disable some mediatekl custom warnings
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / xfs / xfs_buf.c
CommitLineData
1da177e4 1/*
f07c2250 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
93c189c1 18#include "xfs.h"
1da177e4
LT
19#include <linux/stddef.h>
20#include <linux/errno.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/pagemap.h>
23#include <linux/init.h>
24#include <linux/vmalloc.h>
25#include <linux/bio.h>
26#include <linux/sysctl.h>
27#include <linux/proc_fs.h>
28#include <linux/workqueue.h>
29#include <linux/percpu.h>
30#include <linux/blkdev.h>
31#include <linux/hash.h>
4df08c52 32#include <linux/kthread.h>
b20a3503 33#include <linux/migrate.h>
3fcfab16 34#include <linux/backing-dev.h>
7dfb7103 35#include <linux/freezer.h>
1da177e4 36
b7963133 37#include "xfs_sb.h"
ed3b4d6c 38#include "xfs_log.h"
b7963133 39#include "xfs_ag.h"
b7963133 40#include "xfs_mount.h"
0b1b213f 41#include "xfs_trace.h"
b7963133 42
7989cb8e 43static kmem_zone_t *xfs_buf_zone;
23ea4032 44
7989cb8e 45static struct workqueue_struct *xfslogd_workqueue;
1da177e4 46
ce8e922c
NS
47#ifdef XFS_BUF_LOCK_TRACKING
48# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
49# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
50# define XB_GET_OWNER(bp) ((bp)->b_last_holder)
1da177e4 51#else
ce8e922c
NS
52# define XB_SET_OWNER(bp) do { } while (0)
53# define XB_CLEAR_OWNER(bp) do { } while (0)
54# define XB_GET_OWNER(bp) do { } while (0)
1da177e4
LT
55#endif
56
ce8e922c 57#define xb_to_gfp(flags) \
aa5c158e 58 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
1da177e4 59
1da177e4 60
73c77e2c
JB
61static inline int
62xfs_buf_is_vmapped(
63 struct xfs_buf *bp)
64{
65 /*
66 * Return true if the buffer is vmapped.
67 *
611c9946
DC
68 * b_addr is null if the buffer is not mapped, but the code is clever
69 * enough to know it doesn't have to map a single page, so the check has
70 * to be both for b_addr and bp->b_page_count > 1.
73c77e2c 71 */
611c9946 72 return bp->b_addr && bp->b_page_count > 1;
73c77e2c
JB
73}
74
75static inline int
76xfs_buf_vmap_len(
77 struct xfs_buf *bp)
78{
79 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
80}
81
1da177e4 82/*
430cbeb8
DC
83 * xfs_buf_lru_add - add a buffer to the LRU.
84 *
85 * The LRU takes a new reference to the buffer so that it will only be freed
86 * once the shrinker takes the buffer off the LRU.
87 */
88STATIC void
89xfs_buf_lru_add(
90 struct xfs_buf *bp)
91{
92 struct xfs_buftarg *btp = bp->b_target;
93
94 spin_lock(&btp->bt_lru_lock);
95 if (list_empty(&bp->b_lru)) {
96 atomic_inc(&bp->b_hold);
97 list_add_tail(&bp->b_lru, &btp->bt_lru);
98 btp->bt_lru_nr++;
6fb8a90a 99 bp->b_lru_flags &= ~_XBF_LRU_DISPOSE;
430cbeb8
DC
100 }
101 spin_unlock(&btp->bt_lru_lock);
102}
103
104/*
105 * xfs_buf_lru_del - remove a buffer from the LRU
106 *
107 * The unlocked check is safe here because it only occurs when there are not
108 * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
109 * to optimise the shrinker removing the buffer from the LRU and calling
25985edc 110 * xfs_buf_free(). i.e. it removes an unnecessary round trip on the
430cbeb8 111 * bt_lru_lock.
1da177e4 112 */
430cbeb8
DC
113STATIC void
114xfs_buf_lru_del(
115 struct xfs_buf *bp)
116{
117 struct xfs_buftarg *btp = bp->b_target;
118
119 if (list_empty(&bp->b_lru))
120 return;
121
122 spin_lock(&btp->bt_lru_lock);
123 if (!list_empty(&bp->b_lru)) {
124 list_del_init(&bp->b_lru);
125 btp->bt_lru_nr--;
126 }
127 spin_unlock(&btp->bt_lru_lock);
128}
129
130/*
131 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
132 * b_lru_ref count so that the buffer is freed immediately when the buffer
133 * reference count falls to zero. If the buffer is already on the LRU, we need
134 * to remove the reference that LRU holds on the buffer.
135 *
136 * This prevents build-up of stale buffers on the LRU.
137 */
138void
139xfs_buf_stale(
140 struct xfs_buf *bp)
141{
43ff2122
CH
142 ASSERT(xfs_buf_islocked(bp));
143
430cbeb8 144 bp->b_flags |= XBF_STALE;
43ff2122
CH
145
146 /*
147 * Clear the delwri status so that a delwri queue walker will not
148 * flush this buffer to disk now that it is stale. The delwri queue has
149 * a reference to the buffer, so this is safe to do.
150 */
151 bp->b_flags &= ~_XBF_DELWRI_Q;
152
430cbeb8
DC
153 atomic_set(&(bp)->b_lru_ref, 0);
154 if (!list_empty(&bp->b_lru)) {
155 struct xfs_buftarg *btp = bp->b_target;
156
157 spin_lock(&btp->bt_lru_lock);
6fb8a90a
CM
158 if (!list_empty(&bp->b_lru) &&
159 !(bp->b_lru_flags & _XBF_LRU_DISPOSE)) {
430cbeb8
DC
160 list_del_init(&bp->b_lru);
161 btp->bt_lru_nr--;
162 atomic_dec(&bp->b_hold);
163 }
164 spin_unlock(&btp->bt_lru_lock);
165 }
166 ASSERT(atomic_read(&bp->b_hold) >= 1);
167}
1da177e4 168
3e85c868
DC
169static int
170xfs_buf_get_maps(
171 struct xfs_buf *bp,
172 int map_count)
173{
174 ASSERT(bp->b_maps == NULL);
175 bp->b_map_count = map_count;
176
177 if (map_count == 1) {
f4b42421 178 bp->b_maps = &bp->__b_map;
3e85c868
DC
179 return 0;
180 }
181
182 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
183 KM_NOFS);
184 if (!bp->b_maps)
185 return ENOMEM;
186 return 0;
187}
188
189/*
190 * Frees b_pages if it was allocated.
191 */
192static void
193xfs_buf_free_maps(
194 struct xfs_buf *bp)
195{
f4b42421 196 if (bp->b_maps != &bp->__b_map) {
3e85c868
DC
197 kmem_free(bp->b_maps);
198 bp->b_maps = NULL;
199 }
200}
201
4347b9d7 202struct xfs_buf *
3e85c868 203_xfs_buf_alloc(
4347b9d7 204 struct xfs_buftarg *target,
3e85c868
DC
205 struct xfs_buf_map *map,
206 int nmaps,
ce8e922c 207 xfs_buf_flags_t flags)
1da177e4 208{
4347b9d7 209 struct xfs_buf *bp;
3e85c868
DC
210 int error;
211 int i;
4347b9d7 212
aa5c158e 213 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
4347b9d7
CH
214 if (unlikely(!bp))
215 return NULL;
216
1da177e4 217 /*
12bcb3f7
DC
218 * We don't want certain flags to appear in b_flags unless they are
219 * specifically set by later operations on the buffer.
1da177e4 220 */
611c9946 221 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
ce8e922c 222
ce8e922c 223 atomic_set(&bp->b_hold, 1);
430cbeb8 224 atomic_set(&bp->b_lru_ref, 1);
b4dd330b 225 init_completion(&bp->b_iowait);
430cbeb8 226 INIT_LIST_HEAD(&bp->b_lru);
ce8e922c 227 INIT_LIST_HEAD(&bp->b_list);
74f75a0c 228 RB_CLEAR_NODE(&bp->b_rbnode);
a731cd11 229 sema_init(&bp->b_sema, 0); /* held, no waiters */
ce8e922c
NS
230 XB_SET_OWNER(bp);
231 bp->b_target = target;
3e85c868 232 bp->b_flags = flags;
de1cbee4 233
1da177e4 234 /*
aa0e8833
DC
235 * Set length and io_length to the same value initially.
236 * I/O routines should use io_length, which will be the same in
1da177e4
LT
237 * most cases but may be reset (e.g. XFS recovery).
238 */
3e85c868
DC
239 error = xfs_buf_get_maps(bp, nmaps);
240 if (error) {
241 kmem_zone_free(xfs_buf_zone, bp);
242 return NULL;
243 }
244
245 bp->b_bn = map[0].bm_bn;
246 bp->b_length = 0;
247 for (i = 0; i < nmaps; i++) {
248 bp->b_maps[i].bm_bn = map[i].bm_bn;
249 bp->b_maps[i].bm_len = map[i].bm_len;
250 bp->b_length += map[i].bm_len;
251 }
252 bp->b_io_length = bp->b_length;
253
ce8e922c
NS
254 atomic_set(&bp->b_pin_count, 0);
255 init_waitqueue_head(&bp->b_waiters);
256
257 XFS_STATS_INC(xb_create);
0b1b213f 258 trace_xfs_buf_init(bp, _RET_IP_);
4347b9d7
CH
259
260 return bp;
1da177e4
LT
261}
262
263/*
ce8e922c
NS
264 * Allocate a page array capable of holding a specified number
265 * of pages, and point the page buf at it.
1da177e4
LT
266 */
267STATIC int
ce8e922c
NS
268_xfs_buf_get_pages(
269 xfs_buf_t *bp,
1da177e4 270 int page_count,
ce8e922c 271 xfs_buf_flags_t flags)
1da177e4
LT
272{
273 /* Make sure that we have a page list */
ce8e922c 274 if (bp->b_pages == NULL) {
ce8e922c
NS
275 bp->b_page_count = page_count;
276 if (page_count <= XB_PAGES) {
277 bp->b_pages = bp->b_page_array;
1da177e4 278 } else {
ce8e922c 279 bp->b_pages = kmem_alloc(sizeof(struct page *) *
aa5c158e 280 page_count, KM_NOFS);
ce8e922c 281 if (bp->b_pages == NULL)
1da177e4
LT
282 return -ENOMEM;
283 }
ce8e922c 284 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
1da177e4
LT
285 }
286 return 0;
287}
288
289/*
ce8e922c 290 * Frees b_pages if it was allocated.
1da177e4
LT
291 */
292STATIC void
ce8e922c 293_xfs_buf_free_pages(
1da177e4
LT
294 xfs_buf_t *bp)
295{
ce8e922c 296 if (bp->b_pages != bp->b_page_array) {
f0e2d93c 297 kmem_free(bp->b_pages);
3fc98b1a 298 bp->b_pages = NULL;
1da177e4
LT
299 }
300}
301
302/*
303 * Releases the specified buffer.
304 *
305 * The modification state of any associated pages is left unchanged.
ce8e922c 306 * The buffer most not be on any hash - use xfs_buf_rele instead for
1da177e4
LT
307 * hashed and refcounted buffers
308 */
309void
ce8e922c 310xfs_buf_free(
1da177e4
LT
311 xfs_buf_t *bp)
312{
0b1b213f 313 trace_xfs_buf_free(bp, _RET_IP_);
1da177e4 314
430cbeb8
DC
315 ASSERT(list_empty(&bp->b_lru));
316
0e6e847f 317 if (bp->b_flags & _XBF_PAGES) {
1da177e4
LT
318 uint i;
319
73c77e2c 320 if (xfs_buf_is_vmapped(bp))
8a262e57
AE
321 vm_unmap_ram(bp->b_addr - bp->b_offset,
322 bp->b_page_count);
1da177e4 323
948ecdb4
NS
324 for (i = 0; i < bp->b_page_count; i++) {
325 struct page *page = bp->b_pages[i];
326
0e6e847f 327 __free_page(page);
948ecdb4 328 }
0e6e847f
DC
329 } else if (bp->b_flags & _XBF_KMEM)
330 kmem_free(bp->b_addr);
3fc98b1a 331 _xfs_buf_free_pages(bp);
3e85c868 332 xfs_buf_free_maps(bp);
4347b9d7 333 kmem_zone_free(xfs_buf_zone, bp);
1da177e4
LT
334}
335
336/*
0e6e847f 337 * Allocates all the pages for buffer in question and builds it's page list.
1da177e4
LT
338 */
339STATIC int
0e6e847f 340xfs_buf_allocate_memory(
1da177e4
LT
341 xfs_buf_t *bp,
342 uint flags)
343{
aa0e8833 344 size_t size;
1da177e4 345 size_t nbytes, offset;
ce8e922c 346 gfp_t gfp_mask = xb_to_gfp(flags);
1da177e4 347 unsigned short page_count, i;
795cac72 348 xfs_off_t start, end;
1da177e4
LT
349 int error;
350
0e6e847f
DC
351 /*
352 * for buffers that are contained within a single page, just allocate
353 * the memory from the heap - there's no need for the complexity of
354 * page arrays to keep allocation down to order 0.
355 */
795cac72
DC
356 size = BBTOB(bp->b_length);
357 if (size < PAGE_SIZE) {
aa5c158e 358 bp->b_addr = kmem_alloc(size, KM_NOFS);
0e6e847f
DC
359 if (!bp->b_addr) {
360 /* low memory - use alloc_page loop instead */
361 goto use_alloc_page;
362 }
363
795cac72 364 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
0e6e847f
DC
365 ((unsigned long)bp->b_addr & PAGE_MASK)) {
366 /* b_addr spans two pages - use alloc_page instead */
367 kmem_free(bp->b_addr);
368 bp->b_addr = NULL;
369 goto use_alloc_page;
370 }
371 bp->b_offset = offset_in_page(bp->b_addr);
372 bp->b_pages = bp->b_page_array;
373 bp->b_pages[0] = virt_to_page(bp->b_addr);
374 bp->b_page_count = 1;
611c9946 375 bp->b_flags |= _XBF_KMEM;
0e6e847f
DC
376 return 0;
377 }
378
379use_alloc_page:
f4b42421
MT
380 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
381 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
cbb7baab 382 >> PAGE_SHIFT;
795cac72 383 page_count = end - start;
ce8e922c 384 error = _xfs_buf_get_pages(bp, page_count, flags);
1da177e4
LT
385 if (unlikely(error))
386 return error;
1da177e4 387
ce8e922c 388 offset = bp->b_offset;
0e6e847f 389 bp->b_flags |= _XBF_PAGES;
1da177e4 390
ce8e922c 391 for (i = 0; i < bp->b_page_count; i++) {
1da177e4
LT
392 struct page *page;
393 uint retries = 0;
0e6e847f
DC
394retry:
395 page = alloc_page(gfp_mask);
1da177e4 396 if (unlikely(page == NULL)) {
ce8e922c
NS
397 if (flags & XBF_READ_AHEAD) {
398 bp->b_page_count = i;
0e6e847f
DC
399 error = ENOMEM;
400 goto out_free_pages;
1da177e4
LT
401 }
402
403 /*
404 * This could deadlock.
405 *
406 * But until all the XFS lowlevel code is revamped to
407 * handle buffer allocation failures we can't do much.
408 */
409 if (!(++retries % 100))
4f10700a
DC
410 xfs_err(NULL,
411 "possible memory allocation deadlock in %s (mode:0x%x)",
34a622b2 412 __func__, gfp_mask);
1da177e4 413
ce8e922c 414 XFS_STATS_INC(xb_page_retries);
8aa7e847 415 congestion_wait(BLK_RW_ASYNC, HZ/50);
1da177e4
LT
416 goto retry;
417 }
418
ce8e922c 419 XFS_STATS_INC(xb_page_found);
1da177e4 420
0e6e847f 421 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
1da177e4 422 size -= nbytes;
ce8e922c 423 bp->b_pages[i] = page;
1da177e4
LT
424 offset = 0;
425 }
0e6e847f 426 return 0;
1da177e4 427
0e6e847f
DC
428out_free_pages:
429 for (i = 0; i < bp->b_page_count; i++)
430 __free_page(bp->b_pages[i]);
1da177e4
LT
431 return error;
432}
433
434/*
25985edc 435 * Map buffer into kernel address-space if necessary.
1da177e4
LT
436 */
437STATIC int
ce8e922c 438_xfs_buf_map_pages(
1da177e4
LT
439 xfs_buf_t *bp,
440 uint flags)
441{
0e6e847f 442 ASSERT(bp->b_flags & _XBF_PAGES);
ce8e922c 443 if (bp->b_page_count == 1) {
0e6e847f 444 /* A single page buffer is always mappable */
ce8e922c 445 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
611c9946
DC
446 } else if (flags & XBF_UNMAPPED) {
447 bp->b_addr = NULL;
448 } else {
a19fb380
DC
449 int retried = 0;
450
451 do {
452 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
453 -1, PAGE_KERNEL);
454 if (bp->b_addr)
455 break;
456 vm_unmap_aliases();
457 } while (retried++ <= 1);
458
459 if (!bp->b_addr)
1da177e4 460 return -ENOMEM;
ce8e922c 461 bp->b_addr += bp->b_offset;
1da177e4
LT
462 }
463
464 return 0;
465}
466
467/*
468 * Finding and Reading Buffers
469 */
470
471/*
ce8e922c 472 * Look up, and creates if absent, a lockable buffer for
1da177e4 473 * a given range of an inode. The buffer is returned
eabbaf11 474 * locked. No I/O is implied by this call.
1da177e4
LT
475 */
476xfs_buf_t *
ce8e922c 477_xfs_buf_find(
e70b73f8 478 struct xfs_buftarg *btp,
3e85c868
DC
479 struct xfs_buf_map *map,
480 int nmaps,
ce8e922c
NS
481 xfs_buf_flags_t flags,
482 xfs_buf_t *new_bp)
1da177e4 483{
e70b73f8 484 size_t numbytes;
74f75a0c
DC
485 struct xfs_perag *pag;
486 struct rb_node **rbp;
487 struct rb_node *parent;
488 xfs_buf_t *bp;
3e85c868 489 xfs_daddr_t blkno = map[0].bm_bn;
10616b80 490 xfs_daddr_t eofs;
3e85c868
DC
491 int numblks = 0;
492 int i;
1da177e4 493
3e85c868
DC
494 for (i = 0; i < nmaps; i++)
495 numblks += map[i].bm_len;
e70b73f8 496 numbytes = BBTOB(numblks);
1da177e4
LT
497
498 /* Check for IOs smaller than the sector size / not sector aligned */
e70b73f8 499 ASSERT(!(numbytes < (1 << btp->bt_sshift)));
de1cbee4 500 ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_smask));
1da177e4 501
10616b80
DC
502 /*
503 * Corrupted block numbers can get through to here, unfortunately, so we
504 * have to check that the buffer falls within the filesystem bounds.
505 */
506 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
507 if (blkno >= eofs) {
508 /*
509 * XXX (dgc): we should really be returning EFSCORRUPTED here,
510 * but none of the higher level infrastructure supports
511 * returning a specific error on buffer lookup failures.
512 */
513 xfs_alert(btp->bt_mount,
514 "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
515 __func__, blkno, eofs);
7bc0dc27 516 WARN_ON(1);
10616b80
DC
517 return NULL;
518 }
519
74f75a0c
DC
520 /* get tree root */
521 pag = xfs_perag_get(btp->bt_mount,
e70b73f8 522 xfs_daddr_to_agno(btp->bt_mount, blkno));
74f75a0c
DC
523
524 /* walk tree */
525 spin_lock(&pag->pag_buf_lock);
526 rbp = &pag->pag_buf_tree.rb_node;
527 parent = NULL;
528 bp = NULL;
529 while (*rbp) {
530 parent = *rbp;
531 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
532
de1cbee4 533 if (blkno < bp->b_bn)
74f75a0c 534 rbp = &(*rbp)->rb_left;
de1cbee4 535 else if (blkno > bp->b_bn)
74f75a0c
DC
536 rbp = &(*rbp)->rb_right;
537 else {
538 /*
de1cbee4 539 * found a block number match. If the range doesn't
74f75a0c
DC
540 * match, the only way this is allowed is if the buffer
541 * in the cache is stale and the transaction that made
542 * it stale has not yet committed. i.e. we are
543 * reallocating a busy extent. Skip this buffer and
544 * continue searching to the right for an exact match.
545 */
4e94b71b 546 if (bp->b_length != numblks) {
74f75a0c
DC
547 ASSERT(bp->b_flags & XBF_STALE);
548 rbp = &(*rbp)->rb_right;
549 continue;
550 }
ce8e922c 551 atomic_inc(&bp->b_hold);
1da177e4
LT
552 goto found;
553 }
554 }
555
556 /* No match found */
ce8e922c 557 if (new_bp) {
74f75a0c
DC
558 rb_link_node(&new_bp->b_rbnode, parent, rbp);
559 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
560 /* the buffer keeps the perag reference until it is freed */
561 new_bp->b_pag = pag;
562 spin_unlock(&pag->pag_buf_lock);
1da177e4 563 } else {
ce8e922c 564 XFS_STATS_INC(xb_miss_locked);
74f75a0c
DC
565 spin_unlock(&pag->pag_buf_lock);
566 xfs_perag_put(pag);
1da177e4 567 }
ce8e922c 568 return new_bp;
1da177e4
LT
569
570found:
74f75a0c
DC
571 spin_unlock(&pag->pag_buf_lock);
572 xfs_perag_put(pag);
1da177e4 573
0c842ad4
CH
574 if (!xfs_buf_trylock(bp)) {
575 if (flags & XBF_TRYLOCK) {
ce8e922c
NS
576 xfs_buf_rele(bp);
577 XFS_STATS_INC(xb_busy_locked);
578 return NULL;
1da177e4 579 }
0c842ad4
CH
580 xfs_buf_lock(bp);
581 XFS_STATS_INC(xb_get_locked_waited);
1da177e4
LT
582 }
583
0e6e847f
DC
584 /*
585 * if the buffer is stale, clear all the external state associated with
586 * it. We need to keep flags such as how we allocated the buffer memory
587 * intact here.
588 */
ce8e922c
NS
589 if (bp->b_flags & XBF_STALE) {
590 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
cfb02852 591 ASSERT(bp->b_iodone == NULL);
611c9946 592 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
1813dd64 593 bp->b_ops = NULL;
2f926587 594 }
0b1b213f
CH
595
596 trace_xfs_buf_find(bp, flags, _RET_IP_);
ce8e922c
NS
597 XFS_STATS_INC(xb_get_locked);
598 return bp;
1da177e4
LT
599}
600
601/*
3815832a
DC
602 * Assembles a buffer covering the specified range. The code is optimised for
603 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
604 * more hits than misses.
1da177e4 605 */
3815832a 606struct xfs_buf *
6dde2707
DC
607xfs_buf_get_map(
608 struct xfs_buftarg *target,
609 struct xfs_buf_map *map,
610 int nmaps,
ce8e922c 611 xfs_buf_flags_t flags)
1da177e4 612{
3815832a
DC
613 struct xfs_buf *bp;
614 struct xfs_buf *new_bp;
0e6e847f 615 int error = 0;
1da177e4 616
6dde2707 617 bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
3815832a
DC
618 if (likely(bp))
619 goto found;
620
6dde2707 621 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
ce8e922c 622 if (unlikely(!new_bp))
1da177e4
LT
623 return NULL;
624
fe2429b0
DC
625 error = xfs_buf_allocate_memory(new_bp, flags);
626 if (error) {
3e85c868 627 xfs_buf_free(new_bp);
fe2429b0
DC
628 return NULL;
629 }
630
6dde2707 631 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
3815832a 632 if (!bp) {
fe2429b0 633 xfs_buf_free(new_bp);
3815832a
DC
634 return NULL;
635 }
636
fe2429b0
DC
637 if (bp != new_bp)
638 xfs_buf_free(new_bp);
1da177e4 639
3815832a 640found:
611c9946 641 if (!bp->b_addr) {
ce8e922c 642 error = _xfs_buf_map_pages(bp, flags);
1da177e4 643 if (unlikely(error)) {
4f10700a
DC
644 xfs_warn(target->bt_mount,
645 "%s: failed to map pages\n", __func__);
a8acad70
DC
646 xfs_buf_relse(bp);
647 return NULL;
1da177e4
LT
648 }
649 }
650
ce8e922c 651 XFS_STATS_INC(xb_get);
0b1b213f 652 trace_xfs_buf_get(bp, flags, _RET_IP_);
ce8e922c 653 return bp;
1da177e4
LT
654}
655
5d765b97
CH
656STATIC int
657_xfs_buf_read(
658 xfs_buf_t *bp,
659 xfs_buf_flags_t flags)
660{
43ff2122 661 ASSERT(!(flags & XBF_WRITE));
f4b42421 662 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
5d765b97 663
43ff2122 664 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
1d5ae5df 665 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
5d765b97 666
0e95f19a
DC
667 xfs_buf_iorequest(bp);
668 if (flags & XBF_ASYNC)
669 return 0;
ec53d1db 670 return xfs_buf_iowait(bp);
5d765b97
CH
671}
672
1da177e4 673xfs_buf_t *
6dde2707
DC
674xfs_buf_read_map(
675 struct xfs_buftarg *target,
676 struct xfs_buf_map *map,
677 int nmaps,
c3f8fc73 678 xfs_buf_flags_t flags,
1813dd64 679 const struct xfs_buf_ops *ops)
1da177e4 680{
6dde2707 681 struct xfs_buf *bp;
ce8e922c
NS
682
683 flags |= XBF_READ;
684
6dde2707 685 bp = xfs_buf_get_map(target, map, nmaps, flags);
ce8e922c 686 if (bp) {
0b1b213f
CH
687 trace_xfs_buf_read(bp, flags, _RET_IP_);
688
ce8e922c 689 if (!XFS_BUF_ISDONE(bp)) {
ce8e922c 690 XFS_STATS_INC(xb_get_read);
1813dd64 691 bp->b_ops = ops;
5d765b97 692 _xfs_buf_read(bp, flags);
ce8e922c 693 } else if (flags & XBF_ASYNC) {
1da177e4
LT
694 /*
695 * Read ahead call which is already satisfied,
696 * drop the buffer
697 */
a8acad70
DC
698 xfs_buf_relse(bp);
699 return NULL;
1da177e4 700 } else {
1da177e4 701 /* We do not want read in the flags */
ce8e922c 702 bp->b_flags &= ~XBF_READ;
1da177e4
LT
703 }
704 }
705
ce8e922c 706 return bp;
1da177e4
LT
707}
708
1da177e4 709/*
ce8e922c
NS
710 * If we are not low on memory then do the readahead in a deadlock
711 * safe manner.
1da177e4
LT
712 */
713void
6dde2707
DC
714xfs_buf_readahead_map(
715 struct xfs_buftarg *target,
716 struct xfs_buf_map *map,
c3f8fc73 717 int nmaps,
1813dd64 718 const struct xfs_buf_ops *ops)
1da177e4 719{
0e6e847f 720 if (bdi_read_congested(target->bt_bdi))
1da177e4
LT
721 return;
722
6dde2707 723 xfs_buf_read_map(target, map, nmaps,
1813dd64 724 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
1da177e4
LT
725}
726
5adc94c2
DC
727/*
728 * Read an uncached buffer from disk. Allocates and returns a locked
729 * buffer containing the disk contents or nothing.
730 */
731struct xfs_buf *
732xfs_buf_read_uncached(
5adc94c2
DC
733 struct xfs_buftarg *target,
734 xfs_daddr_t daddr,
e70b73f8 735 size_t numblks,
c3f8fc73 736 int flags,
1813dd64 737 const struct xfs_buf_ops *ops)
5adc94c2 738{
eab4e633 739 struct xfs_buf *bp;
5adc94c2 740
e70b73f8 741 bp = xfs_buf_get_uncached(target, numblks, flags);
5adc94c2
DC
742 if (!bp)
743 return NULL;
744
745 /* set up the buffer for a read IO */
3e85c868
DC
746 ASSERT(bp->b_map_count == 1);
747 bp->b_bn = daddr;
748 bp->b_maps[0].bm_bn = daddr;
cbb7baab 749 bp->b_flags |= XBF_READ;
1813dd64 750 bp->b_ops = ops;
5adc94c2 751
e70b73f8 752 xfsbdstrat(target->bt_mount, bp);
eab4e633 753 xfs_buf_iowait(bp);
5adc94c2 754 return bp;
1da177e4
LT
755}
756
44396476
DC
757/*
758 * Return a buffer allocated as an empty buffer and associated to external
759 * memory via xfs_buf_associate_memory() back to it's empty state.
760 */
761void
762xfs_buf_set_empty(
763 struct xfs_buf *bp,
e70b73f8 764 size_t numblks)
44396476
DC
765{
766 if (bp->b_pages)
767 _xfs_buf_free_pages(bp);
768
769 bp->b_pages = NULL;
770 bp->b_page_count = 0;
771 bp->b_addr = NULL;
4e94b71b 772 bp->b_length = numblks;
aa0e8833 773 bp->b_io_length = numblks;
3e85c868
DC
774
775 ASSERT(bp->b_map_count == 1);
44396476 776 bp->b_bn = XFS_BUF_DADDR_NULL;
3e85c868
DC
777 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
778 bp->b_maps[0].bm_len = bp->b_length;
44396476
DC
779}
780
1da177e4
LT
781static inline struct page *
782mem_to_page(
783 void *addr)
784{
9e2779fa 785 if ((!is_vmalloc_addr(addr))) {
1da177e4
LT
786 return virt_to_page(addr);
787 } else {
788 return vmalloc_to_page(addr);
789 }
790}
791
792int
ce8e922c
NS
793xfs_buf_associate_memory(
794 xfs_buf_t *bp,
1da177e4
LT
795 void *mem,
796 size_t len)
797{
798 int rval;
799 int i = 0;
d1afb678
LM
800 unsigned long pageaddr;
801 unsigned long offset;
802 size_t buflen;
1da177e4
LT
803 int page_count;
804
0e6e847f 805 pageaddr = (unsigned long)mem & PAGE_MASK;
d1afb678 806 offset = (unsigned long)mem - pageaddr;
0e6e847f
DC
807 buflen = PAGE_ALIGN(len + offset);
808 page_count = buflen >> PAGE_SHIFT;
1da177e4
LT
809
810 /* Free any previous set of page pointers */
ce8e922c
NS
811 if (bp->b_pages)
812 _xfs_buf_free_pages(bp);
1da177e4 813
ce8e922c
NS
814 bp->b_pages = NULL;
815 bp->b_addr = mem;
1da177e4 816
aa5c158e 817 rval = _xfs_buf_get_pages(bp, page_count, 0);
1da177e4
LT
818 if (rval)
819 return rval;
820
ce8e922c 821 bp->b_offset = offset;
d1afb678
LM
822
823 for (i = 0; i < bp->b_page_count; i++) {
824 bp->b_pages[i] = mem_to_page((void *)pageaddr);
0e6e847f 825 pageaddr += PAGE_SIZE;
1da177e4 826 }
1da177e4 827
aa0e8833 828 bp->b_io_length = BTOBB(len);
4e94b71b 829 bp->b_length = BTOBB(buflen);
1da177e4
LT
830
831 return 0;
832}
833
834xfs_buf_t *
686865f7
DC
835xfs_buf_get_uncached(
836 struct xfs_buftarg *target,
e70b73f8 837 size_t numblks,
686865f7 838 int flags)
1da177e4 839{
e70b73f8 840 unsigned long page_count;
1fa40b01 841 int error, i;
3e85c868
DC
842 struct xfs_buf *bp;
843 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
1da177e4 844
3e85c868 845 bp = _xfs_buf_alloc(target, &map, 1, 0);
1da177e4
LT
846 if (unlikely(bp == NULL))
847 goto fail;
1da177e4 848
e70b73f8 849 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
1fa40b01
CH
850 error = _xfs_buf_get_pages(bp, page_count, 0);
851 if (error)
1da177e4
LT
852 goto fail_free_buf;
853
1fa40b01 854 for (i = 0; i < page_count; i++) {
686865f7 855 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
1fa40b01
CH
856 if (!bp->b_pages[i])
857 goto fail_free_mem;
1da177e4 858 }
1fa40b01 859 bp->b_flags |= _XBF_PAGES;
1da177e4 860
611c9946 861 error = _xfs_buf_map_pages(bp, 0);
1fa40b01 862 if (unlikely(error)) {
4f10700a
DC
863 xfs_warn(target->bt_mount,
864 "%s: failed to map pages\n", __func__);
1da177e4 865 goto fail_free_mem;
1fa40b01 866 }
1da177e4 867
686865f7 868 trace_xfs_buf_get_uncached(bp, _RET_IP_);
1da177e4 869 return bp;
1fa40b01 870
1da177e4 871 fail_free_mem:
1fa40b01
CH
872 while (--i >= 0)
873 __free_page(bp->b_pages[i]);
ca165b88 874 _xfs_buf_free_pages(bp);
1da177e4 875 fail_free_buf:
3e85c868 876 xfs_buf_free_maps(bp);
4347b9d7 877 kmem_zone_free(xfs_buf_zone, bp);
1da177e4
LT
878 fail:
879 return NULL;
880}
881
882/*
1da177e4
LT
883 * Increment reference count on buffer, to hold the buffer concurrently
884 * with another thread which may release (free) the buffer asynchronously.
1da177e4
LT
885 * Must hold the buffer already to call this function.
886 */
887void
ce8e922c
NS
888xfs_buf_hold(
889 xfs_buf_t *bp)
1da177e4 890{
0b1b213f 891 trace_xfs_buf_hold(bp, _RET_IP_);
ce8e922c 892 atomic_inc(&bp->b_hold);
1da177e4
LT
893}
894
895/*
ce8e922c
NS
896 * Releases a hold on the specified buffer. If the
897 * the hold count is 1, calls xfs_buf_free.
1da177e4
LT
898 */
899void
ce8e922c
NS
900xfs_buf_rele(
901 xfs_buf_t *bp)
1da177e4 902{
74f75a0c 903 struct xfs_perag *pag = bp->b_pag;
1da177e4 904
0b1b213f 905 trace_xfs_buf_rele(bp, _RET_IP_);
1da177e4 906
74f75a0c 907 if (!pag) {
430cbeb8 908 ASSERT(list_empty(&bp->b_lru));
74f75a0c 909 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
fad3aa1e
NS
910 if (atomic_dec_and_test(&bp->b_hold))
911 xfs_buf_free(bp);
912 return;
913 }
914
74f75a0c 915 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
430cbeb8 916
3790689f 917 ASSERT(atomic_read(&bp->b_hold) > 0);
74f75a0c 918 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
bfc60177 919 if (!(bp->b_flags & XBF_STALE) &&
430cbeb8
DC
920 atomic_read(&bp->b_lru_ref)) {
921 xfs_buf_lru_add(bp);
922 spin_unlock(&pag->pag_buf_lock);
1da177e4 923 } else {
430cbeb8 924 xfs_buf_lru_del(bp);
43ff2122 925 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
74f75a0c
DC
926 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
927 spin_unlock(&pag->pag_buf_lock);
928 xfs_perag_put(pag);
ce8e922c 929 xfs_buf_free(bp);
1da177e4
LT
930 }
931 }
932}
933
934
935/*
0e6e847f 936 * Lock a buffer object, if it is not already locked.
90810b9e
DC
937 *
938 * If we come across a stale, pinned, locked buffer, we know that we are
939 * being asked to lock a buffer that has been reallocated. Because it is
940 * pinned, we know that the log has not been pushed to disk and hence it
941 * will still be locked. Rather than continuing to have trylock attempts
942 * fail until someone else pushes the log, push it ourselves before
943 * returning. This means that the xfsaild will not get stuck trying
944 * to push on stale inode buffers.
1da177e4
LT
945 */
946int
0c842ad4
CH
947xfs_buf_trylock(
948 struct xfs_buf *bp)
1da177e4
LT
949{
950 int locked;
951
ce8e922c 952 locked = down_trylock(&bp->b_sema) == 0;
0b1b213f 953 if (locked)
ce8e922c 954 XB_SET_OWNER(bp);
0b1b213f 955
0c842ad4
CH
956 trace_xfs_buf_trylock(bp, _RET_IP_);
957 return locked;
1da177e4 958}
1da177e4
LT
959
960/*
0e6e847f 961 * Lock a buffer object.
ed3b4d6c
DC
962 *
963 * If we come across a stale, pinned, locked buffer, we know that we
964 * are being asked to lock a buffer that has been reallocated. Because
965 * it is pinned, we know that the log has not been pushed to disk and
966 * hence it will still be locked. Rather than sleeping until someone
967 * else pushes the log, push it ourselves before trying to get the lock.
1da177e4 968 */
ce8e922c
NS
969void
970xfs_buf_lock(
0c842ad4 971 struct xfs_buf *bp)
1da177e4 972{
0b1b213f
CH
973 trace_xfs_buf_lock(bp, _RET_IP_);
974
ed3b4d6c 975 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
ebad861b 976 xfs_log_force(bp->b_target->bt_mount, 0);
ce8e922c
NS
977 down(&bp->b_sema);
978 XB_SET_OWNER(bp);
0b1b213f
CH
979
980 trace_xfs_buf_lock_done(bp, _RET_IP_);
1da177e4
LT
981}
982
1da177e4 983void
ce8e922c 984xfs_buf_unlock(
0c842ad4 985 struct xfs_buf *bp)
1da177e4 986{
ce8e922c
NS
987 XB_CLEAR_OWNER(bp);
988 up(&bp->b_sema);
0b1b213f
CH
989
990 trace_xfs_buf_unlock(bp, _RET_IP_);
1da177e4
LT
991}
992
ce8e922c
NS
993STATIC void
994xfs_buf_wait_unpin(
995 xfs_buf_t *bp)
1da177e4
LT
996{
997 DECLARE_WAITQUEUE (wait, current);
998
ce8e922c 999 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4
LT
1000 return;
1001
ce8e922c 1002 add_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
1003 for (;;) {
1004 set_current_state(TASK_UNINTERRUPTIBLE);
ce8e922c 1005 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4 1006 break;
7eaceacc 1007 io_schedule();
1da177e4 1008 }
ce8e922c 1009 remove_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
1010 set_current_state(TASK_RUNNING);
1011}
1012
1013/*
1014 * Buffer Utility Routines
1015 */
1016
1da177e4 1017STATIC void
ce8e922c 1018xfs_buf_iodone_work(
c4028958 1019 struct work_struct *work)
1da177e4 1020{
1813dd64 1021 struct xfs_buf *bp =
c4028958 1022 container_of(work, xfs_buf_t, b_iodone_work);
1813dd64
DC
1023 bool read = !!(bp->b_flags & XBF_READ);
1024
1025 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
d5929de8
DC
1026
1027 /* only validate buffers that were read without errors */
1028 if (read && bp->b_ops && !bp->b_error && (bp->b_flags & XBF_DONE))
1813dd64 1029 bp->b_ops->verify_read(bp);
1da177e4 1030
80f6c29d 1031 if (bp->b_iodone)
ce8e922c
NS
1032 (*(bp->b_iodone))(bp);
1033 else if (bp->b_flags & XBF_ASYNC)
1da177e4 1034 xfs_buf_relse(bp);
1813dd64
DC
1035 else {
1036 ASSERT(read && bp->b_ops);
1037 complete(&bp->b_iowait);
1038 }
1da177e4
LT
1039}
1040
1041void
ce8e922c 1042xfs_buf_ioend(
1813dd64
DC
1043 struct xfs_buf *bp,
1044 int schedule)
1da177e4 1045{
1813dd64
DC
1046 bool read = !!(bp->b_flags & XBF_READ);
1047
0b1b213f
CH
1048 trace_xfs_buf_iodone(bp, _RET_IP_);
1049
ce8e922c
NS
1050 if (bp->b_error == 0)
1051 bp->b_flags |= XBF_DONE;
1da177e4 1052
1813dd64 1053 if (bp->b_iodone || (read && bp->b_ops) || (bp->b_flags & XBF_ASYNC)) {
1da177e4 1054 if (schedule) {
c4028958 1055 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
ce8e922c 1056 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1da177e4 1057 } else {
c4028958 1058 xfs_buf_iodone_work(&bp->b_iodone_work);
1da177e4
LT
1059 }
1060 } else {
1813dd64 1061 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
b4dd330b 1062 complete(&bp->b_iowait);
1da177e4
LT
1063 }
1064}
1065
1da177e4 1066void
ce8e922c
NS
1067xfs_buf_ioerror(
1068 xfs_buf_t *bp,
1069 int error)
1da177e4
LT
1070{
1071 ASSERT(error >= 0 && error <= 0xffff);
ce8e922c 1072 bp->b_error = (unsigned short)error;
0b1b213f 1073 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1da177e4
LT
1074}
1075
901796af
CH
1076void
1077xfs_buf_ioerror_alert(
1078 struct xfs_buf *bp,
1079 const char *func)
1080{
1081 xfs_alert(bp->b_target->bt_mount,
aa0e8833
DC
1082"metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1083 (__uint64_t)XFS_BUF_ADDR(bp), func, bp->b_error, bp->b_length);
901796af
CH
1084}
1085
4e23471a
CH
1086/*
1087 * Called when we want to stop a buffer from getting written or read.
1a1a3e97 1088 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
4e23471a
CH
1089 * so that the proper iodone callbacks get called.
1090 */
1091STATIC int
1092xfs_bioerror(
1093 xfs_buf_t *bp)
1094{
1095#ifdef XFSERRORDEBUG
1096 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1097#endif
1098
1099 /*
1100 * No need to wait until the buffer is unpinned, we aren't flushing it.
1101 */
5a52c2a5 1102 xfs_buf_ioerror(bp, EIO);
4e23471a
CH
1103
1104 /*
1a1a3e97 1105 * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
4e23471a
CH
1106 */
1107 XFS_BUF_UNREAD(bp);
4e23471a 1108 XFS_BUF_UNDONE(bp);
c867cb61 1109 xfs_buf_stale(bp);
4e23471a 1110
1a1a3e97 1111 xfs_buf_ioend(bp, 0);
4e23471a
CH
1112
1113 return EIO;
1114}
1115
1116/*
1117 * Same as xfs_bioerror, except that we are releasing the buffer
1a1a3e97 1118 * here ourselves, and avoiding the xfs_buf_ioend call.
4e23471a
CH
1119 * This is meant for userdata errors; metadata bufs come with
1120 * iodone functions attached, so that we can track down errors.
1121 */
1122STATIC int
1123xfs_bioerror_relse(
1124 struct xfs_buf *bp)
1125{
ed43233b 1126 int64_t fl = bp->b_flags;
4e23471a
CH
1127 /*
1128 * No need to wait until the buffer is unpinned.
1129 * We aren't flushing it.
1130 *
1131 * chunkhold expects B_DONE to be set, whether
1132 * we actually finish the I/O or not. We don't want to
1133 * change that interface.
1134 */
1135 XFS_BUF_UNREAD(bp);
4e23471a 1136 XFS_BUF_DONE(bp);
c867cb61 1137 xfs_buf_stale(bp);
cb669ca5 1138 bp->b_iodone = NULL;
0cadda1c 1139 if (!(fl & XBF_ASYNC)) {
4e23471a
CH
1140 /*
1141 * Mark b_error and B_ERROR _both_.
1142 * Lot's of chunkcache code assumes that.
1143 * There's no reason to mark error for
1144 * ASYNC buffers.
1145 */
5a52c2a5 1146 xfs_buf_ioerror(bp, EIO);
5fde0326 1147 complete(&bp->b_iowait);
4e23471a
CH
1148 } else {
1149 xfs_buf_relse(bp);
1150 }
1151
1152 return EIO;
1153}
1154
a2dcf5df 1155STATIC int
4e23471a
CH
1156xfs_bdstrat_cb(
1157 struct xfs_buf *bp)
1158{
ebad861b 1159 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
4e23471a
CH
1160 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1161 /*
1162 * Metadata write that didn't get logged but
1163 * written delayed anyway. These aren't associated
1164 * with a transaction, and can be ignored.
1165 */
1166 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1167 return xfs_bioerror_relse(bp);
1168 else
1169 return xfs_bioerror(bp);
1170 }
1171
1172 xfs_buf_iorequest(bp);
1173 return 0;
1174}
1175
a2dcf5df
CH
1176int
1177xfs_bwrite(
1178 struct xfs_buf *bp)
1179{
1180 int error;
1181
1182 ASSERT(xfs_buf_islocked(bp));
1183
1184 bp->b_flags |= XBF_WRITE;
1185 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q);
1186
1187 xfs_bdstrat_cb(bp);
1188
1189 error = xfs_buf_iowait(bp);
1190 if (error) {
1191 xfs_force_shutdown(bp->b_target->bt_mount,
1192 SHUTDOWN_META_IO_ERROR);
1193 }
1194 return error;
1195}
1196
4e23471a
CH
1197/*
1198 * Wrapper around bdstrat so that we can stop data from going to disk in case
1199 * we are shutting down the filesystem. Typically user data goes thru this
1200 * path; one of the exceptions is the superblock.
1201 */
1202void
1203xfsbdstrat(
1204 struct xfs_mount *mp,
1205 struct xfs_buf *bp)
1206{
1207 if (XFS_FORCED_SHUTDOWN(mp)) {
1208 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1209 xfs_bioerror_relse(bp);
1210 return;
1211 }
1212
1213 xfs_buf_iorequest(bp);
1214}
1215
b8f82a4a 1216STATIC void
ce8e922c
NS
1217_xfs_buf_ioend(
1218 xfs_buf_t *bp,
1da177e4
LT
1219 int schedule)
1220{
0e6e847f 1221 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
ce8e922c 1222 xfs_buf_ioend(bp, schedule);
1da177e4
LT
1223}
1224
782e3b3b 1225STATIC void
ce8e922c 1226xfs_buf_bio_end_io(
1da177e4 1227 struct bio *bio,
1da177e4
LT
1228 int error)
1229{
ce8e922c 1230 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1da177e4 1231
37eb17e6
DC
1232 /*
1233 * don't overwrite existing errors - otherwise we can lose errors on
1234 * buffers that require multiple bios to complete.
1235 */
1236 if (!bp->b_error)
1237 xfs_buf_ioerror(bp, -error);
1da177e4 1238
37eb17e6 1239 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
73c77e2c
JB
1240 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1241
ce8e922c 1242 _xfs_buf_ioend(bp, 1);
1da177e4 1243 bio_put(bio);
1da177e4
LT
1244}
1245
3e85c868
DC
1246static void
1247xfs_buf_ioapply_map(
1248 struct xfs_buf *bp,
1249 int map,
1250 int *buf_offset,
1251 int *count,
1252 int rw)
1da177e4 1253{
3e85c868
DC
1254 int page_index;
1255 int total_nr_pages = bp->b_page_count;
1256 int nr_pages;
1257 struct bio *bio;
1258 sector_t sector = bp->b_maps[map].bm_bn;
1259 int size;
1260 int offset;
1da177e4 1261
ce8e922c 1262 total_nr_pages = bp->b_page_count;
1da177e4 1263
3e85c868
DC
1264 /* skip the pages in the buffer before the start offset */
1265 page_index = 0;
1266 offset = *buf_offset;
1267 while (offset >= PAGE_SIZE) {
1268 page_index++;
1269 offset -= PAGE_SIZE;
f538d4da
CH
1270 }
1271
3e85c868
DC
1272 /*
1273 * Limit the IO size to the length of the current vector, and update the
1274 * remaining IO count for the next time around.
1275 */
1276 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1277 *count -= size;
1278 *buf_offset += size;
34951f5c 1279
1da177e4 1280next_chunk:
ce8e922c 1281 atomic_inc(&bp->b_io_remaining);
1da177e4
LT
1282 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1283 if (nr_pages > total_nr_pages)
1284 nr_pages = total_nr_pages;
1285
1286 bio = bio_alloc(GFP_NOIO, nr_pages);
ce8e922c 1287 bio->bi_bdev = bp->b_target->bt_bdev;
1da177e4 1288 bio->bi_sector = sector;
ce8e922c
NS
1289 bio->bi_end_io = xfs_buf_bio_end_io;
1290 bio->bi_private = bp;
1da177e4 1291
0e6e847f 1292
3e85c868 1293 for (; size && nr_pages; nr_pages--, page_index++) {
0e6e847f 1294 int rbytes, nbytes = PAGE_SIZE - offset;
1da177e4
LT
1295
1296 if (nbytes > size)
1297 nbytes = size;
1298
3e85c868
DC
1299 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1300 offset);
ce8e922c 1301 if (rbytes < nbytes)
1da177e4
LT
1302 break;
1303
1304 offset = 0;
aa0e8833 1305 sector += BTOBB(nbytes);
1da177e4
LT
1306 size -= nbytes;
1307 total_nr_pages--;
1308 }
1309
1da177e4 1310 if (likely(bio->bi_size)) {
73c77e2c
JB
1311 if (xfs_buf_is_vmapped(bp)) {
1312 flush_kernel_vmap_range(bp->b_addr,
1313 xfs_buf_vmap_len(bp));
1314 }
1da177e4
LT
1315 submit_bio(rw, bio);
1316 if (size)
1317 goto next_chunk;
1318 } else {
37eb17e6
DC
1319 /*
1320 * This is guaranteed not to be the last io reference count
1321 * because the caller (xfs_buf_iorequest) holds a count itself.
1322 */
1323 atomic_dec(&bp->b_io_remaining);
ce8e922c 1324 xfs_buf_ioerror(bp, EIO);
ec53d1db 1325 bio_put(bio);
1da177e4 1326 }
3e85c868
DC
1327
1328}
1329
1330STATIC void
1331_xfs_buf_ioapply(
1332 struct xfs_buf *bp)
1333{
1334 struct blk_plug plug;
1335 int rw;
1336 int offset;
1337 int size;
1338 int i;
1339
c163f9a1
DC
1340 /*
1341 * Make sure we capture only current IO errors rather than stale errors
1342 * left over from previous use of the buffer (e.g. failed readahead).
1343 */
1344 bp->b_error = 0;
1345
3e85c868
DC
1346 if (bp->b_flags & XBF_WRITE) {
1347 if (bp->b_flags & XBF_SYNCIO)
1348 rw = WRITE_SYNC;
1349 else
1350 rw = WRITE;
1351 if (bp->b_flags & XBF_FUA)
1352 rw |= REQ_FUA;
1353 if (bp->b_flags & XBF_FLUSH)
1354 rw |= REQ_FLUSH;
1813dd64
DC
1355
1356 /*
1357 * Run the write verifier callback function if it exists. If
1358 * this function fails it will mark the buffer with an error and
1359 * the IO should not be dispatched.
1360 */
1361 if (bp->b_ops) {
1362 bp->b_ops->verify_write(bp);
1363 if (bp->b_error) {
1364 xfs_force_shutdown(bp->b_target->bt_mount,
1365 SHUTDOWN_CORRUPT_INCORE);
1366 return;
1367 }
1368 }
3e85c868
DC
1369 } else if (bp->b_flags & XBF_READ_AHEAD) {
1370 rw = READA;
1371 } else {
1372 rw = READ;
1373 }
1374
1375 /* we only use the buffer cache for meta-data */
1376 rw |= REQ_META;
1377
1378 /*
1379 * Walk all the vectors issuing IO on them. Set up the initial offset
1380 * into the buffer and the desired IO size before we start -
1381 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1382 * subsequent call.
1383 */
1384 offset = bp->b_offset;
1385 size = BBTOB(bp->b_io_length);
1386 blk_start_plug(&plug);
1387 for (i = 0; i < bp->b_map_count; i++) {
1388 xfs_buf_ioapply_map(bp, i, &offset, &size, rw);
1389 if (bp->b_error)
1390 break;
1391 if (size <= 0)
1392 break; /* all done */
1393 }
1394 blk_finish_plug(&plug);
1da177e4
LT
1395}
1396
0e95f19a 1397void
ce8e922c
NS
1398xfs_buf_iorequest(
1399 xfs_buf_t *bp)
1da177e4 1400{
0b1b213f 1401 trace_xfs_buf_iorequest(bp, _RET_IP_);
1da177e4 1402
43ff2122 1403 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1da177e4 1404
375ec69d 1405 if (bp->b_flags & XBF_WRITE)
ce8e922c 1406 xfs_buf_wait_unpin(bp);
ce8e922c 1407 xfs_buf_hold(bp);
1da177e4
LT
1408
1409 /* Set the count to 1 initially, this will stop an I/O
1410 * completion callout which happens before we have started
ce8e922c 1411 * all the I/O from calling xfs_buf_ioend too early.
1da177e4 1412 */
ce8e922c
NS
1413 atomic_set(&bp->b_io_remaining, 1);
1414 _xfs_buf_ioapply(bp);
08023d6d 1415 _xfs_buf_ioend(bp, 1);
1da177e4 1416
ce8e922c 1417 xfs_buf_rele(bp);
1da177e4
LT
1418}
1419
1420/*
0e95f19a
DC
1421 * Waits for I/O to complete on the buffer supplied. It returns immediately if
1422 * no I/O is pending or there is already a pending error on the buffer. It
1423 * returns the I/O error code, if any, or 0 if there was no error.
1da177e4
LT
1424 */
1425int
ce8e922c
NS
1426xfs_buf_iowait(
1427 xfs_buf_t *bp)
1da177e4 1428{
0b1b213f
CH
1429 trace_xfs_buf_iowait(bp, _RET_IP_);
1430
0e95f19a
DC
1431 if (!bp->b_error)
1432 wait_for_completion(&bp->b_iowait);
0b1b213f
CH
1433
1434 trace_xfs_buf_iowait_done(bp, _RET_IP_);
ce8e922c 1435 return bp->b_error;
1da177e4
LT
1436}
1437
ce8e922c
NS
1438xfs_caddr_t
1439xfs_buf_offset(
1440 xfs_buf_t *bp,
1da177e4
LT
1441 size_t offset)
1442{
1443 struct page *page;
1444
611c9946 1445 if (bp->b_addr)
62926044 1446 return bp->b_addr + offset;
1da177e4 1447
ce8e922c 1448 offset += bp->b_offset;
0e6e847f
DC
1449 page = bp->b_pages[offset >> PAGE_SHIFT];
1450 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1da177e4
LT
1451}
1452
1453/*
1da177e4
LT
1454 * Move data into or out of a buffer.
1455 */
1456void
ce8e922c
NS
1457xfs_buf_iomove(
1458 xfs_buf_t *bp, /* buffer to process */
1da177e4
LT
1459 size_t boff, /* starting buffer offset */
1460 size_t bsize, /* length to copy */
b9c48649 1461 void *data, /* data address */
ce8e922c 1462 xfs_buf_rw_t mode) /* read/write/zero flag */
1da177e4 1463{
795cac72 1464 size_t bend;
1da177e4
LT
1465
1466 bend = boff + bsize;
1467 while (boff < bend) {
795cac72
DC
1468 struct page *page;
1469 int page_index, page_offset, csize;
1470
1471 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1472 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1473 page = bp->b_pages[page_index];
1474 csize = min_t(size_t, PAGE_SIZE - page_offset,
1475 BBTOB(bp->b_io_length) - boff);
1da177e4 1476
795cac72 1477 ASSERT((csize + page_offset) <= PAGE_SIZE);
1da177e4
LT
1478
1479 switch (mode) {
ce8e922c 1480 case XBRW_ZERO:
795cac72 1481 memset(page_address(page) + page_offset, 0, csize);
1da177e4 1482 break;
ce8e922c 1483 case XBRW_READ:
795cac72 1484 memcpy(data, page_address(page) + page_offset, csize);
1da177e4 1485 break;
ce8e922c 1486 case XBRW_WRITE:
795cac72 1487 memcpy(page_address(page) + page_offset, data, csize);
1da177e4
LT
1488 }
1489
1490 boff += csize;
1491 data += csize;
1492 }
1493}
1494
1495/*
ce8e922c 1496 * Handling of buffer targets (buftargs).
1da177e4
LT
1497 */
1498
1499/*
430cbeb8
DC
1500 * Wait for any bufs with callbacks that have been submitted but have not yet
1501 * returned. These buffers will have an elevated hold count, so wait on those
1502 * while freeing all the buffers only held by the LRU.
1da177e4
LT
1503 */
1504void
1505xfs_wait_buftarg(
74f75a0c 1506 struct xfs_buftarg *btp)
1da177e4 1507{
430cbeb8
DC
1508 struct xfs_buf *bp;
1509
1510restart:
1511 spin_lock(&btp->bt_lru_lock);
1512 while (!list_empty(&btp->bt_lru)) {
1513 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1514 if (atomic_read(&bp->b_hold) > 1) {
3b19034d
DC
1515 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1516 list_move_tail(&bp->b_lru, &btp->bt_lru);
430cbeb8 1517 spin_unlock(&btp->bt_lru_lock);
26af6552 1518 delay(100);
430cbeb8 1519 goto restart;
1da177e4 1520 }
430cbeb8 1521 /*
90802ed9 1522 * clear the LRU reference count so the buffer doesn't get
430cbeb8
DC
1523 * ignored in xfs_buf_rele().
1524 */
1525 atomic_set(&bp->b_lru_ref, 0);
1526 spin_unlock(&btp->bt_lru_lock);
1527 xfs_buf_rele(bp);
1528 spin_lock(&btp->bt_lru_lock);
1da177e4 1529 }
430cbeb8 1530 spin_unlock(&btp->bt_lru_lock);
1da177e4
LT
1531}
1532
ff57ab21
DC
1533int
1534xfs_buftarg_shrink(
1535 struct shrinker *shrink,
1495f230 1536 struct shrink_control *sc)
a6867a68 1537{
ff57ab21
DC
1538 struct xfs_buftarg *btp = container_of(shrink,
1539 struct xfs_buftarg, bt_shrinker);
430cbeb8 1540 struct xfs_buf *bp;
1495f230 1541 int nr_to_scan = sc->nr_to_scan;
430cbeb8
DC
1542 LIST_HEAD(dispose);
1543
1544 if (!nr_to_scan)
1545 return btp->bt_lru_nr;
1546
1547 spin_lock(&btp->bt_lru_lock);
1548 while (!list_empty(&btp->bt_lru)) {
1549 if (nr_to_scan-- <= 0)
1550 break;
1551
1552 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1553
1554 /*
1555 * Decrement the b_lru_ref count unless the value is already
1556 * zero. If the value is already zero, we need to reclaim the
1557 * buffer, otherwise it gets another trip through the LRU.
1558 */
1559 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1560 list_move_tail(&bp->b_lru, &btp->bt_lru);
1561 continue;
1562 }
1563
1564 /*
1565 * remove the buffer from the LRU now to avoid needing another
1566 * lock round trip inside xfs_buf_rele().
1567 */
1568 list_move(&bp->b_lru, &dispose);
1569 btp->bt_lru_nr--;
6fb8a90a 1570 bp->b_lru_flags |= _XBF_LRU_DISPOSE;
ff57ab21 1571 }
430cbeb8
DC
1572 spin_unlock(&btp->bt_lru_lock);
1573
1574 while (!list_empty(&dispose)) {
1575 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1576 list_del_init(&bp->b_lru);
1577 xfs_buf_rele(bp);
1578 }
1579
1580 return btp->bt_lru_nr;
a6867a68
DC
1581}
1582
1da177e4
LT
1583void
1584xfs_free_buftarg(
b7963133
CH
1585 struct xfs_mount *mp,
1586 struct xfs_buftarg *btp)
1da177e4 1587{
ff57ab21
DC
1588 unregister_shrinker(&btp->bt_shrinker);
1589
b7963133
CH
1590 if (mp->m_flags & XFS_MOUNT_BARRIER)
1591 xfs_blkdev_issue_flush(btp);
a6867a68 1592
f0e2d93c 1593 kmem_free(btp);
1da177e4
LT
1594}
1595
1da177e4
LT
1596STATIC int
1597xfs_setsize_buftarg_flags(
1598 xfs_buftarg_t *btp,
1599 unsigned int blocksize,
1600 unsigned int sectorsize,
1601 int verbose)
1602{
ce8e922c
NS
1603 btp->bt_bsize = blocksize;
1604 btp->bt_sshift = ffs(sectorsize) - 1;
1605 btp->bt_smask = sectorsize - 1;
1da177e4 1606
ce8e922c 1607 if (set_blocksize(btp->bt_bdev, sectorsize)) {
02b102df
CH
1608 char name[BDEVNAME_SIZE];
1609
1610 bdevname(btp->bt_bdev, name);
1611
4f10700a
DC
1612 xfs_warn(btp->bt_mount,
1613 "Cannot set_blocksize to %u on device %s\n",
02b102df 1614 sectorsize, name);
1da177e4
LT
1615 return EINVAL;
1616 }
1617
1da177e4
LT
1618 return 0;
1619}
1620
1621/*
ce8e922c
NS
1622 * When allocating the initial buffer target we have not yet
1623 * read in the superblock, so don't know what sized sectors
1624 * are being used is at this early stage. Play safe.
1625 */
1da177e4
LT
1626STATIC int
1627xfs_setsize_buftarg_early(
1628 xfs_buftarg_t *btp,
1629 struct block_device *bdev)
1630{
1631 return xfs_setsize_buftarg_flags(btp,
0e6e847f 1632 PAGE_SIZE, bdev_logical_block_size(bdev), 0);
1da177e4
LT
1633}
1634
1635int
1636xfs_setsize_buftarg(
1637 xfs_buftarg_t *btp,
1638 unsigned int blocksize,
1639 unsigned int sectorsize)
1640{
1641 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1642}
1643
1da177e4
LT
1644xfs_buftarg_t *
1645xfs_alloc_buftarg(
ebad861b 1646 struct xfs_mount *mp,
1da177e4 1647 struct block_device *bdev,
e2a07812
JE
1648 int external,
1649 const char *fsname)
1da177e4
LT
1650{
1651 xfs_buftarg_t *btp;
1652
b17cb364 1653 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1da177e4 1654
ebad861b 1655 btp->bt_mount = mp;
ce8e922c
NS
1656 btp->bt_dev = bdev->bd_dev;
1657 btp->bt_bdev = bdev;
0e6e847f
DC
1658 btp->bt_bdi = blk_get_backing_dev_info(bdev);
1659 if (!btp->bt_bdi)
1660 goto error;
1661
430cbeb8
DC
1662 INIT_LIST_HEAD(&btp->bt_lru);
1663 spin_lock_init(&btp->bt_lru_lock);
1da177e4
LT
1664 if (xfs_setsize_buftarg_early(btp, bdev))
1665 goto error;
ff57ab21
DC
1666 btp->bt_shrinker.shrink = xfs_buftarg_shrink;
1667 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1668 register_shrinker(&btp->bt_shrinker);
1da177e4
LT
1669 return btp;
1670
1671error:
f0e2d93c 1672 kmem_free(btp);
1da177e4
LT
1673 return NULL;
1674}
1675
1da177e4 1676/*
43ff2122
CH
1677 * Add a buffer to the delayed write list.
1678 *
1679 * This queues a buffer for writeout if it hasn't already been. Note that
1680 * neither this routine nor the buffer list submission functions perform
1681 * any internal synchronization. It is expected that the lists are thread-local
1682 * to the callers.
1683 *
1684 * Returns true if we queued up the buffer, or false if it already had
1685 * been on the buffer list.
1da177e4 1686 */
43ff2122 1687bool
ce8e922c 1688xfs_buf_delwri_queue(
43ff2122
CH
1689 struct xfs_buf *bp,
1690 struct list_head *list)
1da177e4 1691{
43ff2122 1692 ASSERT(xfs_buf_islocked(bp));
5a8ee6ba 1693 ASSERT(!(bp->b_flags & XBF_READ));
1da177e4 1694
43ff2122
CH
1695 /*
1696 * If the buffer is already marked delwri it already is queued up
1697 * by someone else for imediate writeout. Just ignore it in that
1698 * case.
1699 */
1700 if (bp->b_flags & _XBF_DELWRI_Q) {
1701 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1702 return false;
1da177e4 1703 }
1da177e4 1704
43ff2122 1705 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
d808f617
DC
1706
1707 /*
43ff2122
CH
1708 * If a buffer gets written out synchronously or marked stale while it
1709 * is on a delwri list we lazily remove it. To do this, the other party
1710 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1711 * It remains referenced and on the list. In a rare corner case it
1712 * might get readded to a delwri list after the synchronous writeout, in
1713 * which case we need just need to re-add the flag here.
d808f617 1714 */
43ff2122
CH
1715 bp->b_flags |= _XBF_DELWRI_Q;
1716 if (list_empty(&bp->b_list)) {
1717 atomic_inc(&bp->b_hold);
1718 list_add_tail(&bp->b_list, list);
585e6d88 1719 }
585e6d88 1720
43ff2122 1721 return true;
585e6d88
DC
1722}
1723
089716aa
DC
1724/*
1725 * Compare function is more complex than it needs to be because
1726 * the return value is only 32 bits and we are doing comparisons
1727 * on 64 bit values
1728 */
1729static int
1730xfs_buf_cmp(
1731 void *priv,
1732 struct list_head *a,
1733 struct list_head *b)
1734{
1735 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1736 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1737 xfs_daddr_t diff;
1738
f4b42421 1739 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
089716aa
DC
1740 if (diff < 0)
1741 return -1;
1742 if (diff > 0)
1743 return 1;
1744 return 0;
1745}
1746
43ff2122
CH
1747static int
1748__xfs_buf_delwri_submit(
1749 struct list_head *buffer_list,
1750 struct list_head *io_list,
1751 bool wait)
1da177e4 1752{
43ff2122
CH
1753 struct blk_plug plug;
1754 struct xfs_buf *bp, *n;
1755 int pinned = 0;
1756
1757 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1758 if (!wait) {
1759 if (xfs_buf_ispinned(bp)) {
1760 pinned++;
1761 continue;
1762 }
1763 if (!xfs_buf_trylock(bp))
1764 continue;
1765 } else {
1766 xfs_buf_lock(bp);
1767 }
978c7b2f 1768
43ff2122
CH
1769 /*
1770 * Someone else might have written the buffer synchronously or
1771 * marked it stale in the meantime. In that case only the
1772 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1773 * reference and remove it from the list here.
1774 */
1775 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1776 list_del_init(&bp->b_list);
1777 xfs_buf_relse(bp);
1778 continue;
1779 }
c9c12971 1780
43ff2122
CH
1781 list_move_tail(&bp->b_list, io_list);
1782 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1783 }
1da177e4 1784
43ff2122 1785 list_sort(NULL, io_list, xfs_buf_cmp);
1da177e4 1786
43ff2122
CH
1787 blk_start_plug(&plug);
1788 list_for_each_entry_safe(bp, n, io_list, b_list) {
1789 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC);
1790 bp->b_flags |= XBF_WRITE;
a1b7ea5d 1791
43ff2122
CH
1792 if (!wait) {
1793 bp->b_flags |= XBF_ASYNC;
ce8e922c 1794 list_del_init(&bp->b_list);
1da177e4 1795 }
43ff2122
CH
1796 xfs_bdstrat_cb(bp);
1797 }
1798 blk_finish_plug(&plug);
1da177e4 1799
43ff2122 1800 return pinned;
1da177e4
LT
1801}
1802
1803/*
43ff2122
CH
1804 * Write out a buffer list asynchronously.
1805 *
1806 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1807 * out and not wait for I/O completion on any of the buffers. This interface
1808 * is only safely useable for callers that can track I/O completion by higher
1809 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1810 * function.
1da177e4
LT
1811 */
1812int
43ff2122
CH
1813xfs_buf_delwri_submit_nowait(
1814 struct list_head *buffer_list)
1da177e4 1815{
43ff2122
CH
1816 LIST_HEAD (io_list);
1817 return __xfs_buf_delwri_submit(buffer_list, &io_list, false);
1818}
1da177e4 1819
43ff2122
CH
1820/*
1821 * Write out a buffer list synchronously.
1822 *
1823 * This will take the @buffer_list, write all buffers out and wait for I/O
1824 * completion on all of the buffers. @buffer_list is consumed by the function,
1825 * so callers must have some other way of tracking buffers if they require such
1826 * functionality.
1827 */
1828int
1829xfs_buf_delwri_submit(
1830 struct list_head *buffer_list)
1831{
1832 LIST_HEAD (io_list);
1833 int error = 0, error2;
1834 struct xfs_buf *bp;
1da177e4 1835
43ff2122 1836 __xfs_buf_delwri_submit(buffer_list, &io_list, true);
1da177e4 1837
43ff2122
CH
1838 /* Wait for IO to complete. */
1839 while (!list_empty(&io_list)) {
1840 bp = list_first_entry(&io_list, struct xfs_buf, b_list);
a1b7ea5d 1841
089716aa 1842 list_del_init(&bp->b_list);
43ff2122
CH
1843 error2 = xfs_buf_iowait(bp);
1844 xfs_buf_relse(bp);
1845 if (!error)
1846 error = error2;
1da177e4
LT
1847 }
1848
43ff2122 1849 return error;
1da177e4
LT
1850}
1851
04d8b284 1852int __init
ce8e922c 1853xfs_buf_init(void)
1da177e4 1854{
8758280f
NS
1855 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1856 KM_ZONE_HWALIGN, NULL);
ce8e922c 1857 if (!xfs_buf_zone)
0b1b213f 1858 goto out;
04d8b284 1859
51749e47 1860 xfslogd_workqueue = alloc_workqueue("xfslogd",
6370a6ad 1861 WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
23ea4032 1862 if (!xfslogd_workqueue)
04d8b284 1863 goto out_free_buf_zone;
1da177e4 1864
23ea4032 1865 return 0;
1da177e4 1866
23ea4032 1867 out_free_buf_zone:
ce8e922c 1868 kmem_zone_destroy(xfs_buf_zone);
0b1b213f 1869 out:
8758280f 1870 return -ENOMEM;
1da177e4
LT
1871}
1872
1da177e4 1873void
ce8e922c 1874xfs_buf_terminate(void)
1da177e4 1875{
04d8b284 1876 destroy_workqueue(xfslogd_workqueue);
ce8e922c 1877 kmem_zone_destroy(xfs_buf_zone);
1da177e4 1878}