out;
1405 retval = -EBUSY;
1406 if (!pte_none(*pte))
1407 goto out_unlock;
1408
1409 /* Ok, finally just insert the thing.. */
1410 entry = pte_mkspecial(pfn_pte(pfn, prot));
1411 set_pte_at(mm, addr, pte, entry);
1412 update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1413
1414 retval = 0;
1415out_unlock:
1416 pte_unmap_unlock(pte, ptl);
1417out:
1418 return retval;
1419}
1420
e0dc0d8f
NP
1421/**
1422 * vm_insert_pfn - insert single pfn into user vma
1423 * @vma: user vma to map to
1424 * @addr: target user address of this page
1425 * @pfn: source kernel pfn
1426 *
1427 * Similar to vm_inert_page, this allows drivers to insert individual pages
1428 * they've allocated into a user vma. Same comments apply.
1429 *
1430 * This function should only be called from a vm_ops->fault handler, and
1431 * in that case the handler should return NULL.
0d71d10a
NP
1432 *
1433 * vma cannot be a COW mapping.
1434 *
1435 * As this is called only for pages that do not currently exist, we
1436 * do not need to flush old virtual caches or the TLB.
e0dc0d8f
NP
1437 */
1438int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 1439 unsigned long pfn)
e0dc0d8f 1440{
7e675137
NP
1441 /*
1442 * Technically, architectures with pte_special can avoid all these
1443 * restrictions (same for remap_pfn_range). However we would like
1444 * consistency in testing and feature parity among all, so we should
1445 * try to keep these invariants in place for everybody.
1446 */
b379d790
JH
1447 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1448 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1449 (VM_PFNMAP|VM_MIXEDMAP));
1450 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1451 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 1452
423bad60
NP
1453 if (addr < vma->vm_start || addr >= vma->vm_end)
1454 return -EFAULT;
1455 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1456}
1457EXPORT_SYMBOL(vm_insert_pfn);
e0dc0d8f 1458
423bad60
NP
1459int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1460 unsigned long pfn)
1461{
1462 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
e0dc0d8f 1463
423bad60
NP
1464 if (addr < vma->vm_start || addr >= vma->vm_end)
1465 return -EFAULT;
e0dc0d8f 1466
423bad60
NP
1467 /*
1468 * If we don't have pte special, then we have to use the pfn_valid()
1469 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1470 * refcount the page if pfn_valid is true (hence insert_page rather
1471 * than insert_pfn).
1472 */
1473 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1474 struct page *page;
1475
1476 page = pfn_to_page(pfn);
1477 return insert_page(vma, addr, page, vma->vm_page_prot);
1478 }
1479 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
e0dc0d8f 1480}
423bad60 1481EXPORT_SYMBOL(vm_insert_mixed);
e0dc0d8f 1482
1da177e4
LT
1483/*
1484 * maps a range of physical memory into the requested pages. the old
1485 * mappings are removed. any references to nonexistent pages results
1486 * in null mappings (currently treated as "copy-on-access")
1487 */
1488static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1489 unsigned long addr, unsigned long end,
1490 unsigned long pfn, pgprot_t prot)
1491{
1492 pte_t *pte;
c74df32c 1493 spinlock_t *ptl;
1da177e4 1494
c74df32c 1495 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1496 if (!pte)
1497 return -ENOMEM;
6606c3e0 1498 arch_enter_lazy_mmu_mode();
1da177e4
LT
1499 do {
1500 BUG_ON(!pte_none(*pte));
7e675137 1501 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1502 pfn++;
1503 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1504 arch_leave_lazy_mmu_mode();
c74df32c 1505 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
1506 return 0;
1507}
1508
1509static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1510 unsigned long addr, unsigned long end,
1511 unsigned long pfn, pgprot_t prot)
1512{
1513 pmd_t *pmd;
1514 unsigned long next;
1515
1516 pfn -= addr >> PAGE_SHIFT;
1517 pmd = pmd_alloc(mm, pud, addr);
1518 if (!pmd)
1519 return -ENOMEM;
1520 do {
1521 next = pmd_addr_end(addr, end);
1522 if (remap_pte_range(mm, pmd, addr, next,
1523 pfn + (addr >> PAGE_SHIFT), prot))
1524 return -ENOMEM;
1525 } while (pmd++, addr = next, addr != end);
1526 return 0;
1527}
1528
1529static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1530 unsigned long addr, unsigned long end,
1531 unsigned long pfn, pgprot_t prot)
1532{
1533 pud_t *pud;
1534 unsigned long next;
1535
1536 pfn -= addr >> PAGE_SHIFT;
1537 pud = pud_alloc(mm, pgd, addr);
1538 if (!pud)
1539 return -ENOMEM;
1540 do {
1541 next = pud_addr_end(addr, end);
1542 if (remap_pmd_range(mm, pud, addr, next,
1543 pfn + (addr >> PAGE_SHIFT), prot))
1544 return -ENOMEM;
1545 } while (pud++, addr = next, addr != end);
1546 return 0;
1547}
1548
bfa5bf6d
REB
1549/**
1550 * remap_pfn_range - remap kernel memory to userspace
1551 * @vma: user vma to map to
1552 * @addr: target user address to start at
1553 * @pfn: physical address of kernel memory
1554 * @size: size of map area
1555 * @prot: page protection flags for this mapping
1556 *
1557 * Note: this is only safe if the mm semaphore is held when called.
1558 */
1da177e4
LT
1559int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1560 unsigned long pfn, unsigned long size, pgprot_t prot)
1561{
1562 pgd_t *pgd;
1563 unsigned long next;
2d15cab8 1564 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
1565 struct mm_struct *mm = vma->vm_mm;
1566 int err;
1567
1568 /*
1569 * Physically remapped pages are special. Tell the
1570 * rest of the world about it:
1571 * VM_IO tells people not to look at these pages
1572 * (accesses can have side effects).
0b14c179
HD
1573 * VM_RESERVED is specified all over the place, because
1574 * in 2.4 it kept swapout's vma scan off this vma; but
1575 * in 2.6 the LRU scan won't even find its pages, so this
1576 * flag means no more than count its pages in reserved_vm,
1577 * and omit it from core dump, even when VM_IO turned off.
6aab341e
LT
1578 * VM_PFNMAP tells the core MM that the base pages are just
1579 * raw PFN mappings, and do not have a "struct page" associated
1580 * with them.
fb155c16
LT
1581 *
1582 * There's a horrible special case to handle copy-on-write
1583 * behaviour that some programs depend on. We mark the "original"
1584 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1da177e4 1585 */
67121172 1586 if (is_cow_mapping(vma->vm_flags)) {
fb155c16 1587 if (addr != vma->vm_start || end != vma->vm_end)
7fc7e2ee 1588 return -EINVAL;
fb155c16
LT
1589 vma->vm_pgoff = pfn;
1590 }
1591
6aab341e 1592 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1da177e4
LT
1593
1594 BUG_ON(addr >= end);
1595 pfn -= addr >> PAGE_SHIFT;
1596 pgd = pgd_offset(mm, addr);
1597 flush_cache_range(vma, addr, end);
1da177e4
LT
1598 do {
1599 next = pgd_addr_end(addr, end);
1600 err = remap_pud_range(mm, pgd, addr, next,
1601 pfn + (addr >> PAGE_SHIFT), prot);
1602 if (err)
1603 break;
1604 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1605 return err;
1606}
1607EXPORT_SYMBOL(remap_pfn_range);
1608
aee16b3c
JF
1609static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1610 unsigned long addr, unsigned long end,
1611 pte_fn_t fn, void *data)
1612{
1613 pte_t *pte;
1614 int err;
2f569afd 1615 pgtable_t token;
94909914 1616 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
1617
1618 pte = (mm == &init_mm) ?
1619 pte_alloc_kernel(pmd, addr) :
1620 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1621 if (!pte)
1622 return -ENOMEM;
1623
1624 BUG_ON(pmd_huge(*pmd));
1625
2f569afd 1626 token = pmd_pgtable(*pmd);
aee16b3c
JF
1627
1628 do {
2f569afd 1629 err = fn(pte, token, addr, data);
aee16b3c
JF
1630 if (err)
1631 break;
1632 } while (pte++, addr += PAGE_SIZE, addr != end);
1633
1634 if (mm != &init_mm)
1635 pte_unmap_unlock(pte-1, ptl);
1636 return err;
1637}
1638
1639static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1640 unsigned long addr, unsigned long end,
1641 pte_fn_t fn, void *data)
1642{
1643 pmd_t *pmd;
1644 unsigned long next;
1645 int err;
1646
ceb86879
AK
1647 BUG_ON(pud_huge(*pud));
1648
aee16b3c
JF
1649 pmd = pmd_alloc(mm, pud, addr);
1650 if (!pmd)
1651 return -ENOMEM;
1652 do {
1653 next = pmd_addr_end(addr, end);
1654 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1655 if (err)
1656 break;
1657 } while (pmd++, addr = next, addr != end);
1658 return err;
1659}
1660
1661static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1662 unsigned long addr, unsigned long end,
1663 pte_fn_t fn, void *data)
1664{
1665 pud_t *pud;
1666 unsigned long next;
1667 int err;
1668
1669 pud = pud_alloc(mm, pgd, addr);
1670 if (!pud)
1671 return -ENOMEM;
1672 do {
1673 next = pud_addr_end(addr, end);
1674 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1675 if (err)
1676 break;
1677 } while (pud++, addr = next, addr != end);
1678 return err;
1679}
1680
1681/*
1682 * Scan a region of virtual memory, filling in page tables as necessary
1683 * and calling a provided function on each leaf page table.
1684 */
1685int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1686 unsigned long size, pte_fn_t fn, void *data)
1687{
1688 pgd_t *pgd;
1689 unsigned long next;
cddb8a5c 1690 unsigned long start = addr, end = addr + size;
aee16b3c
JF
1691 int err;
1692
1693 BUG_ON(addr >= end);
cddb8a5c 1694 mmu_notifier_invalidate_range_start(mm, start, end);
aee16b3c
JF
1695 pgd = pgd_offset(mm, addr);
1696 do {
1697 next = pgd_addr_end(addr, end);
1698 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1699 if (err)
1700 break;
1701 } while (pgd++, addr = next, addr != end);
cddb8a5c 1702 mmu_notifier_invalidate_range_end(mm, start, end);
aee16b3c
JF
1703 return err;
1704}
1705EXPORT_SYMBOL_GPL(apply_to_page_range);
1706
8f4e2101
HD
1707/*
1708 * handle_pte_fault chooses page fault handler according to an entry
1709 * which was read non-atomically. Before making any commitment, on
1710 * those architectures or configurations (e.g. i386 with PAE) which
1711 * might give a mix of unmatched parts, do_swap_page and do_file_page
1712 * must check under lock before unmapping the pte and proceeding
1713 * (but do_wp_page is only called after already making such a check;
1714 * and do_anonymous_page and do_no_page can safely check later on).
1715 */
4c21e2f2 1716static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
1717 pte_t *page_table, pte_t orig_pte)
1718{
1719 int same = 1;
1720#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1721 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
1722 spinlock_t *ptl = pte_lockptr(mm, pmd);
1723 spin_lock(ptl);
8f4e2101 1724 same = pte_same(*page_table, orig_pte);
4c21e2f2 1725 spin_unlock(ptl);
8f4e2101
HD
1726 }
1727#endif
1728 pte_unmap(page_table);
1729 return same;
1730}
1731
1da177e4
LT
1732/*
1733 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1734 * servicing faults for write access. In the normal case, do always want
1735 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1736 * that do not have writing enabled, when used by access_process_vm.
1737 */
1738static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1739{
1740 if (likely(vma->vm_flags & VM_WRITE))
1741 pte = pte_mkwrite(pte);
1742 return pte;
1743}
1744
9de455b2 1745static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e
LT
1746{
1747 /*
1748 * If the source page was a PFN mapping, we don't have
1749 * a "struct page" for it. We do a best-effort copy by
1750 * just copying from the original user address. If that
1751 * fails, we just zero-fill it. Live with it.
1752 */
1753 if (unlikely(!src)) {
1754 void *kaddr = kmap_atomic(dst, KM_USER0);
5d2a2dbb
LT
1755 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1756
1757 /*
1758 * This really shouldn't fail, because the page is there
1759 * in the page tables. But it might just be unreadable,
1760 * in which case we just give up and fill the result with
1761 * zeroes.
1762 */
1763 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
6aab341e
LT
1764 memset(kaddr, 0, PAGE_SIZE);
1765 kunmap_atomic(kaddr, KM_USER0);
c4ec7b0d 1766 flush_dcache_page(dst);
0ed361de
NP
1767 } else
1768 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
1769}
1770
1da177e4
LT
1771/*
1772 * This routine handles present pages, when users try to write
1773 * to a shared page. It is done by copying the page to a new address
1774 * and decrementing the shared-page counter for the old page.
1775 *
1da177e4
LT
1776 * Note that this routine assumes that the protection checks have been
1777 * done by the caller (the low-level page fault routine in most cases).
1778 * Thus we can safely just mark it writable once we've done any necessary
1779 * COW.
1780 *
1781 * We also mark the page dirty at this point even though the page will
1782 * change only once the write actually happens. This avoids a few races,
1783 * and potentially makes it more efficient.
1784 *
8f4e2101
HD
1785 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1786 * but allow concurrent faults), with pte both mapped and locked.
1787 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 1788 */
65500d23
HD
1789static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1790 unsigned long address, pte_t *page_table, pmd_t *pmd,
8f4e2101 1791 spinlock_t *ptl, pte_t orig_pte)
1da177e4 1792{
e5bbe4df 1793 struct page *old_page, *new_page;
1da177e4 1794 pte_t entry;
83c54070 1795 int reuse = 0, ret = 0;
a200ee18 1796 int page_mkwrite = 0;
d08b3851 1797 struct page *dirty_page = NULL;
1da177e4 1798
6aab341e 1799 old_page = vm_normal_page(vma, address, orig_pte);
251b97f5
PZ
1800 if (!old_page) {
1801 /*
1802 * VM_MIXEDMAP !pfn_valid() case
1803 *
1804 * We should not cow pages in a shared writeable mapping.
1805 * Just mark the pages writable as we can't do any dirty
1806 * accounting on raw pfn maps.
1807 */
1808 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1809 (VM_WRITE|VM_SHARED))
1810 goto reuse;
6aab341e 1811 goto gotten;
251b97f5 1812 }
1da177e4 1813
d08b3851 1814 /*
ee6a6457
PZ
1815 * Take out anonymous pages first, anonymous shared vmas are
1816 * not dirty accountable.
d08b3851 1817 */
ee6a6457 1818 if (PageAnon(old_page)) {
529ae9aa 1819 if (trylock_page(old_page)) {
ee6a6457
PZ
1820 reuse = can_share_swap_page(old_page);
1821 unlock_page(old_page);
1822 }
1823 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 1824 (VM_WRITE|VM_SHARED))) {
ee6a6457
PZ
1825 /*
1826 * Only catch write-faults on shared writable pages,
1827 * read-only shared pages can get COWed by
1828 * get_user_pages(.write=1, .force=1).
1829 */
9637a5ef
DH
1830 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1831 /*
1832 * Notify the address space that the page is about to
1833 * become writable so that it can prohibit this or wait
1834 * for the page to get into an appropriate state.
1835 *
1836 * We do this without the lock held, so that it can
1837 * sleep if it needs to.
1838 */
1839 page_cache_get(old_page);
1840 pte_unmap_unlock(page_table, ptl);
1841
1842 if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1843 goto unwritable_page;
1844
9637a5ef
DH
1845 /*
1846 * Since we dropped the lock we need to revalidate
1847 * the PTE as someone else may have changed it. If
1848 * they did, we just return, as we can count on the
1849 * MMU to tell us if they didn't also make it writable.
1850 */
1851 page_table = pte_offset_map_lock(mm, pmd, address,
1852 &ptl);
c3704ceb 1853 page_cache_release(old_page);
9637a5ef
DH
1854 if (!pte_same(*page_table, orig_pte))
1855 goto unlock;
a200ee18
PZ
1856
1857 page_mkwrite = 1;
1da177e4 1858 }
d08b3851
PZ
1859 dirty_page = old_page;
1860 get_page(dirty_page);
9637a5ef 1861 reuse = 1;
9637a5ef
DH
1862 }
1863
1864 if (reuse) {
251b97f5 1865reuse:
9637a5ef
DH
1866 flush_cache_page(vma, address, pte_pfn(orig_pte));
1867 entry = pte_mkyoung(orig_pte);
1868 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
954ffcb3 1869 if (ptep_set_access_flags(vma, address, page_table, entry,1))
8dab5241 1870 update_mmu_cache(vma, address, entry);
9637a5ef
DH
1871 ret |= VM_FAULT_WRITE;
1872 goto unlock;
1da177e4 1873 }
1da177e4
LT
1874
1875 /*
1876 * Ok, we need to copy. Oh, well..
1877 */
b5810039 1878 page_cache_get(old_page);
920fc356 1879gotten:
8f4e2101 1880 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
1881
1882 if (unlikely(anon_vma_prepare(vma)))
65500d23 1883 goto oom;
557ed1fa
NP
1884 VM_BUG_ON(old_page == ZERO_PAGE(0));
1885 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1886 if (!new_page)
1887 goto oom;
b291f000
NP
1888 /*
1889 * Don't let another task, with possibly unlocked vma,
1890 * keep the mlocked page.
1891 */
1892 if (vma->vm_flags & VM_LOCKED) {
1893 lock_page(old_page); /* for LRU manipulation */
1894 clear_page_mlock(old_page);
1895 unlock_page(old_page);
1896 }
557ed1fa 1897 cow_user_page(new_page, old_page, address, vma);
0ed361de 1898 __SetPageUptodate(new_page);
65500d23 1899
e1a1cd59 1900 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
8a9f3ccd
BS
1901 goto oom_free_new;
1902
1da177e4
LT
1903 /*
1904 * Re-check the pte - we dropped the lock
1905 */
8f4e2101 1906 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
65500d23 1907 if (likely(pte_same(*page_table, orig_pte))) {
920fc356 1908 if (old_page) {
920fc356
HD
1909 if (!PageAnon(old_page)) {
1910 dec_mm_counter(mm, file_rss);
1911 inc_mm_counter(mm, anon_rss);
1912 }
1913 } else
4294621f 1914 inc_mm_counter(mm, anon_rss);
eca35133 1915 flush_cache_page(vma, address, pte_pfn(orig_pte));
65500d23
HD
1916 entry = mk_pte(new_page, vma->vm_page_prot);
1917 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4ce072f1
SS
1918 /*
1919 * Clear the pte entry and flush it first, before updating the
1920 * pte with the new entry. This will avoid a race condition
1921 * seen in the presence of one thread doing SMC and another
1922 * thread doing COW.
1923 */
cddb8a5c 1924 ptep_clear_flush_notify(vma, address, page_table);
4ce072f1 1925 set_pte_at(mm, address, page_table, entry);
65500d23 1926 update_mmu_cache(vma, address, entry);
b2e18538 1927 SetPageSwapBacked(new_page);
4f98a2fe 1928 lru_cache_add_active_anon(new_page);
9617d95e 1929 page_add_new_anon_rmap(new_page, vma, address);
1da177e4 1930
945754a1
NP
1931 if (old_page) {
1932 /*
1933 * Only after switching the pte to the new page may
1934 * we remove the mapcount here. Otherwise another
1935 * process may come and find the rmap count decremented
1936 * before the pte is switched to the new page, and
1937 * "reuse" the old page writing into it while our pte
1938 * here still points into it and can be read by other
1939 * threads.
1940 *
1941 * The critical issue is to order this
1942 * page_remove_rmap with the ptp_clear_flush above.
1943 * Those stores are ordered by (if nothing else,)
1944 * the barrier present in the atomic_add_negative
1945 * in page_remove_rmap.
1946 *
1947 * Then the TLB flush in ptep_clear_flush ensures that
1948 * no process can access the old page before the
1949 * decremented mapcount is visible. And the old page
1950 * cannot be reused until after the decremented
1951 * mapcount is visible. So transitively, TLBs to
1952 * old page will be flushed before it can be reused.
1953 */
1954 page_remove_rmap(old_page, vma);
1955 }
1956
1da177e4
LT
1957 /* Free the old page.. */
1958 new_page = old_page;
f33ea7f4 1959 ret |= VM_FAULT_WRITE;
8a9f3ccd
BS
1960 } else
1961 mem_cgroup_uncharge_page(new_page);
1962
920fc356
HD
1963 if (new_page)
1964 page_cache_release(new_page);
1965 if (old_page)
1966 page_cache_release(old_page);
65500d23 1967unlock:
8f4e2101 1968 pte_unmap_unlock(page_table, ptl);
d08b3851 1969 if (dirty_page) {
8f7b3d15
AS
1970 if (vma->vm_file)
1971 file_update_time(vma->vm_file);
1972
79352894
NP
1973 /*
1974 * Yes, Virginia, this is actually required to prevent a race
1975 * with clear_page_dirty_for_io() from clearing the page dirty
1976 * bit after it clear all dirty ptes, but before a racing
1977 * do_wp_page installs a dirty pte.
1978 *
1979 * do_no_page is protected similarly.
1980 */
1981 wait_on_page_locked(dirty_page);
a200ee18 1982 set_page_dirty_balance(dirty_page, page_mkwrite);
d08b3851
PZ
1983 put_page(dirty_page);
1984 }
f33ea7f4 1985 return ret;
8a9f3ccd 1986oom_free_new:
6dbf6d3b 1987 page_cache_release(new_page);
65500d23 1988oom:
920fc356
HD
1989 if (old_page)
1990 page_cache_release(old_page);
1da177e4 1991 return VM_FAULT_OOM;
9637a5ef
DH
1992
1993unwritable_page:
1994 page_cache_release(old_page);
1995 return VM_FAULT_SIGBUS;
1da177e4
LT
1996}
1997
1998/*
1999 * Helper functions for unmap_mapping_range().
2000 *
2001 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2002 *
2003 * We have to restart searching the prio_tree whenever we drop the lock,
2004 * since the iterator is only valid while the lock is held, and anyway
2005 * a later vma might be split and reinserted earlier while lock dropped.
2006 *
2007 * The list of nonlinear vmas could be handled more efficiently, using
2008 * a placeholder, but handle it in the same way until a need is shown.
2009 * It is important to search the prio_tree before nonlinear list: a vma
2010 * may become nonlinear and be shifted from prio_tree to nonlinear list
2011 * while the lock is dropped; but never shifted from list to prio_tree.
2012 *
2013 * In order to make forward progress despite restarting the search,
2014 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2015 * quickly skip it next time around. Since the prio_tree search only
2016 * shows us those vmas affected by unmapping the range in question, we
2017 * can't efficiently keep all vmas in step with mapping->truncate_count:
2018 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2019 * mapping->truncate_count and vma->vm_truncate_count are protected by
2020 * i_mmap_lock.
2021 *
2022 * In order to make forward progress despite repeatedly restarting some
ee39b37b 2023 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1da177e4
LT
2024 * and restart from that address when we reach that vma again. It might
2025 * have been split or merged, shrunk or extended, but never shifted: so
2026 * restart_addr remains valid so long as it remains in the vma's range.
2027 * unmap_mapping_range forces truncate_count to leap over page-aligned
2028 * values so we can save vma's restart_addr in its truncate_count field.
2029 */
2030#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2031
2032static void reset_vma_truncate_counts(struct address_space *mapping)
2033{
2034 struct vm_area_struct *vma;
2035 struct prio_tree_iter iter;
2036
2037 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2038 vma->vm_truncate_count = 0;
2039 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2040 vma->vm_truncate_count = 0;
2041}
2042
2043static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2044 unsigned long start_addr, unsigned long end_addr,
2045 struct zap_details *details)
2046{
2047 unsigned long restart_addr;
2048 int need_break;
2049
d00806b1
NP
2050 /*
2051 * files that support invalidating or truncating portions of the
d0217ac0 2052 * file from under mmaped areas must have their ->fault function
83c54070
NP
2053 * return a locked page (and set VM_FAULT_LOCKED in the return).
2054 * This provides synchronisation against concurrent unmapping here.
d00806b1 2055 */
d00806b1 2056
1da177e4
LT
2057again:
2058 restart_addr = vma->vm_truncate_count;
2059 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2060 start_addr = restart_addr;
2061 if (start_addr >= end_addr) {
2062 /* Top of vma has been split off since last time */
2063 vma->vm_truncate_count = details->truncate_count;
2064 return 0;
2065 }
2066 }
2067
ee39b37b
HD
2068 restart_addr = zap_page_range(vma, start_addr,
2069 end_addr - start_addr, details);
95c354fe 2070 need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
1da177e4 2071
ee39b37b 2072 if (restart_addr >= end_addr) {
1da177e4
LT
2073 /* We have now completed this vma: mark it so */
2074 vma->vm_truncate_count = details->truncate_count;
2075 if (!need_break)
2076 return 0;
2077 } else {
2078 /* Note restart_addr in vma's truncate_count field */
ee39b37b 2079 vma->vm_truncate_count = restart_addr;
1da177e4
LT
2080 if (!need_break)
2081 goto again;
2082 }
2083
2084 spin_unlock(details->i_mmap_lock);
2085 cond_resched();
2086 spin_lock(details->i_mmap_lock);
2087 return -EINTR;
2088}
2089
2090static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2091 struct zap_details *details)
2092{
2093 struct vm_area_struct *vma;
2094 struct prio_tree_iter iter;
2095 pgoff_t vba, vea, zba, zea;
2096
2097restart:
2098 vma_prio_tree_foreach(vma, &iter, root,
2099 details->first_index, details->last_index) {
2100 /* Skip quickly over those we have already dealt with */
2101 if (vma->vm_truncate_count == details->truncate_count)
2102 continue;
2103
2104 vba = vma->vm_pgoff;
2105 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2106 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2107 zba = details->first_index;
2108 if (zba < vba)
2109 zba = vba;
2110 zea = details->last_index;
2111 if (zea > vea)
2112 zea = vea;
2113
2114 if (unmap_mapping_range_vma(vma,
2115 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2116 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2117 details) < 0)
2118 goto restart;
2119 }
2120}
2121
2122static inline void unmap_mapping_range_list(struct list_head *head,
2123 struct zap_details *details)
2124{
2125 struct vm_area_struct *vma;
2126
2127 /*
2128 * In nonlinear VMAs there is no correspondence between virtual address
2129 * offset and file offset. So we must perform an exhaustive search
2130 * across *all* the pages in each nonlinear VMA, not just the pages
2131 * whose virtual address lies outside the file truncation point.
2132 */
2133restart:
2134 list_for_each_entry(vma, head, shared.vm_set.list) {
2135 /* Skip quickly over those we have already dealt with */
2136 if (vma->vm_truncate_count == details->truncate_count)
2137 continue;
2138 details->nonlinear_vma = vma;
2139 if (unmap_mapping_range_vma(vma, vma->vm_start,
2140 vma->vm_end, details) < 0)
2141 goto restart;
2142 }
2143}
2144
2145/**
72fd4a35 2146 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
3d41088f 2147 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2148 * @holebegin: byte in first page to unmap, relative to the start of
2149 * the underlying file. This will be rounded down to a PAGE_SIZE
2150 * boundary. Note that this is different from vmtruncate(), which
2151 * must keep the partial page. In contrast, we must get rid of
2152 * partial pages.
2153 * @holelen: size of prospective hole in bytes. This will be rounded
2154 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2155 * end of the file.
2156 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2157 * but 0 when invalidating pagecache, don't throw away private data.
2158 */
2159void unmap_mapping_range(struct address_space *mapping,
2160 loff_t const holebegin, loff_t const holelen, int even_cows)
2161{
2162 struct zap_details details;
2163 pgoff_t hba = holebegin >> PAGE_SHIFT;
2164 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2165
2166 /* Check for overflow. */
2167 if (sizeof(holelen) > sizeof(hlen)) {
2168 long long holeend =
2169 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2170 if (holeend & ~(long long)ULONG_MAX)
2171 hlen = ULONG_MAX - hba + 1;
2172 }
2173
2174 details.check_mapping = even_cows? NULL: mapping;
2175 details.nonlinear_vma = NULL;
2176 details.first_index = hba;
2177 details.last_index = hba + hlen - 1;
2178 if (details.last_index < details.first_index)
2179 details.last_index = ULONG_MAX;
2180 details.i_mmap_lock = &mapping->i_mmap_lock;
2181
2182 spin_lock(&mapping->i_mmap_lock);
2183
d00806b1 2184 /* Protect against endless unmapping loops */
1da177e4 2185 mapping->truncate_count++;
1da177e4
LT
2186 if (unlikely(is_restart_addr(mapping->truncate_count))) {
2187 if (mapping->truncate_count == 0)
2188 reset_vma_truncate_counts(mapping);
2189 mapping->truncate_count++;
2190 }
2191 details.truncate_count = mapping->truncate_count;
2192
2193 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2194 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2195 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2196 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2197 spin_unlock(&mapping->i_mmap_lock);
2198}
2199EXPORT_SYMBOL(unmap_mapping_range);
2200
bfa5bf6d
REB
2201/**
2202 * vmtruncate - unmap mappings "freed" by truncate() syscall
2203 * @inode: inode of the file used
2204 * @offset: file offset to start truncating
1da177e4
LT
2205 *
2206 * NOTE! We have to be ready to update the memory sharing
2207 * between the file and the memory map for a potential last
2208 * incomplete page. Ugly, but necessary.
2209 */
2210int vmtruncate(struct inode * inode, loff_t offset)
2211{
61d5048f
CH
2212 if (inode->i_size < offset) {
2213 unsigned long limit;
2214
2215 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2216 if (limit != RLIM_INFINITY && offset > limit)
2217 goto out_sig;
2218 if (offset > inode->i_sb->s_maxbytes)
2219 goto out_big;
2220 i_size_write(inode, offset);
2221 } else {
2222 struct address_space *mapping = inode->i_mapping;
1da177e4 2223
61d5048f
CH
2224 /*
2225 * truncation of in-use swapfiles is disallowed - it would
2226 * cause subsequent swapout to scribble on the now-freed
2227 * blocks.
2228 */
2229 if (IS_SWAPFILE(inode))
2230 return -ETXTBSY;
2231 i_size_write(inode, offset);
2232
2233 /*
2234 * unmap_mapping_range is called twice, first simply for
2235 * efficiency so that truncate_inode_pages does fewer
2236 * single-page unmaps. However after this first call, and
2237 * before truncate_inode_pages finishes, it is possible for
2238 * private pages to be COWed, which remain after
2239 * truncate_inode_pages finishes, hence the second
2240 * unmap_mapping_range call must be made for correctness.
2241 */
2242 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2243 truncate_inode_pages(mapping, offset);
2244 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2245 }
d00806b1 2246
1da177e4
LT
2247 if (inode->i_op && inode->i_op->truncate)
2248 inode->i_op->truncate(inode);
2249 return 0;
61d5048f 2250
1da177e4
LT
2251out_sig:
2252 send_sig(SIGXFSZ, current, 0);
2253out_big:
2254 return -EFBIG;
1da177e4 2255}
1da177e4
LT
2256EXPORT_SYMBOL(vmtruncate);
2257
f6b3ec23
BP
2258int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2259{
2260 struct address_space *mapping = inode->i_mapping;
2261
2262 /*
2263 * If the underlying filesystem is not going to provide
2264 * a way to truncate a range of blocks (punch a hole) -
2265 * we should return failure right now.
2266 */
2267 if (!inode->i_op || !inode->i_op->truncate_range)
2268 return -ENOSYS;
2269
1b1dcc1b 2270 mutex_lock(&inode->i_mutex);
f6b3ec23
BP
2271 down_write(&inode->i_alloc_sem);
2272 unmap_mapping_range(mapping, offset, (end - offset), 1);
2273 truncate_inode_pages_range(mapping, offset, end);
d00806b1 2274 unmap_mapping_range(mapping, offset, (end - offset), 1);
f6b3ec23
BP
2275 inode->i_op->truncate_range(inode, offset, end);
2276 up_write(&inode->i_alloc_sem);
1b1dcc1b 2277 mutex_unlock(&inode->i_mutex);
f6b3ec23
BP
2278
2279 return 0;
2280}
f6b3ec23 2281
1da177e4 2282/*
8f4e2101
HD
2283 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2284 * but allow concurrent faults), and pte mapped but not yet locked.
2285 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2286 */
65500d23
HD
2287static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2288 unsigned long address, pte_t *page_table, pmd_t *pmd,
2289 int write_access, pte_t orig_pte)
1da177e4 2290{
8f4e2101 2291 spinlock_t *ptl;
1da177e4 2292 struct page *page;
65500d23 2293 swp_entry_t entry;
1da177e4 2294 pte_t pte;
83c54070 2295 int ret = 0;
1da177e4 2296
4c21e2f2 2297 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
8f4e2101 2298 goto out;
65500d23
HD
2299
2300 entry = pte_to_swp_entry(orig_pte);
0697212a
CL
2301 if (is_migration_entry(entry)) {
2302 migration_entry_wait(mm, pmd, address);
2303 goto out;
2304 }
0ff92245 2305 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
2306 page = lookup_swap_cache(entry);
2307 if (!page) {
098fe651 2308 grab_swap_token(); /* Contend for token _before_ read-in */
02098fea
HD
2309 page = swapin_readahead(entry,
2310 GFP_HIGHUSER_MOVABLE, vma, address);
1da177e4
LT
2311 if (!page) {
2312 /*
8f4e2101
HD
2313 * Back out if somebody else faulted in this pte
2314 * while we released the pte lock.
1da177e4 2315 */
8f4e2101 2316 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2317 if (likely(pte_same(*page_table, orig_pte)))
2318 ret = VM_FAULT_OOM;
0ff92245 2319 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2320 goto unlock;
1da177e4
LT
2321 }
2322
2323 /* Had to read the page from swap area: Major fault */
2324 ret = VM_FAULT_MAJOR;
f8891e5e 2325 count_vm_event(PGMAJFAULT);
1da177e4
LT
2326 }
2327
e1a1cd59 2328 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
8a9f3ccd
BS
2329 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2330 ret = VM_FAULT_OOM;
2331 goto out;
2332 }
2333
1da177e4
LT
2334 mark_page_accessed(page);
2335 lock_page(page);
20a1022d 2336 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
2337
2338 /*
8f4e2101 2339 * Back out if somebody else already faulted in this pte.
1da177e4 2340 */
8f4e2101 2341 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
9e9bef07 2342 if (unlikely(!pte_same(*page_table, orig_pte)))
b8107480 2343 goto out_nomap;
b8107480
KK
2344
2345 if (unlikely(!PageUptodate(page))) {
2346 ret = VM_FAULT_SIGBUS;
2347 goto out_nomap;
1da177e4
LT
2348 }
2349
2350 /* The page isn't present yet, go ahead with the fault. */
1da177e4 2351
4294621f 2352 inc_mm_counter(mm, anon_rss);
1da177e4
LT
2353 pte = mk_pte(page, vma->vm_page_prot);
2354 if (write_access && can_share_swap_page(page)) {
2355 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2356 write_access = 0;
2357 }
1da177e4
LT
2358
2359 flush_icache_page(vma, page);
2360 set_pte_at(mm, address, page_table, pte);
2361 page_add_anon_rmap(page, vma, address);
2362
c475a8ab 2363 swap_free(entry);
b291f000 2364 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
c475a8ab
HD
2365 remove_exclusive_swap_page(page);
2366 unlock_page(page);
2367
1da177e4 2368 if (write_access) {
61469f1d
HD
2369 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2370 if (ret & VM_FAULT_ERROR)
2371 ret &= VM_FAULT_ERROR;
1da177e4
LT
2372 goto out;
2373 }
2374
2375 /* No need to invalidate - it was non-present before */
2376 update_mmu_cache(vma, address, pte);
65500d23 2377unlock:
8f4e2101 2378 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2379out:
2380 return ret;
b8107480 2381out_nomap:
8a9f3ccd 2382 mem_cgroup_uncharge_page(page);
8f4e2101 2383 pte_unmap_unlock(page_table, ptl);
b8107480
KK
2384 unlock_page(page);
2385 page_cache_release(page);
65500d23 2386 return ret;
1da177e4
LT
2387}
2388
2389/*
8f4e2101
HD
2390 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2391 * but allow concurrent faults), and pte mapped but not yet locked.
2392 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2393 */
65500d23
HD
2394static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2395 unsigned long address, pte_t *page_table, pmd_t *pmd,
2396 int write_access)
1da177e4 2397{
8f4e2101
HD
2398 struct page *page;
2399 spinlock_t *ptl;
1da177e4 2400 pte_t entry;
1da177e4 2401
557ed1fa
NP
2402 /* Allocate our own private page. */
2403 pte_unmap(page_table);
8f4e2101 2404
557ed1fa
NP
2405 if (unlikely(anon_vma_prepare(vma)))
2406 goto oom;
2407 page = alloc_zeroed_user_highpage_movable(vma, address);
2408 if (!page)
2409 goto oom;
0ed361de 2410 __SetPageUptodate(page);
8f4e2101 2411
e1a1cd59 2412 if (mem_cgroup_charge(page, mm, GFP_KERNEL))
8a9f3ccd
BS
2413 goto oom_free_page;
2414
557ed1fa
NP
2415 entry = mk_pte(page, vma->vm_page_prot);
2416 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1da177e4 2417
557ed1fa
NP
2418 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2419 if (!pte_none(*page_table))
2420 goto release;
2421 inc_mm_counter(mm, anon_rss);
b2e18538 2422 SetPageSwapBacked(page);
4f98a2fe 2423 lru_cache_add_active_anon(page);
557ed1fa 2424 page_add_new_anon_rmap(page, vma, address);
65500d23 2425 set_pte_at(mm, address, page_table, entry);
1da177e4
LT
2426
2427 /* No need to invalidate - it was non-present before */
65500d23 2428 update_mmu_cache(vma, address, entry);
65500d23 2429unlock:
8f4e2101 2430 pte_unmap_unlock(page_table, ptl);
83c54070 2431 return 0;
8f4e2101 2432release:
8a9f3ccd 2433 mem_cgroup_uncharge_page(page);
8f4e2101
HD
2434 page_cache_release(page);
2435 goto unlock;
8a9f3ccd 2436oom_free_page:
6dbf6d3b 2437 page_cache_release(page);
65500d23 2438oom:
1da177e4
LT
2439 return VM_FAULT_OOM;
2440}
2441
2442/*
54cb8821 2443 * __do_fault() tries to create a new page mapping. It aggressively
1da177e4 2444 * tries to share with existing pages, but makes a separate copy if
54cb8821
NP
2445 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2446 * the next page fault.
1da177e4
LT
2447 *
2448 * As this is called only for pages that do not currently exist, we
2449 * do not need to flush old virtual caches or the TLB.
2450 *
8f4e2101 2451 * We enter with non-exclusive mmap_sem (to exclude vma changes,
16abfa08 2452 * but allow concurrent faults), and pte neither mapped nor locked.
8f4e2101 2453 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2454 */
54cb8821 2455static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
16abfa08 2456 unsigned long address, pmd_t *pmd,
54cb8821 2457 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
1da177e4 2458{
16abfa08 2459 pte_t *page_table;
8f4e2101 2460 spinlock_t *ptl;
d0217ac0 2461 struct page *page;
1da177e4 2462 pte_t entry;
1da177e4 2463 int anon = 0;
d08b3851 2464 struct page *dirty_page = NULL;
d0217ac0
NP
2465 struct vm_fault vmf;
2466 int ret;
a200ee18 2467 int page_mkwrite = 0;
54cb8821 2468
d0217ac0
NP
2469 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2470 vmf.pgoff = pgoff;
2471 vmf.flags = flags;
2472 vmf.page = NULL;
1da177e4 2473
3c18ddd1
NP
2474 ret = vma->vm_ops->fault(vma, &vmf);
2475 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2476 return ret;
1da177e4 2477
d00806b1 2478 /*
d0217ac0 2479 * For consistency in subsequent calls, make the faulted page always
d00806b1
NP
2480 * locked.
2481 */
83c54070 2482 if (unlikely(!(ret & VM_FAULT_LOCKED)))
d0217ac0 2483 lock_page(vmf.page);
54cb8821 2484 else
d0217ac0 2485 VM_BUG_ON(!PageLocked(vmf.page));
d00806b1 2486
1da177e4
LT
2487 /*
2488 * Should we do an early C-O-W break?
2489 */
d0217ac0 2490 page = vmf.page;
54cb8821 2491 if (flags & FAULT_FLAG_WRITE) {
9637a5ef 2492 if (!(vma->vm_flags & VM_SHARED)) {
54cb8821 2493 anon = 1;
d00806b1 2494 if (unlikely(anon_vma_prepare(vma))) {
d0217ac0 2495 ret = VM_FAULT_OOM;
54cb8821 2496 goto out;
d00806b1 2497 }
83c54070
NP
2498 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2499 vma, address);
d00806b1 2500 if (!page) {
d0217ac0 2501 ret = VM_FAULT_OOM;
54cb8821 2502 goto out;
d00806b1 2503 }
b291f000
NP
2504 /*
2505 * Don't let another task, with possibly unlocked vma,
2506 * keep the mlocked page.
2507 */
2508 if (vma->vm_flags & VM_LOCKED)
2509 clear_page_mlock(vmf.page);
d0217ac0 2510 copy_user_highpage(page, vmf.page, address, vma);
0ed361de 2511 __SetPageUptodate(page);
9637a5ef 2512 } else {
54cb8821
NP
2513 /*
2514 * If the page will be shareable, see if the backing
9637a5ef 2515 * address space wants to know that the page is about
54cb8821
NP
2516 * to become writable
2517 */
69676147
MF
2518 if (vma->vm_ops->page_mkwrite) {
2519 unlock_page(page);
2520 if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
d0217ac0
NP
2521 ret = VM_FAULT_SIGBUS;
2522 anon = 1; /* no anon but release vmf.page */
69676147
MF
2523 goto out_unlocked;
2524 }
2525 lock_page(page);
d0217ac0
NP
2526 /*
2527 * XXX: this is not quite right (racy vs
2528 * invalidate) to unlock and relock the page
2529 * like this, however a better fix requires
2530 * reworking page_mkwrite locking API, which
2531 * is better done later.
2532 */
2533 if (!page->mapping) {
83c54070 2534 ret = 0;
d0217ac0
NP
2535 anon = 1; /* no anon but release vmf.page */
2536 goto out;
2537 }
a200ee18 2538 page_mkwrite = 1;
9637a5ef
DH
2539 }
2540 }
54cb8821 2541
1da177e4
LT
2542 }
2543
e1a1cd59 2544 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
8a9f3ccd
BS
2545 ret = VM_FAULT_OOM;
2546 goto out;
2547 }
2548
8f4e2101 2549 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2550
2551 /*
2552 * This silly early PAGE_DIRTY setting removes a race
2553 * due to the bad i386 page protection. But it's valid
2554 * for other architectures too.
2555 *
2556 * Note that if write_access is true, we either now have
2557 * an exclusive copy of the page, or this is a shared mapping,
2558 * so we can make it writable and dirty to avoid having to
2559 * handle that later.
2560 */
2561 /* Only go through if we didn't race with anybody else... */
54cb8821 2562 if (likely(pte_same(*page_table, orig_pte))) {
d00806b1
NP
2563 flush_icache_page(vma, page);
2564 entry = mk_pte(page, vma->vm_page_prot);
54cb8821 2565 if (flags & FAULT_FLAG_WRITE)
1da177e4
LT
2566 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2567 set_pte_at(mm, address, page_table, entry);
2568 if (anon) {
d00806b1 2569 inc_mm_counter(mm, anon_rss);
b2e18538 2570 SetPageSwapBacked(page);
4f98a2fe 2571 lru_cache_add_active_anon(page);
d00806b1 2572 page_add_new_anon_rmap(page, vma, address);
f57e88a8 2573 } else {
4294621f 2574 inc_mm_counter(mm, file_rss);
d00806b1 2575 page_add_file_rmap(page);
54cb8821 2576 if (flags & FAULT_FLAG_WRITE) {
d00806b1 2577 dirty_page = page;
d08b3851
PZ
2578 get_page(dirty_page);
2579 }
4294621f 2580 }
d00806b1
NP
2581
2582 /* no need to invalidate: a not-present page won't be cached */
2583 update_mmu_cache(vma, address, entry);
1da177e4 2584 } else {
8a9f3ccd 2585 mem_cgroup_uncharge_page(page);
d00806b1
NP
2586 if (anon)
2587 page_cache_release(page);
2588 else
54cb8821 2589 anon = 1; /* no anon but release faulted_page */
1da177e4
LT
2590 }
2591
8f4e2101 2592 pte_unmap_unlock(page_table, ptl);
d00806b1
NP
2593
2594out:
d0217ac0 2595 unlock_page(vmf.page);
69676147 2596out_unlocked:
d00806b1 2597 if (anon)
d0217ac0 2598 page_cache_release(vmf.page);
d00806b1 2599 else if (dirty_page) {
8f7b3d15
AS
2600 if (vma->vm_file)
2601 file_update_time(vma->vm_file);
2602
a200ee18 2603 set_page_dirty_balance(dirty_page, page_mkwrite);
d08b3851
PZ
2604 put_page(dirty_page);
2605 }
d00806b1 2606
83c54070 2607 return ret;
54cb8821 2608}
d00806b1 2609
54cb8821
NP
2610static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2611 unsigned long address, pte_t *page_table, pmd_t *pmd,
2612 int write_access, pte_t orig_pte)
2613{
2614 pgoff_t pgoff = (((address & PAGE_MASK)
0da7e01f 2615 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
54cb8821
NP
2616 unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2617
16abfa08
HD
2618 pte_unmap(page_table);
2619 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
54cb8821
NP
2620}
2621
1da177e4
LT
2622/*
2623 * Fault of a previously existing named mapping. Repopulate the pte
2624 * from the encoded file_pte if possible. This enables swappable
2625 * nonlinear vmas.
8f4e2101
HD
2626 *
2627 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2628 * but allow concurrent faults), and pte mapped but not yet locked.
2629 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2630 */
d0217ac0 2631static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
65500d23
HD
2632 unsigned long address, pte_t *page_table, pmd_t *pmd,
2633 int write_access, pte_t orig_pte)
1da177e4 2634{
d0217ac0
NP
2635 unsigned int flags = FAULT_FLAG_NONLINEAR |
2636 (write_access ? FAULT_FLAG_WRITE : 0);
65500d23 2637 pgoff_t pgoff;
1da177e4 2638
4c21e2f2 2639 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
83c54070 2640 return 0;
1da177e4 2641
d0217ac0
NP
2642 if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
2643 !(vma->vm_flags & VM_CAN_NONLINEAR))) {
65500d23
HD
2644 /*
2645 * Page table corrupted: show pte and kill process.
2646 */
b5810039 2647 print_bad_pte(vma, orig_pte, address);
65500d23
HD
2648 return VM_FAULT_OOM;
2649 }
65500d23
HD
2650
2651 pgoff = pte_to_pgoff(orig_pte);
16abfa08 2652 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
1da177e4
LT
2653}
2654
2655/*
2656 * These routines also need to handle stuff like marking pages dirty
2657 * and/or accessed for architectures that don't do it in hardware (most
2658 * RISC architectures). The early dirtying is also good on the i386.
2659 *
2660 * There is also a hook called "update_mmu_cache()" that architectures
2661 * with external mmu caches can use to update those (ie the Sparc or
2662 * PowerPC hashed page tables that act as extended TLBs).
2663 *
c74df32c
HD
2664 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2665 * but allow concurrent faults), and pte mapped but not yet locked.
2666 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4
LT
2667 */
2668static inline int handle_pte_fault(struct mm_struct *mm,
65500d23
HD
2669 struct vm_area_struct *vma, unsigned long address,
2670 pte_t *pte, pmd_t *pmd, int write_access)
1da177e4
LT
2671{
2672 pte_t entry;
8f4e2101 2673 spinlock_t *ptl;
1da177e4 2674
8dab5241 2675 entry = *pte;
1da177e4 2676 if (!pte_present(entry)) {
65500d23 2677 if (pte_none(entry)) {
f4b81804 2678 if (vma->vm_ops) {
3c18ddd1 2679 if (likely(vma->vm_ops->fault))
54cb8821
NP
2680 return do_linear_fault(mm, vma, address,
2681 pte, pmd, write_access, entry);
f4b81804
JS
2682 }
2683 return do_anonymous_page(mm, vma, address,
2684 pte, pmd, write_access);
65500d23 2685 }
1da177e4 2686 if (pte_file(entry))
d0217ac0 2687 return do_nonlinear_fault(mm, vma, address,
65500d23
HD
2688 pte, pmd, write_access, entry);
2689 return do_swap_page(mm, vma, address,
2690 pte, pmd, write_access, entry);
1da177e4
LT
2691 }
2692
4c21e2f2 2693 ptl = pte_lockptr(mm, pmd);
8f4e2101
HD
2694 spin_lock(ptl);
2695 if (unlikely(!pte_same(*pte, entry)))
2696 goto unlock;
1da177e4
LT
2697 if (write_access) {
2698 if (!pte_write(entry))
8f4e2101
HD
2699 return do_wp_page(mm, vma, address,
2700 pte, pmd, ptl, entry);
1da177e4
LT
2701 entry = pte_mkdirty(entry);
2702 }
2703 entry = pte_mkyoung(entry);
8dab5241 2704 if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
1a44e149 2705 update_mmu_cache(vma, address, entry);
1a44e149
AA
2706 } else {
2707 /*
2708 * This is needed only for protection faults but the arch code
2709 * is not yet telling us if this is a protection fault or not.
2710 * This still avoids useless tlb flushes for .text page faults
2711 * with threads.
2712 */
2713 if (write_access)
2714 flush_tlb_page(vma, address);
2715 }
8f4e2101
HD
2716unlock:
2717 pte_unmap_unlock(pte, ptl);
83c54070 2718 return 0;
1da177e4
LT
2719}
2720
2721/*
2722 * By the time we get here, we already hold the mm semaphore
2723 */
83c54070 2724int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1da177e4
LT
2725 unsigned long address, int write_access)
2726{
2727 pgd_t *pgd;
2728 pud_t *pud;
2729 pmd_t *pmd;
2730 pte_t *pte;
2731
2732 __set_current_state(TASK_RUNNING);
2733
f8891e5e 2734 count_vm_event(PGFAULT);
1da177e4 2735
ac9b9c66
HD
2736 if (unlikely(is_vm_hugetlb_page(vma)))
2737 return hugetlb_fault(mm, vma, address, write_access);
1da177e4 2738
1da177e4 2739 pgd = pgd_offset(mm, address);
1da177e4
LT
2740 pud = pud_alloc(mm, pgd, address);
2741 if (!pud)
c74df32c 2742 return VM_FAULT_OOM;
1da177e4
LT
2743 pmd = pmd_alloc(mm, pud, address);
2744 if (!pmd)
c74df32c 2745 return VM_FAULT_OOM;
1da177e4
LT
2746 pte = pte_alloc_map(mm, pmd, address);
2747 if (!pte)
c74df32c 2748 return VM_FAULT_OOM;
1da177e4 2749
c74df32c 2750 return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
1da177e4
LT
2751}
2752
2753#ifndef __PAGETABLE_PUD_FOLDED
2754/*
2755 * Allocate page upper directory.
872fec16 2756 * We've already handled the fast-path in-line.
1da177e4 2757 */
1bb3630e 2758int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1da177e4 2759{
c74df32c
HD
2760 pud_t *new = pud_alloc_one(mm, address);
2761 if (!new)
1bb3630e 2762 return -ENOMEM;
1da177e4 2763
362a61ad
NP
2764 smp_wmb(); /* See comment in __pte_alloc */
2765
872fec16 2766 spin_lock(&mm->page_table_lock);
1bb3630e 2767 if (pgd_present(*pgd)) /* Another has populated it */
5e541973 2768 pud_free(mm, new);
1bb3630e
HD
2769 else
2770 pgd_populate(mm, pgd, new);
c74df32c 2771 spin_unlock(&mm->page_table_lock);
1bb3630e 2772 return 0;
1da177e4
LT
2773}
2774#endif /* __PAGETABLE_PUD_FOLDED */
2775
2776#ifndef __PAGETABLE_PMD_FOLDED
2777/*
2778 * Allocate page middle directory.
872fec16 2779 * We've already handled the fast-path in-line.
1da177e4 2780 */
1bb3630e 2781int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 2782{
c74df32c
HD
2783 pmd_t *new = pmd_alloc_one(mm, address);
2784 if (!new)
1bb3630e 2785 return -ENOMEM;
1da177e4 2786
362a61ad
NP
2787 smp_wmb(); /* See comment in __pte_alloc */
2788
872fec16 2789 spin_lock(&mm->page_table_lock);
1da177e4 2790#ifndef __ARCH_HAS_4LEVEL_HACK
1bb3630e 2791 if (pud_present(*pud)) /* Another has populated it */
5e541973 2792 pmd_free(mm, new);
1bb3630e
HD
2793 else
2794 pud_populate(mm, pud, new);
1da177e4 2795#else
1bb3630e 2796 if (pgd_present(*pud)) /* Another has populated it */
5e541973 2797 pmd_free(mm, new);
1bb3630e
HD
2798 else
2799 pgd_populate(mm, pud, new);
1da177e4 2800#endif /* __ARCH_HAS_4LEVEL_HACK */
c74df32c 2801 spin_unlock(&mm->page_table_lock);
1bb3630e 2802 return 0;
e0f39591 2803}
1da177e4
LT
2804#endif /* __PAGETABLE_PMD_FOLDED */
2805
2806int make_pages_present(unsigned long addr, unsigned long end)
2807{
2808 int ret, len, write;
2809 struct vm_area_struct * vma;
2810
2811 vma = find_vma(current->mm, addr);
2812 if (!vma)
a477097d 2813 return -ENOMEM;
1da177e4 2814 write = (vma->vm_flags & VM_WRITE) != 0;
5bcb28b1
ES
2815 BUG_ON(addr >= end);
2816 BUG_ON(end > vma->vm_end);
68e116a3 2817 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
1da177e4
LT
2818 ret = get_user_pages(current, current->mm, addr,
2819 len, write, 0, NULL, NULL);
a477097d
KM
2820 if (ret < 0) {
2821 /*
2822 SUS require strange return value to mlock
2823 - invalid addr generate to ENOMEM.
2824 - out of memory should generate EAGAIN.
2825 */
2826 if (ret == -EFAULT)
2827 ret = -ENOMEM;
2828 else if (ret == -ENOMEM)
2829 ret = -EAGAIN;
1da177e4 2830 return ret;
a477097d
KM
2831 }
2832 return ret == len ? 0 : -ENOMEM;
1da177e4
LT
2833}
2834
1da177e4
LT
2835#if !defined(__HAVE_ARCH_GATE_AREA)
2836
2837#if defined(AT_SYSINFO_EHDR)
5ce7852c 2838static struct vm_area_struct gate_vma;
1da177e4
LT
2839
2840static int __init gate_vma_init(void)
2841{
2842 gate_vma.vm_mm = NULL;
2843 gate_vma.vm_start = FIXADDR_USER_START;
2844 gate_vma.vm_end = FIXADDR_USER_END;
b6558c4a
RM
2845 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2846 gate_vma.vm_page_prot = __P101;
f47aef55
RM
2847 /*
2848 * Make sure the vDSO gets into every core dump.
2849 * Dumping its contents makes post-mortem fully interpretable later
2850 * without matching up the same kernel and hardware config to see
2851 * what PC values meant.
2852 */
2853 gate_vma.vm_flags |= VM_ALWAYSDUMP;
1da177e4
LT
2854 return 0;
2855}
2856__initcall(gate_vma_init);
2857#endif
2858
2859struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2860{
2861#ifdef AT_SYSINFO_EHDR
2862 return &gate_vma;
2863#else
2864 return NULL;
2865#endif
2866}
2867
2868int in_gate_area_no_task(unsigned long addr)
2869{
2870#ifdef AT_SYSINFO_EHDR
2871 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2872 return 1;
2873#endif
2874 return 0;
2875}
2876
2877#endif /* __HAVE_ARCH_GATE_AREA */
0ec76a11 2878
28b2ee20
RR
2879#ifdef CONFIG_HAVE_IOREMAP_PROT
2880static resource_size_t follow_phys(struct vm_area_struct *vma,
2881 unsigned long address, unsigned int flags,
2882 unsigned long *prot)
2883{
2884 pgd_t *pgd;
2885 pud_t *pud;
2886 pmd_t *pmd;
2887 pte_t *ptep, pte;
2888 spinlock_t *ptl;
2889 resource_size_t phys_addr = 0;
2890 struct mm_struct *mm = vma->vm_mm;
2891
2892 VM_BUG_ON(!(vma->vm_flags & (VM_IO | VM_PFNMAP)));
2893
2894 pgd = pgd_offset(mm, address);
2895 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
2896 goto no_page_table;
2897
2898 pud = pud_offset(pgd, address);
2899 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
2900 goto no_page_table;
2901
2902 pmd = pmd_offset(pud, address);
2903 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
2904 goto no_page_table;
2905
2906 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
2907 if (pmd_huge(*pmd))
2908 goto no_page_table;
2909
2910 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
2911 if (!ptep)
2912 goto out;
2913
2914 pte = *ptep;
2915 if (!pte_present(pte))
2916 goto unlock;
2917 if ((flags & FOLL_WRITE) && !pte_write(pte))
2918 goto unlock;
2919 phys_addr = pte_pfn(pte);
2920 phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */
2921
2922 *prot = pgprot_val(pte_pgprot(pte));
2923
2924unlock:
2925 pte_unmap_unlock(ptep, ptl);
2926out:
2927 return phys_addr;
2928no_page_table:
2929 return 0;
2930}
2931
2932int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2933 void *buf, int len, int write)
2934{
2935 resource_size_t phys_addr;
2936 unsigned long prot = 0;
2937 void *maddr;
2938 int offset = addr & (PAGE_SIZE-1);
2939
2940 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
2941 return -EINVAL;
2942
2943 phys_addr = follow_phys(vma, addr, write, &prot);
2944
2945 if (!phys_addr)
2946 return -EINVAL;
2947
2948 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
2949 if (write)
2950 memcpy_toio(maddr + offset, buf, len);
2951 else
2952 memcpy_fromio(buf, maddr + offset, len);
2953 iounmap(maddr);
2954
2955 return len;
2956}
2957#endif
2958
0ec76a11
DH
2959/*
2960 * Access another process' address space.
2961 * Source/target buffer must be kernel space,
2962 * Do not walk the page table directly, use get_user_pages
2963 */
2964int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2965{
2966 struct mm_struct *mm;
2967 struct vm_area_struct *vma;
0ec76a11
DH
2968 void *old_buf = buf;
2969
2970 mm = get_task_mm(tsk);
2971 if (!mm)
2972 return 0;
2973
2974 down_read(&mm->mmap_sem);
183ff22b 2975 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
2976 while (len) {
2977 int bytes, ret, offset;
2978 void *maddr;
28b2ee20 2979 struct page *page = NULL;
0ec76a11
DH
2980
2981 ret = get_user_pages(tsk, mm, addr, 1,
2982 write, 1, &page, &vma);
28b2ee20
RR
2983 if (ret <= 0) {
2984 /*
2985 * Check if this is a VM_IO | VM_PFNMAP VMA, which
2986 * we can access using slightly different code.
2987 */
2988#ifdef CONFIG_HAVE_IOREMAP_PROT
2989 vma = find_vma(mm, addr);
2990 if (!vma)
2991 break;
2992 if (vma->vm_ops && vma->vm_ops->access)
2993 ret = vma->vm_ops->access(vma, addr, buf,
2994 len, write);
2995 if (ret <= 0)
2996#endif
2997 break;
2998 bytes = ret;
0ec76a11 2999 } else {
28b2ee20
RR
3000 bytes = len;
3001 offset = addr & (PAGE_SIZE-1);
3002 if (bytes > PAGE_SIZE-offset)
3003 bytes = PAGE_SIZE-offset;
3004
3005 maddr = kmap(page);
3006 if (write) {
3007 copy_to_user_page(vma, page, addr,
3008 maddr + offset, buf, bytes);
3009 set_page_dirty_lock(page);
3010 } else {
3011 copy_from_user_page(vma, page, addr,
3012 buf, maddr + offset, bytes);
3013 }
3014 kunmap(page);
3015 page_cache_release(page);
0ec76a11 3016 }
0ec76a11
DH
3017 len -= bytes;
3018 buf += bytes;
3019 addr += bytes;
3020 }
3021 up_read(&mm->mmap_sem);
3022 mmput(mm);
3023
3024 return buf - old_buf;
3025}
03252919
AK
3026
3027/*
3028 * Print the name of a VMA.
3029 */
3030void print_vma_addr(char *prefix, unsigned long ip)
3031{
3032 struct mm_struct *mm = current->mm;
3033 struct vm_area_struct *vma;
3034
e8bff74a
IM
3035 /*
3036 * Do not print if we are in atomic
3037 * contexts (in exception stacks, etc.):
3038 */
3039 if (preempt_count())
3040 return;
3041
03252919
AK
3042 down_read(&mm->mmap_sem);
3043 vma = find_vma(mm, ip);
3044 if (vma && vma->vm_file) {
3045 struct file *f = vma->vm_file;
3046 char *buf = (char *)__get_free_page(GFP_KERNEL);
3047 if (buf) {
3048 char *p, *s;
3049
cf28b486 3050 p = d_path(&f->f_path, buf, PAGE_SIZE);
03252919
AK
3051 if (IS_ERR(p))
3052 p = "?";
3053 s = strrchr(p, '/');
3054 if (s)
3055 p = s+1;
3056 printk("%s%s[%lx+%lx]", prefix, p,
3057 vma->vm_start,
3058 vma->vm_end - vma->vm_start);
3059 free_page((unsigned long)buf);
3060 }
3061 }
3062 up_read(&current->mm->mmap_sem);
3063}