xfs: avoid getting stuck during async inode flushes
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / xfs / linux-2.6 / xfs_buf.c
CommitLineData
1da177e4 1/*
f07c2250 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
93c189c1 18#include "xfs.h"
1da177e4
LT
19#include <linux/stddef.h>
20#include <linux/errno.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/pagemap.h>
23#include <linux/init.h>
24#include <linux/vmalloc.h>
25#include <linux/bio.h>
26#include <linux/sysctl.h>
27#include <linux/proc_fs.h>
28#include <linux/workqueue.h>
29#include <linux/percpu.h>
30#include <linux/blkdev.h>
31#include <linux/hash.h>
4df08c52 32#include <linux/kthread.h>
b20a3503 33#include <linux/migrate.h>
3fcfab16 34#include <linux/backing-dev.h>
7dfb7103 35#include <linux/freezer.h>
1da177e4 36
b7963133
CH
37#include "xfs_sb.h"
38#include "xfs_inum.h"
ed3b4d6c 39#include "xfs_log.h"
b7963133 40#include "xfs_ag.h"
b7963133 41#include "xfs_mount.h"
0b1b213f 42#include "xfs_trace.h"
b7963133 43
7989cb8e 44static kmem_zone_t *xfs_buf_zone;
a6867a68 45STATIC int xfsbufd(void *);
ce8e922c 46STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
23ea4032 47
7989cb8e 48static struct workqueue_struct *xfslogd_workqueue;
0829c360 49struct workqueue_struct *xfsdatad_workqueue;
c626d174 50struct workqueue_struct *xfsconvertd_workqueue;
1da177e4 51
ce8e922c
NS
52#ifdef XFS_BUF_LOCK_TRACKING
53# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
54# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
55# define XB_GET_OWNER(bp) ((bp)->b_last_holder)
1da177e4 56#else
ce8e922c
NS
57# define XB_SET_OWNER(bp) do { } while (0)
58# define XB_CLEAR_OWNER(bp) do { } while (0)
59# define XB_GET_OWNER(bp) do { } while (0)
1da177e4
LT
60#endif
61
ce8e922c
NS
62#define xb_to_gfp(flags) \
63 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
64 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
1da177e4 65
ce8e922c
NS
66#define xb_to_km(flags) \
67 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
1da177e4 68
ce8e922c
NS
69#define xfs_buf_allocate(flags) \
70 kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
71#define xfs_buf_deallocate(bp) \
72 kmem_zone_free(xfs_buf_zone, (bp));
1da177e4 73
73c77e2c
JB
74static inline int
75xfs_buf_is_vmapped(
76 struct xfs_buf *bp)
77{
78 /*
79 * Return true if the buffer is vmapped.
80 *
81 * The XBF_MAPPED flag is set if the buffer should be mapped, but the
82 * code is clever enough to know it doesn't have to map a single page,
83 * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
84 */
85 return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
86}
87
88static inline int
89xfs_buf_vmap_len(
90 struct xfs_buf *bp)
91{
92 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
93}
94
1da177e4 95/*
430cbeb8
DC
96 * xfs_buf_lru_add - add a buffer to the LRU.
97 *
98 * The LRU takes a new reference to the buffer so that it will only be freed
99 * once the shrinker takes the buffer off the LRU.
100 */
101STATIC void
102xfs_buf_lru_add(
103 struct xfs_buf *bp)
104{
105 struct xfs_buftarg *btp = bp->b_target;
106
107 spin_lock(&btp->bt_lru_lock);
108 if (list_empty(&bp->b_lru)) {
109 atomic_inc(&bp->b_hold);
110 list_add_tail(&bp->b_lru, &btp->bt_lru);
111 btp->bt_lru_nr++;
112 }
113 spin_unlock(&btp->bt_lru_lock);
114}
115
116/*
117 * xfs_buf_lru_del - remove a buffer from the LRU
118 *
119 * The unlocked check is safe here because it only occurs when there are not
120 * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
121 * to optimise the shrinker removing the buffer from the LRU and calling
25985edc 122 * xfs_buf_free(). i.e. it removes an unnecessary round trip on the
430cbeb8 123 * bt_lru_lock.
1da177e4 124 */
430cbeb8
DC
125STATIC void
126xfs_buf_lru_del(
127 struct xfs_buf *bp)
128{
129 struct xfs_buftarg *btp = bp->b_target;
130
131 if (list_empty(&bp->b_lru))
132 return;
133
134 spin_lock(&btp->bt_lru_lock);
135 if (!list_empty(&bp->b_lru)) {
136 list_del_init(&bp->b_lru);
137 btp->bt_lru_nr--;
138 }
139 spin_unlock(&btp->bt_lru_lock);
140}
141
142/*
143 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
144 * b_lru_ref count so that the buffer is freed immediately when the buffer
145 * reference count falls to zero. If the buffer is already on the LRU, we need
146 * to remove the reference that LRU holds on the buffer.
147 *
148 * This prevents build-up of stale buffers on the LRU.
149 */
150void
151xfs_buf_stale(
152 struct xfs_buf *bp)
153{
154 bp->b_flags |= XBF_STALE;
155 atomic_set(&(bp)->b_lru_ref, 0);
156 if (!list_empty(&bp->b_lru)) {
157 struct xfs_buftarg *btp = bp->b_target;
158
159 spin_lock(&btp->bt_lru_lock);
160 if (!list_empty(&bp->b_lru)) {
161 list_del_init(&bp->b_lru);
162 btp->bt_lru_nr--;
163 atomic_dec(&bp->b_hold);
164 }
165 spin_unlock(&btp->bt_lru_lock);
166 }
167 ASSERT(atomic_read(&bp->b_hold) >= 1);
168}
1da177e4
LT
169
170STATIC void
ce8e922c
NS
171_xfs_buf_initialize(
172 xfs_buf_t *bp,
1da177e4 173 xfs_buftarg_t *target,
204ab25f 174 xfs_off_t range_base,
1da177e4 175 size_t range_length,
ce8e922c 176 xfs_buf_flags_t flags)
1da177e4
LT
177{
178 /*
ce8e922c 179 * We don't want certain flags to appear in b_flags.
1da177e4 180 */
ce8e922c
NS
181 flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
182
183 memset(bp, 0, sizeof(xfs_buf_t));
184 atomic_set(&bp->b_hold, 1);
430cbeb8 185 atomic_set(&bp->b_lru_ref, 1);
b4dd330b 186 init_completion(&bp->b_iowait);
430cbeb8 187 INIT_LIST_HEAD(&bp->b_lru);
ce8e922c 188 INIT_LIST_HEAD(&bp->b_list);
74f75a0c 189 RB_CLEAR_NODE(&bp->b_rbnode);
a731cd11 190 sema_init(&bp->b_sema, 0); /* held, no waiters */
ce8e922c
NS
191 XB_SET_OWNER(bp);
192 bp->b_target = target;
193 bp->b_file_offset = range_base;
1da177e4
LT
194 /*
195 * Set buffer_length and count_desired to the same value initially.
196 * I/O routines should use count_desired, which will be the same in
197 * most cases but may be reset (e.g. XFS recovery).
198 */
ce8e922c
NS
199 bp->b_buffer_length = bp->b_count_desired = range_length;
200 bp->b_flags = flags;
201 bp->b_bn = XFS_BUF_DADDR_NULL;
202 atomic_set(&bp->b_pin_count, 0);
203 init_waitqueue_head(&bp->b_waiters);
204
205 XFS_STATS_INC(xb_create);
0b1b213f
CH
206
207 trace_xfs_buf_init(bp, _RET_IP_);
1da177e4
LT
208}
209
210/*
ce8e922c
NS
211 * Allocate a page array capable of holding a specified number
212 * of pages, and point the page buf at it.
1da177e4
LT
213 */
214STATIC int
ce8e922c
NS
215_xfs_buf_get_pages(
216 xfs_buf_t *bp,
1da177e4 217 int page_count,
ce8e922c 218 xfs_buf_flags_t flags)
1da177e4
LT
219{
220 /* Make sure that we have a page list */
ce8e922c
NS
221 if (bp->b_pages == NULL) {
222 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
223 bp->b_page_count = page_count;
224 if (page_count <= XB_PAGES) {
225 bp->b_pages = bp->b_page_array;
1da177e4 226 } else {
ce8e922c
NS
227 bp->b_pages = kmem_alloc(sizeof(struct page *) *
228 page_count, xb_to_km(flags));
229 if (bp->b_pages == NULL)
1da177e4
LT
230 return -ENOMEM;
231 }
ce8e922c 232 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
1da177e4
LT
233 }
234 return 0;
235}
236
237/*
ce8e922c 238 * Frees b_pages if it was allocated.
1da177e4
LT
239 */
240STATIC void
ce8e922c 241_xfs_buf_free_pages(
1da177e4
LT
242 xfs_buf_t *bp)
243{
ce8e922c 244 if (bp->b_pages != bp->b_page_array) {
f0e2d93c 245 kmem_free(bp->b_pages);
3fc98b1a 246 bp->b_pages = NULL;
1da177e4
LT
247 }
248}
249
250/*
251 * Releases the specified buffer.
252 *
253 * The modification state of any associated pages is left unchanged.
ce8e922c 254 * The buffer most not be on any hash - use xfs_buf_rele instead for
1da177e4
LT
255 * hashed and refcounted buffers
256 */
257void
ce8e922c 258xfs_buf_free(
1da177e4
LT
259 xfs_buf_t *bp)
260{
0b1b213f 261 trace_xfs_buf_free(bp, _RET_IP_);
1da177e4 262
430cbeb8
DC
263 ASSERT(list_empty(&bp->b_lru));
264
0e6e847f 265 if (bp->b_flags & _XBF_PAGES) {
1da177e4
LT
266 uint i;
267
73c77e2c 268 if (xfs_buf_is_vmapped(bp))
8a262e57
AE
269 vm_unmap_ram(bp->b_addr - bp->b_offset,
270 bp->b_page_count);
1da177e4 271
948ecdb4
NS
272 for (i = 0; i < bp->b_page_count; i++) {
273 struct page *page = bp->b_pages[i];
274
0e6e847f 275 __free_page(page);
948ecdb4 276 }
0e6e847f
DC
277 } else if (bp->b_flags & _XBF_KMEM)
278 kmem_free(bp->b_addr);
3fc98b1a 279 _xfs_buf_free_pages(bp);
ce8e922c 280 xfs_buf_deallocate(bp);
1da177e4
LT
281}
282
283/*
0e6e847f 284 * Allocates all the pages for buffer in question and builds it's page list.
1da177e4
LT
285 */
286STATIC int
0e6e847f 287xfs_buf_allocate_memory(
1da177e4
LT
288 xfs_buf_t *bp,
289 uint flags)
290{
ce8e922c 291 size_t size = bp->b_count_desired;
1da177e4 292 size_t nbytes, offset;
ce8e922c 293 gfp_t gfp_mask = xb_to_gfp(flags);
1da177e4 294 unsigned short page_count, i;
204ab25f 295 xfs_off_t end;
1da177e4
LT
296 int error;
297
0e6e847f
DC
298 /*
299 * for buffers that are contained within a single page, just allocate
300 * the memory from the heap - there's no need for the complexity of
301 * page arrays to keep allocation down to order 0.
302 */
303 if (bp->b_buffer_length < PAGE_SIZE) {
304 bp->b_addr = kmem_alloc(bp->b_buffer_length, xb_to_km(flags));
305 if (!bp->b_addr) {
306 /* low memory - use alloc_page loop instead */
307 goto use_alloc_page;
308 }
309
310 if (((unsigned long)(bp->b_addr + bp->b_buffer_length - 1) &
311 PAGE_MASK) !=
312 ((unsigned long)bp->b_addr & PAGE_MASK)) {
313 /* b_addr spans two pages - use alloc_page instead */
314 kmem_free(bp->b_addr);
315 bp->b_addr = NULL;
316 goto use_alloc_page;
317 }
318 bp->b_offset = offset_in_page(bp->b_addr);
319 bp->b_pages = bp->b_page_array;
320 bp->b_pages[0] = virt_to_page(bp->b_addr);
321 bp->b_page_count = 1;
322 bp->b_flags |= XBF_MAPPED | _XBF_KMEM;
323 return 0;
324 }
325
326use_alloc_page:
ce8e922c
NS
327 end = bp->b_file_offset + bp->b_buffer_length;
328 page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
ce8e922c 329 error = _xfs_buf_get_pages(bp, page_count, flags);
1da177e4
LT
330 if (unlikely(error))
331 return error;
1da177e4 332
ce8e922c 333 offset = bp->b_offset;
0e6e847f 334 bp->b_flags |= _XBF_PAGES;
1da177e4 335
ce8e922c 336 for (i = 0; i < bp->b_page_count; i++) {
1da177e4
LT
337 struct page *page;
338 uint retries = 0;
0e6e847f
DC
339retry:
340 page = alloc_page(gfp_mask);
1da177e4 341 if (unlikely(page == NULL)) {
ce8e922c
NS
342 if (flags & XBF_READ_AHEAD) {
343 bp->b_page_count = i;
0e6e847f
DC
344 error = ENOMEM;
345 goto out_free_pages;
1da177e4
LT
346 }
347
348 /*
349 * This could deadlock.
350 *
351 * But until all the XFS lowlevel code is revamped to
352 * handle buffer allocation failures we can't do much.
353 */
354 if (!(++retries % 100))
4f10700a
DC
355 xfs_err(NULL,
356 "possible memory allocation deadlock in %s (mode:0x%x)",
34a622b2 357 __func__, gfp_mask);
1da177e4 358
ce8e922c 359 XFS_STATS_INC(xb_page_retries);
8aa7e847 360 congestion_wait(BLK_RW_ASYNC, HZ/50);
1da177e4
LT
361 goto retry;
362 }
363
ce8e922c 364 XFS_STATS_INC(xb_page_found);
1da177e4 365
0e6e847f 366 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
1da177e4 367 size -= nbytes;
ce8e922c 368 bp->b_pages[i] = page;
1da177e4
LT
369 offset = 0;
370 }
0e6e847f 371 return 0;
1da177e4 372
0e6e847f
DC
373out_free_pages:
374 for (i = 0; i < bp->b_page_count; i++)
375 __free_page(bp->b_pages[i]);
1da177e4
LT
376 return error;
377}
378
379/*
25985edc 380 * Map buffer into kernel address-space if necessary.
1da177e4
LT
381 */
382STATIC int
ce8e922c 383_xfs_buf_map_pages(
1da177e4
LT
384 xfs_buf_t *bp,
385 uint flags)
386{
0e6e847f 387 ASSERT(bp->b_flags & _XBF_PAGES);
ce8e922c 388 if (bp->b_page_count == 1) {
0e6e847f 389 /* A single page buffer is always mappable */
ce8e922c
NS
390 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
391 bp->b_flags |= XBF_MAPPED;
392 } else if (flags & XBF_MAPPED) {
a19fb380
DC
393 int retried = 0;
394
395 do {
396 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
397 -1, PAGE_KERNEL);
398 if (bp->b_addr)
399 break;
400 vm_unmap_aliases();
401 } while (retried++ <= 1);
402
403 if (!bp->b_addr)
1da177e4 404 return -ENOMEM;
ce8e922c
NS
405 bp->b_addr += bp->b_offset;
406 bp->b_flags |= XBF_MAPPED;
1da177e4
LT
407 }
408
409 return 0;
410}
411
412/*
413 * Finding and Reading Buffers
414 */
415
416/*
ce8e922c 417 * Look up, and creates if absent, a lockable buffer for
1da177e4
LT
418 * a given range of an inode. The buffer is returned
419 * locked. If other overlapping buffers exist, they are
420 * released before the new buffer is created and locked,
421 * which may imply that this call will block until those buffers
422 * are unlocked. No I/O is implied by this call.
423 */
424xfs_buf_t *
ce8e922c 425_xfs_buf_find(
1da177e4 426 xfs_buftarg_t *btp, /* block device target */
204ab25f 427 xfs_off_t ioff, /* starting offset of range */
1da177e4 428 size_t isize, /* length of range */
ce8e922c
NS
429 xfs_buf_flags_t flags,
430 xfs_buf_t *new_bp)
1da177e4 431{
204ab25f 432 xfs_off_t range_base;
1da177e4 433 size_t range_length;
74f75a0c
DC
434 struct xfs_perag *pag;
435 struct rb_node **rbp;
436 struct rb_node *parent;
437 xfs_buf_t *bp;
1da177e4
LT
438
439 range_base = (ioff << BBSHIFT);
440 range_length = (isize << BBSHIFT);
441
442 /* Check for IOs smaller than the sector size / not sector aligned */
ce8e922c 443 ASSERT(!(range_length < (1 << btp->bt_sshift)));
204ab25f 444 ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
1da177e4 445
74f75a0c
DC
446 /* get tree root */
447 pag = xfs_perag_get(btp->bt_mount,
448 xfs_daddr_to_agno(btp->bt_mount, ioff));
449
450 /* walk tree */
451 spin_lock(&pag->pag_buf_lock);
452 rbp = &pag->pag_buf_tree.rb_node;
453 parent = NULL;
454 bp = NULL;
455 while (*rbp) {
456 parent = *rbp;
457 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
458
459 if (range_base < bp->b_file_offset)
460 rbp = &(*rbp)->rb_left;
461 else if (range_base > bp->b_file_offset)
462 rbp = &(*rbp)->rb_right;
463 else {
464 /*
465 * found a block offset match. If the range doesn't
466 * match, the only way this is allowed is if the buffer
467 * in the cache is stale and the transaction that made
468 * it stale has not yet committed. i.e. we are
469 * reallocating a busy extent. Skip this buffer and
470 * continue searching to the right for an exact match.
471 */
472 if (bp->b_buffer_length != range_length) {
473 ASSERT(bp->b_flags & XBF_STALE);
474 rbp = &(*rbp)->rb_right;
475 continue;
476 }
ce8e922c 477 atomic_inc(&bp->b_hold);
1da177e4
LT
478 goto found;
479 }
480 }
481
482 /* No match found */
ce8e922c
NS
483 if (new_bp) {
484 _xfs_buf_initialize(new_bp, btp, range_base,
1da177e4 485 range_length, flags);
74f75a0c
DC
486 rb_link_node(&new_bp->b_rbnode, parent, rbp);
487 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
488 /* the buffer keeps the perag reference until it is freed */
489 new_bp->b_pag = pag;
490 spin_unlock(&pag->pag_buf_lock);
1da177e4 491 } else {
ce8e922c 492 XFS_STATS_INC(xb_miss_locked);
74f75a0c
DC
493 spin_unlock(&pag->pag_buf_lock);
494 xfs_perag_put(pag);
1da177e4 495 }
ce8e922c 496 return new_bp;
1da177e4
LT
497
498found:
74f75a0c
DC
499 spin_unlock(&pag->pag_buf_lock);
500 xfs_perag_put(pag);
1da177e4 501
90810b9e
DC
502 if (xfs_buf_cond_lock(bp)) {
503 /* failed, so wait for the lock if requested. */
ce8e922c 504 if (!(flags & XBF_TRYLOCK)) {
ce8e922c
NS
505 xfs_buf_lock(bp);
506 XFS_STATS_INC(xb_get_locked_waited);
1da177e4 507 } else {
ce8e922c
NS
508 xfs_buf_rele(bp);
509 XFS_STATS_INC(xb_busy_locked);
510 return NULL;
1da177e4 511 }
1da177e4
LT
512 }
513
0e6e847f
DC
514 /*
515 * if the buffer is stale, clear all the external state associated with
516 * it. We need to keep flags such as how we allocated the buffer memory
517 * intact here.
518 */
ce8e922c
NS
519 if (bp->b_flags & XBF_STALE) {
520 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
0e6e847f 521 bp->b_flags &= XBF_MAPPED | _XBF_KMEM | _XBF_PAGES;
2f926587 522 }
0b1b213f
CH
523
524 trace_xfs_buf_find(bp, flags, _RET_IP_);
ce8e922c
NS
525 XFS_STATS_INC(xb_get_locked);
526 return bp;
1da177e4
LT
527}
528
529/*
ce8e922c 530 * Assembles a buffer covering the specified range.
1da177e4
LT
531 * Storage in memory for all portions of the buffer will be allocated,
532 * although backing storage may not be.
533 */
534xfs_buf_t *
6ad112bf 535xfs_buf_get(
1da177e4 536 xfs_buftarg_t *target,/* target for buffer */
204ab25f 537 xfs_off_t ioff, /* starting offset of range */
1da177e4 538 size_t isize, /* length of range */
ce8e922c 539 xfs_buf_flags_t flags)
1da177e4 540{
ce8e922c 541 xfs_buf_t *bp, *new_bp;
0e6e847f 542 int error = 0;
1da177e4 543
ce8e922c
NS
544 new_bp = xfs_buf_allocate(flags);
545 if (unlikely(!new_bp))
1da177e4
LT
546 return NULL;
547
ce8e922c
NS
548 bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
549 if (bp == new_bp) {
0e6e847f 550 error = xfs_buf_allocate_memory(bp, flags);
1da177e4
LT
551 if (error)
552 goto no_buffer;
553 } else {
ce8e922c
NS
554 xfs_buf_deallocate(new_bp);
555 if (unlikely(bp == NULL))
1da177e4
LT
556 return NULL;
557 }
558
ce8e922c
NS
559 if (!(bp->b_flags & XBF_MAPPED)) {
560 error = _xfs_buf_map_pages(bp, flags);
1da177e4 561 if (unlikely(error)) {
4f10700a
DC
562 xfs_warn(target->bt_mount,
563 "%s: failed to map pages\n", __func__);
1da177e4
LT
564 goto no_buffer;
565 }
566 }
567
ce8e922c 568 XFS_STATS_INC(xb_get);
1da177e4
LT
569
570 /*
571 * Always fill in the block number now, the mapped cases can do
572 * their own overlay of this later.
573 */
ce8e922c
NS
574 bp->b_bn = ioff;
575 bp->b_count_desired = bp->b_buffer_length;
1da177e4 576
0b1b213f 577 trace_xfs_buf_get(bp, flags, _RET_IP_);
ce8e922c 578 return bp;
1da177e4
LT
579
580 no_buffer:
ce8e922c
NS
581 if (flags & (XBF_LOCK | XBF_TRYLOCK))
582 xfs_buf_unlock(bp);
583 xfs_buf_rele(bp);
1da177e4
LT
584 return NULL;
585}
586
5d765b97
CH
587STATIC int
588_xfs_buf_read(
589 xfs_buf_t *bp,
590 xfs_buf_flags_t flags)
591{
592 int status;
593
5d765b97
CH
594 ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
595 ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
596
597 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
598 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
599 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | \
600 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
601
602 status = xfs_buf_iorequest(bp);
ec53d1db
DC
603 if (status || XFS_BUF_ISERROR(bp) || (flags & XBF_ASYNC))
604 return status;
605 return xfs_buf_iowait(bp);
5d765b97
CH
606}
607
1da177e4 608xfs_buf_t *
6ad112bf 609xfs_buf_read(
1da177e4 610 xfs_buftarg_t *target,
204ab25f 611 xfs_off_t ioff,
1da177e4 612 size_t isize,
ce8e922c 613 xfs_buf_flags_t flags)
1da177e4 614{
ce8e922c
NS
615 xfs_buf_t *bp;
616
617 flags |= XBF_READ;
618
6ad112bf 619 bp = xfs_buf_get(target, ioff, isize, flags);
ce8e922c 620 if (bp) {
0b1b213f
CH
621 trace_xfs_buf_read(bp, flags, _RET_IP_);
622
ce8e922c 623 if (!XFS_BUF_ISDONE(bp)) {
ce8e922c 624 XFS_STATS_INC(xb_get_read);
5d765b97 625 _xfs_buf_read(bp, flags);
ce8e922c 626 } else if (flags & XBF_ASYNC) {
1da177e4
LT
627 /*
628 * Read ahead call which is already satisfied,
629 * drop the buffer
630 */
631 goto no_buffer;
632 } else {
1da177e4 633 /* We do not want read in the flags */
ce8e922c 634 bp->b_flags &= ~XBF_READ;
1da177e4
LT
635 }
636 }
637
ce8e922c 638 return bp;
1da177e4
LT
639
640 no_buffer:
ce8e922c
NS
641 if (flags & (XBF_LOCK | XBF_TRYLOCK))
642 xfs_buf_unlock(bp);
643 xfs_buf_rele(bp);
1da177e4
LT
644 return NULL;
645}
646
1da177e4 647/*
ce8e922c
NS
648 * If we are not low on memory then do the readahead in a deadlock
649 * safe manner.
1da177e4
LT
650 */
651void
ce8e922c 652xfs_buf_readahead(
1da177e4 653 xfs_buftarg_t *target,
204ab25f 654 xfs_off_t ioff,
1a1a3e97 655 size_t isize)
1da177e4 656{
0e6e847f 657 if (bdi_read_congested(target->bt_bdi))
1da177e4
LT
658 return;
659
1a1a3e97
CH
660 xfs_buf_read(target, ioff, isize,
661 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD|XBF_DONT_BLOCK);
1da177e4
LT
662}
663
5adc94c2
DC
664/*
665 * Read an uncached buffer from disk. Allocates and returns a locked
666 * buffer containing the disk contents or nothing.
667 */
668struct xfs_buf *
669xfs_buf_read_uncached(
670 struct xfs_mount *mp,
671 struct xfs_buftarg *target,
672 xfs_daddr_t daddr,
673 size_t length,
674 int flags)
675{
676 xfs_buf_t *bp;
677 int error;
678
679 bp = xfs_buf_get_uncached(target, length, flags);
680 if (!bp)
681 return NULL;
682
683 /* set up the buffer for a read IO */
684 xfs_buf_lock(bp);
685 XFS_BUF_SET_ADDR(bp, daddr);
686 XFS_BUF_READ(bp);
687 XFS_BUF_BUSY(bp);
688
689 xfsbdstrat(mp, bp);
1a1a3e97 690 error = xfs_buf_iowait(bp);
5adc94c2
DC
691 if (error || bp->b_error) {
692 xfs_buf_relse(bp);
693 return NULL;
694 }
695 return bp;
1da177e4
LT
696}
697
698xfs_buf_t *
ce8e922c 699xfs_buf_get_empty(
1da177e4
LT
700 size_t len,
701 xfs_buftarg_t *target)
702{
ce8e922c 703 xfs_buf_t *bp;
1da177e4 704
ce8e922c
NS
705 bp = xfs_buf_allocate(0);
706 if (bp)
707 _xfs_buf_initialize(bp, target, 0, len, 0);
708 return bp;
1da177e4
LT
709}
710
711static inline struct page *
712mem_to_page(
713 void *addr)
714{
9e2779fa 715 if ((!is_vmalloc_addr(addr))) {
1da177e4
LT
716 return virt_to_page(addr);
717 } else {
718 return vmalloc_to_page(addr);
719 }
720}
721
722int
ce8e922c
NS
723xfs_buf_associate_memory(
724 xfs_buf_t *bp,
1da177e4
LT
725 void *mem,
726 size_t len)
727{
728 int rval;
729 int i = 0;
d1afb678
LM
730 unsigned long pageaddr;
731 unsigned long offset;
732 size_t buflen;
1da177e4
LT
733 int page_count;
734
0e6e847f 735 pageaddr = (unsigned long)mem & PAGE_MASK;
d1afb678 736 offset = (unsigned long)mem - pageaddr;
0e6e847f
DC
737 buflen = PAGE_ALIGN(len + offset);
738 page_count = buflen >> PAGE_SHIFT;
1da177e4
LT
739
740 /* Free any previous set of page pointers */
ce8e922c
NS
741 if (bp->b_pages)
742 _xfs_buf_free_pages(bp);
1da177e4 743
ce8e922c
NS
744 bp->b_pages = NULL;
745 bp->b_addr = mem;
1da177e4 746
36fae17a 747 rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
1da177e4
LT
748 if (rval)
749 return rval;
750
ce8e922c 751 bp->b_offset = offset;
d1afb678
LM
752
753 for (i = 0; i < bp->b_page_count; i++) {
754 bp->b_pages[i] = mem_to_page((void *)pageaddr);
0e6e847f 755 pageaddr += PAGE_SIZE;
1da177e4 756 }
1da177e4 757
d1afb678
LM
758 bp->b_count_desired = len;
759 bp->b_buffer_length = buflen;
ce8e922c 760 bp->b_flags |= XBF_MAPPED;
1da177e4
LT
761
762 return 0;
763}
764
765xfs_buf_t *
686865f7
DC
766xfs_buf_get_uncached(
767 struct xfs_buftarg *target,
1da177e4 768 size_t len,
686865f7 769 int flags)
1da177e4 770{
1fa40b01
CH
771 unsigned long page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
772 int error, i;
1da177e4 773 xfs_buf_t *bp;
1da177e4 774
ce8e922c 775 bp = xfs_buf_allocate(0);
1da177e4
LT
776 if (unlikely(bp == NULL))
777 goto fail;
ce8e922c 778 _xfs_buf_initialize(bp, target, 0, len, 0);
1da177e4 779
1fa40b01
CH
780 error = _xfs_buf_get_pages(bp, page_count, 0);
781 if (error)
1da177e4
LT
782 goto fail_free_buf;
783
1fa40b01 784 for (i = 0; i < page_count; i++) {
686865f7 785 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
1fa40b01
CH
786 if (!bp->b_pages[i])
787 goto fail_free_mem;
1da177e4 788 }
1fa40b01 789 bp->b_flags |= _XBF_PAGES;
1da177e4 790
1fa40b01
CH
791 error = _xfs_buf_map_pages(bp, XBF_MAPPED);
792 if (unlikely(error)) {
4f10700a
DC
793 xfs_warn(target->bt_mount,
794 "%s: failed to map pages\n", __func__);
1da177e4 795 goto fail_free_mem;
1fa40b01 796 }
1da177e4 797
ce8e922c 798 xfs_buf_unlock(bp);
1da177e4 799
686865f7 800 trace_xfs_buf_get_uncached(bp, _RET_IP_);
1da177e4 801 return bp;
1fa40b01 802
1da177e4 803 fail_free_mem:
1fa40b01
CH
804 while (--i >= 0)
805 __free_page(bp->b_pages[i]);
ca165b88 806 _xfs_buf_free_pages(bp);
1da177e4 807 fail_free_buf:
ca165b88 808 xfs_buf_deallocate(bp);
1da177e4
LT
809 fail:
810 return NULL;
811}
812
813/*
1da177e4
LT
814 * Increment reference count on buffer, to hold the buffer concurrently
815 * with another thread which may release (free) the buffer asynchronously.
1da177e4
LT
816 * Must hold the buffer already to call this function.
817 */
818void
ce8e922c
NS
819xfs_buf_hold(
820 xfs_buf_t *bp)
1da177e4 821{
0b1b213f 822 trace_xfs_buf_hold(bp, _RET_IP_);
ce8e922c 823 atomic_inc(&bp->b_hold);
1da177e4
LT
824}
825
826/*
ce8e922c
NS
827 * Releases a hold on the specified buffer. If the
828 * the hold count is 1, calls xfs_buf_free.
1da177e4
LT
829 */
830void
ce8e922c
NS
831xfs_buf_rele(
832 xfs_buf_t *bp)
1da177e4 833{
74f75a0c 834 struct xfs_perag *pag = bp->b_pag;
1da177e4 835
0b1b213f 836 trace_xfs_buf_rele(bp, _RET_IP_);
1da177e4 837
74f75a0c 838 if (!pag) {
430cbeb8 839 ASSERT(list_empty(&bp->b_lru));
74f75a0c 840 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
fad3aa1e
NS
841 if (atomic_dec_and_test(&bp->b_hold))
842 xfs_buf_free(bp);
843 return;
844 }
845
74f75a0c 846 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
430cbeb8 847
3790689f 848 ASSERT(atomic_read(&bp->b_hold) > 0);
74f75a0c 849 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
bfc60177 850 if (!(bp->b_flags & XBF_STALE) &&
430cbeb8
DC
851 atomic_read(&bp->b_lru_ref)) {
852 xfs_buf_lru_add(bp);
853 spin_unlock(&pag->pag_buf_lock);
1da177e4 854 } else {
430cbeb8 855 xfs_buf_lru_del(bp);
ce8e922c 856 ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
74f75a0c
DC
857 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
858 spin_unlock(&pag->pag_buf_lock);
859 xfs_perag_put(pag);
ce8e922c 860 xfs_buf_free(bp);
1da177e4
LT
861 }
862 }
863}
864
865
866/*
0e6e847f 867 * Lock a buffer object, if it is not already locked.
90810b9e
DC
868 *
869 * If we come across a stale, pinned, locked buffer, we know that we are
870 * being asked to lock a buffer that has been reallocated. Because it is
871 * pinned, we know that the log has not been pushed to disk and hence it
872 * will still be locked. Rather than continuing to have trylock attempts
873 * fail until someone else pushes the log, push it ourselves before
874 * returning. This means that the xfsaild will not get stuck trying
875 * to push on stale inode buffers.
1da177e4
LT
876 */
877int
ce8e922c
NS
878xfs_buf_cond_lock(
879 xfs_buf_t *bp)
1da177e4
LT
880{
881 int locked;
882
ce8e922c 883 locked = down_trylock(&bp->b_sema) == 0;
0b1b213f 884 if (locked)
ce8e922c 885 XB_SET_OWNER(bp);
90810b9e
DC
886 else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
887 xfs_log_force(bp->b_target->bt_mount, 0);
0b1b213f
CH
888
889 trace_xfs_buf_cond_lock(bp, _RET_IP_);
ce8e922c 890 return locked ? 0 : -EBUSY;
1da177e4
LT
891}
892
1da177e4 893int
ce8e922c
NS
894xfs_buf_lock_value(
895 xfs_buf_t *bp)
1da177e4 896{
adaa693b 897 return bp->b_sema.count;
1da177e4 898}
1da177e4
LT
899
900/*
0e6e847f 901 * Lock a buffer object.
ed3b4d6c
DC
902 *
903 * If we come across a stale, pinned, locked buffer, we know that we
904 * are being asked to lock a buffer that has been reallocated. Because
905 * it is pinned, we know that the log has not been pushed to disk and
906 * hence it will still be locked. Rather than sleeping until someone
907 * else pushes the log, push it ourselves before trying to get the lock.
1da177e4 908 */
ce8e922c
NS
909void
910xfs_buf_lock(
911 xfs_buf_t *bp)
1da177e4 912{
0b1b213f
CH
913 trace_xfs_buf_lock(bp, _RET_IP_);
914
ed3b4d6c 915 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
ebad861b 916 xfs_log_force(bp->b_target->bt_mount, 0);
ce8e922c
NS
917 down(&bp->b_sema);
918 XB_SET_OWNER(bp);
0b1b213f
CH
919
920 trace_xfs_buf_lock_done(bp, _RET_IP_);
1da177e4
LT
921}
922
923/*
ce8e922c 924 * Releases the lock on the buffer object.
2f926587 925 * If the buffer is marked delwri but is not queued, do so before we
ce8e922c 926 * unlock the buffer as we need to set flags correctly. We also need to
2f926587
DC
927 * take a reference for the delwri queue because the unlocker is going to
928 * drop their's and they don't know we just queued it.
1da177e4
LT
929 */
930void
ce8e922c
NS
931xfs_buf_unlock(
932 xfs_buf_t *bp)
1da177e4 933{
ce8e922c
NS
934 if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
935 atomic_inc(&bp->b_hold);
936 bp->b_flags |= XBF_ASYNC;
937 xfs_buf_delwri_queue(bp, 0);
2f926587
DC
938 }
939
ce8e922c
NS
940 XB_CLEAR_OWNER(bp);
941 up(&bp->b_sema);
0b1b213f
CH
942
943 trace_xfs_buf_unlock(bp, _RET_IP_);
1da177e4
LT
944}
945
ce8e922c
NS
946STATIC void
947xfs_buf_wait_unpin(
948 xfs_buf_t *bp)
1da177e4
LT
949{
950 DECLARE_WAITQUEUE (wait, current);
951
ce8e922c 952 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4
LT
953 return;
954
ce8e922c 955 add_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
956 for (;;) {
957 set_current_state(TASK_UNINTERRUPTIBLE);
ce8e922c 958 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4 959 break;
7eaceacc 960 io_schedule();
1da177e4 961 }
ce8e922c 962 remove_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
963 set_current_state(TASK_RUNNING);
964}
965
966/*
967 * Buffer Utility Routines
968 */
969
1da177e4 970STATIC void
ce8e922c 971xfs_buf_iodone_work(
c4028958 972 struct work_struct *work)
1da177e4 973{
c4028958
DH
974 xfs_buf_t *bp =
975 container_of(work, xfs_buf_t, b_iodone_work);
1da177e4 976
80f6c29d 977 if (bp->b_iodone)
ce8e922c
NS
978 (*(bp->b_iodone))(bp);
979 else if (bp->b_flags & XBF_ASYNC)
1da177e4
LT
980 xfs_buf_relse(bp);
981}
982
983void
ce8e922c
NS
984xfs_buf_ioend(
985 xfs_buf_t *bp,
1da177e4
LT
986 int schedule)
987{
0b1b213f
CH
988 trace_xfs_buf_iodone(bp, _RET_IP_);
989
77be55a5 990 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
ce8e922c
NS
991 if (bp->b_error == 0)
992 bp->b_flags |= XBF_DONE;
1da177e4 993
ce8e922c 994 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1da177e4 995 if (schedule) {
c4028958 996 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
ce8e922c 997 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1da177e4 998 } else {
c4028958 999 xfs_buf_iodone_work(&bp->b_iodone_work);
1da177e4
LT
1000 }
1001 } else {
b4dd330b 1002 complete(&bp->b_iowait);
1da177e4
LT
1003 }
1004}
1005
1da177e4 1006void
ce8e922c
NS
1007xfs_buf_ioerror(
1008 xfs_buf_t *bp,
1009 int error)
1da177e4
LT
1010{
1011 ASSERT(error >= 0 && error <= 0xffff);
ce8e922c 1012 bp->b_error = (unsigned short)error;
0b1b213f 1013 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1da177e4
LT
1014}
1015
1da177e4 1016int
64e0bc7d
CH
1017xfs_bwrite(
1018 struct xfs_mount *mp,
5d765b97 1019 struct xfs_buf *bp)
1da177e4 1020{
8c38366f 1021 int error;
1da177e4 1022
64e0bc7d 1023 bp->b_flags |= XBF_WRITE;
8c38366f 1024 bp->b_flags &= ~(XBF_ASYNC | XBF_READ);
1da177e4 1025
5d765b97 1026 xfs_buf_delwri_dequeue(bp);
939d723b 1027 xfs_bdstrat_cb(bp);
1da177e4 1028
8c38366f
CH
1029 error = xfs_buf_iowait(bp);
1030 if (error)
1031 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1032 xfs_buf_relse(bp);
64e0bc7d 1033 return error;
5d765b97 1034}
1da177e4 1035
5d765b97
CH
1036void
1037xfs_bdwrite(
1038 void *mp,
1039 struct xfs_buf *bp)
1040{
0b1b213f 1041 trace_xfs_buf_bdwrite(bp, _RET_IP_);
1da177e4 1042
5d765b97
CH
1043 bp->b_flags &= ~XBF_READ;
1044 bp->b_flags |= (XBF_DELWRI | XBF_ASYNC);
1045
1046 xfs_buf_delwri_queue(bp, 1);
1da177e4
LT
1047}
1048
4e23471a
CH
1049/*
1050 * Called when we want to stop a buffer from getting written or read.
1a1a3e97 1051 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
4e23471a
CH
1052 * so that the proper iodone callbacks get called.
1053 */
1054STATIC int
1055xfs_bioerror(
1056 xfs_buf_t *bp)
1057{
1058#ifdef XFSERRORDEBUG
1059 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1060#endif
1061
1062 /*
1063 * No need to wait until the buffer is unpinned, we aren't flushing it.
1064 */
1065 XFS_BUF_ERROR(bp, EIO);
1066
1067 /*
1a1a3e97 1068 * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
4e23471a
CH
1069 */
1070 XFS_BUF_UNREAD(bp);
1071 XFS_BUF_UNDELAYWRITE(bp);
1072 XFS_BUF_UNDONE(bp);
1073 XFS_BUF_STALE(bp);
1074
1a1a3e97 1075 xfs_buf_ioend(bp, 0);
4e23471a
CH
1076
1077 return EIO;
1078}
1079
1080/*
1081 * Same as xfs_bioerror, except that we are releasing the buffer
1a1a3e97 1082 * here ourselves, and avoiding the xfs_buf_ioend call.
4e23471a
CH
1083 * This is meant for userdata errors; metadata bufs come with
1084 * iodone functions attached, so that we can track down errors.
1085 */
1086STATIC int
1087xfs_bioerror_relse(
1088 struct xfs_buf *bp)
1089{
1090 int64_t fl = XFS_BUF_BFLAGS(bp);
1091 /*
1092 * No need to wait until the buffer is unpinned.
1093 * We aren't flushing it.
1094 *
1095 * chunkhold expects B_DONE to be set, whether
1096 * we actually finish the I/O or not. We don't want to
1097 * change that interface.
1098 */
1099 XFS_BUF_UNREAD(bp);
1100 XFS_BUF_UNDELAYWRITE(bp);
1101 XFS_BUF_DONE(bp);
1102 XFS_BUF_STALE(bp);
1103 XFS_BUF_CLR_IODONE_FUNC(bp);
0cadda1c 1104 if (!(fl & XBF_ASYNC)) {
4e23471a
CH
1105 /*
1106 * Mark b_error and B_ERROR _both_.
1107 * Lot's of chunkcache code assumes that.
1108 * There's no reason to mark error for
1109 * ASYNC buffers.
1110 */
1111 XFS_BUF_ERROR(bp, EIO);
1112 XFS_BUF_FINISH_IOWAIT(bp);
1113 } else {
1114 xfs_buf_relse(bp);
1115 }
1116
1117 return EIO;
1118}
1119
1120
1121/*
1122 * All xfs metadata buffers except log state machine buffers
1123 * get this attached as their b_bdstrat callback function.
1124 * This is so that we can catch a buffer
1125 * after prematurely unpinning it to forcibly shutdown the filesystem.
1126 */
1127int
1128xfs_bdstrat_cb(
1129 struct xfs_buf *bp)
1130{
ebad861b 1131 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
4e23471a
CH
1132 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1133 /*
1134 * Metadata write that didn't get logged but
1135 * written delayed anyway. These aren't associated
1136 * with a transaction, and can be ignored.
1137 */
1138 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1139 return xfs_bioerror_relse(bp);
1140 else
1141 return xfs_bioerror(bp);
1142 }
1143
1144 xfs_buf_iorequest(bp);
1145 return 0;
1146}
1147
1148/*
1149 * Wrapper around bdstrat so that we can stop data from going to disk in case
1150 * we are shutting down the filesystem. Typically user data goes thru this
1151 * path; one of the exceptions is the superblock.
1152 */
1153void
1154xfsbdstrat(
1155 struct xfs_mount *mp,
1156 struct xfs_buf *bp)
1157{
1158 if (XFS_FORCED_SHUTDOWN(mp)) {
1159 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1160 xfs_bioerror_relse(bp);
1161 return;
1162 }
1163
1164 xfs_buf_iorequest(bp);
1165}
1166
b8f82a4a 1167STATIC void
ce8e922c
NS
1168_xfs_buf_ioend(
1169 xfs_buf_t *bp,
1da177e4
LT
1170 int schedule)
1171{
0e6e847f 1172 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
ce8e922c 1173 xfs_buf_ioend(bp, schedule);
1da177e4
LT
1174}
1175
782e3b3b 1176STATIC void
ce8e922c 1177xfs_buf_bio_end_io(
1da177e4 1178 struct bio *bio,
1da177e4
LT
1179 int error)
1180{
ce8e922c 1181 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1da177e4 1182
cfbe5267 1183 xfs_buf_ioerror(bp, -error);
1da177e4 1184
73c77e2c
JB
1185 if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1186 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1187
ce8e922c 1188 _xfs_buf_ioend(bp, 1);
1da177e4 1189 bio_put(bio);
1da177e4
LT
1190}
1191
1192STATIC void
ce8e922c
NS
1193_xfs_buf_ioapply(
1194 xfs_buf_t *bp)
1da177e4 1195{
a9759f2d 1196 int rw, map_i, total_nr_pages, nr_pages;
1da177e4 1197 struct bio *bio;
ce8e922c
NS
1198 int offset = bp->b_offset;
1199 int size = bp->b_count_desired;
1200 sector_t sector = bp->b_bn;
1da177e4 1201
ce8e922c 1202 total_nr_pages = bp->b_page_count;
1da177e4
LT
1203 map_i = 0;
1204
ce8e922c
NS
1205 if (bp->b_flags & XBF_ORDERED) {
1206 ASSERT(!(bp->b_flags & XBF_READ));
80f6c29d 1207 rw = WRITE_FLUSH_FUA;
2ee1abad 1208 } else if (bp->b_flags & XBF_LOG_BUFFER) {
51bdd706
NS
1209 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1210 bp->b_flags &= ~_XBF_RUN_QUEUES;
1211 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
2ee1abad
DC
1212 } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1213 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1214 bp->b_flags &= ~_XBF_RUN_QUEUES;
1215 rw = (bp->b_flags & XBF_WRITE) ? WRITE_META : READ_META;
51bdd706
NS
1216 } else {
1217 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1218 (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
f538d4da
CH
1219 }
1220
1da177e4 1221
1da177e4 1222next_chunk:
ce8e922c 1223 atomic_inc(&bp->b_io_remaining);
1da177e4
LT
1224 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1225 if (nr_pages > total_nr_pages)
1226 nr_pages = total_nr_pages;
1227
1228 bio = bio_alloc(GFP_NOIO, nr_pages);
ce8e922c 1229 bio->bi_bdev = bp->b_target->bt_bdev;
1da177e4 1230 bio->bi_sector = sector;
ce8e922c
NS
1231 bio->bi_end_io = xfs_buf_bio_end_io;
1232 bio->bi_private = bp;
1da177e4 1233
0e6e847f 1234
1da177e4 1235 for (; size && nr_pages; nr_pages--, map_i++) {
0e6e847f 1236 int rbytes, nbytes = PAGE_SIZE - offset;
1da177e4
LT
1237
1238 if (nbytes > size)
1239 nbytes = size;
1240
ce8e922c
NS
1241 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1242 if (rbytes < nbytes)
1da177e4
LT
1243 break;
1244
1245 offset = 0;
1246 sector += nbytes >> BBSHIFT;
1247 size -= nbytes;
1248 total_nr_pages--;
1249 }
1250
1da177e4 1251 if (likely(bio->bi_size)) {
73c77e2c
JB
1252 if (xfs_buf_is_vmapped(bp)) {
1253 flush_kernel_vmap_range(bp->b_addr,
1254 xfs_buf_vmap_len(bp));
1255 }
1da177e4
LT
1256 submit_bio(rw, bio);
1257 if (size)
1258 goto next_chunk;
1259 } else {
ce8e922c 1260 xfs_buf_ioerror(bp, EIO);
ec53d1db 1261 bio_put(bio);
1da177e4
LT
1262 }
1263}
1264
1da177e4 1265int
ce8e922c
NS
1266xfs_buf_iorequest(
1267 xfs_buf_t *bp)
1da177e4 1268{
0b1b213f 1269 trace_xfs_buf_iorequest(bp, _RET_IP_);
1da177e4 1270
ce8e922c
NS
1271 if (bp->b_flags & XBF_DELWRI) {
1272 xfs_buf_delwri_queue(bp, 1);
1da177e4
LT
1273 return 0;
1274 }
1275
ce8e922c
NS
1276 if (bp->b_flags & XBF_WRITE) {
1277 xfs_buf_wait_unpin(bp);
1da177e4
LT
1278 }
1279
ce8e922c 1280 xfs_buf_hold(bp);
1da177e4
LT
1281
1282 /* Set the count to 1 initially, this will stop an I/O
1283 * completion callout which happens before we have started
ce8e922c 1284 * all the I/O from calling xfs_buf_ioend too early.
1da177e4 1285 */
ce8e922c
NS
1286 atomic_set(&bp->b_io_remaining, 1);
1287 _xfs_buf_ioapply(bp);
1288 _xfs_buf_ioend(bp, 0);
1da177e4 1289
ce8e922c 1290 xfs_buf_rele(bp);
1da177e4
LT
1291 return 0;
1292}
1293
1294/*
ce8e922c
NS
1295 * Waits for I/O to complete on the buffer supplied.
1296 * It returns immediately if no I/O is pending.
1297 * It returns the I/O error code, if any, or 0 if there was no error.
1da177e4
LT
1298 */
1299int
ce8e922c
NS
1300xfs_buf_iowait(
1301 xfs_buf_t *bp)
1da177e4 1302{
0b1b213f
CH
1303 trace_xfs_buf_iowait(bp, _RET_IP_);
1304
b4dd330b 1305 wait_for_completion(&bp->b_iowait);
0b1b213f
CH
1306
1307 trace_xfs_buf_iowait_done(bp, _RET_IP_);
ce8e922c 1308 return bp->b_error;
1da177e4
LT
1309}
1310
ce8e922c
NS
1311xfs_caddr_t
1312xfs_buf_offset(
1313 xfs_buf_t *bp,
1da177e4
LT
1314 size_t offset)
1315{
1316 struct page *page;
1317
ce8e922c
NS
1318 if (bp->b_flags & XBF_MAPPED)
1319 return XFS_BUF_PTR(bp) + offset;
1da177e4 1320
ce8e922c 1321 offset += bp->b_offset;
0e6e847f
DC
1322 page = bp->b_pages[offset >> PAGE_SHIFT];
1323 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1da177e4
LT
1324}
1325
1326/*
1da177e4
LT
1327 * Move data into or out of a buffer.
1328 */
1329void
ce8e922c
NS
1330xfs_buf_iomove(
1331 xfs_buf_t *bp, /* buffer to process */
1da177e4
LT
1332 size_t boff, /* starting buffer offset */
1333 size_t bsize, /* length to copy */
b9c48649 1334 void *data, /* data address */
ce8e922c 1335 xfs_buf_rw_t mode) /* read/write/zero flag */
1da177e4
LT
1336{
1337 size_t bend, cpoff, csize;
1338 struct page *page;
1339
1340 bend = boff + bsize;
1341 while (boff < bend) {
ce8e922c
NS
1342 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1343 cpoff = xfs_buf_poff(boff + bp->b_offset);
1da177e4 1344 csize = min_t(size_t,
0e6e847f 1345 PAGE_SIZE-cpoff, bp->b_count_desired-boff);
1da177e4 1346
0e6e847f 1347 ASSERT(((csize + cpoff) <= PAGE_SIZE));
1da177e4
LT
1348
1349 switch (mode) {
ce8e922c 1350 case XBRW_ZERO:
1da177e4
LT
1351 memset(page_address(page) + cpoff, 0, csize);
1352 break;
ce8e922c 1353 case XBRW_READ:
1da177e4
LT
1354 memcpy(data, page_address(page) + cpoff, csize);
1355 break;
ce8e922c 1356 case XBRW_WRITE:
1da177e4
LT
1357 memcpy(page_address(page) + cpoff, data, csize);
1358 }
1359
1360 boff += csize;
1361 data += csize;
1362 }
1363}
1364
1365/*
ce8e922c 1366 * Handling of buffer targets (buftargs).
1da177e4
LT
1367 */
1368
1369/*
430cbeb8
DC
1370 * Wait for any bufs with callbacks that have been submitted but have not yet
1371 * returned. These buffers will have an elevated hold count, so wait on those
1372 * while freeing all the buffers only held by the LRU.
1da177e4
LT
1373 */
1374void
1375xfs_wait_buftarg(
74f75a0c 1376 struct xfs_buftarg *btp)
1da177e4 1377{
430cbeb8
DC
1378 struct xfs_buf *bp;
1379
1380restart:
1381 spin_lock(&btp->bt_lru_lock);
1382 while (!list_empty(&btp->bt_lru)) {
1383 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1384 if (atomic_read(&bp->b_hold) > 1) {
1385 spin_unlock(&btp->bt_lru_lock);
26af6552 1386 delay(100);
430cbeb8 1387 goto restart;
1da177e4 1388 }
430cbeb8
DC
1389 /*
1390 * clear the LRU reference count so the bufer doesn't get
1391 * ignored in xfs_buf_rele().
1392 */
1393 atomic_set(&bp->b_lru_ref, 0);
1394 spin_unlock(&btp->bt_lru_lock);
1395 xfs_buf_rele(bp);
1396 spin_lock(&btp->bt_lru_lock);
1da177e4 1397 }
430cbeb8 1398 spin_unlock(&btp->bt_lru_lock);
1da177e4
LT
1399}
1400
ff57ab21
DC
1401int
1402xfs_buftarg_shrink(
1403 struct shrinker *shrink,
1404 int nr_to_scan,
1405 gfp_t mask)
a6867a68 1406{
ff57ab21
DC
1407 struct xfs_buftarg *btp = container_of(shrink,
1408 struct xfs_buftarg, bt_shrinker);
430cbeb8
DC
1409 struct xfs_buf *bp;
1410 LIST_HEAD(dispose);
1411
1412 if (!nr_to_scan)
1413 return btp->bt_lru_nr;
1414
1415 spin_lock(&btp->bt_lru_lock);
1416 while (!list_empty(&btp->bt_lru)) {
1417 if (nr_to_scan-- <= 0)
1418 break;
1419
1420 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1421
1422 /*
1423 * Decrement the b_lru_ref count unless the value is already
1424 * zero. If the value is already zero, we need to reclaim the
1425 * buffer, otherwise it gets another trip through the LRU.
1426 */
1427 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1428 list_move_tail(&bp->b_lru, &btp->bt_lru);
1429 continue;
1430 }
1431
1432 /*
1433 * remove the buffer from the LRU now to avoid needing another
1434 * lock round trip inside xfs_buf_rele().
1435 */
1436 list_move(&bp->b_lru, &dispose);
1437 btp->bt_lru_nr--;
ff57ab21 1438 }
430cbeb8
DC
1439 spin_unlock(&btp->bt_lru_lock);
1440
1441 while (!list_empty(&dispose)) {
1442 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1443 list_del_init(&bp->b_lru);
1444 xfs_buf_rele(bp);
1445 }
1446
1447 return btp->bt_lru_nr;
a6867a68
DC
1448}
1449
1da177e4
LT
1450void
1451xfs_free_buftarg(
b7963133
CH
1452 struct xfs_mount *mp,
1453 struct xfs_buftarg *btp)
1da177e4 1454{
ff57ab21
DC
1455 unregister_shrinker(&btp->bt_shrinker);
1456
1da177e4 1457 xfs_flush_buftarg(btp, 1);
b7963133
CH
1458 if (mp->m_flags & XFS_MOUNT_BARRIER)
1459 xfs_blkdev_issue_flush(btp);
a6867a68 1460
a6867a68 1461 kthread_stop(btp->bt_task);
f0e2d93c 1462 kmem_free(btp);
1da177e4
LT
1463}
1464
1da177e4
LT
1465STATIC int
1466xfs_setsize_buftarg_flags(
1467 xfs_buftarg_t *btp,
1468 unsigned int blocksize,
1469 unsigned int sectorsize,
1470 int verbose)
1471{
ce8e922c
NS
1472 btp->bt_bsize = blocksize;
1473 btp->bt_sshift = ffs(sectorsize) - 1;
1474 btp->bt_smask = sectorsize - 1;
1da177e4 1475
ce8e922c 1476 if (set_blocksize(btp->bt_bdev, sectorsize)) {
4f10700a
DC
1477 xfs_warn(btp->bt_mount,
1478 "Cannot set_blocksize to %u on device %s\n",
1da177e4
LT
1479 sectorsize, XFS_BUFTARG_NAME(btp));
1480 return EINVAL;
1481 }
1482
1da177e4
LT
1483 return 0;
1484}
1485
1486/*
ce8e922c
NS
1487 * When allocating the initial buffer target we have not yet
1488 * read in the superblock, so don't know what sized sectors
1489 * are being used is at this early stage. Play safe.
1490 */
1da177e4
LT
1491STATIC int
1492xfs_setsize_buftarg_early(
1493 xfs_buftarg_t *btp,
1494 struct block_device *bdev)
1495{
1496 return xfs_setsize_buftarg_flags(btp,
0e6e847f 1497 PAGE_SIZE, bdev_logical_block_size(bdev), 0);
1da177e4
LT
1498}
1499
1500int
1501xfs_setsize_buftarg(
1502 xfs_buftarg_t *btp,
1503 unsigned int blocksize,
1504 unsigned int sectorsize)
1505{
1506 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1507}
1508
a6867a68
DC
1509STATIC int
1510xfs_alloc_delwrite_queue(
e2a07812
JE
1511 xfs_buftarg_t *btp,
1512 const char *fsname)
a6867a68 1513{
a6867a68 1514 INIT_LIST_HEAD(&btp->bt_delwrite_queue);
007c61c6 1515 spin_lock_init(&btp->bt_delwrite_lock);
a6867a68 1516 btp->bt_flags = 0;
e2a07812 1517 btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname);
ff57ab21
DC
1518 if (IS_ERR(btp->bt_task))
1519 return PTR_ERR(btp->bt_task);
1520 return 0;
a6867a68
DC
1521}
1522
1da177e4
LT
1523xfs_buftarg_t *
1524xfs_alloc_buftarg(
ebad861b 1525 struct xfs_mount *mp,
1da177e4 1526 struct block_device *bdev,
e2a07812
JE
1527 int external,
1528 const char *fsname)
1da177e4
LT
1529{
1530 xfs_buftarg_t *btp;
1531
1532 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1533
ebad861b 1534 btp->bt_mount = mp;
ce8e922c
NS
1535 btp->bt_dev = bdev->bd_dev;
1536 btp->bt_bdev = bdev;
0e6e847f
DC
1537 btp->bt_bdi = blk_get_backing_dev_info(bdev);
1538 if (!btp->bt_bdi)
1539 goto error;
1540
430cbeb8
DC
1541 INIT_LIST_HEAD(&btp->bt_lru);
1542 spin_lock_init(&btp->bt_lru_lock);
1da177e4
LT
1543 if (xfs_setsize_buftarg_early(btp, bdev))
1544 goto error;
e2a07812 1545 if (xfs_alloc_delwrite_queue(btp, fsname))
a6867a68 1546 goto error;
ff57ab21
DC
1547 btp->bt_shrinker.shrink = xfs_buftarg_shrink;
1548 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1549 register_shrinker(&btp->bt_shrinker);
1da177e4
LT
1550 return btp;
1551
1552error:
f0e2d93c 1553 kmem_free(btp);
1da177e4
LT
1554 return NULL;
1555}
1556
1557
1558/*
ce8e922c 1559 * Delayed write buffer handling
1da177e4 1560 */
1da177e4 1561STATIC void
ce8e922c
NS
1562xfs_buf_delwri_queue(
1563 xfs_buf_t *bp,
1da177e4
LT
1564 int unlock)
1565{
ce8e922c
NS
1566 struct list_head *dwq = &bp->b_target->bt_delwrite_queue;
1567 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
a6867a68 1568
0b1b213f
CH
1569 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1570
ce8e922c 1571 ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1da177e4 1572
a6867a68 1573 spin_lock(dwlk);
1da177e4 1574 /* If already in the queue, dequeue and place at tail */
ce8e922c
NS
1575 if (!list_empty(&bp->b_list)) {
1576 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1577 if (unlock)
1578 atomic_dec(&bp->b_hold);
1579 list_del(&bp->b_list);
1da177e4
LT
1580 }
1581
c9c12971
DC
1582 if (list_empty(dwq)) {
1583 /* start xfsbufd as it is about to have something to do */
1584 wake_up_process(bp->b_target->bt_task);
1585 }
1586
ce8e922c
NS
1587 bp->b_flags |= _XBF_DELWRI_Q;
1588 list_add_tail(&bp->b_list, dwq);
1589 bp->b_queuetime = jiffies;
a6867a68 1590 spin_unlock(dwlk);
1da177e4
LT
1591
1592 if (unlock)
ce8e922c 1593 xfs_buf_unlock(bp);
1da177e4
LT
1594}
1595
1596void
ce8e922c
NS
1597xfs_buf_delwri_dequeue(
1598 xfs_buf_t *bp)
1da177e4 1599{
ce8e922c 1600 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1da177e4
LT
1601 int dequeued = 0;
1602
a6867a68 1603 spin_lock(dwlk);
ce8e922c
NS
1604 if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1605 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1606 list_del_init(&bp->b_list);
1da177e4
LT
1607 dequeued = 1;
1608 }
ce8e922c 1609 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
a6867a68 1610 spin_unlock(dwlk);
1da177e4
LT
1611
1612 if (dequeued)
ce8e922c 1613 xfs_buf_rele(bp);
1da177e4 1614
0b1b213f 1615 trace_xfs_buf_delwri_dequeue(bp, _RET_IP_);
1da177e4
LT
1616}
1617
d808f617
DC
1618/*
1619 * If a delwri buffer needs to be pushed before it has aged out, then promote
1620 * it to the head of the delwri queue so that it will be flushed on the next
1621 * xfsbufd run. We do this by resetting the queuetime of the buffer to be older
1622 * than the age currently needed to flush the buffer. Hence the next time the
1623 * xfsbufd sees it is guaranteed to be considered old enough to flush.
1624 */
1625void
1626xfs_buf_delwri_promote(
1627 struct xfs_buf *bp)
1628{
1629 struct xfs_buftarg *btp = bp->b_target;
1630 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1;
1631
1632 ASSERT(bp->b_flags & XBF_DELWRI);
1633 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1634
1635 /*
1636 * Check the buffer age before locking the delayed write queue as we
1637 * don't need to promote buffers that are already past the flush age.
1638 */
1639 if (bp->b_queuetime < jiffies - age)
1640 return;
1641 bp->b_queuetime = jiffies - age;
1642 spin_lock(&btp->bt_delwrite_lock);
1643 list_move(&bp->b_list, &btp->bt_delwrite_queue);
1644 spin_unlock(&btp->bt_delwrite_lock);
1645}
1646
1da177e4 1647STATIC void
ce8e922c 1648xfs_buf_runall_queues(
1da177e4
LT
1649 struct workqueue_struct *queue)
1650{
1651 flush_workqueue(queue);
1652}
1653
585e6d88
DC
1654/*
1655 * Move as many buffers as specified to the supplied list
1656 * idicating if we skipped any buffers to prevent deadlocks.
1657 */
1658STATIC int
1659xfs_buf_delwri_split(
1660 xfs_buftarg_t *target,
1661 struct list_head *list,
5e6a07df 1662 unsigned long age)
585e6d88
DC
1663{
1664 xfs_buf_t *bp, *n;
1665 struct list_head *dwq = &target->bt_delwrite_queue;
1666 spinlock_t *dwlk = &target->bt_delwrite_lock;
1667 int skipped = 0;
5e6a07df 1668 int force;
585e6d88 1669
5e6a07df 1670 force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
585e6d88
DC
1671 INIT_LIST_HEAD(list);
1672 spin_lock(dwlk);
1673 list_for_each_entry_safe(bp, n, dwq, b_list) {
585e6d88
DC
1674 ASSERT(bp->b_flags & XBF_DELWRI);
1675
4d16e924 1676 if (!XFS_BUF_ISPINNED(bp) && !xfs_buf_cond_lock(bp)) {
5e6a07df 1677 if (!force &&
585e6d88
DC
1678 time_before(jiffies, bp->b_queuetime + age)) {
1679 xfs_buf_unlock(bp);
1680 break;
1681 }
1682
1683 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1684 _XBF_RUN_QUEUES);
1685 bp->b_flags |= XBF_WRITE;
1686 list_move_tail(&bp->b_list, list);
bfe27419 1687 trace_xfs_buf_delwri_split(bp, _RET_IP_);
585e6d88
DC
1688 } else
1689 skipped++;
1690 }
1691 spin_unlock(dwlk);
1692
1693 return skipped;
1694
1695}
1696
089716aa
DC
1697/*
1698 * Compare function is more complex than it needs to be because
1699 * the return value is only 32 bits and we are doing comparisons
1700 * on 64 bit values
1701 */
1702static int
1703xfs_buf_cmp(
1704 void *priv,
1705 struct list_head *a,
1706 struct list_head *b)
1707{
1708 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1709 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1710 xfs_daddr_t diff;
1711
1712 diff = ap->b_bn - bp->b_bn;
1713 if (diff < 0)
1714 return -1;
1715 if (diff > 0)
1716 return 1;
1717 return 0;
1718}
1719
1720void
1721xfs_buf_delwri_sort(
1722 xfs_buftarg_t *target,
1723 struct list_head *list)
1724{
1725 list_sort(NULL, list, xfs_buf_cmp);
1726}
1727
1da177e4 1728STATIC int
23ea4032 1729xfsbufd(
585e6d88 1730 void *data)
1da177e4 1731{
089716aa 1732 xfs_buftarg_t *target = (xfs_buftarg_t *)data;
1da177e4 1733
1da177e4
LT
1734 current->flags |= PF_MEMALLOC;
1735
978c7b2f
RW
1736 set_freezable();
1737
1da177e4 1738 do {
c9c12971
DC
1739 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1740 long tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10);
089716aa 1741 struct list_head tmp;
a1b7ea5d 1742 struct blk_plug plug;
c9c12971 1743
3e1d1d28 1744 if (unlikely(freezing(current))) {
ce8e922c 1745 set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
3e1d1d28 1746 refrigerator();
abd0cf7a 1747 } else {
ce8e922c 1748 clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
abd0cf7a 1749 }
1da177e4 1750
c9c12971
DC
1751 /* sleep for a long time if there is nothing to do. */
1752 if (list_empty(&target->bt_delwrite_queue))
1753 tout = MAX_SCHEDULE_TIMEOUT;
1754 schedule_timeout_interruptible(tout);
1da177e4 1755
c9c12971 1756 xfs_buf_delwri_split(target, &tmp, age);
089716aa 1757 list_sort(NULL, &tmp, xfs_buf_cmp);
a1b7ea5d
CH
1758
1759 blk_start_plug(&plug);
1da177e4 1760 while (!list_empty(&tmp)) {
089716aa
DC
1761 struct xfs_buf *bp;
1762 bp = list_first_entry(&tmp, struct xfs_buf, b_list);
ce8e922c 1763 list_del_init(&bp->b_list);
939d723b 1764 xfs_bdstrat_cb(bp);
1da177e4 1765 }
a1b7ea5d 1766 blk_finish_plug(&plug);
4df08c52 1767 } while (!kthread_should_stop());
1da177e4 1768
4df08c52 1769 return 0;
1da177e4
LT
1770}
1771
1772/*
ce8e922c
NS
1773 * Go through all incore buffers, and release buffers if they belong to
1774 * the given device. This is used in filesystem error handling to
1775 * preserve the consistency of its metadata.
1da177e4
LT
1776 */
1777int
1778xfs_flush_buftarg(
585e6d88
DC
1779 xfs_buftarg_t *target,
1780 int wait)
1da177e4 1781{
089716aa 1782 xfs_buf_t *bp;
585e6d88 1783 int pincount = 0;
089716aa
DC
1784 LIST_HEAD(tmp_list);
1785 LIST_HEAD(wait_list);
a1b7ea5d 1786 struct blk_plug plug;
1da177e4 1787
c626d174 1788 xfs_buf_runall_queues(xfsconvertd_workqueue);
ce8e922c
NS
1789 xfs_buf_runall_queues(xfsdatad_workqueue);
1790 xfs_buf_runall_queues(xfslogd_workqueue);
1da177e4 1791
5e6a07df 1792 set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
089716aa 1793 pincount = xfs_buf_delwri_split(target, &tmp_list, 0);
1da177e4
LT
1794
1795 /*
089716aa
DC
1796 * Dropped the delayed write list lock, now walk the temporary list.
1797 * All I/O is issued async and then if we need to wait for completion
1798 * we do that after issuing all the IO.
1da177e4 1799 */
089716aa 1800 list_sort(NULL, &tmp_list, xfs_buf_cmp);
a1b7ea5d
CH
1801
1802 blk_start_plug(&plug);
089716aa
DC
1803 while (!list_empty(&tmp_list)) {
1804 bp = list_first_entry(&tmp_list, struct xfs_buf, b_list);
585e6d88 1805 ASSERT(target == bp->b_target);
089716aa
DC
1806 list_del_init(&bp->b_list);
1807 if (wait) {
ce8e922c 1808 bp->b_flags &= ~XBF_ASYNC;
089716aa
DC
1809 list_add(&bp->b_list, &wait_list);
1810 }
939d723b 1811 xfs_bdstrat_cb(bp);
1da177e4 1812 }
a1b7ea5d 1813 blk_finish_plug(&plug);
1da177e4 1814
089716aa 1815 if (wait) {
a1b7ea5d 1816 /* Wait for IO to complete. */
089716aa
DC
1817 while (!list_empty(&wait_list)) {
1818 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
f07c2250 1819
089716aa 1820 list_del_init(&bp->b_list);
1a1a3e97 1821 xfs_buf_iowait(bp);
089716aa
DC
1822 xfs_buf_relse(bp);
1823 }
1da177e4
LT
1824 }
1825
1da177e4
LT
1826 return pincount;
1827}
1828
04d8b284 1829int __init
ce8e922c 1830xfs_buf_init(void)
1da177e4 1831{
8758280f
NS
1832 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1833 KM_ZONE_HWALIGN, NULL);
ce8e922c 1834 if (!xfs_buf_zone)
0b1b213f 1835 goto out;
04d8b284 1836
51749e47 1837 xfslogd_workqueue = alloc_workqueue("xfslogd",
6370a6ad 1838 WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
23ea4032 1839 if (!xfslogd_workqueue)
04d8b284 1840 goto out_free_buf_zone;
1da177e4 1841
83e75904 1842 xfsdatad_workqueue = alloc_workqueue("xfsdatad", WQ_MEM_RECLAIM, 1);
23ea4032
CH
1843 if (!xfsdatad_workqueue)
1844 goto out_destroy_xfslogd_workqueue;
1da177e4 1845
83e75904
TH
1846 xfsconvertd_workqueue = alloc_workqueue("xfsconvertd",
1847 WQ_MEM_RECLAIM, 1);
c626d174
DC
1848 if (!xfsconvertd_workqueue)
1849 goto out_destroy_xfsdatad_workqueue;
1850
23ea4032 1851 return 0;
1da177e4 1852
c626d174
DC
1853 out_destroy_xfsdatad_workqueue:
1854 destroy_workqueue(xfsdatad_workqueue);
23ea4032
CH
1855 out_destroy_xfslogd_workqueue:
1856 destroy_workqueue(xfslogd_workqueue);
23ea4032 1857 out_free_buf_zone:
ce8e922c 1858 kmem_zone_destroy(xfs_buf_zone);
0b1b213f 1859 out:
8758280f 1860 return -ENOMEM;
1da177e4
LT
1861}
1862
1da177e4 1863void
ce8e922c 1864xfs_buf_terminate(void)
1da177e4 1865{
c626d174 1866 destroy_workqueue(xfsconvertd_workqueue);
04d8b284
CH
1867 destroy_workqueue(xfsdatad_workqueue);
1868 destroy_workqueue(xfslogd_workqueue);
ce8e922c 1869 kmem_zone_destroy(xfs_buf_zone);
1da177e4 1870}
e6a0e9cd
TS
1871
1872#ifdef CONFIG_KDB_MODULES
1873struct list_head *
1874xfs_get_buftarg_list(void)
1875{
1876 return &xfs_buftarg_list;
1877}
1878#endif