xfs: Add verifiers to dir2 data readahead.
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / xfs / xfs_buf.c
CommitLineData
1da177e4 1/*
f07c2250 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
93c189c1 18#include "xfs.h"
1da177e4
LT
19#include <linux/stddef.h>
20#include <linux/errno.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/pagemap.h>
23#include <linux/init.h>
24#include <linux/vmalloc.h>
25#include <linux/bio.h>
26#include <linux/sysctl.h>
27#include <linux/proc_fs.h>
28#include <linux/workqueue.h>
29#include <linux/percpu.h>
30#include <linux/blkdev.h>
31#include <linux/hash.h>
4df08c52 32#include <linux/kthread.h>
b20a3503 33#include <linux/migrate.h>
3fcfab16 34#include <linux/backing-dev.h>
7dfb7103 35#include <linux/freezer.h>
1da177e4 36
b7963133 37#include "xfs_sb.h"
ed3b4d6c 38#include "xfs_log.h"
b7963133 39#include "xfs_ag.h"
b7963133 40#include "xfs_mount.h"
0b1b213f 41#include "xfs_trace.h"
b7963133 42
7989cb8e 43static kmem_zone_t *xfs_buf_zone;
23ea4032 44
7989cb8e 45static struct workqueue_struct *xfslogd_workqueue;
1da177e4 46
ce8e922c
NS
47#ifdef XFS_BUF_LOCK_TRACKING
48# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
49# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
50# define XB_GET_OWNER(bp) ((bp)->b_last_holder)
1da177e4 51#else
ce8e922c
NS
52# define XB_SET_OWNER(bp) do { } while (0)
53# define XB_CLEAR_OWNER(bp) do { } while (0)
54# define XB_GET_OWNER(bp) do { } while (0)
1da177e4
LT
55#endif
56
ce8e922c 57#define xb_to_gfp(flags) \
aa5c158e 58 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
1da177e4 59
1da177e4 60
73c77e2c
JB
61static inline int
62xfs_buf_is_vmapped(
63 struct xfs_buf *bp)
64{
65 /*
66 * Return true if the buffer is vmapped.
67 *
611c9946
DC
68 * b_addr is null if the buffer is not mapped, but the code is clever
69 * enough to know it doesn't have to map a single page, so the check has
70 * to be both for b_addr and bp->b_page_count > 1.
73c77e2c 71 */
611c9946 72 return bp->b_addr && bp->b_page_count > 1;
73c77e2c
JB
73}
74
75static inline int
76xfs_buf_vmap_len(
77 struct xfs_buf *bp)
78{
79 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
80}
81
1da177e4 82/*
430cbeb8
DC
83 * xfs_buf_lru_add - add a buffer to the LRU.
84 *
85 * The LRU takes a new reference to the buffer so that it will only be freed
86 * once the shrinker takes the buffer off the LRU.
87 */
88STATIC void
89xfs_buf_lru_add(
90 struct xfs_buf *bp)
91{
92 struct xfs_buftarg *btp = bp->b_target;
93
94 spin_lock(&btp->bt_lru_lock);
95 if (list_empty(&bp->b_lru)) {
96 atomic_inc(&bp->b_hold);
97 list_add_tail(&bp->b_lru, &btp->bt_lru);
98 btp->bt_lru_nr++;
6fb8a90a 99 bp->b_lru_flags &= ~_XBF_LRU_DISPOSE;
430cbeb8
DC
100 }
101 spin_unlock(&btp->bt_lru_lock);
102}
103
104/*
105 * xfs_buf_lru_del - remove a buffer from the LRU
106 *
107 * The unlocked check is safe here because it only occurs when there are not
108 * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
109 * to optimise the shrinker removing the buffer from the LRU and calling
25985edc 110 * xfs_buf_free(). i.e. it removes an unnecessary round trip on the
430cbeb8 111 * bt_lru_lock.
1da177e4 112 */
430cbeb8
DC
113STATIC void
114xfs_buf_lru_del(
115 struct xfs_buf *bp)
116{
117 struct xfs_buftarg *btp = bp->b_target;
118
119 if (list_empty(&bp->b_lru))
120 return;
121
122 spin_lock(&btp->bt_lru_lock);
123 if (!list_empty(&bp->b_lru)) {
124 list_del_init(&bp->b_lru);
125 btp->bt_lru_nr--;
126 }
127 spin_unlock(&btp->bt_lru_lock);
128}
129
130/*
131 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
132 * b_lru_ref count so that the buffer is freed immediately when the buffer
133 * reference count falls to zero. If the buffer is already on the LRU, we need
134 * to remove the reference that LRU holds on the buffer.
135 *
136 * This prevents build-up of stale buffers on the LRU.
137 */
138void
139xfs_buf_stale(
140 struct xfs_buf *bp)
141{
43ff2122
CH
142 ASSERT(xfs_buf_islocked(bp));
143
430cbeb8 144 bp->b_flags |= XBF_STALE;
43ff2122
CH
145
146 /*
147 * Clear the delwri status so that a delwri queue walker will not
148 * flush this buffer to disk now that it is stale. The delwri queue has
149 * a reference to the buffer, so this is safe to do.
150 */
151 bp->b_flags &= ~_XBF_DELWRI_Q;
152
430cbeb8
DC
153 atomic_set(&(bp)->b_lru_ref, 0);
154 if (!list_empty(&bp->b_lru)) {
155 struct xfs_buftarg *btp = bp->b_target;
156
157 spin_lock(&btp->bt_lru_lock);
6fb8a90a
CM
158 if (!list_empty(&bp->b_lru) &&
159 !(bp->b_lru_flags & _XBF_LRU_DISPOSE)) {
430cbeb8
DC
160 list_del_init(&bp->b_lru);
161 btp->bt_lru_nr--;
162 atomic_dec(&bp->b_hold);
163 }
164 spin_unlock(&btp->bt_lru_lock);
165 }
166 ASSERT(atomic_read(&bp->b_hold) >= 1);
167}
1da177e4 168
3e85c868
DC
169static int
170xfs_buf_get_maps(
171 struct xfs_buf *bp,
172 int map_count)
173{
174 ASSERT(bp->b_maps == NULL);
175 bp->b_map_count = map_count;
176
177 if (map_count == 1) {
178 bp->b_maps = &bp->b_map;
179 return 0;
180 }
181
182 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
183 KM_NOFS);
184 if (!bp->b_maps)
185 return ENOMEM;
186 return 0;
187}
188
189/*
190 * Frees b_pages if it was allocated.
191 */
192static void
193xfs_buf_free_maps(
194 struct xfs_buf *bp)
195{
196 if (bp->b_maps != &bp->b_map) {
197 kmem_free(bp->b_maps);
198 bp->b_maps = NULL;
199 }
200}
201
4347b9d7 202struct xfs_buf *
3e85c868 203_xfs_buf_alloc(
4347b9d7 204 struct xfs_buftarg *target,
3e85c868
DC
205 struct xfs_buf_map *map,
206 int nmaps,
ce8e922c 207 xfs_buf_flags_t flags)
1da177e4 208{
4347b9d7 209 struct xfs_buf *bp;
3e85c868
DC
210 int error;
211 int i;
4347b9d7 212
aa5c158e 213 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
4347b9d7
CH
214 if (unlikely(!bp))
215 return NULL;
216
1da177e4 217 /*
12bcb3f7
DC
218 * We don't want certain flags to appear in b_flags unless they are
219 * specifically set by later operations on the buffer.
1da177e4 220 */
611c9946 221 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
ce8e922c 222
ce8e922c 223 atomic_set(&bp->b_hold, 1);
430cbeb8 224 atomic_set(&bp->b_lru_ref, 1);
b4dd330b 225 init_completion(&bp->b_iowait);
430cbeb8 226 INIT_LIST_HEAD(&bp->b_lru);
ce8e922c 227 INIT_LIST_HEAD(&bp->b_list);
74f75a0c 228 RB_CLEAR_NODE(&bp->b_rbnode);
a731cd11 229 sema_init(&bp->b_sema, 0); /* held, no waiters */
ce8e922c
NS
230 XB_SET_OWNER(bp);
231 bp->b_target = target;
3e85c868 232 bp->b_flags = flags;
de1cbee4 233
1da177e4 234 /*
aa0e8833
DC
235 * Set length and io_length to the same value initially.
236 * I/O routines should use io_length, which will be the same in
1da177e4
LT
237 * most cases but may be reset (e.g. XFS recovery).
238 */
3e85c868
DC
239 error = xfs_buf_get_maps(bp, nmaps);
240 if (error) {
241 kmem_zone_free(xfs_buf_zone, bp);
242 return NULL;
243 }
244
245 bp->b_bn = map[0].bm_bn;
246 bp->b_length = 0;
247 for (i = 0; i < nmaps; i++) {
248 bp->b_maps[i].bm_bn = map[i].bm_bn;
249 bp->b_maps[i].bm_len = map[i].bm_len;
250 bp->b_length += map[i].bm_len;
251 }
252 bp->b_io_length = bp->b_length;
253
ce8e922c
NS
254 atomic_set(&bp->b_pin_count, 0);
255 init_waitqueue_head(&bp->b_waiters);
256
257 XFS_STATS_INC(xb_create);
0b1b213f 258 trace_xfs_buf_init(bp, _RET_IP_);
4347b9d7
CH
259
260 return bp;
1da177e4
LT
261}
262
263/*
ce8e922c
NS
264 * Allocate a page array capable of holding a specified number
265 * of pages, and point the page buf at it.
1da177e4
LT
266 */
267STATIC int
ce8e922c
NS
268_xfs_buf_get_pages(
269 xfs_buf_t *bp,
1da177e4 270 int page_count,
ce8e922c 271 xfs_buf_flags_t flags)
1da177e4
LT
272{
273 /* Make sure that we have a page list */
ce8e922c 274 if (bp->b_pages == NULL) {
ce8e922c
NS
275 bp->b_page_count = page_count;
276 if (page_count <= XB_PAGES) {
277 bp->b_pages = bp->b_page_array;
1da177e4 278 } else {
ce8e922c 279 bp->b_pages = kmem_alloc(sizeof(struct page *) *
aa5c158e 280 page_count, KM_NOFS);
ce8e922c 281 if (bp->b_pages == NULL)
1da177e4
LT
282 return -ENOMEM;
283 }
ce8e922c 284 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
1da177e4
LT
285 }
286 return 0;
287}
288
289/*
ce8e922c 290 * Frees b_pages if it was allocated.
1da177e4
LT
291 */
292STATIC void
ce8e922c 293_xfs_buf_free_pages(
1da177e4
LT
294 xfs_buf_t *bp)
295{
ce8e922c 296 if (bp->b_pages != bp->b_page_array) {
f0e2d93c 297 kmem_free(bp->b_pages);
3fc98b1a 298 bp->b_pages = NULL;
1da177e4
LT
299 }
300}
301
302/*
303 * Releases the specified buffer.
304 *
305 * The modification state of any associated pages is left unchanged.
ce8e922c 306 * The buffer most not be on any hash - use xfs_buf_rele instead for
1da177e4
LT
307 * hashed and refcounted buffers
308 */
309void
ce8e922c 310xfs_buf_free(
1da177e4
LT
311 xfs_buf_t *bp)
312{
0b1b213f 313 trace_xfs_buf_free(bp, _RET_IP_);
1da177e4 314
430cbeb8
DC
315 ASSERT(list_empty(&bp->b_lru));
316
0e6e847f 317 if (bp->b_flags & _XBF_PAGES) {
1da177e4
LT
318 uint i;
319
73c77e2c 320 if (xfs_buf_is_vmapped(bp))
8a262e57
AE
321 vm_unmap_ram(bp->b_addr - bp->b_offset,
322 bp->b_page_count);
1da177e4 323
948ecdb4
NS
324 for (i = 0; i < bp->b_page_count; i++) {
325 struct page *page = bp->b_pages[i];
326
0e6e847f 327 __free_page(page);
948ecdb4 328 }
0e6e847f
DC
329 } else if (bp->b_flags & _XBF_KMEM)
330 kmem_free(bp->b_addr);
3fc98b1a 331 _xfs_buf_free_pages(bp);
3e85c868 332 xfs_buf_free_maps(bp);
4347b9d7 333 kmem_zone_free(xfs_buf_zone, bp);
1da177e4
LT
334}
335
336/*
0e6e847f 337 * Allocates all the pages for buffer in question and builds it's page list.
1da177e4
LT
338 */
339STATIC int
0e6e847f 340xfs_buf_allocate_memory(
1da177e4
LT
341 xfs_buf_t *bp,
342 uint flags)
343{
aa0e8833 344 size_t size;
1da177e4 345 size_t nbytes, offset;
ce8e922c 346 gfp_t gfp_mask = xb_to_gfp(flags);
1da177e4 347 unsigned short page_count, i;
795cac72 348 xfs_off_t start, end;
1da177e4
LT
349 int error;
350
0e6e847f
DC
351 /*
352 * for buffers that are contained within a single page, just allocate
353 * the memory from the heap - there's no need for the complexity of
354 * page arrays to keep allocation down to order 0.
355 */
795cac72
DC
356 size = BBTOB(bp->b_length);
357 if (size < PAGE_SIZE) {
aa5c158e 358 bp->b_addr = kmem_alloc(size, KM_NOFS);
0e6e847f
DC
359 if (!bp->b_addr) {
360 /* low memory - use alloc_page loop instead */
361 goto use_alloc_page;
362 }
363
795cac72 364 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
0e6e847f
DC
365 ((unsigned long)bp->b_addr & PAGE_MASK)) {
366 /* b_addr spans two pages - use alloc_page instead */
367 kmem_free(bp->b_addr);
368 bp->b_addr = NULL;
369 goto use_alloc_page;
370 }
371 bp->b_offset = offset_in_page(bp->b_addr);
372 bp->b_pages = bp->b_page_array;
373 bp->b_pages[0] = virt_to_page(bp->b_addr);
374 bp->b_page_count = 1;
611c9946 375 bp->b_flags |= _XBF_KMEM;
0e6e847f
DC
376 return 0;
377 }
378
379use_alloc_page:
cbb7baab
DC
380 start = BBTOB(bp->b_map.bm_bn) >> PAGE_SHIFT;
381 end = (BBTOB(bp->b_map.bm_bn + bp->b_length) + PAGE_SIZE - 1)
382 >> PAGE_SHIFT;
795cac72 383 page_count = end - start;
ce8e922c 384 error = _xfs_buf_get_pages(bp, page_count, flags);
1da177e4
LT
385 if (unlikely(error))
386 return error;
1da177e4 387
ce8e922c 388 offset = bp->b_offset;
0e6e847f 389 bp->b_flags |= _XBF_PAGES;
1da177e4 390
ce8e922c 391 for (i = 0; i < bp->b_page_count; i++) {
1da177e4
LT
392 struct page *page;
393 uint retries = 0;
0e6e847f
DC
394retry:
395 page = alloc_page(gfp_mask);
1da177e4 396 if (unlikely(page == NULL)) {
ce8e922c
NS
397 if (flags & XBF_READ_AHEAD) {
398 bp->b_page_count = i;
0e6e847f
DC
399 error = ENOMEM;
400 goto out_free_pages;
1da177e4
LT
401 }
402
403 /*
404 * This could deadlock.
405 *
406 * But until all the XFS lowlevel code is revamped to
407 * handle buffer allocation failures we can't do much.
408 */
409 if (!(++retries % 100))
4f10700a
DC
410 xfs_err(NULL,
411 "possible memory allocation deadlock in %s (mode:0x%x)",
34a622b2 412 __func__, gfp_mask);
1da177e4 413
ce8e922c 414 XFS_STATS_INC(xb_page_retries);
8aa7e847 415 congestion_wait(BLK_RW_ASYNC, HZ/50);
1da177e4
LT
416 goto retry;
417 }
418
ce8e922c 419 XFS_STATS_INC(xb_page_found);
1da177e4 420
0e6e847f 421 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
1da177e4 422 size -= nbytes;
ce8e922c 423 bp->b_pages[i] = page;
1da177e4
LT
424 offset = 0;
425 }
0e6e847f 426 return 0;
1da177e4 427
0e6e847f
DC
428out_free_pages:
429 for (i = 0; i < bp->b_page_count; i++)
430 __free_page(bp->b_pages[i]);
1da177e4
LT
431 return error;
432}
433
434/*
25985edc 435 * Map buffer into kernel address-space if necessary.
1da177e4
LT
436 */
437STATIC int
ce8e922c 438_xfs_buf_map_pages(
1da177e4
LT
439 xfs_buf_t *bp,
440 uint flags)
441{
0e6e847f 442 ASSERT(bp->b_flags & _XBF_PAGES);
ce8e922c 443 if (bp->b_page_count == 1) {
0e6e847f 444 /* A single page buffer is always mappable */
ce8e922c 445 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
611c9946
DC
446 } else if (flags & XBF_UNMAPPED) {
447 bp->b_addr = NULL;
448 } else {
a19fb380
DC
449 int retried = 0;
450
451 do {
452 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
453 -1, PAGE_KERNEL);
454 if (bp->b_addr)
455 break;
456 vm_unmap_aliases();
457 } while (retried++ <= 1);
458
459 if (!bp->b_addr)
1da177e4 460 return -ENOMEM;
ce8e922c 461 bp->b_addr += bp->b_offset;
1da177e4
LT
462 }
463
464 return 0;
465}
466
467/*
468 * Finding and Reading Buffers
469 */
470
471/*
ce8e922c 472 * Look up, and creates if absent, a lockable buffer for
1da177e4 473 * a given range of an inode. The buffer is returned
eabbaf11 474 * locked. No I/O is implied by this call.
1da177e4
LT
475 */
476xfs_buf_t *
ce8e922c 477_xfs_buf_find(
e70b73f8 478 struct xfs_buftarg *btp,
3e85c868
DC
479 struct xfs_buf_map *map,
480 int nmaps,
ce8e922c
NS
481 xfs_buf_flags_t flags,
482 xfs_buf_t *new_bp)
1da177e4 483{
e70b73f8 484 size_t numbytes;
74f75a0c
DC
485 struct xfs_perag *pag;
486 struct rb_node **rbp;
487 struct rb_node *parent;
488 xfs_buf_t *bp;
3e85c868
DC
489 xfs_daddr_t blkno = map[0].bm_bn;
490 int numblks = 0;
491 int i;
1da177e4 492
3e85c868
DC
493 for (i = 0; i < nmaps; i++)
494 numblks += map[i].bm_len;
e70b73f8 495 numbytes = BBTOB(numblks);
1da177e4
LT
496
497 /* Check for IOs smaller than the sector size / not sector aligned */
e70b73f8 498 ASSERT(!(numbytes < (1 << btp->bt_sshift)));
de1cbee4 499 ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_smask));
1da177e4 500
74f75a0c
DC
501 /* get tree root */
502 pag = xfs_perag_get(btp->bt_mount,
e70b73f8 503 xfs_daddr_to_agno(btp->bt_mount, blkno));
74f75a0c
DC
504
505 /* walk tree */
506 spin_lock(&pag->pag_buf_lock);
507 rbp = &pag->pag_buf_tree.rb_node;
508 parent = NULL;
509 bp = NULL;
510 while (*rbp) {
511 parent = *rbp;
512 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
513
de1cbee4 514 if (blkno < bp->b_bn)
74f75a0c 515 rbp = &(*rbp)->rb_left;
de1cbee4 516 else if (blkno > bp->b_bn)
74f75a0c
DC
517 rbp = &(*rbp)->rb_right;
518 else {
519 /*
de1cbee4 520 * found a block number match. If the range doesn't
74f75a0c
DC
521 * match, the only way this is allowed is if the buffer
522 * in the cache is stale and the transaction that made
523 * it stale has not yet committed. i.e. we are
524 * reallocating a busy extent. Skip this buffer and
525 * continue searching to the right for an exact match.
526 */
4e94b71b 527 if (bp->b_length != numblks) {
74f75a0c
DC
528 ASSERT(bp->b_flags & XBF_STALE);
529 rbp = &(*rbp)->rb_right;
530 continue;
531 }
ce8e922c 532 atomic_inc(&bp->b_hold);
1da177e4
LT
533 goto found;
534 }
535 }
536
537 /* No match found */
ce8e922c 538 if (new_bp) {
74f75a0c
DC
539 rb_link_node(&new_bp->b_rbnode, parent, rbp);
540 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
541 /* the buffer keeps the perag reference until it is freed */
542 new_bp->b_pag = pag;
543 spin_unlock(&pag->pag_buf_lock);
1da177e4 544 } else {
ce8e922c 545 XFS_STATS_INC(xb_miss_locked);
74f75a0c
DC
546 spin_unlock(&pag->pag_buf_lock);
547 xfs_perag_put(pag);
1da177e4 548 }
ce8e922c 549 return new_bp;
1da177e4
LT
550
551found:
74f75a0c
DC
552 spin_unlock(&pag->pag_buf_lock);
553 xfs_perag_put(pag);
1da177e4 554
0c842ad4
CH
555 if (!xfs_buf_trylock(bp)) {
556 if (flags & XBF_TRYLOCK) {
ce8e922c
NS
557 xfs_buf_rele(bp);
558 XFS_STATS_INC(xb_busy_locked);
559 return NULL;
1da177e4 560 }
0c842ad4
CH
561 xfs_buf_lock(bp);
562 XFS_STATS_INC(xb_get_locked_waited);
1da177e4
LT
563 }
564
0e6e847f
DC
565 /*
566 * if the buffer is stale, clear all the external state associated with
567 * it. We need to keep flags such as how we allocated the buffer memory
568 * intact here.
569 */
ce8e922c
NS
570 if (bp->b_flags & XBF_STALE) {
571 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
611c9946 572 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
2f926587 573 }
0b1b213f
CH
574
575 trace_xfs_buf_find(bp, flags, _RET_IP_);
ce8e922c
NS
576 XFS_STATS_INC(xb_get_locked);
577 return bp;
1da177e4
LT
578}
579
580/*
3815832a
DC
581 * Assembles a buffer covering the specified range. The code is optimised for
582 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
583 * more hits than misses.
1da177e4 584 */
3815832a 585struct xfs_buf *
6dde2707
DC
586xfs_buf_get_map(
587 struct xfs_buftarg *target,
588 struct xfs_buf_map *map,
589 int nmaps,
ce8e922c 590 xfs_buf_flags_t flags)
1da177e4 591{
3815832a
DC
592 struct xfs_buf *bp;
593 struct xfs_buf *new_bp;
0e6e847f 594 int error = 0;
1da177e4 595
6dde2707 596 bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
3815832a
DC
597 if (likely(bp))
598 goto found;
599
6dde2707 600 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
ce8e922c 601 if (unlikely(!new_bp))
1da177e4
LT
602 return NULL;
603
fe2429b0
DC
604 error = xfs_buf_allocate_memory(new_bp, flags);
605 if (error) {
3e85c868 606 xfs_buf_free(new_bp);
fe2429b0
DC
607 return NULL;
608 }
609
6dde2707 610 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
3815832a 611 if (!bp) {
fe2429b0 612 xfs_buf_free(new_bp);
3815832a
DC
613 return NULL;
614 }
615
fe2429b0
DC
616 if (bp != new_bp)
617 xfs_buf_free(new_bp);
1da177e4 618
3815832a 619found:
611c9946 620 if (!bp->b_addr) {
ce8e922c 621 error = _xfs_buf_map_pages(bp, flags);
1da177e4 622 if (unlikely(error)) {
4f10700a
DC
623 xfs_warn(target->bt_mount,
624 "%s: failed to map pages\n", __func__);
a8acad70
DC
625 xfs_buf_relse(bp);
626 return NULL;
1da177e4
LT
627 }
628 }
629
ce8e922c 630 XFS_STATS_INC(xb_get);
0b1b213f 631 trace_xfs_buf_get(bp, flags, _RET_IP_);
ce8e922c 632 return bp;
1da177e4
LT
633}
634
5d765b97
CH
635STATIC int
636_xfs_buf_read(
637 xfs_buf_t *bp,
638 xfs_buf_flags_t flags)
639{
43ff2122 640 ASSERT(!(flags & XBF_WRITE));
cbb7baab 641 ASSERT(bp->b_map.bm_bn != XFS_BUF_DADDR_NULL);
5d765b97 642
43ff2122 643 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
1d5ae5df 644 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
5d765b97 645
0e95f19a
DC
646 xfs_buf_iorequest(bp);
647 if (flags & XBF_ASYNC)
648 return 0;
ec53d1db 649 return xfs_buf_iowait(bp);
5d765b97
CH
650}
651
1da177e4 652xfs_buf_t *
6dde2707
DC
653xfs_buf_read_map(
654 struct xfs_buftarg *target,
655 struct xfs_buf_map *map,
656 int nmaps,
c3f8fc73
DC
657 xfs_buf_flags_t flags,
658 xfs_buf_iodone_t verify)
1da177e4 659{
6dde2707 660 struct xfs_buf *bp;
ce8e922c
NS
661
662 flags |= XBF_READ;
663
6dde2707 664 bp = xfs_buf_get_map(target, map, nmaps, flags);
ce8e922c 665 if (bp) {
0b1b213f
CH
666 trace_xfs_buf_read(bp, flags, _RET_IP_);
667
ce8e922c 668 if (!XFS_BUF_ISDONE(bp)) {
ce8e922c 669 XFS_STATS_INC(xb_get_read);
c3f8fc73 670 bp->b_iodone = verify;
5d765b97 671 _xfs_buf_read(bp, flags);
ce8e922c 672 } else if (flags & XBF_ASYNC) {
1da177e4
LT
673 /*
674 * Read ahead call which is already satisfied,
675 * drop the buffer
676 */
a8acad70
DC
677 xfs_buf_relse(bp);
678 return NULL;
1da177e4 679 } else {
1da177e4 680 /* We do not want read in the flags */
ce8e922c 681 bp->b_flags &= ~XBF_READ;
1da177e4
LT
682 }
683 }
684
ce8e922c 685 return bp;
1da177e4
LT
686}
687
1da177e4 688/*
ce8e922c
NS
689 * If we are not low on memory then do the readahead in a deadlock
690 * safe manner.
1da177e4
LT
691 */
692void
6dde2707
DC
693xfs_buf_readahead_map(
694 struct xfs_buftarg *target,
695 struct xfs_buf_map *map,
c3f8fc73
DC
696 int nmaps,
697 xfs_buf_iodone_t verify)
1da177e4 698{
0e6e847f 699 if (bdi_read_congested(target->bt_bdi))
1da177e4
LT
700 return;
701
6dde2707 702 xfs_buf_read_map(target, map, nmaps,
c3f8fc73 703 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, verify);
1da177e4
LT
704}
705
5adc94c2
DC
706/*
707 * Read an uncached buffer from disk. Allocates and returns a locked
708 * buffer containing the disk contents or nothing.
709 */
710struct xfs_buf *
711xfs_buf_read_uncached(
5adc94c2
DC
712 struct xfs_buftarg *target,
713 xfs_daddr_t daddr,
e70b73f8 714 size_t numblks,
c3f8fc73
DC
715 int flags,
716 xfs_buf_iodone_t verify)
5adc94c2 717{
eab4e633 718 struct xfs_buf *bp;
5adc94c2 719
e70b73f8 720 bp = xfs_buf_get_uncached(target, numblks, flags);
5adc94c2
DC
721 if (!bp)
722 return NULL;
723
724 /* set up the buffer for a read IO */
3e85c868
DC
725 ASSERT(bp->b_map_count == 1);
726 bp->b_bn = daddr;
727 bp->b_maps[0].bm_bn = daddr;
cbb7baab 728 bp->b_flags |= XBF_READ;
c3f8fc73 729 bp->b_iodone = verify;
5adc94c2 730
e70b73f8 731 xfsbdstrat(target->bt_mount, bp);
eab4e633 732 xfs_buf_iowait(bp);
5adc94c2 733 return bp;
1da177e4
LT
734}
735
44396476
DC
736/*
737 * Return a buffer allocated as an empty buffer and associated to external
738 * memory via xfs_buf_associate_memory() back to it's empty state.
739 */
740void
741xfs_buf_set_empty(
742 struct xfs_buf *bp,
e70b73f8 743 size_t numblks)
44396476
DC
744{
745 if (bp->b_pages)
746 _xfs_buf_free_pages(bp);
747
748 bp->b_pages = NULL;
749 bp->b_page_count = 0;
750 bp->b_addr = NULL;
4e94b71b 751 bp->b_length = numblks;
aa0e8833 752 bp->b_io_length = numblks;
3e85c868
DC
753
754 ASSERT(bp->b_map_count == 1);
44396476 755 bp->b_bn = XFS_BUF_DADDR_NULL;
3e85c868
DC
756 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
757 bp->b_maps[0].bm_len = bp->b_length;
44396476
DC
758}
759
1da177e4
LT
760static inline struct page *
761mem_to_page(
762 void *addr)
763{
9e2779fa 764 if ((!is_vmalloc_addr(addr))) {
1da177e4
LT
765 return virt_to_page(addr);
766 } else {
767 return vmalloc_to_page(addr);
768 }
769}
770
771int
ce8e922c
NS
772xfs_buf_associate_memory(
773 xfs_buf_t *bp,
1da177e4
LT
774 void *mem,
775 size_t len)
776{
777 int rval;
778 int i = 0;
d1afb678
LM
779 unsigned long pageaddr;
780 unsigned long offset;
781 size_t buflen;
1da177e4
LT
782 int page_count;
783
0e6e847f 784 pageaddr = (unsigned long)mem & PAGE_MASK;
d1afb678 785 offset = (unsigned long)mem - pageaddr;
0e6e847f
DC
786 buflen = PAGE_ALIGN(len + offset);
787 page_count = buflen >> PAGE_SHIFT;
1da177e4
LT
788
789 /* Free any previous set of page pointers */
ce8e922c
NS
790 if (bp->b_pages)
791 _xfs_buf_free_pages(bp);
1da177e4 792
ce8e922c
NS
793 bp->b_pages = NULL;
794 bp->b_addr = mem;
1da177e4 795
aa5c158e 796 rval = _xfs_buf_get_pages(bp, page_count, 0);
1da177e4
LT
797 if (rval)
798 return rval;
799
ce8e922c 800 bp->b_offset = offset;
d1afb678
LM
801
802 for (i = 0; i < bp->b_page_count; i++) {
803 bp->b_pages[i] = mem_to_page((void *)pageaddr);
0e6e847f 804 pageaddr += PAGE_SIZE;
1da177e4 805 }
1da177e4 806
aa0e8833 807 bp->b_io_length = BTOBB(len);
4e94b71b 808 bp->b_length = BTOBB(buflen);
1da177e4
LT
809
810 return 0;
811}
812
813xfs_buf_t *
686865f7
DC
814xfs_buf_get_uncached(
815 struct xfs_buftarg *target,
e70b73f8 816 size_t numblks,
686865f7 817 int flags)
1da177e4 818{
e70b73f8 819 unsigned long page_count;
1fa40b01 820 int error, i;
3e85c868
DC
821 struct xfs_buf *bp;
822 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
1da177e4 823
3e85c868 824 bp = _xfs_buf_alloc(target, &map, 1, 0);
1da177e4
LT
825 if (unlikely(bp == NULL))
826 goto fail;
1da177e4 827
e70b73f8 828 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
1fa40b01
CH
829 error = _xfs_buf_get_pages(bp, page_count, 0);
830 if (error)
1da177e4
LT
831 goto fail_free_buf;
832
1fa40b01 833 for (i = 0; i < page_count; i++) {
686865f7 834 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
1fa40b01
CH
835 if (!bp->b_pages[i])
836 goto fail_free_mem;
1da177e4 837 }
1fa40b01 838 bp->b_flags |= _XBF_PAGES;
1da177e4 839
611c9946 840 error = _xfs_buf_map_pages(bp, 0);
1fa40b01 841 if (unlikely(error)) {
4f10700a
DC
842 xfs_warn(target->bt_mount,
843 "%s: failed to map pages\n", __func__);
1da177e4 844 goto fail_free_mem;
1fa40b01 845 }
1da177e4 846
686865f7 847 trace_xfs_buf_get_uncached(bp, _RET_IP_);
1da177e4 848 return bp;
1fa40b01 849
1da177e4 850 fail_free_mem:
1fa40b01
CH
851 while (--i >= 0)
852 __free_page(bp->b_pages[i]);
ca165b88 853 _xfs_buf_free_pages(bp);
1da177e4 854 fail_free_buf:
3e85c868 855 xfs_buf_free_maps(bp);
4347b9d7 856 kmem_zone_free(xfs_buf_zone, bp);
1da177e4
LT
857 fail:
858 return NULL;
859}
860
861/*
1da177e4
LT
862 * Increment reference count on buffer, to hold the buffer concurrently
863 * with another thread which may release (free) the buffer asynchronously.
1da177e4
LT
864 * Must hold the buffer already to call this function.
865 */
866void
ce8e922c
NS
867xfs_buf_hold(
868 xfs_buf_t *bp)
1da177e4 869{
0b1b213f 870 trace_xfs_buf_hold(bp, _RET_IP_);
ce8e922c 871 atomic_inc(&bp->b_hold);
1da177e4
LT
872}
873
874/*
ce8e922c
NS
875 * Releases a hold on the specified buffer. If the
876 * the hold count is 1, calls xfs_buf_free.
1da177e4
LT
877 */
878void
ce8e922c
NS
879xfs_buf_rele(
880 xfs_buf_t *bp)
1da177e4 881{
74f75a0c 882 struct xfs_perag *pag = bp->b_pag;
1da177e4 883
0b1b213f 884 trace_xfs_buf_rele(bp, _RET_IP_);
1da177e4 885
74f75a0c 886 if (!pag) {
430cbeb8 887 ASSERT(list_empty(&bp->b_lru));
74f75a0c 888 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
fad3aa1e
NS
889 if (atomic_dec_and_test(&bp->b_hold))
890 xfs_buf_free(bp);
891 return;
892 }
893
74f75a0c 894 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
430cbeb8 895
3790689f 896 ASSERT(atomic_read(&bp->b_hold) > 0);
74f75a0c 897 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
bfc60177 898 if (!(bp->b_flags & XBF_STALE) &&
430cbeb8
DC
899 atomic_read(&bp->b_lru_ref)) {
900 xfs_buf_lru_add(bp);
901 spin_unlock(&pag->pag_buf_lock);
1da177e4 902 } else {
430cbeb8 903 xfs_buf_lru_del(bp);
43ff2122 904 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
74f75a0c
DC
905 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
906 spin_unlock(&pag->pag_buf_lock);
907 xfs_perag_put(pag);
ce8e922c 908 xfs_buf_free(bp);
1da177e4
LT
909 }
910 }
911}
912
913
914/*
0e6e847f 915 * Lock a buffer object, if it is not already locked.
90810b9e
DC
916 *
917 * If we come across a stale, pinned, locked buffer, we know that we are
918 * being asked to lock a buffer that has been reallocated. Because it is
919 * pinned, we know that the log has not been pushed to disk and hence it
920 * will still be locked. Rather than continuing to have trylock attempts
921 * fail until someone else pushes the log, push it ourselves before
922 * returning. This means that the xfsaild will not get stuck trying
923 * to push on stale inode buffers.
1da177e4
LT
924 */
925int
0c842ad4
CH
926xfs_buf_trylock(
927 struct xfs_buf *bp)
1da177e4
LT
928{
929 int locked;
930
ce8e922c 931 locked = down_trylock(&bp->b_sema) == 0;
0b1b213f 932 if (locked)
ce8e922c 933 XB_SET_OWNER(bp);
90810b9e
DC
934 else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
935 xfs_log_force(bp->b_target->bt_mount, 0);
0b1b213f 936
0c842ad4
CH
937 trace_xfs_buf_trylock(bp, _RET_IP_);
938 return locked;
1da177e4 939}
1da177e4
LT
940
941/*
0e6e847f 942 * Lock a buffer object.
ed3b4d6c
DC
943 *
944 * If we come across a stale, pinned, locked buffer, we know that we
945 * are being asked to lock a buffer that has been reallocated. Because
946 * it is pinned, we know that the log has not been pushed to disk and
947 * hence it will still be locked. Rather than sleeping until someone
948 * else pushes the log, push it ourselves before trying to get the lock.
1da177e4 949 */
ce8e922c
NS
950void
951xfs_buf_lock(
0c842ad4 952 struct xfs_buf *bp)
1da177e4 953{
0b1b213f
CH
954 trace_xfs_buf_lock(bp, _RET_IP_);
955
ed3b4d6c 956 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
ebad861b 957 xfs_log_force(bp->b_target->bt_mount, 0);
ce8e922c
NS
958 down(&bp->b_sema);
959 XB_SET_OWNER(bp);
0b1b213f
CH
960
961 trace_xfs_buf_lock_done(bp, _RET_IP_);
1da177e4
LT
962}
963
1da177e4 964void
ce8e922c 965xfs_buf_unlock(
0c842ad4 966 struct xfs_buf *bp)
1da177e4 967{
ce8e922c
NS
968 XB_CLEAR_OWNER(bp);
969 up(&bp->b_sema);
0b1b213f
CH
970
971 trace_xfs_buf_unlock(bp, _RET_IP_);
1da177e4
LT
972}
973
ce8e922c
NS
974STATIC void
975xfs_buf_wait_unpin(
976 xfs_buf_t *bp)
1da177e4
LT
977{
978 DECLARE_WAITQUEUE (wait, current);
979
ce8e922c 980 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4
LT
981 return;
982
ce8e922c 983 add_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
984 for (;;) {
985 set_current_state(TASK_UNINTERRUPTIBLE);
ce8e922c 986 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4 987 break;
7eaceacc 988 io_schedule();
1da177e4 989 }
ce8e922c 990 remove_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
991 set_current_state(TASK_RUNNING);
992}
993
994/*
995 * Buffer Utility Routines
996 */
997
1da177e4 998STATIC void
ce8e922c 999xfs_buf_iodone_work(
c4028958 1000 struct work_struct *work)
1da177e4 1001{
c4028958
DH
1002 xfs_buf_t *bp =
1003 container_of(work, xfs_buf_t, b_iodone_work);
1da177e4 1004
80f6c29d 1005 if (bp->b_iodone)
ce8e922c
NS
1006 (*(bp->b_iodone))(bp);
1007 else if (bp->b_flags & XBF_ASYNC)
1da177e4
LT
1008 xfs_buf_relse(bp);
1009}
1010
1011void
ce8e922c
NS
1012xfs_buf_ioend(
1013 xfs_buf_t *bp,
1da177e4
LT
1014 int schedule)
1015{
0b1b213f
CH
1016 trace_xfs_buf_iodone(bp, _RET_IP_);
1017
77be55a5 1018 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
ce8e922c
NS
1019 if (bp->b_error == 0)
1020 bp->b_flags |= XBF_DONE;
1da177e4 1021
ce8e922c 1022 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1da177e4 1023 if (schedule) {
c4028958 1024 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
ce8e922c 1025 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1da177e4 1026 } else {
c4028958 1027 xfs_buf_iodone_work(&bp->b_iodone_work);
1da177e4
LT
1028 }
1029 } else {
b4dd330b 1030 complete(&bp->b_iowait);
1da177e4
LT
1031 }
1032}
1033
1da177e4 1034void
ce8e922c
NS
1035xfs_buf_ioerror(
1036 xfs_buf_t *bp,
1037 int error)
1da177e4
LT
1038{
1039 ASSERT(error >= 0 && error <= 0xffff);
ce8e922c 1040 bp->b_error = (unsigned short)error;
0b1b213f 1041 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1da177e4
LT
1042}
1043
901796af
CH
1044void
1045xfs_buf_ioerror_alert(
1046 struct xfs_buf *bp,
1047 const char *func)
1048{
1049 xfs_alert(bp->b_target->bt_mount,
aa0e8833
DC
1050"metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1051 (__uint64_t)XFS_BUF_ADDR(bp), func, bp->b_error, bp->b_length);
901796af
CH
1052}
1053
4e23471a
CH
1054/*
1055 * Called when we want to stop a buffer from getting written or read.
1a1a3e97 1056 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
4e23471a
CH
1057 * so that the proper iodone callbacks get called.
1058 */
1059STATIC int
1060xfs_bioerror(
1061 xfs_buf_t *bp)
1062{
1063#ifdef XFSERRORDEBUG
1064 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1065#endif
1066
1067 /*
1068 * No need to wait until the buffer is unpinned, we aren't flushing it.
1069 */
5a52c2a5 1070 xfs_buf_ioerror(bp, EIO);
4e23471a
CH
1071
1072 /*
1a1a3e97 1073 * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
4e23471a
CH
1074 */
1075 XFS_BUF_UNREAD(bp);
4e23471a 1076 XFS_BUF_UNDONE(bp);
c867cb61 1077 xfs_buf_stale(bp);
4e23471a 1078
1a1a3e97 1079 xfs_buf_ioend(bp, 0);
4e23471a
CH
1080
1081 return EIO;
1082}
1083
1084/*
1085 * Same as xfs_bioerror, except that we are releasing the buffer
1a1a3e97 1086 * here ourselves, and avoiding the xfs_buf_ioend call.
4e23471a
CH
1087 * This is meant for userdata errors; metadata bufs come with
1088 * iodone functions attached, so that we can track down errors.
1089 */
1090STATIC int
1091xfs_bioerror_relse(
1092 struct xfs_buf *bp)
1093{
ed43233b 1094 int64_t fl = bp->b_flags;
4e23471a
CH
1095 /*
1096 * No need to wait until the buffer is unpinned.
1097 * We aren't flushing it.
1098 *
1099 * chunkhold expects B_DONE to be set, whether
1100 * we actually finish the I/O or not. We don't want to
1101 * change that interface.
1102 */
1103 XFS_BUF_UNREAD(bp);
4e23471a 1104 XFS_BUF_DONE(bp);
c867cb61 1105 xfs_buf_stale(bp);
cb669ca5 1106 bp->b_iodone = NULL;
0cadda1c 1107 if (!(fl & XBF_ASYNC)) {
4e23471a
CH
1108 /*
1109 * Mark b_error and B_ERROR _both_.
1110 * Lot's of chunkcache code assumes that.
1111 * There's no reason to mark error for
1112 * ASYNC buffers.
1113 */
5a52c2a5 1114 xfs_buf_ioerror(bp, EIO);
5fde0326 1115 complete(&bp->b_iowait);
4e23471a
CH
1116 } else {
1117 xfs_buf_relse(bp);
1118 }
1119
1120 return EIO;
1121}
1122
a2dcf5df 1123STATIC int
4e23471a
CH
1124xfs_bdstrat_cb(
1125 struct xfs_buf *bp)
1126{
ebad861b 1127 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
4e23471a
CH
1128 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1129 /*
1130 * Metadata write that didn't get logged but
1131 * written delayed anyway. These aren't associated
1132 * with a transaction, and can be ignored.
1133 */
1134 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1135 return xfs_bioerror_relse(bp);
1136 else
1137 return xfs_bioerror(bp);
1138 }
1139
1140 xfs_buf_iorequest(bp);
1141 return 0;
1142}
1143
a2dcf5df
CH
1144int
1145xfs_bwrite(
1146 struct xfs_buf *bp)
1147{
1148 int error;
1149
1150 ASSERT(xfs_buf_islocked(bp));
1151
1152 bp->b_flags |= XBF_WRITE;
1153 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q);
1154
1155 xfs_bdstrat_cb(bp);
1156
1157 error = xfs_buf_iowait(bp);
1158 if (error) {
1159 xfs_force_shutdown(bp->b_target->bt_mount,
1160 SHUTDOWN_META_IO_ERROR);
1161 }
1162 return error;
1163}
1164
4e23471a
CH
1165/*
1166 * Wrapper around bdstrat so that we can stop data from going to disk in case
1167 * we are shutting down the filesystem. Typically user data goes thru this
1168 * path; one of the exceptions is the superblock.
1169 */
1170void
1171xfsbdstrat(
1172 struct xfs_mount *mp,
1173 struct xfs_buf *bp)
1174{
1175 if (XFS_FORCED_SHUTDOWN(mp)) {
1176 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1177 xfs_bioerror_relse(bp);
1178 return;
1179 }
1180
1181 xfs_buf_iorequest(bp);
1182}
1183
b8f82a4a 1184STATIC void
ce8e922c
NS
1185_xfs_buf_ioend(
1186 xfs_buf_t *bp,
1da177e4
LT
1187 int schedule)
1188{
0e6e847f 1189 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
ce8e922c 1190 xfs_buf_ioend(bp, schedule);
1da177e4
LT
1191}
1192
782e3b3b 1193STATIC void
ce8e922c 1194xfs_buf_bio_end_io(
1da177e4 1195 struct bio *bio,
1da177e4
LT
1196 int error)
1197{
ce8e922c 1198 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1da177e4 1199
37eb17e6
DC
1200 /*
1201 * don't overwrite existing errors - otherwise we can lose errors on
1202 * buffers that require multiple bios to complete.
1203 */
1204 if (!bp->b_error)
1205 xfs_buf_ioerror(bp, -error);
1da177e4 1206
37eb17e6 1207 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
73c77e2c
JB
1208 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1209
ce8e922c 1210 _xfs_buf_ioend(bp, 1);
1da177e4 1211 bio_put(bio);
1da177e4
LT
1212}
1213
3e85c868
DC
1214static void
1215xfs_buf_ioapply_map(
1216 struct xfs_buf *bp,
1217 int map,
1218 int *buf_offset,
1219 int *count,
1220 int rw)
1da177e4 1221{
3e85c868
DC
1222 int page_index;
1223 int total_nr_pages = bp->b_page_count;
1224 int nr_pages;
1225 struct bio *bio;
1226 sector_t sector = bp->b_maps[map].bm_bn;
1227 int size;
1228 int offset;
1da177e4 1229
ce8e922c 1230 total_nr_pages = bp->b_page_count;
1da177e4 1231
3e85c868
DC
1232 /* skip the pages in the buffer before the start offset */
1233 page_index = 0;
1234 offset = *buf_offset;
1235 while (offset >= PAGE_SIZE) {
1236 page_index++;
1237 offset -= PAGE_SIZE;
f538d4da
CH
1238 }
1239
3e85c868
DC
1240 /*
1241 * Limit the IO size to the length of the current vector, and update the
1242 * remaining IO count for the next time around.
1243 */
1244 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1245 *count -= size;
1246 *buf_offset += size;
34951f5c 1247
1da177e4 1248next_chunk:
ce8e922c 1249 atomic_inc(&bp->b_io_remaining);
1da177e4
LT
1250 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1251 if (nr_pages > total_nr_pages)
1252 nr_pages = total_nr_pages;
1253
1254 bio = bio_alloc(GFP_NOIO, nr_pages);
ce8e922c 1255 bio->bi_bdev = bp->b_target->bt_bdev;
1da177e4 1256 bio->bi_sector = sector;
ce8e922c
NS
1257 bio->bi_end_io = xfs_buf_bio_end_io;
1258 bio->bi_private = bp;
1da177e4 1259
0e6e847f 1260
3e85c868 1261 for (; size && nr_pages; nr_pages--, page_index++) {
0e6e847f 1262 int rbytes, nbytes = PAGE_SIZE - offset;
1da177e4
LT
1263
1264 if (nbytes > size)
1265 nbytes = size;
1266
3e85c868
DC
1267 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1268 offset);
ce8e922c 1269 if (rbytes < nbytes)
1da177e4
LT
1270 break;
1271
1272 offset = 0;
aa0e8833 1273 sector += BTOBB(nbytes);
1da177e4
LT
1274 size -= nbytes;
1275 total_nr_pages--;
1276 }
1277
1da177e4 1278 if (likely(bio->bi_size)) {
73c77e2c
JB
1279 if (xfs_buf_is_vmapped(bp)) {
1280 flush_kernel_vmap_range(bp->b_addr,
1281 xfs_buf_vmap_len(bp));
1282 }
1da177e4
LT
1283 submit_bio(rw, bio);
1284 if (size)
1285 goto next_chunk;
1286 } else {
37eb17e6
DC
1287 /*
1288 * This is guaranteed not to be the last io reference count
1289 * because the caller (xfs_buf_iorequest) holds a count itself.
1290 */
1291 atomic_dec(&bp->b_io_remaining);
ce8e922c 1292 xfs_buf_ioerror(bp, EIO);
ec53d1db 1293 bio_put(bio);
1da177e4 1294 }
3e85c868
DC
1295
1296}
1297
1298STATIC void
1299_xfs_buf_ioapply(
1300 struct xfs_buf *bp)
1301{
1302 struct blk_plug plug;
1303 int rw;
1304 int offset;
1305 int size;
1306 int i;
1307
1308 if (bp->b_flags & XBF_WRITE) {
1309 if (bp->b_flags & XBF_SYNCIO)
1310 rw = WRITE_SYNC;
1311 else
1312 rw = WRITE;
1313 if (bp->b_flags & XBF_FUA)
1314 rw |= REQ_FUA;
1315 if (bp->b_flags & XBF_FLUSH)
1316 rw |= REQ_FLUSH;
1317 } else if (bp->b_flags & XBF_READ_AHEAD) {
1318 rw = READA;
1319 } else {
1320 rw = READ;
1321 }
1322
1323 /* we only use the buffer cache for meta-data */
1324 rw |= REQ_META;
1325
1326 /*
1327 * Walk all the vectors issuing IO on them. Set up the initial offset
1328 * into the buffer and the desired IO size before we start -
1329 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1330 * subsequent call.
1331 */
1332 offset = bp->b_offset;
1333 size = BBTOB(bp->b_io_length);
1334 blk_start_plug(&plug);
1335 for (i = 0; i < bp->b_map_count; i++) {
1336 xfs_buf_ioapply_map(bp, i, &offset, &size, rw);
1337 if (bp->b_error)
1338 break;
1339 if (size <= 0)
1340 break; /* all done */
1341 }
1342 blk_finish_plug(&plug);
1da177e4
LT
1343}
1344
0e95f19a 1345void
ce8e922c
NS
1346xfs_buf_iorequest(
1347 xfs_buf_t *bp)
1da177e4 1348{
0b1b213f 1349 trace_xfs_buf_iorequest(bp, _RET_IP_);
1da177e4 1350
43ff2122 1351 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1da177e4 1352
375ec69d 1353 if (bp->b_flags & XBF_WRITE)
ce8e922c 1354 xfs_buf_wait_unpin(bp);
ce8e922c 1355 xfs_buf_hold(bp);
1da177e4
LT
1356
1357 /* Set the count to 1 initially, this will stop an I/O
1358 * completion callout which happens before we have started
ce8e922c 1359 * all the I/O from calling xfs_buf_ioend too early.
1da177e4 1360 */
ce8e922c
NS
1361 atomic_set(&bp->b_io_remaining, 1);
1362 _xfs_buf_ioapply(bp);
08023d6d 1363 _xfs_buf_ioend(bp, 1);
1da177e4 1364
ce8e922c 1365 xfs_buf_rele(bp);
1da177e4
LT
1366}
1367
1368/*
0e95f19a
DC
1369 * Waits for I/O to complete on the buffer supplied. It returns immediately if
1370 * no I/O is pending or there is already a pending error on the buffer. It
1371 * returns the I/O error code, if any, or 0 if there was no error.
1da177e4
LT
1372 */
1373int
ce8e922c
NS
1374xfs_buf_iowait(
1375 xfs_buf_t *bp)
1da177e4 1376{
0b1b213f
CH
1377 trace_xfs_buf_iowait(bp, _RET_IP_);
1378
0e95f19a
DC
1379 if (!bp->b_error)
1380 wait_for_completion(&bp->b_iowait);
0b1b213f
CH
1381
1382 trace_xfs_buf_iowait_done(bp, _RET_IP_);
ce8e922c 1383 return bp->b_error;
1da177e4
LT
1384}
1385
ce8e922c
NS
1386xfs_caddr_t
1387xfs_buf_offset(
1388 xfs_buf_t *bp,
1da177e4
LT
1389 size_t offset)
1390{
1391 struct page *page;
1392
611c9946 1393 if (bp->b_addr)
62926044 1394 return bp->b_addr + offset;
1da177e4 1395
ce8e922c 1396 offset += bp->b_offset;
0e6e847f
DC
1397 page = bp->b_pages[offset >> PAGE_SHIFT];
1398 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1da177e4
LT
1399}
1400
1401/*
1da177e4
LT
1402 * Move data into or out of a buffer.
1403 */
1404void
ce8e922c
NS
1405xfs_buf_iomove(
1406 xfs_buf_t *bp, /* buffer to process */
1da177e4
LT
1407 size_t boff, /* starting buffer offset */
1408 size_t bsize, /* length to copy */
b9c48649 1409 void *data, /* data address */
ce8e922c 1410 xfs_buf_rw_t mode) /* read/write/zero flag */
1da177e4 1411{
795cac72 1412 size_t bend;
1da177e4
LT
1413
1414 bend = boff + bsize;
1415 while (boff < bend) {
795cac72
DC
1416 struct page *page;
1417 int page_index, page_offset, csize;
1418
1419 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1420 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1421 page = bp->b_pages[page_index];
1422 csize = min_t(size_t, PAGE_SIZE - page_offset,
1423 BBTOB(bp->b_io_length) - boff);
1da177e4 1424
795cac72 1425 ASSERT((csize + page_offset) <= PAGE_SIZE);
1da177e4
LT
1426
1427 switch (mode) {
ce8e922c 1428 case XBRW_ZERO:
795cac72 1429 memset(page_address(page) + page_offset, 0, csize);
1da177e4 1430 break;
ce8e922c 1431 case XBRW_READ:
795cac72 1432 memcpy(data, page_address(page) + page_offset, csize);
1da177e4 1433 break;
ce8e922c 1434 case XBRW_WRITE:
795cac72 1435 memcpy(page_address(page) + page_offset, data, csize);
1da177e4
LT
1436 }
1437
1438 boff += csize;
1439 data += csize;
1440 }
1441}
1442
1443/*
ce8e922c 1444 * Handling of buffer targets (buftargs).
1da177e4
LT
1445 */
1446
1447/*
430cbeb8
DC
1448 * Wait for any bufs with callbacks that have been submitted but have not yet
1449 * returned. These buffers will have an elevated hold count, so wait on those
1450 * while freeing all the buffers only held by the LRU.
1da177e4
LT
1451 */
1452void
1453xfs_wait_buftarg(
74f75a0c 1454 struct xfs_buftarg *btp)
1da177e4 1455{
430cbeb8
DC
1456 struct xfs_buf *bp;
1457
1458restart:
1459 spin_lock(&btp->bt_lru_lock);
1460 while (!list_empty(&btp->bt_lru)) {
1461 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1462 if (atomic_read(&bp->b_hold) > 1) {
1463 spin_unlock(&btp->bt_lru_lock);
26af6552 1464 delay(100);
430cbeb8 1465 goto restart;
1da177e4 1466 }
430cbeb8 1467 /*
90802ed9 1468 * clear the LRU reference count so the buffer doesn't get
430cbeb8
DC
1469 * ignored in xfs_buf_rele().
1470 */
1471 atomic_set(&bp->b_lru_ref, 0);
1472 spin_unlock(&btp->bt_lru_lock);
1473 xfs_buf_rele(bp);
1474 spin_lock(&btp->bt_lru_lock);
1da177e4 1475 }
430cbeb8 1476 spin_unlock(&btp->bt_lru_lock);
1da177e4
LT
1477}
1478
ff57ab21
DC
1479int
1480xfs_buftarg_shrink(
1481 struct shrinker *shrink,
1495f230 1482 struct shrink_control *sc)
a6867a68 1483{
ff57ab21
DC
1484 struct xfs_buftarg *btp = container_of(shrink,
1485 struct xfs_buftarg, bt_shrinker);
430cbeb8 1486 struct xfs_buf *bp;
1495f230 1487 int nr_to_scan = sc->nr_to_scan;
430cbeb8
DC
1488 LIST_HEAD(dispose);
1489
1490 if (!nr_to_scan)
1491 return btp->bt_lru_nr;
1492
1493 spin_lock(&btp->bt_lru_lock);
1494 while (!list_empty(&btp->bt_lru)) {
1495 if (nr_to_scan-- <= 0)
1496 break;
1497
1498 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1499
1500 /*
1501 * Decrement the b_lru_ref count unless the value is already
1502 * zero. If the value is already zero, we need to reclaim the
1503 * buffer, otherwise it gets another trip through the LRU.
1504 */
1505 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1506 list_move_tail(&bp->b_lru, &btp->bt_lru);
1507 continue;
1508 }
1509
1510 /*
1511 * remove the buffer from the LRU now to avoid needing another
1512 * lock round trip inside xfs_buf_rele().
1513 */
1514 list_move(&bp->b_lru, &dispose);
1515 btp->bt_lru_nr--;
6fb8a90a 1516 bp->b_lru_flags |= _XBF_LRU_DISPOSE;
ff57ab21 1517 }
430cbeb8
DC
1518 spin_unlock(&btp->bt_lru_lock);
1519
1520 while (!list_empty(&dispose)) {
1521 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1522 list_del_init(&bp->b_lru);
1523 xfs_buf_rele(bp);
1524 }
1525
1526 return btp->bt_lru_nr;
a6867a68
DC
1527}
1528
1da177e4
LT
1529void
1530xfs_free_buftarg(
b7963133
CH
1531 struct xfs_mount *mp,
1532 struct xfs_buftarg *btp)
1da177e4 1533{
ff57ab21
DC
1534 unregister_shrinker(&btp->bt_shrinker);
1535
b7963133
CH
1536 if (mp->m_flags & XFS_MOUNT_BARRIER)
1537 xfs_blkdev_issue_flush(btp);
a6867a68 1538
f0e2d93c 1539 kmem_free(btp);
1da177e4
LT
1540}
1541
1da177e4
LT
1542STATIC int
1543xfs_setsize_buftarg_flags(
1544 xfs_buftarg_t *btp,
1545 unsigned int blocksize,
1546 unsigned int sectorsize,
1547 int verbose)
1548{
ce8e922c
NS
1549 btp->bt_bsize = blocksize;
1550 btp->bt_sshift = ffs(sectorsize) - 1;
1551 btp->bt_smask = sectorsize - 1;
1da177e4 1552
ce8e922c 1553 if (set_blocksize(btp->bt_bdev, sectorsize)) {
02b102df
CH
1554 char name[BDEVNAME_SIZE];
1555
1556 bdevname(btp->bt_bdev, name);
1557
4f10700a
DC
1558 xfs_warn(btp->bt_mount,
1559 "Cannot set_blocksize to %u on device %s\n",
02b102df 1560 sectorsize, name);
1da177e4
LT
1561 return EINVAL;
1562 }
1563
1da177e4
LT
1564 return 0;
1565}
1566
1567/*
ce8e922c
NS
1568 * When allocating the initial buffer target we have not yet
1569 * read in the superblock, so don't know what sized sectors
1570 * are being used is at this early stage. Play safe.
1571 */
1da177e4
LT
1572STATIC int
1573xfs_setsize_buftarg_early(
1574 xfs_buftarg_t *btp,
1575 struct block_device *bdev)
1576{
1577 return xfs_setsize_buftarg_flags(btp,
0e6e847f 1578 PAGE_SIZE, bdev_logical_block_size(bdev), 0);
1da177e4
LT
1579}
1580
1581int
1582xfs_setsize_buftarg(
1583 xfs_buftarg_t *btp,
1584 unsigned int blocksize,
1585 unsigned int sectorsize)
1586{
1587 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1588}
1589
1da177e4
LT
1590xfs_buftarg_t *
1591xfs_alloc_buftarg(
ebad861b 1592 struct xfs_mount *mp,
1da177e4 1593 struct block_device *bdev,
e2a07812
JE
1594 int external,
1595 const char *fsname)
1da177e4
LT
1596{
1597 xfs_buftarg_t *btp;
1598
1599 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1600
ebad861b 1601 btp->bt_mount = mp;
ce8e922c
NS
1602 btp->bt_dev = bdev->bd_dev;
1603 btp->bt_bdev = bdev;
0e6e847f
DC
1604 btp->bt_bdi = blk_get_backing_dev_info(bdev);
1605 if (!btp->bt_bdi)
1606 goto error;
1607
430cbeb8
DC
1608 INIT_LIST_HEAD(&btp->bt_lru);
1609 spin_lock_init(&btp->bt_lru_lock);
1da177e4
LT
1610 if (xfs_setsize_buftarg_early(btp, bdev))
1611 goto error;
ff57ab21
DC
1612 btp->bt_shrinker.shrink = xfs_buftarg_shrink;
1613 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1614 register_shrinker(&btp->bt_shrinker);
1da177e4
LT
1615 return btp;
1616
1617error:
f0e2d93c 1618 kmem_free(btp);
1da177e4
LT
1619 return NULL;
1620}
1621
1da177e4 1622/*
43ff2122
CH
1623 * Add a buffer to the delayed write list.
1624 *
1625 * This queues a buffer for writeout if it hasn't already been. Note that
1626 * neither this routine nor the buffer list submission functions perform
1627 * any internal synchronization. It is expected that the lists are thread-local
1628 * to the callers.
1629 *
1630 * Returns true if we queued up the buffer, or false if it already had
1631 * been on the buffer list.
1da177e4 1632 */
43ff2122 1633bool
ce8e922c 1634xfs_buf_delwri_queue(
43ff2122
CH
1635 struct xfs_buf *bp,
1636 struct list_head *list)
1da177e4 1637{
43ff2122 1638 ASSERT(xfs_buf_islocked(bp));
5a8ee6ba 1639 ASSERT(!(bp->b_flags & XBF_READ));
1da177e4 1640
43ff2122
CH
1641 /*
1642 * If the buffer is already marked delwri it already is queued up
1643 * by someone else for imediate writeout. Just ignore it in that
1644 * case.
1645 */
1646 if (bp->b_flags & _XBF_DELWRI_Q) {
1647 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1648 return false;
1da177e4 1649 }
1da177e4 1650
43ff2122 1651 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
d808f617
DC
1652
1653 /*
43ff2122
CH
1654 * If a buffer gets written out synchronously or marked stale while it
1655 * is on a delwri list we lazily remove it. To do this, the other party
1656 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1657 * It remains referenced and on the list. In a rare corner case it
1658 * might get readded to a delwri list after the synchronous writeout, in
1659 * which case we need just need to re-add the flag here.
d808f617 1660 */
43ff2122
CH
1661 bp->b_flags |= _XBF_DELWRI_Q;
1662 if (list_empty(&bp->b_list)) {
1663 atomic_inc(&bp->b_hold);
1664 list_add_tail(&bp->b_list, list);
585e6d88 1665 }
585e6d88 1666
43ff2122 1667 return true;
585e6d88
DC
1668}
1669
089716aa
DC
1670/*
1671 * Compare function is more complex than it needs to be because
1672 * the return value is only 32 bits and we are doing comparisons
1673 * on 64 bit values
1674 */
1675static int
1676xfs_buf_cmp(
1677 void *priv,
1678 struct list_head *a,
1679 struct list_head *b)
1680{
1681 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1682 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1683 xfs_daddr_t diff;
1684
cbb7baab 1685 diff = ap->b_map.bm_bn - bp->b_map.bm_bn;
089716aa
DC
1686 if (diff < 0)
1687 return -1;
1688 if (diff > 0)
1689 return 1;
1690 return 0;
1691}
1692
43ff2122
CH
1693static int
1694__xfs_buf_delwri_submit(
1695 struct list_head *buffer_list,
1696 struct list_head *io_list,
1697 bool wait)
1da177e4 1698{
43ff2122
CH
1699 struct blk_plug plug;
1700 struct xfs_buf *bp, *n;
1701 int pinned = 0;
1702
1703 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1704 if (!wait) {
1705 if (xfs_buf_ispinned(bp)) {
1706 pinned++;
1707 continue;
1708 }
1709 if (!xfs_buf_trylock(bp))
1710 continue;
1711 } else {
1712 xfs_buf_lock(bp);
1713 }
978c7b2f 1714
43ff2122
CH
1715 /*
1716 * Someone else might have written the buffer synchronously or
1717 * marked it stale in the meantime. In that case only the
1718 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1719 * reference and remove it from the list here.
1720 */
1721 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1722 list_del_init(&bp->b_list);
1723 xfs_buf_relse(bp);
1724 continue;
1725 }
c9c12971 1726
43ff2122
CH
1727 list_move_tail(&bp->b_list, io_list);
1728 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1729 }
1da177e4 1730
43ff2122 1731 list_sort(NULL, io_list, xfs_buf_cmp);
1da177e4 1732
43ff2122
CH
1733 blk_start_plug(&plug);
1734 list_for_each_entry_safe(bp, n, io_list, b_list) {
1735 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC);
1736 bp->b_flags |= XBF_WRITE;
a1b7ea5d 1737
43ff2122
CH
1738 if (!wait) {
1739 bp->b_flags |= XBF_ASYNC;
ce8e922c 1740 list_del_init(&bp->b_list);
1da177e4 1741 }
43ff2122
CH
1742 xfs_bdstrat_cb(bp);
1743 }
1744 blk_finish_plug(&plug);
1da177e4 1745
43ff2122 1746 return pinned;
1da177e4
LT
1747}
1748
1749/*
43ff2122
CH
1750 * Write out a buffer list asynchronously.
1751 *
1752 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1753 * out and not wait for I/O completion on any of the buffers. This interface
1754 * is only safely useable for callers that can track I/O completion by higher
1755 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1756 * function.
1da177e4
LT
1757 */
1758int
43ff2122
CH
1759xfs_buf_delwri_submit_nowait(
1760 struct list_head *buffer_list)
1da177e4 1761{
43ff2122
CH
1762 LIST_HEAD (io_list);
1763 return __xfs_buf_delwri_submit(buffer_list, &io_list, false);
1764}
1da177e4 1765
43ff2122
CH
1766/*
1767 * Write out a buffer list synchronously.
1768 *
1769 * This will take the @buffer_list, write all buffers out and wait for I/O
1770 * completion on all of the buffers. @buffer_list is consumed by the function,
1771 * so callers must have some other way of tracking buffers if they require such
1772 * functionality.
1773 */
1774int
1775xfs_buf_delwri_submit(
1776 struct list_head *buffer_list)
1777{
1778 LIST_HEAD (io_list);
1779 int error = 0, error2;
1780 struct xfs_buf *bp;
1da177e4 1781
43ff2122 1782 __xfs_buf_delwri_submit(buffer_list, &io_list, true);
1da177e4 1783
43ff2122
CH
1784 /* Wait for IO to complete. */
1785 while (!list_empty(&io_list)) {
1786 bp = list_first_entry(&io_list, struct xfs_buf, b_list);
a1b7ea5d 1787
089716aa 1788 list_del_init(&bp->b_list);
43ff2122
CH
1789 error2 = xfs_buf_iowait(bp);
1790 xfs_buf_relse(bp);
1791 if (!error)
1792 error = error2;
1da177e4
LT
1793 }
1794
43ff2122 1795 return error;
1da177e4
LT
1796}
1797
04d8b284 1798int __init
ce8e922c 1799xfs_buf_init(void)
1da177e4 1800{
8758280f
NS
1801 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1802 KM_ZONE_HWALIGN, NULL);
ce8e922c 1803 if (!xfs_buf_zone)
0b1b213f 1804 goto out;
04d8b284 1805
51749e47 1806 xfslogd_workqueue = alloc_workqueue("xfslogd",
6370a6ad 1807 WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
23ea4032 1808 if (!xfslogd_workqueue)
04d8b284 1809 goto out_free_buf_zone;
1da177e4 1810
23ea4032 1811 return 0;
1da177e4 1812
23ea4032 1813 out_free_buf_zone:
ce8e922c 1814 kmem_zone_destroy(xfs_buf_zone);
0b1b213f 1815 out:
8758280f 1816 return -ENOMEM;
1da177e4
LT
1817}
1818
1da177e4 1819void
ce8e922c 1820xfs_buf_terminate(void)
1da177e4 1821{
04d8b284 1822 destroy_workqueue(xfslogd_workqueue);
ce8e922c 1823 kmem_zone_destroy(xfs_buf_zone);
1da177e4 1824}