mm: gup persist for write permission
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
48#include <linux/rmap.h>
49#include <linux/module.h>
0ff92245 50#include <linux/delayacct.h>
1da177e4 51#include <linux/init.h>
edc79b2a 52#include <linux/writeback.h>
8a9f3ccd 53#include <linux/memcontrol.h>
cddb8a5c 54#include <linux/mmu_notifier.h>
1da177e4
LT
55
56#include <asm/pgalloc.h>
57#include <asm/uaccess.h>
58#include <asm/tlb.h>
59#include <asm/tlbflush.h>
60#include <asm/pgtable.h>
61
62#include <linux/swapops.h>
63#include <linux/elf.h>
64
42b77728
JB
65#include "internal.h"
66
d41dee36 67#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
68/* use the per-pgdat data instead for discontigmem - mbligh */
69unsigned long max_mapnr;
70struct page *mem_map;
71
72EXPORT_SYMBOL(max_mapnr);
73EXPORT_SYMBOL(mem_map);
74#endif
75
76unsigned long num_physpages;
77/*
78 * A number of key systems in x86 including ioremap() rely on the assumption
79 * that high_memory defines the upper bound on direct map memory, then end
80 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
81 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
82 * and ZONE_HIGHMEM.
83 */
84void * high_memory;
1da177e4
LT
85
86EXPORT_SYMBOL(num_physpages);
87EXPORT_SYMBOL(high_memory);
1da177e4 88
32a93233
IM
89/*
90 * Randomize the address space (stacks, mmaps, brk, etc.).
91 *
92 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
93 * as ancient (libc5 based) binaries can segfault. )
94 */
95int randomize_va_space __read_mostly =
96#ifdef CONFIG_COMPAT_BRK
97 1;
98#else
99 2;
100#endif
a62eaf15
AK
101
102static int __init disable_randmaps(char *s)
103{
104 randomize_va_space = 0;
9b41046c 105 return 1;
a62eaf15
AK
106}
107__setup("norandmaps", disable_randmaps);
108
109
1da177e4
LT
110/*
111 * If a p?d_bad entry is found while walking page tables, report
112 * the error, before resetting entry to p?d_none. Usually (but
113 * very seldom) called out from the p?d_none_or_clear_bad macros.
114 */
115
116void pgd_clear_bad(pgd_t *pgd)
117{
118 pgd_ERROR(*pgd);
119 pgd_clear(pgd);
120}
121
122void pud_clear_bad(pud_t *pud)
123{
124 pud_ERROR(*pud);
125 pud_clear(pud);
126}
127
128void pmd_clear_bad(pmd_t *pmd)
129{
130 pmd_ERROR(*pmd);
131 pmd_clear(pmd);
132}
133
134/*
135 * Note: this doesn't free the actual pages themselves. That
136 * has been handled earlier when unmapping all the memory regions.
137 */
e0da382c 138static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
1da177e4 139{
2f569afd 140 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 141 pmd_clear(pmd);
2f569afd 142 pte_free_tlb(tlb, token);
e0da382c 143 tlb->mm->nr_ptes--;
1da177e4
LT
144}
145
e0da382c
HD
146static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
147 unsigned long addr, unsigned long end,
148 unsigned long floor, unsigned long ceiling)
1da177e4
LT
149{
150 pmd_t *pmd;
151 unsigned long next;
e0da382c 152 unsigned long start;
1da177e4 153
e0da382c 154 start = addr;
1da177e4 155 pmd = pmd_offset(pud, addr);
1da177e4
LT
156 do {
157 next = pmd_addr_end(addr, end);
158 if (pmd_none_or_clear_bad(pmd))
159 continue;
e0da382c 160 free_pte_range(tlb, pmd);
1da177e4
LT
161 } while (pmd++, addr = next, addr != end);
162
e0da382c
HD
163 start &= PUD_MASK;
164 if (start < floor)
165 return;
166 if (ceiling) {
167 ceiling &= PUD_MASK;
168 if (!ceiling)
169 return;
1da177e4 170 }
e0da382c
HD
171 if (end - 1 > ceiling - 1)
172 return;
173
174 pmd = pmd_offset(pud, start);
175 pud_clear(pud);
176 pmd_free_tlb(tlb, pmd);
1da177e4
LT
177}
178
e0da382c
HD
179static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
180 unsigned long addr, unsigned long end,
181 unsigned long floor, unsigned long ceiling)
1da177e4
LT
182{
183 pud_t *pud;
184 unsigned long next;
e0da382c 185 unsigned long start;
1da177e4 186
e0da382c 187 start = addr;
1da177e4 188 pud = pud_offset(pgd, addr);
1da177e4
LT
189 do {
190 next = pud_addr_end(addr, end);
191 if (pud_none_or_clear_bad(pud))
192 continue;
e0da382c 193 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
194 } while (pud++, addr = next, addr != end);
195
e0da382c
HD
196 start &= PGDIR_MASK;
197 if (start < floor)
198 return;
199 if (ceiling) {
200 ceiling &= PGDIR_MASK;
201 if (!ceiling)
202 return;
1da177e4 203 }
e0da382c
HD
204 if (end - 1 > ceiling - 1)
205 return;
206
207 pud = pud_offset(pgd, start);
208 pgd_clear(pgd);
209 pud_free_tlb(tlb, pud);
1da177e4
LT
210}
211
212/*
e0da382c
HD
213 * This function frees user-level page tables of a process.
214 *
1da177e4
LT
215 * Must be called with pagetable lock held.
216 */
42b77728 217void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
218 unsigned long addr, unsigned long end,
219 unsigned long floor, unsigned long ceiling)
1da177e4
LT
220{
221 pgd_t *pgd;
222 unsigned long next;
e0da382c
HD
223 unsigned long start;
224
225 /*
226 * The next few lines have given us lots of grief...
227 *
228 * Why are we testing PMD* at this top level? Because often
229 * there will be no work to do at all, and we'd prefer not to
230 * go all the way down to the bottom just to discover that.
231 *
232 * Why all these "- 1"s? Because 0 represents both the bottom
233 * of the address space and the top of it (using -1 for the
234 * top wouldn't help much: the masks would do the wrong thing).
235 * The rule is that addr 0 and floor 0 refer to the bottom of
236 * the address space, but end 0 and ceiling 0 refer to the top
237 * Comparisons need to use "end - 1" and "ceiling - 1" (though
238 * that end 0 case should be mythical).
239 *
240 * Wherever addr is brought up or ceiling brought down, we must
241 * be careful to reject "the opposite 0" before it confuses the
242 * subsequent tests. But what about where end is brought down
243 * by PMD_SIZE below? no, end can't go down to 0 there.
244 *
245 * Whereas we round start (addr) and ceiling down, by different
246 * masks at different levels, in order to test whether a table
247 * now has no other vmas using it, so can be freed, we don't
248 * bother to round floor or end up - the tests don't need that.
249 */
1da177e4 250
e0da382c
HD
251 addr &= PMD_MASK;
252 if (addr < floor) {
253 addr += PMD_SIZE;
254 if (!addr)
255 return;
256 }
257 if (ceiling) {
258 ceiling &= PMD_MASK;
259 if (!ceiling)
260 return;
261 }
262 if (end - 1 > ceiling - 1)
263 end -= PMD_SIZE;
264 if (addr > end - 1)
265 return;
266
267 start = addr;
42b77728 268 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
269 do {
270 next = pgd_addr_end(addr, end);
271 if (pgd_none_or_clear_bad(pgd))
272 continue;
42b77728 273 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 274 } while (pgd++, addr = next, addr != end);
e0da382c
HD
275}
276
42b77728 277void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 278 unsigned long floor, unsigned long ceiling)
e0da382c
HD
279{
280 while (vma) {
281 struct vm_area_struct *next = vma->vm_next;
282 unsigned long addr = vma->vm_start;
283
8f4f8c16
HD
284 /*
285 * Hide vma from rmap and vmtruncate before freeing pgtables
286 */
287 anon_vma_unlink(vma);
288 unlink_file_vma(vma);
289
9da61aef 290 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 291 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
e0da382c 292 floor, next? next->vm_start: ceiling);
3bf5ee95
HD
293 } else {
294 /*
295 * Optimization: gather nearby vmas into one call down
296 */
297 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 298 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
299 vma = next;
300 next = vma->vm_next;
8f4f8c16
HD
301 anon_vma_unlink(vma);
302 unlink_file_vma(vma);
3bf5ee95
HD
303 }
304 free_pgd_range(tlb, addr, vma->vm_end,
305 floor, next? next->vm_start: ceiling);
306 }
e0da382c
HD
307 vma = next;
308 }
1da177e4
LT
309}
310
1bb3630e 311int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
1da177e4 312{
2f569afd 313 pgtable_t new = pte_alloc_one(mm, address);
1bb3630e
HD
314 if (!new)
315 return -ENOMEM;
316
362a61ad
NP
317 /*
318 * Ensure all pte setup (eg. pte page lock and page clearing) are
319 * visible before the pte is made visible to other CPUs by being
320 * put into page tables.
321 *
322 * The other side of the story is the pointer chasing in the page
323 * table walking code (when walking the page table without locking;
324 * ie. most of the time). Fortunately, these data accesses consist
325 * of a chain of data-dependent loads, meaning most CPUs (alpha
326 * being the notable exception) will already guarantee loads are
327 * seen in-order. See the alpha page table accessors for the
328 * smp_read_barrier_depends() barriers in page table walking code.
329 */
330 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
331
c74df32c 332 spin_lock(&mm->page_table_lock);
2f569afd 333 if (!pmd_present(*pmd)) { /* Has another populated it ? */
1da177e4 334 mm->nr_ptes++;
1da177e4 335 pmd_populate(mm, pmd, new);
2f569afd 336 new = NULL;
1da177e4 337 }
c74df32c 338 spin_unlock(&mm->page_table_lock);
2f569afd
MS
339 if (new)
340 pte_free(mm, new);
1bb3630e 341 return 0;
1da177e4
LT
342}
343
1bb3630e 344int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 345{
1bb3630e
HD
346 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
347 if (!new)
348 return -ENOMEM;
349
362a61ad
NP
350 smp_wmb(); /* See comment in __pte_alloc */
351
1bb3630e 352 spin_lock(&init_mm.page_table_lock);
2f569afd 353 if (!pmd_present(*pmd)) { /* Has another populated it ? */
1bb3630e 354 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd
MS
355 new = NULL;
356 }
1bb3630e 357 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
358 if (new)
359 pte_free_kernel(&init_mm, new);
1bb3630e 360 return 0;
1da177e4
LT
361}
362
ae859762
HD
363static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
364{
365 if (file_rss)
366 add_mm_counter(mm, file_rss, file_rss);
367 if (anon_rss)
368 add_mm_counter(mm, anon_rss, anon_rss);
369}
370
b5810039 371/*
6aab341e
LT
372 * This function is called to print an error when a bad pte
373 * is found. For example, we might have a PFN-mapped pte in
374 * a region that doesn't allow it.
b5810039
NP
375 *
376 * The calling function must still handle the error.
377 */
15f59ada
AB
378static void print_bad_pte(struct vm_area_struct *vma, pte_t pte,
379 unsigned long vaddr)
b5810039
NP
380{
381 printk(KERN_ERR "Bad pte = %08llx, process = %s, "
382 "vm_flags = %lx, vaddr = %lx\n",
383 (long long)pte_val(pte),
384 (vma->vm_mm == current->mm ? current->comm : "???"),
385 vma->vm_flags, vaddr);
386 dump_stack();
387}
388
67121172
LT
389static inline int is_cow_mapping(unsigned int flags)
390{
391 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
392}
393
ee498ed7 394/*
7e675137 395 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 396 *
7e675137
NP
397 * "Special" mappings do not wish to be associated with a "struct page" (either
398 * it doesn't exist, or it exists but they don't want to touch it). In this
399 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 400 *
7e675137
NP
401 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
402 * pte bit, in which case this function is trivial. Secondly, an architecture
403 * may not have a spare pte bit, which requires a more complicated scheme,
404 * described below.
405 *
406 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
407 * special mapping (even if there are underlying and valid "struct pages").
408 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 409 *
b379d790
JH
410 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
411 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
412 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
413 * mapping will always honor the rule
6aab341e
LT
414 *
415 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
416 *
7e675137
NP
417 * And for normal mappings this is false.
418 *
419 * This restricts such mappings to be a linear translation from virtual address
420 * to pfn. To get around this restriction, we allow arbitrary mappings so long
421 * as the vma is not a COW mapping; in that case, we know that all ptes are
422 * special (because none can have been COWed).
b379d790 423 *
b379d790 424 *
7e675137 425 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
426 *
427 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
428 * page" backing, however the difference is that _all_ pages with a struct
429 * page (that is, those where pfn_valid is true) are refcounted and considered
430 * normal pages by the VM. The disadvantage is that pages are refcounted
431 * (which can be slower and simply not an option for some PFNMAP users). The
432 * advantage is that we don't have to follow the strict linearity rule of
433 * PFNMAP mappings in order to support COWable mappings.
434 *
ee498ed7 435 */
7e675137
NP
436#ifdef __HAVE_ARCH_PTE_SPECIAL
437# define HAVE_PTE_SPECIAL 1
438#else
439# define HAVE_PTE_SPECIAL 0
440#endif
441struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
442 pte_t pte)
ee498ed7 443{
7e675137
NP
444 unsigned long pfn;
445
446 if (HAVE_PTE_SPECIAL) {
447 if (likely(!pte_special(pte))) {
448 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
449 return pte_page(pte);
450 }
451 VM_BUG_ON(!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
452 return NULL;
453 }
454
455 /* !HAVE_PTE_SPECIAL case follows: */
456
457 pfn = pte_pfn(pte);
6aab341e 458
b379d790
JH
459 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
460 if (vma->vm_flags & VM_MIXEDMAP) {
461 if (!pfn_valid(pfn))
462 return NULL;
463 goto out;
464 } else {
7e675137
NP
465 unsigned long off;
466 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
467 if (pfn == vma->vm_pgoff + off)
468 return NULL;
469 if (!is_cow_mapping(vma->vm_flags))
470 return NULL;
471 }
6aab341e
LT
472 }
473
7e675137 474 VM_BUG_ON(!pfn_valid(pfn));
6aab341e
LT
475
476 /*
7e675137 477 * NOTE! We still have PageReserved() pages in the page tables.
6aab341e 478 *
7e675137 479 * eg. VDSO mappings can cause them to exist.
6aab341e 480 */
b379d790 481out:
6aab341e 482 return pfn_to_page(pfn);
ee498ed7
HD
483}
484
1da177e4
LT
485/*
486 * copy one vm_area from one task to the other. Assumes the page tables
487 * already present in the new task to be cleared in the whole range
488 * covered by this vma.
1da177e4
LT
489 */
490
8c103762 491static inline void
1da177e4 492copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 493 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 494 unsigned long addr, int *rss)
1da177e4 495{
b5810039 496 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
497 pte_t pte = *src_pte;
498 struct page *page;
1da177e4
LT
499
500 /* pte contains position in swap or file, so copy. */
501 if (unlikely(!pte_present(pte))) {
502 if (!pte_file(pte)) {
0697212a
CL
503 swp_entry_t entry = pte_to_swp_entry(pte);
504
505 swap_duplicate(entry);
1da177e4
LT
506 /* make sure dst_mm is on swapoff's mmlist. */
507 if (unlikely(list_empty(&dst_mm->mmlist))) {
508 spin_lock(&mmlist_lock);
f412ac08
HD
509 if (list_empty(&dst_mm->mmlist))
510 list_add(&dst_mm->mmlist,
511 &src_mm->mmlist);
1da177e4
LT
512 spin_unlock(&mmlist_lock);
513 }
0697212a
CL
514 if (is_write_migration_entry(entry) &&
515 is_cow_mapping(vm_flags)) {
516 /*
517 * COW mappings require pages in both parent
518 * and child to be set to read.
519 */
520 make_migration_entry_read(&entry);
521 pte = swp_entry_to_pte(entry);
522 set_pte_at(src_mm, addr, src_pte, pte);
523 }
1da177e4 524 }
ae859762 525 goto out_set_pte;
1da177e4
LT
526 }
527
1da177e4
LT
528 /*
529 * If it's a COW mapping, write protect it both
530 * in the parent and the child
531 */
67121172 532 if (is_cow_mapping(vm_flags)) {
1da177e4 533 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 534 pte = pte_wrprotect(pte);
1da177e4
LT
535 }
536
537 /*
538 * If it's a shared mapping, mark it clean in
539 * the child
540 */
541 if (vm_flags & VM_SHARED)
542 pte = pte_mkclean(pte);
543 pte = pte_mkold(pte);
6aab341e
LT
544
545 page = vm_normal_page(vma, addr, pte);
546 if (page) {
547 get_page(page);
c97a9e10 548 page_dup_rmap(page, vma, addr);
6aab341e
LT
549 rss[!!PageAnon(page)]++;
550 }
ae859762
HD
551
552out_set_pte:
553 set_pte_at(dst_mm, addr, dst_pte, pte);
1da177e4
LT
554}
555
556static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
557 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
558 unsigned long addr, unsigned long end)
559{
560 pte_t *src_pte, *dst_pte;
c74df32c 561 spinlock_t *src_ptl, *dst_ptl;
e040f218 562 int progress = 0;
8c103762 563 int rss[2];
1da177e4
LT
564
565again:
ae859762 566 rss[1] = rss[0] = 0;
c74df32c 567 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
568 if (!dst_pte)
569 return -ENOMEM;
570 src_pte = pte_offset_map_nested(src_pmd, addr);
4c21e2f2 571 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 572 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
6606c3e0 573 arch_enter_lazy_mmu_mode();
1da177e4 574
1da177e4
LT
575 do {
576 /*
577 * We are holding two locks at this point - either of them
578 * could generate latencies in another task on another CPU.
579 */
e040f218
HD
580 if (progress >= 32) {
581 progress = 0;
582 if (need_resched() ||
95c354fe 583 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
584 break;
585 }
1da177e4
LT
586 if (pte_none(*src_pte)) {
587 progress++;
588 continue;
589 }
8c103762 590 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
1da177e4
LT
591 progress += 8;
592 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 593
6606c3e0 594 arch_leave_lazy_mmu_mode();
c74df32c 595 spin_unlock(src_ptl);
1da177e4 596 pte_unmap_nested(src_pte - 1);
ae859762 597 add_mm_rss(dst_mm, rss[0], rss[1]);
c74df32c
HD
598 pte_unmap_unlock(dst_pte - 1, dst_ptl);
599 cond_resched();
1da177e4
LT
600 if (addr != end)
601 goto again;
602 return 0;
603}
604
605static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
606 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
607 unsigned long addr, unsigned long end)
608{
609 pmd_t *src_pmd, *dst_pmd;
610 unsigned long next;
611
612 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
613 if (!dst_pmd)
614 return -ENOMEM;
615 src_pmd = pmd_offset(src_pud, addr);
616 do {
617 next = pmd_addr_end(addr, end);
618 if (pmd_none_or_clear_bad(src_pmd))
619 continue;
620 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
621 vma, addr, next))
622 return -ENOMEM;
623 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
624 return 0;
625}
626
627static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
628 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
629 unsigned long addr, unsigned long end)
630{
631 pud_t *src_pud, *dst_pud;
632 unsigned long next;
633
634 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
635 if (!dst_pud)
636 return -ENOMEM;
637 src_pud = pud_offset(src_pgd, addr);
638 do {
639 next = pud_addr_end(addr, end);
640 if (pud_none_or_clear_bad(src_pud))
641 continue;
642 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
643 vma, addr, next))
644 return -ENOMEM;
645 } while (dst_pud++, src_pud++, addr = next, addr != end);
646 return 0;
647}
648
649int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
650 struct vm_area_struct *vma)
651{
652 pgd_t *src_pgd, *dst_pgd;
653 unsigned long next;
654 unsigned long addr = vma->vm_start;
655 unsigned long end = vma->vm_end;
cddb8a5c 656 int ret;
1da177e4 657
d992895b
NP
658 /*
659 * Don't copy ptes where a page fault will fill them correctly.
660 * Fork becomes much lighter when there are big shared or private
661 * readonly mappings. The tradeoff is that copy_page_range is more
662 * efficient than faulting.
663 */
4d7672b4 664 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
d992895b
NP
665 if (!vma->anon_vma)
666 return 0;
667 }
668
1da177e4
LT
669 if (is_vm_hugetlb_page(vma))
670 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
671
34801ba9 672 if (unlikely(is_pfn_mapping(vma))) {
2ab64037 673 /*
674 * We do not free on error cases below as remove_vma
675 * gets called on error from higher level routine
676 */
677 ret = track_pfn_vma_copy(vma);
678 if (ret)
679 return ret;
680 }
681
cddb8a5c
AA
682 /*
683 * We need to invalidate the secondary MMU mappings only when
684 * there could be a permission downgrade on the ptes of the
685 * parent mm. And a permission downgrade will only happen if
686 * is_cow_mapping() returns true.
687 */
688 if (is_cow_mapping(vma->vm_flags))
689 mmu_notifier_invalidate_range_start(src_mm, addr, end);
690
691 ret = 0;
1da177e4
LT
692 dst_pgd = pgd_offset(dst_mm, addr);
693 src_pgd = pgd_offset(src_mm, addr);
694 do {
695 next = pgd_addr_end(addr, end);
696 if (pgd_none_or_clear_bad(src_pgd))
697 continue;
cddb8a5c
AA
698 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
699 vma, addr, next))) {
700 ret = -ENOMEM;
701 break;
702 }
1da177e4 703 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c
AA
704
705 if (is_cow_mapping(vma->vm_flags))
706 mmu_notifier_invalidate_range_end(src_mm,
707 vma->vm_start, end);
708 return ret;
1da177e4
LT
709}
710
51c6f666 711static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 712 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 713 unsigned long addr, unsigned long end,
51c6f666 714 long *zap_work, struct zap_details *details)
1da177e4 715{
b5810039 716 struct mm_struct *mm = tlb->mm;
1da177e4 717 pte_t *pte;
508034a3 718 spinlock_t *ptl;
ae859762
HD
719 int file_rss = 0;
720 int anon_rss = 0;
1da177e4 721
508034a3 722 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
6606c3e0 723 arch_enter_lazy_mmu_mode();
1da177e4
LT
724 do {
725 pte_t ptent = *pte;
51c6f666
RH
726 if (pte_none(ptent)) {
727 (*zap_work)--;
1da177e4 728 continue;
51c6f666 729 }
6f5e6b9e
HD
730
731 (*zap_work) -= PAGE_SIZE;
732
1da177e4 733 if (pte_present(ptent)) {
ee498ed7 734 struct page *page;
51c6f666 735
6aab341e 736 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
737 if (unlikely(details) && page) {
738 /*
739 * unmap_shared_mapping_pages() wants to
740 * invalidate cache without truncating:
741 * unmap shared but keep private pages.
742 */
743 if (details->check_mapping &&
744 details->check_mapping != page->mapping)
745 continue;
746 /*
747 * Each page->index must be checked when
748 * invalidating or truncating nonlinear.
749 */
750 if (details->nonlinear_vma &&
751 (page->index < details->first_index ||
752 page->index > details->last_index))
753 continue;
754 }
b5810039 755 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 756 tlb->fullmm);
1da177e4
LT
757 tlb_remove_tlb_entry(tlb, pte, addr);
758 if (unlikely(!page))
759 continue;
760 if (unlikely(details) && details->nonlinear_vma
761 && linear_page_index(details->nonlinear_vma,
762 addr) != page->index)
b5810039 763 set_pte_at(mm, addr, pte,
1da177e4 764 pgoff_to_pte(page->index));
1da177e4 765 if (PageAnon(page))
86d912f4 766 anon_rss--;
6237bcd9
HD
767 else {
768 if (pte_dirty(ptent))
769 set_page_dirty(page);
4917e5d0
JW
770 if (pte_young(ptent) &&
771 likely(!VM_SequentialReadHint(vma)))
bf3f3bc5 772 mark_page_accessed(page);
86d912f4 773 file_rss--;
6237bcd9 774 }
7de6b805 775 page_remove_rmap(page, vma);
1da177e4
LT
776 tlb_remove_page(tlb, page);
777 continue;
778 }
779 /*
780 * If details->check_mapping, we leave swap entries;
781 * if details->nonlinear_vma, we leave file entries.
782 */
783 if (unlikely(details))
784 continue;
785 if (!pte_file(ptent))
786 free_swap_and_cache(pte_to_swp_entry(ptent));
9888a1ca 787 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
51c6f666 788 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
ae859762 789
86d912f4 790 add_mm_rss(mm, file_rss, anon_rss);
6606c3e0 791 arch_leave_lazy_mmu_mode();
508034a3 792 pte_unmap_unlock(pte - 1, ptl);
51c6f666
RH
793
794 return addr;
1da177e4
LT
795}
796
51c6f666 797static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 798 struct vm_area_struct *vma, pud_t *pud,
1da177e4 799 unsigned long addr, unsigned long end,
51c6f666 800 long *zap_work, struct zap_details *details)
1da177e4
LT
801{
802 pmd_t *pmd;
803 unsigned long next;
804
805 pmd = pmd_offset(pud, addr);
806 do {
807 next = pmd_addr_end(addr, end);
51c6f666
RH
808 if (pmd_none_or_clear_bad(pmd)) {
809 (*zap_work)--;
1da177e4 810 continue;
51c6f666
RH
811 }
812 next = zap_pte_range(tlb, vma, pmd, addr, next,
813 zap_work, details);
814 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
815
816 return addr;
1da177e4
LT
817}
818
51c6f666 819static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
b5810039 820 struct vm_area_struct *vma, pgd_t *pgd,
1da177e4 821 unsigned long addr, unsigned long end,
51c6f666 822 long *zap_work, struct zap_details *details)
1da177e4
LT
823{
824 pud_t *pud;
825 unsigned long next;
826
827 pud = pud_offset(pgd, addr);
828 do {
829 next = pud_addr_end(addr, end);
51c6f666
RH
830 if (pud_none_or_clear_bad(pud)) {
831 (*zap_work)--;
1da177e4 832 continue;
51c6f666
RH
833 }
834 next = zap_pmd_range(tlb, vma, pud, addr, next,
835 zap_work, details);
836 } while (pud++, addr = next, (addr != end && *zap_work > 0));
837
838 return addr;
1da177e4
LT
839}
840
51c6f666
RH
841static unsigned long unmap_page_range(struct mmu_gather *tlb,
842 struct vm_area_struct *vma,
1da177e4 843 unsigned long addr, unsigned long end,
51c6f666 844 long *zap_work, struct zap_details *details)
1da177e4
LT
845{
846 pgd_t *pgd;
847 unsigned long next;
848
849 if (details && !details->check_mapping && !details->nonlinear_vma)
850 details = NULL;
851
852 BUG_ON(addr >= end);
853 tlb_start_vma(tlb, vma);
854 pgd = pgd_offset(vma->vm_mm, addr);
855 do {
856 next = pgd_addr_end(addr, end);
51c6f666
RH
857 if (pgd_none_or_clear_bad(pgd)) {
858 (*zap_work)--;
1da177e4 859 continue;
51c6f666
RH
860 }
861 next = zap_pud_range(tlb, vma, pgd, addr, next,
862 zap_work, details);
863 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
1da177e4 864 tlb_end_vma(tlb, vma);
51c6f666
RH
865
866 return addr;
1da177e4
LT
867}
868
869#ifdef CONFIG_PREEMPT
870# define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
871#else
872/* No preempt: go for improved straight-line efficiency */
873# define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
874#endif
875
876/**
877 * unmap_vmas - unmap a range of memory covered by a list of vma's
878 * @tlbp: address of the caller's struct mmu_gather
1da177e4
LT
879 * @vma: the starting vma
880 * @start_addr: virtual address at which to start unmapping
881 * @end_addr: virtual address at which to end unmapping
882 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
883 * @details: details of nonlinear truncation or shared cache invalidation
884 *
ee39b37b 885 * Returns the end address of the unmapping (restart addr if interrupted).
1da177e4 886 *
508034a3 887 * Unmap all pages in the vma list.
1da177e4 888 *
508034a3
HD
889 * We aim to not hold locks for too long (for scheduling latency reasons).
890 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
1da177e4
LT
891 * return the ending mmu_gather to the caller.
892 *
893 * Only addresses between `start' and `end' will be unmapped.
894 *
895 * The VMA list must be sorted in ascending virtual address order.
896 *
897 * unmap_vmas() assumes that the caller will flush the whole unmapped address
898 * range after unmap_vmas() returns. So the only responsibility here is to
899 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
900 * drops the lock and schedules.
901 */
508034a3 902unsigned long unmap_vmas(struct mmu_gather **tlbp,
1da177e4
LT
903 struct vm_area_struct *vma, unsigned long start_addr,
904 unsigned long end_addr, unsigned long *nr_accounted,
905 struct zap_details *details)
906{
51c6f666 907 long zap_work = ZAP_BLOCK_SIZE;
1da177e4
LT
908 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
909 int tlb_start_valid = 0;
ee39b37b 910 unsigned long start = start_addr;
1da177e4 911 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
4d6ddfa9 912 int fullmm = (*tlbp)->fullmm;
cddb8a5c 913 struct mm_struct *mm = vma->vm_mm;
1da177e4 914
cddb8a5c 915 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1da177e4 916 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1da177e4
LT
917 unsigned long end;
918
919 start = max(vma->vm_start, start_addr);
920 if (start >= vma->vm_end)
921 continue;
922 end = min(vma->vm_end, end_addr);
923 if (end <= vma->vm_start)
924 continue;
925
926 if (vma->vm_flags & VM_ACCOUNT)
927 *nr_accounted += (end - start) >> PAGE_SHIFT;
928
34801ba9 929 if (unlikely(is_pfn_mapping(vma)))
2ab64037 930 untrack_pfn_vma(vma, 0, 0);
931
1da177e4 932 while (start != end) {
1da177e4
LT
933 if (!tlb_start_valid) {
934 tlb_start = start;
935 tlb_start_valid = 1;
936 }
937
51c6f666 938 if (unlikely(is_vm_hugetlb_page(vma))) {
a137e1cc
AK
939 /*
940 * It is undesirable to test vma->vm_file as it
941 * should be non-null for valid hugetlb area.
942 * However, vm_file will be NULL in the error
943 * cleanup path of do_mmap_pgoff. When
944 * hugetlbfs ->mmap method fails,
945 * do_mmap_pgoff() nullifies vma->vm_file
946 * before calling this function to clean up.
947 * Since no pte has actually been setup, it is
948 * safe to do nothing in this case.
949 */
950 if (vma->vm_file) {
951 unmap_hugepage_range(vma, start, end, NULL);
952 zap_work -= (end - start) /
a5516438 953 pages_per_huge_page(hstate_vma(vma));
a137e1cc
AK
954 }
955
51c6f666
RH
956 start = end;
957 } else
958 start = unmap_page_range(*tlbp, vma,
959 start, end, &zap_work, details);
960
961 if (zap_work > 0) {
962 BUG_ON(start != end);
963 break;
1da177e4
LT
964 }
965
1da177e4
LT
966 tlb_finish_mmu(*tlbp, tlb_start, start);
967
968 if (need_resched() ||
95c354fe 969 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1da177e4 970 if (i_mmap_lock) {
508034a3 971 *tlbp = NULL;
1da177e4
LT
972 goto out;
973 }
1da177e4 974 cond_resched();
1da177e4
LT
975 }
976
508034a3 977 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1da177e4 978 tlb_start_valid = 0;
51c6f666 979 zap_work = ZAP_BLOCK_SIZE;
1da177e4
LT
980 }
981 }
982out:
cddb8a5c 983 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
ee39b37b 984 return start; /* which is now the end (or restart) address */
1da177e4
LT
985}
986
987/**
988 * zap_page_range - remove user pages in a given range
989 * @vma: vm_area_struct holding the applicable pages
990 * @address: starting address of pages to zap
991 * @size: number of bytes to zap
992 * @details: details of nonlinear truncation or shared cache invalidation
993 */
ee39b37b 994unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
995 unsigned long size, struct zap_details *details)
996{
997 struct mm_struct *mm = vma->vm_mm;
998 struct mmu_gather *tlb;
999 unsigned long end = address + size;
1000 unsigned long nr_accounted = 0;
1001
1da177e4 1002 lru_add_drain();
1da177e4 1003 tlb = tlb_gather_mmu(mm, 0);
365e9c87 1004 update_hiwater_rss(mm);
508034a3
HD
1005 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1006 if (tlb)
1007 tlb_finish_mmu(tlb, address, end);
ee39b37b 1008 return end;
1da177e4
LT
1009}
1010
c627f9cc
JS
1011/**
1012 * zap_vma_ptes - remove ptes mapping the vma
1013 * @vma: vm_area_struct holding ptes to be zapped
1014 * @address: starting address of pages to zap
1015 * @size: number of bytes to zap
1016 *
1017 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1018 *
1019 * The entire address range must be fully contained within the vma.
1020 *
1021 * Returns 0 if successful.
1022 */
1023int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1024 unsigned long size)
1025{
1026 if (address < vma->vm_start || address + size > vma->vm_end ||
1027 !(vma->vm_flags & VM_PFNMAP))
1028 return -1;
1029 zap_page_range(vma, address, size, NULL);
1030 return 0;
1031}
1032EXPORT_SYMBOL_GPL(zap_vma_ptes);
1033
1da177e4
LT
1034/*
1035 * Do a quick page-table lookup for a single page.
1da177e4 1036 */
6aab341e 1037struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
deceb6cd 1038 unsigned int flags)
1da177e4
LT
1039{
1040 pgd_t *pgd;
1041 pud_t *pud;
1042 pmd_t *pmd;
1043 pte_t *ptep, pte;
deceb6cd 1044 spinlock_t *ptl;
1da177e4 1045 struct page *page;
6aab341e 1046 struct mm_struct *mm = vma->vm_mm;
1da177e4 1047
deceb6cd
HD
1048 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1049 if (!IS_ERR(page)) {
1050 BUG_ON(flags & FOLL_GET);
1051 goto out;
1052 }
1da177e4 1053
deceb6cd 1054 page = NULL;
1da177e4
LT
1055 pgd = pgd_offset(mm, address);
1056 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
deceb6cd 1057 goto no_page_table;
1da177e4
LT
1058
1059 pud = pud_offset(pgd, address);
ceb86879 1060 if (pud_none(*pud))
deceb6cd 1061 goto no_page_table;
ceb86879
AK
1062 if (pud_huge(*pud)) {
1063 BUG_ON(flags & FOLL_GET);
1064 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1065 goto out;
1066 }
1067 if (unlikely(pud_bad(*pud)))
1068 goto no_page_table;
1069
1da177e4 1070 pmd = pmd_offset(pud, address);
aeed5fce 1071 if (pmd_none(*pmd))
deceb6cd 1072 goto no_page_table;
deceb6cd
HD
1073 if (pmd_huge(*pmd)) {
1074 BUG_ON(flags & FOLL_GET);
1075 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1da177e4 1076 goto out;
deceb6cd 1077 }
aeed5fce
HD
1078 if (unlikely(pmd_bad(*pmd)))
1079 goto no_page_table;
1080
deceb6cd 1081 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
1082
1083 pte = *ptep;
deceb6cd 1084 if (!pte_present(pte))
89f5b7da 1085 goto no_page;
deceb6cd
HD
1086 if ((flags & FOLL_WRITE) && !pte_write(pte))
1087 goto unlock;
6aab341e
LT
1088 page = vm_normal_page(vma, address, pte);
1089 if (unlikely(!page))
89f5b7da 1090 goto bad_page;
1da177e4 1091
deceb6cd
HD
1092 if (flags & FOLL_GET)
1093 get_page(page);
1094 if (flags & FOLL_TOUCH) {
1095 if ((flags & FOLL_WRITE) &&
1096 !pte_dirty(pte) && !PageDirty(page))
1097 set_page_dirty(page);
1098 mark_page_accessed(page);
1099 }
1100unlock:
1101 pte_unmap_unlock(ptep, ptl);
1da177e4 1102out:
deceb6cd 1103 return page;
1da177e4 1104
89f5b7da
LT
1105bad_page:
1106 pte_unmap_unlock(ptep, ptl);
1107 return ERR_PTR(-EFAULT);
1108
1109no_page:
1110 pte_unmap_unlock(ptep, ptl);
1111 if (!pte_none(pte))
1112 return page;
1113 /* Fall through to ZERO_PAGE handling */
deceb6cd
HD
1114no_page_table:
1115 /*
1116 * When core dumping an enormous anonymous area that nobody
1117 * has touched so far, we don't want to allocate page tables.
1118 */
1119 if (flags & FOLL_ANON) {
557ed1fa 1120 page = ZERO_PAGE(0);
deceb6cd
HD
1121 if (flags & FOLL_GET)
1122 get_page(page);
1123 BUG_ON(flags & FOLL_WRITE);
1124 }
1125 return page;
1da177e4
LT
1126}
1127
672ca28e
LT
1128/* Can we do the FOLL_ANON optimization? */
1129static inline int use_zero_page(struct vm_area_struct *vma)
1130{
1131 /*
1132 * We don't want to optimize FOLL_ANON for make_pages_present()
1133 * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
1134 * we want to get the page from the page tables to make sure
1135 * that we serialize and update with any other user of that
1136 * mapping.
1137 */
1138 if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
1139 return 0;
1140 /*
0d71d10a 1141 * And if we have a fault routine, it's not an anonymous region.
672ca28e 1142 */
0d71d10a 1143 return !vma->vm_ops || !vma->vm_ops->fault;
672ca28e
LT
1144}
1145
b291f000
NP
1146
1147
1148int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1149 unsigned long start, int len, int flags,
1da177e4
LT
1150 struct page **pages, struct vm_area_struct **vmas)
1151{
1152 int i;
b291f000
NP
1153 unsigned int vm_flags = 0;
1154 int write = !!(flags & GUP_FLAGS_WRITE);
1155 int force = !!(flags & GUP_FLAGS_FORCE);
1156 int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS);
1da177e4 1157
900cf086
JC
1158 if (len <= 0)
1159 return 0;
1da177e4
LT
1160 /*
1161 * Require read or write permissions.
1162 * If 'force' is set, we only require the "MAY" flags.
1163 */
deceb6cd
HD
1164 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1165 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1da177e4
LT
1166 i = 0;
1167
1168 do {
deceb6cd
HD
1169 struct vm_area_struct *vma;
1170 unsigned int foll_flags;
1da177e4
LT
1171
1172 vma = find_extend_vma(mm, start);
1173 if (!vma && in_gate_area(tsk, start)) {
1174 unsigned long pg = start & PAGE_MASK;
1175 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1176 pgd_t *pgd;
1177 pud_t *pud;
1178 pmd_t *pmd;
1179 pte_t *pte;
b291f000
NP
1180
1181 /* user gate pages are read-only */
1182 if (!ignore && write)
1da177e4
LT
1183 return i ? : -EFAULT;
1184 if (pg > TASK_SIZE)
1185 pgd = pgd_offset_k(pg);
1186 else
1187 pgd = pgd_offset_gate(mm, pg);
1188 BUG_ON(pgd_none(*pgd));
1189 pud = pud_offset(pgd, pg);
1190 BUG_ON(pud_none(*pud));
1191 pmd = pmd_offset(pud, pg);
690dbe1c
HD
1192 if (pmd_none(*pmd))
1193 return i ? : -EFAULT;
1da177e4 1194 pte = pte_offset_map(pmd, pg);
690dbe1c
HD
1195 if (pte_none(*pte)) {
1196 pte_unmap(pte);
1197 return i ? : -EFAULT;
1198 }
1da177e4 1199 if (pages) {
fa2a455b 1200 struct page *page = vm_normal_page(gate_vma, start, *pte);
6aab341e
LT
1201 pages[i] = page;
1202 if (page)
1203 get_page(page);
1da177e4
LT
1204 }
1205 pte_unmap(pte);
1206 if (vmas)
1207 vmas[i] = gate_vma;
1208 i++;
1209 start += PAGE_SIZE;
1210 len--;
1211 continue;
1212 }
1213
b291f000
NP
1214 if (!vma ||
1215 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1216 (!ignore && !(vm_flags & vma->vm_flags)))
1da177e4
LT
1217 return i ? : -EFAULT;
1218
1219 if (is_vm_hugetlb_page(vma)) {
1220 i = follow_hugetlb_page(mm, vma, pages, vmas,
5b23dbe8 1221 &start, &len, i, write);
1da177e4
LT
1222 continue;
1223 }
deceb6cd
HD
1224
1225 foll_flags = FOLL_TOUCH;
1226 if (pages)
1227 foll_flags |= FOLL_GET;
672ca28e 1228 if (!write && use_zero_page(vma))
deceb6cd
HD
1229 foll_flags |= FOLL_ANON;
1230
1da177e4 1231 do {
08ef4729 1232 struct page *page;
1da177e4 1233
462e00cc
ES
1234 /*
1235 * If tsk is ooming, cut off its access to large memory
1236 * allocations. It has a pending SIGKILL, but it can't
1237 * be processed until returning to user space.
1238 */
1239 if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
7a36a752 1240 return i ? i : -ENOMEM;
462e00cc 1241
deceb6cd
HD
1242 if (write)
1243 foll_flags |= FOLL_WRITE;
a68d2ebc 1244
deceb6cd 1245 cond_resched();
6aab341e 1246 while (!(page = follow_page(vma, start, foll_flags))) {
deceb6cd 1247 int ret;
83c54070 1248 ret = handle_mm_fault(mm, vma, start,
deceb6cd 1249 foll_flags & FOLL_WRITE);
83c54070
NP
1250 if (ret & VM_FAULT_ERROR) {
1251 if (ret & VM_FAULT_OOM)
1252 return i ? i : -ENOMEM;
1253 else if (ret & VM_FAULT_SIGBUS)
1254 return i ? i : -EFAULT;
1255 BUG();
1256 }
1257 if (ret & VM_FAULT_MAJOR)
1258 tsk->maj_flt++;
1259 else
1260 tsk->min_flt++;
1261
a68d2ebc 1262 /*
83c54070
NP
1263 * The VM_FAULT_WRITE bit tells us that
1264 * do_wp_page has broken COW when necessary,
1265 * even if maybe_mkwrite decided not to set
1266 * pte_write. We can thus safely do subsequent
878b63ac
HD
1267 * page lookups as if they were reads. But only
1268 * do so when looping for pte_write is futile:
1269 * in some cases userspace may also be wanting
1270 * to write to the gotten user page, which a
1271 * read fault here might prevent (a readonly
1272 * page might get reCOWed by userspace write).
a68d2ebc 1273 */
878b63ac
HD
1274 if ((ret & VM_FAULT_WRITE) &&
1275 !(vma->vm_flags & VM_WRITE))
deceb6cd 1276 foll_flags &= ~FOLL_WRITE;
83c54070 1277
7f7bbbe5 1278 cond_resched();
1da177e4 1279 }
89f5b7da
LT
1280 if (IS_ERR(page))
1281 return i ? i : PTR_ERR(page);
1da177e4 1282 if (pages) {
08ef4729 1283 pages[i] = page;
03beb076 1284
a6f36be3 1285 flush_anon_page(vma, page, start);
08ef4729 1286 flush_dcache_page(page);
1da177e4
LT
1287 }
1288 if (vmas)
1289 vmas[i] = vma;
1290 i++;
1291 start += PAGE_SIZE;
1292 len--;
08ef4729 1293 } while (len && start < vma->vm_end);
08ef4729 1294 } while (len);
1da177e4
LT
1295 return i;
1296}
b291f000
NP
1297
1298int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1299 unsigned long start, int len, int write, int force,
1300 struct page **pages, struct vm_area_struct **vmas)
1301{
1302 int flags = 0;
1303
1304 if (write)
1305 flags |= GUP_FLAGS_WRITE;
1306 if (force)
1307 flags |= GUP_FLAGS_FORCE;
1308
1309 return __get_user_pages(tsk, mm,
1310 start, len, flags,
1311 pages, vmas);
1312}
1313
1da177e4
LT
1314EXPORT_SYMBOL(get_user_pages);
1315
920c7a5d
HH
1316pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1317 spinlock_t **ptl)
c9cfcddf
LT
1318{
1319 pgd_t * pgd = pgd_offset(mm, addr);
1320 pud_t * pud = pud_alloc(mm, pgd, addr);
1321 if (pud) {
49c91fb0 1322 pmd_t * pmd = pmd_alloc(mm, pud, addr);
c9cfcddf
LT
1323 if (pmd)
1324 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1325 }
1326 return NULL;
1327}
1328
238f58d8
LT
1329/*
1330 * This is the old fallback for page remapping.
1331 *
1332 * For historical reasons, it only allows reserved pages. Only
1333 * old drivers should use this, and they needed to mark their
1334 * pages reserved for the old functions anyway.
1335 */
423bad60
NP
1336static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1337 struct page *page, pgprot_t prot)
238f58d8 1338{
423bad60 1339 struct mm_struct *mm = vma->vm_mm;
238f58d8 1340 int retval;
c9cfcddf 1341 pte_t *pte;
8a9f3ccd
BS
1342 spinlock_t *ptl;
1343
238f58d8 1344 retval = -EINVAL;
a145dd41 1345 if (PageAnon(page))
5b4e655e 1346 goto out;
238f58d8
LT
1347 retval = -ENOMEM;
1348 flush_dcache_page(page);
c9cfcddf 1349 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1350 if (!pte)
5b4e655e 1351 goto out;
238f58d8
LT
1352 retval = -EBUSY;
1353 if (!pte_none(*pte))
1354 goto out_unlock;
1355
1356 /* Ok, finally just insert the thing.. */
1357 get_page(page);
1358 inc_mm_counter(mm, file_rss);
1359 page_add_file_rmap(page);
1360 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1361
1362 retval = 0;
8a9f3ccd
BS
1363 pte_unmap_unlock(pte, ptl);
1364 return retval;
238f58d8
LT
1365out_unlock:
1366 pte_unmap_unlock(pte, ptl);
1367out:
1368 return retval;
1369}
1370
bfa5bf6d
REB
1371/**
1372 * vm_insert_page - insert single page into user vma
1373 * @vma: user vma to map to
1374 * @addr: target user address of this page
1375 * @page: source kernel page
1376 *
a145dd41
LT
1377 * This allows drivers to insert individual pages they've allocated
1378 * into a user vma.
1379 *
1380 * The page has to be a nice clean _individual_ kernel allocation.
1381 * If you allocate a compound page, you need to have marked it as
1382 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1383 * (see split_page()).
a145dd41
LT
1384 *
1385 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1386 * took an arbitrary page protection parameter. This doesn't allow
1387 * that. Your vma protection will have to be set up correctly, which
1388 * means that if you want a shared writable mapping, you'd better
1389 * ask for a shared writable mapping!
1390 *
1391 * The page does not need to be reserved.
1392 */
423bad60
NP
1393int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1394 struct page *page)
a145dd41
LT
1395{
1396 if (addr < vma->vm_start || addr >= vma->vm_end)
1397 return -EFAULT;
1398 if (!page_count(page))
1399 return -EINVAL;
4d7672b4 1400 vma->vm_flags |= VM_INSERTPAGE;
423bad60 1401 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1402}
e3c3374f 1403EXPORT_SYMBOL(vm_insert_page);
a145dd41 1404
423bad60
NP
1405static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1406 unsigned long pfn, pgprot_t prot)
1407{
1408 struct mm_struct *mm = vma->vm_mm;
1409 int retval;
1410 pte_t *pte, entry;
1411 spinlock_t *ptl;
1412
1413 retval = -ENOMEM;
1414 pte = get_locked_pte(mm, addr, &ptl);
1415 if (!pte)
1416 goto out;
1417 retval = -EBUSY;
1418 if (!pte_none(*pte))
1419 goto out_unlock;
1420
1421 /* Ok, finally just insert the thing.. */
1422 entry = pte_mkspecial(pfn_pte(pfn, prot));
1423 set_pte_at(mm, addr, pte, entry);
1424 update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1425
1426 retval = 0;
1427out_unlock:
1428 pte_unmap_unlock(pte, ptl);
1429out:
1430 return retval;
1431}
1432
e0dc0d8f
NP
1433/**
1434 * vm_insert_pfn - insert single pfn into user vma
1435 * @vma: user vma to map to
1436 * @addr: target user address of this page
1437 * @pfn: source kernel pfn
1438 *
1439 * Similar to vm_inert_page, this allows drivers to insert individual pages
1440 * they've allocated into a user vma. Same comments apply.
1441 *
1442 * This function should only be called from a vm_ops->fault handler, and
1443 * in that case the handler should return NULL.
0d71d10a
NP
1444 *
1445 * vma cannot be a COW mapping.
1446 *
1447 * As this is called only for pages that do not currently exist, we
1448 * do not need to flush old virtual caches or the TLB.
e0dc0d8f
NP
1449 */
1450int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 1451 unsigned long pfn)
e0dc0d8f 1452{
2ab64037 1453 int ret;
7e675137
NP
1454 /*
1455 * Technically, architectures with pte_special can avoid all these
1456 * restrictions (same for remap_pfn_range). However we would like
1457 * consistency in testing and feature parity among all, so we should
1458 * try to keep these invariants in place for everybody.
1459 */
b379d790
JH
1460 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1461 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1462 (VM_PFNMAP|VM_MIXEDMAP));
1463 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1464 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 1465
423bad60
NP
1466 if (addr < vma->vm_start || addr >= vma->vm_end)
1467 return -EFAULT;
2ab64037 1468 if (track_pfn_vma_new(vma, vma->vm_page_prot, pfn, PAGE_SIZE))
1469 return -EINVAL;
1470
1471 ret = insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1472
1473 if (ret)
1474 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1475
1476 return ret;
423bad60
NP
1477}
1478EXPORT_SYMBOL(vm_insert_pfn);
e0dc0d8f 1479
423bad60
NP
1480int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1481 unsigned long pfn)
1482{
1483 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
e0dc0d8f 1484
423bad60
NP
1485 if (addr < vma->vm_start || addr >= vma->vm_end)
1486 return -EFAULT;
e0dc0d8f 1487
423bad60
NP
1488 /*
1489 * If we don't have pte special, then we have to use the pfn_valid()
1490 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1491 * refcount the page if pfn_valid is true (hence insert_page rather
1492 * than insert_pfn).
1493 */
1494 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1495 struct page *page;
1496
1497 page = pfn_to_page(pfn);
1498 return insert_page(vma, addr, page, vma->vm_page_prot);
1499 }
1500 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
e0dc0d8f 1501}
423bad60 1502EXPORT_SYMBOL(vm_insert_mixed);
e0dc0d8f 1503
1da177e4
LT
1504/*
1505 * maps a range of physical memory into the requested pages. the old
1506 * mappings are removed. any references to nonexistent pages results
1507 * in null mappings (currently treated as "copy-on-access")
1508 */
1509static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1510 unsigned long addr, unsigned long end,
1511 unsigned long pfn, pgprot_t prot)
1512{
1513 pte_t *pte;
c74df32c 1514 spinlock_t *ptl;
1da177e4 1515
c74df32c 1516 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1517 if (!pte)
1518 return -ENOMEM;
6606c3e0 1519 arch_enter_lazy_mmu_mode();
1da177e4
LT
1520 do {
1521 BUG_ON(!pte_none(*pte));
7e675137 1522 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1523 pfn++;
1524 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1525 arch_leave_lazy_mmu_mode();
c74df32c 1526 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
1527 return 0;
1528}
1529
1530static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1531 unsigned long addr, unsigned long end,
1532 unsigned long pfn, pgprot_t prot)
1533{
1534 pmd_t *pmd;
1535 unsigned long next;
1536
1537 pfn -= addr >> PAGE_SHIFT;
1538 pmd = pmd_alloc(mm, pud, addr);
1539 if (!pmd)
1540 return -ENOMEM;
1541 do {
1542 next = pmd_addr_end(addr, end);
1543 if (remap_pte_range(mm, pmd, addr, next,
1544 pfn + (addr >> PAGE_SHIFT), prot))
1545 return -ENOMEM;
1546 } while (pmd++, addr = next, addr != end);
1547 return 0;
1548}
1549
1550static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1551 unsigned long addr, unsigned long end,
1552 unsigned long pfn, pgprot_t prot)
1553{
1554 pud_t *pud;
1555 unsigned long next;
1556
1557 pfn -= addr >> PAGE_SHIFT;
1558 pud = pud_alloc(mm, pgd, addr);
1559 if (!pud)
1560 return -ENOMEM;
1561 do {
1562 next = pud_addr_end(addr, end);
1563 if (remap_pmd_range(mm, pud, addr, next,
1564 pfn + (addr >> PAGE_SHIFT), prot))
1565 return -ENOMEM;
1566 } while (pud++, addr = next, addr != end);
1567 return 0;
1568}
1569
bfa5bf6d
REB
1570/**
1571 * remap_pfn_range - remap kernel memory to userspace
1572 * @vma: user vma to map to
1573 * @addr: target user address to start at
1574 * @pfn: physical address of kernel memory
1575 * @size: size of map area
1576 * @prot: page protection flags for this mapping
1577 *
1578 * Note: this is only safe if the mm semaphore is held when called.
1579 */
1da177e4
LT
1580int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1581 unsigned long pfn, unsigned long size, pgprot_t prot)
1582{
1583 pgd_t *pgd;
1584 unsigned long next;
2d15cab8 1585 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
1586 struct mm_struct *mm = vma->vm_mm;
1587 int err;
1588
1589 /*
1590 * Physically remapped pages are special. Tell the
1591 * rest of the world about it:
1592 * VM_IO tells people not to look at these pages
1593 * (accesses can have side effects).
0b14c179
HD
1594 * VM_RESERVED is specified all over the place, because
1595 * in 2.4 it kept swapout's vma scan off this vma; but
1596 * in 2.6 the LRU scan won't even find its pages, so this
1597 * flag means no more than count its pages in reserved_vm,
1598 * and omit it from core dump, even when VM_IO turned off.
6aab341e
LT
1599 * VM_PFNMAP tells the core MM that the base pages are just
1600 * raw PFN mappings, and do not have a "struct page" associated
1601 * with them.
fb155c16
LT
1602 *
1603 * There's a horrible special case to handle copy-on-write
1604 * behaviour that some programs depend on. We mark the "original"
1605 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1da177e4 1606 */
3c8bb73a 1607 if (addr == vma->vm_start && end == vma->vm_end)
fb155c16 1608 vma->vm_pgoff = pfn;
3c8bb73a 1609 else if (is_cow_mapping(vma->vm_flags))
1610 return -EINVAL;
fb155c16 1611
6aab341e 1612 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1da177e4 1613
2ab64037 1614 err = track_pfn_vma_new(vma, prot, pfn, PAGE_ALIGN(size));
1615 if (err)
1616 return -EINVAL;
1617
1da177e4
LT
1618 BUG_ON(addr >= end);
1619 pfn -= addr >> PAGE_SHIFT;
1620 pgd = pgd_offset(mm, addr);
1621 flush_cache_range(vma, addr, end);
1da177e4
LT
1622 do {
1623 next = pgd_addr_end(addr, end);
1624 err = remap_pud_range(mm, pgd, addr, next,
1625 pfn + (addr >> PAGE_SHIFT), prot);
1626 if (err)
1627 break;
1628 } while (pgd++, addr = next, addr != end);
2ab64037 1629
1630 if (err)
1631 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1632
1da177e4
LT
1633 return err;
1634}
1635EXPORT_SYMBOL(remap_pfn_range);
1636
aee16b3c
JF
1637static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1638 unsigned long addr, unsigned long end,
1639 pte_fn_t fn, void *data)
1640{
1641 pte_t *pte;
1642 int err;
2f569afd 1643 pgtable_t token;
94909914 1644 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
1645
1646 pte = (mm == &init_mm) ?
1647 pte_alloc_kernel(pmd, addr) :
1648 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1649 if (!pte)
1650 return -ENOMEM;
1651
1652 BUG_ON(pmd_huge(*pmd));
1653
38e0edb1
JF
1654 arch_enter_lazy_mmu_mode();
1655
2f569afd 1656 token = pmd_pgtable(*pmd);
aee16b3c
JF
1657
1658 do {
2f569afd 1659 err = fn(pte, token, addr, data);
aee16b3c
JF
1660 if (err)
1661 break;
1662 } while (pte++, addr += PAGE_SIZE, addr != end);
1663
38e0edb1
JF
1664 arch_leave_lazy_mmu_mode();
1665
aee16b3c
JF
1666 if (mm != &init_mm)
1667 pte_unmap_unlock(pte-1, ptl);
1668 return err;
1669}
1670
1671static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1672 unsigned long addr, unsigned long end,
1673 pte_fn_t fn, void *data)
1674{
1675 pmd_t *pmd;
1676 unsigned long next;
1677 int err;
1678
ceb86879
AK
1679 BUG_ON(pud_huge(*pud));
1680
aee16b3c
JF
1681 pmd = pmd_alloc(mm, pud, addr);
1682 if (!pmd)
1683 return -ENOMEM;
1684 do {
1685 next = pmd_addr_end(addr, end);
1686 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1687 if (err)
1688 break;
1689 } while (pmd++, addr = next, addr != end);
1690 return err;
1691}
1692
1693static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1694 unsigned long addr, unsigned long end,
1695 pte_fn_t fn, void *data)
1696{
1697 pud_t *pud;
1698 unsigned long next;
1699 int err;
1700
1701 pud = pud_alloc(mm, pgd, addr);
1702 if (!pud)
1703 return -ENOMEM;
1704 do {
1705 next = pud_addr_end(addr, end);
1706 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1707 if (err)
1708 break;
1709 } while (pud++, addr = next, addr != end);
1710 return err;
1711}
1712
1713/*
1714 * Scan a region of virtual memory, filling in page tables as necessary
1715 * and calling a provided function on each leaf page table.
1716 */
1717int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1718 unsigned long size, pte_fn_t fn, void *data)
1719{
1720 pgd_t *pgd;
1721 unsigned long next;
cddb8a5c 1722 unsigned long start = addr, end = addr + size;
aee16b3c
JF
1723 int err;
1724
1725 BUG_ON(addr >= end);
cddb8a5c 1726 mmu_notifier_invalidate_range_start(mm, start, end);
aee16b3c
JF
1727 pgd = pgd_offset(mm, addr);
1728 do {
1729 next = pgd_addr_end(addr, end);
1730 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1731 if (err)
1732 break;
1733 } while (pgd++, addr = next, addr != end);
cddb8a5c 1734 mmu_notifier_invalidate_range_end(mm, start, end);
aee16b3c
JF
1735 return err;
1736}
1737EXPORT_SYMBOL_GPL(apply_to_page_range);
1738
8f4e2101
HD
1739/*
1740 * handle_pte_fault chooses page fault handler according to an entry
1741 * which was read non-atomically. Before making any commitment, on
1742 * those architectures or configurations (e.g. i386 with PAE) which
1743 * might give a mix of unmatched parts, do_swap_page and do_file_page
1744 * must check under lock before unmapping the pte and proceeding
1745 * (but do_wp_page is only called after already making such a check;
1746 * and do_anonymous_page and do_no_page can safely check later on).
1747 */
4c21e2f2 1748static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
1749 pte_t *page_table, pte_t orig_pte)
1750{
1751 int same = 1;
1752#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1753 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
1754 spinlock_t *ptl = pte_lockptr(mm, pmd);
1755 spin_lock(ptl);
8f4e2101 1756 same = pte_same(*page_table, orig_pte);
4c21e2f2 1757 spin_unlock(ptl);
8f4e2101
HD
1758 }
1759#endif
1760 pte_unmap(page_table);
1761 return same;
1762}
1763
1da177e4
LT
1764/*
1765 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1766 * servicing faults for write access. In the normal case, do always want
1767 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1768 * that do not have writing enabled, when used by access_process_vm.
1769 */
1770static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1771{
1772 if (likely(vma->vm_flags & VM_WRITE))
1773 pte = pte_mkwrite(pte);
1774 return pte;
1775}
1776
9de455b2 1777static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e
LT
1778{
1779 /*
1780 * If the source page was a PFN mapping, we don't have
1781 * a "struct page" for it. We do a best-effort copy by
1782 * just copying from the original user address. If that
1783 * fails, we just zero-fill it. Live with it.
1784 */
1785 if (unlikely(!src)) {
1786 void *kaddr = kmap_atomic(dst, KM_USER0);
5d2a2dbb
LT
1787 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1788
1789 /*
1790 * This really shouldn't fail, because the page is there
1791 * in the page tables. But it might just be unreadable,
1792 * in which case we just give up and fill the result with
1793 * zeroes.
1794 */
1795 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
6aab341e
LT
1796 memset(kaddr, 0, PAGE_SIZE);
1797 kunmap_atomic(kaddr, KM_USER0);
c4ec7b0d 1798 flush_dcache_page(dst);
0ed361de
NP
1799 } else
1800 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
1801}
1802
1da177e4
LT
1803/*
1804 * This routine handles present pages, when users try to write
1805 * to a shared page. It is done by copying the page to a new address
1806 * and decrementing the shared-page counter for the old page.
1807 *
1da177e4
LT
1808 * Note that this routine assumes that the protection checks have been
1809 * done by the caller (the low-level page fault routine in most cases).
1810 * Thus we can safely just mark it writable once we've done any necessary
1811 * COW.
1812 *
1813 * We also mark the page dirty at this point even though the page will
1814 * change only once the write actually happens. This avoids a few races,
1815 * and potentially makes it more efficient.
1816 *
8f4e2101
HD
1817 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1818 * but allow concurrent faults), with pte both mapped and locked.
1819 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 1820 */
65500d23
HD
1821static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1822 unsigned long address, pte_t *page_table, pmd_t *pmd,
8f4e2101 1823 spinlock_t *ptl, pte_t orig_pte)
1da177e4 1824{
e5bbe4df 1825 struct page *old_page, *new_page;
1da177e4 1826 pte_t entry;
83c54070 1827 int reuse = 0, ret = 0;
a200ee18 1828 int page_mkwrite = 0;
d08b3851 1829 struct page *dirty_page = NULL;
1da177e4 1830
6aab341e 1831 old_page = vm_normal_page(vma, address, orig_pte);
251b97f5
PZ
1832 if (!old_page) {
1833 /*
1834 * VM_MIXEDMAP !pfn_valid() case
1835 *
1836 * We should not cow pages in a shared writeable mapping.
1837 * Just mark the pages writable as we can't do any dirty
1838 * accounting on raw pfn maps.
1839 */
1840 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1841 (VM_WRITE|VM_SHARED))
1842 goto reuse;
6aab341e 1843 goto gotten;
251b97f5 1844 }
1da177e4 1845
d08b3851 1846 /*
ee6a6457
PZ
1847 * Take out anonymous pages first, anonymous shared vmas are
1848 * not dirty accountable.
d08b3851 1849 */
ee6a6457 1850 if (PageAnon(old_page)) {
529ae9aa 1851 if (trylock_page(old_page)) {
ee6a6457
PZ
1852 reuse = can_share_swap_page(old_page);
1853 unlock_page(old_page);
1854 }
1855 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 1856 (VM_WRITE|VM_SHARED))) {
ee6a6457
PZ
1857 /*
1858 * Only catch write-faults on shared writable pages,
1859 * read-only shared pages can get COWed by
1860 * get_user_pages(.write=1, .force=1).
1861 */
9637a5ef
DH
1862 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1863 /*
1864 * Notify the address space that the page is about to
1865 * become writable so that it can prohibit this or wait
1866 * for the page to get into an appropriate state.
1867 *
1868 * We do this without the lock held, so that it can
1869 * sleep if it needs to.
1870 */
1871 page_cache_get(old_page);
1872 pte_unmap_unlock(page_table, ptl);
1873
1874 if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1875 goto unwritable_page;
1876
9637a5ef
DH
1877 /*
1878 * Since we dropped the lock we need to revalidate
1879 * the PTE as someone else may have changed it. If
1880 * they did, we just return, as we can count on the
1881 * MMU to tell us if they didn't also make it writable.
1882 */
1883 page_table = pte_offset_map_lock(mm, pmd, address,
1884 &ptl);
c3704ceb 1885 page_cache_release(old_page);
9637a5ef
DH
1886 if (!pte_same(*page_table, orig_pte))
1887 goto unlock;
a200ee18
PZ
1888
1889 page_mkwrite = 1;
1da177e4 1890 }
d08b3851
PZ
1891 dirty_page = old_page;
1892 get_page(dirty_page);
9637a5ef 1893 reuse = 1;
9637a5ef
DH
1894 }
1895
1896 if (reuse) {
251b97f5 1897reuse:
9637a5ef
DH
1898 flush_cache_page(vma, address, pte_pfn(orig_pte));
1899 entry = pte_mkyoung(orig_pte);
1900 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
954ffcb3 1901 if (ptep_set_access_flags(vma, address, page_table, entry,1))
8dab5241 1902 update_mmu_cache(vma, address, entry);
9637a5ef
DH
1903 ret |= VM_FAULT_WRITE;
1904 goto unlock;
1da177e4 1905 }
1da177e4
LT
1906
1907 /*
1908 * Ok, we need to copy. Oh, well..
1909 */
b5810039 1910 page_cache_get(old_page);
920fc356 1911gotten:
8f4e2101 1912 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
1913
1914 if (unlikely(anon_vma_prepare(vma)))
65500d23 1915 goto oom;
557ed1fa
NP
1916 VM_BUG_ON(old_page == ZERO_PAGE(0));
1917 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1918 if (!new_page)
1919 goto oom;
b291f000
NP
1920 /*
1921 * Don't let another task, with possibly unlocked vma,
1922 * keep the mlocked page.
1923 */
1924 if (vma->vm_flags & VM_LOCKED) {
1925 lock_page(old_page); /* for LRU manipulation */
1926 clear_page_mlock(old_page);
1927 unlock_page(old_page);
1928 }
557ed1fa 1929 cow_user_page(new_page, old_page, address, vma);
0ed361de 1930 __SetPageUptodate(new_page);
65500d23 1931
e1a1cd59 1932 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
8a9f3ccd
BS
1933 goto oom_free_new;
1934
1da177e4
LT
1935 /*
1936 * Re-check the pte - we dropped the lock
1937 */
8f4e2101 1938 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
65500d23 1939 if (likely(pte_same(*page_table, orig_pte))) {
920fc356 1940 if (old_page) {
920fc356
HD
1941 if (!PageAnon(old_page)) {
1942 dec_mm_counter(mm, file_rss);
1943 inc_mm_counter(mm, anon_rss);
1944 }
1945 } else
4294621f 1946 inc_mm_counter(mm, anon_rss);
eca35133 1947 flush_cache_page(vma, address, pte_pfn(orig_pte));
65500d23
HD
1948 entry = mk_pte(new_page, vma->vm_page_prot);
1949 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4ce072f1
SS
1950 /*
1951 * Clear the pte entry and flush it first, before updating the
1952 * pte with the new entry. This will avoid a race condition
1953 * seen in the presence of one thread doing SMC and another
1954 * thread doing COW.
1955 */
cddb8a5c 1956 ptep_clear_flush_notify(vma, address, page_table);
9617d95e 1957 page_add_new_anon_rmap(new_page, vma, address);
64d6519d
LS
1958 set_pte_at(mm, address, page_table, entry);
1959 update_mmu_cache(vma, address, entry);
945754a1
NP
1960 if (old_page) {
1961 /*
1962 * Only after switching the pte to the new page may
1963 * we remove the mapcount here. Otherwise another
1964 * process may come and find the rmap count decremented
1965 * before the pte is switched to the new page, and
1966 * "reuse" the old page writing into it while our pte
1967 * here still points into it and can be read by other
1968 * threads.
1969 *
1970 * The critical issue is to order this
1971 * page_remove_rmap with the ptp_clear_flush above.
1972 * Those stores are ordered by (if nothing else,)
1973 * the barrier present in the atomic_add_negative
1974 * in page_remove_rmap.
1975 *
1976 * Then the TLB flush in ptep_clear_flush ensures that
1977 * no process can access the old page before the
1978 * decremented mapcount is visible. And the old page
1979 * cannot be reused until after the decremented
1980 * mapcount is visible. So transitively, TLBs to
1981 * old page will be flushed before it can be reused.
1982 */
1983 page_remove_rmap(old_page, vma);
1984 }
1985
1da177e4
LT
1986 /* Free the old page.. */
1987 new_page = old_page;
f33ea7f4 1988 ret |= VM_FAULT_WRITE;
8a9f3ccd
BS
1989 } else
1990 mem_cgroup_uncharge_page(new_page);
1991
920fc356
HD
1992 if (new_page)
1993 page_cache_release(new_page);
1994 if (old_page)
1995 page_cache_release(old_page);
65500d23 1996unlock:
8f4e2101 1997 pte_unmap_unlock(page_table, ptl);
d08b3851 1998 if (dirty_page) {
8f7b3d15
AS
1999 if (vma->vm_file)
2000 file_update_time(vma->vm_file);
2001
79352894
NP
2002 /*
2003 * Yes, Virginia, this is actually required to prevent a race
2004 * with clear_page_dirty_for_io() from clearing the page dirty
2005 * bit after it clear all dirty ptes, but before a racing
2006 * do_wp_page installs a dirty pte.
2007 *
2008 * do_no_page is protected similarly.
2009 */
2010 wait_on_page_locked(dirty_page);
a200ee18 2011 set_page_dirty_balance(dirty_page, page_mkwrite);
d08b3851
PZ
2012 put_page(dirty_page);
2013 }
f33ea7f4 2014 return ret;
8a9f3ccd 2015oom_free_new:
6dbf6d3b 2016 page_cache_release(new_page);
65500d23 2017oom:
920fc356
HD
2018 if (old_page)
2019 page_cache_release(old_page);
1da177e4 2020 return VM_FAULT_OOM;
9637a5ef
DH
2021
2022unwritable_page:
2023 page_cache_release(old_page);
2024 return VM_FAULT_SIGBUS;
1da177e4
LT
2025}
2026
2027/*
2028 * Helper functions for unmap_mapping_range().
2029 *
2030 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2031 *
2032 * We have to restart searching the prio_tree whenever we drop the lock,
2033 * since the iterator is only valid while the lock is held, and anyway
2034 * a later vma might be split and reinserted earlier while lock dropped.
2035 *
2036 * The list of nonlinear vmas could be handled more efficiently, using
2037 * a placeholder, but handle it in the same way until a need is shown.
2038 * It is important to search the prio_tree before nonlinear list: a vma
2039 * may become nonlinear and be shifted from prio_tree to nonlinear list
2040 * while the lock is dropped; but never shifted from list to prio_tree.
2041 *
2042 * In order to make forward progress despite restarting the search,
2043 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2044 * quickly skip it next time around. Since the prio_tree search only
2045 * shows us those vmas affected by unmapping the range in question, we
2046 * can't efficiently keep all vmas in step with mapping->truncate_count:
2047 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2048 * mapping->truncate_count and vma->vm_truncate_count are protected by
2049 * i_mmap_lock.
2050 *
2051 * In order to make forward progress despite repeatedly restarting some
ee39b37b 2052 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1da177e4
LT
2053 * and restart from that address when we reach that vma again. It might
2054 * have been split or merged, shrunk or extended, but never shifted: so
2055 * restart_addr remains valid so long as it remains in the vma's range.
2056 * unmap_mapping_range forces truncate_count to leap over page-aligned
2057 * values so we can save vma's restart_addr in its truncate_count field.
2058 */
2059#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2060
2061static void reset_vma_truncate_counts(struct address_space *mapping)
2062{
2063 struct vm_area_struct *vma;
2064 struct prio_tree_iter iter;
2065
2066 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2067 vma->vm_truncate_count = 0;
2068 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2069 vma->vm_truncate_count = 0;
2070}
2071
2072static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2073 unsigned long start_addr, unsigned long end_addr,
2074 struct zap_details *details)
2075{
2076 unsigned long restart_addr;
2077 int need_break;
2078
d00806b1
NP
2079 /*
2080 * files that support invalidating or truncating portions of the
d0217ac0 2081 * file from under mmaped areas must have their ->fault function
83c54070
NP
2082 * return a locked page (and set VM_FAULT_LOCKED in the return).
2083 * This provides synchronisation against concurrent unmapping here.
d00806b1 2084 */
d00806b1 2085
1da177e4
LT
2086again:
2087 restart_addr = vma->vm_truncate_count;
2088 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2089 start_addr = restart_addr;
2090 if (start_addr >= end_addr) {
2091 /* Top of vma has been split off since last time */
2092 vma->vm_truncate_count = details->truncate_count;
2093 return 0;
2094 }
2095 }
2096
ee39b37b
HD
2097 restart_addr = zap_page_range(vma, start_addr,
2098 end_addr - start_addr, details);
95c354fe 2099 need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
1da177e4 2100
ee39b37b 2101 if (restart_addr >= end_addr) {
1da177e4
LT
2102 /* We have now completed this vma: mark it so */
2103 vma->vm_truncate_count = details->truncate_count;
2104 if (!need_break)
2105 return 0;
2106 } else {
2107 /* Note restart_addr in vma's truncate_count field */
ee39b37b 2108 vma->vm_truncate_count = restart_addr;
1da177e4
LT
2109 if (!need_break)
2110 goto again;
2111 }
2112
2113 spin_unlock(details->i_mmap_lock);
2114 cond_resched();
2115 spin_lock(details->i_mmap_lock);
2116 return -EINTR;
2117}
2118
2119static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2120 struct zap_details *details)
2121{
2122 struct vm_area_struct *vma;
2123 struct prio_tree_iter iter;
2124 pgoff_t vba, vea, zba, zea;
2125
2126restart:
2127 vma_prio_tree_foreach(vma, &iter, root,
2128 details->first_index, details->last_index) {
2129 /* Skip quickly over those we have already dealt with */
2130 if (vma->vm_truncate_count == details->truncate_count)
2131 continue;
2132
2133 vba = vma->vm_pgoff;
2134 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2135 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2136 zba = details->first_index;
2137 if (zba < vba)
2138 zba = vba;
2139 zea = details->last_index;
2140 if (zea > vea)
2141 zea = vea;
2142
2143 if (unmap_mapping_range_vma(vma,
2144 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2145 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2146 details) < 0)
2147 goto restart;
2148 }
2149}
2150
2151static inline void unmap_mapping_range_list(struct list_head *head,
2152 struct zap_details *details)
2153{
2154 struct vm_area_struct *vma;
2155
2156 /*
2157 * In nonlinear VMAs there is no correspondence between virtual address
2158 * offset and file offset. So we must perform an exhaustive search
2159 * across *all* the pages in each nonlinear VMA, not just the pages
2160 * whose virtual address lies outside the file truncation point.
2161 */
2162restart:
2163 list_for_each_entry(vma, head, shared.vm_set.list) {
2164 /* Skip quickly over those we have already dealt with */
2165 if (vma->vm_truncate_count == details->truncate_count)
2166 continue;
2167 details->nonlinear_vma = vma;
2168 if (unmap_mapping_range_vma(vma, vma->vm_start,
2169 vma->vm_end, details) < 0)
2170 goto restart;
2171 }
2172}
2173
2174/**
72fd4a35 2175 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
3d41088f 2176 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2177 * @holebegin: byte in first page to unmap, relative to the start of
2178 * the underlying file. This will be rounded down to a PAGE_SIZE
2179 * boundary. Note that this is different from vmtruncate(), which
2180 * must keep the partial page. In contrast, we must get rid of
2181 * partial pages.
2182 * @holelen: size of prospective hole in bytes. This will be rounded
2183 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2184 * end of the file.
2185 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2186 * but 0 when invalidating pagecache, don't throw away private data.
2187 */
2188void unmap_mapping_range(struct address_space *mapping,
2189 loff_t const holebegin, loff_t const holelen, int even_cows)
2190{
2191 struct zap_details details;
2192 pgoff_t hba = holebegin >> PAGE_SHIFT;
2193 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2194
2195 /* Check for overflow. */
2196 if (sizeof(holelen) > sizeof(hlen)) {
2197 long long holeend =
2198 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2199 if (holeend & ~(long long)ULONG_MAX)
2200 hlen = ULONG_MAX - hba + 1;
2201 }
2202
2203 details.check_mapping = even_cows? NULL: mapping;
2204 details.nonlinear_vma = NULL;
2205 details.first_index = hba;
2206 details.last_index = hba + hlen - 1;
2207 if (details.last_index < details.first_index)
2208 details.last_index = ULONG_MAX;
2209 details.i_mmap_lock = &mapping->i_mmap_lock;
2210
2211 spin_lock(&mapping->i_mmap_lock);
2212
d00806b1 2213 /* Protect against endless unmapping loops */
1da177e4 2214 mapping->truncate_count++;
1da177e4
LT
2215 if (unlikely(is_restart_addr(mapping->truncate_count))) {
2216 if (mapping->truncate_count == 0)
2217 reset_vma_truncate_counts(mapping);
2218 mapping->truncate_count++;
2219 }
2220 details.truncate_count = mapping->truncate_count;
2221
2222 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2223 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2224 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2225 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2226 spin_unlock(&mapping->i_mmap_lock);
2227}
2228EXPORT_SYMBOL(unmap_mapping_range);
2229
bfa5bf6d
REB
2230/**
2231 * vmtruncate - unmap mappings "freed" by truncate() syscall
2232 * @inode: inode of the file used
2233 * @offset: file offset to start truncating
1da177e4
LT
2234 *
2235 * NOTE! We have to be ready to update the memory sharing
2236 * between the file and the memory map for a potential last
2237 * incomplete page. Ugly, but necessary.
2238 */
2239int vmtruncate(struct inode * inode, loff_t offset)
2240{
61d5048f
CH
2241 if (inode->i_size < offset) {
2242 unsigned long limit;
2243
2244 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2245 if (limit != RLIM_INFINITY && offset > limit)
2246 goto out_sig;
2247 if (offset > inode->i_sb->s_maxbytes)
2248 goto out_big;
2249 i_size_write(inode, offset);
2250 } else {
2251 struct address_space *mapping = inode->i_mapping;
1da177e4 2252
61d5048f
CH
2253 /*
2254 * truncation of in-use swapfiles is disallowed - it would
2255 * cause subsequent swapout to scribble on the now-freed
2256 * blocks.
2257 */
2258 if (IS_SWAPFILE(inode))
2259 return -ETXTBSY;
2260 i_size_write(inode, offset);
2261
2262 /*
2263 * unmap_mapping_range is called twice, first simply for
2264 * efficiency so that truncate_inode_pages does fewer
2265 * single-page unmaps. However after this first call, and
2266 * before truncate_inode_pages finishes, it is possible for
2267 * private pages to be COWed, which remain after
2268 * truncate_inode_pages finishes, hence the second
2269 * unmap_mapping_range call must be made for correctness.
2270 */
2271 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2272 truncate_inode_pages(mapping, offset);
2273 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2274 }
d00806b1 2275
acfa4380 2276 if (inode->i_op->truncate)
1da177e4
LT
2277 inode->i_op->truncate(inode);
2278 return 0;
61d5048f 2279
1da177e4
LT
2280out_sig:
2281 send_sig(SIGXFSZ, current, 0);
2282out_big:
2283 return -EFBIG;
1da177e4 2284}
1da177e4
LT
2285EXPORT_SYMBOL(vmtruncate);
2286
f6b3ec23
BP
2287int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2288{
2289 struct address_space *mapping = inode->i_mapping;
2290
2291 /*
2292 * If the underlying filesystem is not going to provide
2293 * a way to truncate a range of blocks (punch a hole) -
2294 * we should return failure right now.
2295 */
acfa4380 2296 if (!inode->i_op->truncate_range)
f6b3ec23
BP
2297 return -ENOSYS;
2298
1b1dcc1b 2299 mutex_lock(&inode->i_mutex);
f6b3ec23
BP
2300 down_write(&inode->i_alloc_sem);
2301 unmap_mapping_range(mapping, offset, (end - offset), 1);
2302 truncate_inode_pages_range(mapping, offset, end);
d00806b1 2303 unmap_mapping_range(mapping, offset, (end - offset), 1);
f6b3ec23
BP
2304 inode->i_op->truncate_range(inode, offset, end);
2305 up_write(&inode->i_alloc_sem);
1b1dcc1b 2306 mutex_unlock(&inode->i_mutex);
f6b3ec23
BP
2307
2308 return 0;
2309}
f6b3ec23 2310
1da177e4 2311/*
8f4e2101
HD
2312 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2313 * but allow concurrent faults), and pte mapped but not yet locked.
2314 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2315 */
65500d23
HD
2316static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2317 unsigned long address, pte_t *page_table, pmd_t *pmd,
2318 int write_access, pte_t orig_pte)
1da177e4 2319{
8f4e2101 2320 spinlock_t *ptl;
1da177e4 2321 struct page *page;
65500d23 2322 swp_entry_t entry;
1da177e4 2323 pte_t pte;
83c54070 2324 int ret = 0;
1da177e4 2325
4c21e2f2 2326 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
8f4e2101 2327 goto out;
65500d23
HD
2328
2329 entry = pte_to_swp_entry(orig_pte);
0697212a
CL
2330 if (is_migration_entry(entry)) {
2331 migration_entry_wait(mm, pmd, address);
2332 goto out;
2333 }
0ff92245 2334 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
2335 page = lookup_swap_cache(entry);
2336 if (!page) {
098fe651 2337 grab_swap_token(); /* Contend for token _before_ read-in */
02098fea
HD
2338 page = swapin_readahead(entry,
2339 GFP_HIGHUSER_MOVABLE, vma, address);
1da177e4
LT
2340 if (!page) {
2341 /*
8f4e2101
HD
2342 * Back out if somebody else faulted in this pte
2343 * while we released the pte lock.
1da177e4 2344 */
8f4e2101 2345 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2346 if (likely(pte_same(*page_table, orig_pte)))
2347 ret = VM_FAULT_OOM;
0ff92245 2348 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2349 goto unlock;
1da177e4
LT
2350 }
2351
2352 /* Had to read the page from swap area: Major fault */
2353 ret = VM_FAULT_MAJOR;
f8891e5e 2354 count_vm_event(PGMAJFAULT);
1da177e4
LT
2355 }
2356
073e587e
KH
2357 mark_page_accessed(page);
2358
2359 lock_page(page);
2360 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2361
e1a1cd59 2362 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
8a9f3ccd 2363 ret = VM_FAULT_OOM;
073e587e 2364 unlock_page(page);
8a9f3ccd
BS
2365 goto out;
2366 }
2367
1da177e4 2368 /*
8f4e2101 2369 * Back out if somebody else already faulted in this pte.
1da177e4 2370 */
8f4e2101 2371 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
9e9bef07 2372 if (unlikely(!pte_same(*page_table, orig_pte)))
b8107480 2373 goto out_nomap;
b8107480
KK
2374
2375 if (unlikely(!PageUptodate(page))) {
2376 ret = VM_FAULT_SIGBUS;
2377 goto out_nomap;
1da177e4
LT
2378 }
2379
2380 /* The page isn't present yet, go ahead with the fault. */
1da177e4 2381
4294621f 2382 inc_mm_counter(mm, anon_rss);
1da177e4
LT
2383 pte = mk_pte(page, vma->vm_page_prot);
2384 if (write_access && can_share_swap_page(page)) {
2385 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2386 write_access = 0;
2387 }
1da177e4
LT
2388
2389 flush_icache_page(vma, page);
2390 set_pte_at(mm, address, page_table, pte);
2391 page_add_anon_rmap(page, vma, address);
2392
c475a8ab 2393 swap_free(entry);
b291f000 2394 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
c475a8ab
HD
2395 remove_exclusive_swap_page(page);
2396 unlock_page(page);
2397
1da177e4 2398 if (write_access) {
61469f1d
HD
2399 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2400 if (ret & VM_FAULT_ERROR)
2401 ret &= VM_FAULT_ERROR;
1da177e4
LT
2402 goto out;
2403 }
2404
2405 /* No need to invalidate - it was non-present before */
2406 update_mmu_cache(vma, address, pte);
65500d23 2407unlock:
8f4e2101 2408 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2409out:
2410 return ret;
b8107480 2411out_nomap:
8a9f3ccd 2412 mem_cgroup_uncharge_page(page);
8f4e2101 2413 pte_unmap_unlock(page_table, ptl);
b8107480
KK
2414 unlock_page(page);
2415 page_cache_release(page);
65500d23 2416 return ret;
1da177e4
LT
2417}
2418
2419/*
8f4e2101
HD
2420 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2421 * but allow concurrent faults), and pte mapped but not yet locked.
2422 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2423 */
65500d23
HD
2424static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2425 unsigned long address, pte_t *page_table, pmd_t *pmd,
2426 int write_access)
1da177e4 2427{
8f4e2101
HD
2428 struct page *page;
2429 spinlock_t *ptl;
1da177e4 2430 pte_t entry;
1da177e4 2431
557ed1fa
NP
2432 /* Allocate our own private page. */
2433 pte_unmap(page_table);
8f4e2101 2434
557ed1fa
NP
2435 if (unlikely(anon_vma_prepare(vma)))
2436 goto oom;
2437 page = alloc_zeroed_user_highpage_movable(vma, address);
2438 if (!page)
2439 goto oom;
0ed361de 2440 __SetPageUptodate(page);
8f4e2101 2441
e1a1cd59 2442 if (mem_cgroup_charge(page, mm, GFP_KERNEL))
8a9f3ccd
BS
2443 goto oom_free_page;
2444
557ed1fa
NP
2445 entry = mk_pte(page, vma->vm_page_prot);
2446 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1da177e4 2447
557ed1fa
NP
2448 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2449 if (!pte_none(*page_table))
2450 goto release;
2451 inc_mm_counter(mm, anon_rss);
557ed1fa 2452 page_add_new_anon_rmap(page, vma, address);
65500d23 2453 set_pte_at(mm, address, page_table, entry);
1da177e4
LT
2454
2455 /* No need to invalidate - it was non-present before */
65500d23 2456 update_mmu_cache(vma, address, entry);
65500d23 2457unlock:
8f4e2101 2458 pte_unmap_unlock(page_table, ptl);
83c54070 2459 return 0;
8f4e2101 2460release:
8a9f3ccd 2461 mem_cgroup_uncharge_page(page);
8f4e2101
HD
2462 page_cache_release(page);
2463 goto unlock;
8a9f3ccd 2464oom_free_page:
6dbf6d3b 2465 page_cache_release(page);
65500d23 2466oom:
1da177e4
LT
2467 return VM_FAULT_OOM;
2468}
2469
2470/*
54cb8821 2471 * __do_fault() tries to create a new page mapping. It aggressively
1da177e4 2472 * tries to share with existing pages, but makes a separate copy if
54cb8821
NP
2473 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2474 * the next page fault.
1da177e4
LT
2475 *
2476 * As this is called only for pages that do not currently exist, we
2477 * do not need to flush old virtual caches or the TLB.
2478 *
8f4e2101 2479 * We enter with non-exclusive mmap_sem (to exclude vma changes,
16abfa08 2480 * but allow concurrent faults), and pte neither mapped nor locked.
8f4e2101 2481 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2482 */
54cb8821 2483static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
16abfa08 2484 unsigned long address, pmd_t *pmd,
54cb8821 2485 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
1da177e4 2486{
16abfa08 2487 pte_t *page_table;
8f4e2101 2488 spinlock_t *ptl;
d0217ac0 2489 struct page *page;
1da177e4 2490 pte_t entry;
1da177e4 2491 int anon = 0;
5b4e655e 2492 int charged = 0;
d08b3851 2493 struct page *dirty_page = NULL;
d0217ac0
NP
2494 struct vm_fault vmf;
2495 int ret;
a200ee18 2496 int page_mkwrite = 0;
54cb8821 2497
d0217ac0
NP
2498 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2499 vmf.pgoff = pgoff;
2500 vmf.flags = flags;
2501 vmf.page = NULL;
1da177e4 2502
3c18ddd1
NP
2503 ret = vma->vm_ops->fault(vma, &vmf);
2504 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2505 return ret;
1da177e4 2506
d00806b1 2507 /*
d0217ac0 2508 * For consistency in subsequent calls, make the faulted page always
d00806b1
NP
2509 * locked.
2510 */
83c54070 2511 if (unlikely(!(ret & VM_FAULT_LOCKED)))
d0217ac0 2512 lock_page(vmf.page);
54cb8821 2513 else
d0217ac0 2514 VM_BUG_ON(!PageLocked(vmf.page));
d00806b1 2515
1da177e4
LT
2516 /*
2517 * Should we do an early C-O-W break?
2518 */
d0217ac0 2519 page = vmf.page;
54cb8821 2520 if (flags & FAULT_FLAG_WRITE) {
9637a5ef 2521 if (!(vma->vm_flags & VM_SHARED)) {
54cb8821 2522 anon = 1;
d00806b1 2523 if (unlikely(anon_vma_prepare(vma))) {
d0217ac0 2524 ret = VM_FAULT_OOM;
54cb8821 2525 goto out;
d00806b1 2526 }
83c54070
NP
2527 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2528 vma, address);
d00806b1 2529 if (!page) {
d0217ac0 2530 ret = VM_FAULT_OOM;
54cb8821 2531 goto out;
d00806b1 2532 }
5b4e655e
KH
2533 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2534 ret = VM_FAULT_OOM;
2535 page_cache_release(page);
2536 goto out;
2537 }
2538 charged = 1;
b291f000
NP
2539 /*
2540 * Don't let another task, with possibly unlocked vma,
2541 * keep the mlocked page.
2542 */
2543 if (vma->vm_flags & VM_LOCKED)
2544 clear_page_mlock(vmf.page);
d0217ac0 2545 copy_user_highpage(page, vmf.page, address, vma);
0ed361de 2546 __SetPageUptodate(page);
9637a5ef 2547 } else {
54cb8821
NP
2548 /*
2549 * If the page will be shareable, see if the backing
9637a5ef 2550 * address space wants to know that the page is about
54cb8821
NP
2551 * to become writable
2552 */
69676147
MF
2553 if (vma->vm_ops->page_mkwrite) {
2554 unlock_page(page);
2555 if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
d0217ac0
NP
2556 ret = VM_FAULT_SIGBUS;
2557 anon = 1; /* no anon but release vmf.page */
69676147
MF
2558 goto out_unlocked;
2559 }
2560 lock_page(page);
d0217ac0
NP
2561 /*
2562 * XXX: this is not quite right (racy vs
2563 * invalidate) to unlock and relock the page
2564 * like this, however a better fix requires
2565 * reworking page_mkwrite locking API, which
2566 * is better done later.
2567 */
2568 if (!page->mapping) {
83c54070 2569 ret = 0;
d0217ac0
NP
2570 anon = 1; /* no anon but release vmf.page */
2571 goto out;
2572 }
a200ee18 2573 page_mkwrite = 1;
9637a5ef
DH
2574 }
2575 }
54cb8821 2576
1da177e4
LT
2577 }
2578
8f4e2101 2579 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2580
2581 /*
2582 * This silly early PAGE_DIRTY setting removes a race
2583 * due to the bad i386 page protection. But it's valid
2584 * for other architectures too.
2585 *
2586 * Note that if write_access is true, we either now have
2587 * an exclusive copy of the page, or this is a shared mapping,
2588 * so we can make it writable and dirty to avoid having to
2589 * handle that later.
2590 */
2591 /* Only go through if we didn't race with anybody else... */
54cb8821 2592 if (likely(pte_same(*page_table, orig_pte))) {
d00806b1
NP
2593 flush_icache_page(vma, page);
2594 entry = mk_pte(page, vma->vm_page_prot);
54cb8821 2595 if (flags & FAULT_FLAG_WRITE)
1da177e4 2596 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1da177e4 2597 if (anon) {
64d6519d 2598 inc_mm_counter(mm, anon_rss);
64d6519d 2599 page_add_new_anon_rmap(page, vma, address);
f57e88a8 2600 } else {
4294621f 2601 inc_mm_counter(mm, file_rss);
d00806b1 2602 page_add_file_rmap(page);
54cb8821 2603 if (flags & FAULT_FLAG_WRITE) {
d00806b1 2604 dirty_page = page;
d08b3851
PZ
2605 get_page(dirty_page);
2606 }
4294621f 2607 }
64d6519d 2608 set_pte_at(mm, address, page_table, entry);
d00806b1
NP
2609
2610 /* no need to invalidate: a not-present page won't be cached */
2611 update_mmu_cache(vma, address, entry);
1da177e4 2612 } else {
5b4e655e
KH
2613 if (charged)
2614 mem_cgroup_uncharge_page(page);
d00806b1
NP
2615 if (anon)
2616 page_cache_release(page);
2617 else
54cb8821 2618 anon = 1; /* no anon but release faulted_page */
1da177e4
LT
2619 }
2620
8f4e2101 2621 pte_unmap_unlock(page_table, ptl);
d00806b1
NP
2622
2623out:
d0217ac0 2624 unlock_page(vmf.page);
69676147 2625out_unlocked:
d00806b1 2626 if (anon)
d0217ac0 2627 page_cache_release(vmf.page);
d00806b1 2628 else if (dirty_page) {
8f7b3d15
AS
2629 if (vma->vm_file)
2630 file_update_time(vma->vm_file);
2631
a200ee18 2632 set_page_dirty_balance(dirty_page, page_mkwrite);
d08b3851
PZ
2633 put_page(dirty_page);
2634 }
d00806b1 2635
83c54070 2636 return ret;
54cb8821 2637}
d00806b1 2638
54cb8821
NP
2639static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2640 unsigned long address, pte_t *page_table, pmd_t *pmd,
2641 int write_access, pte_t orig_pte)
2642{
2643 pgoff_t pgoff = (((address & PAGE_MASK)
0da7e01f 2644 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
54cb8821
NP
2645 unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2646
16abfa08
HD
2647 pte_unmap(page_table);
2648 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
54cb8821
NP
2649}
2650
1da177e4
LT
2651/*
2652 * Fault of a previously existing named mapping. Repopulate the pte
2653 * from the encoded file_pte if possible. This enables swappable
2654 * nonlinear vmas.
8f4e2101
HD
2655 *
2656 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2657 * but allow concurrent faults), and pte mapped but not yet locked.
2658 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2659 */
d0217ac0 2660static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
65500d23
HD
2661 unsigned long address, pte_t *page_table, pmd_t *pmd,
2662 int write_access, pte_t orig_pte)
1da177e4 2663{
d0217ac0
NP
2664 unsigned int flags = FAULT_FLAG_NONLINEAR |
2665 (write_access ? FAULT_FLAG_WRITE : 0);
65500d23 2666 pgoff_t pgoff;
1da177e4 2667
4c21e2f2 2668 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
83c54070 2669 return 0;
1da177e4 2670
d0217ac0
NP
2671 if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
2672 !(vma->vm_flags & VM_CAN_NONLINEAR))) {
65500d23
HD
2673 /*
2674 * Page table corrupted: show pte and kill process.
2675 */
b5810039 2676 print_bad_pte(vma, orig_pte, address);
65500d23
HD
2677 return VM_FAULT_OOM;
2678 }
65500d23
HD
2679
2680 pgoff = pte_to_pgoff(orig_pte);
16abfa08 2681 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
1da177e4
LT
2682}
2683
2684/*
2685 * These routines also need to handle stuff like marking pages dirty
2686 * and/or accessed for architectures that don't do it in hardware (most
2687 * RISC architectures). The early dirtying is also good on the i386.
2688 *
2689 * There is also a hook called "update_mmu_cache()" that architectures
2690 * with external mmu caches can use to update those (ie the Sparc or
2691 * PowerPC hashed page tables that act as extended TLBs).
2692 *
c74df32c
HD
2693 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2694 * but allow concurrent faults), and pte mapped but not yet locked.
2695 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4
LT
2696 */
2697static inline int handle_pte_fault(struct mm_struct *mm,
65500d23
HD
2698 struct vm_area_struct *vma, unsigned long address,
2699 pte_t *pte, pmd_t *pmd, int write_access)
1da177e4
LT
2700{
2701 pte_t entry;
8f4e2101 2702 spinlock_t *ptl;
1da177e4 2703
8dab5241 2704 entry = *pte;
1da177e4 2705 if (!pte_present(entry)) {
65500d23 2706 if (pte_none(entry)) {
f4b81804 2707 if (vma->vm_ops) {
3c18ddd1 2708 if (likely(vma->vm_ops->fault))
54cb8821
NP
2709 return do_linear_fault(mm, vma, address,
2710 pte, pmd, write_access, entry);
f4b81804
JS
2711 }
2712 return do_anonymous_page(mm, vma, address,
2713 pte, pmd, write_access);
65500d23 2714 }
1da177e4 2715 if (pte_file(entry))
d0217ac0 2716 return do_nonlinear_fault(mm, vma, address,
65500d23
HD
2717 pte, pmd, write_access, entry);
2718 return do_swap_page(mm, vma, address,
2719 pte, pmd, write_access, entry);
1da177e4
LT
2720 }
2721
4c21e2f2 2722 ptl = pte_lockptr(mm, pmd);
8f4e2101
HD
2723 spin_lock(ptl);
2724 if (unlikely(!pte_same(*pte, entry)))
2725 goto unlock;
1da177e4
LT
2726 if (write_access) {
2727 if (!pte_write(entry))
8f4e2101
HD
2728 return do_wp_page(mm, vma, address,
2729 pte, pmd, ptl, entry);
1da177e4
LT
2730 entry = pte_mkdirty(entry);
2731 }
2732 entry = pte_mkyoung(entry);
8dab5241 2733 if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
1a44e149 2734 update_mmu_cache(vma, address, entry);
1a44e149
AA
2735 } else {
2736 /*
2737 * This is needed only for protection faults but the arch code
2738 * is not yet telling us if this is a protection fault or not.
2739 * This still avoids useless tlb flushes for .text page faults
2740 * with threads.
2741 */
2742 if (write_access)
2743 flush_tlb_page(vma, address);
2744 }
8f4e2101
HD
2745unlock:
2746 pte_unmap_unlock(pte, ptl);
83c54070 2747 return 0;
1da177e4
LT
2748}
2749
2750/*
2751 * By the time we get here, we already hold the mm semaphore
2752 */
83c54070 2753int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1da177e4
LT
2754 unsigned long address, int write_access)
2755{
2756 pgd_t *pgd;
2757 pud_t *pud;
2758 pmd_t *pmd;
2759 pte_t *pte;
2760
2761 __set_current_state(TASK_RUNNING);
2762
f8891e5e 2763 count_vm_event(PGFAULT);
1da177e4 2764
ac9b9c66
HD
2765 if (unlikely(is_vm_hugetlb_page(vma)))
2766 return hugetlb_fault(mm, vma, address, write_access);
1da177e4 2767
1da177e4 2768 pgd = pgd_offset(mm, address);
1da177e4
LT
2769 pud = pud_alloc(mm, pgd, address);
2770 if (!pud)
c74df32c 2771 return VM_FAULT_OOM;
1da177e4
LT
2772 pmd = pmd_alloc(mm, pud, address);
2773 if (!pmd)
c74df32c 2774 return VM_FAULT_OOM;
1da177e4
LT
2775 pte = pte_alloc_map(mm, pmd, address);
2776 if (!pte)
c74df32c 2777 return VM_FAULT_OOM;
1da177e4 2778
c74df32c 2779 return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
1da177e4
LT
2780}
2781
2782#ifndef __PAGETABLE_PUD_FOLDED
2783/*
2784 * Allocate page upper directory.
872fec16 2785 * We've already handled the fast-path in-line.
1da177e4 2786 */
1bb3630e 2787int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1da177e4 2788{
c74df32c
HD
2789 pud_t *new = pud_alloc_one(mm, address);
2790 if (!new)
1bb3630e 2791 return -ENOMEM;
1da177e4 2792
362a61ad
NP
2793 smp_wmb(); /* See comment in __pte_alloc */
2794
872fec16 2795 spin_lock(&mm->page_table_lock);
1bb3630e 2796 if (pgd_present(*pgd)) /* Another has populated it */
5e541973 2797 pud_free(mm, new);
1bb3630e
HD
2798 else
2799 pgd_populate(mm, pgd, new);
c74df32c 2800 spin_unlock(&mm->page_table_lock);
1bb3630e 2801 return 0;
1da177e4
LT
2802}
2803#endif /* __PAGETABLE_PUD_FOLDED */
2804
2805#ifndef __PAGETABLE_PMD_FOLDED
2806/*
2807 * Allocate page middle directory.
872fec16 2808 * We've already handled the fast-path in-line.
1da177e4 2809 */
1bb3630e 2810int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 2811{
c74df32c
HD
2812 pmd_t *new = pmd_alloc_one(mm, address);
2813 if (!new)
1bb3630e 2814 return -ENOMEM;
1da177e4 2815
362a61ad
NP
2816 smp_wmb(); /* See comment in __pte_alloc */
2817
872fec16 2818 spin_lock(&mm->page_table_lock);
1da177e4 2819#ifndef __ARCH_HAS_4LEVEL_HACK
1bb3630e 2820 if (pud_present(*pud)) /* Another has populated it */
5e541973 2821 pmd_free(mm, new);
1bb3630e
HD
2822 else
2823 pud_populate(mm, pud, new);
1da177e4 2824#else
1bb3630e 2825 if (pgd_present(*pud)) /* Another has populated it */
5e541973 2826 pmd_free(mm, new);
1bb3630e
HD
2827 else
2828 pgd_populate(mm, pud, new);
1da177e4 2829#endif /* __ARCH_HAS_4LEVEL_HACK */
c74df32c 2830 spin_unlock(&mm->page_table_lock);
1bb3630e 2831 return 0;
e0f39591 2832}
1da177e4
LT
2833#endif /* __PAGETABLE_PMD_FOLDED */
2834
2835int make_pages_present(unsigned long addr, unsigned long end)
2836{
2837 int ret, len, write;
2838 struct vm_area_struct * vma;
2839
2840 vma = find_vma(current->mm, addr);
2841 if (!vma)
a477097d 2842 return -ENOMEM;
1da177e4 2843 write = (vma->vm_flags & VM_WRITE) != 0;
5bcb28b1
ES
2844 BUG_ON(addr >= end);
2845 BUG_ON(end > vma->vm_end);
68e116a3 2846 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
1da177e4
LT
2847 ret = get_user_pages(current, current->mm, addr,
2848 len, write, 0, NULL, NULL);
c11d69d8 2849 if (ret < 0)
1da177e4 2850 return ret;
9978ad58 2851 return ret == len ? 0 : -EFAULT;
1da177e4
LT
2852}
2853
1da177e4
LT
2854#if !defined(__HAVE_ARCH_GATE_AREA)
2855
2856#if defined(AT_SYSINFO_EHDR)
5ce7852c 2857static struct vm_area_struct gate_vma;
1da177e4
LT
2858
2859static int __init gate_vma_init(void)
2860{
2861 gate_vma.vm_mm = NULL;
2862 gate_vma.vm_start = FIXADDR_USER_START;
2863 gate_vma.vm_end = FIXADDR_USER_END;
b6558c4a
RM
2864 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2865 gate_vma.vm_page_prot = __P101;
f47aef55
RM
2866 /*
2867 * Make sure the vDSO gets into every core dump.
2868 * Dumping its contents makes post-mortem fully interpretable later
2869 * without matching up the same kernel and hardware config to see
2870 * what PC values meant.
2871 */
2872 gate_vma.vm_flags |= VM_ALWAYSDUMP;
1da177e4
LT
2873 return 0;
2874}
2875__initcall(gate_vma_init);
2876#endif
2877
2878struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2879{
2880#ifdef AT_SYSINFO_EHDR
2881 return &gate_vma;
2882#else
2883 return NULL;
2884#endif
2885}
2886
2887int in_gate_area_no_task(unsigned long addr)
2888{
2889#ifdef AT_SYSINFO_EHDR
2890 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2891 return 1;
2892#endif
2893 return 0;
2894}
2895
2896#endif /* __HAVE_ARCH_GATE_AREA */
0ec76a11 2897
28b2ee20 2898#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 2899int follow_phys(struct vm_area_struct *vma,
2900 unsigned long address, unsigned int flags,
2901 unsigned long *prot, resource_size_t *phys)
28b2ee20
RR
2902{
2903 pgd_t *pgd;
2904 pud_t *pud;
2905 pmd_t *pmd;
2906 pte_t *ptep, pte;
2907 spinlock_t *ptl;
2908 resource_size_t phys_addr = 0;
2909 struct mm_struct *mm = vma->vm_mm;
d87fe660 2910 int ret = -EINVAL;
28b2ee20 2911
d87fe660 2912 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
2913 goto out;
28b2ee20
RR
2914
2915 pgd = pgd_offset(mm, address);
2916 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
d87fe660 2917 goto out;
28b2ee20
RR
2918
2919 pud = pud_offset(pgd, address);
2920 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
d87fe660 2921 goto out;
28b2ee20
RR
2922
2923 pmd = pmd_offset(pud, address);
2924 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
d87fe660 2925 goto out;
28b2ee20
RR
2926
2927 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
2928 if (pmd_huge(*pmd))
d87fe660 2929 goto out;
28b2ee20
RR
2930
2931 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
2932 if (!ptep)
2933 goto out;
2934
2935 pte = *ptep;
2936 if (!pte_present(pte))
2937 goto unlock;
2938 if ((flags & FOLL_WRITE) && !pte_write(pte))
2939 goto unlock;
2940 phys_addr = pte_pfn(pte);
2941 phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */
2942
2943 *prot = pgprot_val(pte_pgprot(pte));
d87fe660 2944 *phys = phys_addr;
2945 ret = 0;
28b2ee20
RR
2946
2947unlock:
2948 pte_unmap_unlock(ptep, ptl);
2949out:
d87fe660 2950 return ret;
28b2ee20
RR
2951}
2952
2953int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2954 void *buf, int len, int write)
2955{
2956 resource_size_t phys_addr;
2957 unsigned long prot = 0;
2958 void *maddr;
2959 int offset = addr & (PAGE_SIZE-1);
2960
d87fe660 2961 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
2962 return -EINVAL;
2963
2964 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
2965 if (write)
2966 memcpy_toio(maddr + offset, buf, len);
2967 else
2968 memcpy_fromio(buf, maddr + offset, len);
2969 iounmap(maddr);
2970
2971 return len;
2972}
2973#endif
2974
0ec76a11
DH
2975/*
2976 * Access another process' address space.
2977 * Source/target buffer must be kernel space,
2978 * Do not walk the page table directly, use get_user_pages
2979 */
2980int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2981{
2982 struct mm_struct *mm;
2983 struct vm_area_struct *vma;
0ec76a11
DH
2984 void *old_buf = buf;
2985
2986 mm = get_task_mm(tsk);
2987 if (!mm)
2988 return 0;
2989
2990 down_read(&mm->mmap_sem);
183ff22b 2991 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
2992 while (len) {
2993 int bytes, ret, offset;
2994 void *maddr;
28b2ee20 2995 struct page *page = NULL;
0ec76a11
DH
2996
2997 ret = get_user_pages(tsk, mm, addr, 1,
2998 write, 1, &page, &vma);
28b2ee20
RR
2999 if (ret <= 0) {
3000 /*
3001 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3002 * we can access using slightly different code.
3003 */
3004#ifdef CONFIG_HAVE_IOREMAP_PROT
3005 vma = find_vma(mm, addr);
3006 if (!vma)
3007 break;
3008 if (vma->vm_ops && vma->vm_ops->access)
3009 ret = vma->vm_ops->access(vma, addr, buf,
3010 len, write);
3011 if (ret <= 0)
3012#endif
3013 break;
3014 bytes = ret;
0ec76a11 3015 } else {
28b2ee20
RR
3016 bytes = len;
3017 offset = addr & (PAGE_SIZE-1);
3018 if (bytes > PAGE_SIZE-offset)
3019 bytes = PAGE_SIZE-offset;
3020
3021 maddr = kmap(page);
3022 if (write) {
3023 copy_to_user_page(vma, page, addr,
3024 maddr + offset, buf, bytes);
3025 set_page_dirty_lock(page);
3026 } else {
3027 copy_from_user_page(vma, page, addr,
3028 buf, maddr + offset, bytes);
3029 }
3030 kunmap(page);
3031 page_cache_release(page);
0ec76a11 3032 }
0ec76a11
DH
3033 len -= bytes;
3034 buf += bytes;
3035 addr += bytes;
3036 }
3037 up_read(&mm->mmap_sem);
3038 mmput(mm);
3039
3040 return buf - old_buf;
3041}
03252919
AK
3042
3043/*
3044 * Print the name of a VMA.
3045 */
3046void print_vma_addr(char *prefix, unsigned long ip)
3047{
3048 struct mm_struct *mm = current->mm;
3049 struct vm_area_struct *vma;
3050
e8bff74a
IM
3051 /*
3052 * Do not print if we are in atomic
3053 * contexts (in exception stacks, etc.):
3054 */
3055 if (preempt_count())
3056 return;
3057
03252919
AK
3058 down_read(&mm->mmap_sem);
3059 vma = find_vma(mm, ip);
3060 if (vma && vma->vm_file) {
3061 struct file *f = vma->vm_file;
3062 char *buf = (char *)__get_free_page(GFP_KERNEL);
3063 if (buf) {
3064 char *p, *s;
3065
cf28b486 3066 p = d_path(&f->f_path, buf, PAGE_SIZE);
03252919
AK
3067 if (IS_ERR(p))
3068 p = "?";
3069 s = strrchr(p, '/');
3070 if (s)
3071 p = s+1;
3072 printk("%s%s[%lx+%lx]", prefix, p,
3073 vma->vm_start,
3074 vma->vm_end - vma->vm_start);
3075 free_page((unsigned long)buf);
3076 }
3077 }
3078 up_read(&current->mm->mmap_sem);
3079}
3ee1afa3
NP
3080
3081#ifdef CONFIG_PROVE_LOCKING
3082void might_fault(void)
3083{
3084 might_sleep();
3085 /*
3086 * it would be nicer only to annotate paths which are not under
3087 * pagefault_disable, however that requires a larger audit and
3088 * providing helpers like get_user_atomic.
3089 */
3090 if (!in_atomic() && current->mm)
3091 might_lock_read(&current->mm->mmap_sem);
3092}
3093EXPORT_SYMBOL(might_fault);
3094#endif